
  

  

Abstract—Mental fatigue and workload are critical to 

cognitive health, with relevance in BCIs, neurorehabilitation, 

and psychiatric care. Accurate decoding can support adaptive 

interventions and assistive system performance. High-density 

diffuse optical tomography (HD-DOT), an advanced form of 

functional near-infrared spectroscopy (fNIRS), offers high 

spatial resolution for non-invasive monitoring of cerebral 

hemodynamics, making it well-suited for detecting subtle 

changes in cognitive states. Deep learning models, particularly 

Convolutional Neural Networks (CNNs) and Transformers, are 

highly effective in image-based pattern recognition and thus 

hold promise for analyzing HD-DOT data. This study 

investigates the effectiveness of CNN- and Transformer models 

for classifying mental fatigue and workload using HD-DOT data. 

We collected data from 16 participants during rest, reaction time, 

and N-back tasks, and reconstructed 3D images of hemodynamic 

changes. Both two-class (low vs. high fatigue) and four-class 

(0,1,2,3-back) classification tasks were performed. CNN models, 

particularly lightweight architectures like MobileNet, 

demonstrated strong generalization performance under leave-

one-out cross-validation, achieving up to 90.9% accuracy. 

Transformer models also performed competitively, with 

MobileViT achieving the highest classification accuracy of 98.6% 

in the four-class task. These findings highlight the feasibility and 

effectiveness of combining HD-DOT with lightweight deep 

learning architectures for accurate and generalizable assessment 

of cognitive states. 

 
Clinical Relevance— This study demonstrates the potential of 

HD-DOT combined with deep learning models for non-invasive, 

high-resolution imaging of mental fatigue and workload. Such a 

framework could support real-time cognitive state assessment in 

both clinical and occupational settings, enabling mental health 

monitoring, early detection of cognitive overload or decline in 

high-risk environments such as surgical theatres, intensive care 

units, and neurorehabilitation programs.  

 
Keywords—Mental fatigue, Mental workload, fNIRS, HD-

DOT, Deep learning. 

I. INTRODUCTION 

Mental fatigue is a psychobiological condition that arises 
from prolonged cognitive engagement and is commonly 
manifested as subjective sensations of exhaustion and 
diminished vitality [1]. It can impair attention, reaction time, 
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and decision-making [2]. Closely related to mental fatigue is 
mental workload, which refers to the cognitive demands 
placed on an individual during task performance [3]. 
Excessive or sustained mental workload can overwhelm 
cognitive resources, leading to performance degradation and 
increased error rates. Mental fatigue and mental workload are 
critical indicators of cognitive function and mental health, 
with increasing importance across applications such as brain-
computer interfaces (BCIs), neurofeedback, 
neurorehabilitation, and psychiatric monitoring. Accurate 
decoding of these mental states is essential for enabling 
adaptive interventions in clinical settings, enhancing user 
engagement in BCI systems, and optimizing performance in 
mobility/cognitive assistive technologies, including smart 
wheelchairs and fatigue detection systems in transportation. 
Specifically in emerging applications like BCIs, both mental 
fatigue and high mental workload may impair system 
performance by reducing user engagement and compromising 
the reliability of neural signals. At the same time, BCIs 
themselves offer a promising approach for monitoring mental 
states [4], particularly when the headcap is configured to cover 
relevant cortical regions such as the prefrontal cortex [5]. 

Neuroimaging techniques have become indispensable for 
investigating the neural mechanisms underlying mental 
fatigue. Functional near-infrared spectroscopy (fNIRS), a non-
invasive and even wearable modality, has proven particularly 
effective in real-world contexts. fNIRS offers a favourable 
balance of temporal and spatial resolution, low cost, and 
tolerance to movement. However, traditional fNIRS systems, 
typically consisting of around 100 or fewer channels [6], are 
limited in their ability to accurately localize neural sources. 
Although they provide millimeter-level spatial resolution, they 
are susceptible to contamination from superficial extracerebral 
hemodynamic signals [7]. This limitation reduces depth 
sensitivity and hinders precise three-dimensional (3D) 
mapping of cerebral oxygenation changes. 

