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Abstract—Mental fatigue and workload are critical to
cognitive health, with relevance in BCIs, neurorehabilitation,
and psychiatric care. Accurate decoding can support adaptive
interventions and assistive system performance. High-density
diffuse optical tomography (HD-DOT), an advanced form of
functional near-infrared spectroscopy (fNIRS), offers high
spatial resolution for non-invasive monitoring of cerebral
hemodynamics, making it well-suited for detecting subtle
changes in cognitive states. Deep learning models, particularly
Convolutional Neural Networks (CNNs) and Transformers, are
highly effective in image-based pattern recognition and thus
hold promise for analyzing HD-DOT data. This study
investigates the effectiveness of CNN- and Transformer models
for classifying mental fatigue and workload using HD-DOT data.
We collected data from 16 participants during rest, reaction time,
and N-back tasks, and reconstructed 3D images of hemodynamic
changes. Both two-class (low vs. high fatigue) and four-class
(0,1,2,3-back) classification tasks were performed. CNN models,
particularly lightweight architectures like MobileNet,
demonstrated strong generalization performance under leave-
one-out cross-validation, achieving up to 90.9% accuracy.
Transformer models also performed competitively, with
MobileViT achieving the highest classification accuracy of 98.6%
in the four-class task. These findings highlight the feasibility and
effectiveness of combining HD-DOT with lightweight deep
learning architectures for accurate and generalizable assessment
of cognitive states.

Clinical Relevance— This study demonstrates the potential of
HD-DOT combined with deep learning models for non-invasive,
high-resolution imaging of mental fatigue and workload. Such a
framework could support real-time cognitive state assessment in
both clinical and occupational settings, enabling mental health
monitoring, early detection of cognitive overload or decline in
high-risk environments such as surgical theatres, intensive care
units, and neurorehabilitation programs.

Keywords—Mental fatigue, Mental workload, fNIRS, HD-
DOT, Deep learning.

I. INTRODUCTION

Mental fatigue is a psychobiological condition that arises
from prolonged cognitive engagement and is commonly
manifested as subjective sensations of exhaustion and
diminished vitality [1]. It can impair attention, reaction time,
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and decision-making [2]. Closely related to mental fatigue is
mental workload, which refers to the cognitive demands
placed on an individual during task performance [3].
Excessive or sustained mental workload can overwhelm
cognitive resources, leading to performance degradation and
increased error rates. Mental fatigue and mental workload are
critical indicators of cognitive function and mental health,
with increasing importance across applications such as brain-
computer interfaces (BCIs), neurofeedback,
neurorchabilitation, and psychiatric monitoring. Accurate
decoding of these mental states is essential for enabling
adaptive interventions in clinical settings, enhancing user
engagement in BCI systems, and optimizing performance in
mobility/cognitive assistive technologies, including smart
wheelchairs and fatigue detection systems in transportation.
Specifically in emerging applications like BCIs, both mental
fatigue and high mental workload may impair system
performance by reducing user engagement and compromising
the reliability of neural signals. At the same time, BClIs
themselves offer a promising approach for monitoring mental
states [4], particularly when the headcap is configured to cover
relevant cortical regions such as the prefrontal cortex [5].

Neuroimaging techniques have become indispensable for
investigating the neural mechanisms underlying mental
fatigue. Functional near-infrared spectroscopy (fNIRS), a non-
invasive and even wearable modality, has proven particularly
effective in real-world contexts. fNIRS offers a favourable
balance of temporal and spatial resolution, low cost, and
tolerance to movement. However, traditional fNIRS systems,
typically consisting of around 100 or fewer channels [6], are
limited in their ability to accurately localize neural sources.
Although they provide millimeter-level spatial resolution, they
are susceptible to contamination from superficial extracerebral
hemodynamic signals [7]. This limitation reduces depth
sensitivity and hinders precise three-dimensional (3D)
mapping of cerebral oxygenation changes.

While traditional fNIRS systems often miss these localized
dynamics due to limited channel density and depth sensitivity,
high-density diffuse optical tomography (HD-DOT), an
advanced neuroimaging modality, extends the capabilities of
fNIRS by enabling voxel-wise functional mapping. This
allows researchers to observe fine-grained patterns of neural
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compensation or disengagement over time [8]. With a dense
array of overlapping measurements across multiple source-
detector distances [9], HD-DOT enables tomographic
reconstruction of haemoglobin concentration changes across
the cortical surface, achieving spatial resolution comparable to
that of functional Magnetic Resonance Imaging (fMRI) [10].
This makes HD-DOT particularly well-suited for studying
mental fatigue, where subtle and spatially heterogeneous
changes in prefrontal activity, linked to sustained cognitive
effort and attentional decline, must be captured with high
fidelity.

