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Abstract: 

Importance: Estimated glomerular filtration rates (eGFRs) can differ according to whether creatinine or 

cystatin C is used for the eGFR calculation, but frequency and importance of such differences remain poorly 

understood.    

 

Objectives: To evaluate the prevalence of a discordance between cystatin C (eGFRcys) and creatinine-based 

eGFR (eGFRcr), identify characteristics associated with greater likelihood of discordance, and evaluate 

associations of discordance with adverse outcomes. 

 

Design, setting, and participants: Individual-level data meta-analysis of participants in the CKD Prognosis 

Consortium who had concurrent cystatin C and creatinine measurements.  

 

Main outcomes:  The primary outcome was a large negative eGFR difference (eGFRdiff), defined as an 

eGFRcys that was at least 30% lower than eGFRcr. Secondary outcomes included all-cause and 

cardiovascular mortality, atherosclerotic cardiovascular disease (ASCVD), heart failure (HF), and kidney failure 

requiring replacement therapy (KFRT). 

 

Results: 821,327 individuals were included from 23 ambulatory cohorts (mean age 59 [SD 12] years, 48% 

female, 13.5% diabetes, 40% hypertension), and 36,639 individuals were included from two inpatient cohorts 

(mean age 67 [SD 16] years, 31% female, 30% diabetes, 72% hypertension). Among ambulatory participants, 

11% had a large negative eGFRdiff (range across cohorts: 3%-50%). Among inpatients, 35% had a large 

negative eGFRdiff. With a mean follow-up of 11 years (SD 4), a large negative eGFRdiff was associated with 

higher rates of  all-cause mortality (HR=1.69; 95%CI: 1.57-1.82, 28.5 vs. 16.9 per 1000 person-years), 

cardiovascular mortality (HR=1.61; 95%CI: 1.48-1.76, 6.1 vs. 3.8 per 1000 person-years), ASCVD (HR=1.35; 

95%CI: 1.27-1.44, 13.3 vs. 9.8 per 1000 person-years), HF (HR=1.54; 95%CI: 1.40-1.68, 13.2 vs. 8.6 per 1000 

person-years) and KFRT (HR=1.29; 95%CI: 1.13-1.47, 2.7 vs. 2.1 per 1000 person-years).  

 



Conclusions and relevance: In the CKD Prognosis Consortium, 11% of ambulatory participants and 35% of 

hospitalized patients had an eGFRcys that was at least 30% lower than eGFRcr. In the ambulatory setting, 

presence of eGFRcys at least 30% lower than eGFRcr was associated with significantly higher rates of all-

cause mortality, cardiovascular events, and kidney failure. 

  



KEYPOINTS 

Question: Do people whose eGFR calculated using cystatin C is at least 30% lower than their eGFR 

calculated using creatinine have higher rates of adverse outcomes, compared to people whose eGFR 

calculated using cystatin C is similar to their eGFR using creatinine?    

 

Findings: In this individual participant-level meta-analysis that included 821,327 participants from 23 

ambulatory cohorts and 36,639 participants from 2 inpatient cohorts, eGFRcys was at least 30% lower than 

eGFRcr in 11% of ambulatory and 35% of hospitalized participants.  Among ambulatory participants, those with 

an eGFRcys at least 30% lower than eGFRcr compared to participants without an eGFRcys vs. eGFRcr 

difference had significantly higher mortality (28.5 vs. 16.9 per 1000 person-years), atherosclerotic 

cardiovascular events (13.3 vs. 9.8 per 1000 person-years), and kidney failure requiring therapy (2.7 vs. 2.1 

per 1000 person-years) at 11 years of follow-up. 

 

Meaning:   In the ambulatory and inpatient settings, an eGFRcys value that is at least 30% lower than eGFRcr 

was common, and in the ambulatory setting, was associated with higher rates of adverse outcomes.   

 
 



INTRODUCTION 
 
 Chronic kidney disease (CKD) diagnosis, staging and treatment partially rely on estimated glomerular 

filtrate rate (eGFR).1 eGFR calculations are most often based on blood creatinine (Cr) as the filtration marker. 

However, Cr levels are affected by factors that alter muscle metabolism, such as diet and physical activity,2 and 

medications that impair tubular creatinine secretion. Cystatin C (CysC) is a different filtration marker that is not 

affected by muscle or secreted by the tubules, but its levels may be affected by characteristics such as 

smoking, obesity and inflammation.2 Multiple studies have demonstrated that eGFR based on both Cr and 

CysC better reflects kidney function.1 However, non-kidney influences may also contribute to substantial 

differences between eGFR based on Cr (eGFRcr) versus CysC (eGFRcys), which in turn may have prognostic 

implications.3-7 These analyses sought to: 1) characterize the prevalence of large eGFRcys and eGFRcr 

differences in cohorts within the CKD Prognosis Consortium (CKD-PC) overall and across eGFRcr levels in 

both the ambulatory and inpatient settings; 2) identify factors associated with having discordant eGFRcys and 

eGFRcr; and 3) evaluate whether large eGFRcys and eGFRcr differences are prognostic of adverse 

cardiovascular and kidney outcomes in the ambulatory setting. 

