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Dilated Superpixel Aggregation for Visual Place Recognition
Zichao Zeng, June Moh Goo, and Jan Boehm

Abstract—Visual Place Recognition (VPR) is a fundamental
task in robotics and computer vision, enabling systems to identify
locations seen in the past using visual information. Previous
state-of-the-art approach focuses on encoding and retrieving
semantically meaningful supersegment representations of images
to significantly enhance recognition recall rates. However, we find
that they struggle to cope with significant variations in viewpoint
and scale, as well as scenes with sparse or limited information.
Furthermore, these semantic-driven supersegment representa-
tions often exclude semantically meaningless yet valuable pixel
information. In this work, we present Sel-V and MuSSel-V, two
efficient variants within the segment-level VPR paradigm that re-
place heavy and fragmented supersegments with lightweight, vi-
sually compact and complete dilated superpixels for local feature
aggregation. The use of superpixels preserves pixel-level details
while reducing computational overhead. A multi-scale extension
further enhances robustness to viewpoint and scale changes.
Comprehensive experiments on twelve public benchmarks show
that our approach achieves a better trade-off between accuracy
and efficiency than existing segment-based methods. These results
demonstrate that lightweight, non-semantic segmentation can
serve as an effective alternative for high-performance, resource
efficient visual place recognition in robotics. The code will be
available in https://zichaozeng.github.io/MuSSel-V/.

Index Terms—Localization, Vision-Based Navigation, Visual
Place Recognition, Superpixel, Aggregation

I. INTRODUCTION

V ISUAL Place Recognition (VPR), which is closely re-
lated to image-based localisation [1] or visual geo-

localisation [2], seeks to estimate the location of a query
image by identifying the most relevant reference image from
a geographically annotated image database. VPR is typically
formulated as an image retrieval task, using global or local
descriptors for localisation by nearest-neighbour matching [3],
[4]. Last decade, researchers have focused on learning or fine-
tuning image encoders to ensure that global descriptors exhibit
invariance to appearance variations [3], viewpoint changes [3],
[5], [6], and scene clutter [7]. Vector of Locally Aggregated
Descriptors (VLAD) [8] and its advanced variants [3], [9],
[10] have gained popularity by aggregating local features into
compact global representations. Simultaneously, the feature
extraction methods for VPR have transitioned from traditional
handcrafted techniques [8] to deep learning based approaches
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Fig. 1. (a) Comparison of our segment-level method with a baseline approach
for VPR. SegVLAD [13] based on SAM [14] discards pixels shown in
yellow, while our method employs dilated superpixels for a more compact
representation. (b) Recall@1 and Latency for Sel-V and MuSSel-V (Ours)
vs. SegVLAD on AmsterTime, VPAir, and Baidu, showing better recall and
faster compute for our methods.

[3], and more recently, to pre-trained or fine-tuned foundation
models [7], [11], [12]. Compact global descriptors enable ef-
ficient retrieval and robustness to viewpoint changes but often
lack spatial information, making them prone to perceptual
aliasing [1], [12], [13].

A promising solution is the direct use or fusion of local
descriptors. This approach primarily revolves around two-stage
VPR frameworks, where geometric verification of local feature
matches is employed to re-rank candidate results [4], [15],
[16]. Numerous approaches have been developed to charac-
terise images through different elements, including segments
[17], [18], linear and planar structures [19], objects [20], [21],
or partitioned sections [15], bridging spatial information and
global descriptors. Despite advancements, most methods focus
on improving retrieval accuracy through re-ranking rather than
addressing the limitations of global descriptors. In contrast,
MultiVLAD extracts VLADs at multiple image scales instead
of relying on a single global descriptor [9]. Building on
this, SegVLAD uses the Segment Anything Model (SAM)
[14] to generate segment-level local descriptors, achieving
state-of-the-art performance in VPR [13]. However, SegVLAD
discards many seemingly insignificant but crucial segments,
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resulting in a notable loss of approximately 20% of pixels on
representative datasets (see Figure 1). Moreover, its reliance
on a heavy segmentation model increases computational over-
head, making the pipeline less efficient.

