
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3786330
.

.

SURVEY

Hot Fixing Soware: A Comprehensive Review of Terminology,
Techniques, and Applications

CAROL HANNA, University College London, London, U.K.
.

DAVID CLARK, University College London, London, U.K.
.

FEDERICA SARRO, University College London, London, U.K.
.

JUSTYNA PETKE, University College London, London, U.K.
.

.

.

Open Access Support provided by:
.

University College London
.

PDF Download
3786330.pdf
07 January 2026
Total Citations: 0
Total Downloads: 31
.

.

Accepted: 17 December 2025
Revised: 17 December 2025
Received: 21 March 2025
.

.

Citation in BibTeX format
.

.

ACM Transactions on Soware Engineering and Methodology
hps://doi.org/10.1145/3786330

EISSN: 1557-7392

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3786330
https://dl.acm.org/doi/10.1145/3786330
https://dl.acm.org/doi/10.1145/contrib-99661077193
https://dl.acm.org/doi/10.1145/institution-60022148
https://dl.acm.org/doi/10.1145/contrib-81100625436
https://dl.acm.org/doi/10.1145/institution-60022148
https://dl.acm.org/doi/10.1145/contrib-81453651680
https://dl.acm.org/doi/10.1145/institution-60022148
https://dl.acm.org/doi/10.1145/contrib-81474681507
https://dl.acm.org/doi/10.1145/institution-60022148
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60022148
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3786330&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3786330&domain=pdf&date_stamp=2025-12-23

Hot Fixing Software: A Comprehensive Review of Terminology,
Techniques, and Applications

CAROL HANNA, University College London, United Kingdom
DAVID CLARK, University College London, United Kingdom
FEDERICA SARRO, University College London, United Kingdom
JUSTYNA PETKE, University College London, United Kingdom

A hot fix is an unplanned improvement to a specific time-critical issue deployed to a software system in production. While
hot fixing is an essential and common activity in software maintenance, it has never been surveyed as a research activity.
Thus, such a review is long overdue. In this paper, we conduct a comprehensive literature review of work on hot fixing.
We highlight the fields where this topic has been addressed, inconsistencies we identified in the terminology, gaps in the
literature, and directions for future work. Our search concluded with 140 articles on the topic between the years 1986 and
2024. The articles found encompass many different research areas such as log analysis, runtime patching (also known as
hot patching), and automated repair, as well as various application domains such as security, mobile, and video games. We
find that many directions can take hot fix research forward such as unifying existing terminology, establishing a benchmark
set of hot fixes, researching costs and frequency of hot fixes, and researching the possibility of end-to-end automation of
detection, mitigation, and deployment. We discuss these avenues in detail to inspire the community to systematize hot fixing
as a software engineering activity.

CCS Concepts: • Software and its engineering→ Software maintenance tools; Error handling and recovery; Software
testing and debugging.

Additional Key Words and Phrases: Literature review, hot fix, hot patch

1 Introduction
Software maintenance is an essential activity in the software engineering life cycle [105]. After a software system
is deployed, a lot of engineering effort is directed to maintain it. The maintenance activities ensure that both the
functional and non-functional requirements of the system are upheld. These activities are especially important
because ensuring that a system is correct under all possible conditions before it is deployed, is generally not
feasible in practice. This is due to software testing being necessarily incomplete [34] as well as the tight release
deadlines in modern enterprises [10, 11, 150]. Critical issues in production software incure very high costs to an
enterprise. One such example is when Amazon had one hour of downtime on Prime Day which was reported to
have cost it up to $100 million in lost sales [65]. Another example is when Google’s search and maps availability
was affected after a software update [48].
Not all of the issues in production will have the same priority. While most maintenance activities involve system
upgrades and patches to improve the underlying software, some of the issues are critical and as such they require

Authors’ Contact Information: Carol Hanna, carol.hanna.21@ucl.ac.uk, University College London, London, United Kingdom; David Clark,
david.clark@ucl.ac.uk, University College London, London, United Kingdom; Federica Sarro, f.sarro@ucl.ac.uk, University College London,
London, United Kingdom; Justyna Petke, j.petke@ucl.ac.uk, University College London, London, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2025 Copyright held by the owner/author(s).
ACM 1557-7392/2025/12-ART
https://doi.org/10.1145/3786330

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0009-0009-7386-1622
https://orcid.org/0000-0002-7004-934X
https://orcid.org/0000-0002-9146-442X
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0009-0009-7386-1622
https://orcid.org/0000-0002-7004-934X
https://orcid.org/0000-0002-9146-442X
https://orcid.org/0000-0002-7833-6044
https://doi.org/10.1145/3786330

2 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

quick remediation. These critical issues are often ones that cause severe degradation in performance, security
vulnerabilities, or serious functional defects visible to the end user. Patching these critical issues is often referred
to as “hot fixing”.
A traditional good fix for a software issue is expected to be correct, not break existing functionality, and not
increase the technical debt of the system. However, in the case of hot fixes these criteria do not necessarily apply.
Hot fixes need to remediate the unwanted symptoms of the critical issue as soon as possible [136]. In this case, a
quick temporary fix is favored over a slower permanent fix that preserves the criteria [27]. There is less emphasis
on correctness under all conditions and more on the time it takes to generate a plausible patch that hides the
critical symptom without breaking the system. For these reasons, hot fixes for critical issues differ drastically
from general patches.
The time criticality and temporary nature of hot fixing make the process of detecting when such fixes need to be
applied, generating them, and deploying them not as systematic as other activities within software engineering.
These are the issues that stakeholders are only concerned with at the time when it is urgently required. This is
manifested in industrial practices and research activities on hot fixing, where the work is less established and the
terminology is often inconsistent.
In this paper, we aim to aid in understanding the existing collective knowledge on hot fixing and in driving
research in the area forward. We have used a rigorous search to conduct the first-ever comprehensive literature
review on the topic. Such a review is long overdue. This paper makes the following contributions:

(1) A unified definition for hot fix to align the terminology used in research on the topic, while keeping
consistent with the existing body of work (Definition 1).

(2) A comprehensive survey of the literature on hot fixing that encapsulates terminology (Section 2), publica-
tion trends (Section 7), techniques and applications (Section 9).

(3) A detailed research agenda with the current open challenges in the area of hot fixing (Section 12).
We hope that these contributions will help drive research in the area of hot fixing forward. Our website with a
list of the included publications is available at https://carolhanna01.github.io/hotfixes.github.io/.
The rest of this paper is organised as follows: Section 2 details the terminology used in the literature, Section 4
outlines the scope of this study, Section 5 presents the research questions that we pose, Section 6 explains the
methodology that we followed to conduct the literature review, Section 7 presents publication trends on the topic,
Section 8 presents the current hot fixing practices published on hot fixing, Section 9 describes the techniques and
applications, and finally we conclude with a discussion in Section 12, and threats to validity and conclusions in
Sections 13 and 14.

2 Terminology
The term hot fix has had different usages in the literature [55]. Therefore, we first provide a brief history of
the evolution of the term and associated definitions found in previous work [55], before presenting a unified
definition to streamline future research in the area.
Definitions in the research literature on hot fixing can be divided into two main categories. The first regards a hot
fix as a fix that needs to be deployed into a system in production at runtime without having to restart or reboot
the system [13] [171]. This definition is less common as the term more often used for this is “hot patch”. The
second definition focuses on the criticality element of a hot fix. In this regard, a hot fix is a time-critical fix that is
temporary, small in size, and targets a specific issue in a system in production [51] [7]. Some domain-specific
definitions exist as well in the fields of operating systems and information retrieval [53] [103].
Which of these definitions came first remains unclear. However, the literature seems to suggest that the word
hot in the term signified the “liveness” of the system into which the patch was being deployed. Thus, it is most
likely that hot fixing was meant to describe the dynamic deployment of fixes into systems at run time (note

ACM Trans. Softw. Eng. Methodol.

https://carolhanna01.github.io/hotfixes.github.io/

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 3

that some work in the literature refer to this as hot patching). From there, developers responsible for hot fixing
activities began to evolve the term’s meaning in other directions. As a developer, when a fix needs to be deployed
at run-time it must be an important and time-critical change, otherwise it would simply be deployed within the
planned software release cycle. This interpretation with respect to timing has created two distinct definitions of
the term, separating the literature into two fields. While there can be an overlap between them as hot patches
can sometimes be hot fixes and vice versa, the cross-pollination between the two communities remains limited.
An important point is that most commonly the term hot fix was associated with the time-criticality definition
and hot patch with the run-time definition. We wish to follow the existing body of work and thus propose that
the community use the term hot fix for the time-criticality definition and hot patch for the run-time definition
moving forward.
The concept of time-criticality is nuanced and depends on the context. Some work considers the time-criticality of
an issue to be indicated by its severity, priority, and even how often it is reopened [33]. This might be subjective in
some instances. A time-critical issue might not be a breaking change necessarily but an issue that affects a specific
important customer of the enterprise for example. Thus, we leave the time-criticality part of our definition open to
be templated, based on the business needs. Instead of prescribing a fixed definition, the idea is to provide a flexible
framework that can be adapted per company/project based on the context. For example, one company might
define time-critical issues based on financial impact, while another might prioritize issues affecting regulatory
compliance. By making this aspect of the definition “templated”, the paper allows for a structured yet adaptable
approach to defining time-critical bugs.
Hot fixing as a software engineering activity usually falls outside the traditional software engineering life cycle.
As previously explained, this is due to the time constraint, which results in quick development of workarounds,
skipping extensive testing, and having deployment not wait until the next scheduled release. From here, we can
see that the criticality of the hot fix usually results in some form of exceptionality in its development process.
Hot patch refers to the runtime software patching activity, and is defined as follows by Islam et al. [66]: A hot
patch, also referred to as a runtime software patch, “aims to update a given software system while preserving
running processes and sessions” [66].
From here, one can consider a hot fix to be a phenomenon in software engineering. This phenomenon usually
breaks the traditional software engineering life cycle to address emergency issues in the system. As for hot
patching, this is more of a software technique or a set of techniques that relate to runtime patching. Thus, the two
terms hot patch and hot fix cannot be directly compared and should also not be used interchangeably.
To streamline the literature on the topic, we propose to proceed with the following unified definition for the
term hot fix [54]:

Def. 1. A hot fix is an unplanned improvement to a specific time-critical issue deployed to a software system in
production.

An unplanned improvement is a change initiated reactively in response to a disruptive production issue, rather
than as part of a planned development effort. Such changes arise from incidents whose severity or impact creates
a narrow window for mitigation, including crashes, vulnerabilities, outages, or urgent customer-facing failures.
Although the exact duration of this window may vary across contexts due to factors such as financial risk,
regulatory requirements, or service-level obligations, the defining characteristic of a hot fix is that it cannot be
safely deferred and therefore demands rapid development and immediate deployment once a remedy is available.
Further operational guidelines and illustrative examples, derived from the analysis/study of the literature, are
provided in the terminology discussion (Section 12.1).

ACM Trans. Softw. Eng. Methodol.

4 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

3 Motivation
Hot fixing is one of the most visible yet least systematically understood phenomena in software engineering.
Unlike planned updates, hot fixes occur under urgent conditions when failures cannot wait for the next release
cycle. They represent a class of interventions where stability, user trust, and business reputation are dependent
on the ability to quickly diagnose and repair critical issues in production. Across domains, from gaming to cloud
services to mobile ecosystems, hot fixes emerge as a recurring response to unexpected failures.
The gaming industry offers a vivid example of this urgency. Lin et al. provide one of the most striking demonstra-
tions of the prevalence of hot fixing in practice through their study of urgent updates in the gaming industry [82].
Analyzing the most popular games on the Steam platform, they found that 80% required urgent updates, and nearly
half of these were explicitly described by developers as hot fixes. These updates were not planned enhancements
but emergency repairs applied under pressure to address crashes, gameplay malfunctions, or balance issues.
Their study shows how hot fixing becomes a core part of sustaining user experience in a competitive, large-scale
environment, and highlights the stress and improvisation inherent in these unplanned releases.
A similar story unfolds in the mobile ecosystem. Hassan et al. analyzed over 10,000 mobile apps and found more
than 1,000 emergency updates, many triggered by seemingly simple but disruptive mistakes such as resource
misconfigurations [56]. Despite their reactive nature, these fixes often endured longer than planned releases,
lasting on average more than twice as long. At the same time, developers under pressure documented little about
their rationale, and nothing at all in 63% of cases. These findings reveal the dual reality of hot fixes: they are
rushed and improvised, yet they become permanent fixtures that shape software evolution. This underscores the
importance in understanding them as a software engineering community.
Beyond examples from the literature, let us consider real-world issue reports that capture hot fixing in action. The
Jira Align’s documentation from the project Summer1 explains that a hot fix was applied outside the normal release
schedule to address an urgent issue affecting the product mappings UI [6]. The patch was deployed to bundled
release environments on the evening of Monday, August 1st, 2025 and then integrated into the continuous-release
track just a few days later, on Friday, August 5th, 2025. Such instances are common in enterprise software
and highlight how urgently hot fixes must be deployed, bypassing planned workflows to safeguard production
systems.
Hot fixing is not a marginal practice but a recurring, high-stakes necessity. Hot fixes highlight the tension between
urgency and stability, improvisation and permanence, and they make clear why a systematic survey is needed:
To unify terminology, consolidate practices, and map the tooling that supports this essential yet understudied
phenomenon.

4 Survey Scope
This is the first survey dedicated to hot fixing in software systems. Hot fixing, as per Definition 1, refers to
time-critical fixes applied in production under urgent conditions.

4.1 Relation to Prior Surveys
Islam et al. recently conducted a comprehensive study on runtime software patching, which addresses current
gaps in the literature and provides insights into future directions [66]. Their survey details the state of the art in
runtime patching with a scope limited to the deployment phase, i.e., the application of a patch into the end system.
More specifically, their focus is on dynamic/runtime patching techniques for this deployment step and do not
address critical patch fixing as a broader software engineering activity. Instead, they examine runtime patching
as a technical mechanism. Since this survey covers prior work related to what we term the hot patch category
of definitions (see Section 2), we exclude this line of work from our scope and instead focus specifically on hot
1https://www.atlassian.com/software/jira-align

ACM Trans. Softw. Eng. Methodol.

https://www.atlassian.com/software/jira-align

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 5

fixing as defined in Definition 1. The overlap between our study and Islam et al.’s [66] survey is therefore minimal
and covers only 8 papers out of 140. Since we explicitly exclude runtime patching and dynamic updating papers
from being considered as standalone categories, they are not examined separately in our survey and thus we find
that we have no overlap with other surveys on runtime patching and dynamic software updating [8, 64, 99].

4.2 Inclusion Criteria
Although our survey focuses specifically on hot fixing as per Definition 1, we do not strictly exclude papers that
are not explicitly about hot fixing. If a study provides valuable insights into hot fixing processes or presents a
tool that can be leveraged for hot fixing purposes, we consider it within scope. This allows us to capture relevant
research that, while not directly framed as hot fixing, contributes to the broader understanding and practical
implementation of hot fixing techniques. This includes papers that mention emergency handling, detection aimed
at critical bugs, efficient patch and workaround generation and fast deployment.
It is important to notice that our scope can still include some articles that use runtime patching, but only if the
runtime patching technique specifically addresses critical software issues. In that case, since the criticality
property is met, the software activity would still be considered hot fixing and the technique used for it would be
considered runtime patching. As such, articles of this kind are within our scope. Moreover, studies on monitoring
the fix post-deployment are excluded from our scope. This is because monitoring for post-deployment issues is
not specifically related to hot fixing. For monitoring, the context in which code was integrated into production is
less relevant.
We summarize the scope of our survey as follows:

Scope: Previous work is in the scope of this survey if it
(1) investigates the detection of critical software issues that hot fixes target; OR
(2) investigates the repair of critical software issues through the generation of hot fixes; OR
(3) investigates the deployment of hot fixes; OR
(4) empirically analyzes hot fixes in software systems.

Included “detection” studies must:
• Focus on criticality:They should detect software issues that, by their nature, demand urgent remediation
due to their impact or potential system compromise.

• Relate to hot fixability: The detection approach should explicitly contribute to identifying issues where
a hot fix is a plausible next step.

• Enable immediate remediation: Studies should be specific to methods that drive towards urgent,
corrective patching—such as techniques that work alongside remediation tools or integrate with hot fix
deployment workflows.

We exclude papers on project management unless they provide empirical insights or introduce tooling relevant to
hot fixing. Our focus is on studies that contribute concrete evidence, methodologies, or practical implementations
rather than purely conceptual discussions on software project management.

5 ResearchQuestions
Hot fixing software is an essential software engineering activity. In balancing the tradeoff between the cost of
expensive testing and the cost of repair for production bugs, hot fixes are often unavoidable. The past, present,
and future for hot fixing software remain unclear. Thus, in this paper we aim to compile the collective knowledge
on the topic. We ask:

ACM Trans. Softw. Eng. Methodol.

6 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

RQ1: [General Practices] What are the general practices for hot fixing?
The software engineering lifecycle encompasses various steps. Software engineering research focuses on optimis-
ing the various steps within this lifecycle so that software development processes can be more productive and
software quality can be improved. Hot fixing is a software engineering step that often breaks this traditional
lifecycle as it occurs as a result of a sudden unexpected critical isssue. As of now, there are no studies that compile
the practices for hot fixing software. We aim to present the empirical work on hot fixing in the body of literature
to shed light on past and current general practices for hot fixing.

• RQ1.1 (Open-source Development): What are the general practices for hot fixing in open-source software
projects?

• RQ1.2 (Commercial development): What are the general practices for hot fixing in commercial software
development?

• RQ1.3 (Human Research): What are the perceptions of software practitioners about hot fixing practices?
RQ2: [Automation and Tooling] What are the existing tools and automated processes used for hot fixing
software, and how do they impact the efficiency and reliability of the hot fix deployment process?
Automation is utilized to design software, develop it, and maintain it. Since hot fixing is a time-critical activity,
there is great benefit in having tooling to aid the software developers and make the process less costly and more
efficient. We aim to investigate the state-of-the-art in tooling for hot fixing. We hope that with this, researchers
will be able to build upon existing tooling to improve automation for hot fixing.

• RQ2.1 (Human-Assisted Tools): What are the existing helper tools that support practitioners in the hot
fixing process?

• RQ2.2 (Autonomous Tools): What are the existing autonomous tools used for hot fixing in software
development?

RQ4: [Characteristics and Domains] What do the collected studies reveal about the characteristics of hot
fixes and the domains in which they are most frequently applied?
Hot fixes differ in the types of issues they address (e.g., crashes, vulnerabilities, misconfigurations) and the
contexts in which they are deployed (e.g., mobile, embedded, cloud). The characteristics and domains of hot fixes
can be inferred from the tools designed to support them. By analyzing the surveyed tools, we identify the types
of issues these tools target. This question situates tooling within the broader landscape of hot fixing, clarifying
both the nature of the fixes and the environments where they are most relevant.
RQ4: [Open Challenges] What are the key unresolved challenges in the hot fixing process across different
software development environments?
Understanding the bottlenecks in the state-of-the-art for hot fixing will ensure that future work in the field
tackles the relevant issues. We aim to critically assess the existing literature on hot fixing to be able to identify
gaps. These gaps are challenges that future work should be directed towards for achieving improved hot fixing
processes and tooling.

6 Survey Methodology
We set a rigorous methodology to ensure a literature review that would result in a comprehensive identification
and analysis of existing work on hot fixing. In this section, we detail this methodology and the results derived.

6.1 Primary Search
Table 1 presents the results of our primary search for keywords. We started off with the keyword “hot fix” and
subsequently also searched the keyword “hot patch” as we found that sometimes the words fix and patch are used
interchangeably in the literature. Variations of these two keywords including plurals and suffixes were included
as well. We conducted our search using four computer science digital libraries: IEEE Xplore [4], ACM Digital

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 7

Table 1. Results of primary search for papers on hot fixes.

Keyword ‘hot fix’

Source Filters Papers Relevant
found papers

IEEE Xplore Full text & 187 27
Metadata

ACM Digital Anywhere 200 56
Library

DBLP Default 32 2
Computer
Science
Bibliography

ScienceDirect Articles 189 9
with this
term

Total number of papers 608 94

Distinct number of papers 88

Keyword ‘hot patch’

Source Filters Papers Relevant
found papers

IEEE Xplore Full text & 140 26
Metadata

ACM Digital Anywhere 120 25
Library

DBLP Default 26 12
Computer
Science
Bibliography

ScienceDirect Articles 291 3
with this
term

Total number of papers 577 66

Distinct number of papers 56
Total number of distinct papers on hot fixing 144
Total in scope papers on hot fixing 53

Table 2. Results of snowballing search for papers on hot fixes.

Search step Total papers found Relevant papers

Round 1 1519 43

Round 2 1938 30

Round 3 1097 8

Round 4 260 1

Round 5 26 0

Total number of new papers found 82

Library [1], DBLP Computer Science Bibliography [2], and ScienceDirect [5]. For each of the search engines,
the table presents the date on which the search was conducted, the filters used in the search, the total number
of results given these filters, and finally the number of papers that we deemed as relevant. The search was not
restricted to a specific time-frame. We looked at all papers published until the search date which is 19/11/2024.
The earliest publication we could find was from the year 1986 and the latest was 2024. Thus, the time frame of
this survey is 1986-2024. We used Mendeley [97] as a reference manager to collect and organize the publications
throughout the search process as well as to de-duplicate the references.

ACM Trans. Softw. Eng. Methodol.

8 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Table 3. Summary of results of literature review on hot fixes.