 

METHODS 

Participating Cohorts and Study Design 

 The CKD-PC includes clinical, research, and trial cohorts which ascertained kidney measures and 

longitudinal outcomes.8 For this study, cohorts were invited if their participants had Cr and CysC 

measurements on the same day (Appendix 1); 23 cohorts met inclusion criteria and agreed to participate 

(Appendix 2). Analyses were limited to participants aged ≥18 years, with non-missing age, sex, and same-day 

Cr and CysC. The Institutional Review Board at New York University Grossman School of Medicine waived the 

need for informed consent and approved this study.  

 Analyses were performed among participating ambulatory cohorts (a mix of clinical, research and trial 

cohorts) and inpatient cohorts (clinical cohorts only), separately. The frequency of CysC measures in these 

different settings are reported in Appendix 1. Only ambulatory cohorts were included in the evaluation of the 

association of eGFRcys and eGFRcr differences at baseline with longitudinal outcomes; the first visit for each 



person with available concurrent Cr and CysC was considered the baseline in each cohort. 

 

Kidney Measures and Calculation of eGFR Differences 

 Appendix 1 describes methods for Cr and CysC measurements. Cohorts measured Cr using methods 

traceable to IDMS-standard, and most measured CysC calibrated or standardized to International Federation 

for Clinical Chemists (IFCC) standards.9,10  eGFRcr and eGFRcr-cys were estimated using the 2021 race-free 

CKD-EPI equations11 and eGFRcys using the 2012 CKD-EPI equation.12 

 Primary analyses focused on large negative eGFR differences (eGFRdiff), defined as an eGFRcys at 

least 30% lower than eGFRcr (i.e. ([eGFRcys – eGFRcr]/eGFRcr) < -30%). Thirty-percent was chosen as the 

threshold because it is the established cutoff for determining the accuracy of eGFR equations.11 As secondary 

analysis, large negative eGFRdiff was defined as an eGFRcr-cys at least 15% lower than eGFRcr. Since 

clinical actions often rely on the KDIGO GFR (“G”) staging for CKD,1 reclassification to a worse eGFR category 

using eGFRcys versus eGFRcr was also examined. Additional analyses included evaluating a large positive 

eGFRdiff, defined as an eGFRcys or eGFRcr-cys 30% or 15% higher than eGFRcr, respectively.  

 

Covariate Definitions 

 Factors with known associations with eGFRdiff or hypothesized to influence Cr or CysC concentrations 

independent of GFR were evaluated as covariates,13-15 including: 1) sociodemographic and lifestyle variables 

(age, sex, and smoking status); 2) comorbidities (history of coronary heart disease, stroke, heart failure [HF], 

atrial fibrillation, peripheral artery disease [PAD], cancer, chronic obstructive pulmonary disease [COPD], and 

liver disease); and 3) clinical measures (body mass index [BMI] and albumin-to-creatinine ratio [ACR]). Obesity 

was defined as a BMI ≥30 kg/m2.  ACR was natural log-transformed, and missing ACR was analyzed as a 

separate binary category among clinical cohorts.  

To harmonize data elements across cohorts, the CKD-PC Data Coordinating Center (DCC) provided 

definitions to participating cohorts in the data request. Appendix 1 details the ascertainment and missingness 

of each variable. In clinical datasets, comorbidity was defined by the presence of two ICD-9 or ICD-10 

diagnosis codes in the ambulatory setting within 730 days or of one inpatient/problem list diagnosis code prior 

to the kidney measures. Cohorts were asked to specify if they utilized alternative variable definitions.  



 

Longitudinal Outcomes 

 All-cause mortality, cardiovascular mortality, atherosclerotic cardiovascular disease (ASCVD) events, 

incident heart failure (HF), and kidney failure with replacement therapy (KFRT) were obtained from ambulatory 

cohorts. Appendix 1 details cohort-specific outcome definitions. U.S.-based cohorts ascertained KFRT via 

linkage to the U.S. Renal Data System16 unless otherwise noted. For the remaining outcomes, some cohorts 

identified outcomes based on diagnosis codes while others employed additional clinical adjudication for 

specific outcomes.  

 

Statistical Analyses 

 Descriptive statistics and kernel-density plots were performed for the overall distributions of eGFRcr, 

eGFRcys, eGFRcr-cys and eGFRdiff and of participant characteristics within cohorts. The proportion of 

participants with a large negative eGFRdiff, by eGFRcr category, was summarized as the median (25th and 75th 

percentile) across ambulatory cohorts and as the range between the two inpatient cohorts.  

 A logistic regression model was constructed to estimate the odds ratio (OR) and 95% confidence 

interval (95% CI) of having a large negative eGFRdiff compared to an eGFRdiff of -30% to 30%. Within each 

cohort, if a variable was unavailable or missing in more than 50% of the participants, the variable was not 

included in the model; otherwise, missing values were imputed with the mean. A similar analysis was 

performed for the odds ratios associated with reclassification to a worse eGFR category. The adjusted odds of 

a large negative eGFRdiff was estimated in each in-house cohort using the meta-analyzed odds ratios and 

summarized as median (25th and 75th percentile) across ambulatory cohorts and as the range between the two 

inpatient cohorts.  

