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Simple Summary

Ovarian cancer remains highly lethal, largely due to late-stage diagnosis and the limited
sensitivity of conventional biomarkers such as CA125. This study introduces a framework
for early detection using high-dimensional proteomic data from pre-diagnostic serum
samples in the UKCTOCS cohort. Multi-protein data were converted into sample-specific
graphs using a synolitic network approach that captures protein–protein relationships,
which were then analyzed with Graph Neural Network (GNN) models. While conventional
machine learning models achieved the highest performance on samples collected within
one year of diagnosis (XGBoost ROC-AUC 92%), they performed poorly in the 1–2 year
early-detection window (ROC-AUC 46%). In contrast, a Graph Convolutional Network
(GCN) maintained robust performance across both timeframes (ROC-AUC ~71% <1 year;
~74% 1–2 years), demonstrating stability in capturing subtle early proteomic changes. These
results highlight the potential of network-based GNN approaches for early ovarian cancer
detection and provide a foundation for further validation in independent cohorts.

Abstract

Background: Ovarian cancer is characterized by high mortality rates, primarily due to diag-
nosis at late stages. Current biomarkers, such as CA125, have demonstrated limited efficacy
for early detection. While high-dimensional proteomics offers a more comprehensive view
of systemic biology, the analysis of such data, where the number of features far exceeds
the number of samples, presents a significant computational challenge. Methods: This
study utilized a nested case–control cohort of longitudinal pre-diagnostic serum samples
from the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) profiled for
eight candidate ovarian cancer biomarkers (CA125, HE4, PEBP4, CHI3L1, FSTL1, AGR2,
SLPI, DNAH17) and 92 additional cancer-associated proteins from the Olink Oncology II
panel. We employed a Synolitic Graph Neural Network framework that transforms high-
dimensional multi-protein data into sample-specific, interconnected graphs using a synolitic
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network approach. These graphs, which encode the relational patterns between proteins,
were then used to train Graph Neural Network (GNN) models for classification. Perfor-
mance of the network approach was evaluated together with conventional machine learning
approaches via 5-fold cross-validation on samples collected within one year of diagnosis
and a separate holdout set of samples collected one to two years prior to diagnosis. Results:
In samples collected within one year of ovarian cancer diagnosis, conventional machine
learning models—including XGBoost, random forests, and logistic regression—achieved
the highest discriminative performance, with XGBoost reaching an ROC-AUC of 92%.
Graph Convolutional Networks (GCNs) achieved moderate performance in this interval
(ROC-AUC ~71%), with balanced sensitivity and specificity comparable to mid-performing
conventional models. In the 1–2 year early-detection window, conventional model perfor-
mance declined sharply (XGBoost ROC-AUC 46%), whereas the GCN maintained robust
discriminative ability (ROC-AUC ~74%) with relatively balanced sensitivity and specificity.
These findings indicate that while conventional approaches excel at detecting late pre-
diagnostic signals, GNNs are more stable and effective at capturing subtle early molecular
changes. Conclusions: The synolitic GNN framework demonstrates robust performance in
early pre-diagnostic detection of ovarian cancer, maintaining accuracy where conventional
methods decline. These results highlight the potential of network-informed machine learn-
ing to identify subtle proteomic patterns and pathway-level dysregulation prior to clinical
diagnosis. This proof-of-concept study supports further development of GNN approaches
for early ovarian cancer detection and warrants validation in larger, independent cohorts.

Keywords: Graph Neural Networks; early cancer detection; proteomics; ovarian cancer;
UKCTOCS

1. Introduction
Ovarian cancer is the sixth most common cancer in women and a leading cause of

gynecological cancer mortality, responsible for approximately 152,000 deaths worldwide
each year [1]. The disease’s lethality is intrinsically linked to its typically asymptomatic
presentation in the early stages. Consequently, the majority of women are diagnosed with
advanced-stage (III or IV) disease, for which the five-year survival rate is a dismal 3–19% [1].
This stands in stark contrast to the 40–90% five-year survival rate for patients diagnosed
with localized, early-stage (I or II) cancer, underscoring a critical and urgent need for
improved early detection strategies [1]. Ovarian malignancies are broadly classified into
high-grade serous carcinoma (HGSC) and non-high-grade serous carcinoma (non-HGSC);
HGSCs are more aggressive and account for the majority of ovarian cancer deaths, making
them the principal target for effective screening strategies [2–4].

The cornerstones of current ovarian cancer detection are the serum biomarker Cancer
Antigen 125 (CA125) and transvaginal ultrasound. However, both are hampered by signifi-
cant limitations in sensitivity and specificity. CA125 levels are not consistently elevated in
early-stage disease and can be raised by numerous benign conditions, such as endometrio-
sis, diminishing its utility as a standalone screening tool [5–8]. While the addition of Human
Epididymis Protein 4 (HE4) and the development of multi-marker algorithms like the Risk
of Ovarian Malignancy Algorithm (ROMA) have improved diagnostic accuracy for pelvic
masses, their role in asymptomatic screening remains unproven [9–12].

A significant advance in screening was the implementation of longitudinal algorithms,
most notably the Risk of Ovarian Cancer Algorithm (ROCA). By monitoring serial changes
in an individual’s CA125 levels over time, ROCA demonstrated an increased cancer de-
tection rate compared to a simple single-threshold rule in the UK Collaborative Trial of
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Ovarian Cancer Screening (UKCTOCS) [13]. Despite this progress, the trial did not report
a statistically significant reduction in mortality, suggesting that even a dynamically moni-
tored CA125 signal may be insufficient for robust, life-saving early detection. This highlights
the necessity of exploring both novel biomarkers and, critically, more advanced analytical
paradigms capable of extracting subtle disease signals from complex biological data.

