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Delay Efficient FA-Assisted Satellite Communication
Network with Mobile Edge Computing
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Abstract—Mobile edge computing–space-air-ground integrated
network (MEC-SAGIN) is emerging as a crucial component of
future wireless systems. Despite its potential, addressing network
fluctuations while ensuring continuous low-latency computing
services in highly dynamic environments remains a significant
challenge. To address this issue, this paper proposes a fluid an-
tenna (FA)-assisted MEC-SAGIN system, which enhances chan-
nel transmission conditions and reduces uplink task offloading
latency by flexibly adjusting the antenna ports of edge computing
users equipped with FAs. Specifically, we aim to minimize the
maximum total computational delay (TCD) of edge computing
tasks for ground users (GUs) and the satellite user (SU) by jointly
optimizing the task offloading strategies, computational resource
allocation, FA port positions, unmanned aerial vehicle (UAV)
location, and the receive beamforming matrix. To solve this non-
convex problem, we employ the block coordinate descent (BCD)
technique to decompose the original problem into four subprob-
lems. The subproblems are optimized using a combination of
low-complexity iterative algorithms and the projected gradient
descent (PGD) method to refine communication and computation
configurations as well as FA port selection. Simulation results
demonstrate that the FA-assisted scheme significantly improves
the TCD performance of the MEC-SAGIN system. It maintains
transmission stability and reliability in dynamic environments
while outperforming conventional fixed-position antennas (FPAs)
and random-port antenna schemes.

Index Terms—Mobile edge computing, fluid antenna, satellite
communication, unmanned aerial vehicle, resource allocation.

I. INTRODUCTION

A. Motivation and Scope

W ITH the rapid development of the sixth-generation
(6G) mobile communication systems, the number of

wireless devices worldwide is growing exponentially [1] [2].
However, the connection of large-scale wireless devices to a
network results in the demand for services that require high
bandwidth and computational resources [3] [4]. Mobile edge
computing (MEC), as one of the emerging technologies in
5G, effectively reduces communication latency by migrating
computational resources from centralized data centers to the
edge of the network, thereby providing powerful support for
latency-sensitive applications [5]–[8]. Nevertheless, there are
still many challenges that MEC should address in practical
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applications, including the complexity of resource allocation,
the quality of service assurance, and the coordination of multi-
access technologies [9] [10]. These challenges constrain the
scalable deployment of MEC, particularly in highly dynamic
environments and large-scale user access scenarios.

In this context, the space-air-ground integrated network
(SAGIN), as a promising architecture, has attracted significant
attention from both academia and industry [11] [12]. By inte-
grating satellite, unmanned aerial vehicle (UAV), and ground
networks, SAGIN realizes seamless communication between
air, space, and ground, demonstrating immense potential in
application scenarios such as remote areas, post-disaster recov-
ery, and wide-area coverage [13]. The deployment of SAGIN
not only extends the coverage of communication networks
through the coordinated scheduling and management of cross-
domain resources but also enhances robustness and flexibility
[14]. This facilitates new opportunities for the further advance-
ment of MEC, establishing SAGIN as an effective solution to
address challenges such as insufficient network coverage and
communication latency.

Existing efforts have been made to achieve efficient commu-
nication and computation offloading in MEC-enabled SAGIN
systems [15]–[17]. The existing literature primarily focuses on
how to utilize the multi-layered network structure of SAGIN
to enhance the computational and communication capabilities
of MEC, such as by extending the coverage of edge com-
puting through satellite networks or dynamically deploying
computational resources via UAVs [18] [19]. Specifically,
the works in [20]–[22] have explored various designs for
uplink communication and computation offloading in SAGIN.
Considering the services of MEC in the SAGIN system,
ground users (GUs) can typically offload their computational
tasks to edge servers on UAVs or satellites, thereby con-
serving energy and/or reducing computation latency for GUs
[23]–[25]. Nonetheless, while existing studies have primarily
concentrated on the distinct advantages of MEC and SAGIN
networks, there remains a lack of in-depth research on the chal-
lenges arising from the integration of these two technologies
in novel network architectures. These challenges include in-
creased network complexity and the optimization of resources
in dynamic environments. In particular, the communication
among satellites, UAVs, and GUs within SAGIN is susceptible
to multipath fading and link instability in highly dynamic
environments, which imposes significant challenges on the
offloading of computational tasks and resource allocation in
MEC.

To address these challenges, the integration of fluid an-
tenna (FA) technology has gradually emerged as a prominent
solution [26]–[29]. By dynamically adjusting the antenna
position within a constrained spatial domain, FAs can better
exploit spatial diversity, thereby mitigating the impact of
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multipath fading on signal transmission [30]–[32]. Specifi-
cally, FA technology enables the adjustment of the antenna
position vector (APV) and antenna weight vector (AWV) to
achieve full array gain in the desired direction and interference
nulling in multiple undesired directions [33] [34]. Compared
to conventional fixed-position antennas (FPAs), FAs exhibit
superior efficiency and adaptability, thus further improving
the reliability and stability of the communication network
[35] [36]. Recent studies have explored FAs in MEC and
in SAGIN as two largely separate threads. Specifically, in
MEC networks, the reconfigurability of FAs enables oppor-
tunistic port selection and position adaptation, which improves
uplink signal-to-interference-plus-noise ratio (SINR), reduces
the transmit power required for reliable offloading, and con-
sequently shortens end-to-end latency [37] [38]. In SAGIN
networks, FAs provide interference containment and adaptive
beam footprints, while port diversity suppresses inter-beam
leakage, which enhances link reliability under rapid geometric
variation and Doppler effects, and thereby improves spectral
reuse compared with fixed-pattern arrays [39]. However, these
studies analyze the benefits of FAs within isolated MEC or
SAGIN settings.

With FA technology already demonstrating its effectiveness
in both MEC and SAGIN systems, as well as its adaptability
to complex and dynamic environments, this technology serves
as an effective solution for providing flexible adjustment
capabilities to alleviate edge computing network congestion
in high-speed SAGIN environments. Therefore, we propose to
utilize FAs in the integrated MEC-SAGIN hybrid network to
address the limitations of the existing network architectures.
To the best of our knowledge, there is currently no research on
the application of FA technology for enabling edge computing
within SAGIN networks. To fill this research gap, we propose
a novel SAGIN architecture that integrates satellite, UAV, GUs,
and FA technology to enhance the stability and reliability of
MEC transmission links in highly dynamic environments. This
architecture facilitates the coordinated optimization between
MEC resources and SAGIN nodes, effectively supporting
seamless communication and computing services for mobile
users. This design enables MEC applications in the SAGIN
environment to more efficiently adapt to network condition
fluctuations, enhance the uplink channel conditions, and im-
prove computation offloading efficiency, thereby minimizing
overall system latency to the greatest extent and delivering
enhanced quality of service (QoS).

In this paper, we propose a task offloading and wire-
less resource management strategy for the FA-assisted MEC-
SAGIN system. To minimize the total computation delay
(TCD) and enhance the QoS for edge computing users, we
jointly optimize the FA port positions, UAV location, and
resource allocation. This study not only demonstrates the
potential of FA in handling MEC tasks within SAGIN systems
but also offers a novel solution for communication networks
in complex environments.

B. Contributions and Organization
The main contributions of this paper are summarized as

follows:

• We propose a novel FA-assisted MEC-SAGIN system,
which helps ease the computational load at the GUs
and the SU, and offers stable offloading in dynamic
environments. By deploying FAs, the MEC-SAGIN sys-
tem can better provide flexible adjustment capabilities in
case of edge computing network congestion or device
failures, thus enhancing the stability and reliability of the
networks.

• To investigate MEC task offloading in an FA-assisted
SAGIN system, we formulate a joint optimization prob-
lem involving task offloading strategies, computational
resource allocation, FA port positions, UAV location, and
the receive beamforming matrix.