While traditional fNIRS systems often miss these localized 
dynamics due to limited channel density and depth sensitivity, 
high-density diffuse optical tomography (HD-DOT), an 
advanced neuroimaging modality, extends the capabilities of 
fNIRS by enabling voxel-wise functional mapping. This 
allows researchers to observe fine-grained patterns of neural 
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compensation or disengagement over time [8]. With a dense 
array of overlapping measurements across multiple source-
detector distances [9], HD-DOT enables tomographic 
reconstruction of haemoglobin concentration changes across 
the cortical surface, achieving spatial resolution comparable to 
that of functional Magnetic Resonance Imaging (fMRI) [10]. 
This makes HD-DOT particularly well-suited for studying 
mental fatigue, where subtle and spatially heterogeneous 
changes in prefrontal activity, linked to sustained cognitive 
effort and attentional decline, must be captured with high 
fidelity.  

Given HD-DOT’s ability to capture fine-grained, voxel-
wise brain activity, analyzing its high-dimensional outputs 
requires models capable of extracting and interpreting 
complex spatial patterns. Deep learning approaches, 
particularly convolutional neural networks (CNNs) and 
Transformer architectures, are well-suited for this purpose. 
Specifically, CNNs are well-suited for processing 3D 
neuroimaging data due to their ability to extract hierarchical 
spatial features, whereas Transformer-based models offer the 
advantage of capturing global contextual relationships through 
self-attention mechanisms [13].  To date, multiple studies have 
demonstrated the effectiveness of deep learning such as CNNs 
in mental states assessment with fNIRS [11], [12], few have 
explored the potential of deep learning models applied to 3D-
reconstructed HD-DOT images.  This study aims to bridge this 
gap by evaluating both CNNs and Transformers for mental 
state classification using HD-DOT-derived 3D data.  

To mitigate overfitting risks associated with limited data, 
we adopted a transfer learning approach by fine-tuning models 
pre-trained on ImageNet, which is a large-scale hierarchical 
image database [14]. Despite the large domain gap,  transfer 
learning from ImageNet has been shown to be effective in 
medical imaging domains, including fMRI, Positron Emission 
Tomography (PET), and Electroencephalography (EEG) [15]. 

By comparing CNN and Transformer models on binary 
and multi-class tasks, we assess their effectiveness for HD-
DOT-based mental state decoding and identify which 
architecture better captures the spatial-functional patterns in 
HD-DOT data. As shown in Fig. 1, this analysis offers insights 
into model-specific strengths and informs future deep learning 
strategies for optical neuroimaging. 

 
Figure 1.  Data process pipeline, including data preparation, model 

training and evaluation. 

II. METHODS 

A. Data Acquisition 

Data were collected using a HD-DOT system LUMO 
(Gowerlabs Ltd, UK) [16], consisting of 12 tiles, each 
equipped with 3 sources and 4 detectors, yielding a total of 

1728 theoretical channels across two wavelengths (735/850 
nm). As shown in Fig.2, sixteen participants completed: (1) 2-
minute rest, (2) 2-minute reaction time task, (3) 33-minute N-
back task (0-, 1-, 2-, 3-back), and (4) 2-minute post-test 
reaction time task, which is the same protocol as in [17]. All 
procedures were approved by the UCL Research Ethics 
Committee. N-back was used to induce mental fatigue.  

 
Figure 2.  Experiment protocol. 

B. Data Preprocessing 

Raw data were preprocessed in MATLAB 2022b using the 
DOTHUB toolbox [18]. Motion artefacts were corrected via 
Kurtosis-Wavelet filtering [19]. To ensure data quality, 
channels were excluded from analysis if they exhibited poor 
signal quality according to three criteria: (1) the mean optical 
density fell outside a predefined range, indicating signal 
saturation or insufficiency; (2) the signal-to-noise ratio, 
computed as the mean divided by the standard deviation, was 
below a threshold; or (3) the source-detector distance lay 
outside the physiologically valid range. These criteria were 
applied to each wavelength. A 0.025-0.15 Hz bandpass filter 
were applied. Oxygenated (HbO) and deoxygenated 
hemoglobin (HbR) were extracted after short-channel 
regression was used to remove superficial blood oxygenation 
changes caused by the scalp.  

C. Image Reconstruction 

For HD-DOT, 3D hemoglobin images are reconstructed by 
solving a model-based inverse problem that links channel-
level measurements to volumetric tissue absorption changes. 
After obtaining channel-wise HbO/HbR changes (derived 
from raw intensity data), a physics-based forward model of 
light transport is employed to characterize photon propagation 
from each source to detector. This forward model (often using 
the diffusion approximation to the radiative transfer equation 
on a head mesh) provides a sensitivity matrix (Jacobian) that 
quantifies how a unit absorption change at each 3D location 
affects each source-detector channel’s measurement [20]. The 
resulting Jacobian is then used in the inverse model to estimate 
the spatial distribution of hemoglobin changes that best 
explain the observed channel data. Due to the ill-posed nature 
of the tomographic inverse problem, Tikhonov regularization 
was applied with a regularization parameter λ = 0.01. The 
resulting inverse Jacobian was used to reconstruct spatially 
resolved maps of HbO and HbR concentration changes, which 
were then projected onto the cortical surface for visualization 
of task-related hemodynamic responses. 

