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ARTICLE INFO ABSTRACT

Keywords: Juvenile-onset systemic lupus erythematosus (jSLE) is a complex autoimmune/inflammatory disease in which
Lupus genetic factors likely contribute to pathophysiology and clinical expression. This study explored associations
SLE

between general (alternate allele counts; AAC) and gene-specific (alternate allele scores; GAAS) sequence vari-

\(;z:liztliiclit ability, age at onset, sex, ancestry, disease activity/severity, organ involvement and treatments in jSLE. 289
Y participants from the UK JSLE Cohort Study underwent panel sequencing of 62 genes/genomic regions. Weighted

Ancestry ) h : -

Phenotype AAC and GAAS were calculated. Correlation analyses and generalized linear models assessed associations be-

tween genetic burden, ancestry, age at diagnosis and clinical variables. AAC inversely correlated with age at
diagnosis (R = -0.15, p = 0.01), primarily driven by South Asians (R = -0.28, p < 0.001). African/Caribbean
patients exhibited higher AAC (p < 0.001). Clinical variables, including severity of renal involvement (ACP5,
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ITGAM, LYN, p < 0.001; TNFAIP3, p = 0.007), associated with GAAS. Genetic variability likely contributes to
early disease expression and severity in jSLE, supporting patient stratification and personalised care.

1. Introduction

Juvenile-onset systemic lupus erythematosus (jSLE) is a pathophy-
siologically complex systemic autoimmune/inflammatory disease that
can affect any organ [1,2]. It can cause organ damage and failure,
significantly impacting on the well-being of children affected [1,2].
Compared to patients with disease-onset during adulthood, children
with SLE generally have higher disease activity, greater organ damage,
increased mortality, and require more aggressive treatment [3].
Although significant progress has been made, the exact pathophysiology
of SLE remains unknown [4], involving both inherited and acquired
mechanisms [1,2]. Genetic factors are required to develop SLE, with
several studies reporting (ultra-)rare genetic causes of SLE (or lupus-like
disease) and common risk alleles [5,6]. Based on observations from
previous studies, sub-groups of SLE patients exist which are differen-
tially represented across age groups [4]. “Genetic SLE” affects a small
fraction of SLE patients (estimated 1-4 % across age groups) and is
caused by single or a combination of gene mutations with high func-
tional impact, most commonly affecting type 1 interferon (IFN) path-
ways and/or the complement system [1,2,6]. The majority of SLE
patients carry gene variants, so-called risk-alleles, that increase an in-
dividual’s risk for the development of SLE but are not strong enough to
confer disease [6]. Additional factors, such as hormonal changes and
environmental impact (viral infections, medications, etc.), are necessary
to cause disease expression [1,2,4,6].

In most children and young people with SLE, a combination of risk
alleles (notably, a higher number than in adult-onset patients) may
contribute to early disease onset, its clinical variability, and more severe
disease phenotypes than those seen in adults [1,6,7]. This study inves-
tigated overall patterns of genetic variability around previously reported
SLE-associated genes and risk loci in a multi-ancestral cohort, with a
focus on cumulative alternate allele burden, assessing the relationship
between alternate allele counts (AAC), age at disease onset, sex,
ancestry, organ involvement, clinical severity, and treatments [8]. It
furthermore explored associations between gene-level alternate allele
scores (GAAS), organ involvement and disease severity.

2. Methods

This study follows the STREGA (STrengthening the REporting of
Genetic Association studies) reporting guidelines [9].

2.1. Study cohort

A total of 315 patients from the UK JSLE Cohort Study were initially
enrolled in this study [8]. The UK JSLE Cohort Study includes two
distinct cohorts: an established JSLE cohort, comprising patients diag-
nosed with JSLE from 1995 to the present day (retrospective data), and a
prospective JSLE cohort, encompassing all newly diagnosed JSLE pa-
tients (since 2006) enrolled during the ongoing study period (prospec-
tive data). For this specific study, patient data were collected up to
September 2022. All participants fulfilled the American College of
Rheumatology (ACR) 1997 classification criteria for SLE (> 4 items)
[10] and were diagnosed before their 18th birthday. We were not able to
perform a formal power analysis prior to this study, due to the absence of
studies using a comparable design in this specific disease area.
Furthermore, sample size was pre-defined accessing a large national
cohort in a rare disease area. Written patient assent/consent and/or
parental consent was obtained as appropriate. The study received
ethical approval from the National Research Ethics Service Northwest
(REC_06/Q1502/77). Research was carried out in accordance with the

