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ABSTRACT: We present a gridless framework for computing high-
dimensional conformational free energy surfaces (FES) of flexible
molecules using enhanced sampling trajectories. By combining
concurrent well-tempered metadynamics with Density Peaks
Advanced (DPA) clustering, our approach bypasses the dimension-
ality limitations of conventional grid-based FES reconstruction. Free
energies are assigned on a per-configuration basis via local density
estimation and Zwanzig reweighting, allowing for a direct,
resolution-independent mapping of the conformational ensemble.
Conformers are identified as density peaks in torsional angle space,
and convergence is assessed via systematic consistency metrics. We
validate this approach by reproducing the paradigmatic FES of
alanine dipeptide and extend it to explore molecules with 4-, 7-, and
11-dimensional torsional angle spaces. As a key application, we investigate the solvent-dependent conformational preferences of
bicalutamide in vacuum, chloroform, and DMSO. The predicted global minima reflect the known solvent-induced conformational
shift between open and closed forms, in agreement with NMR and crystallographic data. These results demonstrate that our
workflow provides a scalable route to high-dimensional conformational free energy landscapes, with direct relevance for
polymorphism, solvation, and drug design.

■ INTRODUCTION
The vast majority of active pharmaceutical ingredients (APIs)
are highly flexible molecules, capable of changing shape readily
in biological environments, as well as displaying conformational
polymorphism in the solid state.1,2 This polymorphism is
particularly important to the drug formulation and manufactur-
ing process, as the pharmacological properties of APIs can
depend very strongly on the crystal’s polymorphism.3 As such,
quantitatively characterizing the conformational landscape of
APIs is of great interest. For instance, it is known that the
environment in which a molecule is found impacts its
conformational landscape4−6 however, a systematic approach
for mapping, understanding, and quantifying the effects of the
environment on the conformational landscape of APIs is still
lacking.7 This gap is partly due to the inherent high-
dimensionality of these spaces,8 which renders their exploration
and rationalization challenging, especially when it becomes
necessary to explicitly account for the impact of the environment
in which an API molecule is found. Here, we present a workflow
that combines enhanced sampling molecular dynamics
techniques with density-based clustering to simultaneously
explore the conformational free energy landscape of flexible API,
explicitly accounting for the effects of the environment, and
obtain an estimate of the relative free energy of the conformers
discovered. These two aspects differentiate our proposed
approach from methods based on locally minimizing the

potential energy of isolated molecules, where entropic
contributions are typically included a-posteriori and usually do
not include the configurational contribution associated with an
explicitly represented environment.9−12

Before delving into the details of the method, we introduce
the definition of conformational space adopted in this work. A
molecule’s conformation can be defined using the values of the
molecule’s freely rotatable dihedral angles1,6 (henceforth
referred to as torsions). The conformational space is, therefore,
always bounded and periodic in all dimensions. Veber’s rules,13 a
set of heuristics initially designed to predict whether a molecular
structure would possess pharmacological properties, can be used
to identify the relevant torsions in any given molecular structure.
Characterizing conformers through the values of a set of torsions
is not without precedent, and several approaches are based on
this definition. For example, Torsiflex14 is a software package
that aims to explore a single molecule’s potential energy surface
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utilizing a semirandom exploration of conformational spaces
defined by torsions.

Molecular dynamics (MD) simulations can be used to sample
the conformational space and map out the conformational FES
of a given molecule. Figure 1 shows different extents of MD
sampling of the same collective variable (CV) space. Sampling
the probability distribution with MD offers several key
advantages; MD sampling is inherently physics-based and
enables simulating a molecule in various environments and
conditions. The physics-based nature of the sampling means the
distribution sampled in conformational space by the MD
simulation can be converted into a FES15 through the
relationship:

=F k T pS S( ) ln ( )B (1)

where S represents the dihedral angle space S = [γ1, γ2, ···, γD],
where γi is one of the D torsional angles of a given molecule. p(S)
is the probability distribution in the conformational space, F(S)
is therefore the FES in conformational space S, kB is Boltzmann’s
constant, and T is the temperature.

To compute F(S), it is necessary to obtain an estimate of p(S),
where all energetically relevant regions are ergodically sampled.
Achieving an ergodic sampling of relevant configurations is a
well-known problem that several enhanced sampling techniques
have addressed.

For the ergodic sampling of a well-defined configuration
space, metadynamics, which involves depositing penalty biases
dynamically as the simulation proceeds to promote sampling,16

would be a typical approach. However, for the exhaustive
sampling of a conformation space, this approach is limited by the
computational feasibility of storing the bias values on a grid of
the same dimensionality as the conformation space, which is the
same issue faced with the conventional method of FES
construction. For this reason, in practical applications, conven-
tional metadynamics biases constructed in dimensionalities
higher than three are very rare. Alternatives for high-dimensional
CV spaces, such as bias-exchange metadynamics,17 have been
developed. Still, these generally depend on the running of
multiple replica simulations overseen by an exchange scheme.
To widely sample conformational space with a single simulation,
concurrent18 well-tempered19 metadynamics (WTMetaD) is
used here.

Figure 2a shows a FES for alanine dipeptide computed from a
nonconcurrent WTMetaD simulation using what will be
referred to as the conventional method.20 The WTMetaD
biases are deposited in the 2D conformational space, defined by
two torsions, ϕ and ψ (as illustrated in Figure 2d), ensuring that

the entire space is fully sampled over the course of the
simulation. The space is split into a 100 × 100 bins histogram.
The distribution of MD configurations throughout the histo-
gram follows the system’s equilibrium probability distribution as
distorted by the metadynamics bias. The total bias deposited in
each bin is known, allowing this distortion of the probability
distribution to be reweighted. The resulting FES has a resolution
equal to the fineness of the grid, in this case (2π)/100 rad. This
methodology is robust and widely adopted, but scales poorly to
higher-dimensional FESes. Both the bias deposition during the
simulation and the estimate of the probability distribution
require the construction of a grid with the same dimensionality
as the conformation space. If the same resolution is desired,
increasing the number of torsions incurs an exponential cost on
computational resources, rapidly becoming unfeasible. In the
scientific literature, this issue is addressed by employing
dimensionality reduction methods such as Sketch-map.21,22 In
these methods, the conformational probability density is
obtained by histogramming sampled configurations in a low-
dimensional space of unphysical coordinates. While this
approach can be effective for relatively small systems,22 its
ability to resolve degeneracies and identify conformers when the
conformational spaces are defined by a large number of torsional
degrees of freedom is not straightforward.