Search step Total papers found

Primary 53
Snowballing 82
Suggestions from authors 4
Suggestions from reviewers 1

Papers on hot fixes for software 140

At this stage in the review, we consider a paper to be relevant if it is in the domain of computer science and
advances the knowledge on hot fixing software. Using this criterion, we found 88 distinct papers using the
keyword “hot fix” and 56 using the keyword “hot patch”. The primary search at this stage concluded in a total of
144 relevant distinct papers.
Given these 144 relevant papers, we assessed their content more closely to better understand the scope that they
cover. We found that 14 of these papers strictly address hot fixing within the context of project management.
Specifically, we found that these papers provide high-level tips for handling instances where hot fixing is required
from the perspective of managing the full project. In 19 of the papers, a definition for “hot fix” or “hot patch” is
provided but the focus of the paper is not on this topic and thus there is no added novelty in this regard. An
additional 8 papers present scenarios for hot fixing a system. However, the scenarios in these papers are provided
as mere examples and are not the main subject of the paper. For 25 of these papers, the term is used to refer to the
runtime patching of bugs in software while not fulfilling the time-criticality criterium. As this point, it became
apparent that there is a clear inconsistency with the terminology. Since runtime patching is not the topic of our
survey these 25 papers were excluded as well. Finally, we also removed 24 papers that just motivate the need for
hot fixes in the software development life cycle without additional knowledge that would make them core papers
on the topic.

6.2 Snowballing Search
At this stage of the literature review, we were left with 53 papers from the primary search which we deem as
core papers on the topic. The scope of our study was naturally born at this point which we present in Section 4.
Following the primary search, we manually examined the bibliographies of all of the 53 papers that we deemed to
fit the scope that we defined. This process of snowballing on all of the papers referenced from each of the papers
within the scope that we set was repeated until no more new papers were found. The results of this snowball
search are presented in Table 2. For each round of snowballing, we present the total number of papers found as
well as the number of new distinct papers that fit within the scope of our survey. Our snowballing process thus
concluded after 5 rounds.
We present the final results of our literature review in Table 3. We found 53 papers in the scope through the
primary search and 82 additional papers in the snowballing search. We emailed the authors of 87 papers that were
identified in the beginning stages of the study to ask for feedback on the first draft of the survey, we received 4
additional relevant suggestions for papers to be included in the survey. Finally, we got one suggestion from a
reviewer. Overall, we ended up with 140 core papers which we describe in this survey.

6.3 Thematic Analysis
After the paper collection process, we conducted a thematic analysis [21] as used in qualitative analysis research
to categorize the papers found and effectively organize this paper. We followed the six stages of thematic analysis

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 9

which involved sifting through the papers, finding patterns among the collection, and naming the different
categories.
In the first stage, we re-familiarized ourselves with the data. Prior to starting the thematic analysis, the search
process itself required being familiar with the data to adequately filter relevant and irrelevant publications.
However, after having collected the full corpus we needed to scan the content again and begin to notice patterns
that might be relevant to our proposed research questions. We then began generating codes for each of the papers
in our corpus. We did this directly within the Mendeley reference manager we were using by using ‘tags’ feature
and adding the codes through tags to each of the papers. Given the tagged papers, we then sifted through and
searched for themes keeping in mind our original research questions. This involved clustering codes together
into clear themes. We next had a review process for the themes through a second assessor that checked for the
quality of the codes and the themes that emerged from them. From here, we were confident to name each theme
and begin structuring the answers to our research questions.
The themes found correspond with the sections that we outline to present the answers to RQ1 and RQ2. We
initially divided the papers into two themes: general hot fixing practices and papers that present tooling. This
allows us to distinguish between research that analyzes how hot fixing is performed and research that contributes
practical solutions. General hot fixing practices explore workflows, processes, and challenges in applying hot fixes
across different development contexts. These papers provide insights into industry trends, developer behaviour,
and the factors influencing patching critical bugs. These papers help us answer RQ1. Tooling papers focus on
practical automated or semi-automated solutions for hot fixing as used in industry or academia. These papers
help us answer RQ2.
From there, we further refined the type of hot fixing practices depending on the data used: human studies,
commercial data, and open-source data. As for the papers that cover tools, we refine them based on the type
of tool: human-assisted tools and autonomous tools. Human-assisted tools include ones for system health
monitoring, critical bug reporting and triage, and critical bug debugging. Autonomous tools include ones for
detection, remediation, or deployment as well as end-to-end tools that cover these 3 phases. We explain this in
Section 9 and present the refinement in Figure 4.

7 Publication Trends
The trend of publications on the topic of hot fixing software is plotted in Figure 1. The earliest relevant article on
this topic that we were able to find was published in the year 1986. We observe that publications on this topic
started gain to popularity after 2015. In more recent years, there has been a constant output of studies until the
year 2024. We hypothesize that this is due to the growing complexity of software systems which makes fixing
urgent issues in production a difficult task. As such, we can see that more research efforts have slowly started to
be directed towards this software engineering activity. We observe a spike in the number of publications in the
year 2020 with a total of 19 papers published on the topic that year. We hope that by reviewing the literature and
streamlining what has already been done in tackling this topic, we can inspire future research in the area.
We then assess the types of venues that the papers found were published in. Since research on the topic spans
multiple different fields as previously explained, we found a large variety of publication venues among the papers.
We plot the most popular research areas that the papers pertain to in Figure 2. We found that the most popular
were software engineering venues, venues for systems (cloud systems, etc), and venues for software security
topics.
Following our thematic analysis, we were able to tag the papers into different categories. Within the papers that
include tooling, we analyzed the trend of tooling types and present this in Figure 3. Interestingly, the earlier
stages of the hot fixing pipeline had more tooling than the latter stages. We found that the most popular were
tools for detecting critical issues, followed by tools for remediation of these critical issues, and finally around half

ACM Trans. Softw. Eng. Methodol.

10 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

19
86
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19
20

20
20

21
20

22
20

23
20

24

Year of Publication

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f P
ub

lic
at

io
ns

Fig. 1. Publications on hot fixing software (2000-2022) over the years.

Pro
g L

an
g

Mob
ile

Re
l M

an
g

So
ft M

ain
t

Hum
an

 Fa
ct

oth
er

So
ft R

el

Se
cur

ity

Sy
ste

ms

So
ft E

ng
0

5

10

15

Nu
m

be
r o

f P
ub

lic
at

io
ns

Fig. 2. Research areas the surveyed publications pertain to (Programming Languages, Mobile, Release Management, Software
Maintenance, Human Factors, Software Reliability, Systems, Security, Software Engineering, and Other).

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 11

Detection Remediation Propagation E2E Tooling
0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f P
ub

lic
at

io
ns

Fig. 3. Number of publications for the different tooling types for hot fixing software. This includes detecting critical issues,
remediation techniques for these issues, deployment strategies for their hot fixes into the target system, as well as end-to-end
tools that encapsulate all three aforementioned stages.

Table 4. Overview of Papers on General Hot Fixing Practices

Category Number of Papers Publication Years

Open-source Development 14 2008 - 2023

Commercial Development 14 1986 - 2023

Human Research 5 2004 - 2024

that number for tooling to deploy the hot fixes for these critical issues into the target system. We were only able
to find a very limited number of end-to-end tooling that includes all three stages. From the tools that generate
patches, there wasn’t a very big gap between those that can be deployed at runtime (46.7%) and those that cannot
(53.3%). However, the majority were tools that do not account for runtime deployment.

8 RQ1: General Hot Fixing Practices
In this section, we discuss existing hot fixing practices based on the body of work we reviewed to address RQ1. We
categorize empirical research on hot fixing into commercial development, open-source development, and human
research to distinguish between different development models and decision making processes. Commercial devel-
opment focuses on proprietary software, where hot fixing tends to be driven by business priorities. open-source
research examines public repositories and community driven patching, where transparency and decentralized
decision making shape practices. Human studies explore how developers approach hot fixing, whether in open-
source or commercial settings, through surveys, interviews, and experiments. This classification captures key
differences in workflow, constraints, and motivations, while also allowing us to analyze commonalities. Table 4
presents an overview of the papers relevant to RQ1.

ACM Trans. Softw. Eng. Methodol.

12 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

8.1 Open-source Development
Studies on open-source software development reveal unique characteristics in how bugs and updates are managed
and the unique role that hot fixing plays in this process. Mockus et al. [98] conduct a general study on open-source
software development. One of the conclusions they make is that in open-source systems, the response time
to bugs reported by the customers is very quick. In contrast to commercial settings, they found that bugs are
patched as soon as they are reported. Thus, an interesting takeaway from this work is that “hot fixes” might only
be applicable to commercial systems that follow a stricter release schedule. As for the commit frequency, Kolassa
et al. [77] conduct an empirical analysis in open-source software and find that it is common for authors to add
two commits to the codebase in a short amount of time. One reason is splitting the contribution into multiple
commits but the other reason is for hot fixing something that went wrong with their previous commit. Their
analysis of open-source commit frequencies can be utilized to inform configuration management activities which
are essential to the hot fixing process.
Additional studies analyze the characteristics of hot fixing, particularly in environments with shorter release
cycles and security demands. Illes-Seifert et al. [63] consider hot fix the phase that makes up the first 5% of the
total time between two releases. They find that the defect count of a file does not increase when it’s modified in
the context of a hot fix despite the usually inadequate testing of these changes. Khomh et al. [76] find that bugs
are fixed faster when the length of the software release cycle is shorter, although a lower percentage of bugs
are being fixed compared to longer release cycles. Zhao et al. [167] find that hot fixing is the most commonly
used for change-induced incidents specifically induced by a data change. Malone et al. [94] critique the manner
in which software patches are released. They find that only 1/4 of security vulnerability patches are disclosed
on the National Vulnerability Database. Marconato et al. [95] empirically analyze the hot fixing of security
vulnerabilities. An interesting takeaway from this study is that developers are relatively very reactive to security
bugs. The average time for patching a vulnerability is around the 14-day mark. Moreover, the time between
the discovery of a vulnerability and its patch release for operating systems decreases with the years. Finally,
Gunawi et al. [49] investigate 597 unplanned outages that occurred from 2009 to 2015 and find 12 categories for
their root causes: upgrades, network failures, bugs, misconfiguration, traffic load, cross-service dependencies,
power outages, security attacks, human errors, storage failures, miscellaneous server and hardware failures, and
external and natural disasters. In later work [87], hundreds of high-severity incidents from different Microsoft
Azure services production runs are studied, and it is found that bugs are most often the root cause for them. Most
commonly, these are data-format incidents, fault-related incidents, timing incidents, or constant-value setting
incidents.
When it comes to mobile development, additional constraints must be considered for hot fixing. This is because
changes in the mobile application itself requires deployment to app stores. This in itself may require an approval
process. Additionally, re-installation from the users’ end will also be needed. From a mobile application devel-
opment perspective, Hassan et al. [56] study the phenomenon of emergency updates in the Google Play store.
An emergency update in the context of this paper is an update published a short time after the previous update.
They discover that while these updates are not well documented, they often end up being a permanent change
to the app and that they receive a lower ratio of negative reviews. Moreover, they identify eight patterns for
these types of updates. The commonality in all of the discovered patterns is that these updates are usually due to
simple development mistakes. Shen et al. [125] also conduct an empirical study on the Google Play store to better
understand how release planning can be optimized. In analyzing the trends for user rating, the authors conclude
that hot fixes are encouraged and do not harm the app as long as they strictly target fixing bugs as intended (not
feature updates).
Within the context of video games, Lin et al. [82] study urgent updates which are either those that developers
describe as hot fixes or updates outside of the planned release cycle for the purpose of fixing critical bugs that

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 13

cannot wait until the next release. While 80% of the evaluated games in the study have urgent updates, they find
that games that have a frequent update strategy are more likely to have a higher ratio of this kind of update. The
urgent update also does not necessarily always address an issue from the immediate previous update. Truelove et
al. [136] investigate which kinds of bugs are most frequently targeted by hot fixes. They find that crash bugs are
the most severe, closely followed by Object Persistence and Triggered Event.
All that said, failure recovery can potentially cause more harm than the original issue if mishandled. Guo et
al [50] explore this phenomenon and present a classification of failure recovery faults and recommendations for
preventing them. The main takeaway from their work is that failure recovery should be mitigated conservatively
and that the global system context should be considered as opposed to local reasoning about the failure.

Answer to RQ1.1 (open-source development): Open-source projects frequently apply quick, sequential
commits to manage small bug fixes, contributing to flexible configuration management practices. Data-format
incidents, fault-related incidents, timing incidents, or constant-value setting incidents are among the most
common high-severity incident types. In security-critical contexts, studies reveal that response times to
vulnerabilities are faster (around 14 days), though patch transparency is inconsistent, with only a quarter of
security fixes disclosed in the National Vulnerability Database. Additionally, hot fixes in mobile applications
though not well documented tend to be permanent changes to the application, while in video games, urgent
updates address severe issues like crashes, with frequent updates leading to higher rates of hot fixing.

8.2 Commercial Development
Hot fixing in commercial software development is a critical practice that enables rapid response to urgent issues,
balancing the need for immediate fixes with the constraints of structured release schedules.
Several studies examine the causes of critical incidents, the effectiveness of mitigation approaches, and the
operational challenges associated with resolving them in large-scale systems. To better understand high-severity
production incidents, Ghosh et al.[41] study hundreds of these incidents and their postmortems in the Microsoft-
Teams cloud-based service. Their empirical study offers many valuable insights into the characteristics of
high-severity incidents. They found that the root causes for 60% of these incidents stemmed from non-code issues
such as infrastructure, deployment, and dependencies and that 80% were resolved without a code or configuration
fix. They also found that 30% of these incidents had a delay in the mitigation process after the identification of
the root cause due to poor documentation and manual steps which hints at the need for more automation and
the possible opportunity of even automating the documentation itself given recent advances in large language
models. The paper has 16 key findings, all of which are very applicable to the topic of this survey and worth
reading more in-depth. Zhou et al. [170] found that only 3.8% of important customer issue reports at Microsoft
are mitigated through hot fixes, further indicating that companies may avoid hot fixes even in high-stakes
environments, opting instead for other mitigation approaches when possible. In 1986, administrators reported
41 critical mistakes in over 1300 years of operation [45] when referring to fault tolerant servers. However, as
modern systems become increasingly complex, such historical metrics are less representative of contemporary
challenges. With the rise of internet services replacing traditional fault-tolerant architectures, Oppenheimer et
al. [104] highlight that operator errors are the leading cause of failures and the primary factor in repair time, with
configuration mistakes being the most prevalent. They identify two critical challenges in the space: incomplete
service/resource dependencies and imprecise resource health assessment. Holloway et al. [59] comment on hot
patching for the Mars Science Laboratory Curiosity rover. Hot patches allow rapid, non-permanent modifications
to the rover’s software in RAM and must be re-applied at every reboot. As of October 2022, 13 hot patches were
installed over 57,000 times on the rover flight software.

ACM Trans. Softw. Eng. Methodol.

14 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Studies on hot fix frequency give insights into the relationship between release cycles, deployment strategies,
and the stability of software systems. Savor et al. [124] study continuous deployment practices at Facebook and
OANDA. The authors in this paper use the number of hot fixes as a measure of software quality suggesting that
hot fixes indicate low quality software. They find that increasing the number of deployments does not cause an
increase in the number of hot fixes, such that rapid deployments can be achieved without compromising stability.
Anderson et al. [12] touch on how development for hot fixing tends to happen on a separate branch and how this
contributes to the large number of integration that happens during the initial stages of the release. Change is the
leading cause for incidents in online systems. Change-induced incidents also tend to have higher severity and
longer resolution times [152]. A study [152] 161 change-induced systems over a two year period from an online
service system from Ant Group revealed the 4 challenges in change management: inadequate monitoring metrics,
inadequate change monitoring, low business traffic, and inefficient abnormal change localization.
As for triaging these incidents, Chen et al. [24] investigate industrial practices through 20 online service systems
at Microsoft. They find that up to 91.58% of incident reports are reassigned at least once which causes around a 10
time increase in the triage time of an incident. This frequent phenomenon is especially expensive when it comes
to high-severity incidents, ones that require hot fixes. They also benchmark bug triage tooling for incident triage
and find that while they work to a certain extent, they need to be improved to fit this context. Also at Microsoft,
Chen et al. [30] study over two years of incident management practices.
As for the time required to hot fix critical issues, we found studies that analyze bug fixing times in commercial
settings which shed light on this. At CA Technologies, they find that the bug fixing time for different bugs is
an uneven long tail distribution [158]. An analysis of the impact of various bug features on this bug fixing time
is conducted in which they account for bug priority and bug severity. In general, they find that bugs with the
highest priority and highest severity are fixed faster. In the context of hot fixing, these are the type of bugs that
hot fixing efforts would target. A study on Mandelbugs (ones that cause hard-to-reproduce failures due to their
complexity) in real-world IT systems in production [135] creates estimates for several trends on hot fixing based
on the authors’ experiences. They disclose that a hot fix for a Mandelbug generally takes between a few minutes
to three hours with the mean time for a hot fix being one hour. Additionally, after manual analysis of a detected
Mandelbug, it has a 0.2 probability of requiring a hot fix. Finally, they estimate that the probability that such a
hot fix would need just a reconfiguration and not a reboot is 0.9. In their continuation work [46], they describe
a recovery model using a flowchart for four types of bugs: Restart-maskable Mandelbugs, Reboot-maskable
Mandelbugs, Reconf-maskable Mandelbugs, and other (non-maskable such as Bohrbugs). They describe that for
a restart, reboot, or reconfiguration-maskable Mandelbugs, a hot fix is usually sufficient to mask a failure by
including system reinitialization or parameter adjustments (like resource thresholds). However, with Bohrbugs, a
hot fix may not fully address the issue, and a longer-term solution, like a traditional bug fix, may be necessary,
which can require additional development and testing time. The proposed flowchart can be adapted to develop a
semi-Markov model that estimates recovery time from a failure for a generic IT system.
When looking at the effect of hot fixing on commercial software, Li and Long [81] raise an interesting point.
They study the architectural degeneration of a commercial compiler system across two versions. They find that
architecture degenerates over time and that correlated components are the main cause for this degeneration. As
hot fixes are most commonly temporary workarounds for critical issues, we can assume that by their nature they
contribute to this phenomenon.

Answer to RQ1.2 (commercial development): An increased number of deployments does not lead to more
hot fixes, suggesting that rapid deployment can be stable. A study of high-severity incidents in Microsoft
Teams found that 60% of root causes were non-code-related, such as infrastructure and deployment problems,
highlighting the importance of addressing operational factors beyond code. This somewhat contradicts the

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 15

study found in open-source research suggesting that the main cause of incidents is bugs. Moreover, only 3.8%
of critical customer issues are resolved through hot fixes, indicating a preference for alternative mitigation
strategies. Research from CA Technologies highlights that high-priority and high-severity bugs are fixed
more quickly, aligning with the goals of hot fixing. Additionally, estimates regarding Mandelbugs show that
hot fixes typically take between a few minutes and three hours, with a significant likelihood of requiring
only reconfiguration.

8.3 Human Research
A few studies conduct surveys with users and system administrators which give insight into the practices and
challenges in hot fixing software. An important perspective on hot fixing that must be considered in user-facing
systems is the end-user experience in the installation process itself once the hot fix is released. Vaniea and
Rashidi [143] surveyed 307 users. They found that users experience six stages when updating their system:
awareness, decision to update, preparation, installation, troubleshooting, and post date. Sarabi et al. [122] studied
user behaviour when it comes to software updating within the security domain by analyzing more than 400, 000
Windows machines. They looked at the relationship between the vendors and the users taking into account the
rate of updating, vendor patch deployment, and patch installation practices.
The second category of individuals that must be considered are the system administrators who manage the
machines of organizations and their software updates. To make sure that the released hot fixes actually get
updated on the underlying infrastructure of an organization, we need to understand and cater to the needs of
these individuals. Li et al. [79] found that system administrators go through five main stages: learning, deciding,
preparing, deploying, and remedying. This was found through surveying 102 system administrators, 17 out
of them in-depth. This study further identifies four pain points for system administrators: update information
retrieval, update decision making, update deployment, and organizational culture that impedes regular update
adoption. Barrett et al. [17] conducted field studies to further understand the problem-solving strategies of system
administrators and conclude that available tooling does not support them in their practice, encouraging further
work in this specific area. More recently, Jenkins et al. [67] surveyed 220 system administrators and found that
the size of the organization greatly affects their patching processes such that larger organizations are more likely
to have patching policies.

Answer to RQ1.3 (human research): Surveys of users identified six stages they experience during updates
and an analysis of over 400,000 Windows machines shed light on user behaviour in the context of security
updates. For system administrators, it was found that there are five stages they navigate during updates
and four key pain points that hinder effective hot fix adoption (namely update information retrieval, update
decision making, update deployment, and organizational culture), emphasizing the need for better tools and
support to address these challenges especially in smaller companies that may not have patching policies.

8.4 Summary of Common Practices
Despite differences in context, several practices emerge consistently across open-source, commercial, and human-
centered studies. All three perspectives highlight the tension between speed and stability. In open source,
developers frequently push hot fixes immediately after a faulty commit [77]. In commercial settings, rapid fixes
often require separate branches [12] or reconfigurations to contain incidents [135], and for administrators and
end-users, the pressure to apply updates quickly is tempered by pain points such as troubleshooting, deployment

ACM Trans. Softw. Eng. Methodol.

16 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

friction, or organizational culture [79, 143]. They also underscore that hot fixing extends beyond the technical
patch itself: Poor documentation delays fixes in commercial systems [41], open-source practices highlight the
role of configuration management [77], and administrator surveys emphasize the need for better tools to support
decision-making and deployment [17, 30]. Together, these commonalities point to hot fixing as an activity that
consistently balances urgency, reliability, and human processes across domains. Another recurring pattern is that
hot fixes frequently serve as temporary workarounds rather than permanent solutions. In open source, developers
often push quick corrective commits to patch earlier mistakes [77]. In commercial systems, hot fixes are used
to mask failures or reconfigure systems even though they may accelerate architectural degeneration [81, 135],
and from the perspective of developers and administrators, hot fixes are often applied quickly but leave behind
troubleshooting or maintenance burdens [79, 143].This reinforces the view of hot fixing as a short-term emergency
response designed to restore service rapidly, with more durable solutions deferred to later development cycles.
Finally, they highlight the impact of release cadence and deployment models on hot fixing practices. In open-source
projects, shorter release cycles are associated with quicker hot fixes but a lower proportion of bugs being fixed
overall [63, 75]. Commercial studies show that rapid continuous deployment can reduce the need for hot fixes
without compromising stability [124], while in mobile and organizational contexts, app store approval processes
and patching policies impose external constraints that shape how quickly fixes can be applied [56, 125, 166].