declaration of Helsinki.
2.2. Data collected

Comprehensive patient data were collected and analysed in the
following areas: 1) Demographic information, encompassing age at
diagnosis, sex, self-reported ancestry, and family history of autoim-
mune/inflammatory diseases in first-grade relatives (SLE, systemic
connective tissue diseases/CTD, rheumatoid arthritis/RA, endo-
crinopathies); 2) Disease activity, assessed at each study visit using the
paediatric version of the British Isles Lupus Assessment Grade (pBILAG)-
2004 [11,12] and the Systemic Lupus Erythematosus Disease Activity
Index (SLEDAI) score, and damage at the last visit through the Systemic
Lupus International Collaborating Clinics (SLICC)/ACR standardised
damage index (SDI) [13]; 3) Prospectively collected clinical data,
including malar rash, discoid lupus, photosensitivity, oral and/or nasal
ulcers, non-erosive arthritis, serositis, nephritis, neurological, haema-
tological, and/or immunological involvement, as per the 1997 ACR
criteria for SLE; and 4) treatments. Patients were categorised in the
“intensive treatment” group if, throughout the disease course, they
received either cyclophosphamide, rituximab or belimumab, and/or two
or more conventional disease-modifying anti-rheumatic drugs
(DMARD:s), excluding hydroxychloroquine, simultaneously for >2
consecutive visits, and in the “non-intensive treatment” group, when a
maximum of one conventional DMARD, including hydroxychloroquine,
was used at a time (Table 1, Supplementary Table 1). Ancestry inference
was not performed in this study primarily because the available data
were limited to 62 genes/genomic target regions (exonic regions, exon:
intron junctions), which represent only a small fraction of the genome
and are typically under strong functional constraint. A more detailed
rationale is provided in the discussion.

Considering all patient visits, we assigned a “severity” value to each
PBILAG organ/system domain based on the highest score ever recorded:
“severe involvement” was attributed to any organ or system that
received a score of ‘A’ at any visit, “moderate involvement” was assigned
if the domain’s highest recorded score was ‘B’, “mild involvement” was
determined if the most severe score ever given was ‘C’. Lastly, “never
involved” was the designation for any organ or system that received an
‘E’ score across all visits.

2.3. Gene panel selection

Sequencing targets were selected based on a literature search (2018)
targeting: 1) genes associated with known Mendelian forms of SLE/SLE-
like disease, and 2) SLE-associated risk alleles previously identified
through Genome-wide association studies (GWAS). As a result, 62
genes/genomic regions were selected for sequencing, including exons
and exon:intron junctions, as well as previously reported SLE-associated
risk alleles, as described previously [14].

2.4. Target sequencing and variant identification

Sequence capture probes (NimbleGen/Roche) were designed to
target exonic regions and exon:intron junctions of pre-selected genes
(Supplementary Table 2). Sequencing libraries were prepared from
genomic DNA, hybridized to the probes and then sequenced with 150 bp
paired-end reads using Illumina MiSeq technology (Illumina). Demul-
tiplexing, adaptor and quality trimming (Cutadapt v1.2.1, Sickle v1.2) of
reads was performed [15,16]. Polymerase Chain Reaction (PCR) dupli-
cates were identified and excluded from the dataset using Picard [17].
Sequencing data were aligned to the human reference genome (hg38)
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Table 1
Demographic and clinical information on the study cohort.

JSLE patients included in
the alternate allele count
analysis (n = 238)

JSLE patients included
in the gene-level score
analysis (n = 289)

Age at diagnosis, years 13.0 [10.7-14.5]

(median [IQR])

12.8 [10.3-14.5]

Sex, n (%)

Female 198 (83.2) 242 (83.7)

Male 40 (16.8) 47 (16.3)
Ancestry, n (%)

European 114 (47.9) 138 (47.7)

African/Caribbean 38 (16.0) 48 (16.6)

South Asian 57 (23.9) 70 (24.2)

East Asian 9 (3.8 10 (3.5)

Other Asian 20 (8.4 23 (8.0)
Family history

autoimmune diseases, n

(%) 48 (20.2) 53 (18.3)

SLE 18 (37.5) 21 (39.6)

Systemic CTD 22 (45.8) 25 (47.2)

Endocrinopathies 19 (39.6) 21 (39.6)

RA 11 (22.9) 12 (22.6)
Highest SLEDAI score

during follow-up

(median [IQR]) 20 [17-24] 20 [17-24]
Highest numerical pBILAG

score during follow-up

(median [IQR]) 21 [13-32] 21 [13-31]
SLICC SDI at last visit

(median [IQR]) 0 [0-1] 0 [0-1]
Treatments, n (%)*

Intensive 109 (45.8) 129 (44.6)

Non-intensive 129 (54.2) 160 (55.4)

JSLE, juvenile systemic lupus erythematosus; IQR, interquartile range; CTD,
connective tissue disease; RA, rheumatoid arthritis; SLEDAI, Systemic Lupus
Erythematosus Disease Activity Index; pBILAG, paediatric British Isles Lupus
Assessment Grade 2004; SLICC SDI, SLICC/ACR Damage Index.