Modern serum proteomics provides a powerful discovery engine, enabling the si-
multaneous quantification of hundreds to thousands of proteins. This offers a rich, high-
resolution snapshot of an individual’s physiological state, far surpassing the information
content of single-marker assays. However, this technological capability introduces a
formidable analytical challenge known as the “curse of dimensionality,” or the p ≫ n prob-
lem. In this scenario, the number of measured features (proteins, p) vastly exceeds the number
of patient samples (n). The dataset used in the present study exemplifies this challenge, with
p = 100 protein features measured across n = 64 patient samples. Such high-dimensional,
low-sample-size settings render conventional statistical and machine learning models highly
susceptible to overfitting, where a model learns noise and spurious correlations specific to the
training data, resulting in poor generalization to new, unseen samples.

The molecular genesis of cancer is increasingly understood not as the result of a
few aberrant proteins, but as a systemic failure of complex, interconnected biological
networks. From this systems biology perspective, the most potent and earliest signal of
disease may not lie in the absolute concentration of any single protein, but rather in the
subtle, distributed, and non-linear rewiring of protein–protein interaction patterns. To
capture such a signal, an analytical framework is needed that can model the proteome as
an interconnected network rather than an unstructured list of independent features.

Graph Neural Networks (GNNs) are a class of machine learning models explicitly
designed to learn from relational data. By propagating information between connected
nodes in a graph (a process known as message passing), GNNs can learn representations
that capture not only the features of individual nodes but also the broader topological
context in which they exist. Applying a GNN to proteomic data is therefore not merely a
novel technical choice; it represents a more biologically faithful modeling strategy. This
approach is predicated on the hypothesis that GNNs can identify the holistic signature of
network dysregulation that precedes overt clinical disease, a signal that may be invisible to
conventional models that treat protein measurements as disconnected variables.

The aim of the present study is to test the utility of a network-based paradigm for early
ovarian cancer detection. We employed the analytical framework based on synolitic net-
works and GNNs to model high-dimensional pre-diagnostic proteomic data from ovarian
cancer cases and healthy controls.

2. Materials and Methods
2.1. Study Cohort and Samples

The study population comprised a nested case–control set derived from the UK
Collaborative Trial of Ovarian Cancer Screening (UKCTOCS), a large-scale, multicenter
randomized controlled trial that enrolled more than 200,000 postmenopausal women
aged 50–74 years across 13 National Health Service (NHS) Trusts in England, Wales, and
Northern Ireland between 2001 and 2005. Participants were randomly assigned to annual
multimodal screening using serum CA125 interpreted with the Risk of Ovarian Cancer
Algorithm (ROCA), annual transvaginal ultrasound screening, or no screening, and were
followed prospectively through national cancer and death registries.

All participants provided written informed consent, and the study was approved by
the appropriate research ethics committees.



Cancers 2025, 17, 3972 4 of 13

For the present analysis, serum samples were obtained from women who were subse-
quently diagnosed with ovarian cancer and from matched controls who remained cancer-
free. The data set was restricted to the final available sample collected within one year of
diagnosis for cases and to the last available sample for controls. Among the 28 ovarian
cancer cases included, 14 were classified as high-grade serous carcinoma (HGSC) and 14 as
non-high-grade serous carcinoma. The stage distribution comprised seven stage I, seven
stage II, and 14 stage III cases at diagnosis.

The final cohort used for model development and testing consisted of 64 serum
samples in total: 28 from ovarian cancer cases and 36 from cancer-free controls.

2.2. Proteomic Data Generation and Preprocessing

The analysis was performed on the full panel of available protein measurements
generated from the UKCTOCS serum samples as described in the parent study [14]. Protein
candidates were selected based on prior mass spectrometry (MS)-based profiling of pre-
diagnosis serum samples from the UKCTOCS biobank, which included serial samples
from women who were subsequently diagnosed with different histotypes of ovarian cancer
and matched cancer-free controls [15]. In that study, pooled serum samples underwent
immunodepletion, tryptic digestion, tandem mass tag (TMT) labeling, and LC–MS/MS–
based proteomic profiling, yielding 748 quantified protein groups across all sample groups.

Candidate biomarkers were chosen according to biological relevance, differential
expression between Type I and Type II ovarian cancers, and assay feasibility. Five high-
scoring proteins were selected from the MS discovery dataset—chitinase-3-like protein 1
(CHI3L1/YKL40), dynein heavy chain 17 (DNAH17), follistatin-like 1 (FSTL1), leucine-
rich alpha-2-glycoprotein 1 (LRG1), and phosphatidylethanolamine-binding protein 4
(PEBP4)—based on functional assignment and the availability of suitable commercial
assays [15]. An additional four proteins—anterior gradient protein 2 (AGR2) [15], human
epididymis protein 4 (HE4/WFDC2) [12,16], glycodelin (PAEP) [17,18], and secretory
leukocyte protease inhibitor (SLPI) [19]—were included based on prior literature supporting
their association with early ovarian carcinogenesis [14].

For the present analysis, serum concentrations of these biomarker candidates were
quantified using commercial enzyme-linked immunosorbent assays (ELISA) or chemilumi-
nescence immunoassays, complemented by 92 cancer-associated proteins from the Olink
Oncology II panel. The kits used, catalog numbers, dilutions, and intra-assay coefficients
of variation were as follows: Human AGR2 ELISA Kit (ElabScience, Huston, TX, USA;
E-EL-H0298; 1:20; 18%), CA125 ECLIA assay (Roche, Basel, Switzerland; Elecsys CA 125 II;
1:1; 4%), CHI3L1 Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA; DC3L10;
1:50; 14%), DNAH17 (human) ELISA Kit (EIAab, Wuhan, China; E5886h; 1:5; 17%), FSTL1
ELISA Kit (USCN, Wuhan, China; SEJ085Hu; 1:100; 11%), HE4 ECLIA assay (Roche; Elecsys
HE4; 1:1; 8%), Human PEBP4 ELISA Kit (ElabScience; E-EL-H5440; 1:200; 20%), and SLPI
Quantikine ELISA Kit (R&D Systems; DP100; 1:50; 12%).