Within each ambulatory cohort, Cox proportional hazards models were used to evaluate the association 

of eGFRdiff with long-term risks of adverse outcomes; random-effects models were employed to meta-analyze 

hazard ratios (HR). eGFRdiff was modeled both as a continuous (linear splines with knots at -30%, -15%, 0%, 

and 30%) and categorical variable (e.g. large negative eGFRdiff, small eGFRdiff [reference], or positive 

eGFRdiff). Models adjusted for age; female sex; smoking status; history of hypertension, diabetes, coronary 

heart disease, stroke, HF, atrial fibrillation, PAD, cancer, COPD, or liver disease; BMI (spline knot at 30 kg/m2), 



eGFRcr category; and log-ACR (a missing indicator was also included in clinical studies) (Appendix 1). 

Sensitivity analyses stratified by cohort types to examine variability across general population, clinical and CKD 

cohorts in forest plots as well as analyses excluding the bank were conducted. To demonstrate adjusted 

incidence rates of adverse outcomes in the presence or absence of a large eGFRdiff, the ARIC cohort was 

used to estimate rates for a baseline scenario at the mean of the overall population. 

Analyses were conducted using Stata/MP version 18. 

 

RESULTS 

Study Population 

 The 23 ambulatory cohorts comprised 821,327 individuals while the two inpatient-based cohorts 

included 39,639 individuals.  

Among ambulatory participants at baseline, the mean (standard deviation [SD]) age was 59 (12) years; 

48% were female; 13.5% had diabetes; and 40% had hypertension (Table 1). The proportion of participants 

with CysC measurements within the total population with Cr measurements in each cohort ranged from 1.9% 

to 100% in the ambulatory cohorts (Appendix 1). The overall mean eGFRcr and eGFRcys among ambulatory 

participants were 87 (22), and 81 (25) ml/min/1.73 m2, respectively (Table 2), with an overall median eGFRdiff 

of -5.4% (Interquartile interval [IQI]: -15.3%, 2.9%). Approximately 11.2% had a large negative eGFRdiff; only 

3.8% had a large positive eGFRdiff. The eGFRdiff distribution varied across ambulatory cohorts (Figure 1), 

with the proportion of participants having a large negative and positive eGFRdiff ranging from 2.8% to 49.8% 

and 0% to 27.9%, respectively. The overall mean eGFRcr-cys was 86 (23), and the median eGFRdiff between 

eGFRcr-cys and eGFRcr was 0.5% (IQI: -5.8%, 5.6%) among ambulatory participants (Supplemental Table 1 

and Supplemental Figure 1).  

 Table 1 summarizes the baseline characteristics among inpatients. Their mean age was 67 (16) years; 

31% were female; 30% had diabetes; and 72% had hypertension. In the two inpatient cohorts, the proportion of 

hospitalizations with Cr values and concurrent CysC measurements was 0.7% and 6.6% (Appendix 1). The 

overall mean eGFRcr, eGFRcys were 69 (32) and 57 (33) ml/min/1.73 m2, respectively (Table 2) among 

inpatients, with a median eGFRdiff of -15.4% and -29.1% in the two cohorts. Approximately 35% of inpatients 

had a large negative eGFRdiff, and 14.5% had a large positive eGFRdiff. The mean eGFRcr-cys was 63 (33), 



and median eGFRdiff when comparing eGFRcr-cys with eGFRcr values were -6.5% and -16.1% in the two 

cohorts, respectively (Supplemental Table 1).  

 

Percentage of Participants with a Large Negative eGFRdiff by eGFRcr Categories  

 Table 3 shows the percentage of individuals who have a large negative eGFRdiff within each eGFRcr 

category, summarized across cohorts. Among ambulatory studies, the median percentage was generally 

greater at lower eGFRcr values. For example, within the eGFRcr of 90+ and 60-89 ml/min/1.73 m2 categories, 

the median percentages were both 7.8%, while they were 12.3%, 17.6% and 14.8% within the 45-59, and 30-

44 and <30 ml/min/1.73 m2 categories, respectively. Compared with the ambulatory setting, percentages of 

individuals with a large negative eGFRdiff were higher within inpatient cohorts (Table 3), ranging from 22.5% to 

57.2%, 41.1% to 57.0%, and 23.8% to 24.4% among those with an eGFRcr of 90+, 45-59, and <30 

ml/min/1.73 m2, respectively.  

  The percentage reclassified to a lower eGFR category was notably higher in the inpatient than in the 

ambulatory setting (Table 3). For instance, among those with an eGFRcr of 45-59 ml/min/1.73 m2, the median 

percentage reclassified was 34.0% in the ambulatory setting whereas it ranged from 63.9% to 76% in the 

inpatient setting. Percentages evaluating eGFRcr-cys relative to eGFRcr followed a similar pattern 

(Supplemental Table 2).   