9 RQ2: Automation and Tooling
In this section, we detail the techniques and applications that we found by examining the literature on hot fixing
to address RQ2. First, we present work on human-assisted tooling, i.e., helper tools for system administrators
and software developers for hot fixing at different stages and granularities. These tools do not fully automate
any of the stages of the hot fixing process. Instead, they aid the human effort in doing so through reporting,
debugging, etc. We then dive into fully autonomous tools that automate at least one of the stages of hot fixing:
detecting the need for a hot fix, generating the hot fix, or deploying it into the target system. We outline the
taxonomy of existing work on hot fix tooling in Figure 4. In Table 5 we provide an overview of the tools within
the different categories. Side-by-side comparisons of the tools within each category based on domain, evaluation,
and effectiveness are presented at the end of each category section.

9.1 Human-Assisted Tools
We begin by exploring human-driven techniques for hot fixes, which involve semi-automated or human-assisted
tools designed to support and streamline the hot fixing process. These techniques include system administrator
tools that help facilitate hot fixing activities, bug reporting mechanisms that simplify the identification and
understanding of critical underlying issues, and debugging assistance tools that aid in diagnosing and resolving
problems efficiently. Each of these tools enhances the speed and accuracy of addressing critical software issues,
relying on human expertise alongside automation.

9.1.1 System Health Monitoring. In this section, we will present tools designed for real-time monitoring and
alerting system administrators to critical issues.
System administrators are often the individuals responsible for handling critical crises in enterprises. They
usually play the most critical role in mitigating time-sensitive system disruptions such as security attacks,
performance degradation, and system unavailability. While there has been abundant research on tooling for
software developers, less is known about the methods that the system administrators follow. These individuals
and the tools that they adopt are vital for hot fixing systems. In this section, we present papers that propose
tooling for system administrators that could be applicable for the scenario of hot fixing unplanned time-critical
bugs.

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 17

Human-Assisted Autonomous Configuration
Management

Symptom
Mitigation

Offline Hot
Fix

Generation

Runtime Hot
Fix

Generation

System Health
Monitoring

Critical Bug
Reporting &Triage

Critical Bug
Debugging

Detection

Remediation

Deployment

End-to-End

Classification Type

Hot Fixing Stage

Technique

Tooling

Fig. 4. Taxonomy of existing work on tooling for hot fixing activities.

Table 5. Overview of Hot Fixing Tooling

Category Sub-category Number of Papers Publication Years

Human-Assisted
Monitoring 8 2006 - 2022

Reporting & Triage 19 2009 - 2022

Debugging 8 2011 - 2023

Autonomous

Detection 21 2003 - 2023

Remediation

Configuration Management 3 2008 - 2015

Symptom Mitigation 3 2005 - 2016

Offline Hot Fix Generation 11 2007 - 2020

Online Hot Fix Generation 14 2007 - 2024

Deployment 16 2004 - 2021

End-to-End 9 2005 - 2017

ACM Trans. Softw. Eng. Methodol.

18 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Bodik et al. [19] propose two new tools for system administrators at Amazon.The first aids in tracing dependencies
between the different components of the system and allows for tracking the overall health of the system. The
second monitors the actions of administrators to enable the identification of recurring problems and automate
suggestions for their resolution. The usefulness of these helper tools in improving the efficiency of system
administrators is not evaluated in this paper. They do, however, highlight that it will be essential to properly
train them to convince them that these tools will indeed be useful. In turn, their tools will need to be extended
to monitor system administrator actions. These actions and their outcomes should be incorporated in the tool
suggestions, and the tool could also receive feedback from the system administrators themselves to improve
its accuracy in the future. In a continuation paper [20], they develop a technique for crisis classification based
on summarising the data center’s state in a representation called a fingerprint. The fingerprint is a summary of
hundreds of performance metrics which can be used to identify whether a specific crisis has been seen before so
that its known solution can be applied. Under realistic conditions, their approach enables initiation of recovery
actions with 80% accuracy in an average of 10 minutes which is 50 minutes earlier than the deadline required.
However, it is not clear if these tools are effective in cloud computing environments or across different applications
used by the system administrators.
Tools for system management and system health monitoring have been developed to automate updates, detect
issues, and manage memory errors effectively. TJOSConf [148] is a platform that assists with system management
by automating system updates safely. It interacts with services to verify the impact of an update and ensure
that unexpected failures are recognized quickly. This tool was utilized in Alibaba and the authors claim that
were no service breakdowns as a cause of system updates. For diagnosing and patching memory management
bugs, First-aid [40] is a runtime tool for diagnosing and patching memory management bugs and the memory
objects that trigger them. This technique relies on rolling back programs to previous checkpoints, which may
not always be feasible in environments where maintaining state consistency is critical. AUDIT [92] focuses on
troubleshooting recurring transient errors in cloud systems specifically. Using lightweight triggers, it can identify
the first occurrence of a problem and then rank the software methods according to their likelihood of being
involved in the root cause of the problem. Similar work was done by Yuan et al. [155] which is based on statistical
learning techniques that classify system call sequences. Nair et al. [101] propose a hierarchical monitoring system
that is composed of low-level detectors, structure discovery models for identifying relationships among the
variables in the system, learning for better detection, and human interaction for further refining machine learning
outcomes by allowing expert adjustments. The system was deployed at Microsoft and at the time of publication
was reported to detect 19 customer-impacting issues in three months. Finally, to reduce the manual effort of
on-call engineers for system monitoring and health checks, SoftNER [127] was introduced. It is a tool based
on unsupervised machine learning and deep learning, dedicated to extracting structured knowledge (e.g. error
messages, resource IDs, etc) from service incidents.
We present a summary and side by side comparison of all tools mentioned in Table 6.

Answer to RQ2.1 (Human-assisted tools for system health monitoring): System administrators
are vital in managing critical crises such as security attacks and system failures in enterprises, making
tooling for helping them monitor system health essential. Amazon aims to enhance system administration
through dependency tracing and monitoring of administrator actions. Tools like TJOSConf, First-Aid, AUDIT,
and SoftNER have been introduced to automate system updates, diagnose memory management bugs,
troubleshoot transient errors, and reduce manual efforts in system health checks, each with their own
limitations and specific contexts of application.

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 19

Table 6. Summary of Monitoring Tools Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

General prob-
lem diagnosis

root cause identifi-
cation: use system
behavior information
to build correlations
with known prob-
lems

dataset of system call
sequences created
through fault injec-
tion

Yuan et
al.[155]

accuracy of root
cause detection is
nearly 90%

Performance classification and
identification of
performance crises

4 months of trouble-
ticket data from a pro-
duction datacenter

Finger-
print [20]

80% correctness in an
average of 10 min-
utes

Memory surviving common
memory manage-
ment bugs and
preventing their
reoccurance

3 server applications
(Apache, Squid, and
CVS) and 4 desktop
applications (Pine,
Mutt, M4, and BC)

First-aid [40] provides quick
failure recovery
and thereby hides
program failures
from user

Online service
systems

system management
platform for safe sys-
tem updates

application in Al-
ibaba

TJOSConf [148] application in Al-
ibaba

Online Ser-
vice Systems

monitoring system to
detect and diagnose
service issues

data collected from
11 instances of the
Storage Manager
component of the
service

Nair et
al.[101]

deployed in produc-
tion

Cloud troubleshooting
transiently-recurring
problems

5 mature open source
and commercial ap-
plications

AUDIT [92] AUDIT identified pre-
viously unknown is-
sues

Cloud knowledge extrac-
tion from service
incidents

more than 2 months
of cloud incidents at
Microsoft

SoftNER [127] precision of 0.96, de-
ployed at Microsoft

Large-scale
internet ser-
vices

2 tools: visualize sys-
tem health and sug-
gests solutions to op-
erators to recurring
problems

Deployed within
Amazon

Maya [19] Maya: useful but
overwhelming to
users. Recommender-
useful metrics
appeared near the
top of the sugges-
tions

ACM Trans. Softw. Eng. Methodol.

20 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

9.1.2 Critical Bug Reporting and Triage. An efficient reporting and triage process for critical issues in production
is essential to facilitate fast mitigation and hot fixing. Ensuring timely and accurate diagnosis allows teams to
respond quickly, minimizing system downtime and user impact.
Several studies tackle this topic by proposing automated tooling for quicker incident diagnosis through optimised
bug reporting processes. Zhang et al. [163] developed a tool called “Onion” that automatically locates incident-
indicating logs. Their solution uses log clustering techniques and has been used practically on the cloud system at
Microsoft. Log3C [57] is a tool that also uses log clustering for distinguishing relevant logs but with the addition
of utilizing system KPIs (key performance indicators). Also based on KPIs, Decaf [16] utilizes service logs to
triage KPI issues and has successfully diagnosed 10 out of 31 issues on two large-scale cloud services. Decaf,
Onion, and Log3C have been successfully applied in the industry.
Other techniques aim to utilize the repeated occurrence of the same issues to improve reporting, diagnosis, and
intervention. Woodard et al. [151] identify crises in complex distributed systems through automatic recognition
of recurrences. Using model-based clustering based on a Dirichlet process mixture, they are able to distinguish
previous similar crises for which the root cause is known. Similarly, Saha et al. [117] also utilize past incident
investigation reports that include root cause information and propose an Incident Causation Analysis (ICA)
engine that uses state-of-the-art NLP techniques to extract structured causal knowledge from them.
When production incidents occur, alerts are generated, triaged, and assigned to the responsible team. There is
often a large load of alerts that overwhelms on-call engineers which must be prioritized. Interestingly, when
looking at 18 real-world online service systems at Microsoft, it was found that on average, 50.32% of incidents are
not high priority and do not need immediate remediation [26]. DeepIP [26] is a tool that aims to identify these
types of incidents. To prioritize the alerts generated from incoming incidents, Zhao et al. [166] propose AlertRank
which is a framework for identifying severe alerts. It works by extracting alert features and utilizes the XGBoost
ranking algorithm to triage the incoming alerts achieving an F1 score of 0.89 average surpassing baselines and
reducing the required manual effort. Warden [80] is another tool in this problem space but it differs in that it aims
to detect broader incidents by aggregating alerts across multiple services using a balanced random forest model.
RAPID [88] takes a different approach by focusing on security-related alerts, particularly those from intrusion
detection systems (IDS) while optimizing for space and time. To further help with triage, it may be useful to
predict the bug fixing time. TTMPred [147] is a tool designed for this purpose. It functions within continuous
triage, utilizing temporal information from ongoing discussions. TTMPred is based on a deep learning approach
that uses both the semantics from the textual data as well as this temporal information.
Another key challenges in incident management is the fragmentation of monitor-generated Incident reports
and customer incident reports. LinkCM [47] is a tool that aims to link these reports by formulating the linking
problem as a binary classification problem, and adopting a neural network to solve it. When evaluated on 7
industrial cloud service systems in Microsoft, they find that on average in 77.70% of scenarios, the system incidents
affecting customer products can be detected before the customer reports problems and that an improvement in
the efficiency of CI triage can be achieved when linking the reports. Also to make parsing customer reports more
efficient, iDice [85] is a tool that links issue reports that might indicate a new widespread problem by finding
patterns in report attribute combinations.
Assigning the appropriate team to handle an incident is another crucial aspect of triage. DeepCT [25] is a
deep learning-based approach that leverages incident discussions for continuous triage. Upon evaluation on 14
large-scale online service systems in Microsoft, it was able to correctly identify the responsible team in 64.1%
of the instances on average given one discussion item. A later tool named DeepTriage [109] combines multiple
machine learning techniques such as gradient boosted classifiers, clustering methods, and deep neural networks
and achieves a 82.9% F1 score on incidents in Microsoft Azure.
At Microsoft, the Windows Error Reporting (WER) has processed error reports collected from a billion machines
over the course of 10 years [42]. This system classifies the collected reports into buckets based on similarity which

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 21

allow for developer effort prioritization and more immediate, user-focused development. Another technology
at Microsoft is the Service Analysis Studio [90] [84] [91] which is a data-driven solution that tackles incident
management from a software analytics perspective. More recently, an approach named Oasis [73] has been
deployed at Microsoft which assesses the impact scope of cloud outages using relevant incidents to generate
human-readable summaries of the outage by leveraging LLMs.
We present a summary and side by side comparison of all tools mentioned in Table 7.

Table 7. Summary of Reporting and Triage Tools Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

Windows
machines
debugging
(large scale)

automates the pro-
cessing of error re-
ports to prioritize de-
veloper effort and re-
port fixes

large scale data- er-
ror reports collected
from Windows ma-
chines worldwide

WER [42] effective at reporting
and recovering from
errors even for rare
Heisenbugs due to
large scale

General
system

identify impactful
system problems
by utilizing log se-
quences and system
KPIs

log data from an on-
line service system at
Microsoft

Log3C [57] average precision of
0.877 and average re-
call of 0.883

Cloud locating incident-
indicating logs

Apache Spark Exam-
ples

Onion [163] average F1-score of
0.95

Cloud detects the occur-
rence of incidents
from a global per-
spective

data collected in
an 18-month pe-
riod from 26 major
services

Warden [80] deployed in Mi-
crosoft Azure

Cloud assess and summa-
rize the impact scope
of outages

18 real-world cloud
systems

Oasis [73] deployed atMicrosoft

Cloud root cause analysis
for incidents

in-house collected
dataset of 2000
incidents.

Saha et
al.[117]

built at Salesforce,
shown to be effective

Cloud incident transfer ser-
vice

real incidents in Mi-
crosoft Azure

Deep-
Triage [109]

deployed in Azure;
achieves 82.9% F1
score

Cloud customer Incident
Triage via Link-
ing with System
Incidents

collected datasets
from 7 production
cloud service systems
in Microsoft

LinkCM [47] LinkCM significantly
outperforms its 2
competitors.

Continued on next page

ACM Trans. Softw. Eng. Methodol.

22 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Domain Function Benchmark Tool Effectiveness

Performance automated diagnosis
and triaging of KPI
issues using service
logs.

2 large scale cloud
services in Microsoft

DeCaf [16] successfully diag-
nosed 10 known and
31 unknown issues

Performance
+ Distributed
computing

monitors perfor-
mance metrics,
applies online clus-
tering to identify
patterns, and detects
“crisis” events

simulated data and
data from a produc-
tion computing cen-
ter

Woodard et
al.[151]

validated in produc-
tion

Online Ser-
vice Systems

framework for identi-
fying severe alerts

datasets from a top
global commercial
bank

Aler-
tRank [166]

F1-score of 0.89

Online Ser-
vice Systems

continuous Incident
Triage

14 large-scale online
service systems inMi-
crosof

DeepCT [25] average accuracy
identifying the
responsible team pre-
cisely is 0.641-0.729

Online Ser-
vice Systems

data-driven tech-
niques to improve
incident manage-
ment at Microsoft

deployed atMicrosoft Service Anal-
ysis Studio
(SAS) [84, 90,
91]

deployed to world-
wide product data-
centers and widely
used by on-call en-
gineers for incident
management

Online Ser-
vice Systems

prioritizing incidents
based on a large
amount of historical
incident data

real-world incident
data from Microsoft

DeepIP [26] AUC of DeepIP
achieves 0.808

Online Ser-
vice Systems

incident time-to-
mitigate prediction

4 large-scale online
service systems inMi-
crosof

TTM-
Pred [147]

improves upon base-
line by 25.66% on
average in terms of
MAE

Online Ser-
vice Systems

problem Identifica-
tion for Emerging
Issues

service at Microsoft
and a synthetic gener-
ated dataset of issue
reports

iDice [85] deployed atMicrosoft

Continued on next page

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 23

Domain Function Benchmark Tool Effectiveness

Security real-Time Alert
Investigation with
Context-aware
Prioritization

1TB dataset from
DARPA Transparent
Computing (TC)
program with 411
million events

RAPID [88] reduce the time of
alert provenance
analysis to discover
all the major attack
traces by up to 99%

Answer to RQ2.1 (Human-assisted tools for critical bug reporting and triage): Studies on bug reporting
propose automated tools that streamline incident diagnosis by optimizing bug reporting processes. Tools like
Onion and Log3C utilize log clustering, with the latter incorporating system KPIs to improve log relevance,
and both have seen successful industry use. Other methods, focus on identifying recurring crises in complex
systems to aid rapid diagnosis and response. As for reducing manual triage efforts, tools such as AlertRank
aid with alert prioritization and tools such as DeepCT aid with assigning them to the responsible team.

9.1.3 Critical Bug Debugging. Although better bug-reporting methodologies and tooling can accelerate the
process of identifying critical issues, additional assistance with debugging is often required to resolve them.
IDRA_MR [96] is an online debugger for Map/Reduce applications that works by removing the debugging session
to an external process. Wolverine [144] is an end-to-end debugging tool that allows for stepping through the
execution of a program, the visualization of its states, and the synthesis of repair patches. Wolverine is able to
integrate the synthesized patches into the running program without requiring a restart. This tool can aid with
the debugging process as well as suggest resolutions without the overhead of system downtime. The debugging
process can be made more efficient when outages in production clouds stem from recurring issues. COT [149] is
an outage triage approach that learned from historical outages to infer the root cause of emerging outages.
On-call engineers often utilize troubleshooting guides (TSGs) whenever available for an incident at hand to aid
with quicker resolution times. On average, developers spend about 36.3% of the total mitigation time just on
locating the desired TSG [70]. DEEPRMD [70] is a tool that recommends the appropriate TSG to the developer
given an incident using deep learning technique and the textual similarity between incident description and its
corresponding TSG. AutoTSG [128] is a framework that takes this a step further and makes use of existing TSGs
to turn them into executable workflows. They evaluate their approach on 50 TSGs and show promising initial
results in parsing the TSGs for execution.
The rise of large language models presents a unique opportunity for enhancing debugging tools, as root cause
prediction can be paired with explanations that aid in the debugging process. RCACopilot [28] is one such system
that leverages large language models to offer efficient root cause analysis for cloud incidents at Microsoft. Ahmed
et al. [9] experiment with a more direct approach that utilized large language models for the purpose of finding
the root cause and mitigation for production incidents. They investigate the performance of existing models on
over 40K incidents at Microsoft and find that it is a promising research direction. Finally, XPERT [71] is a tool
that automates the domain-specific language (DSL) queries that on-call engineers have to generate to analyze
telemetry data. It leverages large language models and historical incident data to generate custom queries for
new incidents which helps accelerate the debugging process.
We present a summary and side by side comparison of all tools mentioned in Table 8.

Answer to RQ2.1 (Human-assisted tools for critical bug debugging): IDRA_MR and Wolverine provide
online debugging capabilities, including external session handling and repair patch synthesis without

ACM Trans. Softw. Eng. Methodol.

24 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Table 8. Summary of Debugging Tools Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

Big Data ap-
plications

online debugging 2 applications:
poll analysis and
blockchain analysis

IDRAMR [96] demonstrated
successful online
debugging scenarios

Heap ma-
nipulating
programs

debug-Repair envi-
ronment: visualize
program and gener-
ate hot patches

1600 buggy programs
generated using fault
injection

Wolver-
ine [144]

could repair all the
buggy instances in
less than 5 seconds in
most instances

Online Ser-
vice Systems

automated trou-
bleshooting guide
recommender system

18 online service sys-
tems

Deep-
Rmd [70]

can recommend the
correct TSG as the
Top 1 returned result
for 80.3% incidents

Cloud automation of trou-
bleshooting guides
to executable work-
flows

50 troubleshooting
guides

Au-
toTSG [128]

precision 0.94 in pars-
ing guides to execu-
tion

Cloud root Cause Analysis
by LLMs

year’s worth of inci-
dents from Transport
service in Microsoft

RCACopi-
lot [28]

accuracy up to 0.766

Cloud outage triage
approach that consid-
ers the global view of
service correlations

real-world dataset
containing one year
of data collected from
Microsoft Azure

COT [149] acuracy 82.1% 83.5%

Cloud query recommen-
dation framework
for incident manage-
ment.

deployed in produc-
tion at Microsoft

Xpert [71] deployed in produc-
tion at Microsoft

Cloud root cause and miti-
gation for production
incidents using LLMs

40,000 incidents from
Microsoft

Ahmed et
al.[9]

exploratory study-
not a fully deployed
tool

requiring a restart. Other techniques use historical outage data to expedite the root cause analysis of
recurring production issues. Troubleshooting guides are common in assisting the debugging process, and
some tools such as DEEPRMD and AutoTSG leverage deep learning to recommend and automate them.
Finally, the integration of large language models in tools like RCACopilot and XPERT enhances root cause
prediction and automates query generation for faster debugging.

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 25

9.2 Autonomous Tools
Next, we review the applications of techniques that fully automate at least one of the stages for hot fixing. This
includes tooling for detection, remediation, and deployment. Finally, we dedicate a section for tools we found
that automate this pipeline end-to-end.