In this paper, we propose an efficient variant under segment-
level VPR paradigm using Superpixel-based VLAD (Sel-V).
We replace heavy segmenters based on transformer models
with light-weight superpixel methods to segment images by
visual homogeneity based on low-level features (colour or
texture). Next, similar to SegVLAD [13], superpixels are
expanded by growing to neighbouring superpixels, which
form cohesive dilated superpixels. Subsequently, local features
based on pre-trained or fine-tuned DINOv2 are aggregated
according to the dilated superpixels. In addition, we provide
a Multi-Scale Superpixel VLAD (MuSSel-V), which is more
robust under different environments and scale variations. Both
our proposed approaches Sel-V and MuSSel-V are much
faster than the current leading segment-level VPR method -
SegVLAD. Our main contributions are:

• We present Sel-V, an efficient variant within the segment-
level VPR paradigm that uses dilated superpixels, en-
abling richer local feature aggregation and faster com-
putation. Its multi-scale extension, MuSSel-V, further
enhances robustness to viewpoint and scale variations.

• We evaluate our methods on 12 benchmarks spanning di-
verse scenarios, showing clear improvements over State-
of-the-art (SOTA) methods, particularly on aerial, sea-
sonally varying, and long time span datasets where
the proposed dilated superpixel aggregation better pre-
serves complete local information under large appearance
changes.

• Compared to previous segment-level VLAD methods, our
approach is more efficient, balancing visual compactness
and descriptor completeness without relying on heavy
transformer-based models in the segmentation stage.

II. RELATED WORK

A. Visual place recognition (VPR)

Hand-crafted methods, for feature extraction, were fre-
quently used in early VPR approaches, typically aggregated
using methods like Gist [22], Bag of Words (BoW) [23], and
VLAD [8]. While these methods demonstrated effectiveness
in controlled scenarios, they struggled with challenges such
as viewpoint variations, illumination changes, and large-scale
place retrieval [24]. The use of deep learning drastically im-
proved VPR, enabling more discriminative and invariant rep-
resentations. Pioneering works like NetVLAD [3] established
a strong foundation for feature aggregation in neural networks,
inspiring the development of more advanced models. Recent
methods, including CosPlace [2], MixVPR [25], EigenPlaces
[5], and TransVPR [16], have further refined representation
learning through improved dataset design, objective func-
tions, and aggregation mechanisms. More recently, advanced
methods [7], [10]–[13], [26] have replaced traditional feature
extraction backbones with foundation models such as CLIP
[27] and DINO [28], [29], significantly enhancing model
generalisation and robustness across diverse environments.

B. Region-based aggregation

Some methods have shifted focus to the regional level
to enhance the representation with region-level information,
aggregating images into single or connected segment-level
compact representations [30], [31]. Other approaches [4], [12],
[15], [16] create multiple features for each image, performing
local match-based reordering. Some of the latest contributions
use multiple segment descriptors per image to retrieve them
directly from a segment database without reordering. The
motivation is that improving the coarse retriever itself directly
enhances performance, including subsequent reordering [13].
The idea of MultiVLAD [9] is to retrieve multiple features
per query image, based on arbitrarily defined regions. Alter-
natively, SegVLAD [13] uses semantically meaningful image
segments obtained from SAM [14]. Segment-level aggregation
and retrieval again boost performance. However, some seman-
tically meaningless segments — often discarded by semantic
segmentation frameworks like SAM — play a crucial role
in achieving robust place recognition across varying scales.
VPR often benefits more from robust, low-level features and
spatial groupings that capture local textures and structural cues
rather than detailed semantic categories [32]. Moreover, the
segments of SAM often contain non-segmented gaps, which
can introduce additional uncertainty in determining object
boundaries, particularly in cases where the model struggles
to assign confidence to ambiguous regions. SAM generates
multiple high-quality segmentation masks per image, making
it computationally expensive and time-consuming [33], [34].
Some effective methods, such as FastSAM [35], provide faster
versions, but increase uncertainty and sacrifice the accuracy of
masks, resulting in less favourable VPR [13].

C. Superpixel mechanisms

A superpixel is a group of neighbouring pixels with visually
homogeneous characteristics such as colour, brightness, or
texture, creating a consistent area within an image. By com-
bining pixels into significant regions, the image representation
transitions from millions of separate pixels to merely a few
hundred or thousand superpixels. This simplification not only
reduces computational demands but also yields a semantically
enriched, mid-level representation. Such representation is ad-
vantageous for multiple computer vision applications, includ-
ing medical imaging, remote sensing, and robotics. Several
algorithms have been developed to generate superpixels effi-
ciently. Commonly used superpixel algorithms include SLIC
[36], which uses modified k-means to group pixels by colour
and spatial proximity. SEEDS [37] stands out with its block-
wise exchange mechanism, enabling rapid initial boundary
adjustment followed by fine, detailed updates for superior
overall segmentation. Unlike SAM, superpixel algorithms such
as SLIC or SEEDS operate using lightweight clustering or
iterative refinement techniques, which are significantly faster
and more memory-efficient [36], [37].