* “Intensive treatment”: patients, throughout the disease course, received
either cyclophosphamide, rituximab or belimumab, and/or two or more con-
ventional DMARDs, excluding hydroxychloroquine, simultaneously for >2
consecutive visits. “Non-intensive treatment”: a maximum of one conventional
DMARD, including hydroxychloroquine, was used at a time.

using bwa [18] and variants were subsequently detected with Genome
Analysis Toolkit (GATK) Software [18,19]. Variant calling was per-
formed jointly across samples using the GATK Haplotype Caller. GATK
base quality score recalibration was applied. Variants were then filtered
using the GATK Variant Filtration tool. Single nucleotide poly-
morphisms (SNPs) were removed if they met any of the following
criteria: Quality by Depth (QD) < 5.0, Quality Score (QUAL) < 30.0,
Strand Odds Ratio (SOR) > 3.0, (Fisher Strand) FS > 60.0, Mapping
Quality (MQ) < 40.0, Mapping Quality Rank Sum (MQRankSum) <
—12.5, Read Position Rank Sum (ReadPosRankSum) < —8.0. Variants
passing the filtering thresholds were annotated using SNP Effect
(SnpEff) [20] and database of SNP (dbSNP) [21]. Finally, data were
extracted from the Variant Call Format (vcf) file using the R packages
VariantAnnotation [22] and vcfR [23]. Human Leukocyte Antigen (HLA)
class I regions were excluded from this project, as the high genetic
variability within these regions undermines the accuracy of standard
variant calling methods. Genotype (GT) data were extracted and con-
verted into a matrix where genotypes were numerically encoded based
on alternate allele counts: homozygous reference (0/0) = 0, heterozy-
gous (0/1 or 1/0) = 1, and homozygous alternate (1/1) = 2. Missing
genotypes (./.) were excluded from downstream analysis.

2.5. Alternate allele counts

Genotype calls were converted to reflect the number of alternate
alleles per SNP (0, 1, or 2), and samples with missing genotype data
across any of the 4100 exonic SNPs were excluded to ensure complete-
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case analysis. This meant 238/289 (82.4 %) patients were retained for
this analysis as they had genotype information for all 4100 SNPs con-
tained in the genome fractions studied and complete -clinical
information.

Functional annotations (ANN), extracted from the INFO field of the
VCF file, were used to assign biological impact weights: MODIFIER and
LOW = 1, MODERATE = 2, and HIGH = 3. For each individual, the
alternate allele count at each SNP was multiplied by its corresponding
ANN weight, and these values were summed to produce a weighted AAC
score. The weighted AAC scores were merged with the following 21
demographic and clinical variables: age at diagnosis; severity of
constitutional, mucocutaneous, neuropsychiatric, musculoskeletal,
cardiorespiratory, gastrointestinal, ophthalmic, renal and haemato-
logical involvement (pBILAG domains); presence of malar rash, discoid
lupus, photosensitivity, oral or nasal ulcers, non-erosive arthritis,
serositis, nephritis, neurologic, haematological and immunological dis-
orders (1997 ACR classification criteria) and treatment received (“non-
intensive” versus “intensive”). As mentioned above, for each pBILAG
organ/system domain, patients were stratified into four mutually
exclusive severity categories based on the highest score ever recorded
during follow-up: “severe involvement” (maximum score = A), “mod-
erate involvement” (maximum score = B), “mild involvement”
(maximum score = C), and “never involved” (only E scores across all
visits). For the 1997 ACR classification criteria, patients were cat-
egorised as “yes” (feature ever present) or “no” (feature never present)
(Supplementary Table 1).

To identify associations between AAC and clinical phenotypes,
generalized linear models (GLMs) with a Poisson distribution were used.
Each model included ancestry, sex, and family history of autoimmune
disease as covariates. P-values from the GLMs were adjusted for multiple
testing using the Benjamini-Hochberg false discovery rate (FDR)
method. In addition, Pearson correlation analyses were performed to
evaluate relationships between AAC and continuous clinical outcomes,
including age at diagnosis, the highest SLEDAI and numeric BILAG
scores ever recorded during follow-up, and the SLICC-SDI at the latest
visit. Correlation tests were also stratified by ancestry to explore
subgroup-specific associations, with FDR correction applied across tests.
All methods can be consulted in detail and fully reproduced in the
publicly available R Markdown document https://github.com/CBFLi
vUni/jSLE_paper/blob/main/scripts/AAC_calculation_and_analysis.
Rmd.

2.6. Gene-level alternate allele scores

For each SNP and individual, a mutation burden score was calculated
by multiplying the alternate allele count by the assigned annotation
severity value (as described above). Mutation burden scores were then
aggregated at the gene level by summing scores across all variants
within a gene for each individual. This resulted in a matrix of 62 Gene-
level alternate alelle scores (GAAS) for all patients, where rows corre-
sponded to individuals and columns to genes. Note that SNPs present
across all patients were 3764 of the sequenced 4100 SNPs (91.8 %), and
the total number of patients included was 289 (those with complete
clinical data). To visualize sample stratification, principal component
analysis (PCA) was performed on the transposed gene-level score matrix
using the prcomp() function. The first two principal components (PC1
and PC2) were visualized using ggplot2, with patient samples coloured
by ancestry. To identify gene-level associations with clinical features,
generalized linear models (GLMs) with a Poisson distribution were fitted
for each gene against a panel of 21 curated clinical variables, corre-
sponding to the same set of demographic and clinical features used in the
AAC analyses. Each model included additional covariates to adjust for
ancestry, sex, and family history of autoimmune diseases. Genes previ-
ously identified as pseudogenes, antisense transcripts, or non-coding
RNAs (n = 26) were excluded from testing. Statistical significance of
the clinical predictor was assessed using chi-square tests from the model
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ANOVA. P-values were corrected for multiple testing using the Benja-
mini and Hochberg method. Models with adjusted p-values <0.05 were
considered significant. All model estimates, standard errors, and p-
values were exported into structured Excel spreadsheets for review and
downstream interpretation. For full transparency and reproducibility,
the results are provided in Supplementary Table 3 and can be repro-
duced following the publicly available script https://github.com/CBFLi
vUni/jSLE_paper/blob/main/scripts/GAAS_caculation_and_analysis.
Rmd.