9.2.1 Detection Tooling. We begin with an overview of the tools that we found for detecting the need for a hot
fix. This includes tooling for detecting underlying functional and non-functional critical software issues.
Degradation of performance is often a problem that requires immediate attention through a hot fix. Zhang et
al. [162] address the specific scenario of service level objectives violations. They introduce an approach that
identifies likely causes of performance problems within this context using several Bayesian network models that
adapt to changing workloads. Their approach is low cost which makes it feasible for practical application. Fu et
al. [39] also propose a solution for detecting critical performance issues. Their technique uses system metric data
mining to diagnose problems in online service systems. Performance anomaly alerting based on trace data often
has the issue of generating false alarms or having limited explainability due to reliance on deep learning models.
TraceArk [157] aims to address this issue by incorporating a small amount of engineer feedback.
Looking at problem diagnosis from the perspective of functional problems, Triage [137] is an automated tool
for onsite failure diagnosis. This tool diagnoses a failure at the moment that it occurs and reports in detail the
nature of the failure, the conditions that trigger it, as well as the fault propagation chain. Triage mimics the
steps a human takes in debugging a failure by employing several existing diagnosis techniques as well as a
new one proposed by the authors called delta analysis. Khomh et al. [75] address triaging crashes from the
vantage point of prioritizing crash types. This process helps direct development efforts toward critical crashes
that might require hot fixing. By grouping similar crash reports into crash types, they are able to use entropy
region graphs to capture the distribution of their occurrences among system users. IFeedback [169] is a tool
that leverages user feedback for detecting issues. Rather than conducting exhaustive text mining of feedback
reports, it focuses on fast online issue detection by extracting word combination-based indicators from feedback
texts. Instead of relying on user feedback, LogFlash [69] is a real-time anomoly detection tool that utilizes logs. It
has been evaluated on lab settings, therefore its performance on complex real-world logs is yet to be evaluated.
Alternatively, another approach leverages a static analyzer, Aspirator [156], which is tool that relies on a set
of three rules derived from analyzing past critical bugs to automatically detect issues in error handling code.
Finally, ctests [168] a type of test that links configurations in the production system to software tests. This allows
changes to the configurations to be tested before any failure-inducing changes, dormant software bugs, and
misconfigurations reach production. Ctests are generated from existing tests with reasonable manual effort by
instrumenting the configuration APIs of the system (parameterizing an existing test to run against different
system configurations while ensuring test validity for the included configuration parameters).
From the perspective of memory issues, RESIN [89] employs low-overhead monitoring and a bucketization-based
pivot scheme to efficiently detect memory leaks. It then automatically attempts to mitigate leaks to minimize
service impact by isolating affected processes and performing targeted reboots, ensuring minimal disruption to
the overall system. At the time of publication, RESIN had been running in production in Azure for over 3 years.
Finally, from a security perspective, there have been several works that address diagnosing vulnerabilities. Qin
et al. [113] propose an automated mechanism Dataflow Analysis for Known Vulnerability Prevention System.
Through tracing the vulnerability context and its spread path, they are able to detect the exploit and generate the
vulnerability filter and its respective hot fix with minimal overhead. To protect vulnerable programs in the cloud,
vPatcher [160] examines network packets to detect vulnerable processes. Araujo et al. [14] present a cross-stack
sensor framework for cyber security allowing for booby-trap insertion at multiple network layers. FIBER [159] is
a tool that detects security vulnerabilities in software distributions by testing the presence of security patches.

ACM Trans. Softw. Eng. Methodol.

26 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

FIBER does this by first analyzing open-source security patches, generating fine-grained signatures, and using
these signatures to search against the target system.
Techniques that are based on prediction exist as well. Sahoo et al. [118] leverage various system measurements to
build a prediction system for large clusters. They tested various prediction algorithms and found that rule-based
classification algorithms were able to predict critical events with 70% accuracy which is an encouraging avenue
of exploration. In contrast to this work that predicts failures through detecting abnormal signals from monitors,
AirAlert [29] is a tool for predicting critical failures in cloud service systems, which they refer to as outages, from
these failure signals. They examine how outages correlate with alerting signals through Bayesian networks and
use a robust gradient boosting tree classifier for outage prediction. Their approach deals with outages not only
within a single service but from different parts of the whole cloud system. Similarly, NARYA [78] is a system that
has been deployed in Microsoft Azure that predicts VM failures before they occur by utilizing multi-layer system
signals, online experimentation, and reinforcement learning. As for forecasting when an incident in an online
service will happen, eWarn [165] utilizes historical data based on alert data in real-time. CRANE [32] is a tool
fromMicrosoft for failure prediction, change risk analysis, and test prioritization. Its deployment helped Microsoft
engineers identify tests that are likely to uncover problems. Later research work at Microsoft on post-release
defect prediction models utilizes various text execution metrics [58]. Finally, Shihab et al. [129] propose prediction
models that specifically focus on high-impact defects for customers and practitioners. These tend to be breakage
defects and surprise defects respectively. While they are somewhat successful in their mission, they conclude that
more specialized models that take into account a defect’s type instead of just its location are needed for practical
adoption.
We present a summary and side by side comparison of all tools mentioned in Table 9.

Table 9. Summary of Detection Tooling Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

General soft-
ware

triaging Field
Crashes

10 beta releases of
Firefox 4

Khomh et
al.[75]

improves triaging
used by Firefox
teams

General soft-
ware

failure prediction,
change risk analysis
and test prioritiza-
tion system

analyzed all fixes
made to Windows
for one year

CRANE [32] for some builds,
CRANE reduced
tests run by 50%

General soft-
ware

prediction models for
identifying files that
have high-impact
breakages and
surprises

5 releases of a large
commercial software
system

Shihab et
al.[129]

building specialized
prediction models is
valuable for making
defect prediction
adoptable in practice

General soft-
ware

failure diagnosis pro-
tocol that mimics the
steps a human takes
in debugging

10 real software fail-
ures from 9 open
source applications

Triage [137] accurately diagnoses
with overhead of un-
der 5%

Continued on next page

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 27

Domain Function Benchmark Tool Effectiveness

General soft-
ware

predict pre- and post-
release bugs using
test metrics

test metrics collected
during Windows 8
development

Herzig et
al.[58]

explorative study as-
sessing the general
suitability of test fail-
ure metrics for defect
prediction models

Security a cross-stack threat
sensing framework
that injects decep-
tive sensors at the
network to dettect
attackers

enterprise-grade en-
vironments

INSIDER [13,
14]

detected multiple
classes of attacks
with low false
positives

Security detects and blocks ex-
ploits by performing
dynamic taint analy-
sis

N/A DA-VPS [113] no in-depth experi-
mentation

Security test presense of secu-
rity patch

107 real-world secu-
rity patches and 8 An-
droid kernel images
from 3 different main-
stream vendors

FIBER [159] average accuracy of
94%with no false pos-
itives

Security anomaly detection
and diagnosis

Hadoop, Spark, Flink LogFlash [69] reduces over 5 times
of training and detec-
tion time

Security +
Cloud

data patching tech-
nique based on vir-
tual machine intro-
spection

6 vulnerable pro-
grams (httpdx,
xchat…)

VPatcher [160] experimental results
show feasibility

Cloud forecast the occur-
rence of outages and
diagnose root cause

outage dataset col-
lected from a Mi-
crosoft cloud system

AirAlert [29] effective on dataset

Cloud averting VM failures
via prediction and
mitigation

running in produc-
tion at Microsoft;

NARYA [78] running in produc-
tion at Microsoft; re-
duces VM interrup-
tions by 26%

Continued on next page

ACM Trans. Softw. Eng. Methodol.

28 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Domain Function Benchmark Tool Effectiveness

Cloud tests for detecting
failure inducing con-
figuration changes to
prevent production
failures.

real-world failure-
inducing config-
uration changes,
injected misconfigu-
rations, and deployed
configuration files
from public Docker
images.

ctests [168] shown effective on
dataset

Cloud; mem-
ory leaks

system for memory
leak detection, diag-
nosis, and mitigation

production in
Microsoft Azure

RESIN [89] running in produc-
tion in Microsoft
Azure and reports
24 memory leaks
monthly on average
with high accuracy

Distributed
systems

critical Event Pre-
diction for Proactive
Management

a specific event id in
a 350 node cluster

Sahoo et
al.[118]

70% accuracy on the
evaluated event

Distributed
systems

static checker that
implements 3 simple
rules for discovering
catastrophic failures.

9 distributed systems Aspira-
tor [156]

located 143 bugs

Performance diagnosis of perfor-
mance issues

3-tier system running
a web-accessible In-
ternet service based
on Java 2 Enterprise
Edition

Zhang et
al.[162]

showed that collect-
ing instrumentation,
inducing models, and
maintaining the en-
semble of models is
inexpensive enough
to do in (soft) real
time

Performance
+ Online Ser-
vice Systems

performance issue di-
agnoosis

2 systems: TPC-W
and a production sys-
tem

Fu et al.[39] 36% average accuracy
on beacon identific-
tion

Performance
+ Online Ser-
vice Systems

performance anom-
aly detection

dataset of Microsoft
Exchange service
and an anomaly
injection dataset
collected from an
open-source project

TraceArk [157] running in produc-
tion at Microsoft; im-
provement in F1 is
50.47% and 20.34% on
the two datasets, re-
spectively

Continued on next page

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 29

Domain Function Benchmark Tool Effectiveness

Online Ser-
vice Systems

real-time issue detec-
tion based on user
feedback texts

application in sys-
tems in production

iFeed-
back [169]

successfully applied
in tens of large-scale
online service sys-
tems

Online Ser-
vice Systems

utilizes historical
data to forecast
whether an incident
will happen in the
near future based on
alert data in real time

11 real-world online
service systems from
a large commercial
bank

eWarn [165] successfully de-
ployed in 2 large
commercial banks

Answer to RQ2.2 (Autonomous tools for critical bug detection): Performance issues are often identified
through adaptable, cost-effective models or data mining, which diagnose problems based on system metrics.
Functional failures are managed by automated onsite tools that diagnose and report failures in real time,
while other approaches prioritize critical crash types to guide development focus. In security, automated
mechanisms detect vulnerabilities by tracing exploit paths or analyzing network packets, and predictive
tools also assist in prioritizing testing and identifying high-impact defects. However, specialized models for
defect types are still needed for broader practical use.

9.2.2 Remediation Tooling. Remediation for hot fixes takes many forms depending on the software issue. Many
critical issues are due to software configuration incompatibilities which can be fixed with reconfiguration rather
than code-level patching. Other issues require code changes but are extremely time-critical. Thus, in these cases,
instead of adding patches for the root cause which might be time consuming, workarounds might be sufficient so
that the symptoms of the issue can be hidden as quickly as possible. In other cases, generating actual patches
that address the underlying issues is needed. Those can either be deployed offline or during runtime depending
on the availability requirements of the target system.
2a) Configuration Fix Software configuration management is essential for achieving rapid changes to modern
software systems. Especially when developing hot fixes for software, the turnaround time must be fast. Configu-
ration management makes it possible to monitor the changes made, package them, and make sure that they are
error-free prior to delivery. Karale et al. [74] propose a configuration management framework that automates the
tasks of the configuration manager. For hot fixing, their framework automates all the required steps for hot fix
packaging which reduces the time required from 33 minutes to 25 minutes. To support applying configuration
changes at runtime, Rasche et al. developed a new algorithm called ReDAC [115] which ensures the consistency of
application data while the reconfiguration happens. ReDAC specifically supports distributed and multi-threaded
component-based applications that have cyclic dependencies. They specifically mention the case of hot fixing
where dynamic reconfiguration is necessary to achieve high reliability and availability.
At Microsoft, ConfSeer [110] is a system used in the Operations Management Suite for remediating configuration
issues. ConfSeer leverages a knowledge base of natural language descriptions of configuration issues and their
fixes. It first starts by taking a snapshot of the user configuration files. It then extracts the parameter names and
values and cross-references them with the Knowledge Base. From here, if a match is found the pinpointed error
and corresponding Knowledge Base article are presented to the user as a suggested fix. Confseer is reported

ACM Trans. Softw. Eng. Methodol.

30 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Table 10. Summary of Configuration Tools Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

General Soft-
ware

configuration Man-
ager

experiment on 60 de-
velopers

[74] 8 minutes reduction
in hotfix packaging
time

General soft-
ware

misconfiguration De-
tection by leveraging
a knowledge base

100K random queries
taken from configura-
tion snapshots

ConfSeer running in produc-
tion at Microsoft for 1
year to find miscon-
figurations on tens of
thousands of servers

Distributed
component-
based applica-
tions

dynamic reconfigura-
tion of component
software during run-
time

PaintDotNet + a lab
test env

ReDAC dynamically updated
PaintDotNet with no
overhead

to be 80% - 100% accurate across four large customer deployments. Its efficacy however, is fully reliant on the
comprehensiveness of the knowledge base that it builds upon.
We present a summary and side by side comparison of all tools mentioned in table 10.
2b) Symptom Mitigation Often in the case of hot fixing, the bug is time-critical and there is not enough time
to either identify the cause of the problem or generate a proper patch for it. Thus, a common way to remediate
critical bugs is through symptom mitigation. The problematic side effect of the critical bug is removed, however,
the root issue is not resolved. This often comes at the cost of lost functionality or deteriorated performance.
Qin et al. proposed Rx [112], a technique implemented on top of Linux. The idea behind it is that software failures
can be mitigated by simply changing the environment in which the program executes. The technique rolls the
program back to the checkpoint where the program was in a stable state and then re-executes it in a modified
environment. Similarly, Sweeper [138] is a software security system that efficiently scans for suspicious requests.
After an attack is detected, Sweeper re-executes the suspicious code to apply analysis techniques. Once the
analysis is complete, Sweeper is then able to quickly recover the system and generate antibodies to prevent
similar attacks from happening in the future. Another security mitigation technique is Security Workarounds
for Rapid Response (SWRRs) which has been implemented into a system called Talos [61]. These techniques
are designed to secure the system against vulnerabilities at the cost of lost functionality. Unlike configuration
workarounds which have a similar effect, SWRRs require minimal developer effort and knowledge of the system
by utilizing existing error-handling code.
We present a summary and side by side comparison of all tools mentioned in Table 11.
2c) Offline Hot Fix Generation In this section, we expand on automated offline hot fix generation techniques. We
focus on techniques for generating hot fixes that require the system to be rebooted when the patch is applied. In
other words, these are techniques that generate hot fixes but do not take into account their runtime deployment
into the system later.
Ding et al. utilize this approach by generating unique signatures from log data to identify and resolve similar
issues, significantly reducing service restoration time in systems with millions of users. Similarly, Pozo et al.
present a protocol that quickly hot-fixes link failures within time-triggered schedules, achieving recovery within
just a few milliseconds

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 31

Table 11. Summary of Symptom Mitigation Tools Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

General soft-
ware

recovering from
failures through
rollbacks

4 server applications:
Apache httpd, Squid,
MySQL, CVS that in-
clude 6 failures

Rx Rx can survive all the
tested software fail-
ures

Security worm analysis and re-
covery post attack

4 servers: Apache1/2,
CVS, Squid and 3 vul-
nerabilities recorded
by US-CERT/NIST

Sweeper can detect an attack
and generate antibod-
ies in under 60 mil-
liseconds

Security neutralize security
vulnerabilities in a
timely manner

5 popular Linux
server application +
11 real-world soft-
ware vulnerabilities

Talos can neutralize 75.1%
of all potential vul-
nerabilities

Mining historical data to suggest solutions for recurring software issues has proven effective in improving
response times. Ding et al. [35] [36] utilize this approach and can match issues by generating signatures for issues
from their corresponding logs. Their system was evaluated on a real system that compromises millions of users
and was able to successfully provide resolutions that reduced the mean time to restore of the service. Similarly, at
Facebook, Lin et al. [83] propose a framework for predicting hardware failure remediations by utilizing similar
closed repair tickets. In improving response time for link failures in time-triggered schedules, Pozo et al. [111]
propose a protocol that hot fixes these link failures within a few milliseconds.
Various techniques target offline hot fix generation for software vulnerabilities. MacHiry et al. [93] argue that
most security patches are safe patches meaning that they can be applied without disrupting the functionality
of the program and thus require no testing. They find that most patches in the CVE database are indeed safe
patches which they hope will encourage project maintainers to apply them without a delay. However, when such
a preventative approach fails and zero-day attacks are discovered, ShieldGen [31] is a technique that is able to
generate a patch given its instance. Subsequently, it is able to generate additional potential attack instances to
determine whether given the patch the system can still be exploited.
Several tools are designed to patch vulnerabilities in specific scenarios. For containerized applications specifically,
Tunde-Onadele et al. [139] [140] propose tooling, Self-Patch, for security attack containment that performs
both exploit identification and vulnerability patching. They report accurate detection and classification for 81%
of attacks as well as an 84% reduction in patching overhead. For out-of-bound vulnerabilities, AutoPaG [86]
catches the violation, and based on the data flow analysis is able to identify the root cause and generate a
patch automatically. The most impressive part of this work is that the vulnerability patch can be generated
within seconds. For Android, we found AppSealer [161] which automates fix generation for component hijacking
vulnerabilities. Finally, Aurisch et al. [15] propose using Mobile Agents for vulnerability and patch management.
We present a summary and side by side comparison of all tools mentioned in Table 12.
2d) Runtime Hot Fix Generation In this section, we focus on hot fix generation techniques that account for the
ability of the generated hot fix to be integrated into the system during runtime. Generating this specific type of
hot fix has been researched for multiple specific use cases.
While runtime hot fixing techniques aim to apply patches without interrupting system availability, they may
risk leaving the system in an inconsistent state. Katana [114] is a tool for hot fixing ELF binaries that aims to

ACM Trans. Softw. Eng. Methodol.

32 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Table 12. Summary of Offline Hot Fix Generation Tools Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

Time-Triggered
network sched-
uling

repairs time-triggered
schedules at runtime af-
ter link failures

synthetic network with
8 switches, 8 end sys-
tems, 54 links, and traf-
fic from 50–250 frames.

Pozo et al.[111] patching heals link fail-
ures in up to 2.5 ms

Security detection and repair of
out-of-bound vulnera-
bility

18 buffer overflows AutoPaG [86] patches for 15 out of 18
vulnerabilities.

Security mobile agents to detect,
distribute, and apply
vulnerability-handling
tasks

simulation of a military
network

Aurisch et
al.[15]

high vulnerability-
handling completion
rates

Security automatic Data Patch
Generation for Un-
known Vulnerabilities

25 vulnerabilities for
which Microsoft has is-
sued security bulletins
between 2003 and 2006.

ShieldGen [31] successfully generated
effective patches for the
majority of tested vul-
nerabilities

Security enabling Fast Patch
Propagation in Related
Software Repositories

41,767 patches from 32
large repositories + 809
CVE patches

SPIDER [93] able to identify 67,408
sps (safe patches) and
that most of the CVE
patches are sps

Security + Con-
tainerized Ap-
plications

security attack contain-
ment through detection
and patching

31 real world security
vulnerability exploits
in 23 commonly used
server applications.

Opatch [139] can accurately detect
and classify 81% vulner-
ability exploits

Security + Con-
tainerized Ap-
plications

runtime attack detec-
tion and dynamic tar-
geted patching for secu-
rity protection

31 real world vulnera-
bility attacks in 23 com-
monly used server ap-
plications

Self-patch [140] detect and classify 81%
of attacks and reduce
patching overhead by
up to 84%

Mobile + Secu-
rity

patch generation to pre-
vent known vulnerabil-
ities

16 real-world vulnera-
ble Android apps

AppSealer [161] successful on all vulner-
abilities in dataset

Online Service
Systems

suggest an appropriate
healing action for a
given new issue

243 issues of a large-
scale product online ser-
vice

Ding et al.[35,
36]

87% accuracy for heal-
ing action suggestion

Datacenters predicts the required re-
mediations for undiag-
nosed hardware failures

production repair tick-
ets from Facebook data-
centers.

Lin et al.[83] deployed at Facebook

reduce this risk. By introducing a new file format called a Patch Object, they can provide more information about
the structure and implications of patches. Jeong et al. [68] propose a newer tool designed for this same purpose.
However, they focus on adaptive resource management. Their platform prioritizes system resilience and resource
optimization by enabling imprecise computing and dynamic resource allocation in mixed-criticality systems

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 33

which allows for different behaviour in an emergency hot fixing scenario. Another attempt to encourage users to
use runtime patching is binary quilting [119]. This technique creates an entirely new reusable binary. With this,
users can apply the minimum patch required without the unwanted side effects. Finally, also based on binary
runtime injection techniques, band-aid patching [130] is a technique for testing hot fixes so that their deployment
can be accelerated. This technique alters binaries so that upon reaching a patched code segment, the system
initiates two execution threads that run both the modified and original code. It then retroactively selects the best
execution path by evaluating factors like detected errors, past outcomes, and user feedback.
Some techniques have been proposed which are security vulnerability-specific. ProbeGuard [18] balances perfor-
mance and security by hot fixing more powerful defenses when probing attacks occur. For string interpolation
vulnerabilities, DEXTERJS [106] is a low-overhead technique that automatically generates patches to place on
vulnerable sites. Xu et al. [153] propose a source code and binary level vulnerability detection and patching
framework. It learns from the source code the function inputs that trigger the vulnerability and builds a filter to
block them.
As previously explained, there is great value in hot fixing during runtime. However, many of the official patches on
CVE do not allow for it. VULMET [154] is a tool that learns from existing official patches and generates hot fixes
that can be deployed during runtime by using weakest precondition reasoning. Similarly, EMBROIDERY [164]
transforms official CVE patches into hot fixes for a broad spectrum of Android devices. The main contribution of
this tool is that it can be used to maintain obsolete Android systems and devices that often do not receive patches.
A major hurdle with quick hot fixing for mobile devices is that Android partners require lengthy compatibility
testing for the patches. InstaGuard [27] tackles this problem by bypassing the testing requirement through
avoiding the injection of new code and relying on rule generation instead.
As for memory management, systems have evolved to address runtime vulnerabilities by identifying and patching
memory errors in real-time. AutoPatch [121] is the first automated technique for hot fixing embedded devices
with high availability on the fly. It performs an automatic analysis of the original patch, extracting its underlying
semantics by leveraging predicate abstraction techniques. It then uses this information to generate a hotpatch—a
patch that is semantically equivalent to the official version but designed to be applied seamlessly in a live
production environment. Within memory management, for example, Exterminator [102] uses randomization
to find memory errors in C/C++ programs and derive runtime patches for them. It works through three key
components to detect, isolate, and correct memory errors. Firstly, they implement DieFast, a probabilistic
debugging allocator, which detects errors by randomizing heap allocations. Secondly, a probabilistic error
isolation algorithm analyzes heap snapshots to locate buffer overflows and dangling pointers, pinpointing the
exact allocation and deletion sites. Finally, a correcting allocator then applies targeted runtime patches, adding
padding to prevent overflows and delaying object deallocation to prevent dangling pointers. These runtime
patches are tailored to each error’s specifics and are applied both immediately in the running program and stored
for future executions, continuously improving application reliability First aid [40] is also a system tailored for
treating memory management bugs. It came after Exterminator to reduce the space and time overhead and allow
for scaling. By rolling the program back to previous checkpoints, it is able to diagnose memory bugs. Following
the diagnosis, First-aid then generates patches that prevent the memory bug and applies them during runtime.
More recently, in the era of large language models, we also see auto-remediation techniques utilizing them. Sarda
et al. [123] propose a tool for the runtime automatic remediation of Ansible playbooks using in-context learning
on pre-trained LLMs based on their custom Ansible remediation dataset. They achieve an average correctness of
98.86%, which hints at the applicability of these technologies to this problem space.
We present a summary and side by side comparison of all tools mentioned in Table 13.