Biasing and Estimating Probabilities in High Dimen-
sions. Gridless Probabilities with Density Peaks Advanced.
Density-based clustering techniques form a family of un-
supervised machine learning algorithms that group data points
within spatial data sets into clusters based on the distance
between data points within the data space. Algorithms in this
family include DBSCAN23 and Fast Search and Find of Density
Peaks (FSFDP).24 There is precedent for the use of FSFDP in
molecular conformation spaces, Marinova et al. used it to study
the conformation space of Sildenafil.6 Here, Density Peaks
Advanced (DPA),25 a successor to FSFDP, is used.

DPA, developed by d’Errico et al., splits a set of data points
distributed in space into clusters by grouping points within
density peaks, a term referring to regions of high data density
(N.B. In this work, the term “density” refers to the density of
data points in S, unless otherwise noted). It does this partly by
calculating the local density of every region centered on every
single point in the data set. This calculation is a function of the
Euclidean distances between the point and its nearest neighbors.
Here, the process is applied to a sample of N configurations in
conformation space sampled by the MD simulation. These local
density calculations are extremely powerful in this context for
two key reasons: first, each additional dimension in S adds a

Figure 1. Sketch illustrating the pairing procedure used by the consistency metrics to compare cluster-sets generated from data sets of different sizes.
The configurations shown are drawn from the simulation of alanine dipeptide, but the principle illustrated is general. The cluster centers obtained from
the largest amount of data form the reference set, shown in purple. Cluster centers generated from smaller amounts of data (shown in red) are paired to
the nearest cluster center in the reference set, allowing comparison of distances and energy differences between cluster centers. It is expected that as the
data set size grows, the positions and energies of the cluster centers will converge, as seen in Figure 2g,h.
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Figure 2. a: A conformational free energy surface for alanine dipeptide, obtained conventionally, through constructing a reweighted probability
distribution on a histogram. b: The same free energy surface, constructed from a probability distribution derived from the local densities of individual
configurations sampled from the simulation. The positions and free energies of local minima, as identified by DPA, are overlaid. c: The same free energy
surface, also constructed from local densities, sampling a simulation using 2 × 1D WTmetaD biases instead of a conventional 2D bias. The positions
and free energies of local minima, as identified by DPA, are overlaid. d: Alanine dipeptide, with the two relevant torsions ϕ and ψ highlighted. For a, b,
and c, the energies of the FESes are indicated by a colormap in units of kJ mol−1. e: Evolution of δF(t) on the marginal free energies of each torsion in
alanine dipeptide. f: Number of clusters identified by clustering on data sets of size N. g: Evolution of Δd̅ with N for alanine dipeptide. h: Evolution of
ΔF̅ with N for alanine dipeptide.
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single term to the Euclidean distance calculation, so the cost
with increasing dimensionality scales linearly, and second these
local densities map a distribution in much the same way as the
previously described histogram, so the same reweighing and
inversion procedure may be applied to calculate the free energy.
These free energies, unlike those in the above histogram, are not
associated with a defined region of conformation space. Rather,
they are associated with a specific configuration sampled by the
simulation. Thus, this per point FES has no fixed spatial
resolution; data is rich in regions that have been heavily sampled
and sparse in regions that have not been frequented. This is
advantageous as it means that while data in the local minima
remains highly dense due to the frequent sampling, little cost is
incurred in considering data from the rarely visited, largely
irrelevant high-energy regions. This contrasts with the grid-
based approach, where these high-energy regions are modeled in
as high a resolution as the more relevant local minima. The
results of applying this approach to alanine dipeptide can be seen
in Figure 2b.

Biasing in High-Dimensional Spaces with Concurrent
Metadynamics. To avoid the exponentially increasing costs of
depositing WTMetaD biases in a high-dimensional conforma-
tional space, concurrent metadynamics is used in its place to
promote sampling. This entails simultaneously depositing a
single one-dimensional bias for each torsion in the molecule,
thus encouraging exploration of the rotation of that torsion.16

The cost of this approach scales linearly with dimensionality
(shown in Figure S1a), as one additional monodimensional grid
is needed for each additional torsion considered. The cost
savings of this approach come with a trade-off; conventional
metadynamics promotes the exploration of the entire conforma-
tional phase space and guarantees that previously visited
configurations will be penalized accordingly. Concurrent
metadynamics does not explicitly bias the combinations of any
torsion values. Instead, it promotes the escaping from local free
energy wells by driving the rotation of individual torsions. This
can be seen in the use of this technique on alanine dipeptide in
Figure 2c.

This work will demonstrate that DPA analysis of data sets
generated using concurrent WTmetaD can be used to model the
probability distribution of a flexible molecule’s conformational
state and create a “per-point” FES, where the data points
themselves are configurations sampled by the simulation. This
approach will be shown to recreate the well-studied 2D FES of
alanine dipeptide before being demonstrated on 4- and 11-
dimensional conformational free energy landscapes in vacuum
and a 7-dimensional conformational free energy landscape in
different solution environments.