 

Characteristics Associated with eGFRdiff  

 In the ambulatory setting, the estimated prevalence of a large negative eGFRdiff for a 70-year-old male 

with hypertension, diabetes, no smoking or other comorbidities, eGFRcr of 45-59 ml/min/1.73 m2, ACR of 30 

mg/g, and BMI of 30 kg/m2 was 8.8% (IQI: 6.7%, 20.7%). Characteristics most strongly associated with a large 

negative eGFRdiff included current smoking (OR=2.09 [1.59, 2.74], 16.7% vs. 8.8%), HF (OR=1.81 [1.53, 

2.14], 14.8 vs. 8.8%), and liver disease (OR=1.79 [1.12, 2.88], 14.7% vs. 8.8%). Older age (OR=1.68 per 10 

years older [1.55, 1.81], 13.9% vs. 8.8%), COPD (OR=1.61 [1.38, 1.89], 13.4% vs. 8.8%), PAD (OR=1.60 

[1.48, 1.74], 13.4% vs. 8.8%), and BMI (OR=1.53 per 5 kg/m2 higher [1.37, 1.69], 12.8% vs. 8.8%) had more 

modest associations (Table 4). Relative to an eGFRcr of 45-59 ml/min/1.73 m2, higher eGFRcr categories 

were associated with greater likelihood, while lower eGFRcr categories were associated with lower likelihood 

of a large negative eGFRdiff. For example, an eGFRcr ≥90 ml/min/1.73 m2 was associated with a 1.56- fold 



(1.14, 2.14) higher odds (13.0% vs. 8.8%) while an eGFRcr <30 ml/min/1.73 m2 was associated with 0.56-fold 

(0.46, 0.69) lower odds (5.1% vs. 8.8%) of a large negative eGFRdiff. Similar associations were observed 

when eGFRdiff was based on eGFRcr-cys relative to eGFRcr and when odds of downward eGFR-staging was 

the outcome (Supplemental Table 3).  

 In the inpatient setting, the estimated prevalence for the same above scenario was 38.1% and 43.8% in 

the two cohorts. Characteristics associated with higher likelihood of a large negative eGFRdiff in the inpatient 

setting were largely like those in the ambulatory setting. For example, HF (OR=1.63 [1.21, 2.19], 53% vs. 41%) 

and liver disease (OR=1.74 [1.25, 2.41], 55% vs. 41%) remained strongly associated with a large negative 

eGFRdiff (Table 4); older age, diabetes, PAD, and COPD were also associated, with ORs of 1.18 to 1.38. 

eGFR categories <45 ml/min/1.73 m2 were associated with incrementally lower odds of a large negative 

eGFRdiff versus an eGFR of 45-59 ml/min/1.73 m2 (eGFR 30-44: OR=0.79 [0.64, 0.98], 36% vs. 41% and 

eGFR <30: OR=0.33 [0.17, 0.64], 19% vs. 41%). Associations were qualitatively similar when eGFRdiff was 

based on eGFRcr-cys relative to eGFRcr and when odds of downward shift to a lower eGFR category was the 

outcome (Supplemental Table 3). 

 

eGFRdiff and mortality in the ambulatory cohorts 

 During a mean follow-up of 11 (4) years, 107,584 and 25,465 all-cause and cardiovascular deaths 

occurred, respectively; 35,133; 34,017; and 10,060 ASCVD, HF and KFRT events occurred, respectively 

(Supplemental Table 4). Figure 2 shows the HR for each outcome across the range of eGFRdiff; 

progressively larger negative eGFRdiff was associated with increasingly greater risk for every adverse 

outcome. 

  Compared to an eGFRdiff of -30 to 30%, a large negative eGFRdiff was associated with higher risks for 

all-cause mortality (HR=1.69 [1.57, 1.82] , 28.5 vs. 16.9 per 1000 person-years), cardiovascular mortality 

(HR=1.61 [1.48, 1.76] , 6.1 vs. 3.8 per 1000 person-years), ASCVD (HR=1.35 [1.27, 1.44] , 13.3 vs. 9.8 per 

1000 person-years), HF (HR=1.54 [1.40, 1.68] , 13.2 vs. 8.6 per 1000 person-years), and KFRT (HR=1.29 

[1.13, 1.47] , 2.7 vs. 2.1 per 1000 person-years) (Supplemental Table 5).  Participants with a large positive 

eGFRdiff had lower risks for all-cause mortality (HR=0.76 [0.73, 0.80]. 12.9 vs. 16.9 per 1000 person-years), 

cardiovascular mortality (HR=0.79 [0.67, 0.91], 3.0 vs. 3.8 per 1000 person-years), ASCVD (HR=0.81 [0.74, 



0.89], 8.0 vs. 9.8 per 1000 person years), HF (HR=0.76 [0.69, 0.84], 6.5 vs. 8.6 per 1000 person years), and 

KFRT (HR=1.04 [0.84, 1.29, 2.1 vs. 2.1 per 1000 person-years]). Risk estimates were similar when UK 

Biobank data were excluded (Supplemental Table 5). Each association also remained robust within cohort 

types (Supplemental Figure 2). 

Secondary analyses using eGFRcr-cys rather than eGFRcys in calculating eGFRdiff yielded similar 

results (Supplemental Figure 3 and Supplemental Table 6). 

 
 
DISCUSSION 

A large proportion of the >800,000 participants had an eGFRcys substantially lower than eGFRcr. The 

magnitude of the eGFRdiff and percentage of individuals with a large negative eGFRdiff were notably greater 

in the inpatient cohorts compared with the ambulatory cohorts. Relative to eGFRcr, use of eGFRcys 

reclassified large proportions of individuals to a worse GFR stage. Factors associated with a large negative 

eGFRdiff included age, smoking and several comorbidities and were similar between the ambulatory and 

inpatient settings. In addition, a large negative eGFRdiff portended higher risks for all-cause and 

cardiovascular mortality, ASCVD, HF and KFRT. These findings highlight how frequently large discordances 

occur between GFR estimates based on Cr alone and those that incorporate CysC; they provide convincing 

evidence that a large negative eGFRdiff identifies individuals who carry significantly elevated risks for 

cardiovascular and kidney outcomes.  