• To address this highly non-convex and strongly coupled
optimization problem, we employ the block coordinate
descent (BCD) technique to decompose the original prob-
lem into four subproblems. In the joint task offloading and
CPU allocation subproblem, we first derive a closed-form
solution for the task offloading variable, while the CPU
allocation is solved by introducing auxiliary variables
and applying successive convex approximation (SCA).
In addition, the UAV location optimization subproblem
is also tackled using the SCA method. The receive
beamforming subproblem is addressed via semidefinite
relaxation (SDR) combined with Gaussian randomization,
and the FA port selection subproblem is handled through
a novel projected gradient descent (PGD)-based approach
to cope with integer constraints.

• Simulation results demonstrate that the FA-assisted MEC-
SAGIN system based on the proposed BCD algorithm
achieves superior TCD performance compared with con-
ventional fixed-position antenna (FPA) and random-port
antenna schemes.

The structure of this paper is as follows: In Section II, we es-
tablish the system model and formulate the TCD minimization
problem. The solution to this problem is provided in Section
III. The simulation results are shown and discussed in Section
IV. Finally, our conclusions are provided in Section V.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a SAGIN system oriented
towards MEC tasks, comprising a satellite, a UAV, and K
GUs. The MEC tasks include computation tasks from GUs
with insufficient computing capabilities and service tasks from
the satellite user (SU). Specifically, the satellite continuously
senses and collects data while moving along a fixed trajec-
tory, transmitting the data to the UAV for computation and
processing. Each GU and SU has a task to execute, which
can be partially offloaded to the UAV and partially computed
locally. The UAV is equipped with an MEC server and N
fixed-position antennas, serving as an MEC node. In addition,
we assume that each GU and SU is equipped with an FA
consisting of M ports, each of which can be activated if
selected. The set of all GUs is denoted by K = {1, 2, · · · ,K},
and the set of all FA ports at each GU or SU is denoted by
M = {1, 2, · · · ,M}. When transmitting signals, one port is
selected for signal transmission. Specifically, the index of the
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selected port can be represented by a variable rm ∈ Z1×1,
where rm ∈M.

Fig. 1. Illustration of the FA-assisted MEC-SAGIN system, where K GUs
and one SU offload their tasks to the edge computing node UAV via M -port
FA.

A. Signal transmission

The channel vector between each GU, SU, and UAV is
determined by the propagation environment and the position of
the UAV. It is assumed that the far-field condition is satisfied
between the GUs and the UAV, as well as between the SU and
the UAV.

We consider the transmission link from the GUs and the
SU to the UAV. In the ground network, the coordinates of
the k-th GU can be denoted by vk = (xk, yk)

T since the
height of each GU is approximated to be zero compared to
the heights of UAV and satellite. In the air network, we define
the coordinates of the UAV as

q = (x, y)T, (1)

and the height of the UAV is denoted as HU. Therefore, the
distance between the UAV and the k-th GU can be calculated
as

qk =
√
∥q− vk∥2 +H2

U. (2)

Furthermore, the channel gain between the UAV and the k-th
GU can be expressed as

hk =
β0

q2k
, (3)

where β0 is the path loss of the GU-to-UAV link at the
reference distance of 1 m. In the space network, we denote
the distance between the satellite and the UAV by do. Since
the altitude of the satellite is very high, the positional change
of the UAV has little effect on do. For simplification, we
disregard the impact of the positional changes of the UAV
on the distance between the satellite and the UAV. We model
the SU-to-UAV wireless channel coefficient as

ho = δo(
λo

4πdo
)2, (4)

where δo is the beam gain, and λo denotes the wavelength of
the SU-to-UAV transmission wave. The signal received at the
UAV is formulated as follows

y =

K∑
k=1

√
pkhkgk(r

k
m)sk +

√
pohogo(r

o
m)so + n, (5)

where sk ∈ C1×1 and so ∈ C1×1 denote the data stream
variables from the k-th GU and the SU, respectively, satisfying
the distribution of zero mean and unit variance, pk and po
denote the transmit power of the k-th GU and the SU,
respectively, and n ∼ CN (0, σ2IN ) denotes the additive white
Gaussian noise (AWGN). In addition, let gk, go denote the
multiple-access channel vectors from the k-th GU and the SU
to the UAV, respectively. A detailed description of the channel
models for gk and go will be provided in the next subsection.

It is assumed that the linear equalizer vectors wk ∈
CN×1,∀k ∈ K and wo ∈ CN×1 are used to equalize the
received signal of GUs and SU at the UAV, respectively. Thus,
the received signal of the k-th GU and SU recovered at the
UAV is respectively given by

ŝk = wH
k y, (6)

ŝo = wH
o y. (7)

In addition, we employ orthogonal-frequency-division multiple
access (OFDMA) for the GU-to-UAV communication, with the
k-th GU utilizing the frequency band Bk. Then the achievable
transmission rate of the k-th GU at the UAV is given by

Rk = Bklog2(1 +
pkhk|wH

k gk(r
k
m)|2

σ2Bk|wH
k |2

). (8)

The achievable transmission rate of the SU at the UAV is given
by

Ro = Bolog2(1 +
poho|wH

o go(r
o
m)|2

σ2Bo|wH
o |2

), (9)

where Bo represents the channel bandwidth of the SU. For
tractability and fairness, we assume equal bandwidth allocation
for all users.

B. Channel Model

In this subsection, we present a detailed explanation of the
multiple-access channel vectors gk and go. For simplicity, the
numbers of transmit and receive paths are denoted by Lt and
Lr, respectively.

1) Channel vector of the k-th GU-to-UAV transmission link
gk: We first provide the expression of gk, which is given by

gk(r
k
m) = AH

k Okuk(r
k
m), (10)

where

Ak = [ak(1),ak(2), · · · ,ak(N)] ∈ CLr×N (11)

represents the field response vectors of all the N receive
antennas at the UAV and uk represents the coefficients of
multi-path responses from the k-th GU to the reference point
in the receive region. In addition, we define the path response
matrix from the transmit FA port of the k-th GU to the fixed-
position antenna of UAV as Ok ∈ CLr×Lt .



4

To further clarify the expressions of ak(n) and uk(r
k
m),

we next specify the angles involved in the transmission pro-
cess and the distances between adjacent antennas and ports.
Fig. 2 depicts the coordinates for the transmit and receive
regions in an FA-assisted MEC-SAGIN system. The physical
elevation and azimuth departure angles (AoDs) of the α-th
(0 ≤ α ≤ Lt) transmit path from the selected port of the FA
at the k-th GU to the scatterers are denoted by θαk,t ∈ [−π

2 ,
π
2 ]

and ϕα
k,t ∈ [0, 2π], respectively. In addition, the elevation and

azimuth arrival angles (AoAs) of the γ-th (0 ≤ γ ≤ Lr)
receive path from the scatterer to the received antenna at the
UAV are denoted by θγk,r ∈ [−π

2 ,
π
2 ] and ϕγ

k,r ∈ [0, 2π],
respectively. For convenience, we define the coordinates of
the m-th transmit FA port at the k-th GU as

drkm =
2(rkm − 1)−M + 1

2
dFA, (12)

and the coordinates of the n-th receive antenna at the UAV as

dUn
=

2(n− 1)−N + 1

2
dUAV, (13)

where dFA and dUAV respectively represent the spacing be-
tween adjacent ports and adjacent fixed-position antennas.