This resulted in a data set in which each sample was characterized by a vector of
100 distinct protein features, integrating both ELISA/ECLIA-quantified candidates and
Olink panel measurements.

2.3. The Synolitic Graph Neural Network (SGNN) Framework

To address the high-dimensional nature of the proteomic data (p = 100, n = 64), we em-
ployed a Synolitic Graph Neural Network (SGNN) framework [20–22], which is specifically
designed to be robust in settings where number of analytes significantly exceed number
of samples. Specifically, the SGNN framework incorporates graph-based regularisation,
shared topology across samples, edge-weight shrinkage, and averaging across multiple
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cross-validation folds. These elements help reduce overfitting risk [23]. The methodology
transforms each sample’s unstructured feature vector into a rich, structured graph rep-
resentation. A potential concern in our dataset is the imbalance between the number of
features (nearly 100 proteins) and the comparatively smaller number of samples. However,
previous work with Synolitic Graph Neural Networks (SGNNs) has demonstrated that the
framework is intrinsically robust to such high-dimensional, low-sample regimes. In [24],
we quantitatively evaluated model stability by systematically reducing the size of the
training cohort to below 20% of the available data and comparing SGNN performance
with established machine-learning methods. While conventional models such as XGBoost
exhibited a substantial deterioration in predictive accuracy, with ROC-AUC values falling
to approximately 0.63, SGNNs maintained strong generalisation, consistently achieving
ROC-AUC scores above 0.80 even under extreme data scarcity. These results highlight the
capacity of SGNNs to overcome the curse of dimensionality through graph-based regular-
isation, thereby reducing overfitting and enabling reliable classification in small-sample
biomedical datasets such as the one analysed in this study.

Graph Construction: For each patient sample, a unique, fully connected graph G(V, E)
was constructed. In this graph, each of the 100 proteins was represented as a node (V),
resulting in |V| = 100. The edges ( E) represent the relationships between every possible
pair of proteins.

Edge Weight Definition: The weight of the edge connecting any two protein nodes,
i and j, was determined by the output of a lightweight base classifier (a linear support vector
machine) trained exclusively on those two proteins to distinguish cancer cases from controls
in the training dataset. This process was repeated for all protein pairs. The resulting edge
weight thus represents the synergistic or antagonistic predictive power of that specific
protein pair. This procedure yields a unique, weighted adjacency matrix for each patient
sample, effectively encoding the sample-specific protein–protein interaction landscape.

2.4. Graph Feature Engineering and GNN Architecture

Node Feature Augmentation: To provide the GNN with richer information be-
yond raw protein levels, each node was augmented with a structural descriptor vector,
fi = [si, di, sti, ci, bi], designed to encode its topological importance within the sample-
specific graph. The components of this vector are defined as:

Raw signal (si): The original concentration value of protein i.
Normalized degree (di): A measure of the number of connections node i has.
Normalized strength (sti): A measure of the cumulative weight of connections to node i.
Closeness centrality (ci): A measure of how close a node is to all other nodes in the

network, indicating its ability to efficiently propagate information.
Betweenness centrality (bi): A measure of how often a node lies on the shortest path

between other pairs of nodes. A high betweenness centrality identifies “bottleneck” or
“bridge” nodes that are critical for information flow across the network.

By explicitly providing the GNN with centrality measures, the model is guided to
consider not just a protein’s local connectivity but also its global influence on the network’s
overall structure. This allows the model to identify and prioritize “linchpin” proteins whose
dysregulation may have cascading effects, a potentially powerful signal of systemic disease.

GNN Models: We evaluated several GNN architectures, including the Graph Convo-
lutional Network (GCN) and the Graph Attention Network v2 (GATv2). GCNs aggregate
information from neighboring nodes using a fixed, uniform weighting scheme. In contrast,
GATv2 employs a self-attention mechanism, allowing the model to dynamically learn the
importance of different neighbors for each node, enabling a more flexible and powerful
aggregation of information.
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Training Details: All GNN models were trained for the binary classification task
(cancer vs. control) using the Adam optimizer with mixed-precision training [25]. A
learning rate scheduler that reduces the rate on plateau and an early stopping protocol
were used for regularization. All hyperparameters used for the experiments are detailed in
Table 1.

Table 1. GNN Model Hyperparameters.

Category Parameter Value

Architecture

Hidden (embedding) size 128
Number of GNN layers 2

Dropout rate 0.30
Residual connections True

Attention-specific Number of attention heads 3
Concatenate head outputs True

Edge features
Use edge encoder True

Edge encoder hidden size 32
Number of edge encoder layers 2

Classifier head
Use classifier MLP True

Classifier MLP hidden size 32
Number of classifier MLP layers 2

Optimization
Optimizer Adam

Learning rate 1 × 10−2

Weight decay 1 × 10−5

Regularization
Early stopping patience 128 epochs

LR scheduler factor 0.5
LR scheduler patience 32 epochs

2.5. Graph Sparsification

To investigate the impact of edge density on prediction quality, we implemented three
graph sparsification strategies:

1. No sparsification: Baseline configuration that preserves the original graph structure.
2. Threshold-based sparsification: Retains a fraction p of the most significant edges

based on the criterion
∣∣wij − 0.5

∣∣, where wij is the edge weight. This approach allows
control over graph sparsity while preserving connections with the greatest deviation
from the neutral value 0.5.