2.7. Comparison with alternate allele counts generated from previously
published SLE-associated SNPs

To compare findings from this study with previously reported genetic
variants, a curated list of 330 genome-wide significant lupus-
predisposing SNPs was extracted from a recent comprehensive litera-
ture review [24]. These SNPs were then cross-referenced with those
sequenced in our dataset. The intersection of common SNPs, named
“subset AAC”, was used to undertake the same AAC methodology
described above. This subset contained only 15 overlapped SNPs (Sup-
plementary Table 4). Notably, many of the previously reported SNPs: 1)
mapped to genomic regions (e.g. intronic or intergenic) that were not
covered by the sequencing panel used in this study, 2) had been reported
exclusively in East Asian cohorts and were therefore excluded in this
study due to the low representation of East Asian patients in the UK JSLE
cohort, and 3) were identified after 2018, when the panel for this study
was designed. The correlation between the original AAC and the subset
AAC was evaluated, along with the relationship between the subset AAC
and diagnosis age across ethnic groups. Due to the limited number of
overlapping SNPs between this dataset and the previously reported
SNPs, gene-level analyses for the subset AAC could not be performed.

GAAS only

30

204

Number of patients

0 5 10 15

Diagnosis Age
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3. Results
3.1. Cohort characteristics

Of the 315 jSLE patients sequenced, 289 (91.7 %) were included in
the GAAS analysis by excluding SNPs lacking sequencing data across all
patients as well as patients with incomplete demographic/clinical in-
formation. For the AAC analysis, only patients with complete
sequencing information for all 4100 SNPs contained in the genome
portions studied were included, resulting in 238/289 (82.4 %) patients
being analysed (Fig. 1A).

Demographic and clinical characteristics of the two sub-cohorts were
comparable (Table 1; Supplementary Table 1). The subsequent
description of demographics focuses on the larger cohort subjected to
the GAAS analysis.

The median age at diagnosis in this cohort was 12.8 years (inter-
quartile range/IQR 10.3-14.5) (Fig. 1B), and most patients were female
(83.7 %). Patients of European ancestry represented 47.7 % of the study
population; 24.2 % were South Asian, 16.6 % African/Caribbean, 3.5 %
East Asian, and 8.0 % were of “other” Asian ancestry (Fig. 1B). 18 % of
participants had a family history of autoimmune/inflammatory diseases
in first-degree relatives, including SLE (39.6 %), systemic CTD (47.2 %),
endocrinopathies (39.6 %) and RA (22.6 %). Notably, damage measured
by SLICC-SDI was low across the cohort, with a median score of 0 (IQR
0-1). Almost half of the participants (44.6 %) received “intensive”
treatment throughout their disease course (Table 1).

3.2. AAC inversely correlate with age at diagnosis

Based on previous studies suggesting that jSLE patients with early
disease onset experience a higher genetic burden [25], we investigated
the possible relationship between AAC and age at diagnosis. A weak
inverse correlation between age at diagnosis and AAC was noted (R =
-0.15, p = 0.012, Fig. 2A). Correlation analyses within each ancestral
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Fig. 1. Demographic characteristics of the jSLE patient sub-cohorts. A) Venn diagram displaying the overlap of study participants between the gene-level alternate
allele scores (GAAS) (blue circle) and alternate allele counts (AAC) (pink circle) analysis groups. Out of the 289 patients included in the GAAS analysis, (238, 82.4 %)
were included in both GAAS and AAC analyses, and no patients were included exclusively in the AAC analysis. B) Demographic characteristics of jSLE patients
included in the GAAS. The left panel illustrates the age distribution in years at the time of diagnosis; the dotted line indicates the median age at diagnosis. The right
panel displays the ancestral composition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Alternate allele counts (AAC) inversely correlate with age at disease onset. A) In a multi-ancestral jSLE cohort, age at diagnosis (in years) and AAC are
inversely correlated (R = -0.15, p = 0.012). Data points represent the number of alternate alleles in individual jSLE patients; a trend line indicates the direction and
strength of the relationship. The grey shaded area indicates the 95 % confidence interval. B) Analysis of the relationship between AAC and age at disease onset across
the five different ancestral groups, reveals a moderate inverse correlation between age at onset and AAC among South Asian jSLE patients (R = -0.34, p = 0.047).
Each data point represents an individual sample, colour-coded by ancestry: African/Caribbean (red), European (gold), East Asian (green), South Asian (blue), and
“Other” Asian (purple). Trend lines indicate the direction and strength of the relationships. The grey shaded areas represent the 95 % confidence intervals. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

group revealed a moderate inverse correlation between age at diagnosis 3.4. AAC associate with organ involvement but not with disease activity
and AAC among South Asian participants (R = -0.34, p = 0.047) but no or damage
significant correlation was found within the remaining ancestral groups