ACM Trans. Softw. Eng. Methodol.

34 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Table 13. Summary of Runtime Hot Fix Generation Tools Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

Security patching unsafe
string interpolation

Alexa Top 1000 Web-
sites

DEX-
TERJS [106]

patch hundreds of ex-
ploitable DOM-XSS
vulnerabilities with
a reasonable perfor-
mance overhead

Security monitors applica-
tions for signs of
probing

SPEC CPU2006
benchmarks, Ng-
inx web server,
ApacheBench

Probe-
Guard [18]

stops all tested
probing-based ex-
ploit after the first
detectable probe

Security vulnerability detec-
tion and patching
framework for
source code and
binary

each component
evalauted separately
existing existing
work

Xu et al. [153] can find 97 new re-
curring vulnerabili-
ties for src and 71.0%
accuracy for binaries

Security +Mo-
bile

generating hot
patches from official
patches

373 Android kernel
CVEs

Vulmet [154] correct hot patches
for 55/373 CVEs

Security +Mo-
bile

transplants official
patches of known
vulnerabilities to
different Android
devices

two cross-platform
Linux CVEs and
vulnerabilities from
Stagefright library

Embroi-
dery [164]

tool fixes vulnera-
bilities in dataset
(dataset is small
though)

Security +Mo-
bile

instant deployment
of security no-code
patches for mobile de-
vices

CVEs from 2016 An-
droid Security Bul-
letins

Insta-
Guard [27]

can handle all evalu-
ated critical CVEs

Security +
real-time
embedded
devices

automatic hotpatch-
ing approach for real-
time embedded de-
vices

3 real CVEs from
Zephyr and PicoTCP

Au-
toPatch [121]

can automatically
generate hotpatches
correctly based on
the official patches

General soft-
ware

software patch test-
ing

N/A Band-aid
Patch-
ing [130]

preliminary proof-of-
concept

Continued on next page

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 35

Domain Function Benchmark Tool Effectiveness

Microservice
Applications

automatic reme-
diation through
generation of Ansi-
ble playbooks

custom-made
Ansible-based
remediation dataset

Sarda et
al. [123]

average correctness
98.86%

Memory automatically cor-
rects heap-based
memory error

SPECint2000 bench-
mark suite

Extermina-
tor[102]

Squid buffer overflow
identified and fixed;
Mozilla heap over-
flow identified

Memory surviving common
memory manage-
ment bugs and
preventing their
reoccurance

3 server applications
(Apache, Squid, and
CVS) and 4 desktop
applications (Pine,
Mutt, M4, and BC)

First-aid [40] provides quick
failure recovery
and thereby hides
program failures
from user

Elf binaries hot patching N/A Katana [114] prototype presenta-
tion with no in-depth
eval

ELF binaries hot-patching tool implemented a cus-
tom application

Jeong et
al. [68]

show feasibility
with exploratory
scenarios

Linux on x86 apply the minimum
patch for the targeted
bug to avoid side ef-
fects

10 open source utility
programs

Peanut [119] reduced patch size by
up to 90%

Answer to RQ2.2 (Autonomous tools for critical bug remediation): Hot fix remediation varies widely.
Well-managed configuration processes are crucial for reliable and responsive software maintenance such as
automation frameworks to improve efficiency and mechanisms for maintaining data integrity and stability
during runtime changes. When time is critical, symptom mitigation techniques like re-execution in modified
environments or rapid security workarounds can help contain issues quickly, though often at the cost of
loss of functionality or performance. Offline hot fix generation techniques enhance service reliability by
rapidly generating patches that apply upon reboot. Techniques range from using historical data to address
recurring issues, to specialized tools for specific vulnerabilities. Runtime hot fix generation techniques focus
on applying patches without disrupting system availability. These methods address a variety of use cases,
from memory management and security vulnerabilities to embedded devices and mobile systems.

9.2.3 Deployment Tooling. An important consideration for hot fixing critical bugs is how the hot fix can ultimately
be deployed efficiently after it is developed. There have been a number of works that tackle this problem from
different perspectives. The techniques differ greatly depending on the target system into which the hot fix will be
deployed i.e. Android systems, IoT infrastructures, cloud platforms, etc. In this section, we cover papers on the
deployment of hot fixes into different types of production systems.

ACM Trans. Softw. Eng. Methodol.

36 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

To allow software fixes and even features to be deployed more quickly, Van der Storm [141] [142] proposes a
solution for automating the delivery of components in component-based software. When deploying software
fixes to systems in production, the binary is modified and thus a restart is often required. This leads to downtime
of the system which is often disruptive, especially in user-facing and mission-critical systems. There has been
a lot of research into how patches can be integrated during run-time without causing the system to become
unavailable as a result of the update.
As explained in Section 2, this activity is often referred to as hot patching. As discussed, since a survey on hot
patching exists, our scope only includes work that hot patches time-critical issues, according to our definition of
hot fix. Payer et al. [107] call this a problem of “as soon as possible” (ASAP) repair. They investigate the feasibility
of runtime patching by investigating whether patches for critical bugs from the Apache web server can be
dynamically applied. They find that dynamic update mechanisms are feasible and highly effective. Katana [114]
is one such dynamic update mechanism. Katana specifically hot patches ELF binaries by creating patch objects
which the user can apply to running processes. The authors of this paper also address an important concern that
many owners have regarding hot patching. As this type of updating mechanism is less common, these techniques
are often viewed as at risk of leaving the system in an inconsistent state. Russinovich et al. [116] present an
optimization to live migrations of virtual machines that does not require turn space, requires minimal CPU, and
no network while preserving VM state and causing minimal VM blackout.
Users are sometimes reluctant to update their system once a hot fix has been deployed due to the risk of software
releases becoming incompatible and breaking their system. Saieva et al. [120] propose alleviating this friction
through a technique called Binary Patch Decomposition. This technique provides the users with extra context
around the distributed fixes which allows them to select and integrate the compatible pieces of the update. To
increase the robustness of upgrades but in the context of rolling upgrades on cloud platforms is an approach
named 𝑅2𝐶 [132].This approach offers early error detection of rolling upgrades as well as risk and time completion
predictions.
Several works address the deployment of hot fixes for Android systems specifically. InstaGuard [27] is a hot
patching approach for Android that bypasses the slow compatibility testing processes of Android device partners
to facilitate immediate patching for critical security vulnerabilities. InstaGuard makes this possible by avoiding
the injection of new code in the patch and enforcing instantly updatable rules instead. Ford et al. [38] discuss two
tools that tackle the same problem as Instaguard by bypassing the traditional mobile app patching lifecycle. They
find that while both of these tools do enable quick updates, they expose the users to many security vulnerabilities.
PatchDroid [100] is a tool that distributes and applies Android security patches. It enables safe in-memory patching
in a scalable way such that a patch can be written once and deployed to all affected versions. Socio-Temporal
Opportunistic Patching (STOP) [133] also enables the delivery of security hot fixes to mobile devices. It is a
two-tier system that collects co-location data of mobile devices then targets the delivery of hot fixes to a subset
of these devices. From there, the patch can be spread by these devices opportunistically. LEONORE [146] [145] is
a large-scale IoT deployment framework that allows for the provisioning of components on resource-constrained
edge devices. Araujo et al. [13] propose a patch management model for rapid deployment of security patches
during runtime. Their approach includes patch testing and recovery in the case of an incompatible patch.
In complete contrast with the idea of patching during runtime, Candea et al. [22] highlight the importance
of recursive restartability. In other words, the ability of the system to handle restarts at multiple levels. This
is because many nondeterministic bugs do not necessarily need to be patched. They can be solved by simply
rebooting. In their paper, they highlight the required properties for recursive restartability and outline steps
for beginning to adopt this in software systems. In a continuation paper [23], they discuss microrebooting. The
idea is to recover the faulty application components without affecting the rest of the application. We present a
summary and side by side comparison of all tools mentioned in Table 14.

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 37

Table 14. Summary of Deployment Tools Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

IoT elastic app provision-
ing on constrained,
heterogeneous edge
devices in large-scale
IoT deployments

real-world IoT de-
ployment from one
of their industry
partners

LEONORE [146] able to elastically pro-
vision large numbers
of devices using a
testbed based on a
real-world industry
scenario.

Security rapid deployment of
JIT security patches

6 server applications:
ApacheHTTP, ng-
inx, bind, sendmail,
samba, vsftpd

INSIDER [14] Insider is stable and
incurs a small over-
head

Mobile + Secu-
rity

instant deployment
of security no-code
patches for mobile de-
vices

CVEs from 2016 An-
droid Security Bul-
letins

Insta-
Guard [27]

can handle all evalu-
ated critical CVEs

Mobile + Secu-
rity

distribute and apply
third-party security
patches for Android

multiple Android de-
vices running differ-
ent Android versions
that contain a num-
ber of known vulner-
abilities.

Patch-
Droid [100]

effectively fixes se-
curity vulnerabilities
on legacy Android
devices without no-
ticeable performance
overhead

Mobile + Secu-
rity

method for users to
receive immediate
updates

no evaluation JSPatch/ Roll-
out.io [38]

no evaluation

Mobile + Secu-
rity

patching of Short
Range Mobile
Malware

3 traces of real mo-
bile device contacts
carried by human

STOP [133] STOP can contain
malware in a fi-
nite time in three
different types of
environments

Elf executa-
bles

hot patching no evaluation Katana [114] no evaluation

Web servers on-the-fly update
system that provides
ASAP repair

software updates
released for Apache
2.2 between Dec 1st,
2005 and Feb 18, 2013

Payer et
al.[107]

patching 45 of 49
bugs at runtime

Online service
systems

robust rolling
upgrade in clouds

testing in AWS and
through a simulation

R2C [132] early error detection
is accurate

Continued on next page

ACM Trans. Softw. Eng. Methodol.

38 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Domain Function Benchmark Tool Effectiveness

General soft-
ware

introduces recursive
restartability to toler-
ate restarts at multi-
ple levels

N/A Candea et
al.[22]

describes building RR
systems in a system-
atic way

General soft-
ware

workflow that al-
lows developers to
validate prospective
patches and users to
select which updates
they would like to
apply

constructed dataset
of 21 bugs in widely
used C/Linux pro-
grams

AT-
TUNE [120]

successfully val-
idated the real
developer patches in
both the developer
and operator envi-
ronments for 19 bugs
and failed for 2

Cloud minimizing applica-
tion downtime while
updates, including
zero-day patches.

deployed in Mi-
crosoft Azure

VM-
PHU [116]

deployed in Mi-
crosoft Azure

Component-
based systems

incremental, bi-
nary updates for
component-based
software systems

Asf+Sdf Meta-
Environment

Storm et
al.[142]

show feasibility/POC

Component-
based systems

agile and automatic
release of software
components

medium-sized
software system,
the Asf+Sdf Meta-
Environment.

Van et al.[141] the releases produced
are correct with re-
spect to the integra-
tion predicate

Component-
based systems

recovering faulty
application com-
ponents, without
disturbing the rest of
the application

internet auction sys-
tem running on an
application server.

Microre-
boot [23]

fixed majority of fail-
ures in the evaluation
system

Answer to RQ2.2 (Autonomous tools for hot fix deployment): Efficient deployment of hot fixes in
production systems requires tailored approaches depending on the platform, such as Android, IoT, or cloud
environments. Techniques like runtime patching and dynamic updates enable critical patches without
downtime. Meanwhile, tools like InstaGuard and PatchDroid focus on bypassing slow testing processes in
Android, facilitating faster deployment. Binary patch decomposition and rolling upgrade strategies offer
additional flexibility, providing users with context to select compatible fixes and enhancing the robustness
of deployments across diverse systems.

9.2.4 End-to-End Tooling. Our literature review concludes with a few works that outline end-to-end approaches
to automate the detection, remediation, and deployment of hot fixes for critical software issues.
The earliest work we could find that tackles this is Huang et al. in 2005 [60]. The authors propose an automated
hot fixing framework in which they are able to reason about the cause of a fault, apply simple remediation

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 39

patching, and do this during runtime without affecting the system’s availability. They evaluate their technique on
a small-scale within the domain of web-based applications.
For security, Data flow Analysis for Known Vulnerability Prevention System [113] is an end-to-end technique for
protecting a target system at risk from security attacks. It detects attacks through dataflow analysis, examines
the spread of the attack, and generates an appropriate vulnerability filter and hot fix which can be deployed at
runtime.
As for Mobile applications, Gomez et al. [43] present a new vision for app stores. This new generation of app
stores aims to automate several functionalities in mobile app maintenance to improve their quality and reduce
human intervention. By utilizing user reviews, ratings, execution traces, and crash reports they aim to monitor
and analyze the app and then automatically be able to generate, validate, and deliver patches. This new generation
of app stores would work in a feedback loop model such that the newly delivered patches would result in new
input data that they can then use to produce even more patches. They begin to realize their vision for Android
devices in a continuation paper [52]. The framework was tested minimally on a single app in which they were
able to patch a user-reported crash.
Wolverine [144] is an interesting tool that addresses the three phases of detection, repair, and deployment.
However, it does this within the context of debugging sessions. By allowing the developer to step through the
program states and visualize them, Wolverine aids with detection. It then implements a repair algorithm that
synthesizes patches. To avoid having to abort the debug session, it allows for hot fixing suggested patches during
runtime. It has been evaluated on somewhat small programs (student submissions and programs that implement
known data structures).
Other tools have made it possible to create and apply targeted fixes directly within production environments, even
without pre-existing test cases. These tools target specific bug types. Itzal [37] is an automated software technique
that generates patches directly in the production environment. The novelty of this tool is that it removes the
requirement of having a failing test case. Instead, it accesses the system state at the point of failure to conduct
regression testing and patch search. The paper discusses a proof of concept prototype implementation which was
evaluated on null dereference failures specifically. Such tooling can accelerate the process of generating hot fixes
as it not only automates the patch generation process but is designed to work directly in production. AFix is
another tool that automates this whole process [72] only targeting a specific bug type. AFix targets single-variable
atomicity violations. It is first able to detect these bugs from bug reports. Using static analysis, AFix constructs
suitable patches for the detected bugs. Finally, it attempts to combine multiple patches to improve performance
and readability. It provides customized testing for each patch for validation. Sidiroglou et al. [131] also only look
at a specific set of bugs, those that are recurring within the system. Using an instruction-level emulator before
instruction execution, they are able to check for recurring faults and recover a safe control flow for the program.
Finally, ClearView [108] is a five-step automated system for patching systems with high availability requirements.
It learns invariants of the program behaviour, monitors for failures, identifies failures through invariant violations,
generates patches to uphold the invariants by changing the state or flow of control, and observes the execution
after patches are applied to select the most successful patch. As for evaluation, an external Red Team generated
10 code injection exploits to attack an application protected by ClearView. ClearView was able to block all attacks.
It was able to generate patches that correct the behaviour of the system under attack in 7 out of the 10 cases.
These tools are inspiring, as they demonstrate the feasibility of automation in this domain and the implications
that this can have on software development.
We present a summary and side by side comparison of all tools mentioned in Table 15.

ACM Trans. Softw. Eng. Methodol.

40 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Table 15. Summary of End-to-End Tools Applicable for Hot Fixing

Domain Function Benchmark Tool Effectiveness

Mobile app store monitor-
ing to automatically
be able to generate,
validate, and deliver
patches

N/A App store
2.0 [52]

paper presents a vi-
sion

Mobile envision a new gener-
ation of app stores

PocketTool app Smart App
Store [43]

prototype initial re-
sults

General
threaded
programs

fixing single-variable
atomicity violations
from bug reports

8 real-world open-
source multithreaded
application

AFix [72] fixed 97 out of 105
known atomicity vi-
olations

Windows x86
binaries

online patching of de-
ployed software

10 code-injection ex-
ploits

ClearView [108] generated patches for
7/10 exploits – de-
tected all 10

Web applica-
tions

hot patching web
apps

simulated ATM web
app

Huang et
al.[60]

proof-of-concept
mini experiment

Security detects and blocks ex-
ploits by performing
dynamic taint analy-
sis

no evaluation DA-VPS [113] no in-depth experi-
mentation

Heap ma-
nipulating
programs

debug-Repair envi-
ronment: visualize
program and gener-
ate hot patches

1600 buggy programs
generated using fault
injection

Wolver-
ine [144]

could repair all the
buggy instances in
less than 5 seconds in
most instances

Specific fault
classes

detection and con-
tainment of specific
faults: buffer over-
flows, illegal mem-
ory dereferences, and
division-by-zero

set of exploits against
popular server ap-
plications (Apache,
OpenSSH, and Bind)

Sidiroglou et
al.[131]

prevented recurrence
of over 88% of tested
software faults

General
system

generate patches on-
the-fly directly in pro-
duction

N/A Itzal [37] prototype with lim-
ited evaluation

Answer to RQ2.2 (Autonomous end-to-end tools): End-to-End hot fixing tools demonstrate promising
advancements in runtime patch generation, sometimes even without pre-existing test cases. The strengths of
these tools include their innovative approaches to maintaining system availability during hot fixing and their
effectiveness in addressing narrowly defined issues, such as security attacks or specific bug types, making

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 41

them highly efficient in specific contexts. However, their main limitations are their narrow focus, with
many tools only targeting specific bug types (e.g. atomicity violations or null dereferences) or small-scale
applications (limited evaluation of the tools), and their limited scalability across diverse systems. These
challenges suggest that further research is required to enhance the versatility and applicability of these tools
for broader use in complex and varied software environments.

10 RQ3: Hot Fix Characteristics and Domains
To answer RQ3, we employed the surveyed tools as a lens to understand the characteristics of hot fixes and the
domains in which they are applied.
The evidence shows that hot fixes most often address crashes, performance failures, memory errors, and security
vulnerabilities. They are expected to be urgent and lightweight, enabling their application in runtime or near-
runtime contexts. At the same time, they often rely on rollback or containment mechanisms so that systems
can continue operating while a fix is applied. This is either through neutralizing an attack, masking a failure, or
recovering execution without downtime.
Looking across domains, hot fixes appear most critical in high-availability, user-facing environments where
downtime has significant consequences. These include cloud and large-scale online service systems (e.g., Azure,
Microsoft Exchange, Facebook datacenters), where interruptions affect millions of users. Additionally in mobile
ecosystems, where diverse devices must be quickly secured against vulnerabilities. Hot fixes also play a vital role
in security-sensitive environments, where rapid mitigation of exploits and CVEs is essential. Beyond these, they
are applied in embedded/IoT systems, datacenters, and enterprise software, showing that hot fixing is not tied to
a single platform but consistently arises wherever resilience and continuity are paramount.
From the 107 tools we analyzed (spanning early 2000s to 2023), further characteristics of hot fixes emerge. They
are typically urgent, localized, and domain-specific rather than broad or generic. The scarcity of end-to-end
frameworks (fewer than 10, mostly published between 2005–2015 and minimally evaluated) illustrates that
holistically automating hot fixing remains difficult. Instead, support for hot fixes has evolved around incremental,
modular interventions, rapid detection, effective triage, targeted patch generation, and safe deployment rather
than monolithic solutions. Hot fixes are also almost never fully autonomous due not only to technical difficulty but
also to the required oversight for this class of high-stakes patching. Most approaches remain human-in-the-loop,
requiring developer oversight during triage, validation, or rollback, which highlights the balance struck between
urgency and caution.
Another characteristic that emerges from our study is how hot fixes are benchmarked and validated. We observed
a strong divide. The first category that many tools demonstrated is that they are evaluated directly in production
environments or on industry datasets. We saw error reports from Windows machines worldwide, incident logs
fromMicrosoft Azure, Facebook datacenter repair tickets, or CVE vulnerabilities in Android and Linux.The second
category of papers exist only as proof-of-concept prototypes with minimal or no real-world validation (e.g., App
Store 2.0, Katana, Itzal). Even when synthetic benchmarks are used, they often attempt to reproduce high-stakes
operational contexts, such as fault injection into Apache/MySQL servers or stress testing in distributed clusters.
This divide between production-grade deployments and prototype-level work highlights both the practical
urgency of hot fixing in industry settings and the technical difficulty of developing fully validated, end-to-end
solutions for hot fixing.
The surge of recent activity in cloud, mobile, and security-related highlights that hot fixes are most necessary in
environments where uptime and user trust are non-negotiable. Thus, a further recurring property is the focus on
minimizing cost and overhead—whether through smaller patch sizes, low-latency deployment, or lightweight
runtime monitoring so that fixes can be applied without disrupting running systems. Historically, earlier work

ACM Trans. Softw. Eng. Methodol.