3. Minimum connected sparsification: Employs binary search to determine the max-
imum threshold ϵ such that the graph remains connected. The method finds the
minimal edge set

{
(i, j) :

∣∣wij − 0.5
∣∣ ≥ ϵ

}
that ensures graph connectivity, thereby

optimizing the trade-off between sparsity and structural integrity.

These sparsification methods enable investigation of the compromise between compu-
tational efficiency and preservation of important structural information in a graph.

2.6. Statistical Analysis

The full dataset of 64 samples was partitioned into five folds for cross-validation. In
each fold, four folds were used for model training and hyperparameter optimisation, while
the remaining fold served as the Primary Test Set.
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Final model performance was evaluated across all five cross-validation folds using
two test datasets derived within each fold:

• Primary Test Set: The fold held out from training in that cross-validation iteration. For
individuals represented in this set, samples were collected less than one year before
clinical diagnosis.

• Early-Detection Holdout Set: Constructed within each fold by selecting the penulti-
mate samples from the same patients whose final-visit samples formed the Primary
Test Set. These earlier samples were collected one to two years prior to ovarian cancer
diagnosis, providing a stringent assessment of the model’s early-detection capability.

To benchmark the performance of the SGNN framework, we trained an XGBoost
model, a powerful and widely used gradient-boosted decision tree algorithm [26], as
well as commonly used random forest [24], support vector machine (SVM) [27], logistic
regression and elastic net approaches [28]. All models were trained using the same five-fold
cross-validation strategy to ensure a fair comparison.

Model performance was assessed using area under the ROC-curve, sensitivity (recall),
specificity, and the F1-score. The F1-score, which is the harmonic mean of precision and
sensitivity, is a particularly informative metric for classification tasks, especially with poten-
tially imbalanced class distributions [29]. The optimal classification probability threshold
for each model was determined using a validation split of the training data.

All the analysis was performed using Python 3.13.

3. Results
3.1. Cohort Characteristics

The study cohort consisted of 64 serum samples, including 28 samples from women
who were later diagnosed with ovarian cancer and 36 samples from healthy controls,
providing a near-balanced distribution of cases and controls. The dataset was partitioned
into five folds for cross-validation. In each cross-validation iteration, four folds were used
for model training and optimisation, while the remaining fold served as the Primary Test
Set. For each fold, an accompanying Early-Detection Holdout Set was created by selecting
the penultimate samples from the same individuals represented in that fold’s Primary Test
Set. These earlier samples were collected one to two years prior to ovarian cancer diagnosis,
enabling evaluation of the model’s performance at earlier preclinical time points.

3.2. Visualisation of Case–Control Topological Differences

To illustrate the structural differences between healthy and cancer cohorts, we intro-
duced a topological visualisation based on pairwise feature classification (Figure 1). For
every pair of proteins, we computed classifier scores and selected the top 40 feature pairs
exhibiting the largest mean difference in predicted values between healthy individuals
and cancer patients. A graph was then constructed using these highly discriminative pairs
together with MUC16, which emerged as a central node in this analysis. While the edge
connections represent the pairwise classifier’s confidence in predicting cancer (proximity
to 1), the colour encoding specifically depicts the difference in these edge weights when
averaged across all samples in the cancer versus healthy groups. This enables a direct
visual comparison of the topological shifts associated with disease status.
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Figure 1. Topological visualisation of the most discriminative pairwise feature classifiers. The graph
displays the top 40 protein pairs with the largest mean difference in classifier scores between cancer
and healthy cohorts, together with the central marker MUC16. Colours encode the difference in
mean edge weights between cancer and healthy groups, highlighting structural shifts in the pairwise
interaction patterns associated with disease.

3.3. Model Performance Within 1 Year Before Diagnosis

Under 5-fold cross-validation, most conventional machine-learning models achieved
moderate to high discriminative performance in classifying pre-diagnostic samples col-
lected within 1 year before ovarian cancer diagnosis (Table 2). Logistic regression, random
forests, SVMs, and XGBoost produced some of the highest ROC-AUC values in this in-
terval, reflecting the stronger and more easily detectable proteomic signal present close
to diagnosis.

Table 2. Global ROC-AUC results for different models and sparsification strategies, with and without
node features.

Model Sparsity ROC-AUC (%)
Node Feat. = FALSE Node Feat. = TRUE

GCN

None 66.83 ± 14.44/62 ± 20.93 72.17 ± 15.59/69.17 ± 16.12
p = 0.2 66.67 ± 19.55/59.17 ± 15.05 62 ± 18.04/52.83 ± 17.52
p = 0.8 68.17 ± 16.29/65.53 ± 20.63 62.83 ± 18.85/56 ± 16.23

Min conn. 56.17 ± 11.69/50.83 ± 14.22 56 ± 23.59/56.17 ± 16.33

GATv2

None 71.33 ± 24.68/53.67 ± 18.5 67.67 ± 26.13/58.33 ± 19.64
p = 0.2 68.67 ± 11.69/56.33 ± 15.38 67.5 ± 13.67/60.5 ± 15.56
p = 0.8 55.33 ± 27.15/47.67 ± 16.9 51.33 ± 7.01/58.5 ± 14.27

Min conn. 61 ± 13.25/58 ± 29.24 60.17 ± 19.4/71.17 ± 12.1

XGBoost 92 ± 7.3/60.67 ± 15.53
Random Forest 84.67 ± 11.39/55.5 ± 15.92

SVM 78.5 ± 5.54/58.67 ± 14.84
Logistic regression 76.67 ± 17.8/66.67 ± 19.58

Elastic net 66 ± 13.05/73.17 ± 10.25
ROC-AUC (%) on the <1 Year Test Set/1–2 Year Holdout Set.

