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A B S T R A C T

Juvenile-onset systemic lupus erythematosus (jSLE) is a complex autoimmune/inflammatory disease in which 
genetic factors likely contribute to pathophysiology and clinical expression. This study explored associations 
between general (alternate allele counts; AAC) and gene-specific (alternate allele scores; GAAS) sequence vari
ability, age at onset, sex, ancestry, disease activity/severity, organ involvement and treatments in jSLE. 289 
participants from the UK JSLE Cohort Study underwent panel sequencing of 62 genes/genomic regions. Weighted 
AAC and GAAS were calculated. Correlation analyses and generalized linear models assessed associations be
tween genetic burden, ancestry, age at diagnosis and clinical variables. AAC inversely correlated with age at 
diagnosis (R = -0.15, p = 0.01), primarily driven by South Asians (R = -0.28, p < 0.001). African/Caribbean 
patients exhibited higher AAC (p < 0.001). Clinical variables, including severity of renal involvement (ACP5, 
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ITGAM, LYN, p < 0.001; TNFAIP3, p = 0.007), associated with GAAS. Genetic variability likely contributes to 
early disease expression and severity in jSLE, supporting patient stratification and personalised care.

1. Introduction

Juvenile-onset systemic lupus erythematosus (jSLE) is a pathophy
siologically complex systemic autoimmune/inflammatory disease that 
can affect any organ [1,2]. It can cause organ damage and failure, 
significantly impacting on the well-being of children affected [1,2]. 
Compared to patients with disease-onset during adulthood, children 
with SLE generally have higher disease activity, greater organ damage, 
increased mortality, and require more aggressive treatment [3]. 
Although significant progress has been made, the exact pathophysiology 
of SLE remains unknown [4], involving both inherited and acquired 
mechanisms [1,2]. Genetic factors are required to develop SLE, with 
several studies reporting (ultra-)rare genetic causes of SLE (or lupus-like 
disease) and common risk alleles [5,6]. Based on observations from 
previous studies, sub-groups of SLE patients exist which are differen
tially represented across age groups [4]. “Genetic SLE” affects a small 
fraction of SLE patients (estimated 1–4 % across age groups) and is 
caused by single or a combination of gene mutations with high func
tional impact, most commonly affecting type 1 interferon (IFN) path
ways and/or the complement system [1,2,6]. The majority of SLE 
patients carry gene variants, so-called risk-alleles, that increase an in
dividual’s risk for the development of SLE but are not strong enough to 
confer disease [6]. Additional factors, such as hormonal changes and 
environmental impact (viral infections, medications, etc.), are necessary 
to cause disease expression [1,2,4,6].

In most children and young people with SLE, a combination of risk 
alleles (notably, a higher number than in adult-onset patients) may 
contribute to early disease onset, its clinical variability, and more severe 
disease phenotypes than those seen in adults [1,6,7]. This study inves
tigated overall patterns of genetic variability around previously reported 
SLE-associated genes and risk loci in a multi-ancestral cohort, with a 
focus on cumulative alternate allele burden, assessing the relationship 
between alternate allele counts (AAC), age at disease onset, sex, 
ancestry, organ involvement, clinical severity, and treatments [8]. It 
furthermore explored associations between gene-level alternate allele 
scores (GAAS), organ involvement and disease severity.

2. Methods

This study follows the STREGA (STrengthening the REporting of 
Genetic Association studies) reporting guidelines [9].

2.1. Study cohort

A total of 315 patients from the UK JSLE Cohort Study were initially 
enrolled in this study [8]. The UK JSLE Cohort Study includes two 
distinct cohorts: an established JSLE cohort, comprising patients diag
nosed with JSLE from 1995 to the present day (retrospective data), and a 
prospective JSLE cohort, encompassing all newly diagnosed JSLE pa
tients (since 2006) enrolled during the ongoing study period (prospec
tive data). For this specific study, patient data were collected up to 
September 2022. All participants fulfilled the American College of 
Rheumatology (ACR) 1997 classification criteria for SLE (≥ 4 items) 
[10] and were diagnosed before their 18th birthday. We were not able to 
perform a formal power analysis prior to this study, due to the absence of 
studies using a comparable design in this specific disease area. 
Furthermore, sample size was pre-defined accessing a large national 
cohort in a rare disease area. Written patient assent/consent and/or 
parental consent was obtained as appropriate. The study received 
ethical approval from the National Research Ethics Service Northwest 
(REC_06/Q1502/77). Research was carried out in accordance with the 

declaration of Helsinki.

2.2. Data collected

Comprehensive patient data were collected and analysed in the 
following areas: 1) Demographic information, encompassing age at 
diagnosis, sex, self-reported ancestry, and family history of autoim
mune/inflammatory diseases in first-grade relatives (SLE, systemic 
connective tissue diseases/CTD, rheumatoid arthritis/RA, endo
crinopathies); 2) Disease activity, assessed at each study visit using the 
paediatric version of the British Isles Lupus Assessment Grade (pBILAG)- 
2004 [11,12] and the Systemic Lupus Erythematosus Disease Activity 
Index (SLEDAI) score, and damage at the last visit through the Systemic 
Lupus International Collaborating Clinics (SLICC)/ACR standardised 
damage index (SDI) [13]; 3) Prospectively collected clinical data, 
including malar rash, discoid lupus, photosensitivity, oral and/or nasal 
ulcers, non-erosive arthritis, serositis, nephritis, neurological, haema
tological, and/or immunological involvement, as per the 1997 ACR 
criteria for SLE; and 4) treatments. Patients were categorised in the 
“intensive treatment” group if, throughout the disease course, they 
received either cyclophosphamide, rituximab or belimumab, and/or two 
or more conventional disease-modifying anti-rheumatic drugs 
(DMARDs), excluding hydroxychloroquine, simultaneously for ≥2 
consecutive visits, and in the “non-intensive treatment” group, when a 
maximum of one conventional DMARD, including hydroxychloroquine, 
was used at a time (Table 1, Supplementary Table 1). Ancestry inference 
was not performed in this study primarily because the available data 
were limited to 62 genes/genomic target regions (exonic regions, exon: 
intron junctions), which represent only a small fraction of the genome 
and are typically under strong functional constraint. A more detailed 
rationale is provided in the discussion.