■ THEORETICAL BACKGROUND AND METHODS
Clustering and FES Construction. To discuss the

approach developed in this work in detail, it is helpful to begin
by introducing how DPA allows the estimation of a FES from
unbiased MD-generated data. Density Peaks Advanced (DPA)
is run on a subset of configurations sampled from an MD
trajectory. The size of this subset is the limiting factor in the cost
of this approach, as each point has a local density determined by
the distance to its neighbors, so the process depends on
constructing a complete distance matrix between all config-
uration pairs. We, therefore, expect the cost of this approach to
scale approximately with the square of the data set size (see
Figure S1b). More advanced implementations that compute
distances of k neighbors can achieve scaling closer to N log N,

with N being the size of the data set.26 Because the
thermodynamics of the system directs the MD trajectory’s
sampling, the local density of each configuration is proportional
to the relative probability of encountering this configuration. It
thus can be directly inverted to the free energy of the
configuration using eq 1.

DPA estimates the probability associated with the ensemble of
configurations projected in a given point i of the configuration
space S, using the PAk density estimator,27 based on the
Euclidean distances between point i and its k nearest neighbors.
An underpinning assumption of this method is that the density is
constant in the neighborhood of the point i. Hence, the
parameter k is selected to be as large as possible to maximize the
data used in calculating the local density while still representing a
hypervolume of constant density. Each neighbor l can be said to
occupy the volume vl of the hyperspherical shell enclosed
between hyperspheres of radii rl and rl−1. The sum of these
volumes up to neighbor k is equal to the volume Vk of a
hypersphere with radius rk. DPA leverages the fact that for a
region of constant density, the volumes will be drawn from an
exponential distribution28 with a rate of this density ρ and that
thus the log-likelihood function of ρ given a set of k neighbors is
provided by

=L k V( ) log( )i k k, (2)

The PAk estimator selects an appropriate k value using two
models with distinct assumptions. Model one, M1, assumes that
the densities of point i and its j = k + 1 nearest neighbor are
independent, while model two, M2, assumes these densities are
identical. Their log-likelihood functions are

=
i
k
jjjjjj

y
{
zzzzzzL k

k
V V

klog 2M
k j

1

2

(3)

=
+

i
k
jjjjjj

y
{
zzzzzzL k

k
V V

k2 log
2

2M
k j

2
(4)

The two models are compared with a likelihood ratio test,29

=D L L2( )k M M2 1 (5)

which increases as the two models differ. If Dk grows over a
threshold Dthr (Dthr = 23.928 according to ref 25) then the
densities of i and j cannot be considered constant. As such, PAk
selects an appropriate k value by iteratively calculating Dk for
increasing values of k until the threshold is passed.

Per Point Free Energies with DPA and Biased
Simulations. In practice, we generate conformational data
sets using WTmetaD simulations. Using PAk on configurations
sampled from a WTmetaD simulation produces densities that
reflect a probability distribution perturbed by the applied biases.
These densities can be reweighed using the Zwanzig approach15

as

* = × =ei i
V( )t

D
i
t

1 (6)

where ρ* is the reweighed density, β is equal to 1/kBT, Vi
t is the

bias in torsion t, = Vt
D

i
t

1 represents the sum of the concurrent
biases acting on the D torsions, for configuration i. Practically,
we evaluate ρ, the biased density, from configurations generated
in a quasi-static bias regime, as the bulk of the bias is deposited
during the early stages of the simulation, and the bulk of sampled
configurations are visited when bias deposition is negligible. We
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therefore apply the f inal bias approximation to obtain a time-
independent value of Vi

t acting on configuration i.30−32 To
mitigate the noise introduced by exponential reweighting,15 the
density of each point is then averaged over hyperspherical
domains of radius 0.1 rad. This step generates a new smoothed
set of densities *

i , at the cost of a slight controllable loss in
spatial resolution. The free energy Fi, associated with
configuration i (thus termed per point), is computed as

= *F k T lni iB .
Conformer Classification. In the classification step, DPA

identifies peaks in the density as cluster centers, i.e., distinct
conformers. This operation is equivalent to identifying local
minima in the D-dimensional free energy surface. For this step,
we use the set of reweighted, smoothed densities *

i .
Moreover, to avoid every fluctuation in density from being

identified as a distinct peak, the DPA classifier is set to merge
clusters separated by a saddle point between the free energy
basins (a conformational transition state) with free energy less
than 1 kT higher than one of the cluster centers it connects.
Once cluster centers have been determined, all remaining
configurations are assigned membership to the same cluster as
their nearest neighbor of higher density.25 With all config-
urations classified, clusters with a population smaller than 1% of
the total sample are discarded to avoid spurious clusters
identified from anomalously isolated configurations.

The ultimate product of this process is a set of cluster center
configurations representing the local minima of the D-
dimensional conformational FES, called a cluster set. Each
cluster’s lowest free energy configuration, i.e., the cluster center,
provides the most representative configuration of a given
conformer.

Consistency Analysis. The potential high dimensionality of
S makes the visualization of per-point free energies difficult. A
series of checks on the ergodicity of the sampling and
consistency of the DPA classification, therefore, provides
confidence in the results.

First, the convergence of the D monodimensional marginal
free energy surfaces of each torsion is monitored to assess the
ergodicity of the sampling. For a simulation of length τ,
convergence of the marginals is assessed by monitoring, on D
histogams of nhist points, the quantity:

= | |
=

F t n F F( )M
i

n

i i
t

hist
1

1

hist

(7)

Where simulation time t runs from [0,τ], F(t) is a
monodimensional FES obtained with data gathered up to time
t, F(τ) is the same quantity computed with all the data available.
This quantity represents the average free energy difference per
histogram bin in any of the D monodimensional free energy
surfaces.

Figure 2e displays an example of δFM(t) computed for ϕ and ψ
torsional angles of alanine dipeptide during concurrent
metadynamics. The flattening of these differences as the fraction
of utilized trajectory increases indicates that the simulation has
been run for a sufficiently long time, allowing these torsions to be
ergodically sampled.