Given HD-DOT’s ability to capture fine-grained, voxel-
wise brain activity, analyzing its high-dimensional outputs
requires models capable of extracting and interpreting
complex spatial patterns. Deep learning approaches,
particularly convolutional neural networks (CNNs) and
Transformer architectures, are well-suited for this purpose.
Specifically, CNNs are well-suited for processing 3D
neuroimaging data due to their ability to extract hierarchical
spatial features, whereas Transformer-based models offer the
advantage of capturing global contextual relationships through
self-attention mechanisms [13]. To date, multiple studies have
demonstrated the effectiveness of deep learning such as CNNs
in mental states assessment with fNIRS [11], [12], few have
explored the potential of deep learning models applied to 3D-
reconstructed HD-DOT images. This study aims to bridge this
gap by evaluating both CNNs and Transformers for mental
state classification using HD-DOT-derived 3D data.

To mitigate overfitting risks associated with limited data,
we adopted a transfer learning approach by fine-tuning models
pre-trained on ImageNet, which is a large-scale hierarchical
image database [14]. Despite the large domain gap, transfer
learning from ImageNet has been shown to be effective in
medical imaging domains, including fMRI, Positron Emission
Tomography (PET), and Electroencephalography (EEG) [15].

By comparing CNN and Transformer models on binary
and multi-class tasks, we assess their effectiveness for HD-
DOT-based mental state decoding and identify which
architecture better captures the spatial-functional patterns in
HD-DOT data. As shown in Fig. 1, this analysis offers insights
into model-specific strengths and informs future deep learning

strategies for optical neuroimaging.
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Figure 1. Data process pipeline, including data preparation, model
training and evaluation.

II. METHODS

A. Data Acquisition

Data were collected using a HD-DOT system LUMO
(Gowerlabs Ltd, UK) [16], consisting of 12 tiles, each
equipped with 3 sources and 4 detectors, yielding a total of

1728 theoretical channels across two wavelengths (735/850
nm). As shown in Fig.2, sixteen participants completed: (1) 2-
minute rest, (2) 2-minute reaction time task, (3) 33-minute N-
back task (0-, 1-, 2-, 3-back), and (4) 2-minute post-test
reaction time task, which is the same protocol as in [17]. All
procedures were approved by the UCL Research Ethics
Committee. N-back was used to induce mental fatigue.

Low Mental Fatigue High Mental Fatigue

Rest Reaction N-back task Reaction
(baseline) time task (0/1/2/3-back) time task
2 min ~ 2 min ~ 33 min ~2 min

Figure 2. Experiment protocol.

B. Data Preprocessing

Raw data were preprocessed in MATLAB 2022b using the
DOTHUB toolbox [18]. Motion artefacts were corrected via
Kurtosis-Wavelet filtering [19]. To ensure data quality,
channels were excluded from analysis if they exhibited poor
signal quality according to three criteria: (1) the mean optical
density fell outside a predefined range, indicating signal
saturation or insufficiency; (2) the signal-to-noise ratio,
computed as the mean divided by the standard deviation, was
below a threshold; or (3) the source-detector distance lay
outside the physiologically valid range. These criteria were
applied to each wavelength. A 0.025-0.15 Hz bandpass filter
were applied. Oxygenated (HbO) and deoxygenated
hemoglobin (HbR) were extracted after short-channel
regression was used to remove superficial blood oxygenation
changes caused by the scalp.

C. Image Reconstruction

For HD-DOT, 3D hemoglobin images are reconstructed by
solving a model-based inverse problem that links channel-
level measurements to volumetric tissue absorption changes.
After obtaining channel-wise HbO/HbR changes (derived
from raw intensity data), a physics-based forward model of
light transport is employed to characterize photon propagation
from each source to detector. This forward model (often using
the diffusion approximation to the radiative transfer equation
on a head mesh) provides a sensitivity matrix (Jacobian) that
quantifies how a unit absorption change at each 3D location
affects each source-detector channel’s measurement [20]. The
resulting Jacobian is then used in the inverse model to estimate
the spatial distribution of hemoglobin changes that best
explain the observed channel data. Due to the ill-posed nature
of the tomographic inverse problem, Tikhonov regularization
was applied with a regularization parameter A = 0.01. The
resulting inverse Jacobian was used to reconstruct spatially
resolved maps of HbO and HbR concentration changes, which
were then projected onto the cortical surface for visualization
of task-related hemodynamic responses.