Next, we derive the path difference in the transmission from
GUs to the UAV, based on which the transmit field response
vector uk(r

k
m) and the receive field response vector ak(n)

are formulated. Along the k-th GU-to-UAV transmission link,
let lαk,t and lγk,r denote the distances from the scatterer to
the origin on the α-th transmit path and the γ-th receive
path, respectively. The propagation path difference between
the position of the m-th selected FA port and the origin is
expressed as [40]

ρk,α(r
k
m) = −drkmsinθαk,t −

d2rkm
sin2θαk,t

2lαk,t
. (14)

Then, the propagation path difference between the position of
the n-th fixed-position antenna at the UAV and the origin is
given by [40]

ρk,γ(n) = −dUn
sinθγk,r −

d2Un
sin2θγk,r
2lγk,r

. (15)

Herein, ak(n) can be written as

ak(n)=[e
j 2π

λ ρk,1(n),ej
2π
λ ρk,2(n),· · ·,ej 2π

λ ρk,Lr (n)]T∈CLr×1, (16)

and the field-response vector of the m-th FA at the k-th GU
is given by

uk(r
k
m)=[ej

2π
λ ρk,1(r

k
m), ej

2π
λ ρk,2(r

k
m),· · ·,ej 2π

λ ρk,Lt (r
k
m)]T∈CLt×1.

2) Channel vector of SU-to-UAV transmission link go :
Now we introduce the expression for go ∈ CN×1, the
multiple-access channel vector from the SU to the UAV, given
by

go(r
o
m) = AH

o Ouo(r
o
m), (17)

where

Ao = [ao(1),ao(2), · · · ,ao(N)] ∈ CLr×N (18)

Fig. 2. Illustration of the coordinates for transmit and receive regions in FA-
assisted MEC-SAGIN system.

represents the receive field response vectors of all the N
antennas at the UAV, uo represents the coefficients of multi-
path responses from the SU to the reference point in the
receive region, and O ∈ CLr×Lt represents the path response
matrix from the SU to the UAV. Along the SU-to-UAV
transmission link, let lαo,t and lγo,r denote the distances from
the scatterer to the origin on the α-th transmit path and the
γ-th receive path, respectively. Similarly, the propagation path
differences between the position of the m-th selected FA port
of the SU and the origin, and between the position of the n-th
fixed-position antenna at the UAV and the origin, are denoted
as

ρo,α(r
o
m) = −dromsinθαo,t −

d2romsin2θαo,t

2lαo,t
(19)

and

ρo,γ(n) = −dUn
sinθγo,r −

d2Un
sin2θγo,r
2lγo,r

, (20)

respectively [40]. Therefore, ao(n) can be written as

ao(n) = [ej
2π
λ ρo,1(n), ej

2π
λ ρo,2(n),· · ·,ej 2π

λ ρo,Lr (n)]T∈CLr×1,
(21)

and the field response matrix corresponding to the activated
port rom of the SU is given by

uo(r
o
m)=[ej

2π
λ ρo,1(r

o
m), ej

2π
λ ρo,2(r

o
m),· · ·,ej 2π

λ ρo,Lt (r
o
m)]T∈ CLt×1.

C. Task Computing

In this subsection, we introduce the computing models of
the system, including the local computing model and the
edge computing model. Let lk, lo, C, Do and Dk denote the
offloading ratio of the task for the k-th GU, the offloading ratio
of the task for the SU, the required CPU cycles for computing
one bit of the tasks, the total computational task size of the
SU, and the total computational task size of the k-th GU,
respectively. It is assumed that the task-input bits are bit-wise
independent. Each GU and SU can perform part of its own
computation task locally and upload the rest of the task to the
UAV for calculation.
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1) Local computing: For local computing, the k-th GU
calculates the total tasks of (1−lk)Dk bits. Denoting the local
CPU frequency of the k-th GU as fk,loc cycles per second, the
time required for local computing is formulated as

tk,loc =
(1− lk)DkC

fk,loc
. (22)

Moreover, SU calculates the total tasks of (1 − lo)Do bits.
Denoting the local CPU frequency of the SU as fo,loc cycles
per second, the time required for local computing is formulated
as

to,loc =
(1− lo)DoC

fo,loc
. (23)

2) Edge computing: The offloading time delay of the k-th
GU and SU to the UAV can be respectively expressed as

tk,up =
lkDk

Rk
, (24)

to,up =
loDo

Ro
+ To, (25)

where To is the one-way propagation delay between the
satellite and the UAV. The time delay for computing the task
of the k-th GU and SU at the UAV is given by

tk,com =
lkDkC

fk
, (26)

to,com =
loDoC

fo
, (27)

where fk and fo represent the computation capability allocated
by the UAV to the k-th GU and SU, respectively. Since the
data size of the computation results is much smaller than that
of the offloaded computing data, the downlink transmission
latency is negligible.

D. Problem Formulation

In this work, we aim to minimize the maximum TCD
of the proposed FA-assisted MEC-SAGIN system by jointly
optimizing the UAV location q = (x, y)T, the offloading
ratio l = {lo, {lk}k∈K}, the computing frequency assign-
ment f = {fo, {fk}k∈K}, the beamforming matrix W =
{wo, {wk}k∈K}, and the FA port selection variable r =
{rom, {rkm}k∈K}. The corresponding optimization problem is

formulated as 1

min
q,l,f ,W,r,T

T (28a)

s.t. T ≥ max{to,loc, to,up + to,com}, (28b)
T ≥ max{tk,loc, tk,up + tk,com}, ∀k, (28c)

∥wo∥2 +
K∑

k=1

∥wk∥2 ≤ Pmax, (28d)

0 ≤ lo ≤ 1, (28e)
0 ≤ lk ≤ 1, ∀k, (28f)
0 ≤ fo ≤ ftotal, (28g)
0 ≤ fk ≤ ftotal, ∀k, (28h)
K∑

k=1

fk + fo ≤ ftotal, (28i)

rkm ∈M, ∀k, (28j)
rom ∈M, (28k)

where Pmax and ftotal represent the maximum transmission
power constraint and the maximum number of CPU cycles for
the UAV, respectively.

III. ALGORITHM DESIGN

Problem (28) is inherently non-convex, and the optimization
variables are intricately coupled, which poses significant chal-
lenges for direct solution. To address this, we employ the BCD
method. This technique transforms the problem into a more
tractable form by decoupling the five optimization variables,
allowing for an iterative solution. Specifically, we first update
the UAV location q given the offloading ratio l, computing
frequency assignment f , the equalizer matrix W, and the FA
port selection r. Second, we update the offloading ratio l and
computing frequency assignment f given W, q, and r. Then
we optimize the receiver beamforming W given l, f , q and
r. Finally, the FA ports r are updated given W, l, f and q.
Repeat the above process until convergence.

A. UAV Location Optimization

Given the variables l, W, r, and f , Problem (28) for UAV
location design can be simplified to

min
q,T

T (29a)

s.t. T ≥ max{to,loc, to,up + to,com, tk,loc} ∀k, (29b)

T ≥ lkDk

Rk
+

lkDkC

fk
, ∀k. (29c)

1To evaluate the lower bound on the total delay achievable by deploying
FAs in the MEC-SAGIN system, we assume ideal FA port switching with
zero switching delay in the theoretical analysis. Taking into account that
each FA reconfiguration in a practical system incurs a nonzero delay, we
further assume that the additional latency caused by FA switching can be
upper-bounded as ∆TFA ≤ Nswτswitch, where Nsw denotes the number
of switching operations. Within the range of parameters under consideration,
the corresponding switching delay of this item is several orders of magnitude
smaller than the communication and computing delays. Therefore, ignoring
these switching terms does not affect the main conclusions of this work, while
a more detailed hardware-aware modeling of switching losses will be pursued
in our future investigation of robust FA system design.
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Then we can transform the constraint (29c) as follows

Rk ≥
lkDk

T − lkDkC
fk

, ∀k. (30)