Considering all patient visits, we assigned a “severity” value to each 
pBILAG organ/system domain based on the highest score ever recorded: 
“severe involvement” was attributed to any organ or system that 
received a score of ‘A’ at any visit, “moderate involvement” was assigned 
if the domain’s highest recorded score was ‘B’, “mild involvement” was 
determined if the most severe score ever given was ‘C’. Lastly, “never 
involved” was the designation for any organ or system that received an 
‘E’ score across all visits.

2.3. Gene panel selection

Sequencing targets were selected based on a literature search (2018) 
targeting: 1) genes associated with known Mendelian forms of SLE/SLE- 
like disease, and 2) SLE-associated risk alleles previously identified 
through Genome-wide association studies (GWAS). As a result, 62 
genes/genomic regions were selected for sequencing, including exons 
and exon:intron junctions, as well as previously reported SLE-associated 
risk alleles, as described previously [14].

2.4. Target sequencing and variant identification

Sequence capture probes (NimbleGen/Roche) were designed to 
target exonic regions and exon:intron junctions of pre-selected genes 
(Supplementary Table 2). Sequencing libraries were prepared from 
genomic DNA, hybridized to the probes and then sequenced with 150 bp 
paired-end reads using Illumina MiSeq technology (Illumina). Demul
tiplexing, adaptor and quality trimming (Cutadapt v1.2.1, Sickle v1.2) of 
reads was performed [15,16]. Polymerase Chain Reaction (PCR) dupli
cates were identified and excluded from the dataset using Picard [17]. 
Sequencing data were aligned to the human reference genome (hg38) 
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using bwa [18] and variants were subsequently detected with Genome 
Analysis Toolkit (GATK) Software [18,19]. Variant calling was per
formed jointly across samples using the GATK Haplotype Caller. GATK 
base quality score recalibration was applied. Variants were then filtered 
using the GATK Variant Filtration tool. Single nucleotide poly
morphisms (SNPs) were removed if they met any of the following 
criteria: Quality by Depth (QD) < 5.0, Quality Score (QUAL) < 30.0, 
Strand Odds Ratio (SOR) > 3.0, (Fisher Strand) FS > 60.0, Mapping 
Quality (MQ) < 40.0, Mapping Quality Rank Sum (MQRankSum) <
− 12.5, Read Position Rank Sum (ReadPosRankSum) < − 8.0. Variants 
passing the filtering thresholds were annotated using SNP Effect 
(SnpEff) [20] and database of SNP (dbSNP) [21]. Finally, data were 
extracted from the Variant Call Format (vcf) file using the R packages 
VariantAnnotation [22] and vcfR [23]. Human Leukocyte Antigen (HLA) 
class I regions were excluded from this project, as the high genetic 
variability within these regions undermines the accuracy of standard 
variant calling methods. Genotype (GT) data were extracted and con
verted into a matrix where genotypes were numerically encoded based 
on alternate allele counts: homozygous reference (0/0) = 0, heterozy
gous (0/1 or 1/0) = 1, and homozygous alternate (1/1) = 2. Missing 
genotypes (./.) were excluded from downstream analysis.

2.5. Alternate allele counts

Genotype calls were converted to reflect the number of alternate 
alleles per SNP (0, 1, or 2), and samples with missing genotype data 
across any of the 4100 exonic SNPs were excluded to ensure complete- 

case analysis. This meant 238/289 (82.4 %) patients were retained for 
this analysis as they had genotype information for all 4100 SNPs con
tained in the genome fractions studied and complete clinical 
information.

Functional annotations (ANN), extracted from the INFO field of the 
VCF file, were used to assign biological impact weights: MODIFIER and 
LOW = 1, MODERATE = 2, and HIGH = 3. For each individual, the 
alternate allele count at each SNP was multiplied by its corresponding 
ANN weight, and these values were summed to produce a weighted AAC 
score. The weighted AAC scores were merged with the following 21 
demographic and clinical variables: age at diagnosis; severity of 
constitutional, mucocutaneous, neuropsychiatric, musculoskeletal, 
cardiorespiratory, gastrointestinal, ophthalmic, renal and haemato
logical involvement (pBILAG domains); presence of malar rash, discoid 
lupus, photosensitivity, oral or nasal ulcers, non-erosive arthritis, 
serositis, nephritis, neurologic, haematological and immunological dis
orders (1997 ACR classification criteria) and treatment received (“non- 
intensive” versus “intensive”). As mentioned above, for each pBILAG 
organ/system domain, patients were stratified into four mutually 
exclusive severity categories based on the highest score ever recorded 
during follow-up: “severe involvement” (maximum score = A), “mod
erate involvement” (maximum score = B), “mild involvement” 
(maximum score = C), and “never involved” (only E scores across all 
visits). For the 1997 ACR classification criteria, patients were cat
egorised as “yes” (feature ever present) or “no” (feature never present) 
(Supplementary Table 1).