Nearly all prior studies of eGFRdiff examined only ambulatory populations and relied on single cohorts.3-

6,17 They consistently found a ~30% prevalence of discordant eGFRcr and eGFRcys, with the proportion having 

a large negative eGFRdiff varying from as low as 8% in a CKD cohort3 to 16% in an elder population.17 To our 

knowledge, only one prior study included hospitalized patients.18 Among the 684 hospitalized patients 

examined previously, the median eGFRdiff was -18 versus 4 mL/min/1.73 m2 in 1,367 ambulatory individuals.  

The present analysis builds upon these prior findings through comprehensive analysis of participant-level data 

from 23 ambulatory cohorts and evaluation of two large inpatient cohorts. Consistent with prior literature, the 

proportion of individuals with a large negative eGFRdiff varied widely across the CKD-PC cohorts, ranging from 

3% to 50%, and were much higher in the inpatient versus ambulatory settings. Inter-cohort differences in the 



proportion of participants with clinical characteristics associated with eGFRdiff may explain the varied 

prevalence of a large negative eGFRdiff across studies and between inpatient and ambulatory settings. 

Prior studies have also shown that persons with a large negative eGFRdiff are at higher risk of all-cause 

mortality,3,6 ASCVD,6,19 incident HF4,6, and KFRT.6 Findings from the present study align with these previous 

observations and substantiate that eGFRdiff offers prognostic information beyond eGFRcr. This added 

prognostic information likely captures risk associated with “true GFR” and factors associated with worse 

outcomes which either lower Cr, such as frailty, or increase CysC, such as inflammation.  

This study has several clinical implications. First, results from this study imply that CysC testing 

identifies a large number of individuals who may have worse kidney function than would be implied by eGFRcr 

alone and who would require a better estimate of kidney function for clinical decision-making. In the ambulatory 

setting, this would be most accurately estimated using eGFRcr-cys;11 however, robust evidence on which 

eGFR estimating equation is most accurate in the inpatient setting remains lacking. The large percentage of 

hospitalized patients with a large negative of eGFRdiff underscores the need for additional studies with directly 

measured GFR in the inpatient setting to address this knowledge gap. Second, the findings suggest that CysC 

testing among older individuals, those with key comorbid conditions, or hospitalized patients would offer the 

highest yield of identifying a large negative eGFRdiff and individuals who may be re-staged to a lower eGFR 

category. Identifying large differences between eGFRcys and eGFRcr is especially critical in patients with 

moderate to advanced CKD and among hospitalized patients since they are often prescribed medications that 

require dose adjustments. Third, the eGFRdiff provides inherent prognostic information on important clinical 

outcomes and supports laboratory reporting of eGFRcys and eGFRcr-cys alongside eGFRcr as large 

differences may identify patients at higher risk of adverse long-term outcomes.  

Limitations 

This study has several limitations. First, other GFR-estimating equations were not evaluated; however, 

eGFRdiff arises primarily from factors that affect Cr or CysC beyond adjustment variables used in the 

equations. Although the prevalence of eGFRdiff may differ based on the equations used; the patterns of 

eGFRdiff predictors will likely be robust. Second, residual calibration differences for Cr or CysC could explain 

some variation among studies. Third, study designs and outcome ascertainment protocols differed across 

cohorts, and outcomes were largely based on diagnosis codes. Fourth, as inpatient cohorts were clinical, 



potential selection bias as to who underwent CysC testing may exist. Fifth, data were lacking on additional 

non-GFR factors like muscle mass or thyroid disorders or factors unique to the inpatient setting that may affect 

Cr or CysC levels. Sixth, the UK Biobank comprised approximately half of the ambulatory study population and 

was predominantly White race (>90%); however, sensitivity analyses that excluded data from UK Biobank 

yielded associations of large eGFRdiff with outcomes similar to the main analyses. Last, participants with CysC 

measurements available and included in the study represented a minority of otherwise eligible patients who 

had Cr measurements in clinical cohorts and are likely not representative of these cohorts’ overall study 

populations. However, analyses stratified by cohort type showed robust associations across cohort types. 

Conclusion 

In the CKD Prognosis Consortium, 11% of ambulatory participants and 35% of hospitalized patients had an 

eGFRcys that was at least 30% lower than eGFRcr. In the ambulatory setting, presence of eGFRcys at least 

30% lower than eGFRcr was associated with significantly higher rates of all-cause mortality, cardiovascular 

events, and kidney failure.  
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Table 1: Sociodemographic and clinical characteristics of participants overall and within each cohort for ambulatory and inpatient settings 

Cohort N 
Converted 

ACR Age Female DM HTN BMI 
Former 
smoker 

Current 
smoker CHD Stroke HF Afib PAD Cancer COPD 

Liver 
Disease 

Overall 
Ambulatory 821,327 9 (6-18) 59 (12) 48% 13.5% 40% 28 (5) 36% 12% 8.8% 3.7% 4.4% 5.7% 1.2% 12% 4.3% 3.2% 