This check is computationally inexpensive and provides a first
qualitative assessment of the quality of the configurational
exploration obtained with concurrent WTmetaD. If the marginal
FES associated with a torsion is still evolving rapidly at time τ,

i.e., when the simulation ends, the sampling has not yet reached
the ergodic limit with respect to the configurations discovered.

However, the convergence of 1D marginal FESes tells us little
about exploring the conformational space in its full dimension-
ality. This is important as even substantial amounts of data may
be distributed extremely sparsely in high dimensions.

As such, to build confidence in our results, we evaluate the
statistical significance of the conformer classification as a
function of the data set size.

For this purpose, a consistency check has been devised, which
offers a similarity score between two cluster sets generated from
different configurations. A cluster set generated from a data set
of size N, CN can be compared with a reference cluster set Cref,
which is generated with the largest number of configurations
feasible. Each cluster center Ci

N is matched with the nearest
center in the reference set Ci

ref , according to the Euclidean
distances in S between members of the two cluster sets. This
matching process is demonstrated in Figure 1. Differences in free
energy ΔFi and position Δdi are determined and averaged across
all matched pairs as ΔF̅N and Δd̅N. This comparison to Cref can
be repeated for cluster-sets generated from data sets of
increasing N, and evolution of ΔF̅N and Δd̅N with growing N
can thus be assessed. Once data sets are large enough, the
positions and relative free energies of minima would be expected
to be independent of data set size. The results of this analysis on
the case of alanine dipeptide are shown in Figure 2f,g,h.

Simulation Setup. Unless otherwise specified, all simu-
lations carried out for this work consisted of a single molecule in
vacuum, simulated with a 2 fs time step. GAFF33 force field
parameters were used, and GROMACS34 was the MD engine
used. WTMetaD was carried out using the Plumed35 plugin for
GROMACS. The simulations were carried out in the NVT
ensemble, at a temperature of 300 K, maintained using the
velocity-rescaling thermostat developed by Bussi et al.36

For the determination of WTMetaD parameters, a short 10 ns
unbiased simulation was run. The marginal FES in each torsion
was computed. A Gaussian Mixture Model was fitted to the
resulting FES, and the smallest width parameter of the GMM,
corresponding to the narrowest local minimum in the marginal
FES, was considered as the minimum reference width for the
marginal under consideration. The width of the Gaussian terms
used to update the metadynamics bias was set to a quarter of the
minimum reference width. Following the completion of the
WTMetaD simulation, configurations from the simulation were
paired with the total deposited bias at the corresponding
position in conformation space, which aligned with the final bias
approximation.

■ RESULTS AND DISCUSSION
Method Validation: Alanine Dipeptide. The workflow

outlined in this work was first tested on the Ramachandran
plot37 of alanine dipeptide. This system was chosen for several
reasons: the Ramachandran plot of alanine dipeptide is a
commonly used model system in the field of molecular dynamics
and enhanced sampling techniques, making it one of the best-
studied conformational FESes available. Additionally, its low
dimensionality allows for both the visualization of the FES and
access to more conventional methods of exploring this
conformational space. The principal results of this are shown
in Figure 2. The structure of alanine dipeptide, with ϕ and ψ,
indicated, is shown in Figure 2d. The conventional FES of
alanine dipeptide, obtained through histogramming and
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reweighing of a trajectory generated through a WTMetaD MD
simulation,20 is shown in Figure 2a. A per-point FES, generated
from the same simulation but with free energies calculated using

the local densities of the sampled configurations, as discussed in
the Methods section, is shown in Figure 2b. From a visual
comparison, it clearly appears that the two FESes are in

Figure 3. a: 2D Sketch-Map projection of sulfadiazine’s 4D conformation surface, with molecular structure of SDZ inset. Distances between
configurations are preserved over small separations, but the axes themselves have no physical meaning. b: Evolution of δF(t) on the marginal free
energies of each torsion in sulfadiazine. c: Number of clusters identified by clustering on data sets of size N. d: Evolution of Δd̅ with N for sulfadiazine.
e: Evolution of ΔF̅ with N for sulfadiazine.
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agreement, demonstrating that the reweighted-DPA density
estimate leads to results virtually indistinguishable from
standard histogramming-based approaches. Figure 2c shows a
per-point FES generated using a trajectory from a concurrent
metadynamics simulation where ϕ and ψ are biased
independently. Besides demonstrating the consistency of the
free energies obtained by concurrent biasing, the comparison
between Figure 2b and Figure 2c illustrates the trade-offs
entailed by using concurrent metadynamics. As detailed in the
Methods section, concurrent metadynamics promotes the
sampling of metastable states without guaranteeing an
exhaustive sampling of the joint configurational probability
density. Nevertheless, all relevant free energy minima are
adequately sampled, and their positions and free energies agree
with those obtained by standard, two-dimensional metady-
namics (Figure 2).

The results of the consistency analysis techniques outlined in
the Methods section on the per-point FES outlined in Figure 2c
are shown on Figure 2e−h. Figure 2e shows the evolution of
δF(t) for ϕ and ψ. The flattening of the curves shows that the
sampling of the two torsions is indeed ergodic over the time scale
of the simulation.

Figure 2h shows mean conformer free energy difference ΔF̅N

(defined in the Methods section) obtained from clustering data
sets of increasing N and a reference data set at N = 50,000
configurations. Figure 2g shows a similar plot displaying the
mean separation of the cluster centers, Δd̅. Figure 2f shows the
number of minima identified by DPA for each reduced-size data
set. The plot shows that all reduced data sets agreed that there
were 3 conformers, with the exception of the 10,000
configuration data set. In all other data sets, there is very good
agreement on the position and free energies of the local minima,
with energy differences well within 1 kJ mol−1 and mean
separations hovering around 0.1 rad. It is surprising how little
data is required to generate reasonable results in this 2-
dimensional case. Even in Figure 1, where very small data sets are
used to illustrate the cluster-set matching procedure, the
agreement in minima positions is apparent.