D. Dataset generation

For the mental fatigue classification task, data were
extracted from the first and second reaction time sessions. For
the mental workload classification task, data from six
repetitions of the N-back task (0-, 1-, 2-, and 3-back) were
collected for each subject, and the average across trials was
computed for each condition to improve signal stability. This
trial-averaging approach helps reduce random noise and
enhance the reliability of task-evoked responses. However,



since each subject contributes only one averaged sample per
condition, the overall sample size remains limited. To avoid
the risk of overfitting, a multi-view data augmentation strategy
was applied. Each 3D HD-DOT image was rendered from
multiple horizontal viewing angles to increase spatial
variability while preserving the original class label.
Specifically, the image was rotated horizontally around the
vertical (Y) axis in increments of 5°, generating views from 90°
to 270°, as shown in Fig.3. This approach enhances model
generalization by exposing it to a broader range of spatial
representations, and has been shown effective in similar
neuroimaging and multi-view classification tasks [21]. Each
image was then cropped and resized to 224x224 pixels to
match the input dimensions required by CNN and Transformer
models. This process results in a total of 3,259 training
samples. The dataset size for the binary classification task and
the four-class classification task are 1086 and 2173,
respectively. The dataset was split into the training set,
validation set, and test set in an 8:1:1 ratio.
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Figure 3. Reconstructed cortical activation maps from HD-DOT
data showing HbR changes. Multiple angles are used to provide a
full view of spatially distributed prefrontal responses.

E. Model Training

1) Model selection:

CNN models (AlexNet, GoogLeNet, ResNet, DenseNet,
MobileNet) and Transformer models (ViT, Swin Transformer,
MobileViT) were trained using PyTorch. These models were
selected to compare depth, connectivity, and computational
efficiency, all of which are critical design factors in real-time
neuroimaging applications. To enhance generalization and
mitigate overfitting due to the limited dataset size, transfer
learning was adopted. Model weights were initialized using
parameters pre-trained on ImageNet, a large-scale dataset of
natural images widely used for feature extraction. Pre-trained
ImageNet weights were fine-tuned for two classification tasks:

e  Task I: two-class (low vs. high fatigue)
e  Task II: four-class (0-3 back).

A two-phase fine-tuning strategy was subsequently
employed. In the first phase, the early convolutional layers
were frozen while the final fully connected layer was retrained,
with output dimensions modified to 2 and 4 for binary and
four-class classification tasks, respectively. A dropout layer
was introduced to further reduce overfitting and improve
generalizability. In the second phase, all layers were unfrozen
and fine-tuned using a reduced learning rate, allowing the
model to progressively adapt to task-specific features while
retaining the advantages of the pre-trained representations.

2) Learning rate and batch size:
The initial learning rate was set to 0.001 and combined
with a learning rate decay schedule to mitigate overfitting and

improve convergence. To further enhance generalization, L2
regularization was incorporated into the loss function. A batch
size of 32 was used throughout training. Training was
conducted over a maximum of 50 epochs, with early stopping
applied using a patience value of 5. The cross-entropy loss
function was selected to evaluate the model’s bias in the
classification task.

III. RESULTS AND DISCUSSION

We evaluated the model using four standard metrics:
Accuracy, Precision, Recall, and F1-score. Accuracy reflects
the overall correctness of predictions, Precision measures the
correctness of positive predictions, Recall assesses the ability
to identify all positive cases, and F1-score balances Precision
and Recall. As shown in Fig. 4, most of the models exceeded
90% accuracy. For binary classification, ViT achieved the
highest performance (97.9%), while GoogLeNet led among
CNNs (94.5%). In four-class classification, MobileViT
outperformed others with 98.6% accuracy.
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Figure 4. Model accuracy of CNNs and Transformer.