Note that Problem (29) is non-convex due to the non-convexity
of the logarithm terms in Rk. To resolve this issue, the
denominator of Rk can be efficiently transformed using the
SCA method. Rk can be expressed in a convex form with
respect to ∥q−vk∥2, since the function log(1+ a/(b+x)) is
convex in x for positive constants a and b. According to the
properties of convex functions, the first-order Taylor expansion
at any point provides a global lower bound, which ensures that
the approximated problem remains tractable while maintaining
solution quality. Then, let q(j) = {x(j), y(j)}T denote the
UAV location in the j-th iteration. We derive the lower bound
of Rk as follows

Rk = Bklog2(1 +
pkhk|wH

k gk|2

σ2Bk|wH
k |2

) (31)

= Bklog2(1 +
pkβ0|wH

k gk|2

σ2Bk|wH
k |2(∥q− vk∥2 +H2

U)
)

≥ Bk log2(1 +
pkβ0|wH

k gk|2

σ2Bk|wH
k |2(∥q(j) − vk∥2 +H2

U)
)

+Bk
1

In2
(

1

1 +
pkβ0|wH

k gk|2
σ2Bk|wH

k |2(∥q(j)−vk∥2+H2
U)

)

× (−pkβ0|wH
k gk|2

σ2Bk|wH
k |2

)
∥q− vk∥2 − ∥q(j) − vk∥2

(∥q(j) − vk∥2 +H2
U)

2
≜ R̂k.

Then, Problem (29) can be reformulated as

min
q,T

T (32a)

s.t. T ≥ max{to,loc, to,up + to,com, tk,loc} ∀k, (32b)

R̂k ≥
lkDk

T − lkDkC
fk

, ∀k, (32c)

which is convex and can thus be efficiently solved by utilizing
convex optimization software.

B. Offloading Volume and Computing Frequency Optimization

For any given q,W, r, the offloading volume of the users’
tasks and the computing frequency assignment at the UAV
of Problem (28) can be optimized by solving the following
problem

min
l,f

T (33)

s.t. (28b), (28c), (28e), (28f), (28g), (28h), (28i).

Since Problem (33) remains intractable, we perform alternating
optimization of l and f , as detailed below.

1) Offloading Volume Optimization: Obviously, Problem
(33) is a linear optimization problem with respect to l, and
therefore we have

Ti = max{ti,loc, ti,up + ti,com}, i ∈ K ∪ {o}, (34)

=

{
(1−li)DiC

fi,loc
, 0 ≤ li ≤ (DiC−fi,locTi)Rifi

Di(CRifi+fifi,loc+CRifi,loc)
,

liDi

Ri
+ Ti +

liDiC
fi

,
(DiC−fi,locTi)Rifi

Di(CRifi+fifi,loc+CRifi,loc)
≤ li ≤ 1,

where Ti = 0,∀i ∈ K. Then, the offloading vector lopt is
given by

lopti =
(DiC − fi,locTi)Rifi

Di(CRifi + fifi,loc + CRifi,loc)
,∀i ∈ K ∪ {o}. (35)

2) Computing Frequency Optimization: Given q,W, r, and
l = lopt, the subproblem of f can be rewritten as follows

min
f

max
i∈K∪{o}

{ (Difi +DiCRi + TiRifi)C

CRifi + fifi,loc + CRifi,loc
} (36)

s.t. (28g), (28h), (28i).

It is observed that Problem (36) is non-convex. By introducing
the auxiliary variable ξ, Problem (36) is formulated as

min
f ,ξ

ξ (37a)

s.t. ξ≥ (Difi +DiCRi + TiRifi)C

CRifi + fifi,loc + CRifi,loc
, i ∈ K ∪ {o}, (37b)

(28g), (28h), (28i).

Considering that both the numerator and denominator in
constraint (37b) contain fi, we introduce auxiliary variables
e = {ei, i ∈ K ∪ {o}} and m = {mi, i ∈ K ∪ {o}}, then
constraint (37b) can be reformulated as follows

CDi + CTiRi

ei
≤ CRi + fi,loc +

CRifi,loc
fi

, (38a)

CDiCRi

mi
≤ fi(CRi + fi,loc) + CRifi,loc, (38b)

ei +mi ≤ ξ. (38c)

Since constraint (38a) remains non-convex, we use the SCA
method to further transform the constraint into a convex form
as follows
CDi + CTiRi

ei

≤ CRi + fi,loc +
CRifi,loc

f
(j)
i

− CRifi,loc

f
(j),2
i

(fi − f
(j)
i ), (39)

where f
(j)
i represents the solution obtained from the previous

iteration. Then, Problem (36) can be converted to a convex
problem which is given by

min
f ,e,m,ξ

ξ (40)

s.t. (28g), (28h), (28i), (38b), (38c), (39).

Therefore, Problem (40) can be solved by standard convex
solver packages, such as CVX. The procedure of solving
Problem (33) is summarized in Algorithm 1.

Algorithm 1 Joint Optimization of l and f Given r, W and
q.

1: Initialize the accuracy ϵ, the iteration index j = 0, the
maximum number of iterations jmax, set feasible f (0).

2: Calculate l(j) using (35).
3: With l(j), calculate f (j) by solving Problem (40).
4: If j > jmax or the objective function converges |T (j+1)−

T (j)|/|T (j+1)| < ϵ, terminate and output lopt and fopt.
Otherwise, set j ← j + 1 and go to step 2.
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C. Receive Beamforming Optimization

Given the UAV location q, the offloading ratio l, the
computing frequency assignment f and the FA port selection
variable r, Problem (28) can be transformed to

min
W,T

T (41)

s.t. (28b), (28c), (28d).

To tackle Problem (41), constraints (28b) and (28c) can be
simplified to

T ≥ max{tk,loc, to,loc} (42)

T ≥ liDi

Ri
+ Ti +

liDiC

fi
, i ∈ K ∪ {o}, (43)

where Ti = 0,∀i ∈ K. Constraint (43) can be further written
as

Ri ≥
liDi

T − Ti − liDiC
fi

. (44)

To solve this non-convex problem, SDR method is applied.
We define

Ŵi=

[
wi

1

] [
wH

i 1
]
∈ C(N+1)×(N+1), i ∈ K ∪ {o}. (45)

The achievable transmission rate of the GUs and SU at the
UAV is equivalently expressed as

Ri = Bilog2(1 +
pihi|wH

i gi|2

σ2Bi|wH
i |2

)

= Bilog2(pihi|wH
i gi|2+σ2Bk|wH

i |2)−Bilog2(σ
2Bi|wH

i |2)
= Bilog2(tr(ĤiŴi))−Bilog2(tr(H̃iŴi)), i ∈ K ∪ {o},

where

Ĥi ≜

[
pihigig

H
i +σ2Bi 0N×1

01×N 01×1

]
∈ C(N+1)×(N+1), (46)

and

H̃i ≜

[
σ2BiIN 0N×1

01×N 01×1

]
∈ C(N+1)×(N+1). (47)

Then, constraint (44) can be transformed into

Bilog2(tr(ĤiŴi))−Bilog2(tr(H̃iŴi))≥
liDi

T−Ti− liDiC
fi

. (48)

Similarly, constraint (28d) is equivalent to

tr(Ŵo) +

K∑
k=1

tr(Ŵk)− (K + 1) ≤ Pmax. (49)

To convexify Bilog2(tr(H̃iŴi)), we apply the SCA approach
to constraint (48). It can be rewritten as

Bilog2(tr(ĤiŴi))

≥ liDi

T − Ti − liDiC
fi

+Bilog2(tr(H̃iŴ
(j)
i ))

+Bi
1

In2
tr(

H̃i

tr(H̃iŴ
(j)
i )

(Ŵi − Ŵ
(j)
i )). (50)

Therefore, Problem (41) can be recast as follows

min
Ŵ,T

T (51a)

s.t. (42), (49), (50),

Ŵi[N + 1, N + 1] = 1, (51b)

Ŵi ⪰ 0, rank(Ŵi) = 1. (51c)

By dropping the rank-one constraint, Problem (51) is a stan-
dard semidefinite programming problem which can be solved
using CVX. Then, we can use Gaussian randomization method
to recover the optimal rank-one solution.