Applications to Higher-Dimensional Free Energy
Surfaces. Having demonstrated the workflow developed here
on the two-dimensional case of alanine dipeptide , higher-
dimensional cases are now explored, where visualization of the
entire conformation space is not possible, and conventional grid-
based methods become unfeasible. Sulfadiazine, with a 4-
dimensional conformational space, and Candidate XXXII, from
the CSP Blind Test,8,38 with an 11-dimensional conformational
space, serve as a test for the ability of the workflow to handle
conformational complexity. Sketch-map21 is used in these cases
to project a 2D representation of the high-dimensional per-point
FES for human interpretation.
Sulfadiazine. Sulfadiazine is an antibiotic molecule with a 4-

dimensional conformational space; its clinical relevance and
intermediate complexity make it an ideal next step for the
method outlined here. A 4-dimensional space is too high to
allow a FES to be fully visualized while still being low enough
that reasonable data density can be obtained (50,000 data points
in a periodic 4D space results in an average density of roughly 32
configurations per rad4). The inset in Figure 3a shows the 4
torsions considered in sulfadiazine. Using the same approach
outlined above for alanine dipeptide, sulfadiazine’s conforma-
tional FES was studied by analyzing the configurations sampled
within a 1 μs single-molecule WTmetaD simulation. The
resulting per-point FES cannot be fully visualized without

dimensionality reduction, so the relative free energies and
coordinates of each minimum are presented in Table 1. Figure

3a shows a 2D projection of the 4D per-point FES created using
SketchMap. This representation preserves the short-distance
connectivity between data points, allowing for the visualization
of distinct free energy basins and the transition states between
them, although the two axes of the new 2D projection are not
physically meaningful in themselves.21 It should be emphasized
that the estimation of densities and the determination of the
number and coordinates of the free energy minima are
determined in the full 4-dimensional conformation space and
that the projection in Figure 3a serves only to assist in the
visualization of the relationships between different conformers.
It is possible to combine the 4-dimensional information
presented in Table 1 with the 2-dimensional intuition provided
by Figure 3a. For example, the FES in Figure 3a appears to be
bisected by a diagonal channel, and indeed, by inspecting the
torsion values of the conformer pairs 17 and 2, 10 and 6, 21 and
15, and 7 and 8, it can be determined that these conformers pairs
are equivalent, and differ from each other in a symmetric
rotation of π radians of γ3. This example illustrates how these 2D
projections can be interpreted and demonstrates how symmetry
elements in the molecule’s conformational space can be
preserved in the 2D projection.

The results of the consistency metrics for sulfadiazine are
shown in Figure 3b−e. In comparing these results to those in
Figure 2e−h, it is possible to evaluate the impact of doubling the
dimensionality of the conformation space on the accuracy and
data efficiency of the classification process. The plots of δF(t) for
the four torsions show that the four marginals in Figure 3b
converge rapidly, providing evidence of ergodicity. Figure 3c
shows that, except for the 5000-point data set, repeated analyses

Table 1. Labels, Free Energies, and CV-Space Coordinates of
Sulfadiazine’s 24 Conformersa

Conformer Free energy [kJ/mol] γ1 γ2 γ3 γ4

0 0.72 −1.71 −2.1 −1.51 2.95
1 1.28 −1.7 0.13 −1.52 −2.98
2 0.75 1.55 −1.83 1.54 0.21
3 1.44 −1.62 −0.13 −1.47 −0.05
4 0.08 −1.81 −1.94 1.62 −2.93
5 1.05 1.64 0.09 1.58 2.86
6 0.0 1.92 1.75 1.42 −0.28
7 1.03 −1.43 1.93 −1.31 0.07
8 1.66 −1.49 2.08 1.26 0.23
9 0.67 1.3 −1.87 −1.6 −3.02
10 0.63 1.68 2.05 −1.66 0.15
11 1.56 1.62 −0.11 1.68 0.21
12 1.81 −1.55 0.01 1.64 0.17
13 0.21 1.62 −0.16 −1.65 −0.15
14 0.93 1.85 1.89 −1.53 3.13
15 1.02 −1.76 −1.95 1.88 0.31
16 1.2 1.62 0.06 −1.7 −3.08
17 1.4 1.4 −1.96 −1.77 0.15
18 1.58 1.74 1.88 1.63 −3.07
19 0.21 1.55 −2.04 1.83 2.93
20 0.8 −1.55 2.0 1.54 −2.81
21 0.47 −1.82 −1.83 −1.59 0.2
22 1.76 −1.46 2.0 −1.77 2.92
23 1.03 −1.58 0.01 1.69 2.9

aThe labeling convention is consistent with that of Figure 3.
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achieve a consistent number of 24 conformers. Figure 3d,e
shows the evolution of ΔF̅ and Δd̅ respectively, as N increases to
a reference value of 50,000. Here, the differences between
alanine dipeptide and sulfadiazine become apparent. The mean
free energy deviation jumps from being nearly negligible to a
range between 0.5 and 2 kJ mol−1, and positional deviation

increases from approximately 0.1 rad to between 0.3 and 0.4 rad.
Sulfadiazine’s energy deviation is still within 1 kBT, and the
positional deviations still correspond to very small changes in
the molecular structure. However, the abrupt change following
an increase in dimensionality highlights the importance of
carrying out consistency checks when working with highly