III. PROPOSED FRAMEWORK

Building on previous studies [7], [9]–[13], [26], we retain
a universal foundation model as the backbone and introduce
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Fig. 2. (a) Pipeline of our approach Sel-V and its multi-scale variant MuSSel-V. (b) Dilation function from hop-0 to hop-3.

Sel-V, a segment-level VLAD for VPR. The segmenter uses
superpixels based on image attributes (colour, luminance,
texture) instead of rectangular cutting or learned features
[14], [35], efficiently generating cohesive segments. Inspired
by SegVLAD [13], we introduce mechanisms to dilate the
superpixels.

To enhance generalisation and robustness, we propose
MuSSel-V, a hyperparameter-free multi-scale version inspired
by previous works [9], [15]. For Sel-V, the retrieval strategy
uses the similarity-weighted ranking method [13] to evaluate
the similarity between the query image and the database
image. For MuSSel-V, similarity scores of different scales are
accumulated at equal weight.

A. Problem Definition

We deviate from methods which directly design a function
V to act as an image representation generator. Our approach
is similar to SegVLAD in that we design a classifier S, a
feature extractor F , and a segment-level descriptor function
V shown in Figure 2a. Given an image I of size H × W ,
the segmenter Sn generates a superpixel labelling matrix
L ∈ {0, 1, . . . ,m− 1}H×W . Subsequently, dilated superpixels
Mm×H×W are generated based on the neighbourhood matrix
R. In parallel, the extractor extracts a pixel-level feature map
F (I) ∈ Rh×w×D of dimension D. Local feature descriptors v
(residuals) are then obtained by assigning pixel features to
their nearest cluster centres and computing the differences
(residuals) between them. In the end, the dilated superpixel
representation function V s aggregates the local feature de-
scriptors v based on the dilated superpixels M . A set of dilated
superpixel VLADs V(I) = [V 1, V 2, ..., V m], each with the
same vector size, is introduced for image I .

For the reference, the function V extracts dilated super-
pixel representations D = {Vr1,Vr2,Vr3 , ...} offline, where
Vr1 = [V 1, V 2, ..., V mr1 ]. For a query image, the descriptor
Vq = [V 1, V 2, ..., V mq ] is computed online by concatenating
all VLADs. At retrieval time, similarity is measured using
Euclidean distance between query and database segments. The

combined score of the Top-50 most similar segment matches
determines the ranking of database images.

B. Feature Extractor

We adopt ViT-based DINOv2 as our feature extraction
backbone. ViT contains many layers, and each layer has
multiple facets (queries, keys, values, and tokens) from which
features can be extracted. We follow AnyLoc [7] and select the
middle [layer] from DINOv2 to extract [value] tokens
and discard [CLS] tokens. We focus on pixel-level features
to allow fine matching rather than extracting global features
for each image (i.e., one global feature vector-[CLS] token
for the entire image).
FDINOv2 initially divides an input image IH×W into p × p

patches, with p = 14. These patches are sequentially encoded,
resulting in the output tokens F (I) ∈ Rh×w×D, where h =
H/p, and w = W/p.

C. Multi-Scale and Dilated Superpixel

We adopt superpixels to partition the image. This method
utilises low-level features to split the image into distinct,
compact, and visually homogeneous segments represented in
a single label matrix. Using superpixels significantly reduces
computational and storage costs. We choose SEEDS [37] as
the core method of our framework, which primarily relies on
image colour histograms and spatial constraints. We define the
superpixel segmenter L = Sn(I) and the segmentation process
as follows:

L ∈ {0, 1, . . . ,m− 1}H×W
,m ∈ (1, n] (1)

where the image I is partitioned into n expected superpixels.
During SEEDS’s iterative process adaptive region merging and
additional refinement steps are performed. As a consequence,
the actual number of superpixels, denoted as m, can be lower
than the expected number n.

For Sel-V, n controls the output resolution of I , where
n = 128, with the specific choice varying based on task re-
quirements and dataset conditions. For MuSSel-V, we extract

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3645658

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. NOVEMBER, 2025

three superpixel label maps at different scales: Ln, Ln′ , and
Ln′′ , where n, n′, n′′ ∈ {64, 128, 256}. Next, based on the
label map L, we establish a neighbourhood relationship matrix
to determine the dilation of superpixels.

To maintain comparability with SegVLAD, we also employ
Delaunay Triangulation as our expansion function Eo. The
neighbourhood relationship matrix R is defined as:

R = Eo(Li), R ∈ {0, 1}m×m (2)

where Ri,j = 1 indicates that superpixel i is adjacent to
superpixel j, while Ri,j = 0 otherwise. The parameter o
controls the hop (order) of neighbourhood expansion. A lower
value of o restricts connections to immediate neighbours, while
a higher value incorporates broader contextual information.