ICKD 930 160 (40-628) 49 (12) 33% 36% 95% 25 (5) 13% 15% 4.3%    0.54% 0.11%  0.11% 

CKD Rein 3,031 112 (22-516) 67 (13) 35% 43% 95% 29 (6) 47% 12% 25% 7.4% 11% 11% 16.9% 21% 10% 1.8% 

ULSAM 1,103 8 (5-17) 71 (1) 0% 13% 77% 26 (3)  21% 8.2% 3.0% 1.6% 4.7% 0.54% 6.6%  1.3% 

VA 90,526 21 (7-99) 65 (14) 10% 48% 78% 32 (7) 42% 13% 30% 5.7% 15% 14% 3.7% 19% 18% 13% 

SCREAM 151,502 12 (7-29) 62 (18) 48% 18% 59%    16% 7.4% 11% 13% 2.9% 16% 5.9% 3.1% 

Takahata 1,339 9 (6-17) 64 (10) 56% 8.5% 57% 23 (3) 10% 15% 3.4% 1.1%       

CRIB 362 429 (89-1202) 61 (14) 35% 18% 94% 27 (5) 50% 13% 19% 7.5%       

MDRD 1,044 114 (10-769) 52 (13) 39% 9.6% 74% 27 (4)  10% 9.8% 2.2%   3.8%    

ESTHER 9,759 Dipstick 62 (7) 55% 19% 60% 28 (5) 33% 16% 9.1% 3.4% 10% 0.73% 1.6% 7.8% 1.0%  

REGARDS 28,035 7 (5-16) 66 (9) 55% 21% 59% 29 (10) 40% 14%  6.2%       

GCKD 5,175 51 (10-392) 61 (12) 40% 36% 96% 30 (6) 73% 26% 20% 8.3% 19% 21% 7.5% 12% 6.9% 4.5% 

FRAMINGHAM 2,596 6 (3-15) 59 (10) 54% 8.8% 39% 28 (5)  15% 3.6% 0.19% 0.81%      

CRIC 5,485 46 (8-368) 60 (11) 44% 51% 87% 32 (8) 42% 13%  10% 9.7%   8.4% 5.5%  

NHANES 4,960 8 (5-18) 56 (21) 50% 17% 53% 28 (6) 43% 12% 10% 5.2% 4.8%      

ARIC 11,303 4 (2-8) 63 (6) 56% 17% 48% 29 (6) 44% 15% 8.6% 2.3% 5.7% 1.9% 3.5%    

CHS 3,377 10 (5-23) 78 (5) 60% 17% 50% 27 (5) 44% 7% 24% 6.2% 9.3%  3.2%    

MASTERPLAN 477 120 (28-482) 60 (13) 31% 23%  27 (4)  17% 20% 7.3%       

PREVEND 7,940 7 (5-13) 50 (13) 50% 3.9% 34% 26 (4) 37% 34% 4.4% 0.92% 0.29%      

UK BioBank 467,963 9 (6-18) 57 (8) 54% 4.7% 27% 27 (5) 35% 10% 3.9% 1.6% 0.062% 1.5% 0.26% 8.7% 1.0%  

AASK 949 12 (5-130) 55 (11) 39% 0% 100% 31 (7) 29% 29% 44% 10% 2.6%  3.4%    

MESA 6,770 5 (3-11) 62 (10) 53% 13% 45% 28 (5) 37% 13% 0% 0% 0% 0% 0.059% 8.6%  6.5% 

AUSDIAB 10,558 5 (4-9) 52 (14) 55% 6.4% 32% 27 (5) 29% 16% 6.6% 2.5%       

Uonuma 6,143 11 (6-25) 68 (10) 51% 9.7% 51% 23 (3) 31% 14%  0.42%  1.9%  9.4% 0%  
                  

Overall 
Inpatient 39,639 18 to 56 67 (16) 31% 30% 72% 27 (7) 49% 20% 42% 12% 27% 24% 7.8% 28% 17% 11% 

VA IP 9,372 56 (12-321) 72 (12) 5.7% 51% 86% 27 (7) 49% 20% 53% 14% 38% 30% 13% 37% 37% 27% 

SCREAM IP 30,267 18 (12-90) 65 (17) 39% 24% 68%    38% 12% 23% 22% 6.2% 25% 11% 6.2% 

Results presented as mean (standard deviation), percentages, or median (interquartile range). 
Abbreviations: ACR, albumin-to-creatinine ratio; DM, diabetes mellitus; HTN, hypertension; BMI, body mass index; CHD, coronary heart disease; HF, heart failure; Afib, atrial fibrillation; PAD, peripheral artery 
disease; COPD, chronic obstructive pulmonary disease. Blank boxes indicate where data were not available. Any cells with <11 participants do not include data linked to USRDS.  