Figure 4. a: 2D Sketch-Map projection of XXXII’s 11D conformation surface, with molecular structure of XXXII inset. Distances between
configurations are preserved over small separations but the axes themselves have no physical meaning. b: Evolution of δF(t) on the marginal free
energies of each torsion in XXXII. c: Number of clusters identified by clustering on data sets of size N. d: Evolution of Δd̅ with N for XXXII. e:
Evolution of ΔF̅ with N for XXXII.
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unintuitive results that are difficult to inspect visually. Due to the
number of equivalent conformers related to one another by
symmetric transformations in sulfadiazine, it is possible to
compare the free energies of equivalent conformers as an
assessment of the reproducibility of the free energy calculation.
This is not recommended as a standard practice, as the presence
of symmetrically related conformers is system-dependent and
not guaranteed. However, in this case, comparing the differences
between equivalent conformers reveals deviations of the same
order as the mean free energy deviations calculated in the
smaller data sets (Figure 3e).
Target XXXII of the Seventh CCDC Blind Test. The highest-

dimensional conformational FES explored here is that of
Molecule XXXII, a target from the seventh CSP Blind
Test.8,38 As a highly flexible drug-like molecule with a
conformation space defined by 11 torsions (shown in the inset
in Figure 4a), it is chosen here to test the limits of our method.
To facilitate comparison with results collected for alanine
dipeptide and sulfadiazine, the results presented here were
generated using consistent simulation and analysis parameters.
Using 50,000 data points in this high-dimensional space results
in an average data density of approximately 8 × 10−5

configurations per rad11. Despite the extremely low data density,
which is inherently linked to the complexity of the conforma-
tional space, we show that meaningful results are achievable.
Figure 4a shows the projected 11-dimensional per-point FES,
with cluster centers corresponding to 11-dimensional coor-
dinates presented in Table 2. When comparing this FES to
sulfadiazine’s in Figure 3a, the features of XXXII can be seen
reflected in its own FES. The relative lack of symmetrical
torsions results in a less symmetrical FES, and the higher-
dimensional FES is much sparser, illustrating that the computa-
tional savings arise from a more efficient, rather than more
exhaustive, sampling of conformational space.

The consistency metrics in Figure 4b−e are, however, less
reliable than those obtained for sulfadiazine. Figure 4b shows
well-converged marginal free energies, but Figure 4c shows that
the number of conformers identified is less consistent than in
lower-dimensional cases. The number of metastable states
identified as distinct conformers hovers between 22 and 25 for
data sets sized 10000 and upward. Along with a fluctuating
number of conformers, larger deviations in free energies and
positions are now observed, with ΔF̅ between cluster sets now
varying by up to 5 kJ mol−1, and Δd̅ drifting by as much one full
radian, even at large data set sizes. Despite this drop in the
quality of the results, we believe it is still remarkable that a
reasonably intuitive understanding of such a high-dimensional
conformational FES can be derived from a limited amount of
data in a computationally accessible way, even if its value in this
instance is chiefly qualitative. To further explore the consistency
of the FES in Figures 4, and S2−S10 contain the FES projection
for each of the smaller data sets used in the consistency analysis,
allowing the evolution of this per-point FES to be observed.
Inspection of this evolution in the FES appears to reveal that the
majority of fluctuations in ΔF̅ and Δd̅ observed arise in higher-
energy conformers, with the low-energy regions converging at
lower N values. Although we do not rigorously prove this here, it
is a reasonable expectation, as lower energy regions have a high
data density, resulting in more accurate free energy estimates
based on a greater amount of data.

Exploring the Impact of Solvent on the Conforma-
tional Landscapes of Bicalutamide. DPA operates on a set
of molecular configurations defined purely by the values of the
subject molecule’s torsions. As such, the cost of the analysis is
independent of the length, complexity, and level of theory of the
simulations from which the configurational data set is produced.
Generating a high-dimensional conformational free energy
landscape for a molecule simulated in a solvent environment
is, therefore, accessible. In this section, a study of the molecule

Table 2. Labels, Free Energies, and CV-Space Coordinates of XXXII’s 23 Conformersa

Conformer Free energy [kJ/mol] γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11

0 6.09 1.12 −1.27 0.89 0.34 −2.31 1.13 0.42 1.29 2.96 3.13 0.15
1 0.0 3.06 1.84 −1.52 −2.75 −2.24 1.29 0.2 1.12 2.95 −3.13 0.04
2 8.45 1.03 1.98 1.07 0.37 −2.24 1.12 0.85 −1.19 −3.05 3.09 0.12
3 6.2 1.25 1.24 1.05 −2.93 2.43 −1.11 2.65 −1.12 3.11 3.11 −0.08
4 3.4 1.21 −1.05 1.72 2.95 2.23 −1.21 2.28 1.1 −3.09 2.93 −0.1
5 8.69 1.17 1.71 0.85 0.58 −2.06 1.21 −0.22 1.19 −3.06 −2.94 0.2
6 15.67 3.04 −0.8 −1.39 −0.41 1.06 0.93 0.43 1.42 3.07 3.13 −0.34
7 2.17 −3.06 1.14 −1.6 −2.85 −2.0 1.39 −0.18 1.0 3.1 −2.94 0.09
8 16.12 1.07 −0.62 1.61 2.67 0.91 1.01 0.26 0.94 −3.04 3.02 −0.3
9 7.62 1.03 −1.75 0.93 0.56 −2.35 1.25 0.69 −1.06 2.97 −3.08 0.18
10 12.45 −3.09 −0.61 −1.43 −0.3 2.28 −1.13 2.41 1.11 2.99 3.09 −0.18
11 21.03 2.81 1.0 −1.16 −0.36 1.04 1.0 0.51 1.14 2.92 −3.02 −0.31
12 1.43 −3.1 1.39 −1.58 −2.64 −2.34 1.17 0.64 −0.89 −3.03 3.12 0.07
13 6.92 −2.99 1.63 −1.6 −2.7 −1.02 −0.97 2.73 −0.93 2.83 −2.92 0.04
14 5.96 1.17 −0.86 1.51 2.86 1.96 −0.94 2.64 −1.04 3.12 −3.05 −0.09
15 5.72 3.04 0.71 −1.49 −2.51 −2.39 1.24 0.53 3.03 3.03 −2.98 −0.09
16 10.98 −3.01 2.07 −0.91 −0.57 2.26 −1.36 2.17 1.23 3.13 3.09 −0.16
17 8.91 −3.1 −1.4 −0.9 −0.42 2.12 −1.16 2.32 1.26 3.03 −2.94 −0.12
18 6.88 1.18 −1.62 1.61 2.66 2.1 −1.19 2.85 −0.95 −3.12 2.92 0.03
19 9.53 3.02 1.55 −1.25 −0.56 2.09 −1.2 2.69 −0.91 2.98 3.11 −0.09
20 6.89 3.07 −2.12 −1.31 −0.62 2.07 −1.17 2.86 −1.06 3.06 3.11 −0.21
21 7.35 1.18 −2.3 1.2 0.55 −2.11 0.89 0.41 1.37 2.86 −2.81 0.09
22 6.13 1.16 1.23 0.85 0.27 −2.15 1.19 0.59 −0.89 3.14 −2.93 0.16