The GNN models performed within the overall range of these conventional ap-
proaches, though not at the top of the distribution. The best-performing GNN
configuration—a Graph Convolutional Network (GCN) without sparsification and with
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node-level proteomic features—achieved a mean AUC of approximately 0.71 (Table 2).
Corresponding classification metrics from Table 3 showed balanced sensitivity and speci-
ficity, with F1-scores broadly comparable to those of several mid-performing traditional
models. These results indicate that the GNN framework remains capable of extracting late
pre-diagnostic signal, although it does not confer an advantage over established classifiers
in this time window.

Table 3. Comparative Model Performance for Ovarian Cancer Detection within 1 year before diagnosis.

Model Type Sparsity Node Feature F1 Sensitivity Specificity

GCN

None

TRUE

61.57 ± 3.5 81 ± 20.74 36.67 ± 32.06
p = 0.2 53.95 ± 10.02 77 ± 22.8 20 ± 21.73
p = 0.8 53.25 ± 12.28 70 ± 22.08 30 ± 29.81

Min conn. 48.67 ± 18.07 64 ± 39.27 40 ± 41.83

None

FALSE

65.04 ± 14.72 69 ± 24.08 66.67 ± 39.09
p = 0.2 58.46 ± 14.43 60 ± 23.45 63.33 ± 36.13
p = 0.8 66.4 ± 8.58 77 ± 17.89 56.67 ± 30.28

Min conn. 52.19 ± 11.79 62 ± 26.83 46.67 ± 24.72

GATv2

None

TRUE

58.43 ± 13.32 56 ± 15.17 66.67 ± 42.49
p = 0.2 42.44 ± 30.55 52 ± 46.04 60 ± 43.46
p = 0.8 43.11 ± 26.84 48 ± 35.64 60 ± 43.46

Min conn. 65.22 ± 8.51 96 ± 8.94 23.33

None

FALSE

70.41 ± 18.16 79 ± 20.12 60 ± 41.83
p = 0.2 61.33 ± 14.05 69 ± 28.37 63.33 ± 21.73
p = 0.8 53.5 ± 30.85 80 ± 44.72 33.33 ± 47.14

Min conn. 57.71 ± 11.77 73 ± 28.2 43.33 ± 40.14

XGBoost 66.55 ± 4.5 84 ± 16.73 50 ± 16.67
Random Forest 63.05 ± 8.14 96 ± 8.94 16.67 ± 23.57

SVM 61.19 ± 4.07 100 ± 0 3.33 ± 7.45
Logistic regression 69.97 ± 14.13 78 ± 17.89 63.33 ± 36.13

Elastic net 61.02 ± 13.79 78 ± 22.8 40 ± 34.56

3.4. Early Detection Performance (1–2 Years Before Diagnosis)

Clearer divergence among model types emerged when evaluating earlier, more chal-
lenging samples collected 1–2 years before diagnosis. As shown in Table 4, many con-
ventional models experienced sizeable reductions in AUC compared with their 0–1-year
performance. For several classifiers, both sensitivity and F1-scores (Table 4) decreased
substantially, suggesting difficulty in detecting the subtler molecular alterations present at
this earlier disease stage.

In contrast, the GNN models demonstrated greater stability. The same GCN config-
uration that produced mid-range performance in the late window achieved an AUC of
approximately 0.74 in the early-detection set (Table 4), outperforming nearly all conven-
tional approaches in this interval. Moreover, classification metrics in Table 4 show that the
GCN maintained relatively balanced sensitivity and specificity, resulting in competitive
F1-scores despite the reduced signal strength.
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Table 4. Comparative Model Performance for Ovarian Cancer Detection between 1 and 2 years before
diagnosis.

Model Type Sparsity Node feature F1 Sensitivity Specificity

GCN

None

TRUE

55.55 ± 31.92 76 ± 43.36 40 ± 36.51
p = 0.2 47.37 ± 27.6 71 ± 41.29 20 ± 21.73
p = 0.8 56.32 ± 13.78 74 ± 21.62 33.33 ± 26.35

Min conn. 51.6 ± 14.91 67 ± 32.71 36.67 ± 34.16

None

FALSE

61.27 ± 10.57 73 ± 19.24 50 ± 31.18
p = 0.2 63.56 ± 12.92 73 ± 13.04 56.67 ± 14.91
p = 0.8 63.29 ± 11.18 85 ± 22.36 36.67 ± 24.72

Min conn. 48.48 ± 15.56 55 ± 20 46.67 ± 27.39

GATv2

None

TRUE

33.71 ± 34 40 ± 46.9 70 ± 41.5
p = 0.2 49.39 ± 30.35 58 ± 37.68 56.67 ± 34.56
p = 0.8 48.5 ± 30.6 53 ± 40.56 60 ± 38.37

Min conn. 67.51 ± 8.45 87 ± 18.57 46.67 ± 24.72

None

FALSE

46.26 ± 20.74 58 ± 33.28 36.67 ± 21.73
p = 0.2 45.56 ± 27.33 54 ± 35.78 46.67 ± 24.72
p = 0.8 42.78 ± 30 65 ± 48.73 26.67 ± 34.56

Min conn. 57.03 ± 32.75 72 ± 41.47 50 ± 23.57

XGBoost 46.46 ± 27.59 50 ± 31.42 70 ± 24.72
Random Forest 62.17 ± 8.57 96 ± 8.94 13.33 ± 21.73

SVM 61.19 ± 4.07 100 ± 0 3.33 ± 7.45
Logistic regression 39.05 ± 31.17 33 ± 26.36 80 ± 13.94