We denote Ŵ1
i as the rank-one relaxed solution to Problem

(51), Σ as a diagonal matrix including the eigenvalues of
Ŵ1

i , and Ŵ1
i = UΣUH as the eigenvalue decomposition

of Ŵ1
i , where the columns of U are eigenvectors of Ŵ1

i .
Specifically, we generate 10000 random candidate vectors,
i.e., w

(j)
i = UΣ1/2τ j

[UΣ1/2τ j ]N+1
, j = 1, 2, · · · , 10000 where τ j

represents a unit vector and follows τ j ∼ CN (0, IN+1).
Then Ŵopt

i satisfies all the constraints in Problem (51) and
the objective function T is selected as the minimum solution.
Then we have wopt

i = [w
(j),∗
i ]1:N . To ensure the convergence

of the algorithm, extensive Gaussian randomization can be
performed.

D. FA Ports Optimization

In this part, we optimize the position of FAs at the users,
i.e., r, to minimize the total tasks computation delay subject
to the positive integers constraints of the activated ports. Then,
the optimization problem is formulated as follows

min
r,T

T (52a)

s.t. T ≥ max{tk,loc, to,loc},∀k (52b)

T ≥ liDi

Ri
+ Ti +

liDiC

fi
, i ∈ K ∪ {o}, (52c)

(28j), (28k),

where

Ri = Bilog2(1 +
pihi|wH

i gi(r
i
m)|2

σ2Bi|wH
i |2

), i ∈ K ∪ {o}. (53)

Due to the integer non-convexity of constraints (28j), (28k),
and (52c), it is not feasible to solve this problem directly via
standard convex optimization techniques. Referring to [41],
gradient descent (GD) presumes a continuous, differentiable
domain and is largely agnostic to curvature, so it is mainly
suitable for smooth problems with simple constraints. In
contrast, FA port selection is discrete and integer-constrained.
A relax-and-round GD approach often produces infeasible or
oscillatory iterates and offers no monotone-descent guarantee
under the coupled SINR constraints. Thus, we adopt a PGD
algorithm to solve the FA port selection subproblem. In each
iteration, we first optimize a virtual continuous port index.
We then use a projection step to map this index to the
nearest feasible discrete port. This two-step approach enforces
integer feasibility without exhaustive search, guaranteeing
convergence to a locally optimal solution of Problem (52).
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For tractability, constraint (52b) is treated as a constant upper
bound on the feasible region and is therefore omitted during
the PGD updates. We further relax the discrete design by
allowing a continuum of virtual ports and enforce the fact
that only M ports can be activated via the projection step.

Specifically, denoting f(rim) = liDi

Ri
+ Ti +

liDiC
fi

, i ∈ K ∪
{o}, the update rule of the PGD method for r is given by

ri,(j+1)
m = ri,(j)m − µ∇

r
i,(j)
m

f(rim), i ∈ K ∪ {o}, (54)

ri,(j+1)
m = N{ri,(j+1)

m ,M}, i ∈ K ∪ {o}, (55)

where Eq. (54) represents the updated r
i,(j+1)
m value in the

(j + 1)-th iteration of the GD method and Eq. (55) ensures
that the FA port solution in each iteration always satisfies the
integer constraint through the projection function N{·}. In
addition, ∇

r
i,(j)
m

f(rim) and µ denote the gradient of f(rim) at

r
i,(j)
m and the step size for the GD method, respectively. Next,

we carry out a detailed derivation for ∇
r
i,(j)
m

f(rim). Using the
chain rule, ∇rim

f(rim) can be expressed as

∇rim
f(rim) =

∂f(rim)

∂Ri
· ∂Ri

∂rim
, i ∈ K ∪ {o}, (56)

where

∂f(rim)

∂Ri
= − liDi

R2
i

, (57)

∂Ri

∂rim
=

Bi

In2
(

1

1 +
pihi|wH

i gi(rim)|2
σ2Bi|wH

i |2

)
pihi

σ2Bi|wH
i |2

∂|wH
i gi(r

i
m)|2

∂rim
.

(58)

Based on (58), it is important to derive the closed-form
expression of ∂|wH

i gi(r
i
m)|2

∂rim
, i ∈ K ∪ {o}. Then, we have

∂|wH
i gi(r

i
m)|2

∂rim
=

∂wH
i

∂rim
gi(r

i
m)gi(r

i
m)Hwi

+wH
i

∂(gi(r
i
m)gi(r

i
m)H)

∂rim
wi +wH

i gi(r
i
m)gi(r

i
m)H

∂wi

∂rim

= wH
i

∂(gi(r
i
m)gi(r

i
m)H)

∂rim
wi. (59)

Since the beamforming vector wi is optimized in a separate
subproblem given the FA port selection rim, it can be treated
as a constant during the gradient computation with respect to
rim, i.e., ∂wi

∂rim
= 0. This simplifies the chain rule differentiation

process and enables efficient gradient-based optimization. For
simplicity, we denote gi(r

i
m)gi(r

i
m)H ≜ Gi ∈ CN×N , where

Gi = (AH
i Oiui(r

i
m))(AH

i Oiui(r
i
m))H. (60)

Since Ai and Oi are independent of rim, it is only necessary
to differentiate ui(r

i
m)ui(r

i
m)H with respect to rim. Then, we

can denote ui(r
i
m)ui(r

i
m)H ≜ Ui and derive Ui as shown in

(65) at the top of this page. Based on (65), the element in the
x-th row and y-th column of Ui can be rewritten as

[Ui]x,y = ej
2π
λ (ρi,x(r

i
m)−ρi,y(r

i
m)). (61)

Now we take the derivative of each element in Ui with respect
to rim as follows

∂[Ui]x,y
∂rim

=
∂

∂rim
ej

2π
λ (ρi,x(r

i
m)−ρi,y(r

i
m)) (62)

= ej
2π
λ (ρi,x(r

i
m)−ρi,y(r

i
m)) · j 2π

λ

∂

∂rim

(
ρi,x(r

i
m)− ρi,y(r

i
m)

)
.

Based on (14), we derive the result for ∂ρi,α(rim)
∂rim

as follows

∂ρi,α(r
i
m)

∂rim
= − sin θαi,t ·

∂drim
∂rim

−
sin2 θαi,t
2lαt

·
∂d2rim
∂rim

,

= − sin θαi,t · dFA −
sin2 θαi,t

lαt
drim · dFA. (63)

Thus, we have

∂

∂rim

(
ρi,x(r

i
m)− ρi,y(r

i
m)

)
(64)

= −dFA(sin θxi,t − sin θyi,t)− dFA · drim(
sin2 θxi,t

lxt
−

sin2 θyi,t
lyt

).

Finally, by substituting (64) into (62), then substituting (62)
into (59), the gradient ∂|wH

i gi(r
i
m)|2

∂rim
at rim can be computed as

in (67), shown at the top of this page. Therefore, ∇
r
i,(j)
m

f(rim)
can be derived as (68).

E. Projection Function N{·} and Feasible Step Size

The projection function primarily ensures that FA ports are
selected only within respective feasible regions. Given the
assumption of virtual selectable points in the GD method, the
projection function can thus be defined according to the nearest
distance criterion as follows

N{ri,(j+1)
m ,M} ▷ ri,(j+1)

m =min(max(⌊ri,(j+1)
m ⌉, 1),M), (69)

where ⌊x⌉ represents the rounding of x to the nearest integer.
In addition, referring to [42], we use the backtracking line
search (BLS) method to determine the step size for the PGD
method, as detailed in Algorithm 2.

Algorithm 2 Feasible Step Size Selection in the PGD Method
for Solving Problem (52).