 
 

  Table 2. Distribution of eGFR and eGFRdiff in the outpatient and inpatient settings, overall and by cohort 

Cohort 

No. of 
participants 

included eGFRcr eGFRcys 
(eGFRcys-

eGFRcr)/eGFRcr,% 
(eGFRcys-eGFRcr)/eGFRcr  

<-30% 
(eGFRcys-eGFRcr)/eGFRcr 

>30% 

Overall Ambulatory 821,327 87 (22) 81 (25) -5.4 (-15.3 to 2.9) * 92,154 (11.2%) 31,024 (3.8%) 

ICKD 930 47 (17) 40 (31) -29.7 (-52.2 to 10.2) 463 (49.8%) 151 (16.2%) 

CKD Rein 3,031 36 (14) 27 (11) -26.3 (-36.7 to -15.2) 997 (41.4%) 17 (0.7%) 

ULSAM 1,103 81 (11) 62 (13) -23.5 (-31.4 to -13.9) 328 (29.7%) 3 (0.3%) 

VA 90,526 67 (25) 58 (27) -16.9 (-32.1 to 2.4) 25,641 (28.4%) 7,781 (8.6%) 

SCREAM 151,502 80 (26) 73 (31) -9.8 (-27.5 to 6.0) 35,102 (21.9%) 7,857 (5.2%) 

Takahata 1,339 101 (11) 82 (18) -17.6 (-28.1 to -8.6) 279 (20.8%) 0% 

CRIB 362 23 (12) 21 (12) -6.6 (-23.7 to 12.0) 57 (15.7%) 42 (11.6%) 

MDRD 1,044 36 (16) 32 (14) -10.7 (-23.6 to 4.1) 158 (15.1%) 56 (5.4%) 

ESTHER 9,759 87 (20) 80 (16) -9.9 (-21.9 to 4.8) 1,175 (12.0%) 1,026 (10.5%) 

REGARDS 28,035 84 (19) 78 (23) -6.7 (-20.3 to 5.4) 3,178 (11.5%) 1,104 (3.9%) 

GCKD 5,175 52 (19) 50 (20) -5.1 (-19.0 to 9.8) 544 (10.6%) 3,76 (7.3%) 

FRAMINGHAM 2,596 92 (17) 85 (18) -7.7 (-18.1 to 2.4) 217 (8.4%) 81 (3.1%) 

CRIC 5,485 48 (16) 54 (23) 10.5 (-9.3 to 32.9) 427 (7.8%) 1,528 (27.9%) 

NHANES 4,960 87 (25) 88 (30) 1.2 (-12.4 to 14.0) 365 (7.4%) 533 (10.7%) 

ARIC 11,303 88 (16) 84 (19) -3.3 (-15.0 to 7.0) 732 (6.5%) 565 (5.0%) 

CHS 3,377 69 (16) 66 (18) -5.0 (-16.6 to 7.1) 207 (6.1%) 174 (5.2%) 

MASTERPLAN 477 38 (16) 40 (19) 3.2 (-11.9 to 21.0) 27 (5.7%) 87 (18.2%) 

PREVEND 7,940 100 (15) 93 (19) -6.2 (-16.7 to 2.7) 441 (5.6%) 103 (1.3%) 

UK BioBank 467,963 95 (13) 89 (16) -5.4 (-15.3 to 2.9) 20,845 (4.5%) 8,652 (1.8%) 

AASK 949 42 (13) 45 (18) 4.8 (-10.9 to 22.8) 43 (4.5%) 167 (17.6%) 

MESA 6,770 90 (16) 89 (20) -0.2 (-11.7 to 9.6) 298 (4.4%) 364 (5.4%) 

AUSDIAB 10,558 99 (17) 100 (23) 2.6 (-7.3 to 11.0) 460 (4.4%) 343 (3.2%) 

Uonuma 6,143 95 (12) 92 (18) -1.6 (-10.2 to 4.2) 170 (2.8%) 14 (0.2%) 

Overall Inpatient 39,639 69 (32) 57 (33) -29.1 to -15.4* 13,866 (35%) 5,747 (14.5%) 

VA IP 9,372 58 (32) 41 (26) -29.1 (-46.0 to -8.3) 4901 (52.6%) 708 (7.6%) 

SCREAM IP 30,267 73 (32) 62 (34) -15.4 (-33.7 to 2.8) 8,965 (29.6%) 5,039 (16.6%) 

Note: Table presents data only from participants included in the analyses. Results presented as mean (standard deviation) or percentages. eGFR difference 
percentage reflects the median cohort and 25th and 75th percentile cohort for outpatient, and the range of the two cohorts for inpatient. Any cells with <11 participants 
do not include data linked to USRDS. 



Figure 1. Distribution of the percentage difference between eGFRcys and eGFRcr, across each cohort 
 

 
 
 

  
Note: eGFRdiff calculated as (eGFRcys – eGFRcr)/eGFRcr 

A. Ambulatory Cohorts 

B. Inpatient Cohorts 



 
 

Table 3. Observed percentage of individuals who have a large negative eGFR difference or are reclassified to a worse eGFR category with eGFRcys 

relative to eGFRcr, by eGFRcr category 

 

eGFRcr 90+  eGFRcr 60-89  eGFRcr 45-59  eGFRcr 30-44  eGFR <30  
AMBULATORY 

Median percentage across cohorts (25th to 75th percentile) * 

N 455,258 260,629 52,426 33,209 16,556 

(eGFRcys – eGFRcr)/eGFRcr < -30% 7.8 (4.0 to 17.9) 7.8 (5.8 to 23.3) 12.3 (7.1 to 27.0) 17.6 (6.2 to 29.4) 14.8 (9.2 to 31.9) 

Reclassified to a worse eGFR category 
with eGFRcys relative to eGFRcr 

45.2 (29.0 to 63.3) 16.1 (12.7 to 36.2) 34.0 (22.4 to 58.5) 28.3 (18.8 to 41.7) NA 