Since FDINOv2 is extracted at a lower spatial resolution h×w
than the superpixel labels L ∈ RH×W , we downsample each
label map to the FDINOv2 grid before VLAD. Each patch
inherits the label of any superpixel that occupies at least
one pixel within its receptive field (“existence assignment”),
ensuring that all patches are associated with a valid segment.
This mapping aligns the dense local features with the label
space while maintaining the spatial consistency of segment
boundaries.

Given L and R, we construct dilated superpixels M , which
expand each superpixel based on its neighbourhood connec-
tivity shown in Figure 2b. The dilatation process is formulated
as:

Mm×H×W = I(R× Lone-hot) (3)

Mi =

m−1∑
j=0

Ri,j × I(L==j) (4)

where Lone-hot is the one-hot encoding of superpixel labels,
and I(R × Lone-hot) is a binarisation function ensuring non-
overlapping contributions in feature aggregation. Specifically,
when dilation causes multiple neighbouring segments to over-
lap on the same patch, the binarisation operator assigns the
patch to each dilated superpixel at most once, preventing dupli-
cated counting from overlapping neighbourhoods. I(L == j)
is a binary mask indicating pixels belonging to superpixel
j, and Ri,j determines whether j falls within the expanded
neighbourhood of i. This ensures that the dilated superpixels
maintain compactness while effectively aggregating local con-
textual information. For MuSSel-V, this expansion is applied
independently to Ln, Ln′ , and Ln′′ , producing M , M ′, and
M ′′.

D. Segment-Level Aggregated Descriptor

After obtaining the feature map F and the dilated super-
pixels M , we aggregate local features using a VLAD-based
encoding scheme tailored to the segment-level representation.

We construct a visual dictionary with K cluster centres,
assigning each local feature to its closest cluster based on
cosine similarity. For each dilated superpixel Ms, we compute
the accumulated residuals for cluster k as vsk, capturing the
difference between local features and their nearest clusters.
To construct a dilated superpixel-wise VLAD descriptor, we

concatenate residual vectors for all VLAD-clusters covered by
a dilated superpixel mask:

V s = [vs1, v
s
2, ..., v

s
K ] (5)

where K is the number of clusters. This process uses Hard-
VLAD, assigning each feature only to the nearest visual word.

For an image I , the final image descriptor is obtained by
concatenating the superpixel-level VLAD vectors:

V(I) = [V 1, V 2, ..., V mt ] (6)

where m denotes the total number of dilated superpixels
in the image. For Sel-V, mt is m from a defined scale.
For MuSSel-V, to incorporate multi-scale superpixel repre-
sentations, we compute and aggregate residual vectors within
each dilated superpixel across three scales, resulting in Mt =
M ∪M ′ ∪M ′′.

E. Matching and Ranking

For retrieval, following [7], [13], we employ the FAISS flat
index [38] to match each query superpixel descriptor against
all superpixels extracted from the reference database. All
descriptors are L2-normalised before indexing, so Euclidean
distance in FAISS (or the equivalent inner-product search) is
consistent with cosine similarity. The flat index provides exact
nearest-neighbour retrieval and ensures fair comparison across
methods. To evaluate retrieval performance at the image level,
we aggregate the retrieved superpixel matches into reference
image indices using a weighted frequency measure. This
allows us to transition from local superpixel matches to global
image-level retrieval.

For Sel-V, for each query image Iq , we retrieve the top-
K (K = 50) dilated superpixel matches for each of its dilated
superpixels s across all reference images. Each retrieved match
corresponds to a reference superpixel belonging to an image in
the reference database. These matches are then mapped to their
respective reference image indices rj , where we aggregate the
similarity scores θ to compute a cumulative image similarity
score:

θ̂ (rj) =
∑
s∈Mt

K∑
i=1

θsi × I{rsi=rj} (7)

where Mt = M in Sel-V which represents the set of dilated
superpixels in the query image, θsi is the similarity score of the
i-th retrieved superpixel match for superpixel s, and I{rsi=rj}
is an indicator function that counts matches belonging to
reference image rj . For MuSSel-V, we extend the retrieval
process to multiple superpixel scales, i.e. Mt = M∪M ′∪M ′′.
Finally, we rank the reference images based on their similarity
scores and select the top-ranked image match.