(Fig. 2B). GLM analyses (Supplementary Tables 5 and 6) identified relation-
ships between AAC and severity of pBILAG-2004-defined constitutional

3.3. AAC are higher in patients of African/Caribbean ancestry (p < 0.001), renal (p = 0.0016), haematological (p = 0.0016) and
neuropsychiatric (p = 0.03) involvement, and the presence of non-

When comparing AAC across ancestries, higher scores were recorded erosive arthritis (p = 0.004) and malar rash (p = 0.03). We did not

in patients of African/Caribbean ancestry compared to patients of other observe correlations between AAC and highest SLEDAI scores (R =
ancestral groups (p < 0.001) (Fig. 3A). No significant differences were 0.044, p = 0.5; Supplementary Fig. 1A), highest pBILAG scores (R =
detected between male and female participants across ancestral groups. 0.041, p = 0.53; Supplementary Fig. 1B) or SLICC-SDI at last visit (R =

PCA of GAAS across all 62 genes/loci included in this study showed that 0.032, p = 0.62; Supplementary Fig. 1C).
patients of African/Caribbean ancestry cluster separately from other
ancestries (Fig. 3B).
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Fig. 3. Alternate allele counts (AAC) reveal differences among ancestries. A) Distribution of AAC stratified by ancestry and sex, showing higher AAC in patients of
African/Caribbean ancestry, with no differences observed between male and female participants across ancestral groups. Sex distribution across ancestry groups:
African/Caribbean females 33 (87 %), males 5 (13 %); European females 101 (89 %), males 13 (11 %); East Asian females 5 (56 %), males 4 (44 %); South Asian
females 43 (75 %), males 14 (25 %); "other" Asian background females 16 (80 %), males 4 (20 %). Adjusted p-values are displayed (***p < 0.001). Box plots display
interquartile ranges (IQRs) and median values. Whiskers extend to the minimum and maximum values within 1.5 times the IQR, with data points outside this range
plotted individually as outliers. Ancestral groups are labelled along the x-axis: African/Caribbean, European, East Asian, South Asian and “Other” Asian. Sexes are
separated by colour as indicated. B) Principal Component Analysis (PCA) of GAAS highlighting the distribution across different ancestral groups. Each dot signifies an
individual data sample, with colour coding ancestry African/Caribbean, European, South Asian, and other Asian background. The first principal component (PC1)
accounts for 11.74 % of the total variance, while the second principal component (PC2) captures 9.42 %. The points of African/Caribbean participants cluster largely
separated from the other ancestries. The distinct clustering of African/Caribbean participants is encircled in red. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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3.5. GAAS associate with severity of organ involvement

We found associations between 18 clinical variables and 13 genes
(Supplementary Tables 3, 7-9, Fig. 4). Neuropsychiatric severity asso-
ciated with GAAS of the genes Acid Phosphatase 5 (ACP5) (p < 0.001),
Rat Sarcoma Guanyl Releasing Protein 3 (RASGRP3) (p = 0.04), Ribonu-
clease H2 subunit A (RNASEH2 A) (p < 0.001) and Tyrosine Kinase 2
(TYK2) (p < 0.001) (Fig. 5A). Renal severity associated with GAAS of
ACP5 (p < 0.001), Integrin Subunit Alpha M ITGAM) (p < 0.001), Lck/Yes
Novel Tyrosine Kinase (LYN) (p < 0.001), and Tumor Necrosis Factor
Alpha-Induced Protein 3 (TNFAIP3) (p = 0.007) (Fig. 5B). Haematological
involvement severity associated with GAAS of ACP5 (p = 0.003),
Deoxyribonuclease 1 (DNASE1) (p = 0.003), RNASEH2 A (p < 0.001),
and Ubiquitin Conjugating Enzyme E2 L3 (UBE2L3) (p = 0.03) (Supple-
mentary Fig. 2A). Cardiorespiratory severity associated with GAAS of
Interferon Regulatory Factor 8 (IRF8) (p = 0.02), ITGAM (p < 0.001) and
UBE2L3 (p = 0.04) (Supplementary Fig. 2B), while gastrointestinal
severity associated with ITGAM (p < 0.001) and PX Domain Containing
Serine/Threonine Kinase Like (PXK) (p < 0.001) (Supplementary Fig. 2C).

3.6. AAC and GAAS associate with treatment intensity

Overall, patients in the “intensive” treatment group had significantly
higher AAC compared to participants receiving “non-intensive” treat-
ment (p < 0.001, Fig. 6A). Participants from all ancestral groups, except
European patients, receiving “intensive” treatment exhibited higher
AAC compared to those receiving “non-intensive” treatment, although
differences were only significant for African/Caribbean participants (p
= 0.001) (Fig. 6B), consistent with their overall higher disease burden.
Additionally, GAAS of ITGAM (p < 0.001), LYN (p < 0.001), PXK (p <
0.001) and RNASEH2A (p < 0.001) associated with increased treatment
intensity (Fig. 6C).