A. CNN Models

Among the five CNN models evaluated, GoogLeNet
achieved the highest classification accuracy in distinguishing
mental fatigue, outperforming ResNet, MobileNet, DenseNet,
and AlexNet (Table. I: Task I). Its superior performance may
attribute to the architectural design of the Inception modules,
which effectively balance network depth and width. In contrast,
AlexNet demonstrated the lowest accuracy across all models.
Its relatively shallow architecture and use of fixed-size
convolutional kernels limit its capacity to extract detailed and
hierarchical features. This design constraint reduces its
effectiveness in tasks that require fine-grained discrimination,
such as detecting nuanced changes in brain activation related
to cognitive fatigue.

TABLE L CNN MODELS’ PERFORMANCE ON TASK I AND TASK IT
Task I: Mental Fatigue
Model Au(q;‘;acy chision Recall (%) F I;i/:')ore
AlexNet 85.5 83.1 89.1 86.0
GoogLeNet 94.5 94.5 94.5 94.5
ResNet 93.6 94.4 93.6 93.6
DenseNet 94.0 94.1 94.1 93.8




Task I: Mental Fatigue

Model Accuracy Precision FI-score
(%) (%) Recall (%) (%)
MobileNet-v2 93.6 94.4 93.6 93.6

Task II: Mental Workload

Model Accuracy Precision Fl-score
(%) (%) Recall (%) (%)
AlexNet 92.1 92.0 91.8 91.8
GoogLeNet 94.5 94.7 94.5 94.5
ResNet 95.0 95.2 95.0 95.0
DenseNet 95.4 95.9 95.4 95.4
MobileNet-v2 95.9 95.9 95.9 95.9

Overall, the CNN models demonstrated improved

performance on the four-class mental workload classification
task compared to the binary mental fatigue task (Table. I:
Task IT). One contributing factor is the increased dataset size
in the four-class setting. This broader training set exposed the
models to a wider range of hemodynamic patterns, enhancing
their ability to generalize and learn more discriminative
features. From a feature space perspective, the four workload
levels present more structured and separable activation
patterns. The presence of progressive cognitive load across the
0-back to 3-back conditions may introduce useful relational
patterns and feature redundancy, which the models can
leverage to improve classification performance.

Among the CNNs evaluated, ResNet, DenseNet, and
MobileNet exhibited the most robust performance in the four-
class task. ResNet’s residual connections allow for effective
gradient flow in deeper architectures, which is crucial for
capturing subtle distinctions across similar cognitive states.
DenseNet’s densely connected layers promote feature reuse
and gradient efficiency, making it particularly suitable for
processing the distributed and overlapping activation patterns
found in HD-DOT data. MobileNet, while lightweight,
achieves strong performance by using depth-wise separable
convolutions that maintain expressiveness with fewer
parameters, making it highly suitable for resource-constrained
or real-time applications such as wearable BCIs or mobile
neurofeedback systems.

B. Transformer-based Models

To complement the evaluation of CNN architectures, we
also investigated three Transformer-based models: ViT, Swin
Transformer, and MobileViT, chosen for their varying trade-
offs between global context modeling, local feature
aggregation, and computational efficiency. This comparison
aimed to assess whether self-attention-based mechanisms can
effectively exploit the complex spatial features embedded in
HD-DOT neuroimaging data.

In the binary classification of mental fatigue (Table. II:
Task 1), ViT achieved the highest accuracy at 97.9%,
outperforming both MobileViT and Swin Transformer. ViT’s
use of global self-attention enables it to model long-range
dependencies across the entire spatial field, which is
particularly advantageous for detecting subtle, distributed
changes in cerebral hemodynamics. In contrast, the Swin
Transformer adopts a hierarchical structure with local self-

attention windows, which improves computational scalability
but may restrict its ability to capture global patterns, limiting
performance in tasks that require holistic spatial understanding.

TABLE II. TRANSFORMER-BASED MODELS’ PERFORMANCE ON TASK I
AND TASK II
Task I: Mental Fatigue
Model Accuracy Precision Recall Fl-score
(%) (%) (%) (%)
ViT 97.9 98.1 96.3 97.2
Swin- 96.3 100 92.6 96.2
transformer
MobileViT 97.4 100 94.4 97.1
Task II: Mental Workload
Model Accuracy Precision Recall Fl-score
(%) (%) (%) (%)
ViT 96.8 96.9 96.8 96.8
Swin- 96.3 96.5 96.3 96.3
transformer
MobileViT 98.6 98.5 98.6 98.6

In the four-class mental workload classification task, all
three Transformer-based models maintained high accuracy,
with MobileViT demonstrating the strongest performance
(Table. II: Task II). Compared to its performance in the binary
task, MobileViT showed notable improvement in the multi-
class setting. Unlike ViT, MobileViT combines convolutional
inductive bias with efficient self-attention modules, enabling
better generalization in small-sample settings. Its hybrid
design enhances multi-scale feature learning while
maintaining a lightweight architecture—making it particularly
suitable for real-time applications such as wearable BCIs,
closed-loop neurofeedback, and adaptive cognitive monitoring.
MobileViT’s balanced architecture thus offers a compelling
solution for tasks requiring both fine-grained classification and
computational efficiency.