To identify associations between AAC and clinical phenotypes, 
generalized linear models (GLMs) with a Poisson distribution were used. 
Each model included ancestry, sex, and family history of autoimmune 
disease as covariates. P-values from the GLMs were adjusted for multiple 
testing using the Benjamini-Hochberg false discovery rate (FDR) 
method. In addition, Pearson correlation analyses were performed to 
evaluate relationships between AAC and continuous clinical outcomes, 
including age at diagnosis, the highest SLEDAI and numeric BILAG 
scores ever recorded during follow-up, and the SLICC-SDI at the latest 
visit. Correlation tests were also stratified by ancestry to explore 
subgroup-specific associations, with FDR correction applied across tests. 
All methods can be consulted in detail and fully reproduced in the 
publicly available R Markdown document https://github.com/CBFLi 
vUni/jSLE_paper/blob/main/scripts/AAC_calculation_and_analysis. 
Rmd.

2.6. Gene-level alternate allele scores

For each SNP and individual, a mutation burden score was calculated 
by multiplying the alternate allele count by the assigned annotation 
severity value (as described above). Mutation burden scores were then 
aggregated at the gene level by summing scores across all variants 
within a gene for each individual. This resulted in a matrix of 62 Gene- 
level alternate alelle scores (GAAS) for all patients, where rows corre
sponded to individuals and columns to genes. Note that SNPs present 
across all patients were 3764 of the sequenced 4100 SNPs (91.8 %), and 
the total number of patients included was 289 (those with complete 
clinical data). To visualize sample stratification, principal component 
analysis (PCA) was performed on the transposed gene-level score matrix 
using the prcomp() function. The first two principal components (PC1 
and PC2) were visualized using ggplot2, with patient samples coloured 
by ancestry. To identify gene-level associations with clinical features, 
generalized linear models (GLMs) with a Poisson distribution were fitted 
for each gene against a panel of 21 curated clinical variables, corre
sponding to the same set of demographic and clinical features used in the 
AAC analyses. Each model included additional covariates to adjust for 
ancestry, sex, and family history of autoimmune diseases. Genes previ
ously identified as pseudogenes, antisense transcripts, or non-coding 
RNAs (n = 26) were excluded from testing. Statistical significance of 
the clinical predictor was assessed using chi-square tests from the model 

Table 1 
Demographic and clinical information on the study cohort.

JSLE patients included in 
the alternate allele count 
analysis (n = 238)

JSLE patients included 
in the gene-level score 
analysis (n = 289)

Age at diagnosis, years 13.0 [10.7–14.5] 12.8 [10.3–14.5]
(median [IQR]) ​ ​

Sex, n (%) ​ ​
Female 198 (83.2) 242 (83.7)
Male 40 (16.8) 47 (16.3)

Ancestry, n (%) ​ ​
European 114 (47.9) 138 (47.7)
African/Caribbean 38 (16.0) 48 (16.6)
South Asian 57 (23.9) 70 (24.2)
East Asian 9 (3.8) 10 (3.5)
Other Asian 20 (8.4) 23 (8.0)

Family history 
autoimmune diseases, n 
(%) 48 (20.2) 53 (18.3)
SLE 18 (37.5) 21 (39.6)
Systemic CTD 22 (45.8) 25 (47.2)
Endocrinopathies 19 (39.6) 21 (39.6)
RA 11 (22.9) 12 (22.6)

Highest SLEDAI score 
during follow-up ​ ​
(median [IQR]) 20 [17–24] 20 [17–24]

Highest numerical pBILAG 
score during follow-up ​ ​
(median [IQR]) 21 [13− 32] 21 [13− 31]

SLICC SDI at last visit ​ ​
(median [IQR]) 0 [0–1] 0 [0–1]

Treatments, n (%)* ​ ​
Intensive 109 (45.8) 129 (44.6)
Non-intensive 129 (54.2) 160 (55.4)

JSLE, juvenile systemic lupus erythematosus; IQR, interquartile range; CTD, 
connective tissue disease; RA, rheumatoid arthritis; SLEDAI, Systemic Lupus 
Erythematosus Disease Activity Index; pBILAG, paediatric British Isles Lupus 
Assessment Grade 2004; SLICC SDI, SLICC/ACR Damage Index.

* “Intensive treatment”: patients, throughout the disease course, received 
either cyclophosphamide, rituximab or belimumab, and/or two or more con
ventional DMARDs, excluding hydroxychloroquine, simultaneously for ≥2 
consecutive visits. “Non-intensive treatment”: a maximum of one conventional 
DMARD, including hydroxychloroquine, was used at a time.
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ANOVA. P-values were corrected for multiple testing using the Benja
mini and Hochberg method. Models with adjusted p-values <0.05 were 
considered significant. All model estimates, standard errors, and p- 
values were exported into structured Excel spreadsheets for review and 
downstream interpretation. For full transparency and reproducibility, 
the results are provided in Supplementary Table 3 and can be repro
duced following the publicly available script https://github.com/CBFLi 
vUni/jSLE_paper/blob/main/scripts/GAAS_caculation_and_analysis. 
Rmd.