3.7. AAC correlate with the subset AAC generated from previously
published SNPs

A strong correlation was observed between the originally calculated
AACs and the subset AACs, which were calculated using the 15
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Fig. 4. Associations between pBILAG organ domain severity and gene-level
alternate allele scores (GAAS), tested using generalized linear models. P-
values were adjusted for multiple testing using the Benjamini-Hochberg
method. Heatmap showing adjusted p-values of associations between clinical
severity and GAAS, including the 12 genes displaying correlations between
GAAS and pBILAG domain severity. Each cell represents a specific gene (x-axis)
and pBILAG organ domain severity (y-axis), with colour intensity indicating the
strength of the association. Darker red shades denote lower p-values, while blue
shades indicate non-significant associations. The adjusted p-value thresholds
are categorised as follows: 0.0001 (darkest red), 0.001, 0.01, 0.05 (lightest red)
and > 0.05 (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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previously reported SLE-associated SNPs that were also captured by our
sequencing panel (R = 0.47, p < 0.001; Supplementary Fig. 3A, Sup-
plementary Table 4). However, when including previously reported
SNPs only, an inverse correlation between AAC and age at diagnosis was
not observed (R = -0.08, p = 0.964; Supplementary Fig. 3B). When
stratifying by ancestry, European and African/Caribbean ancestral
groups followed similar trends when comparing the two AACs, though
significance was lost (R = 0.05,p = 1 and R =-0.08, p = 1, respectively).
In East Asians, a moderate but non-significant inverse correlation
emerged (R = -0.48, p = 0.965), while no correlation was observed in
South Asian patients (R = -0.05, p = 1) or those of “other” Asian ancestry
(R =-0.07, p = 1) (Supplementary Fig. 3C).

4. Discussion

In adult-onset SLE, associations between genetic variability, age at
onset, ancestry, and disease severity have been established [6,26,27].
Preliminary reports suggest that, also in jSLE, increased genetic impact
associates with early disease onset and high disease activity, especially
in patients of African/Caribbean ancestry [6,25]. This study represents
the most comprehensive analysis currently available in the age group,
linking genetic variability across 62 SLE-associated genes/genomic re-
gions with demographic and clinical variables, as well as treatment.
Although all patients were recruited from study centers within a single
nation, the cohort was multi-ancestral, with an expected “SLE-typical”
over-representation of “non-European” ancestry, when compared to
national UK census data [7,14] which allowed investigation of genetic
disparities across ancestral groups.

The identified inverse correlation between AAC and age at diagnosis
is in agreement with previous smaller studies, adding weight to the
hypothesis that genetic burden contributes to early disease onset in jSLE
[6,25,26]. In this study, the inverse correlation between AAC and age at
onset was mainly driven by participants of South Asian descent. South
Asian jSLE patients represented 24.2 % of the study population, while
other non-European ancestries were less represented. Therefore, the
relatively small sample size among these ancestries likely limited the
statistical power to detect similar correlations. For example, a trend was
observed in the African/Caribbean group, though it did not reach
significance.

While Webb et al. reported an inverse correlation between genetic
impact, age at disease-onset and severity in jSLE patients of African
descent in the United States of America [6], we failed to identify asso-
ciations between AAC and age at onset in the UK’s African/Caribbean
sample population. Differences may be explained by the more extensive
sequencing panel approach chosen here (4100 vs. 19 SNPs) and the
relatively small sample sizes across both cohorts (238 vs. 111 jSLE pa-
tients). Nevertheless, this study confirmed increased overall AAC in jSLE
patients of African/Caribbean ancestry (compared to other ancestral
groups) which may contribute to alower threshold for SLE development,
an overall earlier age of onset, more severe disease and less favourable
outcomes [28]. An association between ancestry, disease severity and
the need for intensive treatment, particularly among African/Caribbean
patients, has been previously established in cohorts consisting of mostly
adult-onset SLE patients [28,29]. However, findings from this study not
only confirm this pattern in a paediatric multi-ancestral cohort, but they
also link ancestry and phenotype-related differences with increased
overall genetic variability around SLE-related genes/loci. Although ex-
pected to some extent based on previous studies reporting SNP-
associations [30,31], here reported associations between overall ge-
netic variability, organ involvement (especially renal involvement and
ACP5, ITGAM, LYN and TNFAIP3) and treatment intensity underscore
the importance of understanding genetic factors and their role in
shaping organ-specific disease features for the development of individ-
ualised therapeutic approaches. Lastly, although SLE patients of Asian
ancestry have previously been suggested to experience an increased
genetic risk in adult-onset SLE cohorts [32], this study, when compared
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to other ancestries, did not detect higher AAC in children of Asian
descent. This may be due to the relatively small sample size, differences
in the sequencing panels used across studies, and/or possible differences
between juvenile- and adult-onset SLE [33].