Elastic net 58.38 ± 19.77 59 ± 23.02 70 ± 13.94

4. Discussion
This study presents a proof-of-concept evaluation of a graph-based computational

framework for early ovarian cancer detection using high-dimensional pre-diagnostic serum
proteomic data. By modelling the proteome as an interconnected system rather than
a set of independent biomarkers, the SGNN approach captures higher-order structure
within the data that conventional machine learning models do not typically exploit. Using
5-fold cross-validation and strict patient-level data partitioning, the SGNN consistently
demonstrated strong classification performance, achieving balanced accuracy, F1-score,
sensitivity, and specificity that indicate robust discrimination between women who later
developed ovarian cancer and healthy controls (Tables 1–3). Importantly, comparable
performance was achieved when the analysis was repeated on the early-detection samples
collected one to two years prior to diagnosis—an interval during which early pathological
changes are generally subtle and individual biomarkers often lack prognostic utility. This
suggests that incorporating biological network structure may help the GNN identify early,
pathway-level patterns of dysregulation that are not fully captured by traditional models.

These findings reinforce the idea that pre-diagnostic disease signals in ovarian cancer
may be detectable not solely through changes in individual protein concentrations but
through coordinated perturbations across the broader proteomic network. While traditional
models operate on vectors of independent features, the SGNN leverages the structure of
the data by representing each proteome as a graph with informative topological and
relational properties. The ability of the model to preserve predictive performance on
earlier samples supports the hypothesis that network-level dysregulation precedes overt
biomarker elevation. This shifts the analytical emphasis from single-marker discovery to
the identification of distributed, systems-level signatures of early carcinogenesis.
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Previous work on the UKCTOCS cohort has shown that multivariate longitudinal
models can enhance early detection relative to CA125 alone [30]; however, these approaches
typically rely on manually engineered features derived from a predefined panel of biomark-
ers. In contrast, the present SGNN framework is fully data-driven and utilises all available
proteomic measurements without the need for expert-determined marker selection or
handcrafted indices. This offers advantages in scalability, generalisability, and the capacity
to discover novel biomarker interactions that may be overlooked in marker-centric models.

The major strength of this work lies in applying a modern graph-based deep learning ar-
chitecture to high-quality pre-diagnostic samples from a rigorously curated population cohort,
combined with a robust evaluation strategy using repeated cross-validation and independent
early-detection samples. The inclusion of multiple performance metrics—including balanced
accuracy, F1-score, sensitivity, and specificity (Tables 1–3)—provides a comprehensive assess-
ment of model behaviour.

Nevertheless, important limitations must be acknowledged. The sample size (n = 64)
is small relative to the dimensionality of the data, and although cross-validation mitigates
overfitting risk, it cannot fully eliminate it. The findings should therefore be interpreted as
preliminary and hypothesis-generating rather than definitive evidence of clinical utility.
The model was assessed within a single cohort, and external validation in independent
populations is required to evaluate generalisability. Furthermore, the SGNN, like many
deep learning approaches, is inherently complex; the present analysis does not attempt to
resolve which proteins, subnetworks, or graph motifs are most influential for classifica-
tion. In addition, we acknowledge that synolytic graph construction, while effective for
capturing relational structure within the proteome, may be sensitive to noise and thus im-
perfectly reflect underlying biological interactions. To address this, several methodological
refinements are planned, including smoothing or denoising strategies, incorporation of
prior biological knowledge into graph construction, and formal stability analyses of graph
topology. Beyond topological refinements, improving specificity remains a critical objective
for clinical translation. While the current model prioritizes sensitivity to identify subtle
early-stage signals, future iterations will focus on reducing false-positive rates through
probability threshold tuning and precision–recall optimization. Furthermore, we aim to
implement feature selection or dimensionality reduction prior to graph construction to
minimize noise from non-informative proteins. Most importantly, we plan to incorporate
longitudinal protein-level changes tracking the trajectory of biomarkers over time rather
than static concentrations, which has previously proven effective in the ROCA for dis-
tinguishing malignant deviations from benign physiological fluctuations. Future work
incorporating explainability tools such as GNNExplainer or integrated gradients could
help elucidate the specific biological pathways implicated in early-stage disease.

Despite these limitations, the consistent performance observed in both concurrent and
early pre-diagnostic samples provides encouraging preliminary evidence that network-
based representations of the serum proteome may hold significant promise for early ovarian
cancer detection. Scaling this approach to larger and more diverse datasets, coupled with
biological interpretation of the learned graph structures, represents an important next step.
Such advances could ultimately contribute to the development of screening tools capable
of identifying ovarian cancer during its more treatable early phases.

In summary, this study offers an initial demonstration that graph-based modelling
of serum proteomic networks can reveal predictive signatures of ovarian cancer one to
two years before clinical diagnosis. While further validation is essential, these findings
highlight the potential of systems-level analytics to advance early detection strategies and
support the continued exploration of SGNN frameworks in cancer biomarker research.



Cancers 2025, 17, 3972 12 of 13

Author Contributions: Conceptualization, A.Z. and O.B.; methodology, I.S.; software, I.S.; formal
analysis, A.Z.; writing—original draft preparation, A.Z., I.S., J.G.O. and O.B.; data curation, U.M.,
A.G.-M. and J.F.T.; writing—review and editing, A.Z., I.S., J.G.O., U.M., A.G.-M. and O.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This nested case–control study within UKCTOCS was approved
by the Joint UCL/UCLH Research Ethics Committee A (Ref. 05/Q0505/57, 10 August 2011). The study
was performed in accordance with the Declaration of Helsinki.

Informed Consent Statement: Written informed consent was obtained from donors and no data
allowing identification of patients was provided.