1: Initialize the step µ > 0 and the initial point r(0) of the
PGD method. Set the iteration index j = 1, ϖ ∈ (0, 0.5)
and φ ∈ (0, 1).

2: Calculate r
i,(j+1)
m = N{ri,(j)m −µ∇

r
i,(j)
m

f(rim),M}, i ∈
K ∪ {o}.

3: If f(r
i,(j+1)
m ) > f(r

i,(j)
m ) −ϖµ∥∇

r
i,(j)
m

f(rim)∥2 , update
µ← φµ. Otherwise, set j ← j + 1 and go to step 2.

F. Complexity and Convergence Analysis

The overall algorithm for solving Problem (28) is summa-
rized in Algorithm 3.
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ui(r
i
m)ui(r

i
m)H =


ej

2π
λ (ρi,1(r

i
m)−ρi,1(r

i
m)) ej

2π
λ (ρi,1(r

i
m)−ρi,2(r

i
m)) · · · ej

2π
λ (ρi,1(r

i
m)−ρi,Lt (r

i
m))

ej
2π
λ (ρi,2(r

i
m)−ρi,1(r

i
m)) ej

2π
λ (ρi,2(r

i
m)−ρi,2(r

i
m)) · · · ej

2π
λ (ρi,2(r

i
m)−ρi,Lt (r

i
m))

...
...

. . .
...

ej
2π
λ (ρi,Lt (r

i
m)−ρi,1(r

i
m)) ej

2π
λ (ρi,Lt (r

i
m)−ρi,2(r

i
m)) · · · ej

2π
λ (ρi,Lt (r

i
m)−ρi,Lt (r

i
m))

 . (65)

∂[Ui]x,y
∂rim

= ej
2π
λ (ρi,x(r

i
m)−ρi,y(r

i
m)) · j 2π

λ
(−dFA(sin θxi,t − sin θyi,t)− dFA · drim(

sin2 θxi,t
lxi,t

−
sin2 θyi,t

lyi,t
)). (66)

∂|wH
i gi(r

i
m)|2

∂rim
= wH

i A
H
i Oi


∂[Ui]1,1
∂rim

∂[Ui]1,2
∂rim

· · · ∂[Ui]1,Lt

∂rim
∂[Ui]2,1
∂rim

∂[Ui]2,2
∂rim

· · · ∂[Ui]2,Lt

∂rim
...

...
. . .

...
∂[Ui]Lt,1

∂rim

∂[Ui]Lt,2

∂rim
· · · ∂[Ui]Lt,Lt

∂rim
.


Lt×Lt

OH
i Aiwi, i ∈ K ∪ {o}. (67)

∇
r
i,(j)
m

f(rim) =

− liDi

R2
i

· Bi

In2
(

1

1 +
pihi|wH

i gi(rim)|2
σ2Bi|wH

i |2

)
pihi

σ2Bi|wH
i |2

wH
i A

H
i Oi


∂[Ui]1,1
∂rim

∂[Ui]1,2
∂rim

· · · ∂[Ui]1,Lt

∂rim
∂[Ui]2,1
∂rim

∂[Ui]2,2
∂rim

· · · ∂[Ui]2,Lt

∂rim
...

...
. . .

...
∂[Ui]Lt,1

∂rim

∂[Ui]Lt,2

∂rim
· · · ∂[Ui]Lt,Lt

∂rim
.


Lt×Lt

OH
i Aiwi


rim=r

i,(j)
m

, (68)

Algorithm 3 Task Computation Delay Minimization Algo-
rithm for the FA-Assisted MEC-SAGIN System

1: Initialization: Let q(0) = 1
K

∑
k∈K vk, r

i,(0)
m =

argmaxm∈M | ŵH
i gi

(
m
)
|2,w(0)

i =
√

Pmax

K+1
gi(r

i,(0)
m )

∥gi(r
i,(0)
m )∥2

,

l
(0)
i = [

(DiC−fi,locTi)R
(0)
i f

(0)
i

Di(CR
(0)
i f

(0)
i +f

(0)
i fi,loc+CR

(0)
i fi,loc)

]10, f
(0)
i =

ftotal/(K + 1), and set the iteration index k = 1.
2: With given l(k−1), f (k−1),W(k−1), r(k−1), solve the UAV

location subproblem and obtain q(k).
3: With given q(k),W(k−1), r(k−1), solve the joint offload-

ing volume and computing frequency optimization sub-
problem and obtain l(k) and f (k).

4: With given l(k), f (k),q(k), r(k−1), solve the receive beam-
forming subproblem and obtain W(k).

5: With given l(k), f (k),q(k),W(k), solve the FA port selec-
tion subproblem and obtain r(k).

6: If the objective of Problem (28) converges, output
(q(k), l(k), f (k),W(k), r(k)); otherwise set k ← k+1 and
go to Step 2.

1) Complexity Analysis: We evaluate algorithmic complex-
ity using the total count of floating-point operations, treating
each addition or multiplication as one flop. The complexity is
expressed with respect to the sizes of the matrices involved,
and subsequently simplified by keeping only the dominant
highest-order terms and omitting the remainder.

The proposed BCD algorithm jointly optimizes five vari-
ables with the following computational complexities. For
UAV location optimization, the SCA method solves a convex
problem with Nq iterations, yielding complexity O(Nq ·n3.5

q ).
The task offloading ratio optimization admits a closed-form
solution given by Eq. (35), requiring only O(K + 1) op-

erations. For computational frequency allocation, the SCA-
based approach requires Nf iterations to solve a convex
problem with 3(K + 1) + 1 variables, resulting in complex-
ity O(Nf (K + 1)3). The receive beamforming optimization
dominates the computational burden, where solving the SDP
formulation with (K + 1) matrices of size (N + 1) × (N +
1) requires O(Nw((K + 1)(N + 1)2)4.5), and subsequent
Gaussian randomization with Nrand = 10,000 samples adds
O(Nrand(K+1)N2), making the total beamforming complex-
ity O(Nw(K +1)4.5(N +1)9). Finally, the FA port selection
optimization employs PGD with backtracking line search,
where each of Npgd iterations involves gradient computation at
complexity O((K+1)L2

tN) and Nbls line search steps, yield-
ing total complexity O(Npgd(Nbls(K + 1) + (K + 1)L2

tN)).
With NBCD outer iterations, the overall algorithm complex-
ity is O(NBCD · max{Nq, Nf (K + 1)3, Nw(K + 1)4.5(N +
1)9, NpgdNbls(K + 1)L2

tN}).
2) Convergence Analysis: In this subsection, we analyze

the convergence of Algorithm 3. We denote the TCD objective
function as F (q, l, f ,W, r). In the k-th iteration, we have

F
(
q(k), l(k), f (k),W(k), r(k)

)
(a)

≥ F
(
q(k+1), l(k), f (k),W(k), r(k)

)
,

(b)

≥ F
(
q(k+1), l(k+1), f (k+1),W(k), r(k)

)
(c)

≥ F
(
q(k+1), l(k+1), f (k+1),W(k+1), r(k)

)
(d)

≥ F
(
q(k+1), l(k+1), f (k+1),W(k+1), r(k+1)

)
,

where (a), (b) and (c) hold because (32), (35), (40) and (51)
are the optimal solutions of the corresponding subproblems.
(d) holds because the monotonic decrease and boundedness
of the objective sequence f(rkm), together with the Lipschitz
continuity of the gradient, ensure that PGD with Armijo back-
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tracking converges to a first-order stationary point. Moreover,
with the bounded feasible set in Problem (28), the objective
function has a finite lower bound. Hence, Problem (28) is
guaranteed to converge.