D. Dataset generation 

For the mental fatigue classification task, data were 
extracted from the first and second reaction time sessions. For 
the mental workload classification task, data from six 
repetitions of the N-back task (0-, 1-, 2-, and 3-back) were 
collected for each subject, and the average across trials was 
computed for each condition to improve signal stability. This 
trial-averaging approach helps reduce random noise and 
enhance the reliability of task-evoked responses. However, 



  

since each subject contributes only one averaged sample per 
condition, the overall sample size remains limited. To avoid 
the risk of overfitting, a multi-view data augmentation strategy 
was applied. Each 3D HD-DOT image was rendered from 
multiple horizontal viewing angles to increase spatial 
variability while preserving the original class label. 
Specifically, the image was rotated horizontally around the 
vertical (Y) axis in increments of 5°, generating views from 90° 
to 270°, as shown in Fig.3. This approach enhances model 
generalization by exposing it to a broader range of spatial 
representations, and has been shown effective in similar 
neuroimaging and multi-view classification tasks [21]. Each 
image was then cropped and resized to 224×224 pixels to 
match the input dimensions required by CNN and Transformer 
models. This process results in a total of 3,259 training 
samples. The dataset size for the binary classification task and 
the four-class classification task are 1086 and 2173, 
respectively. The dataset was split into the training set, 
validation set, and test set in an 8:1:1 ratio. 

  
Figure 3. Reconstructed cortical activation maps from HD-DOT 
data showing HbR changes. Multiple angles are used to provide a 

full view of spatially distributed prefrontal responses. 

E. Model Training 

1) Model selection: 
CNN models (AlexNet, GoogLeNet, ResNet, DenseNet, 

MobileNet) and Transformer models (ViT, Swin Transformer, 
MobileViT) were trained using PyTorch. These models were 
selected to compare depth, connectivity, and computational 
efficiency, all of which are critical design factors in real-time 
neuroimaging applications. To enhance generalization and 
mitigate overfitting due to the limited dataset size, transfer 
learning was adopted. Model weights were initialized using 
parameters pre-trained on ImageNet, a large-scale dataset of 
natural images widely used for feature extraction. Pre-trained 
ImageNet weights were fine-tuned for two classification tasks:  

• Task I: two-class (low vs. high fatigue)  

• Task II: four-class (0-3 back).  

A two-phase fine-tuning strategy was subsequently 
employed. In the first phase, the early convolutional layers 
were frozen while the final fully connected layer was retrained, 
with output dimensions modified to 2 and 4 for binary and 
four-class classification tasks, respectively. A dropout layer 
was introduced to further reduce overfitting and improve 
generalizability. In the second phase, all layers were unfrozen 
and fine-tuned using a reduced learning rate, allowing the 
model to progressively adapt to task-specific features while 
retaining the advantages of the pre-trained representations. 

2) Learning rate and batch size:  
The initial learning rate was set to 0.001 and combined 

with a learning rate decay schedule to mitigate overfitting and 

improve convergence. To further enhance generalization, L2 
regularization was incorporated into the loss function. A batch 
size of 32 was used throughout training. Training was 
conducted over a maximum of 50 epochs, with early stopping 
applied using a patience value of 5. The cross-entropy loss 
function was selected to evaluate the model’s bias in the 
classification task.  

III. RESULTS AND DISCUSSION 

We evaluated the model using four standard metrics: 
Accuracy, Precision, Recall, and F1-score. Accuracy reflects 
the overall correctness of predictions, Precision measures the 
correctness of positive predictions, Recall assesses the ability 
to identify all positive cases, and F1-score balances Precision 
and Recall. As shown in Fig. 4, most of the models exceeded 
90% accuracy. For binary classification, ViT achieved the 
highest performance (97.9%), while GoogLeNet led among 
CNNs (94.5%). In four-class classification, MobileViT 
outperformed others with 98.6% accuracy.  

 
Figure 4.  Model accuracy of CNNs and Transformer.  