2.7. Comparison with alternate allele counts generated from previously 
published SLE-associated SNPs

To compare findings from this study with previously reported genetic 
variants, a curated list of 330 genome-wide significant lupus- 
predisposing SNPs was extracted from a recent comprehensive litera
ture review [24]. These SNPs were then cross-referenced with those 
sequenced in our dataset. The intersection of common SNPs, named 
“subset AAC”, was used to undertake the same AAC methodology 
described above. This subset contained only 15 overlapped SNPs (Sup
plementary Table 4). Notably, many of the previously reported SNPs: 1) 
mapped to genomic regions (e.g. intronic or intergenic) that were not 
covered by the sequencing panel used in this study, 2) had been reported 
exclusively in East Asian cohorts and were therefore excluded in this 
study due to the low representation of East Asian patients in the UK JSLE 
cohort, and 3) were identified after 2018, when the panel for this study 
was designed. The correlation between the original AAC and the subset 
AAC was evaluated, along with the relationship between the subset AAC 
and diagnosis age across ethnic groups. Due to the limited number of 
overlapping SNPs between this dataset and the previously reported 
SNPs, gene-level analyses for the subset AAC could not be performed.

3. Results

3.1. Cohort characteristics

Of the 315 jSLE patients sequenced, 289 (91.7 %) were included in 
the GAAS analysis by excluding SNPs lacking sequencing data across all 
patients as well as patients with incomplete demographic/clinical in
formation. For the AAC analysis, only patients with complete 
sequencing information for all 4100 SNPs contained in the genome 
portions studied were included, resulting in 238/289 (82.4 %) patients 
being analysed (Fig. 1A).

Demographic and clinical characteristics of the two sub-cohorts were 
comparable (Table 1; Supplementary Table 1). The subsequent 
description of demographics focuses on the larger cohort subjected to 
the GAAS analysis.

The median age at diagnosis in this cohort was 12.8 years (inter
quartile range/IQR 10.3–14.5) (Fig. 1B), and most patients were female 
(83.7 %). Patients of European ancestry represented 47.7 % of the study 
population; 24.2 % were South Asian, 16.6 % African/Caribbean, 3.5 % 
East Asian, and 8.0 % were of “other” Asian ancestry (Fig. 1B). 18 % of 
participants had a family history of autoimmune/inflammatory diseases 
in first-degree relatives, including SLE (39.6 %), systemic CTD (47.2 %), 
endocrinopathies (39.6 %) and RA (22.6 %). Notably, damage measured 
by SLICC-SDI was low across the cohort, with a median score of 0 (IQR 
0–1). Almost half of the participants (44.6 %) received “intensive” 
treatment throughout their disease course (Table 1).

3.2. AAC inversely correlate with age at diagnosis

Based on previous studies suggesting that jSLE patients with early 
disease onset experience a higher genetic burden [25], we investigated 
the possible relationship between AAC and age at diagnosis. A weak 
inverse correlation between age at diagnosis and AAC was noted (R =
-0.15, p = 0.012, Fig. 2A). Correlation analyses within each ancestral 

Fig. 1. Demographic characteristics of the jSLE patient sub-cohorts. A) Venn diagram displaying the overlap of study participants between the gene-level alternate 
allele scores (GAAS) (blue circle) and alternate allele counts (AAC) (pink circle) analysis groups. Out of the 289 patients included in the GAAS analysis, (238, 82.4 %) 
were included in both GAAS and AAC analyses, and no patients were included exclusively in the AAC analysis. B) Demographic characteristics of jSLE patients 
included in the GAAS. The left panel illustrates the age distribution in years at the time of diagnosis; the dotted line indicates the median age at diagnosis. The right 
panel displays the ancestral composition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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group revealed a moderate inverse correlation between age at diagnosis 
and AAC among South Asian participants (R = -0.34, p = 0.047) but no 
significant correlation was found within the remaining ancestral groups 
(Fig. 2B).

3.3. AAC are higher in patients of African/Caribbean ancestry

When comparing AAC across ancestries, higher scores were recorded 
in patients of African/Caribbean ancestry compared to patients of other 
ancestral groups (p < 0.001) (Fig. 3A). No significant differences were 
detected between male and female participants across ancestral groups. 
PCA of GAAS across all 62 genes/loci included in this study showed that 
patients of African/Caribbean ancestry cluster separately from other 
ancestries (Fig. 3B).

3.4. AAC associate with organ involvement but not with disease activity 
or damage

GLM analyses (Supplementary Tables 5 and 6) identified relation
ships between AAC and severity of pBILAG-2004-defined constitutional 
(p < 0.001), renal (p = 0.0016), haematological (p = 0.0016) and 
neuropsychiatric (p = 0.03) involvement, and the presence of non- 
erosive arthritis (p = 0.004) and malar rash (p = 0.03). We did not 
observe correlations between AAC and highest SLEDAI scores (R =
0.044, p = 0.5; Supplementary Fig. 1A), highest pBILAG scores (R =
0.041, p = 0.53; Supplementary Fig. 1B) or SLICC-SDI at last visit (R =
0.032, p = 0.62; Supplementary Fig. 1C).