IV. EXPERIMENTS

A. Implementation Details

a) Datasets: In this work, we build upon several re-
cent studies and benchmark evaluations. Our experiments are
conducted on a diverse range of datasets spanning multiple
domains. These datasets cover a broad spectrum of scenarios

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3645658

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



ZENG et al.: DILATED SUPERPIXEL AGGREGATION FOR VISUAL PLACE RECOGNITION 5

TABLE I
COMPARISON OF RECALL@N PERFORMANCE AGAINST BASELINES IN DIVERSE DOMAINS ACROSS INDOOR, CAVE AND AERIAL SCENARIOS. WE

COMPARE SEL-V AND MUSSEL-V WITH PRE-TRAINED DINOV2 (VIT-G) WITHOUT TUNING AGAINST TWO RECENT ADVANCED BASELINES [7], [13]
WITH THE SAME BACKBONE.

Method Segment Tuned 17Places H 17Places E Baidu VPAir Laurel Hawkins
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

AnyLoc - - 65.0 80.5 95.3 97.3 75.2 87.6 66.7 79.2 61.6 90.2 65.2 94.1
SegVLAD ✓ - 64.8 80.3 95.3 98.0 78.5 93.8 69.8 83.7 28.6 65.2 52.5 94.1
MuSSel-V ✓ - 65.3 79.6 95.6 97.8 83.3 95.0 70.9 85.8 51.8 91.1 61.9 97.5

Sel-V ✓ - 65.3 80.8 95.3 97.8 82.8 95.0 72.1 86.0 54.5 91.1 63.6 95.8

TABLE II
COMPARISON OF RECALL@N PERFORMANCE AGAINST BASELINES IN OUTDOOR ENVIRONMENTS WHEN USING FINE-TUNING. WE COMPARE SEL-V

AND MUSSEL-V WITH FINE-TUNED DINOV2 (VIT-B) AGAINST ANYLOC [7] WITH PRE-TRAINED DINOV2 AND FIVE POPULAR BASELINES [5], [11],
[13], [25] TRAINED OR FINE-TUNED ON STREET VIEWS.

Method Segment Tuned AmsterTime SF-XL Val Pitts-30k SPED MSLS-C Nordland
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

AnyLoc - - 50.3 73.0 84.4 91.9 87.7 94.7 85.3 94.4 42.2 53.5 16.1 25.4
CosPlace - ✓ 47.7 69.8 94.6 97.6 90.4 95.7 80.1 89.6 67.2 78.0 44.2 59.7
Mix VPR - ✓ 40.2 59.1 87.8 93.8 91.5 95.5 85.2 92.1 64.0 75.9 58.4 74.6

EigenPlaces - ✓ 48.9 69.5 96.4 98.2 92.6 96.7 69.9 82.9 67.4 77.1 54.4 68.8
SALAD - ✓ 55.4 75.6 93.6 97.3 92.6 96.5 92.1 96.2 75.0 88.0 76.0 89.2

SegVLAD ✓ ✓ 59.8 77.2 94.9 98.1 93.2 96.8 91.3 95.2 78.0 88.4 65.3 77.6
MuSSel-V ✓ ✓ 60.8 79.9 94.8 98.1 93.4 96.9 91.3 96.2 77.2 88.8 72.0 87.1

Sel-V ✓ ✓ 61.3 80.2 95.4 98.0 93.3 96.9 91.6 96.5 77.3 89.2 81.8 93.3

and demonstrate significant variations in intra-dataset charac-
teristics. These datasets include indoor scenes under different
conditions 17Places [39] with Easy and Hard tolerance, Baidu
[40] and Hawkins [41], aerial images VPAir [42], cave scenes
Laurel [41] and also images of various changing outdoor
environments AmsterTime [6], Pitts30K [43], SF-XL [2],
MSLS-C (MSLS Challenge) [44], SPED [45], and Nordland
[46].

b) Architecture: To ensure a comprehensive evaluation,
we follow SegVLAD’s benchmarking protocol and compare
our method across two different backbone configurations:

• Utilising an off-the-shelf pre-trained DINOv2 (ViT-G)
backbone following AnyLoc [7] for feature extraction.

• Employing a fine-tuned DINOv2 (ViT-B) backbone fine-
tuned on street views provided by SegVLAD [13] inte-
grated SALAD [11] and NetVLAD [3].

These two frameworks allow us to benchmark our approach
against foundation model-based methods in general VPR
benchmarks, as well as against training/fine-tuning-based
methods in city-scale urban scene benchmarks.

