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1. Introduction and main results

In a paper on extensions of the Colorful Helly Theorem, Martínez, Roldan and Ru
bin [7] ask the following: Suppose two finite families A and B of convex sets in R3 have 
the property that A ∩ B �= ∅ whenever A ∈ A and B ∈ B. Is it true then that there is 
a line intersecting a fixed positive fraction of the sets in A or in B? The best we know 
is that it is true in some special cases. For instance, Bárány [2] cofirmed that when all 
sets in A and B are cylinders, or if all sets have a bounded aspect ratio, then it is true. 
In general, however, this question is wide open.

A different special case of this question, namely the case of vertical polygons, was 
raised independently by Andreas Holmsen and Géza Tóth (personal communication). A 
vertical polygon in R3 is a convex polygon that lies in a plane orthogonal to the xy
plane. Is there a real number γ > 0 such that, whenever both A and B consist of vertical 
polygons, there is a line intersecting a γ-fraction of the sets in A or a γ-fraction of those 
in B? One motivation for studying this question is that the aspect ratio of a vertical 
polygon is ifinite, so it is as far as possible from the case of convex bodies with bounded 
aspect ratio; perhaps a solution in this case could shed light on the general problem. 
Even this special case, however, remains open.

Our main result, Theorem 1 below, states there is a line intersecting all sets of A or 
of B, provided the vertical polygons in A lie in parallel planes and the vertical polygons 
in B also lie in parallel planes. We also prove, under the same condition, that we can 
restrict the location of the piercing line: Either there is a line in the plane of some A ∈ A
intersecting 1

6 |B| sets in B, or there is a line in the plane of some B ∈ B intersecting 
1
6 |A| sets in A. This is Theorem 2, which is stated and proved in Section 3.

We conclude the paper in Section 4 with a partial extension of our results to higher 
dimensions.

2. Theorem 1 and its proof

We start with two families, A and B, consisting of vertical polygons such that all 
the polygons in A are in parallel planes, all the polygons in B are in parallel planes, 
and A ∩ B �= ∅ whenever A ∈ A and B ∈ B. For each pair (A,B), take an arbitrary 
point P (A,B) in A ∩ B. If we replace A by conv{P (A,B) : B ∈ B} and replace B
by conv{P (A,B) : A ∈ A}, this new collection of vertical polygons is still parallel 
and pairwise intersecting. If one of these new families has a line transversal, then the 
corresponding original family does, as well. Moreover, the question is invariant under 
non-degenerate a˙ine transformations, so we can assume that the planes containing sets 
in A are parallel with the yz-plane, and the planes containing sets in B are parallel with 
the xz-plane.

Based on these reductions, we formulate our problem in a more convenient notation. 
Let x ∈ Rn, y ∈ Rm and Z ∈ Rn×m, and for each i ∈ [n], j ∈ [m], let Pij := (xi, yj , zij) ∈
R3. We form convex sets Ai := conv({Pij : j ∈ [m]}) and Bj := conv({Pij : i ∈ [n]}). 
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Fig. 1. An illustration of the n = m = 3 case. The red sets form the family A and the blue sets form the 
family B. (For interpretation of the colors in the figures, the reader is referred to the web version of this 
article.)

By construction, every Ai is contained in a plane parallel to the yz-plane, every Bj is 
contained in a plane parallel to the xz-plane, and every Ai intersects every Bj . (In this 
setup, the point Pij corresponds to the point P (Ai, Bj) in the previous paragraph.) This 
setup is illustrated in Fig. 1.

Theorem 1. With the setup of the previous paragraph, either
◦ there is a real number x0 ∈ R and a line �x in the plane (x0, · , · ) intersecting all 

sets Bj, or
◦ there is a real number y0 ∈ R and a line �y in the plane ( · , y0, · ) intersecting all 

sets Ai.

Because the problem is a˙ine-invariant, this proves the theorem for any two collections 
of vertical polygons that live in parallel planes.

Proof. We start by writing up the intended conclusions as a system of linear inequalities 
which has a solution if and only if a piercing line exists.

Let us do this for the first possibility. Let the line �x be parametrized as {(x0, y, ay +
z0) : y ∈ R}. The claim that �x pierces Bj is equivalent to the existence of barycentric 
coordinates (βij : i ∈ [n]) such that 

∑
i βijPij = (x0, yj , ayj + z0).