Fig. 2. Alternate allele counts (AAC) inversely correlate with age at disease onset. A) In a multi-ancestral jSLE cohort, age at diagnosis (in years) and AAC are 
inversely correlated (R = -0.15, p = 0.012). Data points represent the number of alternate alleles in individual jSLE patients; a trend line indicates the direction and 
strength of the relationship. The grey shaded area indicates the 95 % confidence interval. B) Analysis of the relationship between AAC and age at disease onset across 
the five different ancestral groups, reveals a moderate inverse correlation between age at onset and AAC among South Asian jSLE patients (R = -0.34, p = 0.047). 
Each data point represents an individual sample, colour-coded by ancestry: African/Caribbean (red), European (gold), East Asian (green), South Asian (blue), and 
“Other” Asian (purple). Trend lines indicate the direction and strength of the relationships. The grey shaded areas represent the 95 % confidence intervals. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Alternate allele counts (AAC) reveal differences among ancestries. A) Distribution of AAC stratified by ancestry and sex, showing higher AAC in patients of 
African/Caribbean ancestry, with no differences observed between male and female participants across ancestral groups. Sex distribution across ancestry groups: 
African/Caribbean females 33 (87 %), males 5 (13 %); European females 101 (89 %), males 13 (11 %); East Asian females 5 (56 %), males 4 (44 %); South Asian 
females 43 (75 %), males 14 (25 %); "other" Asian background females 16 (80 %), males 4 (20 %). Adjusted p-values are displayed (***p ≤ 0.001). Box plots display 
interquartile ranges (IQRs) and median values. Whiskers extend to the minimum and maximum values within 1.5 times the IQR, with data points outside this range 
plotted individually as outliers. Ancestral groups are labelled along the x-axis: African/Caribbean, European, East Asian, South Asian and “Other” Asian. Sexes are 
separated by colour as indicated. B) Principal Component Analysis (PCA) of GAAS highlighting the distribution across different ancestral groups. Each dot signifies an 
individual data sample, with colour coding ancestry African/Caribbean, European, South Asian, and other Asian background. The first principal component (PC1) 
accounts for 11.74 % of the total variance, while the second principal component (PC2) captures 9.42 %. The points of African/Caribbean participants cluster largely 
separated from the other ancestries. The distinct clustering of African/Caribbean participants is encircled in red. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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3.5. GAAS associate with severity of organ involvement

We found associations between 18 clinical variables and 13 genes 
(Supplementary Tables 3, 7–9, Fig. 4). Neuropsychiatric severity asso
ciated with GAAS of the genes Acid Phosphatase 5 (ACP5) (p < 0.001), 
Rat Sarcoma Guanyl Releasing Protein 3 (RASGRP3) (p = 0.04), Ribonu
clease H2 subunit A (RNASEH2 A) (p < 0.001) and Tyrosine Kinase 2 
(TYK2) (p < 0.001) (Fig. 5A). Renal severity associated with GAAS of 
ACP5 (p < 0.001), Integrin Subunit Alpha M (ITGAM) (p < 0.001), Lck/Yes 
Novel Tyrosine Kinase (LYN) (p < 0.001), and Tumor Necrosis Factor 
Alpha-Induced Protein 3 (TNFAIP3) (p = 0.007) (Fig. 5B). Haematological 
involvement severity associated with GAAS of ACP5 (p = 0.003), 
Deoxyribonuclease 1 (DNASE1) (p = 0.003), RNASEH2 A (p < 0.001), 
and Ubiquitin Conjugating Enzyme E2 L3 (UBE2L3) (p = 0.03) (Supple
mentary Fig. 2A). Cardiorespiratory severity associated with GAAS of 
Interferon Regulatory Factor 8 (IRF8) (p = 0.02), ITGAM (p < 0.001) and 
UBE2L3 (p = 0.04) (Supplementary Fig. 2B), while gastrointestinal 
severity associated with ITGAM (p < 0.001) and PX Domain Containing 
Serine/Threonine Kinase Like (PXK) (p < 0.001) (Supplementary Fig. 2C).

3.6. AAC and GAAS associate with treatment intensity

Overall, patients in the “intensive” treatment group had significantly 
higher AAC compared to participants receiving “non-intensive” treat
ment (p < 0.001, Fig. 6A). Participants from all ancestral groups, except 
European patients, receiving “intensive” treatment exhibited higher 
AAC compared to those receiving “non-intensive” treatment, although 
differences were only significant for African/Caribbean participants (p 
= 0.001) (Fig. 6B), consistent with their overall higher disease burden. 
Additionally, GAAS of ITGAM (p < 0.001), LYN (p < 0.001), PXK (p <
0.001) and RNASEH2A (p < 0.001) associated with increased treatment 
intensity (Fig. 6C).

3.7. AAC correlate with the subset AAC generated from previously 
published SNPs

A strong correlation was observed between the originally calculated 
AACs and the subset AACs, which were calculated using the 15 

previously reported SLE-associated SNPs that were also captured by our 
sequencing panel (R = 0.47, p < 0.001; Supplementary Fig. 3A, Sup
plementary Table 4). However, when including previously reported 
SNPs only, an inverse correlation between AAC and age at diagnosis was 
not observed (R = -0.08, p = 0.964; Supplementary Fig. 3B). When 
stratifying by ancestry, European and African/Caribbean ancestral 
groups followed similar trends when comparing the two AACs, though 
significance was lost (R = 0.05, p = 1 and R = -0.08, p = 1, respectively). 
In East Asians, a moderate but non-significant inverse correlation 
emerged (R = -0.48, p = 0.965), while no correlation was observed in 
South Asian patients (R = -0.05, p = 1) or those of “other” Asian ancestry 
(R = -0.07, p = 1) (Supplementary Fig. 3C).