aThe labeling convention is consistent with that of Figure 3.
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bicalutamide is presented, examining the impact of two different
solvent environments on the conformational free-energy
landscape.

Bicalutamide is an antiandrogen compound used for the
treatment of prostate cancer. It is highly flexible, with a
conformational space described by the 7 dihedral angles shown

inset in Figure 7a. This flexibility results in two conformational
polymorphs being observed in the solid state: form I, as shown in
Figure 9c, and form II, as shown in Figure 9d. Form I
demonstrates an open conformation, while form II adopts a
more compact, closed conformation. Form I is the more
thermodynamically stable form, and is the form which typically

Figure 5. Evolution of δF(t) on the marginal free energies of each torsion in bicalutamide, in vacuum, chloroform, and DMSO.

Figure 6. a: Number of clusters identified by clustering on data sets of size N for bicalutamide, in vacuum, chloroform, and DMSO. b: Evolution of Δd̅
with N for bicalutamide, in vacuum, chloroform, and DMSO. c: Evolution of ΔF̅ with N for bicalutamide, in vacuum, chloroform, and DMSO.

Figure 7. 2D Sketch-Map projection of bicalutamide’s 7D conformational free energy landscape in vacuum (a), chloroform (b), and DMSO (c), with
molecular structure of bicalutamide inset. Distances between configurations are preserved over small separations but the axes themselves have no
physical meaning.
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arises upon recrystallization from most solvents.39 Form II can
be obtained from a melt of form I.40 Despite form I’s tendency to
recrystallize out of most solvents, Sobornova et al. discovered
that solvent choice had a significant impact on bicalutamide’s
conformational distribution in solution.39 Using NOE (nuclear
Overhauser effect) spectroscopy, they demonstrated that polar
solvents promote an open conformation, while nonpolar
solvents promote a closed conformation. Here, the conforma-
tional free energy landscapes of bicalutamide, simulated in
vacuum, chloroform, and DMSO environments, are explored
using the gridless method developed in this study. As before,
data sets of 50,000 configurations were used to construct the
per-point FESes shown here.

Figure 5 shows the evolution of δFm(t) for each of the 7
torsions of bicalutamide in vacuum, dichloromethane, and
DMSO. This figure demonstrates the convergence of each of
these one-dimensional marginal free energies. The results of the
higher dimensional consistency checks are shown in Figure 6.
Figure 6a shows that a consistent number of conformers was not
reached in any of the environments simulated. This incon-
sistency in conformer number is characteristic of free energy
landscapes computed in high dimensions, reflecting the trend
seen with the consistency of Target XXXII. Despite the number

of conformers continuing to fluctuate as the largest data set size
is reached, the average positions of equivalent conformers are
fairly similar, as demonstrated by Figure 6b. For the landscapes
in vacuum and chloroform, equivalent conformers are found on
average less than 1.2 Euclidean radians from each other in a 7-
dimensional space. This number is slightly less consistent in
DMSO, with some Δd̅ values being as high as 1.8 Euclidean
radians, even toward the final data set size. Finally, considering
the difference in free energies between equivalent conformers,
demonstrated in Figure 6c, it can be seen that in all three
environments, conformers deemed equivalent are within, on
average, 5 kJ mol−1 of each other. This is not as good an
agreement as observed in the lower-dimensional cases; however,
it will be sufficient when comparing the free energies of
conformers that differ by more than this amount.

The per-point free energy landscapes generated through the
gridless analysis are projected into two dimensions using Sketch-
map. To enable comparison across different environments, the
Sketch-map projections generated for the solvated cases use the
same a, b, and σ parameters and landmark points as determined
from the postprocessing of the simulation in vacuum. This
ensures that the resulting two-dimensional projection is
equivalent across the different environments. These projections

Figure 8. A dual matrix presenting a pairwise comparison of conformers of bicalutamide observed in chloroform (rows) and DMSO (columns). The
color gradient indicates the minimum RMSD between atoms between the two conformers, while the number within each element indicates the
stability of the conformer in chloroform relative to the conformer in DMSO.
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in vacuum, chloroform, and DMSO are shown in Figure 7a,b,c,
respectively. For each of the projections, an enlarged image
featuring the locations of the free energy minima marked with a
numerical label is available in Figures S11−S13. These labels
correspond to the conformer indices in the left-hand columns of
Tables S1−S3 for bicalutamide in vacuum, chloroform, and
DMSO, respectively. Some of the structure present in the
vacuum projection seems to be preserved in the chloroform
projection, with the left−right gulf having been narrowed
slightly and conformers being distributed more diffusely. The
DMSO projection, however, appears significantly different, with
a new network of interconnected conformers being shown.