42 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

in the 2000s emphasized rollback and fault tolerance, whereas recent research has shifted toward automation,
AI/ML-driven detection, and large-scale cloud and mobile environments, showing how hot fixing evolves with
deployment models. At the same time, tooling remains highly fragmented and domain-specific, with few general-
purpose frameworks and limited standardized benchmarks, suggesting that effective hot fixes are inherently
context-bound and that progress depends heavily on collaboration with industry environments.

Answer to RQ3 (Hot Fix Characteristics and Domains): Hot fixes are urgent, localized, and domain-
specific, most often addressing crashes, vulnerabilities, memory errors, or performance failures in high-
availability environments such as cloud, mobile, and online services. They rely on modular interventions:
detection, triage, patch generation, and deployment rather than end-to-end automation, not only due to the
technical challenge but also to keep humans in the loop to balance urgency with caution. Evaluations reveal
a split between industry-grade production deployments and academic proofs-of-concept, underscoring that
hot fixes are inherently context-bound and resource-intensive.

11 RQ4: Open Challenges
In this section, we answer RQ3 by identifying open challenges on the basis of the literature reviewed. We provide
a summary of such challenges in Table 16, and describe each of them in detail below. These challenges are not
explicitly enumerated in prior work. They have been inferred from the recurring gaps, absences, and limitations
we observed across the studies we surveyed.
The Hot Fixing Vocabulary Challenge: Using an unified terminology to aid understanding of the state-of-the-
art in the area and ease building upon existing work. In our previous work [55], we provided a detailed analysis
of the inconsistencies in terminology found in the literature, within papers that explicitly define the term. In
covering hot fixing papers in this study, we highlight that they rely on these conflicting definitions. One such
example is the tool Wolverine [144] that defines hot patches as patches applied during debugging sessions, while
AutoPatch [37] refers to them as automated patches designed to be semantically equivalent to official security
patches but can deployed directly in the production environment. This difference can lead to confusion when
comparing the two tools. This inconsistency complicates research comparisons, hinders progress in the field,
and limits the development of universal tools or methodologies A unified terminology would make it easier to
identify commonalities and distinctions, helping researchers and developers build on each other’s work more
systematically.
TheHot Fixing Benchmarking Challenge: Building a benchmark of hot fixes to aid research comparisons
and ease progress in the area. A clear challenge that emerged through compiling and analyzing the existing work
in this space is how difficult it was to compare the different tools. As it stands, there are no hot fix benchmarks
that can be utilized by researcher to evaluate their tools against previous work. Existing tools are typically tested
within isolated or specific environments (e.g., ClearView [108] with code injection exploits and Itzal [37] with
null dereference failures). These limited benchmarks prevent a clear comparison across tools. Across several tools,
the absence of standardized benchmarking prevents a clear and fair comparison of their effectiveness, especially
when considering factors like error types, platform compatibility, real-time performance, scalability, and impact.
These inconsistencies in benchmarking hinder progress in the field by making it difficult to assess the overall
state of the art in automated hot fixing. Developing a standardized benchmark for evaluating hot-fixing tools
could enable objective comparisons, accelerating advancements by providing a clear framework for performance
metrics and comparison.
The Hot Fixing Taxonomy Challenge: Creating a taxonomy for critical bug classes such that remediation
strategies can effectively target them to drive research toward more advanced remediation tooling. Many tools

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 43

Table 16. Open challenges in hot fixing.

Open Challenge Priority Impact

The Hot Fixing Vocabulary Challenge 1 Unified definitions will ensure that future empirical work,
benchmarks, tooling, etc address the correct problem.

The Hot Fixing Benchmarking Challenge 2 Specialized benchmarks are needed to understand the
current state-of-the-art and eventually to evaluate the
performance of hot fixing tooling that will be built.

The Hot Fixing Taxonomy Challenge 3 Outlining a taxonomy for critical software bugs that hot fixing targets
will ensure that tooling is sufficient and complete.

The Hot Fixing Industrial Practice Challenge 4 Understanding the current industrial practices will aid
in understanding the pain points and help in building
useful tooling. Additionally, candid conversations with
developers who work on hot fixing are essential to
creating a body of work that is useful to them.

The Hot Fixing Distribution Challenge 4 Gaining a deeper understanding of hot fixing patterns
will help systematize this activity.

The Hot Fixing Impact Challenge 4 Critical issues are the targets of hot fixes. Thus, studying
their impact is integral to developing successful hot
fixing tooling.

The Hot Fixing Tooling Challenge 5 There are many directions for future work in developing
hot fixing tooling. Such tooling can make hot fixes faster
to develop and deploy and lower its risk on the
production environment.

The Hot Fixing Predictability Challenge 6 Accelerate the process of identifying critical issues and
thus accelerating their hot fixing process.

target distinct types of bugs (e.g., AFix [72] for atomicity violations, Itzal [37] for null dereference failures), but
there’s no cohesive taxonomy of critical software bugs that would allow for connecting critical bug classes to
remediation strategies. This absence makes it difficult for researchers to generalize findings and identify tools best
suited for particular bug types. A taxonomy could drive more focused tool development by clarifying which types
of bugs are critical and mapping each to effective remediation methods. In this paper, we provide a taxonomy
of the hot fixing studies found in the literature. However, a comprehensive taxonomy detailing the critical bug
classes such that hot fixes can address them is still missing. Such a taxonomy would allow us to more accurately
identify gaps in tooling and match specific tools to the relevant critical bug categories.
The Hot Fixing Industrial Practice Challenge: Conducting more empirical studies on industrial practices in
terms of automated strategies and manual intervention for detecting, remediating, and deploying hot fixes. Most
tools are evaluated on small-scale or controlled cases (e.g. app store model on a single app [52]), meaning there’s
limited knowledge of how these techniques would fare in real-world, large-scale industry settings. Additionally,
Conducting questionnaires and surveys with industrial practitioners can play a crucial role in ensuring that
hot fixing tools are developed for the correct use cases by providing direct insights into real-world practices,
needs, and challenges. Industrial practitioners deal with a wide variety of issues that may not be captured in
academic research (e.g. specific high-priority use cases, resource constraints, and availability requirements). They
can highlight gaps in their workflow and provide valuable feedback on future tool development and integration,
ensuring that the tools are not only technically effective but also align with the needs and processes of current
industry standards

ACM Trans. Softw. Eng. Methodol.

44 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

The Hot Fixing Distribution Challenge: Providing details on the cost of hot fixing in software enterprises and
the average frequency of hot fix releases to aid future research and understand the hot fixing cost in practice.
The costs associated with hot fixing in enterprise environments, such as resource allocation or frequency of
hot fix releases, are rarely addressed in current research. Since tools like Exterminator [102] and First-aid [40]
highlight the runtime and space overheads of their approaches, understanding the cost trade-offs in real-world
settings could guide tool development to balance performance with minimal impact on resources. While tools
focus on specific bug types and patching methodologies, they tend to overlook the operational costs involved in
applying patches at scale. Issues such as the time to generate and apply patches, resource consumption during
patching, and the impact on system performance are less clear making the advantage of using automation over
standard manual processes less convincing. As the research community develops these tools further, a more
detailed exploration of the costs involved in hot fixing would help in creating tools that minimize disruptions to
live systems and optimize the use of resources.
TheHot Fixing Impact Challenge: Measuring the impact of a critical issue and predicting the best remediation
strategy for it as a first step towards automating hot fixing. This includes automation for quantifying the time
allotted to find the fix, the issue’s direct impact on users, and the desired type of resolution. We have found
that the impact of an issue on end-users, as well as the time-sensitivity of a resolution, is not fully captured
when considering the business-criticality aspect of hot fixing. A framework that evaluates an issue’s urgency
and impact on users before suggesting a remediation approach could improve the prioritization of hot fixes in
dynamic production environments.
The Hot Fixing Tooling Challenge: Developing specialized tooling for hot fixing for all of the phases that
we identified in this survey: identifying critical issues, remediating these issues, and finally deploying the
hot fixes as quickly as possible. Automation and the creation of end-to-end specialized tooling here opens up
many directions for future work. Existing hot fixing tools generally excel at isolated phases of the process
(e.g. Triage [137] for failure diagnosis or InstaGuard [27] for immediate deployments in Mobile app stores).
However, a truly comprehensive hot fixing tool would need to cover the entire lifecycle—detecting critical issues,
implementing precise fixes, efficiently deploying patches in real-time, and measuring their post-deployment
impact to ensure stability and effectiveness. While we have presented some tools that attempt at integrating
multiple phases (detection, repair, and deployment), they remain limited to specific bug patterns lack the full
spectrum of capabilities needed for production-scale systems. For instance, Exterminator [102] specializes in
memory errors, while AFix [72] focuses on crafting patches for atomicity violations. Building more robust,
end-to-end tooling could streamline workflows for engineers and reduce both manual intervention and potential
delays, ultimately enhancing the reliability and responsiveness of production systems. Expanding tooling to
include post-deployment monitoring for impact assessment, in particular, would provide valuable insights into
hot fix effectiveness, making it easier to iterate on solutions.
The Hot Fixing Predictability Challenge: Exploring the power of existing defect and vulnerability prediction
tooling on the set of bugs that have been hot fixed, to understand their ability to detect such bugs. Defect
prediction tools have not been widely tested on bugs specifically requiring hot fixes. By examining how well
these tools can predict bugs typically addressed by hot fixes, the industry could better allocate resources toward
bugs with a high likelihood of needing urgent remediation, leading to more proactive issue resolution.
Although these open challenges may appear to be fundamental recommendations, they have yet to be fully
explored in the context of hot fixing, further highlighting the need for more research in the area. This makes
these challenges even more paramount as we find that many of the building blocks for facilitating advancements
in research within the area remain untapped. We hope that these recommendations highlight the need for this
foundational research to the research community.

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 45

Answer toRQ4 (Open challenges):We identified 8 open challenges in hot fixing research from our literature
review. These challenges include establishing consistent terminology, creating robust benchmarks, clarifying
the taxonomy of critical bugs that hot fixes target, conducting more industrial studies, understanding both
system and financial impacts, developing comprehensive end-to-end tooling, and predicting the need for
hot fixes. For each, we outline key motivations from existing work, assign a priority level, and assess its
expected impact on the community.

12 Discussion and Reflections
In this section we expand on the aforementioned challenges through a detailed discussion and reflection on the
existing body of work. We also point out directions for future work.

12.1 Terminology
It is very evident from this review that the terminology used in different papers is sometimes conflicting. This
has created a disjointed body of research. A first step in advancing the research on hot fixing is unifying the
terminology and reflecting on how all of the papers that address this topic fit together – our aim with this
comprehensive review. Moreover, some of the existing work included in our review is applicable to hot fixing,
since it addresses the treatment of critical bugs, even though it does not explicitly mention any hot fixing
terminology. Thus, we urge the community to not only produce more research directed at hot fixing but also to
pay careful attention to consistency of terminology so as to streamline the acquisition of collective knowledge.
To facilitate this effort, we have proposed a unified definition for hot fix (see Definition 1). This definition guided
the scope of search for our survey. During our literature search and screening process, we reviewed a large
number of papers that referenced or described the hot fixing phenomenon. Across this material, three conditions
consistently emerged as the clearest way to operationalize our definition in practice, as follows.
An update in production qualifies as a hot fix if and only if it satisfies all of the following conditions:

(1) Trigger condition:The change is initiated reactively in response to an unplanned disruptive, high-impact
issue in production.

(2) Development condition: The issue creates a severely constrained time window for mitigation, limiting
the extent of engineering activities normally performed.

(3) Deployment condition: Immediate release requirement: deployed at the earliest operationally viable
moment and is prioritized above current tasks or other defects, due to its time-critical nature.

A software update that does not satisfy any one of these three conditions is not a hot fix, regardless of domain
or release cadence. These conditions provide concrete guidance for researchers and practitioners to draw the
boundary of when an update is a hot fix. Table 17 illustrates the boundary of the definition by demonstrating
updates that qualify as hot fixes and updates that fail one or more of these conditions. Each example reflects a real
software-engineering scenario and shows precisely why it does or does not qualify as a hot fix, reinforcing the
necessity of satisfying all three conditions jointly. These conditions distinguish the impact and severity (condition
1), responsiveness and pressure (condition 2), and the release immediacy (condition 3), ensuring that only changes
requiring rapid development and rapid deployment due to a disruptive production incident qualify as hot fixes.
These complement our intentionally broad definition while preserving its ability to capture the phenomenon
across domains.

ACM Trans. Softw. Eng. Methodol.

46 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

Table 17. Examples of updates that qualify and do not qualify as hot fixes.

Update Failed condition Hot fix because…
Faulty configuration flag causes production crash N/A Triggered by a disruptive failure, fixed under

severe time pressure, and deployed
immediately to restore service.

Zero-day security critical vulnerability N/A Reactively addresses a high-impact security
incident, prepared rapidly, and released as soon
as operationally viable.

Severe performance regression under peak load N/A Production users experience critical degradation;
engineers produce a minimal targeted fix quickly
and deploy it right away.
Not a hot fix because…

Feature release to meet customer deadline (1) Urgency is driven by a customer deadline
rather than high-impact issue.

Slow-progress data corruption in production (2) A disruptive production failure exists, but
its gradual progression allows development
to occur without a constrained time window.

Urgent fix delayed for marketing (3) A severe issue is fixed urgently, but
deployment is paused for marketing-led
incident messaging, effectively removing
the urgency.

Immediate routine enhancement (1) & (2) Not incident-driven and not urgent, yet
deployed immediately.

Deadline-driven feature change in batched release (1) & (3) Not incident-driven and not deployed
immediately, though developed urgently.

Severe issue delayed pending resource availability (2) & (3) A disruptive failure exists, but development
does not begin immediately and deployment
is postponed due to resource constraints.

Routine feature update (1) & (2) & (3) No incident, no urgency, and not deployed
immediately.

12.2 Benchmarks
From here, an essential requirement for driving research on a specific topic forward is reliable benchmarks. In our
review, we were not able to find any such large-scale benchmarks on hot fixing. We believe that having a collection
of real-world hot fixing instances can help in better understanding this software engineering activity as observed
in production. As explained in section 9.2.2, we were able to identify multiple remediation techniques depending
on the type of critical issue. Thus, a larger benchmark is needed here to realistically capture the different hot fix
types depending on the granularity (e.g. build, configuration, source code) as well as the robustness of the fix (e.g.
workaround, root cause fix). Such a benchmark can help in determining the effectiveness of existing tooling so
that research efforts can be directed more productively. Tens of millions of public repositories exist on GitHub[3]
which can be utilized in creating it. Taking this a step further, it would be valuable to collaborate with industrial
stakeholders to create benchmarks from larger-scale products. As the size of the product grows, prioritizing the
issues and detecting the most critical ones inevitably becomes a more difficult task. Generating a hot fix for these
issues becomes more complex as there are likely more dependencies that would need to be taken into account.

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 47

Thus, we hypothesize that the scale of the target system would have some effect on what constitutes a hot fix and
what the classes of hot fixes would be.

12.3 Hot Fixing Practices
In open-source empirical research on hot fixing, mobile applications and video games have been the most studied
assessing the types of updates and the bugs that they target (Section 8.1). Assessing these properties in different
domains, such as security, cloud, web, and machine learning models, can be further explored in the literature. We
believe that this is essential for drawing wider conclusions from the empirical results.
Multiple smaller-scale studies have been conducted in industrial settings. There has been industry-partnered
research in which hot fixing is mentioned but is not the central topic of the work [158]. In the future, we hope to
see larger-scale studies on hot fixing efforts in real-world applications. Moreover, we found that there has not
been large-scale industrial adoption for hot fix automation tooling as of yet. We hope that future research on hot
fixing creates a positive feedback loop in industrial settings.
The literature lacks detail on the cost of hot fixing in software enterprises, the average frequency of hot fix
releases, and a structured taxonomy on the critical bug types that they target. This quantitative information is
important for incentivizing companies to invest in hot fix automation tooling and further understanding the
level of automation that is actually required to optimize productivity and user satisfaction.
Finally, while surveys and interviews have been conducted with end users [143] and system administrators [79]
there is still a gap in conducting such human empirical work with the software developers. Understanding
patterns in hot fixing activities from their perspectives can bring the required insight for understanding the
prevention of bugs targeted by hot fixing.

12.4 Semi-Automated Tooling
Semi-automated tooling whose purpose is to aid system administrators with treating critical crises needs to
mimic the user journey of the administrator. In this section, we break down the user journey into its different
stages and address possible future research directions given existing work as presented in Section 9.1.
The administrator needs to get notified of the crisis in a user-friendly way to increase productivity. Techniques
for localizing logs that demonstrate the incident via log clustering [163] and system KPIs [57] make this possible.
They then need to know the impact of the crisis. This includes quantifying the number of users that it affects,
whether backups exist, the criticality of the features/projects affected, and so on. This will inform the amount of
time that they have to resolve the crisis. We found tooling for tracing dependencies [19], summarizing a data
center’s state using system metrics [20], and effort prioritization given a collection of error reports [42]. We
believe that there remains potential here in taking this a step further. We envision a tool that brings these tools
together. Given the dependency tracing, the system’s current state, and effort prioritization, we need to automate
quantifying the time allotted to find the fix, the issue’s direct impact on users, and the desired type of resolution
(compromising features, finding the root cause solution, securing the system, etc.), assigning the task to the most
qualified administrator for the task, as well as providing the required data for the following step.
From here, they will begin resolving the crisis. The resolution will be affected by the criticality of the crisis and the
time allotted to resolve it. As such, for crises that need immediate resolutions, workarounds will be implemented
whereas for crises that allow for more time, a true resolution might be achieved. Automated tools that detect
recurring crises [151] [19] and suggest resolutions for them can greatly help in increasing the turnaround time as
well as increase productivity so that they do not have to resolve the same issue multiple times. Automated repair
techniques exist [44], however, none target the needs of system administrators directly. In the future, we would
like to see a clear taxonomy of the types of bugs that are observed by these individuals to help drive research

ACM Trans. Softw. Eng. Methodol.

48 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

forward. We expect that the different classes of critical bugs require vastly different remediation strategies. Given
the taxonomy, we will hopefully begin to see more specialized automated repair tooling for system administrators.
Once a resolution has been reached, it must be deployed as quickly as possible ideally without causing any
downtime to the target system. We were able to find a tool for measuring the impact of an update for better
system update safety [148]. From here, verifying that the resolution did indeed resolve the crisis is required. There
is a gap here in the literature. We envision an automated tool here dedicated to managing recently deployed
resolutions. Specifically in tooling for verifying the satisfaction with the deployed fix, measuring its impact
post-deployment, and specifying whether it needs to be improved at some point into a permanent fix, when this
fix would need to take place, and who would be responsible for undertaking it.
The Microsoft Service Analysis Studio [90] is the closest tool we found in this domain to more advanced system
administrator tooling. However, this paper was published over 10 years ago. Since the internal process for
software engineering tasks are ever-changing and advancing with the growing size and complexity of systems,
we believe bringing such a study up to date can be extremely valuable. Thus, we encourage the community to
publish research in this area so that we can begin to see a new generation of such tools targeted specifically at
time-critical software issues. In a follow-up paper [91], the authors reflect on their experience with this system
and the lessons learned along the way. To demonstrate the value of the system early, the team took a step-by-step
approach to manage engineering resources rather than building out the service all at once. They emphasize the
importance of maintaining the system’s robustness, performance, and availability and discuss the algorithms that
they adopted in order to do so.

12.5 Detection Tooling
We were able to find detection of critical software issues in the context of performance degradation, functional
defects, and security vulnerabilities. We specifically only wanted to include tools that mention identifying ritical
issues. Our search concluded with only 26 papers, suggesting that more research in this area is needed.
None of the studies that we found in the context of detecting critical issues specifically target prediction. There is
abundant research on vulnerability [126] and defect prediction [134]. However, through this review, we were not
able to see a clear correlation between those works and hot fixing. We believe that there is untapped potential in
the applicability of these prediction techniques for this context.

12.6 Remediation Tooling
For the purpose of hot fixing, there is no one-size-fits-all solution. A fully optimized remediation framework
for critical software issues must sit on top of all of the remediation strategies that we mention in Section 9.2.2:
reconfiguration, symptom mitigation (workarounds), as well as offline and online hot fix generation. Depending
on the nature of the critical issue, the correct remediation strategy must be applied. This will depend on the
type of bug, its impact, the complexity of the resolution, the availability requirements of the system that the
issue resides in, and so on. The major gap in the literature that we see here is not necessarily in advancing
each of the remediation strategies. We believe that the first step that needs to be tackled here is deepening the
collective understanding of what strategy needs to be applied and when. This can then be unified in a switch
case-like system that automates the assignment of each critical issue to the correct strategy and launches that
corresponding automated remediation technique.

12.7 Deployment Tooling
Despite the abundant existing research on runtime patching of software, these techniques are not often applied
in practice. One of the major reasons is that software developers and maintainers view them as high-risk for
breaking the target systems. Thus, we think that more human-studies are required to understand the needs of

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 49

these individuals in order to build tools that they can put their trust in. More empirical research on the success of
these techniques can help in shifting their perspective as well. Finally, simulation environments can help validate
the runtime patch before deployment.

12.8 End-to-End Tooling
One of the main takeaways we wish to leave you with in this survey is that end-to-end tooling for automating
hot fixes is lacking. We were only able to find four tools that address all three phases of treating critical software
issues. However, these tools are either within a specific domain (i.e., mobile [43], web apps [60]), or target a
specific kind of critical software issue (i.e. single variable atomicity violations [72], online debugging [144]). We
believe that there is a big gap in the literature here. This task of hot fixing critical software bugs is needed in every
system in production. Directed research on this specific task and how it can be partially/fully automated will
have an immense impact on the software engineering community and a wide variety of applications in industrial
settings. We encourage researchers to further expand the existing research into different use cases and domains.
As explained in the survey methodology (Section 6), our scope encapsulates work that targets hot fixing activities
specifically. However, much bug detection, remediation, and deployment tooling exists that are not targeted at
critical software issues or hot fixing. Comparative studies that analyze the efficacy and efficiency of this more
general tooling but in our use case, as opposed to hot fixing-specific tooling, would be useful to better understand
the current state of the art.