4. Discussion

In adult-onset SLE, associations between genetic variability, age at 
onset, ancestry, and disease severity have been established [6,26,27]. 
Preliminary reports suggest that, also in jSLE, increased genetic impact 
associates with early disease onset and high disease activity, especially 
in patients of African/Caribbean ancestry [6,25]. This study represents 
the most comprehensive analysis currently available in the age group, 
linking genetic variability across 62 SLE-associated genes/genomic re
gions with demographic and clinical variables, as well as treatment. 
Although all patients were recruited from study centers within a single 
nation, the cohort was multi-ancestral, with an expected “SLE-typical” 
over-representation of “non-European” ancestry, when compared to 
national UK census data [7,14] which allowed investigation of genetic 
disparities across ancestral groups.

The identified inverse correlation between AAC and age at diagnosis 
is in agreement with previous smaller studies, adding weight to the 
hypothesis that genetic burden contributes to early disease onset in jSLE 
[6,25,26]. In this study, the inverse correlation between AAC and age at 
onset was mainly driven by participants of South Asian descent. South 
Asian jSLE patients represented 24.2 % of the study population, while 
other non-European ancestries were less represented. Therefore, the 
relatively small sample size among these ancestries likely limited the 
statistical power to detect similar correlations. For example, a trend was 
observed in the African/Caribbean group, though it did not reach 
significance.

While Webb et al. reported an inverse correlation between genetic 
impact, age at disease-onset and severity in jSLE patients of African 
descent in the United States of America [6], we failed to identify asso
ciations between AAC and age at onset in the UK’s African/Caribbean 
sample population. Differences may be explained by the more extensive 
sequencing panel approach chosen here (4100 vs. 19 SNPs) and the 
relatively small sample sizes across both cohorts (238 vs. 111 jSLE pa
tients). Nevertheless, this study confirmed increased overall AAC in jSLE 
patients of African/Caribbean ancestry (compared to other ancestral 
groups) which may contribute to a lower threshold for SLE development, 
an overall earlier age of onset, more severe disease and less favourable 
outcomes [28]. An association between ancestry, disease severity and 
the need for intensive treatment, particularly among African/Caribbean 
patients, has been previously established in cohorts consisting of mostly 
adult-onset SLE patients [28,29]. However, findings from this study not 
only confirm this pattern in a paediatric multi-ancestral cohort, but they 
also link ancestry and phenotype-related differences with increased 
overall genetic variability around SLE-related genes/loci. Although ex
pected to some extent based on previous studies reporting SNP- 
associations [30,31], here reported associations between overall ge
netic variability, organ involvement (especially renal involvement and 
ACP5, ITGAM, LYN and TNFAIP3) and treatment intensity underscore 
the importance of understanding genetic factors and their role in 
shaping organ-specific disease features for the development of individ
ualised therapeutic approaches. Lastly, although SLE patients of Asian 
ancestry have previously been suggested to experience an increased 
genetic risk in adult-onset SLE cohorts [32], this study, when compared 

Fig. 4. Associations between pBILAG organ domain severity and gene-level 
alternate allele scores (GAAS), tested using generalized linear models. P- 
values were adjusted for multiple testing using the Benjamini–Hochberg 
method. Heatmap showing adjusted p-values of associations between clinical 
severity and GAAS, including the 12 genes displaying correlations between 
GAAS and pBILAG domain severity. Each cell represents a specific gene (x-axis) 
and pBILAG organ domain severity (y-axis), with colour intensity indicating the 
strength of the association. Darker red shades denote lower p-values, while blue 
shades indicate non-significant associations. The adjusted p-value thresholds 
are categorised as follows: 0.0001 (darkest red), 0.001, 0.01, 0.05 (lightest red) 
and > 0.05 (blue). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

V. Natoli et al.                                                                                                                                                                                                                                   Clinical Immunology 279 (2025) 110540 

6 



to other ancestries, did not detect higher AAC in children of Asian 
descent. This may be due to the relatively small sample size, differences 
in the sequencing panels used across studies, and/or possible differences 
between juvenile- and adult-onset SLE [33].

In addition to age at onset, AAC associated with the presence of 
certain clinical features. High AAC associated with severity of renal 
involvement. This is of particular interest, because lupus nephritis (LN) 
centrally impacts on overall disease severity, associates with the use of 
“intensive” treatments, and contributes to SLE-associated mortality 
[26,34]. Notably, a recent GWAS also reported a correlation between the 
development of LN and the number of SLE risk variants [26]. Moreover, 
a large Canadian study including both juvenile- and adult-onset SLE 
patients (1237 participants/572 jSLE) found associations between SLE 
susceptibility loci and the risk of developing LN [35].

Although previous studies in predominantly adult-onset SLE cohorts 

suggested increased damage accrual in patients with high genetic risk 
scores [27], this study did not detect correlations between AAC and 
SLICC-SDI scores. This may be the result of overall low SLICC-SDI scores 
across the study cohort (median: 0, IQR: 0–1), which could be attributed 
to SLICC-SDI having been developed and validated for adult SLE pa
tients, emphasizing aspects of potentially lower relevance to children 
(including malignancy and diabetes mellitus) [36].

Key goals of genetic profiling across autoimmune/inflammatory 
diseases are the prediction of organ involvement, disease outcomes and/ 
or treatment responses [33]. Among various associations identified, we 
found organ domains uniquely associated to GAAS of specific genes, 
such as TNFAIP3 with renal severity and TYK2 with neuropsychiatric 
severity. Additionally, in some cases, shared associations were observed; 
for example, GAAS of ACP5 were associated with neuropsychiatric, 
renal and haematological severity.