Figure 9 compares the conformational free energy minima in
each solvent environment with the experimentally determined
crystal structures. Figure 9a shows the most stable conformer in
DMSO, which has an open conformation, as observed
experimentally by Sobornova et al.39 This conformation is
distinct but similar to the conformation observed in form I of
bicalutamide, illustrated in Figure 9c. The most stable
conformer in chloroform is shown in Figure 9b and
demonstrates a closed conformation, again matching the
experimental observation of Sobornova et al.39 Additionally,
the conformation adopted in chloroform corresponds closely
with the conformation adopted in crystal form II, shown in
Figure 9d.

With confirmation that the most stable conformers in each
environment align with experimental observations, a more
extensive analysis of the relationships between distinct con-
formers and solvent environments can be carried out. Figure 8
shows a double matrix comparing all bicalutamide conformers in
chloroform to all bicalutamide conformers in DMSO. Each
element’s number corresponds to the difference in free energy
between the two conformers (relative to the most stable
conformers in their environment). The color gradient indicates
the similarity of the structures, measured by their minimum
RMSD separation41,42 considering all atom positions. In order to
study these conformer sets more closely, we define the set of
common conformers to be those conformer pairs that exhibit a
minimum RMSD of less than 1.7 Å. There are 10 of these
common conformers for bicalutamide in chloroform and
DMSO, and they are shown in Figure 10. The overlapped
conformers are shown in blue for chloroform and red for
DMSO. It is interesting to note that the fully closed
conformation observed as the most stable form in chloroform
and in bicalutamide’s crystalline form II, shown in Figure 9b,d, is
not present as a common conformer, meaning it does not arise at
all in DMSO. The majority of the common conformers shown in
Figure 10 seem to exhibit a semiopen “L”-shaped conformation,
rather than the fully open and closed conformations seen as the
most stable conformers in DMSO and chloroform in Figure
9a,b. The conformers in Figure 10 are ordered by ΔF where

=F F FCLF DMSO

where FCLF and FDMSO are the free energies of the conformers
in chloroform and DMSO, respectively. Note that, as before,
these individual free energies are themselves relative to the
lowest energy configuration within the free energy landscape.

Figure 10 thus seems to show that these “L”-shaped
conformers tend to be stabilized in chloroform, the same
environment that promotes the fully closed conformer, and that
common conformers with a greater open character tend to be
stabilized by DMSO.

It is also interesting to consider the common conformer
labeled CLF5-DMSO11, corresponding to conformer 5 in the
chloroform landscape and 11 in the DMSO landscape. This
conformation closely resembles bicalutamide crystal form I, as
shown in Figure 9c. This common conformer has a low ΔF of
0.68 kJ mol−1, indicating that it is equally stabilized by both
solvents, but has an FCLF of 16.22 kJ mol−1 and an FDMSO of 15.54
kJ mol−1, making it far from the most stable conformer in either
solvent. From this, it can be inferred that while the form I
conformation is metastable in solution, it is not purely a solvent
effect that is responsible for the conformational rearrangements
leading to the observed conformational polymorph.

■ CONCLUSIONS
We have introduced a gridless methodology for constructing
high-dimensional conformational free energy landscapes from
enhanced sampling simulations. By leveraging concurrent well-
tempered metadynamics and Density Peaks Advanced (DPA)
clustering, our approach enables the assignment of per-
configuration free energies without resorting to dimensionality
reduction or binning. This framework avoids the exponential
cost of grid-based FES construction, making it particularly well-
suited for flexible, drug-like molecules.

We validated the method across a range of molecular systems,
from the benchmark alanine dipeptide to realistic pharmaceut-
ical compounds with up to 11 torsions. Crucially, we
demonstrated its application in explicit solvent environments,
capturing solvent-induced shifts in conformational preferences
of bicalutamide in quantitative agreement with experimental
observations. The consistent performance across increasing
dimensionality, together with the ability to capture solvent
effects, underscores the robustness and transferability of the
proposed approach.

Naturally, these features come with practical trade-offs.
Generating sufficiently ergodic sampling for fully solvated
systems requires molecular dynamics simulations on the scale
of tens to hundreds of nanoseconds, which constrains the

Figure 9. a: The lowest free energy conformer of bicalutamide in
DMSO, index 5 Figure 7b. b: The lowest free energy conformer of
bicalutamide in chloroform, index 2 in Figure 7c. c: The experimentally
observed conformation of bicalutamide form I. d: The experimentally
observed conformation of bicalutamide from II.
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accuracy of the potential energy functions that can be feasibly
employed. Moreover, because our approach relies on explicit
sampling rather than energy minimization, it is inherently less
suited for large-scale screening. While minimization-based
workflows can be applied to thousands of compounds9−12 our
method is suited to rigorously investigating how explicitly
represented environments affect APIs’ conformational land-
scapes.

Because the method operates directly on torsional coor-
dinates, it is agnostic to the underlying simulation engine or
force field. As such, we envision its application in conjunction
with machine-learned potentials as a key future development to
complement extensive sampling with DFT-level accuracy. These
features provide a practical and extensible tool for exploring
conformational thermodynamics in atomistic simulations of

complex molecular systems. The code developed here is fully
open source and available from https://github.com/ucecvan/
Twister.
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Figure 10. Ten common conformers of bicalutamide in chloroform and DMSO. For this system, conformers are deemed common to both solvents if
their overlaid structures present a minimum RMSD deviation of less than 1.7 Å. Conformers in chloroform are indicated with the label CLF and have
their molecular structures shown in blue. Conformers in DMSO are indicated with the label DMSO, and their molecular structures are shown in red.
The free energy in both solvents, as well as the difference in free energy, is indicated for each conformer, and the conformers are ordered from those
most stabilized in chloroform to those most stabilized in DMSO.
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