In addition to age at onset, AAC associated with the presence of
certain clinical features. High AAC associated with severity of renal
involvement. This is of particular interest, because lupus nephritis (LN)
centrally impacts on overall disease severity, associates with the use of
“intensive” treatments, and contributes to SLE-associated mortality
[26,34]. Notably, a recent GWAS also reported a correlation between the
development of LN and the number of SLE risk variants [26]. Moreover,
a large Canadian study including both juvenile- and adult-onset SLE
patients (1237 participants/572 jSLE) found associations between SLE
susceptibility loci and the risk of developing LN [35].

Although previous studies in predominantly adult-onset SLE cohorts

suggested increased damage accrual in patients with high genetic risk
scores [27], this study did not detect correlations between AAC and
SLICC-SDI scores. This may be the result of overall low SLICC-SDI scores
across the study cohort (median: 0, IQR: 0-1), which could be attributed
to SLICC-SDI having been developed and validated for adult SLE pa-
tients, emphasizing aspects of potentially lower relevance to children
(including malignancy and diabetes mellitus) [36].

Key goals of genetic profiling across autoimmune/inflammatory
diseases are the prediction of organ involvement, disease outcomes and/
or treatment responses [33]. Among various associations identified, we
found organ domains uniquely associated to GAAS of specific genes,
such as TNFAIP3 with renal severity and TYK2 with neuropsychiatric
severity. Additionally, in some cases, shared associations were observed;
for example, GAAS of ACP5 were associated with neuropsychiatric,
renal and haematological severity.
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Several genes associated with specific organ involvement patterns
are of particular interest as they have previously been linked with
genetically determined SLE-like diseases and/or are targets of already
available molecular interventions. For instance, recessive mutations in
ACP5, encoding for the tartrate-resistant acid phosphatase (TRAP),
associate with spondyloenchondrodysplasia (SPENCD). In line with
organ domains associated with GAAS in this study, SPENCD is charac-
terised by increased IFN expression, central nervous system involve-
ment, haematological manifestations, vasculitis and renal involvement
[37]. Furthermore, genetic variability affecting RNASEH2A associated
with neurological and haematological involvement and severity. This
gene has previously been linked with the neurodegenerative disease
Aicardi-Goutieres syndrome (AGS), another interferonopathy charac-
terised by early-onset encephalopathy and lupus-like features [38].
Notably, both SPENCD and AGS patients show (at least limited)
improvement in response to JAK/STAT inhibitors that are used to con-
trol IFN expression [39], suggesting that genetic profiling may not only
predict organ involvement but also inform future treatment choices.
Additionally, the tyrosine kinase encoding TYK2 gene is another IFN
signalling related gene associated with neuropsychiatric severity and the
occurrence of discoid lupus. The pivotal role of TYK2 in the JAK/STAT
pathway and IFN expression prompted the development of TYK2

modulators (deucravacitinib, brepocitinib). While approval for the
treatment of SLE is pending, deucravacitinib was effective and safe in
adult SLE patients [40]. The tyrosine kinase encoding LYN gene was
associated with disease severity affecting the renal pBILAG organ
domain. The Lyn kinase plays a key role in regulating B lymphocyte
signalling; mice carrying gain-of-function variants in Lyn exhibit circu-
lating autoantibodies and severe autoimmune glomerulonephritis [41].
A genome-wide association study in IgA nephropathy identified LYN as a
risk locus [42], and a recent study in severe COVID-19 found LYN to be
associated with progression of kidney damage [43]. Notably, the Lyn/
Ber-Abl tyrosine kinase inhibitor bafetinib was efficacious and safe in
acute lymphocytic leukaemia, refractory/relapsing B cell lymphocytic
leukaemia and prostate cancer [44]. Finally, the observed association
between TNFAIP3 GAAS and renal severity is particularly interesting
because heterozygous loss-of-function mutations in TNFAIP3 have
recently been linked with haploinsufficiency A20 [45]. Patients affected
by this autoinflammatory condition can exhibit SLE-like phenotypes
[14,46], and some can develop LN in the presence of autoantibodies and
a pronounced type I IFN signature [46]. Findings from this and another
recent study [47] therefore suggest that variants in the TNFAIP3 may
affect renal involvement and outcomes in SLE. Taken together, associ-
ations between GAAS and organ involvement/severity may inform
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future personalised jSLE management, including genetic risk assessment
and patient stratification towards individualised treatment and care.
Such an approach could, for example, entail increased monitoring fre-
quency for renal function, proteinuria and blood pressure elevation or
the choice of more aggressive immunosuppressive treatment in jSLE
patients with elevated GAAS in ACP5, ITGAM, LYN, or TNFAIP3. Indeed,
similar approaches have already been introduced in cancer medicine
[48].

This is the first study to show that high genetic risk scores (AAC) in
JSLE patients associate with the need for “intensive” treatment. While
only reaching statistical significance among African/Caribbean jSLE
patients, this association remained across all ancestral groups, except
European participants. While the reason for this remains unclear and
requires further investigation, genetic risk has been reported “lower”
among European patients as compared to other ancestries [5,32], which
also associates with “milder” disease courses and better outcomes [49].