13 Threats to Validity
The relevance filtering of the papers in the search was conducted by one author of this paper. As this can be
subject to judgment bias, a second author of this paper acted as a second judge on a sample of the papers to
measure agreement. A 10% random sample of the irrelevant papers and 10% random sample of the relevant ones
were selected and shuffled. The second judge then manually assessed and filtered the papers based on the scope
of the literature review.
The second author’s judgment matched that of the first judge in all but two instances. There were two papers
that were included in the scope of the survey that the second author deemed as irrelevant. These were papers
that did not explicitly mention hot fixing or addressing critical software issues. Instead, they present transferable
techniques that can be applicable to the problem as they automate the detection of bugs and the deployment of
patches into the end system. Thus, we conclude that the judgment of the author who collected the papers does
not miss any relevant work. However, they were more lenient with their inclusion criteria which might have
resulted in more papers getting included in this survey.
In our primary search, we use two keywords: hot fix and hot patch. We attempted to look for synonyms of
these keywords in the IEEE thesaurus [62] but were unable to find any. Thus for due diligence, we conducted a
primary search on keywords we see as related to the scope of this literature review. We conducted this search
on one search engine only to gauge relevance which was IEEE Xplore. We experimented with the following
keywords: critical bug fix, critical bug patch, critical fix, and critical patch. We found that the number of search
results returned was very small (3, 0, 14, and 51 respectively). In addition, only 5 papers were relevant to our
scope and out of these 5 papers none were key papers that would add substantial additional knowledge to the
contents of this review.
Finally, the categorization of the papers is subject to bias. We mitigate this by following the thematic analysis [21]
procedure used in qualitative research to conduct this in a more structured manner.

ACM Trans. Softw. Eng. Methodol.

50 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

14 Conclusions
We have presented an overview of existing work on hot fixing for software systems. Hot fixing is a fundamental
software engineering task for systems in production. However, we found that the number of publications on the
topic remains limited and the terminology is yet to be streamlined. We believe that hot fixing both in industry and
research has the potential to become a more systematic and established software engineering activity, and less of
an afterthought than it is viewed today. With this paper, we wish to ignite more research in the area, especially
toward automation. In the future, we hope to see community effort in building benchmarks and conducting both
quantitative and qualitative empirical studies on current practices. Following a deeper understanding of the state
of the art and current challenges, we then hope to start seeing the process become more automated.

Acknowledgments and Copyright
We would like to thank those authors who provided comments and feedback on earlier drafts of this paper. We
would also like to thank Prof. Mark Harman for his valuable input at various stages of this work. This work
was supported by the UKRI EPSRC Fellowship EP/P023991/1 and the ERC Advanced Grant No.741278. For the
purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license to any accepted
manuscript version arising. ChatGPT was utilized to improve the clarity and readability of certain sections of the
manuscript. However, all ideas, arguments, and conclusions presented were entirely developed by the authors of
this paper.

References
[1] ACM Digital Library. https://dl.acm.org/. Accessed: 2023-11-17.
[2] dblp: computer science bibliography. https://dblp.org/. Accessed: 2023-11-17.
[3] Github: Let’s build from here. https://github.com/. Accessed: 2023-11-17.
[4] IEEE Xplore. https://ieeexplore.ieee.org/Xplore/home.jsp. Accessed: 2023-11-17.
[5] ScienceDirect. https://www.sciencedirect.com/. Access: 2023-11-17.
[6] Hotfix notes for version 10.109.3.13. https://help.jiraalign.com/hc/en-us/articles/8249094221716-Hotfix-Notes-for-10-109-3-13, 2025.

Accessed: 2025-08-27.
[7] Agarwal, A., and Garg, N. K. Effective test strategy model for ensuring ftr of hot-fix. ICROIT 2014 - Proceedings of the 2014 International

Conference on Reliability, Optimization and Information Technology (2014), 40–43.
[8] Ahmed, B. H., Lee, S. P., Su, M. T., and Zakari, A. Dynamic software updating: a systematic mapping study. IET Software 14, 5 (2020),

468–481.
[9] Ahmed, T., Ghosh, S., Bansal, C., Zimmermann, T., Zhang, X., and Rajmohan, S. Recommending Root-Cause and Mitigation Steps

for Cloud Incidents using Large Language Models. Proceedings - International Conference on Software Engineering (2023), 1737–1749.
[10] Alshahwan, N., Ciancone, A., Harman, M., Jia, Y., Mao, K., Marginean, A., Mols, A., Peleg, H., Sarro, F., and Zorin, I. Some

challenges for software testing research (invited talk paper). In Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (New York, NY, USA, 2019), ISSTA 2019, Association for Computing Machinery, p. 1–3.

[11] Alshahwan, N., Harman, M., and Marginean, A. Software testing research challenges: An industrial perspective. In 2023 IEEE
Conference on Software Testing, Verification and Validation (ICST) (2023), pp. 1–10.

[12] Anderson, J., Salem, S., and Do, H. Striving for failure: An industrial case study about test failure prediction. ICSE (2015).
[13] Araujo, F., and Taylor, T. Improving cybersecurity hygiene through jit patching. ESEC/FSE (11 2020), 1421–1432.
[14] Araujo, F., Taylor, T., Zhang, J., and Stoecklin, M. P. Cross-stack threat sensing for cyber security and resilience. Proceedings - 48th

Annual IEEE/IFIP Int. Conf. on Dependable Systems and Networks Workshops, DSN-W 2018 (7 2018), 18–21.
[15] Aurisch, T., and Jacke, A. Handling vulnerabilities with mobile agents in order to consider the delay and disruption tolerant

characteristic of military networks. Int. Conf. on Military Communications and Information Systems (6 2018), 1–7.
[16] Bansal, C., Renganathan, S., Asudani, A., Midy, O., and Janakiraman, M. DeCaf: Diagnosing and triaging performance issues in

large-scale cloud services. Proceedings - International Conference on Software Engineering (jun 2020), 201–210.
[17] Barrett, R., Kandogan, E., Maglio, P. P., Haber, E. M., Takayama, L. A., and Prabaker, M. Field studies of computer system

administrators: analysis of system management tools and practices. CSCW ’04: Proceedings of the 2004 ACM Conf. on Computer supported
cooperative work (11 2004), 388–395.

ACM Trans. Softw. Eng. Methodol.

https://dl.acm.org/
https://dblp.org/
https://github.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com/
https://help.jiraalign.com/hc/en-us/articles/8249094221716-Hotfix-Notes-for-10-109-3-13

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 51

[18] Bhat, K., Kouwe, E. V. D., Bos, H., and Giuffrida, C. Probeguard: Mitigating probing attacks through reactive program transformations.
Int. Conf. on Architectural Support for Programming Languages and Operating Systems - ASPLOS (4 2019), 545–558.

[19] Bodík, P., Fox, A., Jordan, M. I., Patterson, D., Banerjee, A., Jagannathan, R., Su, T., Tenginakai, S., Turner, B., Ingalls, J., Lab,
R., Berkeley, U. C., and University, S. Advanced tools for operators at amazon.com. Hot Topics in Autonomic Computing (HotAC)
(2006).

[20] Bodík, P., Goldszmidt, M., Fox, A., Woodard, D. B., and Andersen, H. Fingerprinting the datacenter: Automated classification of
performance crises. EuroSys’10 - Proceedings of the EuroSys 2010 Conf. (2010), 111–124.

[21] Braun, V., and Clarke, V. Thematic analysis. APA handbook of research methods in psychology, Vol 2: Research designs: Quantitative,
qualitative, neuropsychological, and biological. (3 2012), 57–71.

[22] Candea, G., and Fox, A. Recursive restartability: Turning the reboot sledgehammer into a scalpel. Proceedings of the Workshop on Hot
Topics in Operating Systems - HOTOS (2001), 125–130.

[23] Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and Fox, A. Microreboot-a technique for cheap recovery.
[24] Chen, J., He, X., Lin, Q., Xu, Y., Zhang, H., Hao, D., Gao, F., Xu, Z., Dang, Y., and Zhang, D. An Empirical Investigation of Incident

Triage for Online Service Systems. Proceedings - 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP 2019 (may 2019), 111–120.

[25] Chen, J., He, X., Lin, Q., Zhang, H., Hao, D., Gao, F., Xu, Z., Dang, Y., and Zhang, D. Continuous incident triage for large-scale
online service systems. Proceedings - 2019 34th IEEE/ACM International Conference on Automated Software Engineering, ASE 2019 (nov
2019), 364–375.

[26] Chen, J., Zhang, S., He, X., Lin, Q., Zhang, H., Hao, D., Kang, Y., Gao, F., Xu, Z., Dang, Y., and Zhang, D. How Incidental are
the Incidents? Characterizing and Prioritizing Incidents for Large-Scale Online Service Systems. Proceedings - 2020 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2020 (sep 2020), 373–384.

[27] Chen, Y., Li, Y., Lu, L., Lin, Y.-H., Vijayakumar, H., Wang, Z., and Ou, X. Instaguard: Instantly deployable hot-patches for vulnerable
system programs on android. Network and Distributed System Security Symposium (2018).

[28] Chen, Y., Xie, H., Ma, M.-J., Kang, Y., Gao, X., Shi, L., Cao, Y., Gao, X., Fan, H., Wen, M., Zeng, J., Ghosh, S., Zhang, X., Zhang, C.,
Lin, Q., Rajmohan, S., and Zhang, D. Empowering Practical Root Cause Analysis by Large Language Models for Cloud Incidents.
arXiv.org (2023).

[29] Chen, Y., Yang, X., Lin, Q., Zhang, D., Dong, H., Xu, Y., Li, H., Kang, Y., Zhang, H., Gao, F., Xu, Z., and Dang, Y. Outage prediction
and diagnosis for cloud service systems. The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019 (2019),
2659–2665.

[30] Chen, Z., Kang, Y., Li, L., Zhang, X., Zhang, H., Xu, H., Zhou, Y., Yang, L., Sun, J., Xu, Z., Dang, Y., Gao, F., Zhao, P., Qiao, B., Lin,
Q., Zhang, D., and Lyu, M. R. Towards intelligent incident management: why we need it and how we make it. Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (nov 2020),
1487–1497.

[31] Cui, W., Peinado, M., Wang, H. J., and Locasto, M. E. Shieldgen: Automatic data patch generation for unknown vulnerabilities with
informed probing. Proceedings - IEEE Symposium on Security and Privacy (2007), 252–266.

[32] Czerwonka, J., Das, R., Nagappan, N., Tarvo, A., and Teterev, A. Crane: Failure prediction, change analysis and test prioritization
in practice - experiences from windows. Proceedings - 4th IEEE Int. Conf. on Software Testing, Verification, and Validation, ICST 2011
(2011), 357–366.

[33] D’Ambros, M., Lanza, M., and Pinzger, M. A bug’s life visualizing a bug database. Int. Workshop on Visualizing Software for
Understanding and Analysis (2007), 113–120.

[34] Dijkstra, E. W. Structured programming.
[35] Ding, R., Fu, Q., Lou, J. G., Lin, Q., Zhang, D., Shen, J., and Xie, T. Healing online service systems via mining historical issue

repositories. ASE (2012), 318–321.
[36] Ding, R., Fu, Q., Lou, J. G., Lin, Q., Zhang, D., and Xie, T. Mining historical issue repositories to heal large-scale online service

systems. Proceedings of the Int. Conf. on Dependable Systems and Networks (9 2014), 311–322.
[37] Durieux, T., Hamadi, Y., and Monperrus, M. Production-driven patch generation. ICSE (6 2017), 23–26.
[38] Ford, S., and Olmsted, A. Security vulnerabilities in javascript hotpatching in ios with a commercial and open-source tool. Int. Conf.

on Information Society 2018-January (5 2018), 108–110.
[39] Fu, Q., Lou, J. G., Lin, Q. W., Ding, R., Zhang, D., Ye, Z., and Xie, T. Performance issue diagnosis for online service systems. Proceedings

of the IEEE Symposium on Reliable Distributed Systems (2012), 273–278.
[40] Gao, Q., Zhang, W., Tang, Y., and Qin, F. First-aid: Surviving and preventing memory management bugs during production runs.

Proceedings of the 4th ACM European Conf. on Computer Systems, EuroSys’09 (2009), 159–172.
[41] Ghosh, S., Shetty, M., Bansal, C., and Nath, S. How to Fight Production Incidents? An Empirical Study on a Large-scale Cloud

Service. SoCC 2022 - Proceedings of the 13th Symposium on Cloud Computing (nov 2022), 126–141.

ACM Trans. Softw. Eng. Methodol.

52 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

[42] Glerum, K., Kinshumann, K., Greenberg, S., Aul, G., Orgovan, V., Nichols, G., Grant, D., Loihle, G., and Hunt, G. Debugging in
the (very) large: Ten years of implementation and experience. SOSP’09 - Proceedings of the 22nd ACM SIGOPS Symposium on Operating
Systems Principles (2009), 103–116.

[43] Gomez, M., Martineza, M., Monperrus, M., and Rouvoy, R. When app stores listen to the crowd to fight bugs in the wild. ICSE 2 (8
2015), 567–570.

[44] Goues, C. L., Pradel, M., and Roychoudhury, A. Automated program repair. Communications of the ACM (2019).
[45] Gray, J. Why Do Computers Stop and What Can Be Done About It? Symposium on Reliability in Distributed Software and Database

Systems (1986).
[46] Grottke, M., Kim, D. S., Mansharamani, R., Nambiar, M., Natella, R., and Trivedi, K. S. Recovery from software failures caused

by mandelbugs. IEEE Transactions on Reliability 65 (3 2016), 70–87.
[47] Gu, J., Wen, J., Wang, Z., Zhao, P., Luo, C., Kang, Y., Zhou, Y., Yang, L., Sun, J., Xu, Z., Qiao, B., Li, L., Lin, Q., and Zhang, D. Efficient

customer incident triage via linking with system incidents. ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (2020), 1296–1307.

[48] Guardian, T. Google outage: tech giant apologises after software update causes search engine to go down | google | the guardian, 2022.
[49] Gunawi, H. S., Hao, M., Suminto, R. O., Laksono, A., Satria, A. D., Adityatama, J., and Eliazar, K. J. Why does the cloud stop

computing? Lessons from hundreds of service outages. Proceedings of the 7th ACM Symposium on Cloud Computing, SoCC 2016 (oct
2016), 1–16.

[50] Guo, Z., McDirmid, S., Yang, M., Zhuang, L., Zhang, P., Luo, Y., Bergan, T., Musuvathi, M., Zhang, Z., and Zhou, L. Failure
Recovery: When the Cure Is Worse Than the Disease, 2013.

[51] Gupta, M., Banerjee, S., Agrawal, M., and Rao, H. R. Security analysis of internet technology components enabling globally
distributed workplacesa framework. ACM Transactions on Internet Technology (TOIT) 8 (10 2008).

[52] Gómez, M., Adams, B., Maalej, W., Monperrus, M., and Rouvoy, R. App store 2.0: From crowdsourced information to actionable
feedback in mobile ecosystems. IEEE Software 34 (3 2017), 81–89.

[53] Han, S., Baby, D., and Mendelev, V. Residual adapters for targeted updates in rnn-transducer based speech recognition system. 2022
IEEE Spoken Language Technology Workshop, SLT 2022 - Proceedings (2023), 160–166.

[54] Hanna, C., Elliman, D., Emmerich, W., Sarro, F., and Petke, J. Behind the hot fix: Demystifying hot fixing industrial practices at
zühlke and beyond. ACM.

[55] Hanna, C., and Petke, J. Hot patching hot fixes: Reflection and perspectives. ASE (9 2023).
[56] Hassan, S., Shang, W., and Hassan, A. E. An empirical study of emergency updates for top android mobile apps. Empirical Software

Engineering 22 (2 2017), 505–546.
[57] He, S., Lin, Q., Lou, J. G., Zhang, H., Lyu, M. R., and Zhang, D. Identifying impactful service system problems via log analysis.

ESEC/FSE 18 (10 2018), 60–70.
[58] Herzig, K. Using pre-release test failures to build early post-release defect prediction models. Proceedings - Int. Symposium on Software

Reliability Engineering, ISSRE (12 2014), 300–311.
[59] Holloway, A., Denison, J., Patel, N., Maimone, M., and Rankin, A. Six Years and 184 Tickets: The Vast Scope of the Mars Science

Laboratory’s Ultimate Flight Software Release. IEEE Aerospace Conference Proceedings 2023-March (2023).
[60] Huang, H., Tsai, W. T., and Chen, Y. Autonomous hot patching for web-based applications. Proceedings - Int. Computer Software and

Applications Conf. 2 (2005), 51–56.
[61] Huang, Z., Dangelo, M., Miyani, D., and Lie, D. Talos: Neutralizing vulnerabilities with security workarounds for rapid response.

Proceedings - IEEE Symposium on Security and Privacy (8 2016), 618–635.
[62] IEEE. July 2023 ieee thesaurus version 1.02 created by the institute of electrical and electronics engineers (ieee).
[63] Illes-Seifert, T., and Paech, B. Exploring the relationship of a file’s history and its fault-proneness: An empirical study. Testing:

Academic and Industrial Conf. Practice and Research Techniques (2008), 13–22.
[64] Ilvonen, V., Ihantola, P., and Mikkonen, T. Dynamic software updating techniques in practice and educator’s guides: a review. In

2016 IEEE 29th International Conference on Software Engineering Education and Training (CSEET) (2016), IEEE, pp. 86–90.
[65] Insider, B. Amazon prime day issues estimated to cost 72𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑡𝑜99 million - business insider, 2018.
[66] Islam, C., Prokhorenko, V., and Babar, M. A. Runtime software patching: Taxonomy, survey and future directions. Journal of

Systems and Software 200 (6 2023), 111652.
[67] Jenkins, A., Wolters, M., Liu, L., and Vaniea, K. Not as easy as just update: Survey of System Administrators and Patching Behaviours.

Conference on Human Factors in Computing Systems - Proceedings (may 2024).
[68] Jeong, H., Kang, K., and An, J. Hot-patching Platform for Executable and Linkable Format Binary Application for System Resilience.

Proceedings of the ACM Symposium on Applied Computing (mar 2023), 1301–1304.
[69] Jia, T., Wu, Y., Hou, C., and Li, Y. LogFlash: Real-time Streaming Anomaly Detection and Diagnosis from System Logs for Large-scale

Software Systems. Proceedings - International Symposium on Software Reliability Engineering, ISSRE 2021-Octob (2021), 80–90.

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 53

[70] Jiang, J., Lu, W., Chen, J., Lin, Q., Zhao, P., Kang, Y., Zhang, H., Xiong, Y., Gao, F., Xu, Z., Dang, Y., and Zhang, D. How to mitigate
the incident? an effective troubleshooting guide recommendation technique for online service systems. ESEC/FSE 2020 - Proceedings of
the 28th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering (nov
2020), 1410–1420.

[71] Jiang, Y., Zhang, C., He, S., Yang, Z., Ma, M., Qin, S., Kang, Y., Dang, Y., Rajmohan, S., Lin, Q., and Zhang, D. Xpert: Empowering
Incident Management with Query Recommendations via Large Language Models. Proceedings - International Conference on Software
Engineering (dec 2023), 1121–1133.

[72] Jin, G., Song, L., Zhang, W., Lu, S., and Liblit, B. Automated atomicity-violation fixing. Conf. on Programming Language Design and
Implementation (2011), 389–400.

[73] Jin, P., Zhang, S., Ma, M., Li, H., Kang, Y., Li, L., Liu, Y., Qiao, B., Zhang, C., Zhao, P., He, S., Sarro, F., Dang, Y., Rajmohan, S., Lin,
Q., and Zhang, D. Assess and Summarize: Improve Outage Understanding with Large Language Models. ESEC/FSE 2023 - Proceedings
of the 31st ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(2023), 1657–1668.

[74] Karale, S. V., and Kaushal, V. An automation framework for configuration management to reduce manual intervention. ACM Int.
Conf. Proceeding Series 12-13-August-2016 (8 2016).

[75] Khomh, F., Chan, B., Zou, Y., and Hassan, A. E. An entropy evaluation approach for triaging field crashes: A case study of mozilla
firefox. Working Conf. on Reverse Engineering (2011), 261–270.

[76] Khomh, F., Dhaliwal, T., Zou, Y., and Adams, B. Do faster releases improve software quality? an empirical case study of mozilla
firefox. IEEE Int. Working Conf. on Mining Software Repositories (2012), 179–188.

[77] Kolassa, C., Riehle, D., and Salim, M. A. The empirical commit frequency distribution of open source projects. Proceedings of the Int.
Symposium on Open Collaboration (2013).

[78] Levy, S., Yao, R., Wu, Y., Dang, Y., Huang, P., Mu, Z., Zhao, P., Ramani, T., Govindaraju, N., Li, X., et al. Predictive and adaptive
failure mitigation to avert production cloud {VM} interruptions. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20) (2020), pp. 1155–1170.

[79] Li, F., Chetty, M., Rogers, L., Mathur, A., and Malkin, N. Keepers of the machines: Examining how system administrators manage
software updates. Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019) (2019), 273–288.

[80] Li, L., Zhang, X., Zhao, X., Zhang, H., Kang, Y., Zhao, P., Qiao, B., He, S., Lee, P., Sun, J., Gao, F., Yang, L., Lin, Q., Rajmohan, S.,
Xu, Z., and Zhang, D. Fighting the Fog of War: Automated Incident Detection for Cloud Systems. 2021.