Fig. 5. Associations between severity of neuropsychiatric and renal involvement, and gene-level alternate allele scores (GAAS). A) Neuropsychiatric severity 
significantly associates to ACP5 (p < 0.001), RASGRP3 (p = 0.04), RNASEH2A (p < 0.001) and TYK2 (p < 0.001) GAAS. B) Renal severity significantly associates to 
ACP5 (p < 0.001), ITGAM (p < 0.001), LYN (p < 0.001), TNFAIP3 (p = 0.007) GAAS. Box plots display interquartile ranges (IQR) and median values. Whiskers 
extend to the minimum and maximum values within 1.5 times the IQR, with data points outside this range plotted individually as outliers.
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Several genes associated with specific organ involvement patterns 
are of particular interest as they have previously been linked with 
genetically determined SLE-like diseases and/or are targets of already 
available molecular interventions. For instance, recessive mutations in 
ACP5, encoding for the tartrate-resistant acid phosphatase (TRAP), 
associate with spondyloenchondrodysplasia (SPENCD). In line with 
organ domains associated with GAAS in this study, SPENCD is charac
terised by increased IFN expression, central nervous system involve
ment, haematological manifestations, vasculitis and renal involvement 
[37]. Furthermore, genetic variability affecting RNASEH2A associated 
with neurological and haematological involvement and severity. This 
gene has previously been linked with the neurodegenerative disease 
Aicardi-Goutières syndrome (AGS), another interferonopathy charac
terised by early-onset encephalopathy and lupus-like features [38]. 
Notably, both SPENCD and AGS patients show (at least limited) 
improvement in response to JAK/STAT inhibitors that are used to con
trol IFN expression [39], suggesting that genetic profiling may not only 
predict organ involvement but also inform future treatment choices. 
Additionally, the tyrosine kinase encoding TYK2 gene is another IFN 
signalling related gene associated with neuropsychiatric severity and the 
occurrence of discoid lupus. The pivotal role of TYK2 in the JAK/STAT 
pathway and IFN expression prompted the development of TYK2 

modulators (deucravacitinib, brepocitinib). While approval for the 
treatment of SLE is pending, deucravacitinib was effective and safe in 
adult SLE patients [40]. The tyrosine kinase encoding LYN gene was 
associated with disease severity affecting the renal pBILAG organ 
domain. The Lyn kinase plays a key role in regulating B lymphocyte 
signalling; mice carrying gain-of-function variants in Lyn exhibit circu
lating autoantibodies and severe autoimmune glomerulonephritis [41]. 
A genome-wide association study in IgA nephropathy identified LYN as a 
risk locus [42], and a recent study in severe COVID-19 found LYN to be 
associated with progression of kidney damage [43]. Notably, the Lyn/ 
Bcr-Abl tyrosine kinase inhibitor bafetinib was efficacious and safe in 
acute lymphocytic leukaemia, refractory/relapsing B cell lymphocytic 
leukaemia and prostate cancer [44]. Finally, the observed association 
between TNFAIP3 GAAS and renal severity is particularly interesting 
because heterozygous loss-of-function mutations in TNFAIP3 have 
recently been linked with haploinsufficiency A20 [45]. Patients affected 
by this autoinflammatory condition can exhibit SLE-like phenotypes 
[14,46], and some can develop LN in the presence of autoantibodies and 
a pronounced type I IFN signature [46]. Findings from this and another 
recent study [47] therefore suggest that variants in the TNFAIP3 may 
affect renal involvement and outcomes in SLE. Taken together, associ
ations between GAAS and organ involvement/severity may inform 

Fig. 6. Alternate allele counts (AAC) and gene-level alternate allele scores (GAAS) associate and with treatment intensity. A) Relationship between AAC and 
treatment intensity across ancestries, showing significantly higher AAC in the “intensive treatment” group compared to the “non-intensive treatment” group (***p ≤
0.001). B) Box plots illustrating the relationship between alternate allele count (AAC) and two different treatment groups («intensive» and «non-intensive») across 
the five ancestral categories, showing higher AAC in patients requiring intensive treatment (in red) compared to those receiving non-intensive treatment regimens (in 
blue) among African/Caribbean jSLE patients (*p ≤ 0.05). C) Box plots showing the distribution of significant associations between GAAS and treatment choices. 
Treatment intensity was significantly associated with ITGAM (p < 0.001), LYN (p < 0.001), PXK (p < 0.001), and RNASEH2A (p < 0.001) GAAS. Box plots display 
interquartile ranges (IQRs) and median values. Whiskers extend to the minimum and maximum values within 1.5 times the IQR, with data points outside this range 
plotted individually as outliers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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future personalised jSLE management, including genetic risk assessment 
and patient stratification towards individualised treatment and care. 
Such an approach could, for example, entail increased monitoring fre
quency for renal function, proteinuria and blood pressure elevation or 
the choice of more aggressive immunosuppressive treatment in jSLE 
patients with elevated GAAS in ACP5, ITGAM, LYN, or TNFAIP3. Indeed, 
similar approaches have already been introduced in cancer medicine 
[48].

This is the first study to show that high genetic risk scores (AAC) in 
jSLE patients associate with the need for “intensive” treatment. While 
only reaching statistical significance among African/Caribbean jSLE 
patients, this association remained across all ancestral groups, except 
European participants. While the reason for this remains unclear and 
requires further investigation, genetic risk has been reported “lower” 
among European patients as compared to other ancestries [5,32], which 
also associates with “milder” disease courses and better outcomes [49].