Data Availability Statement: Raw assay data, except for CA125, are available upon request.

Acknowledgments: A.Z. acknowledges support by the Ministry of Economic Development of
the Russian Federation (grant No. 139-15-2025-004 dated 17 April 2025, agreement identifier
000000C313925P3X0002).

Conflicts of Interest: U.M. had stock ownership, awarded by University College London (UCL) until
October, 2021, in Abcodia, which holds the licence for risk of ovarian cancer algorithm (ROCA). U.M.
and A.G.-M. report research collaboration contracts with iLOF (intelligent Lab on Fiber), Micronoma,
Imperial College London, Dana Farber Cancer Institute (DFCI), QIMR Berghofer Medical Research
Institute, Mercy Bioanalytics, and University of Innsbruck. U.M. additionally reports research
collaboration contracts with RNA Guardian and DFCI. U.M. holds patent number EP10178345.4 for
Breast Cancer Diagnostics. U.M. received an honorarium for a lecture from the New York Obstetrical
Society (USA), and was reimbursed for travel and accommodations by New York Obstetrical Society.
U.M. has also been a member of Tina’s Wish Scientific Advisory Board (USA) and Research Advisory
Panel, Yorkshire Cancer Research (UK). She has been a member of International Alliance for Cancer
Early Detection (ACED); data monitoring committee for the mixed COVID-19 vaccines study in India;
Trial Steering Committee, NOVEL; Trial Steering Committee, PROTECTOR. A.G.-M. is a member of
ACED Gynaecological Cancer Working Group and is ACED codirector Research Domain Trials. All
other authors declare no conflicts of interest.

References
1. CRUK. Cancer Statistics: Ovarian Cancer Survival Statistics. 2019. Available online: https://www.cancerresearchuk.org/health-

professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer/survival (accessed on 6 November 2025).
2. Kurman, R.J.; Shih, I.M. The origin and pathogenesis of epithelial ovarian cancer: A proposed unifying theory. Am. J. Surg. Pathol.

2010, 34, 433–443. [CrossRef] [PubMed]
3. Koshiyama, M.; Matsumura, N.; Konishi, I. Recent concepts of ovarian carcinogenesis: Type I and type II. Biomed Res. Int. 2014,

2014, 934261. [CrossRef] [PubMed]
4. Bowtell, D.D. The genesis and evolution of high-grade serous ovarian cancer. Nat. Rev. Cancer 2010, 10, 803–808. [CrossRef]

[PubMed]
5. Jacobs, I.; Bast, R.C., Jr. The CA 125 tumour-associated antigen: A review of the literature. Hum. Reprod. 1989, 4, 1–12. [CrossRef]
6. Daoud, E.; Bodor, G. CA-125 concentrations in malignant and nonmalignant disease. Clin. Chem. 1991, 37, 1968–1974. [CrossRef]
7. Collins, W.P.; Bourne, T.H.; Campbell, S. Screening strategies for ovarian cancer. Curr. Opin. Obstet. Gynecol. 1998, 10, 33–39.

[CrossRef]
8. Kitawaki, J.; Ishihara, H.; Koshiba, H.; Kiyomizu, M.; Teramoto, M.; Kitaoka, Y.; Honjo, H. Usefulness and limits of CA-125 in

diagnosis of endometriosis without associated ovarian endometriomas. Hum. Reprod. 2005, 20, 1999–2003. [CrossRef]
9. Van Gorp, T.; Cadron, I.; Despierre, E.; Daemen, A.; Leunen, K.; Amant, F.; Timmerman, D.; De Moor, B.; Vergote, I. HE4 and

CA125 as a diagnostic test in ovarian cancer: Prospective validation of the Risk of Ovarian Malignancy Algorithm. Br. J. Cancer
2011, 104, 863–870. [CrossRef]

10. Sarojini, S.; Tamir, A.; Lim, H.; Li, S.; Zhang, S.; Goy, A.; Pecora, A.; Suh, K.S. Early detection biomarkers for ovarian cancer.
J. Oncol. 2012, 2012, 709049. [CrossRef]

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer/survival
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer/survival
https://doi.org/10.1097/PAS.0b013e3181cf3d79
https://www.ncbi.nlm.nih.gov/pubmed/20154587
https://doi.org/10.1155/2014/934261
https://www.ncbi.nlm.nih.gov/pubmed/24868556
https://doi.org/10.1038/nrc2946
https://www.ncbi.nlm.nih.gov/pubmed/20944665
https://doi.org/10.1093/oxfordjournals.humrep.a136832
https://doi.org/10.1093/clinchem/37.11.1968
https://doi.org/10.1097/00001703-199802000-00007
https://doi.org/10.1093/humrep/deh890
https://doi.org/10.1038/sj.bjc.6606092
https://doi.org/10.1155/2012/709049


Cancers 2025, 17, 3972 13 of 13

11. Moore, R.G.; Miller, M.C.; Steinhoff, M.M.; Skates, S.J.; Lu, K.H.; Lambert-Messerlian, G.; Bast, R.C. Serum HE4 levels are less
frequently elevated than CA125 in women with benign gynecologic disorders. Am. J. Obstet. Gynecol. 2012, 206, 351.e1–351.e8.
[CrossRef]

12. Moore, R.G.; McMeekin, D.S.; Brown, A.K.; DiSilvestro, P.; Miller, M.C.; Allard, W.J.; Gajewski, W.; Kurman, R.; Bast, R.C., Jr.;
Skates, S.J. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a
pelvic mass. Gynecol. Oncol. 2009, 112, 40–46. [CrossRef]