Our system of linear inequalities specifying a piercing line (x0, y, ay + z0) is then
∑
i 

βijxi = x0 ∀j ∈ [m], (x-piercing)

∑
i 

βijzij = ayj + z0 ∀j ∈ [m], (z-piercing)

∑
i 

βij = 1 ∀j ∈ [m], (barycentric)

βij ≥ 0 ∀i ∈ [n], j ∈ [m]. (nonnegative)

We now apply Farkas’ Lemma to write up a system that is unsolvable in dual variables 
U ∈ R3×m if and only if the above system is solvable in (β, a, x0, z0).
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u1jxi + u2jzij + u3j ≥ 0 ∀i ∈ [n], j ∈ [m], (β)∑
j

u2jyj = 0, (a)

∑
j

u1j = 0, (x0)

∑
j

u2j = 0, (z0)

∑
j

u3j < 0. (infeasible)

Below we describe the correspondence between the parts of the two systems of in
equalities. The real vectors u1j , u2j , u3j correspond to equalities (x-piercing), (z-piercing), 
(barycentric), respectively. The n×m inequalities of (β) correspond to the n×m non
negative variables of β. The equalities (a), (x0), and (z0) correspond to the real variables 
a, x0, z0, respectively.

Our next step is to combine the above dual system with the analogous system written 
up for the �y line. The combined system has x, y, Z, U, V as variables, and is bilinear, 
non-semidefinite. This is in contrast with its two constituents that are linear when x, y, Z
are treated as parameters.

The complete system we get is:

∃x, y ∈ Rn, ∃Z ∈ Rn×m, ∃U ∈ R3×m, V ∈ R3×n:

u1jxi + u2jzij + u3j ≥ 0 ∀i ∈ [n], j ∈ [m], (x:β)

v1iyj + v2izij + v3i ≥ 0 ∀i ∈ [n], j ∈ [m], (y:β)∑
j

u2jyj = 0, (x:a)

∑
i 

v2ixi = 0, (y:a)

∑
j

u1j =
∑
i 

v1i =
∑
j

u2j =
∑
i 

v2i = 0, (x:x0, y:x0, x:z0, y:z0)

∑
j

u3j < 0, (x:infeasible)

∑
i 

v3i < 0. (y:infeasible)

Having the combined system of inequalities at hand, we now finish the proof. We 
demonstrate that this system is unsolvable rather directly, by writing up weighted sums 
of our inequalities until a contradiction is reached. This implies that one of the original 
systems must be solvable; in other words, either A or B has a piercing line.
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Remark. The argument could be formulated in the framework of Farkas’ lemma: if we 
treat U, V as parameters and x, y, Z as variables, we can give a closed-form solution to 
the dual of the resulting linear system of inequalities. In an interesting contrast with this, 
if we treat x, y, Z as parameters and U, V as variables, the dual formulation is equivalent 
to presenting a piercing line, and we are not aware of any simple formula for a dual 
solution.

Let us introduce the three variables

x′
i := v2ixi, y′j := u2jyj , z′ij := u2jv2izij

and the four sets

I+ = {i : v2i ≥ 0} J+ = {j : u2j ≥ 0}
I− = {i : v2i < 0} J− = {j : u2j < 0}. 

By multiplying (x:β) by v2i we obtain

∀i ∈ I+, ∀j : u1jx
′
i + z′ij + v2iu3j ≥ 0, (1)

∀i ∈ I−, ∀j : u1jx
′
i + z′ij + v2iu3j ≤ 0. (2)

Similarly, by multiplying (y:β) by u2j we obtain

∀j ∈ J+, ∀i : v1iy
′
j + z′ij + u2jv3i ≥ 0, (3)

∀j ∈ J−, ∀i : v1iy
′
j + z′ij + u2jv3i ≤ 0. (4)

By comparing (1) and (4), we obtain

∀i ∈ I+, ∀j ∈ J− : u1jx
′
i − v1iy

′
j + v2iu3j − u2jv3i ≥ 0. (5)

Similarly, from (2) and (3), we obtain

∀i ∈ I−, ∀j ∈ J+ : −u1jx
′
i + v1iy

′
j − v2iu3j + u2jv3i ≥ 0. (6)

We now sum the last two inequalities over each of their ranges and add them together; 
this will give us a contradiction. To find it, we look separately at each of the four parts 
of this sum, one for each summand in the inequalities (5) and (6).

The first part is
∑
i∈I+

∑
j∈J−

u1jx
′
i −

∑
i∈I−

∑
j∈J+

u1jx
′
i,

which we deal with by introducing the shorthand
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u+
1 =

∑
j∈J+ u1j x+ =

∑
j∈J+ x′

j

u−
1 =

∑
j∈J− u1j x− =

∑
j∈J− x′

j . 

From (x0), we have u+
1 = −u−

1 , and from (y:a), we have x+ = −x−. Thus, the first part 
of the sum is u−

1 x
+
1 − u+

1 x
−
1 = u−

1 x
+
1 − u−

1 x
+
1 = 0.