[81] Li, Z., and Long, J. A case study of measuring degeneration of software architectures from a defect perspective. Proceedings -
Asia-Pacific Software Engineering Conf., APSEC (2011), 242–249.

[82] Lin, D., Bezemer, C. P., and Hassan, A. E. Studying the urgent updates of popular games on the steam platform. Empirical Software
Engineering 22 (8 2017), 2095–2126.

[83] Lin, F., Davoli, A., Akbar, I., Kalmanje, S., Silva, L., Stamford, J., Golany, Y., Piazza, J., and Sankar, S. Predicting remediations for
hardware failures in large-scale datacenters. Proceedings - 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks: Supplemental Volume, DSN-S 2020 (jun 2020), 13–16.

[84] Lin, Q., Lou, J. G., Zhang, H., and Zhang, D. How to tame your online services. Perspectives on Data Science for Software Engineering
(2016), 63–65.

[85] Lin, Q., Lou, J.-G., Zhang, H., and Zhang, D. idice: Problem identification for emerging issues. In Proceedings of the 38th International
Conference on Software Engineering (2016), pp. 214–224.

[86] Lin, Z., Jiang, X., Xu, D., Mao, B., and Xie, L. Autopag: Towards automated software patch generation with source code root cause
identification and repair. eProceedings of the 2nd ACM Symposium on Information, Computer and Communications Security, ASIACCS ’07
(2007), 329–340.

[87] Liu, H., Lu, S., Musuvathi, M., and Nath, S. What bugs cause production cloud incidents? Proceedings of the Workshop on Hot Topics
in Operating Systems, HotOS 2019 (may 2019), 155–162.

[88] Liu, Y., Shu, X., Sun, Y., Jang, J., and Mittal, P. RAPID: Real-Time Alert Investigation with Context-aware Prioritization for Efficient
Threat Discovery. ACM International Conference Proceeding Series (dec 2022), 827–840.

[89] Lou, C., Chen, C., Huang, P., Dang, Y., Qin, S., Yang, X., Li, X., Lin, Q., and Chintalapati, M. RESIN: A Holistic Service for Dealing
with Memory Leaks in Production Cloud Infrastructure. 2022.

[90] Lou, J. G., Lin, Q., Ding, R., Fu, Q., Zhang, D., and Xie, T. Software analytics for incident management of online services: An
experience report. ASE (2013), 475–485.

[91] Lou, J. G., Lin, Q., Ding, R., Fu, Q., Zhang, D., and Xie, T. Experience report on applying software analytics in incident management
of online service. Automated Software Engineering 24, 4 (2017), 905–941.

[92] Luo, L., Nath, S., Sivalingam, R., Musuvathi, M., and Ceze, L. Troubleshooting transiently-recurring errors in production systems
with blame-proportional logging troubleshooting transiently-recurring problems in production systems with blame-proportional
logging. USENIX Annual Technical Conf. (USENIX ATC 18) (2018), 321–334.

ACM Trans. Softw. Eng. Methodol.

54 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

[93] MacHiry, A., Redini, N., Camellini, E., Kruegel, C., and Vigna, G. Spider: Enabling fast patch propagation in related software
repositories. Proceedings - IEEE Symposium on Security and Privacy 2020-May (5 2020), 1562–1579.

[94] Malone, M., Wang, Y., Snow, K., and Monrose, F. Applicable micropatches and where to find them: Finding and applying new
security hot fixes to old software. Proc. - 2021 IEEE 14th Int. Conf. on Software Testing, Verification and Validation, ICST 2021 (4 2021),
394–405.

[95] Marconato, G. V., Nicomette, V., and Kaâniche, M. Security-related vulnerability life cycle analysis. Int. Conf. on Risks and Security
of Internet and Systems (2012).

[96] Marra, M., Polito, G., and Boix, E. G. A debugging approach for live big data applications. Science of Computer Programming 194 (8
2020).

[97] Mendeley. Mendeley, 2025.
[98] Mockus, A., Fielding, R. T., Herbsleb, J., Labs, B., and Blvd, S. A case study of open source software development: The apache

server. ICSE (2000).
[99] Mugarza, I., Parra, J., and Jacob, E. Analysis of existing dynamic software updating techniques for safe and secure industrial control

systems. International journal of safety and security engineering 8, 1 (2018), 121–131.
[100] Mulliner, C., Oberheide, J., Robertson, W., and Kirda, E. Patchdroid: Scalable third-party security patches for android devices.

ACM Int. Conf. Proceeding Series (2013), 259–268.
[101] Nair, V., Raul, A., Khanduja, S., Bahirwani, V., Shao, Q., Sundararajan, S., Keerthi, S., Herbert, S., and Dhulipalla, S. Learning

a hierarchical monitoring system for detecting and diagnosing service issues. Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining 2015-Augus (aug 2015), 2029–2038.

[102] Novark, G., Berger, E. D., and Zorn, B. G. Exterminator: Automatically correcting memory errors with high probability. Conf. on
Programming Language Design and Implementation (2007), 1–11.

[103] Oosterhuis, H., and Rijke, M. D. D. Robust generalization and safe query-specializationin counterfactual learning to rank. The Web
Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021 (4 2021), 158–170.

[104] Oppenheimer, D., Ganapathi, A., and Patterson, D. A. Why Do Internet Services Fail, and What Can Be Done About It?, 2003.
[105] Pamunuwa, V., Deraniyagala, D., Kulasekara, V., Thennakoon, R., and Lankasena, B. Investigating the impact of software

maintenance activities on software quality: Case study.
[106] Parameshwaran, I., Budianto, E., Shinde, S., Dang, H., Sadhu, A., and Saxena, P. Auto-patching dom-based xss at scale. ESEC/FSE

(8 2015), 272–283.
[107] Payer, M., and Gross, T. R. Hot-patching a web server: A case study of asap code repair. Annual Conf. on Privacy, Security and Trust

(2013), 143–150.
[108] Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan,

G., Wong, W. F., Zibin, Y., Ernst, M. D., and Rinard, M. Automatically patching errors in deployed software. Proceedings of the ACM
SIGOPS Symposium on Operating Systems Principles (2009), 87–102.

[109] Pham, P., Jain, V., Dauterman, L., Ormont, J., and Jain, N. DeepTriage: Automated Transfer Assistance for Incidents in Cloud
Services. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020), 3281–3289.

[110] Potharaju, R., Chan, J., Hu, L., Nita-Rotaru, C., Wang, M., Zhang, L., and Jain, N. ConfSeer: leveraging customer support
knowledge bases for automated misconfiguration detection. Proceedings of the VLDB Endowment 8, 12 12 (2015), 1828–1839.

[111] Pozo, F., and Rodriguez-Navas, G. A semi-distributed self-healing protocol for run-time repairs of time-triggered schedules. IEEE Int.
Conf. on Emerging Technologies and Factory Automation, ETFA 2019-September (9 2019), 1399–1402.

[112] Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y. Rx: Treating bugs as allergies - a safe method to survive software failures. Proceedings
of the 20th ACM Symposium on Operating Systems Principles, SOSP 2005 (2005), 235–248.

[113] Qin, L., Li, Y., and Yue, C. Dataflow analysis for known vulnerability prevention system. 2008 IEEE Int. Conf. on Cybernetics and
Intelligent Systems, CIS 2008 (2008), 1032–1035.

[114] Ramaswamy, A., Bratus, S., Smith, S. W., and Locasto, M. E. Katana: A hot patching framework for elf executables. ARES 2010 - 5th
Int. Conf. on Availability, Reliability, and Security (2010), 507–512.

[115] Rasche, A., and Polze, A. Redac - dynamic reconfiguration of distributed component-based applications with cyclic dependencies.
Proceedings - IEEE Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (2008), 322–330.

[116] Russinovich, M., Govindaraju, N., Raghuraman, M., Hepkin, D., Schwartz, J., and Kishan, A. Virtual machine preserving host
updates for zero day patching in public cloud. Proceedings of the European Conf. on Computer Systems 21 (4 2021), 114–129.

[117] Saha, A., and Hoi, S. C. H. Mining Root Cause Knowledge from Cloud Service Incident Investigations for AIOps. 197–206.
[118] Sahoo, R. K., Oliner, A. J., Rish, I., Gupta, M., Moreira, J. E., Ma, S., Vilalta, R., and Sivasubramaniam, A. Critical event prediction

for proactive management in large-scale computer clusters. Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2003), 426–435.

[119] Saieva, A., and Kaiser, G. Binary quilting to generate patched executables without compilation. ACM Workshop on Forming an
Ecosystem Around Software Transformation (11 2020), 3–8.

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 55

[120] Saieva, A., and Kaiser, G. Update with care: Testing candidate bug fixes and integrating selective updates through binary rewriting.
Journal of Systems and Software 191 (9 2022), 111381.

[121] Salehi, M., and Pattabiraman, K. Poster autopatch: Automatic hotpatching of real-time embedded devices. Proceedings of the ACM
Conf. on Computer and Communications Security (11 2022), 3451–3453.

[122] Sarabi, A., Zhu, Z., Xiao, C., Liu, M., and Dumitraş, T. Patch me if you can: A study on the effects of individual user behavior on the
end-host vulnerability state. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 10176 LNCS (2017), 113–125.

[123] Sarda, K., Namrud, Z., Litoiu, M., Shwartz, L., and Watts, I. Leveraging Large Language Models for the Auto-remediation of
Microservice Applications: An Experimental Study. FSE Companion - Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering (jul 2024), 358–369.

[124] Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., and Stumm, M. Continuous deployment at Facebook and OANDA. ICSE
(5 2016), 21–30.

[125] Shen, S., Lu, X., Hu, Z., and Liu, X. Towards release strategy optimization for apps in google play. ACM Int. Conf. Proceeding Series
Part F130951 (9 2017).

[126] Shen, Z., and Chen, S. A survey of automatic software vulnerability detection, program repair, and defect prediction techniques.
Security and Communication Networks (2020).

[127] Shetty, M., Bansal, C., Kumar, S., Rao, N., Nagappan, N., and Zimmermann, T. Neural knowledge extraction from cloud service
incidents. Proceedings - International Conference on Software Engineering (2021), 218–227.

[128] Shetty, M., Bansal, C., Upadhyayula, S. P., Radhakrishna, A., and Gupta, A. AutoTSG: learning and synthesis for incident
troubleshooting. ESEC/FSE 2022 - Proceedings of the 30th ACM Joint Meeting European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (2022), 1477–1488.

[129] Shihab, E., Mockus, A., Kamei, Y., Adams, B., and Hassan, A. E. High-impact defects: A study of breakage and surprise defects.
SIGSOFT/FSE (2011), 300–310.

[130] Sidiroglou, S., Ioannidis, S., and Keromytis, A. D. Band-aid patching. Workshop on Hot Topics in System Dependability (2007),
102–106.

[131] Sidiroglou, S., Locasto, M. E., Boyd, S. W., and Keromytis, A. D. Building a reactive immune system for software services. Proceedings
of the 2005 USENIX Annual Technical Conf. (2005), 149–161.

[132] Sun, D., Fekete, A., Gramoli, V., Li, G., Xu, X., and Zhu, L. R2c: Robust rolling-upgrade in clouds. IEEE Transactions on Dependable
and Secure Computing 15 (9 2018), 811–823.

[133] Tang, J., Kim, H., Mascolo, C., and Musolesi, M. Stop: Socio-temporal opportunistic patching of short range mobile malware. 2012
IEEE Int. Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2012 - Digital Proceedings (2012).

[134] Thota, M. K., Shajin, F. H., and Rajesh, P. Survey on software defect prediction techniques. Int. Journal of Applied Science and
Engineering 17 (2020), 331–344.

[135] Trivedi, K. S., Mansharamani, R., Kim, D. S., Grottke, M., and Nambiar, M. Recovery from failures due to mandelbugs in it systems.
Proceedings of IEEE Pacific Rim Int. Symposium on Dependable Computing, PRDC (2011), 224–233.

[136] Truelove, A., de Almeida, E. S., and Ahmed, I. We’ll fix it in post: What do bug fixes in video game update notes tell us? ICSE (5
2021), 736–747.

[137] Tucek, J., Lu, S., Huang, C., Xanthos, S., and Zhou, Y. Triage: Diagnosing production run failures at the user’s site. Operating
Systems Review (ACM) (2007), 131–144.

[138] Tucek, J., Lu, S., Huang, C., Xanthos, S., Zhou, Y., Newsome, J., Brumley, D., and Song, D. Sweeper: A lightweight end-to-end
system for defending against fast worms. Operating Systems Review (ACM) (2007), 115–128.

[139] Tunde-Onadele, O., Carolina, N., Lin, Y., He, J., and Gu, X. Toward just-in-time patching for containerized applications. Proceedings
of the 7th Symposium on Hot Topics in the Science of Security (2020).

[140] Tunde-Onadele, O., Lin, Y., He, J., and Gu, X. Self-patch: Beyond patch tuesday for containerized applications. Int. Conf. on Autonomic
Computing and Self-Organizing Systems (8 2020), 21–27.

[141] Van Der Storm, T. Continuous release and upgrade of component-based software. Proceedings of the 12th Int. Workshop on Software
Configuration Management, SCM 2005 (2005), 43–57.

[142] Van Der Storm, T. Binary change set composition. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 4608 LNCS (2007), 17–32.

[143] Vaniea, K., and Rashidi, Y. Tales of software updates: The process of updating software. Conf. on Human Factors in Computing
Systems - Proceedings (5 2016), 3215–3226.

[144] Verma, S., and Roy, S. Synergistic debug-repair of heap manipulations. FSE Part F130154 (8 2017), 163–173.
[145] Vögler, M., Schleicher, J. M., Inzinger, C., and Dustdar, S. A scalable framework for provisioning large-scale iot deployments.

ACM Transactions on Internet Technology 16 (3 2016).

ACM Trans. Softw. Eng. Methodol.

56 • Carol Hanna, David Clark, Federica Sarro, and Justyna Petke

[146] Vögler, M., Schleicher, J. M., Inzinger, C., Nastic, S., Sehic, S., and Dustdar, S. Leonore - large-scale provisioning of resource-
constrained iot deployments. Proceedings - IEEE Int. Symposium on Service-Oriented System Engineering 30 (6 2015), 78–87.

[147] Wang, W., Chen, J., Yang, L., Zhang, H., Zhao, P., Qiao, B., Kang, Y., Lin, Q., Rajmohan, S., Gao, F., Xu, Z., Dang, Y., and Zhang,
D. How Long Will it Take to Mitigate this Incident for Online Service Systems? Proceedings - International Symposium on Software
Reliability Engineering, ISSRE 2021-Octob (2021), 36–46.

[148] Wang, Y., Jiang, S., and Cui, B. Tjosconf: Automatic and safe system environment operations platform. ACM Int. Conf. Proceeding
Series 2022 (2 2022), 21–28.

[149] Wang, Y., Li, G., Wang, Z., Kang, Y., Zhou, Y., Zhang, H., Gao, F., Sun, J., Yang, L., Lee, P., Xu, Z., Zhao, P., Qiao, B., Li, L., Zhang,
X., and Lin, Q. Fast outage analysis of large-scale production clouds with service correlation mining. Proceedings - International
Conference on Software Engineering (may 2021), 885–896.

[150] Weiß, C., Premraj, R., Zimmermann, T., and Zeller, A. How long will it take to fix this bug? Proceedings - ICSE 2007 Workshops:
Fourth International Workshop on Mining Software Repositories, MSR 2007 (2007).

[151] Woodard, D. B., and Goldszmidt, M. Online model-based clustering for crisis identification in distributed computing. Journal of the
American Statistical Association 106 (3 2012), 49–60.

[152] Wu, Y., Chai, B., Li, Y., Liu, B., Li, J., Yang, Y., and Jiang, W. An Empirical Study on Change-induced Incidents of Online Service
Systems. Proceedings - International Conference on Software Engineering (2023), 234–245.

[153] Xu, Z. Source code and binary level vulnerability detection and hot patching. ASE (2 2020), 1397–1399.
[154] Xu, Z., Zhang, Y., Zheng, L., Xia, L., Bao, C., X-Lab, B., Wang, Z., Liu, Y., Longri, B. X.-L., Baidu, Z., Liangzhao, X.-L., Baidu, X.,

Chenfu, X.-L., Baidu, B., and Wang, X.-L. Z. Automatic hot patch generation for android kernels. Proceedings of the USENIX Conf. on
Security Symposium (2020).

[155] Yuan, C., Ma, W. Y., Wen, J. R., Li, J., Zhang, Z., and Wang, Y. M. Automated known problem diagnosis with event traces. ACM
SIGOPS Operating Systems Review 40 (4 2006), 375–388.

[156] Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G. R., Zhao, X., Zhang, Y., Jain, P. U., and Stumm, M. Simple Testing Can Prevent Most
Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive Systems. 2014.

[157] Zeng, Z., Zhang, Y., Xu, Y., Ma, M., Qiao, B., Zou, W., Chen, Q., Zhang, M., Zhang, X., Zhang, H., Gao, X., Fan, H., Rajmohan,
S., Lin, Q., and Zhang, D. TraceArk: Towards Actionable Performance Anomaly Alerting for Online Service Systems. Proceedings -
International Conference on Software Engineering (2023), 258–269.

[158] Zhang, H., Gong, L., and Versteeg, S. Predicting bug-fixing time: An empirical study of commercial software projects. ICSE (2013),
1042–1051.

[159] Zhang, H., and Qian, Z. Precise and accurate patch presence test for binaries. 27th USENIX Security Symposium (2018).
[160] Zhang, H., Zhao, L., Xu, L., Wang, L., and Wu, D. Vpatcher: Vmi-based transparent data patching to secure software in the cloud.

TrustCom (1 2015), 943–948.
[161] Zhang, M., and Yin, H. Appsealer: Automatic generation of vulnerability-specific patches for preventing component hijacking attacks

in android applications. NDSS 14 (2014), 23–26.
[162] Zhang, S., Cohen, I., Goldszmidt, M., Symons, J., and Fox, A. Ensembles of models for automated diagnosis of system performance

problems. Proceedings of the Int. Conf. on Dependable Systems and Networks (2005), 644–653.
[163] Zhang, X., Xu, Y., Qin, S., He, S., Qiao, B., Li, Z., Zhang, H., Li, X., Dang, Y., Lin, Q., Chintalapati, M., Rajmohan, S., and Zhang,

D. Onion: Identifying incident-indicating logs for cloud systems. ESEC/FSE 21 (8 2021), 1253–1263.
[164] Zhang, X., Zhang, Y., Li, J., Hu, Y., Li, H., and Gu, D. Embroidery: Patching vulnerable binary code of fragmentized android devices.

Int. Conf. on Software Maintenance and Evolution (11 2017), 47–57.
[165] Zhao, N., Chen, J., Wang, Z., Peng, X., Wang, G., Wu, Y., Zhou, F., Feng, Z., Nie, X., Zhang, W., Sui, K., and Pei, D. Real-time incident

prediction for online service systems. ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (2020), 315–326.

[166] Zhao, N., Jin, P., Wang, L., Yang, X., Liu, R., Zhang, W., Sui, K., and Pei, D. Automatically and Adaptively Identifying Severe Alerts
for Online Service Systems. Proceedings - IEEE INFOCOM 2020-July (jul 2020), 2420–2429.

[167] Zhao, Y., Jiang, L., Tao, Y., Zhang, S., Wu, C., Wu, Y., Jia, T., Li, Y., and Wu, Z. How to Manage Change-Induced Incidents? Lessons
from the Study of Incident Life Cycle. Proceedings - International Symposium on Software Reliability Engineering, ISSRE (2023), 264–274.

[168] Zheng, L., Berkeley, U., Jia, C., Sun, M., Wu, Z., Group, A., Yu, C. H., Haj-Ali, A., Wang, Y., Yang, J., Zhuo, D., Sen, K., Gonzalez,
J. E., and Stoica, I. Testing Configuration Changes in Context to Prevent Production Failures. 2020.

[169] Zheng, W., Lu, H., Zhou, Y., Liang, J., Zheng, H., and Deng, Y. IFeedback: Exploiting user feedback for real-time issue detection in
large-scale online service systems. Proceedings - 2019 34th IEEE/ACM International Conference on Automated Software Engineering, ASE
2019 (2019), 352–363.

[170] Zhou, H., Lou, J.-G., Zhang, H., Lin, H., Lin, H., and Qin, T. An empirical study on quality issues of production big data platform.
ICSE (2015).

ACM Trans. Softw. Eng. Methodol.

Hot Fixing Software: A Comprehensive Review of Terminology, Techniques, and Applications • 57

[171] Zhou, L., Zhang, F., Liao, J., Ning, Z., Xiao, J., Leach, K., Weimer, W., and Wang, G. Kshot: Live kernel patching with smm and sgx.
Proceedings - 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2020 (6 2020), 1–13.

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Terminology
	3 Motivation
	4 Survey Scope
	4.1 Relation to Prior Surveys
	4.2 Inclusion Criteria

	5 Research Questions
	6 Survey Methodology
	6.1 Primary Search
	6.2 Snowballing Search
	6.3 Thematic Analysis

	7 Publication Trends
	8 RQ1: General Hot Fixing Practices
	8.1 Open-source Development
	8.2 Commercial Development
	8.3 Human Research
	8.4 Summary of Common Practices

	9 RQ2: Automation and Tooling
	9.1 Human-Assisted Tools
	9.2 Autonomous Tools

	10 RQ3: Hot Fix Characteristics and Domains
	11 RQ4: Open Challenges
	12 Discussion and Reflections
	12.1 Terminology
	12.2 Benchmarks
	12.3 Hot Fixing Practices
	12.4 Semi-Automated Tooling
	12.5 Detection Tooling
	12.6 Remediation Tooling
	12.7 Deployment Tooling
	12.8 End-to-End Tooling

	13 Threats to Validity
	14 Conclusions
	References