A. CNN Models 

Among the five CNN models evaluated, GoogLeNet 
achieved the highest classification accuracy in distinguishing 
mental fatigue, outperforming ResNet, MobileNet, DenseNet, 
and AlexNet (Table. I: Task I). Its superior performance may  
attribute to the architectural design of the Inception modules, 
which effectively balance network depth and width. In contrast, 
AlexNet demonstrated the lowest accuracy across all models. 
Its relatively shallow architecture and use of fixed-size 
convolutional kernels limit its capacity to extract detailed and 
hierarchical features. This design constraint reduces its 
effectiveness in tasks that require fine-grained discrimination, 
such as detecting nuanced changes in brain activation related 
to cognitive fatigue. 

TABLE I.  CNN MODELS’ PERFORMANCE ON TASK I AND TASK II 

Model 
Task I: Mental Fatigue 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

AlexNet 85.5 83.1 89.1 86.0 

GoogLeNet 94.5 94.5 94.5 94.5 

ResNet 93.6 94.4 93.6 93.6 

DenseNet 94.0 94.1 94.1 93.8 



  

Model 
Task I: Mental Fatigue 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

MobileNet-v2 93.6 94.4 93.6 93.6 

Model 
Task II: Mental Workload 

Accuracy 

(%)  

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

AlexNet 92.1 92.0 91.8 91.8 

GoogLeNet 94.5 94.7 94.5 94.5 

ResNet 95.0 95.2 95.0 95.0 

DenseNet 95.4 95.9 95.4 95.4 

MobileNet-v2 95.9 95.9 95.9 95.9 

 

Overall, the CNN models demonstrated improved 
performance on the four-class mental workload classification 
task compared to the binary mental fatigue task (Table. I: 
Task II). One contributing factor is the increased dataset size 
in the four-class setting. This broader training set exposed the 
models to a wider range of hemodynamic patterns, enhancing 
their ability to generalize and learn more discriminative 
features. From a feature space perspective, the four workload 
levels present more structured and separable activation 
patterns. The presence of progressive cognitive load across the 
0-back to 3-back conditions may introduce useful relational 
patterns and feature redundancy, which the models can 
leverage to improve classification performance. 

Among the CNNs evaluated, ResNet, DenseNet, and 
MobileNet exhibited the most robust performance in the four-
class task. ResNet’s residual connections allow for effective 
gradient flow in deeper architectures, which is crucial for 
capturing subtle distinctions across similar cognitive states. 
DenseNet’s densely connected layers promote feature reuse 
and gradient efficiency, making it particularly suitable for 
processing the distributed and overlapping activation patterns 
found in HD-DOT data. MobileNet, while lightweight,  
achieves strong performance by using depth-wise separable 
convolutions that maintain expressiveness with fewer 
parameters, making it highly suitable for resource-constrained 
or real-time applications such as wearable BCIs or mobile 
neurofeedback systems. 

B. Transformer-based Models 

To complement the evaluation of CNN architectures, we 
also investigated three Transformer-based models: ViT, Swin 
Transformer, and MobileViT, chosen for their varying trade-
offs between global context modeling, local feature 
aggregation, and computational efficiency. This comparison 
aimed to assess whether self-attention-based mechanisms can 
effectively exploit the complex spatial features embedded in 
HD-DOT neuroimaging data.  

In the binary classification of mental fatigue (Table. II: 
Task I), ViT achieved the highest accuracy at 97.9%, 
outperforming both MobileViT and Swin Transformer. ViT’s 
use of global self-attention enables it to model long-range 
dependencies across the entire spatial field, which is 
particularly advantageous for detecting subtle, distributed 
changes in cerebral hemodynamics. In contrast, the Swin 
Transformer adopts a hierarchical structure with local self-

attention windows, which improves computational scalability 
but may restrict its ability to capture global patterns, limiting 
performance in tasks that require holistic spatial understanding. 

TABLE II.  TRANSFORMER-BASED MODELS’ PERFORMANCE ON TASK I 
AND TASK II 

Model 
Task I: Mental Fatigue 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

ViT 97.9 98.1 96.3 97.2 

Swin-

transformer 
96.3 100 92.6 96.2 

MobileViT 97.4 100 94.4 97.1 

Model 
Task II: Mental Workload 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

ViT 96.8 96.9 96.8 96.8 

Swin-

transformer 
96.3 96.5 96.3 96.3 

MobileViT 98.6 98.5 98.6 98.6 

 

In the four-class mental workload classification task, all 
three Transformer-based models maintained high accuracy, 
with MobileViT demonstrating the strongest performance 
(Table. II: Task II). Compared to its performance in the binary 
task, MobileViT showed notable improvement in the multi-
class setting. Unlike ViT, MobileViT combines convolutional 
inductive bias with efficient self-attention modules, enabling 
better generalization in small-sample settings. Its hybrid 
design enhances multi-scale feature learning while 

maintaining a lightweight architecture—making it particularly 

suitable for real-time applications such as wearable BCIs, 
closed-loop neurofeedback, and adaptive cognitive monitoring. 
MobileViT’s balanced architecture thus offers a compelling 
solution for tasks requiring both fine-grained classification and 
computational efficiency. 