We use SEEDS [37] for image segmentation with initial
superpixel counts of 128 for Sel-V, while MuSSel-V combines
all three scales. All other modules follow SegVLAD [13]
for fair comparison. Our VLAD clustering uses 32 cluster
centres. Our dilated superpixel encoding employs Delaunay
Triangulation with an expansion order of 3. The original
49,152-dimensional vectors are reduced to 1024 via PCA,
following prior works [7], [13]. Cluster centres are built only
from the reference map dataset [7] without external data. All
experiments use the same random seed (42), AMD Ryzen
Threadripper PRO 5975WX CPU, and NVIDIA RTX A6000
GPU for consistency.

c) Evaluation: We use Recall@N as the main evaluation
metric, common in VPR benchmarks. It assesses the fraction
of queries with a correct match among the top-N results. We

(a) AmsterTime. (b) VPAir.

Fig. 3. Comparison of Sel-V and MuSSel-V (circular markers) with base-
line method [13] using SAM and FastSAM (triangular markers). We show
Recall@1 performance over latency including segmentation (first segment),
extraction and retrieval (second segment) time across two datasets.

also compare our method with other segment-level VLAD
methods for both offline preprocessing costs and online query
processing costs.

B. State-of-the-Art Comparison

a) Baselines: We compare our approach with SOTA
VPR methods. The baselines can be categorised into two
groups. The first group consists of recent advanced methods
that leverage visual foundation models, particularly utilising
DINOv2 [29] as the backbone. Among them, AnyLoc [7]
employs an off-the-shelf DINOv2 model without additional
task-specific training. Another key baseline in our comparison
is SegVLAD [13], which is highly relevant to our approach as
it applies segment-level VLAD for VPR. We apply SegVLAD
with pre-trianed DINOv2 for diverse domains. The second
group comprises methods specifically trained or fine-tuned for
the VPR task on large-scale urban datasets, including Cos-
Place [2], MixVPR [25], EigenPlaces [5], SALAD [11], and
SegVLAD [13] with fine-tuned DINOv2. These approaches
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Fig. 4. Qualitative results. A challenging example from AmsterTime demon-
strates the advantages of our method (left), which utilises compact dilated
superpixels comprising multiple visually homogeneous regions to enhance
robustness in retrieval. Meanwhile, a semantically inspired segmentation
method (right) experiences pixel loss (shown in yellow) which can lead to
matching errors.
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Fig. 5. (a) Qualitative results across different datasets. SegVLAD exhibit
significant pixel loss (highlighted in yellow), leading to reduced feature
representation and potential retrieval errors, while Sel-V preserves all local
details. (b) A failure case where SegVLAD using SAM is able to extract the
signboard in the query image in a single large segment. Sel-V on the other
hand splits it into many smaller segments. Similar effects can be observed
in the reference image with the occluding object (car). This leads to Sel-V
missing the correct match.

are optimised for city-scale place recognition and serve as
strong task-specific baselines.

b) Discussion of results: As shown in Table I, Sel-V and
MuSSel-V outperform other methods in R@1/5 on complex
indoor datasets like 17Places (Hard), Baidu, and VPAir. Even
the simplified Sel-V achieves notable gains on these datasets.
MuSSel-V also shows consistent improvements. Both Sel-V
and MuSSel-V achieve near-perfect performance on 17Places
(Easy). This validates the effectiveness of our dilated super-
pixel representation when using an off-the-shelf foundation
model. Although our method falls short in R@1 in challenging
environments like Laurel and Hawkins, it achieves substantial
gains in R@5, suggesting that global representations might
be preferable in simpler environments. Notably, both Sel-
V and MuSSel-V outperform SegVLAD, achieving gains of
well over 20% on Laurel. Gains on Hawkins are lower but
still significant. Furthermore, we compared our method with
other baselines [2], [5], [11], [25], and the results remain
consistent with those of SegVLAD [13] - zero-shot inference
substantially outperforms these task-specific approaches.

In outdoor scenarios shown in Table II, Sel-V and MuSSel-

V using fine-tuned DINOv2 show good performance as well.
On AmsterTime, which involves diverse scales, temporal
variations, and grayscale-to-RGB transitions, Sel-V performs
best in R@1 and R@5 by 1.5%/3%. For Nordland, featuring
seasonal changes but uniform scenes, it gains 5.8%/4.1%. On
the Pitts benchmark, both methods achieve top-tier results.
On SF-XL, a dataset with significant viewpoint variations, our
methods, despite not being trained on it, perform second only
to SF-XL-trained EigenPlaces. For SPED and MSLS-C, while
our R@1 ranks second, R@5 shows slight improvements.
These results demonstrate the strong generalisation capability
of our dilated superpixel representation, ensuring consistent
performance across diverse conditions.