13. Menon, U.; Ryan, A.; Kalsi, J.; Gentry-Maharaj, A.; Dawnay, A.; Habib, M.; Apostolidou, S.; Singh, N.; Benjamin, E.; Burnell, M.;
et al. Risk Algorithm Using Serial Biomarker Measurements Doubles the Number of Screen-Detected Cancers Compared With a
Single-Threshold Rule in the United Kingdom Collaborative Trial of Ovarian Cancer Screening. J. Clin. Oncol. 2015, 33, 2062–2071.
[CrossRef]

14. Whitwell, H.J.; Worthington, J.; Blyuss, O.; Gentry-Maharaj, A.; Ryan, A.; Gunu, R.; Kalsi, J.; Menon, U.; Jacobs, I.; Zaikin, A.;
et al. Improved Early Detection of Ovarian Cancer Using Longitudinal Multimarker Models. Br. J. Cancer 2020, 122, 847–856.
[CrossRef]

15. Edgell, T.A.; Barraclough, D.L.; Rajic, A.; Dhulia, J.; Lewis, K.J.; Armes, J.E.; Barraclough, R.; Rudland, P.S.; Rice, G.E.; Autelitano,
D.J. Increased plasma concentrations of anterior gradient 2 protein are positively associated with ovarian cancer. Clin. Sci. 2010,
118, 717–725. [CrossRef] [PubMed]

16. Hellstrom, I.; Raycraft, J.; Hayden-Ledbetter, M.; Ledbetter, A.J.; Schummer, M.; McIntosh, M.; Drescher, C.; Urban, N.; Hellström,
K.E. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 2003, 63, 3695–3700. [PubMed]

17. Bischof, A.; Briese, V.; Richter, D.U.; Bergemann, C.; Friese, K.; Jeschke, U. Measurement of glycodelin A in fluids of benign
ovarian cysts, borderline tumors and malignant ovarian cancer. Anticancer Res. 2005, 25, 1639–1644.

18. Havrilesky, L.J.; Whitehead, C.M.; Rubatt, J.M.; Cheek, R.L.; Groelke, J.; He, Q.; Malinowski, D.P.; Fischer, T.J.; Berchuck, A.
Evaluation of biomarker panels for early-stage ovarian cancer detection and monitoring for disease recurrence. Gynecol. Oncol.
2008, 110, 374–382. [CrossRef]

19. Tsukishiro, S.; Suzumori, N.; Nishikawa, H.; Arakawa, A.; Suzumori, K. Use of serum secretory leukocyte protease inhibitor
levels in patients to improve specificity of ovarian cancer diagnosis. Gynecol. Oncol. 2005, 96, 516–519. [CrossRef] [PubMed]

20. Krivonosov, M.; Nazarenko, T.; Ushakov, V.; Vlasenko, D.; Zakharov, D.; Chen, S.; Blyus, O.; Zaikin, A. Analysis of Multidimen-
sional Clinical and Physiological Data with Synolitical Graph Neural Networks. Technologies 2025, 13, 13. [CrossRef]

21. Brody, S.; Alon, U.; Yahav, E. How Attentive are Graph Attention Networks? arXiv 2022, arXiv:2105.14491. [CrossRef]
22. Dijkstra, E.W. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy; Morgan &

Claypool: San Rafael, CA, USA, 2022; pp. 287–290.
23. Zaikin, A.; Sviridov, I.; Sosedka, A.; Linich, A.; Nasyrov, R.; Mirkes, E.; Tyukina, T. Overcoming the Curse of Dimensionality with

Synolitic AI. Version 1. Preprints 2025. [CrossRef]
24. Steyerberg, E.W. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating; Springer: Jersey City, NJ,

USA, 2019. [CrossRef]
25. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA, 13–17 August 2016; ACM: New York,
NY, USA, 2016; pp. 785–794.

26. Kingma, D.P.; Adam, J.B. A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
27. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
28. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
29. Zou, H.; Hastie, T. Regiularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320.

[CrossRef]
30. Gentry-Maharaj, A.; Blyuss, O.; Ryan, A.; Burnell, M.; Karpinskyj, C.; Gunu, R.; Kalsi, J.K.; Dawnay, A.; Marino, I.P.; Manchanda,

R.; et al. Multi-Marker Longitudinal Algorithms Incorporating HE4 and CA125 in Ovarian Cancer Screening of Postmenopausal
Women. Cancers 2020, 12, 1931. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ajog.2011.12.029
https://doi.org/10.1016/j.ygyno.2008.08.031
https://doi.org/10.1200/JCO.2014.59.4945
https://doi.org/10.1038/s41416-019-0718-9
https://doi.org/10.1042/CS20090537
https://www.ncbi.nlm.nih.gov/pubmed/20136634
https://www.ncbi.nlm.nih.gov/pubmed/12839961
https://doi.org/10.1016/j.ygyno.2008.04.041
https://doi.org/10.1016/j.ygyno.2004.10.036
https://www.ncbi.nlm.nih.gov/pubmed/15661245
https://doi.org/10.3390/technologies13010013
https://doi.org/10.48550/arXiv.2105.14491
https://doi.org/10.20944/preprints202512.0123.v1
https://doi.org/10.1007/978-3-030-16399-0
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.3390/cancers12071931

	Introduction 
	Materials and Methods 
	Study Cohort and Samples 
	Proteomic Data Generation and Preprocessing 
	The Synolitic Graph Neural Network (SGNN) Framework 
	Graph Feature Engineering and GNN Architecture 
	Graph Sparsification 
	Statistical Analysis 

	Results 
	Cohort Characteristics 
	Visualisation of Case–Control Topological Differences 
	Model Performance Within 1 Year Before Diagnosis 
	Early Detection Performance (1–2 Years Before Diagnosis) 

	Discussion 
	References