C.  Generalization Capability 

The generalization performance of CNN and Transformer 
models was also evaluated using a leave-one-out cross-
validation strategy. The four-class mental workload 
classification task was conducted on the 16 subjects (N = 16). 
In each iteration, one participant’s data was held out as the test 
set, while the remaining N−1 subjects formed the training set. 
This process was repeated N times, ensuring that each subject 
was used once as the validation set. Final performance metrics 
were calculated by averaging the results across all folds. 



  

 
Figure 5.  Leave-one-subject-out cross-validation results comparing 

the generalization performance of CNN and Transformer models in 

mental workload classification tasks. 

As shown in Fig.5, among the CNN models, all except 
AlexNet achieved over 80% accuracy, with MobileNet 
demonstrating the best generalization performance at 90.9%. 
This result highlights the strength of lightweight architectures 
like MobileNet in small-sample neuroimaging contexts, where 
reduced parameter counts help mitigate overfitting and 
training instability. In contrast, AlexNet underperformed, 
likely due to its shallow architecture and limited feature 
extraction capacity, which are insufficient for capturing 
complex spatiotemporal patterns in HD-DOT data. 

Transformer-based models also demonstrated strong 
generalization, with all accuracy scores around 82%, 
confirming their capacity to handle multi-class classification 
tasks. However, in this setting, Transformer models did not 
outperform CNNs, in contrast to earlier experiments. This may 
be due to the relatively small training dataset, as Transformers 
typically require larger data volumes to fully leverage their 
representational power and avoid overfitting, given their 
higher parameter complexity. 

IV. CONCLUSION 

This study addresses two key gaps in neuroimaging-based 
mental state classification. First, while conventional fNIRS 
systems have been increasingly used for analyzing mental 
fatigue and workload, their limited spatial resolution restricts 
their effectiveness in capturing distributed brain activity; 
meanwhile, HD-DOT offers fine-grained, 3D mapping of 
cortical hemodynamics, making it well-suited for decoding 
subtle cognitive states, however, its potential remains 
underutilized. Second, despite the growing success of 
Transformer models in computer vision, their application to 
HD-DOT data, especially in comparison to CNNs, has been 
largely unexplored.  

To bridge these gaps, we systematically evaluated CNN 
and Transformer models on 3D HD-DOT data across binary 
(fatigue) and four-class (workload) classification tasks. CNNs, 
particularly MobileNet, demonstrated strong generalization 
even with limited data, while Transformer models such as ViT 
showed competitive performance, especially in binary 
classification. However, their reliance on larger datasets was 
evident under cross-validation. 

Overall, our findings demonstrate the feasibility and 
effectiveness of combining HD-DOT with lightweight deep 
learning models for accurate mental state decoding. This 
integrated approach offers a powerful tool for real-time, non-
invasive imaging of cognitive states, supporting applications 
in closed-loop neurofeedback, adaptive BCIs, and clinical 
decision-making. By enabling fine-grained assessment of 
mental fatigue and workload, such systems hold significant 
promise for deployment in high-stakes environments such as 
surgical theatres, intensive care units, and neurorehabilitation 
settings, where early detection of cognitive decline or overload 
is critical for safety and therapeutic outcomes. 

Future work will focus on addressing current limitations 
and extending the applicability of our findings. A key direction 
is to further validate the unique advantages of HD-DOT in 
classifying mental workload and fatigue. While HD-DOT 
offers higher spatial resolution than traditional fNIRS and 
EEG, direct comparisons are needed to quantify its added 
value in terms of classification performance and cortical 
specificity. We also aim to identify the most informative 
cortical regions using explainability techniques such as Grad-
CAM and ROI-based analysis. To move beyond static 3D 
classification, we will explore spatiotemporal modeling to 
capture the dynamic nature of cognitive states. Additionally, 
we plan to improve model generalizability in small-sample 
scenarios by applying lightweight Transformer architectures 
and domain adaptation techniques. Individual variability will 
also be addressed through personalized modeling or 
participant clustering, supporting more robust brain-state 
decoding in real-world applications.  
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