G. Extended System Model with Multiple UAVs and Multiple
SUs

To demonstrate scalability, we extend the system to U
UAVs, O SUs, and K GUs. Let U = {1, . . . , U}, O =
{1, . . . , O}, and K = {1, . . . ,K}. Each user (GU/SU) em-
ploys an FA with M selectable ports M = {1, . . . ,M} and
only one port is active per transmission. The u-th UAV is
at qu = (xu, yu)

T with altitude HU. Large-scale loss and
multipath vectors follow the original definitions, now indexed
by u. The distance between the UAV u and the k-th GU can
be calculated as

qk,u =
√
∥qu − vk∥2 +H2

U, hk,u = β0/q
2
k,u. (70)

In addition, the user-to-UAV channel vectors can be rewritten
as gk,u(r

k
m) and go,u(r

o
m).

1) Signal transmission: At UAV u, the received signal is

yu =
∑

k∈K∩Su

√
pkhk,u gk,u(r

k
m) sk+∑

o∈O∩Su

√
poho,u go,u(r

o
m) so + nu, (71)

where nu ∼ CN (0, σ2IN ) and Su is the set served by UAV
u. With OFDMA per UAV, the rate of user i ∈ K∪O at UAV
u is

Ri,u = Bi,u log2(1 +
pihi,u

∣∣wH
i,ugi,u(r

i
m)

∣∣2
σ2Bi,u ∥wi,u∥2

), (72)

with linear equalizer wi,u ∈ CN×1 and per-UAV bandwidth
budget as follows ∑

i∈K∪O
Bi,u ≤ B

(u)
total, ∀u. (73)

Moreover, for each user, only one FA port is active per
transmission, i.e., rim ∈M and exactly one m is selected.

2) Task Computing: Let ai,u ∈ {0, 1} denote the associa-
tion indicator, where each task is handled by exactly one UAV,
i.e.,

∑
u∈U ai,u = 1. With offloading ratio li ∈ [0, 1], the edge

computing time delays are given by

ti,up =
∑
u

ai,u
liDi

Ri,u
+ 1 i∈O

∑
u

ai,uTi,u, (74)

ti,com =
∑
u

ai,u
liDiC

fi,u
, (75)

and the per-UAV CPU constraint is∑
i∈Su

fi,u ≤ f
(u)
total, ∀u. (76)

3) Problem Formulation: In this work, we aim to minimize
the TCD of the proposed FA-assisted MEC-SAGIN system
with multiple UAVs and SUs. The corresponding optimization
problem is formulated as

min
{qu}, {li}, {fi,u},

{wi,u},{rim}, {ai,u},
{Bi,u}, T

T (77a)

s.t. T ≥ max{ti,loc, ti,up+ti,com},∀i, (77b)∑
u

ai,u = 1, ai,u ∈ {0, 1}, ∀i, (77c)

0 ≤ li ≤ 1,∀i, (77d)∑
i∈Su

fi,u ≤ f
(u)
total, (77e)∑

i∈Su

Bi,u ≤ B
(u)
total, ∀u, (77f)

Bi,u ≥ 0, rim ∈M, ∀i, u, (77g)∑
i∈Su

∥wi,u∥2 ≤ P (u)
max. (77h)

It is observed that the extended multi-UAV and SUs problem is
non-convex due to the coupling among association, bandwidth,
CPU allocation, FA-port selection, receiver design, and UAV
locations. To address this, we adopt an alternating optimization
framework that iteratively solves the following subproblems:

• Receiver Beamforming Optimization: Given
{r, l, f ,B,q,A}, Problem (77) is reduced to a receiver
beamforming optimization subproblem. By using the
SCA method, the W subproblem can be reduced into
an SDR convex problem, which can be solved by CVX
and then recovered by Gaussian randomization.

• UAV Location Optimization: Given {r, l, f ,B,W,A},
Problem (77) is reduced to a UAV location subproblem.
Due to the non-convexity of Rk, we can utilize the SCA
method adopted in Problem (77) to rewrite Rk by its
first-order Taylor expression, and solve the transformed
convex problem iteratively to obtain the optimal UAV
location.

• Offloading Volume and Computing Frequency Assign-
ment Optimization: Given {r,q,B,W,A}, the optimal
CPU frequency f and offloading volume l can be jointly
optimized by SCA method and then we can obtain the
closed-form solutions for l.

• Per-UAV Bandwidth Allocation Optimization: Given
{r, l, f ,q,W,A}, the per-UAV bandwidths are updated
under individual bandwidth budgets via a first-order SCA
that convexifies the non-convex rate expressions around
the previous iterate, yielding a convex program solved
efficiently.

• User-to-UAV Association Optimization: Given
{r, l, f ,q,W,B}, we first relax the A-subproblem
to a continuous formulation and then solve it using a
greedy algorithm or the Hungarian method.

IV. SIMULATION RESULTS

In this section, we conduct experiments to evaluate the
TCD performance of the FA-assisted MEC-SAGIN system
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and validate the effectiveness of our proposed algorithms. We
consider three GUs and an SU, where the GUs are uniformly
distributed within a circular area centered at (50,0) with a
radius of 50 meters. The main simulation parameters are listed
in Table I. 2

TABLE I
DEFAULT SIMULATION PARAMETER SETTINGS

Parameter Value
Transmit power of users pk = po = 1 W
Average noise power σ2 = −80 dBm
Maximum number of CPU cycles at
UAV

ftotal = 2× 1010 cycles/s

Local CPU frequency of GUs and SU fk,loc = 5× 108 cycles/s
fo,loc = 5× 108 cycles/s

Propagation delay of SU To = 10 ms
Total computational task size Dk = Do = 3× 106 bits
Required CPU cycles for computing
one bit

C = 2× 103 cycles/bit

Channel bandwidth Bk = Bo = 106 Hz
Number of channel paths Lr = Lt = 4
Carrier wavelength λ = 5 mm
Antenna spacing and port spacing dFA = dUAV = λ/2
The AoDs and AoAs θαk,t ∈ [−π

2
, π
2
]

θγk,r ∈ [−π
2
, π
2
]

The following subsection provides a detailed introduction to
our simulation results. To clearly demonstrate the effectiveness
of our proposed FA-assisted MEC-SAGIN design, we provide
the following benchmark schemes:

• Conventional FPAs: Both the GUs and the SU are
equipped with FPAs, with each user having M fixed-
position antennas for signal transmission, spaced by
dFA(M − 1).

• Random FAs: The activated ports of the FA at the GUs
and SU are randomly selected, and other variables are
optimized using the proposed algorithm.

• Proposed FAs (exhaustive method): The FA port selec-
tion variables of GUs and SU are optimized using the
exhaustive search method, while the other variables are
optimized using the proposed algorithm.

• Hybrid FAs: In this scheme, the users’ antennas operate
in the FPA mode for half of the transmission time and in
the FA mode for the other half.

• Proposed FAs (penalty-based algorithm): The receive
beamforming is optimized by the penalty algorithm and
the other variables are optimized using our proposed
algorithm.

• Fixed UAV location with FAs: The UAV is fixed at the ini-
tial position, while FA port selection and MEC resource
allocation are optimized by our proposed algorithm.

Based on the six proposed schemes, we further evaluate
the convergence performance of our proposed algorithm, the
impact of the number of FA ports, and the TCD performance
with respect to the total edge computing resource, user task
size, number of edge computing users, number of channel
paths, and FA port spacing.

2The simulation parameters in Table I are selected based on practical
system specifications and validated against existing literature [5]-[7][16]-
[18][23][26]-[29]. These parameter choices ensure the simulation reflects
realistic deployment scenarios.

Fig. 3. Convergence of the proposed algorithm for different numbers of ports,
M = [4, 8, 12].
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Fig. 4. TCD performance versus the number of FA ports M .

We first evaluate the convergence performance of the BCD
algorithm under different numbers of FA ports in Fig. 3. It
can be observed that the TCD decreases monotonically as
the number of iterations increases. The proposed algorithm
converges within five iterations, underscoring its effectiveness
and low computational complexity.