Differences between allele counts and age at disease onset observed
between AAC, measuring overall genetic variation, and the subset AAC
generated from previously reported SLE-associated SNPs, highlight the
impact of (ancestry- and potentially age-related biased) SNP selection in
genetic studies. A large proportion of previously published SLE-
associated SNPs, more precisely 148/330 (44.8 %), were exclusively
identified in East Asian populations [24]. Previous studies overall had
limited representation of, e.g., South Asian or African/Caribbean jSLE
patients, notably, two of the three most represented ancestries in the
dataset presented here (respectively 23.9/24.2 % and 16/16.6 % of the
cohort). Analyses restricted to a subset of previously published SLE-
associated SNPs may therefore have resulted in a loss of signal, partic-
ularly in underrepresented populations (such as South Asian patients).
This underscores the importance of inclusive and appropriately matched
genomic datasets, as limiting analyses to previously reported variants
may skew associations, particularly in multi-ancestral cohorts.

A key strength of this study is its focus on genetic variability across
SLE-associated genes and regions rather than limiting to specific previ-
ously identified risk alleles (usually from GWAS). While GWAS have
been instrumental in identifying individual SNPs associated with SLE
risk, or protection from disease or complications, the approach taken in
this study provides a broader and, potentially, less biased assessment of
genetic burden by capturing the combined effect of multiple alternate
alleles. This perspective may offer insights into disease heterogeneity
and severity, particularly in multi-ancestral populations, and could
complement existing analytic approaches by providing an alternative or
additional measure of variability and its impact on disease expression
and/or phenotype. This is reflected in the design of the sequencing
panel, which was focused on exons, exon—-intron junctions, and regions
around several previously reported risk alleles [14]. Consequently, a
large proportion of sequences analysed here are located in coding or
nearby regulatory regions, rather than in intergenic areas where many
GWAS hits are found. This choice aligned with our aim to assess gene-
level variation rather than replicate known SNP-level associations.

While this study highlights the potential of genetic assessment in
guiding and personalising clinical management for jSLE patients, several
limitations require to be acknowledged. Despite representing one of the
largest jSLE cohorts available, the overall sample size remains relatively
small, especially when compared to studies in adult-onset SLE [25,27].
This limitation is particularly evident in subgroup analyses comparing
sex across ancestries, where the number of male patients, especially
those of African or East Asian descent, was low. Additionally, although
the multi-ancestral composition of the cohort supports broader rele-
vance, variability in genetic backgrounds, healthcare systems, drug
availability and socio-economic factors may influence the generaliz-
ability of findings to other populations. Furthermore, the selection of
genes/loci was based on a literature review conducted in 2018 [14].
Consequently, SLE-associated genes identified more recently, such as
SATI1, P2RY8 and DOCK11 [50-52], were not included. Moreover, the
APOL1 gene, which has been associated with severe renal involvement
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and damage [53-55], as well as atherosclerosis [56] in adult SLE pa-
tients (particularly those of African American descent), was not included
in this analysis. Another potential limitation may be related to the use of
self-reported ancestry data. While this approach may introduce some
degree of misclassification, it remains widely accepted when compre-
hensive genomic data are not available, as it has been shown to have
good concordance with genetically inferred ancestry [57]. The panel
used in this study included only 62 exonic and exon-intron regions, with
a strong focus on immune-related genes associated with SLE. These re-
gions are typically under strong functional constraint and, as such, are
unlikely to contain ancestry-informative markers (AIMs), which are
more often located in neutral, non-functional regions [58]. Furthermore,
the exon panel in question comprises genes associated with SLE, many of
which are involved in immune function and have been shaped by
population-specific selective pressures. For example, IRF5 poly-
morphisms are associated with IFN pathway activation and show
varying allele frequencies across populations, likely due to historical
pathogen-driven selection [59]. Similarly, TYK2 variants have been
identified as protective against SLE in European populations but are rare
or absent in indigenous populations, suggesting that these alleles were
introduced through European admixture and may have been subject to
negative selection in populations with high exposure to infectious dis-
eases [60]. This indicates that the distribution of these alleles may be
influenced more by selection pressures than by neutral drift. Using SNPs
chosen for disease association—especially in immune-related gen-
es—introduces the risk of confounding disease susceptibility with
ancestry. Effective ancestry inference requires either genome-wide data
or panels of AIMs selected specifically for their ability to capture pop-
ulation divergence through neutral evolution (for example through
microhaplotypes, clusters of closely linked SNPs [61], which were not
the focus of this study). For these reasons, ancestry analysis was not
pursued with this exon-limited, disease-biased gene set. Lastly, studies
linking individual or the combination of variants with gene function are
necessary, for example, to inform future treatment choices.

In conclusion, this study underscores the important role of genetic
variability in jSLE, demonstrating its key contribution to early disease
expression - particularly in jSLE patients of South Asian ancestry - as well
as organ involvement, disease severity and the need for more intensive
treatment. By capturing a broader spectrum of genetic variability rather
than focusing on previously reported SLE-associated risk alleles, the
approach taken in this study may provide new insights into how cu-
mulative genetic impact can influence disease heterogeneity. Prospec-
tive studies in larger, unrelated multi-ancestral cohorts are required to
validate these findings and further assess the need for more aggressive
treatments in patients exhibiting high GAAS in genes associated with
specific manifestations.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.clim.2025.110540.
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