C. Comparison Against Segment-Level Methods
Our method demonstrates significant improvements over

existing segment-level representation methods, with Sel-V
achieving an average gain of 5.1%/4.2% in R@1/5, while
MuSSel-V improves by 4.2%/3.8%. This suggests that our
compact superpixel-based segmentation may offer advantages
over more scattered, semantically guided segments. We per-
formed paired t-tests over five runs (without a fixed random
seed) to assess statistical reliability on the VPAir and Am-
sterTime datasets. The observed improvements are statistically
significant (p < 0.05), confirming the robustness of our results.

a) Computing time: We chose superpixels to generate
segments as they are computationally efficient. We illustrated
AmsterTime and VPAir in Figure 3, repeating each experiment
14 times and deleting the two fastest and slowest results for
reliability. Sel-V is significantly faster than SegVLAD on these
datasets. In addition to the default setting, where the initial
number of superpixels is 128, we also provide two alternative
variants (with initial superpixel counts of 64 and 256) for a
more complete comparison. MuSSel-V still achieves speed-ups
of 4.33 and 2.04 in AmsterTime and VPAir. For comparison,
we include a more efficient foundational segmenter, FastSAM
[35]. FastSAM offers a segmentation speed on par with our
simplest superpixel based variant (Sel-V-64) but has a signif-
icantly lower recall. Similar results occur in other datasets.
Overall, the computational efficiency of our method comes
from low-level feature-based superpixel segmentation, which
reduces computational complexity compared to a transformer-
based architecture (SAM). We note that segmentation for Sel-
V and MuSSel-V is achieved using only CPU, while SAM-
based methods use GPU. Superpixel methods applying GPU
acceleration may further improve efficiency.

b) Qualitative analysis: Figure 4 and 5a qualitatively
demonstrates the robustness of our method in different do-
mains. In contrast to SegVLAD, our approach, like tradi-
tional VLAD, retains all pixels for aggregation. Specifically,
SegVLAD discards 19.57%, 22.80%, and 19.05% of pixels on
the AmsterTime, VPAir, and Baidu datasets, respectively. Our
dilated superpixels are more compact compared to the super-
segments of SegVLAD, enabling a more effective aggregation
of local information. Furthermore, we observe that the dilated
superpixels are more uniform in size.

In addition to image-to-image matching, we conducted
tests on segment-level VLAD matching using the Amster-
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TABLE III
CHOICE OF INITIAL NUMBER OF SUPERPIXELS.

Method Scale(s) AmsterTime Baidu VPAir
Recall@1/5 Recall@1/5 Recall@1/5

Sel-V 16 58.0/77.2 4.5/21.6 58.3/76.7
Sel-V 32 58.3/77.1 5.8/20.6 58.6/76.3
Sel-V 64 59.3/78.9 78.6/92.3 66.0/82.1
Sel-V 128 61.3/80.2 82.8/95.0 72.1/86.0
Sel-V 256 60.4/79.4 84.0/94.9 72.9/86.5

MulSSel-V 64+128 60.7/79.2 82.7/94.8 69.8/84.3
MulSSel-V 128+256 60.7/79.0 83.3/95.1 72.0/86.0
MulSSel-V 64+128+256 60.8/79.9 83.3/95.0 70.9/85.8

TABLE IV
EFFECT OF SUPERPIXEL AND DILATION. LAST TWO ROWS REPRESENT

SEL-V AND MUSSEL-V. *RESULTS ARE AVERAGED OVER THREE SCALES
(64, 128, AND 256). +RESULTS ARE BASED ON A MULTI-SCALE

(64+128+256) APPROACH.

Segmenter Dilation AmsterTime VPAir Baidu
Recall@1/5 Recall@1/5 Recall@1/5

SAM × 38.4/65.5 53.0/70.3 74.4/89.8
FastSAM × 41.3/63.9 54.4/72.4 67.1/85.8

Grid-based* × 43.1/68.9 62.6/76.3 79.0/92.3
Grid-based+ × 46.1/70.9 64.0/77.7 80.1/93.1
Superpixel* × 48.8/73.7 65.2/78.8 80.7/92.7
Superpixel+ × 48.4/73.3 65.3/78.8 80.1/93.1
Superpixel* Random 59.0/77.8 66.3/82.4 76.0/91.4
Superpixel+ Random 59.2/77.2 69.0/82.3 78.0/93.1
Superpixel* Neigh. 60.3/79.5 70.3/84.9 81.8/94.1
Superpixel+ Neigh. 60.8/79.9 70.9/85.8 83.3/95.0

Time dataset as an example. Sel-V achieves a Recall@1/5
of 40.31%/66.78% for dilated superpixel matching, while
SegVLAD reaches 34.47%/56.65% for supersegment match-
ing. These evaluation (unlike global image-level matching,
which is affected by pixel loss) suggest that dilated superpixels
better aggregate homogeneous local features and yield fewer
spurious matches than global image-level methods. Neverthe-
less, in samples with rich semantic content, Sel-V may perform
less effectively (Figure 5b).