 

INPATIENT 
Percentage range of two cohorts 

N 13,055 10,972 4,840 4,652 6,120 

(eGFRcys – eGFRcr)/eGFRcr < -30% 22.5 to 57.2 32.1 to 63.0 41.1 to 57.0 41.1 to 49.5 23.8 to 24.4 

Reclassified to a worse eGFR category 
with eGFRcys relative to eGFRcr 

45.3 to 79.0 46.2 to 75.9 63.9 to 75.9 56.5 to 65.2 NA 

Notes: *The median (25th to 75th percentile) was the raw percentage summarized across cohorts (CKD cohorts were excluded from eGFRcr 90+ and 60-89 

due to small sample size) 

Abbreviations: eGFRcys, cystatin C-based estimated glomerular filtration rate; eGFRcr, creatinine-based estimated glomerular filtration rate. Both in 

ml/min/1.73 m2 



 
Table 4. Associations of participant characteristics with a large negative eGFR difference between 

eGFRcys and eGFRcr 

 

AMBULATORY INPATIENT 

OR (95% CI) OR (95% CI) 

Age, per 10y older 1.68 (1.55, 1.81) 1.27 (1.21, 1.33) 

Female 1.17 (1.10, 1.24) 1.07 (0.80, 1.43) 

Hypertension 1.12 (1.02, 1.22) 1.04 (0.97, 1.11) 

Diabetes mellitus 1.15 (1.08, 1.23) 1.18 (1.12, 1.25) 

Non-smoker Reference Reference 

Former smoker 1.03 (0.95, 1.11) 1.21 (1.09, 1.34) 

Current smoker 2.09 (1.59, 2.74) 1.04 (0.91, 1.19) 

Coronary heart disease 1.20 (1.11, 1.30) 0.78 (0.60, 0.99) 

Stroke 1.23 (1.07, 1.42) 1.13 (0.88, 1.46) 

Heart failure 1.81 (1.53, 2.14) 1.63 (1.21, 2.19) 

Atrial fibrillation 1.20 (1.09, 1.33) 1.09 (0.95, 1.26) 

Peripheral arterial disease 1.60 (1.48, 1.74) 1.38 (1.12, 1.69) 

Cancer 1.14 (1.01, 1.29) 1.25 (1.03, 1.51) 

Chronic obstructive pulmonary disease 1.60 (1.48, 1.74) 1.36 (1.24, 1.50) 

Liver disease 1.79 (1.12, 2.88) 1.74 (1.25, 2.41) 

BMI <30, per 5 kg/m2 higher 1.06 (0.89, 1.27) 0.98 (0.92, 1.04) 

BMI ≥30, per 5 kg/m2 higher 1.53 (1.37, 1.69) 1.20 (1.12, 1.28) 

eGFRcr 90+ 1.56 (1.15, 2.10) 0.92 (0.55, 1.52) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

eGFRcr 60-89 1.23 (1.06, 1.44) 1.08 (0.67, 1.74) 

eGFRcr 45-59 Reference Reference 

eGFR 30-44 0.89 (0.78, 1.01) 0.79 (0.64, 0.98) 

eGFR <30 0.56 (0.46, 0.69) 0.33 (0.17, 0.64) 

lnACR, per e-fold higher 1.17 (1.14, 1.20) 1.06 (0.99, 1.13) 

Notes: Large negative eGFRdiff defined as ([eGFRcys – eGFRcr]/eGFRcr) < -30%. Models adjusted for all 

variables listed. 

Abbreviations: OR, odds ratio; BMI, body mass index; eGFR, estimated glomerular filtration rate in ml/min/1.73 

m2; ACR, urine albumin-to-creatinine ratio 

The prevalence of a large eGFRdiff for a 70-year-old man with hypertension, diabetes, no smoking or other 

comorbidities, eGFR 45-59 ml/min/1.73 m2, ACR 30 mg/g, BMI 30 kg/m2 was 8.8% (6.7%, 20.7%) in the outpatient 

and 38.1% - 43.8% in the inpatient cohorts. We used the median (25th – 75th) adjusted prevalence for outpatient 

and range for inpatient across cohorts combined with the meta-analyzed odds ratios. 



 
Figure 2. Association of the percentage difference between eGFRcys and eGFRcr and risks of long-term adverse outcomes in 
the ambulatory setting 

 
 
 
 
 

Note: eGFRdiff calculated as (eGFRcys – eGFRcr)/eGFRcr and modeled as a linear spline with knots at -30%, -15%, 0%, and 30%. 

Models adjusted for age, sex, hypertension, diabetes, former and current smoking, history of coronary heart disease, stroke, heart failure, atrial fibrillation, 

peripheral artery disease, cancer, liver disease, chronic obstructive pulmonary disease, body mass index (linear splines with knot at 30), eGFRcr 

categories (G1, G2, G3a, G3b, G4&5), ACR missing indicator (only for clinical cohort), log-UACR. Linear splines were also used for eGFRdiff 

Abbreviations: eGFRcys, cystatin C-based estimated glomerular filtration rate; eGFRcr, creatinine-based estimated glomerular filtration rate; CVD, 

cardiovascular disease; HF, heart failure; ASCVD, atherosclerotic cardiovascular disease; KFRT, kidney failure requiring therapy 