Differences between allele counts and age at disease onset observed 
between AAC, measuring overall genetic variation, and the subset AAC 
generated from previously reported SLE-associated SNPs, highlight the 
impact of (ancestry- and potentially age-related biased) SNP selection in 
genetic studies. A large proportion of previously published SLE- 
associated SNPs, more precisely 148/330 (44.8 %), were exclusively 
identified in East Asian populations [24]. Previous studies overall had 
limited representation of, e.g., South Asian or African/Caribbean jSLE 
patients, notably, two of the three most represented ancestries in the 
dataset presented here (respectively 23.9/24.2 % and 16/16.6 % of the 
cohort). Analyses restricted to a subset of previously published SLE- 
associated SNPs may therefore have resulted in a loss of signal, partic
ularly in underrepresented populations (such as South Asian patients). 
This underscores the importance of inclusive and appropriately matched 
genomic datasets, as limiting analyses to previously reported variants 
may skew associations, particularly in multi-ancestral cohorts.

A key strength of this study is its focus on genetic variability across 
SLE-associated genes and regions rather than limiting to specific previ
ously identified risk alleles (usually from GWAS). While GWAS have 
been instrumental in identifying individual SNPs associated with SLE 
risk, or protection from disease or complications, the approach taken in 
this study provides a broader and, potentially, less biased assessment of 
genetic burden by capturing the combined effect of multiple alternate 
alleles. This perspective may offer insights into disease heterogeneity 
and severity, particularly in multi-ancestral populations, and could 
complement existing analytic approaches by providing an alternative or 
additional measure of variability and its impact on disease expression 
and/or phenotype. This is reflected in the design of the sequencing 
panel, which was focused on exons, exon–intron junctions, and regions 
around several previously reported risk alleles [14]. Consequently, a 
large proportion of sequences analysed here are located in coding or 
nearby regulatory regions, rather than in intergenic areas where many 
GWAS hits are found. This choice aligned with our aim to assess gene- 
level variation rather than replicate known SNP-level associations.

While this study highlights the potential of genetic assessment in 
guiding and personalising clinical management for jSLE patients, several 
limitations require to be acknowledged. Despite representing one of the 
largest jSLE cohorts available, the overall sample size remains relatively 
small, especially when compared to studies in adult-onset SLE [25,27]. 
This limitation is particularly evident in subgroup analyses comparing 
sex across ancestries, where the number of male patients, especially 
those of African or East Asian descent, was low. Additionally, although 
the multi-ancestral composition of the cohort supports broader rele
vance, variability in genetic backgrounds, healthcare systems, drug 
availability and socio-economic factors may influence the generaliz
ability of findings to other populations. Furthermore, the selection of 
genes/loci was based on a literature review conducted in 2018 [14]. 
Consequently, SLE-associated genes identified more recently, such as 
SAT1, P2RY8 and DOCK11 [50–52], were not included. Moreover, the 
APOL1 gene, which has been associated with severe renal involvement 

and damage [53–55], as well as atherosclerosis [56] in adult SLE pa
tients (particularly those of African American descent), was not included 
in this analysis. Another potential limitation may be related to the use of 
self-reported ancestry data. While this approach may introduce some 
degree of misclassification, it remains widely accepted when compre
hensive genomic data are not available, as it has been shown to have 
good concordance with genetically inferred ancestry [57]. The panel 
used in this study included only 62 exonic and exon–intron regions, with 
a strong focus on immune-related genes associated with SLE. These re
gions are typically under strong functional constraint and, as such, are 
unlikely to contain ancestry-informative markers (AIMs), which are 
more often located in neutral, non-functional regions [58]. Furthermore, 
the exon panel in question comprises genes associated with SLE, many of 
which are involved in immune function and have been shaped by 
population-specific selective pressures. For example, IRF5 poly
morphisms are associated with IFN pathway activation and show 
varying allele frequencies across populations, likely due to historical 
pathogen-driven selection [59]. Similarly, TYK2 variants have been 
identified as protective against SLE in European populations but are rare 
or absent in indigenous populations, suggesting that these alleles were 
introduced through European admixture and may have been subject to 
negative selection in populations with high exposure to infectious dis
eases [60]. This indicates that the distribution of these alleles may be 
influenced more by selection pressures than by neutral drift. Using SNPs 
chosen for disease association—especially in immune-related gen
es—introduces the risk of confounding disease susceptibility with 
ancestry. Effective ancestry inference requires either genome-wide data 
or panels of AIMs selected specifically for their ability to capture pop
ulation divergence through neutral evolution (for example through 
microhaplotypes, clusters of closely linked SNPs [61], which were not 
the focus of this study). For these reasons, ancestry analysis was not 
pursued with this exon-limited, disease-biased gene set. Lastly, studies 
linking individual or the combination of variants with gene function are 
necessary, for example, to inform future treatment choices.

In conclusion, this study underscores the important role of genetic 
variability in jSLE, demonstrating its key contribution to early disease 
expression - particularly in jSLE patients of South Asian ancestry - as well 
as organ involvement, disease severity and the need for more intensive 
treatment. By capturing a broader spectrum of genetic variability rather 
than focusing on previously reported SLE-associated risk alleles, the 
approach taken in this study may provide new insights into how cu
mulative genetic impact can influence disease heterogeneity. Prospec
tive studies in larger, unrelated multi-ancestral cohorts are required to 
validate these findings and further assess the need for more aggressive 
treatments in patients exhibiting high GAAS in genes associated with 
specific manifestations.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.clim.2025.110540.
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