D. Ablation Studies

a) Effect of superpixel: The initial number of superpixels
n is a critical hyperparameter that directly influences both the
granularity of the representation and the overall performance
on the VPR task. To balance precision and efficiency, we em-
pirically evaluate a range of values k ∈ {16, 32, 64, 128, 256}
(Table III). We observe that performance is significantly
degraded when using very small n values (e.g., 16 or 32),
likely due to the overly coarse segmentation losing essential
local details. In contrast, initial numbers n with 128 and 256
consistently yield the best performance across benchmarks.
Therefore, we adopt n = 128 as the default setting, as
it offers a good trade-off between accuracy and efficiency.
Additionally, we include n = 64 and n = 256 as variants for
ablation purposes. For MuSSel-V, we compare combinations
of different granularities, specifically (64 + 128), (128 +
256), and (64 + 128 + 256). Among these, the combination
(64 + 128 + 256) demonstrates the most robust and stable
performance across tasks, and is thus selected as the default
configuration for MuSSel-V.

We excluded the influence of neighbouring masks to com-
pare our superpixel-based VLAD method directly with SAM-

based segmented VLAD and grid-based patch VLAD. As
shown in the top part of Table IV, visually homogeneous
superpixels significantly outperform both semantically mean-
ingful segments and uniform grid patches. Interestingly, our
results show that grid-based patches achieve higher recall
rates than semantically meaningful segments without neigh-
bouring mask influence, suggesting that complete masks are
more effective for VPR capturing holistic visual information.
Furthermore, SLIC [36] was implemented as an alternative.
It demonstrated recall for VPR on par with SEEDS, while
incurring a slightly greater latency — still markedly lower
than that of SAM.

b) Effect of dilation: As shown in the bottom part
of Table IV, dilated superpixels significantly boost VPR
performance for both Sel-V and MuSSel-V, aligning with
SegVLAD’s findings [13]. They outperform both non-dilated
superpixels and randomly expanded superpixels without neigh-
bourhood relationships. While both the multi-scale approach in
MuSSel-V and the dilation of superpixels change the extent
of the segments, they work complimentary. The multi-scale
method changes the spatial extent while maintaining visual
homogeneity of each superpixel. The neighbourhood matrix
groups multiple superpixels into clusters, ignoring homogene-
ity among them (see Figure 4). We also tested other dilation
methods, including connectivity flow and fixed-radius dilation,
and observed similar results to Delaunay triangulation. Our
findings on the dilation order (neighbouring hops) were con-
sistent with SegVLAD. Therefore, we adopted the same order
and dilation method.

c) Sel-V vs. MuSSel-V: The comparison between Sel-
V and MuSSel-V highlights the effectiveness of multi-scale
versus fixed-scale methods in VPR tasks. Recall@1 scores
for Sel-V variants (64, 128, 256) are 76.73%, 78.87%, and
77.64%, with Recall@5 scores at 91.15%, 92.22%, and
91.73%. MuSSel-V achieves 77.66% Recall@1 and 91.75%
Recall@5, slightly underperforming Sel-V-128 but outper-
forming Sel-V-64 and Sel-V-256. MuSSel-V’s multi-scale
approach helps in matching images with scale differences.
For example, it enables to match a building in 128-scale
with 256-scale in the reference image, showing robustness to
scale variations. While we can fix an optimal scale for each
dataset, our multi-scale approach effectively eliminates this
hyperparameter and provides better generalisation.

V. CONCLUSION

In this paper, we introduced Sel-V, a segment-level rep-
resentation method using dilated superpixels based on low-
level visual features, and MuSSel-V, a scale-adaptive exten-
sion for enhanced robustness. By aggregating features within
dilated superpixels into VLAD representations, our approach
reduces information loss and creates more compact and ef-
fective segments. Results on 12 benchmarks show that Sel-
V and MuSSel-V outperform SOTA methods in both recall
performance and computational efficiency compared to other
segment-level VLAD methods, demonstrating their effective-
ness for VPR tasks. With these promising results, future work
will include on-robot validation, analysis of the VLAD cluster
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number, and studies on flat-index scalability and DINO-layer
dependence.
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