Fig. 4 illustrates the impact of the number of FA ports
on the TCD performance under different algorithms. Except
for the conventional FPAs approach, the TCD of all FA-
based algorithms exhibits a decreasing trend as M increases,
owing to the enhanced degrees of freedom that contribute to
reducing the overall completion time of edge computing tasks.
However, as the number of antenna ports surpasses M > 10,
the delay benefits from additional ports become marginal.
This is because, with a fixed size of the FA, the TCD first
decreases markedly as the number of ports M increases and
then saturates. This phenomenon occurs because reducing the
port spacing leads to stronger inter-port correlation. Increasing
M initially introduces additional diversity that improves the
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Fig. 5. TCD performance versus the edge computing resource ftotal with
different algorithms under M = 10.

uplink transmission rate and thereby reduces the total time
delays. Therefore, as M grows, the enhanced correlation
gradually diminishes the performance gain in computation
time delay. Compared to the exhaustive search method, the
BCD algorithm achieves near-optimal performance in the FA
system, with an average degradation rate of only 7.14%. For
small K, the penalty-based algorithm delivers nearly identical
TCD to our proposed scheme. For a limited number of FA
ports, the difference between conventional FPAs and FA-
based schemes remains negligible. As the number of FA
ports increases, FA-based schemes demonstrate a significant
enhancement in the TCD performance compared to FPAs
under equivalent conditions. In addition, both the Hybrid FAs
and random FA schemes exhibit inferior TCD performance
compared to the proposed BCD algorithm. The performance
gap between the FAs scheme and the Hybrid FAs and random
FAs schemes further expands as M increases. This is due to
the optimized placement of each antenna in the FAs scheme,
which enhances beamforming gains and thereby facilitates
more efficient task offloading.

The relationship between the TCD and the edge computing
capacity ftotal under various algorithms is demonstrated in Fig.
5 with M = 10. This further validates the advantages of
utilizing FAs, particularly when the edge computing capacity
is sufficient. Evidently, TCD decreases as edge computing
resources increase and eventually stabilizes. When ftotal is
relatively small, local computation delay is the dominant
factor. In contrast, with a sufficiently large edge computing
capacity, the transmission delay for task offloading by GUs
and SU becomes the primary contributing factor.

Fig. 6 depicts the TCD versus the edge computing resource
ftotal for different noise power levels σ2 and satellite–to-UAV
propagation delays To. The TCD decreases monotonically with
increasing ftotal and gradually saturates. For a fixed noise
power, a larger To consistently leads to a higher TCD with
almost identical curve shapes. For a fixed To, the curves
with σ2 = −70 dBm lie above those with σ2 = −80 dBm
and -90 dBm, reflecting the degradation of uplink channel

Fig. 6. TCD versus ftotal under different noise power σ2 and satellite–to-UAV
propagation delay To.
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Fig. 7. TCD performance versus the computational task size of users with
different algorithms under M = 16.

quality and longer offloading delays. Moreover, the TCD gap
between −70 dBm and −80 dBm is slightly larger than
that between −80 dBm and −90 dBm. Furthermore, error
bars are plotted on the curve with σ2 = −80 dBm and
To = 10 ms to capture the variation of TCD at 500 random
GU locations. Their magnitudes are clearly smaller than the
separations between different parameter curves, indicating that
the proposed FA-assisted scheme is reasonably robust to the
spatial randomness of user locations, while the sensitivity to
such randomness becomes relatively higher when computation
and communication delays are of comparable importance.

Next, Fig. 7 shows the relationship between TCD and
the task size of edge computing users with M = 16. For
simplicity, the task sizes of GUs and SU are assumed to be
identical and are collectively denoted as Dk. The TCD of all
schemes increases with Dk, as a larger task size leads to a
longer completion time, regardless of whether it is processed
locally or offloaded. As Dk increases, the performance gap



13

2 3 4 5 6

10

20

30

40

50

60

70

T
C

D

Proposed FAs (penalty-based algorithm)

Random FAs

Hybrid FAs

Conventional FPAs

Fixed UAV location with FAs

Proposed FAs

Fig. 8. TCD performance versus the number of edge computing users K.

between the proposed FAs scheme and other schemes grad-
ually widens. This indicates that when the task size is large,
the proposed FAs scheme can more effectively reduce task
offloading latency, further demonstrating the advantages of
optimized antenna placement in edge computing. Moreover,
relative to the baseline with fixed UAV location and FAs,
the proposed scheme exhibits consistently lower TCD and
a smaller growth rate with respect to Dk, underscoring the
necessity of jointly optimizing the UAV position together with
the other design variables. In addition, compared with the
penalty-based algorithm for solving the receive beamforming,
our proposed method maintains a slight yet consistent advan-
tage across the entire range of Dk.

To evaluate the impact of the number of edge computing
users on the TCD performance, we provide comparison results
as indicated in Fig. 8. It is observed that the TCD performance
of all schemes increases as the number of users K increases.
The proposed FA scheme outperforms the conventional FPA
scheme, further demonstrating the superiority of FA over FPA
in the MEC-SAGIN system. Specifically, the schemes with
FAs, Hybrid FAs, and random FAs positioning achieve ap-
proximately 11.9%, 9.32%, and 4.7% TCD gains, respectively,
compared to the FPAs scheme. In addition, fixing the UAV
location leads to larger TCD, with an increasing gap relative to
the proposed FAs as K grows. Compared to the conventional
FPAs scheme, the FAs scheme can dynamically adjust an-
tenna positions and optimize task offloading strategies, thereby
mitigating the challenges posed by limited computational and
communication resources in multi-user environments. As the
number of users K increases, the performance advantage of
the FAs scheme becomes more pronounced, further validating
its superiority in high-user-density scenarios.

Fig. 9 illustrates the relationship between the TCD and the
number of channel paths of GUs and SU, i.e. L. For simplicity,
we set Lr = Lt = L. The TCD of all schemes decreases
as L increases since a higher number of channel paths en-
ables greater multi-path diversity and facilitates more efficient
offloading strategies, thereby reducing TCD. Moreover, the

Fig. 9. TCD performance versus the number of channel paths L.

Fig. 10. TCD performance versus the spacing dFA.

performance gap between the proposed FAs scheme and the
other two schemes increases with L, further validating the
effectiveness of our proposed algorithm.

Finally, we compare the TCD performance of four different
schemes under varying port spacing in Fig. 10. It is observed
that, except for the conventional FPAs scheme, the TCD of
all FA-based schemes decreases as the adjacent port spacing
dFA increases. This indicates that enlarging the port spacing
mitigates inter-antenna interference, thereby enhancing chan-
nel quality and improving task offloading efficiency. As dFA
increases, the TCD of the random FAs, the proposed FAs
design, and the Hybrid FAs schemes initially decrease and
then converge to a constant value. This phenomenon suggests
that the optimization of antenna spacing has an upper limit,
and only within a certain range can achieve the best system
performance.

V. CONCLUSION

In this paper, we investigated task offloading and wireless
resource management in an FA-assisted MEC-SAGIN system.
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To minimize the maximum TCD among edge computing users,
we jointly optimized the offloading ratio, CPU frequency,
FA port selection, UAV location, and receive beamforming.
Simulation results demonstrated that the proposed FA design
achieved significantly lower TCD than conventional FPAs and
random-port schemes. These findings indicate that integrat-
ing FA into MEC-SAGIN can substantially enhance channel
conditions and improve overall offloading and computation
efficiency.

As our future work, an energy-minimization based design
will be conceived for FA-assisted MEC-SAGIN systems that
explicitly accounts for practical FA hardware constraints and
scalable multi-UAV architectures. We will also investigate
reliability-oriented, secure, and privacy-preserving offloading
mechanisms tailored to FA-assisted MEC-SAGIN deploy-
ments.
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