C. Generalization Capability

The generalization performance of CNN and Transformer
models was also evaluated using a leave-one-out cross-
validation strategy. The four-class mental workload
classification task was conducted on the 16 subjects (N = 16).
In each iteration, one participant’s data was held out as the test
set, while the remaining N—1 subjects formed the training set.
This process was repeated N times, ensuring that each subject
was used once as the validation set. Final performance metrics
were calculated by averaging the results across all folds.
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Figure 5. Leave-one-subject-out cross-validation results comparing
the generalization performance of CNN and Transformer models in
mental workload classification tasks.

As shown in Fig.5, among the CNN models, all except
AlexNet achieved over 80% accuracy, with MobileNet
demonstrating the best generalization performance at 90.9%.
This result highlights the strength of lightweight architectures
like MobileNet in small-sample neuroimaging contexts, where
reduced parameter counts help mitigate overfitting and
training instability. In contrast, AlexNet underperformed,
likely due to its shallow architecture and limited feature
extraction capacity, which are insufficient for capturing
complex spatiotemporal patterns in HD-DOT data.

Transformer-based models also demonstrated strong
generalization, with all accuracy scores around 82%,
confirming their capacity to handle multi-class classification
tasks. However, in this setting, Transformer models did not
outperform CNNS, in contrast to earlier experiments. This may
be due to the relatively small training dataset, as Transformers
typically require larger data volumes to fully leverage their
representational power and avoid overfitting, given their
higher parameter complexity.

IV. CONCLUSION

This study addresses two key gaps in neuroimaging-based
mental state classification. First, while conventional fNIRS
systems have been increasingly used for analyzing mental
fatigue and workload, their limited spatial resolution restricts
their effectiveness in capturing distributed brain activity;
meanwhile, HD-DOT offers fine-grained, 3D mapping of
cortical hemodynamics, making it well-suited for decoding
subtle cognitive states, however, its potential remains
underutilized. Second, despite the growing success of
Transformer models in computer vision, their application to
HD-DOT data, especially in comparison to CNNs, has been
largely unexplored.

To bridge these gaps, we systematically evaluated CNN
and Transformer models on 3D HD-DOT data across binary
(fatigue) and four-class (workload) classification tasks. CNNs,
particularly MobileNet, demonstrated strong generalization
even with limited data, while Transformer models such as ViT
showed competitive performance, especially in binary
classification. However, their reliance on larger datasets was
evident under cross-validation.

Overall, our findings demonstrate the feasibility and
effectiveness of combining HD-DOT with lightweight deep
learning models for accurate mental state decoding. This
integrated approach offers a powerful tool for real-time, non-
invasive imaging of cognitive states, supporting applications
in closed-loop neurofeedback, adaptive BCIs, and clinical
decision-making. By enabling fine-grained assessment of
mental fatigue and workload, such systems hold significant
promise for deployment in high-stakes environments such as
surgical theatres, intensive care units, and neurorehabilitation
settings, where early detection of cognitive decline or overload
is critical for safety and therapeutic outcomes.

Future work will focus on addressing current limitations
and extending the applicability of our findings. A key direction
is to further validate the unique advantages of HD-DOT in
classifying mental workload and fatigue. While HD-DOT
offers higher spatial resolution than traditional fNIRS and
EEG, direct comparisons are needed to quantify its added
value in terms of classification performance and cortical
specificity. We also aim to identify the most informative
cortical regions using explainability techniques such as Grad-
CAM and ROI-based analysis. To move beyond static 3D
classification, we will explore spatiotemporal modeling to
capture the dynamic nature of cognitive states. Additionally,
we plan to improve model generalizability in small-sample
scenarios by applying lightweight Transformer architectures
and domain adaptation techniques. Individual variability will
also be addressed through personalized modeling or
participant clustering, supporting more robust brain-state
decoding in real-world applications.
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