The second part of the sum also vanishes; the proof is the same, using the variables

v+
1 =

∑
i∈I+ v1i y+ =

∑
j∈J+ y′j

v−1 =
∑

i∈I− v1i y− =
∑

j∈J− y′j . 

To deal with the third part of the sum, we introduce

v+
2 =

∑
i∈I+ v2i u+

3 =
∑

j∈J+ u3j

v−2 =
∑

i∈I− v2i u−
3 =

∑
j∈J− u3j ; 

thus v+
2 + v−2 = 0 and u+

3 + u−
3 = 0. The third part of the sum is v+

2 u−
3 − v−2 u+

3 =
v+
2 u−

3 + v+
2 u+

3 , which is negative by (x:infeasible), unless v+
2 = 0. If v+

2 = 0, then v2i = 0
for all i, in which case the sum of (y:β) over all i is 

∑
i v3i = 0, which contradicts 

(y:infeasible).
In a similar way, we can obtain that the fourth part of the sum is also negative. But 

this contradicts the fact that the sum of the four parts should be nonnegative; therefore 
the system is unsolvable. �
2.1. Comments on the proof

In this section, we present some remarks on the peculiarity of the above proof: It is 
a non-constructive existence proof, which proceeds by using linear programming duality 
twice.

To highlight the unusual structure of this proof, we now abstract away the concrete 
details. In what follows, a corresponds to a cofiguration of convex sets (A,B), while b
roughly corresponds to the piercing line whose existence is stated in Theorem 1. We will 
clarify the exact semantics of b after the proof outline.

Rather than constructing a b for every a, its existence is non-constructively proven 
in the following way: Let c be a potential witness to the fact that b does not exist for a 
given a. For a given c, we construct a witness d to the fact that c is not in fact a witness 
for any given a. To elaborate:
◦ We would like to prove that ∀a : ∃b : S1(a, b). (a and b are real vectors; S1 is a 

bilinear system of inequalities.)
◦ We treat a as a parameter and b as a variable, and apply Farkas’ lemma to get 

equivalent statement ∀a : ¬∃c : S2(a, c).
◦ We switch quantfiers: ∀c : ∀a : ¬S2(a, c).
◦ We now treat c as a parameter and a as a variable, and apply Farkas’ lemma again: 
∀c : ∃d : S3(c, d).
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◦ The above steps were all equivalences. Hence ∀a : ∃b : S1(a, b) if and only if ∀c : ∃d :
S3(c, d).

◦ We prove ∀c : ∃d : S3(c, d) by explicitly constructing a witness d for any c.
The correspondence between the above scheme and the actual notation in the proof of 
Theorem 1 is as follows:
◦ a corresponds to our cofiguration of sets (A,B), parametrized by (x, y, Z).
◦ b corresponds to the pair of lines (�x, �y). Its exact parametrization appears in 

the proof only implicitly, but it can be described by (x0, a, z0, β) in the x direction, 
(y0, a

′, z′0, β
′) in the y direction, with an extra slack variable s whose sign determines 

which of the two directions is supposed to be piercing.
◦ S1(a, b) is the bilinear system of inequalities that states that b pierces a.
◦ c is the potential witness of b’s non-existence, parametrized by (U, V ).
◦ S2(a, c) is the dual system stating that c is a dual witness for a, disproving the 

existence of a piercing line b for the given a.
◦ d is a weighting on the inequalities of the dual system.
◦ S3(c, d) states that the d-weighted sum of the inequalities of the dual system S2(a, c)

leads to a contradiction, which proves that c cannot be a dual witness for any a.
We have not succeeded in streamlining this seemingly roundabout proof structure, and 

we now believe that such a streamlining is, in fact, not possible. That is, we formulate the 
following informal meta-mathematical conjecture: Any proof of Theorem 1 is necessarily 
non-constructive.

Let us note, however, that we can construct a piercing line for any given cofiguration 
a by solving a linear program. Using Megiddo’s algorithm for constant dimensional linear 
programming [8], we can construct the piercing line in linear time. In that sense, b can be 
constructed. Another sense in which b can be constructed is that for a given fixed n, the 
space of possible a cofigurations can be partitioned into finitely many simplices such 
that a piecewise linear map assigns a piercing b to any a. That is an explicit (gigantic) 
formula for b. Our informal meta-mathematical conjecture states that there is no such 
explicit formula independent of n. Of course, to fully formalize this conjecture, we would 
have to specify the set of allowed operations on vectors (such as sum, maximum, argmax, 
argsort, etc.).

3. Fractional line transversals

In this section, we maintain the same notation as established at the beginning of 
Section 2. For convenience, we also assume that x1 < . . . < xn and y1 < . . . < ym. 
As before, Z ∈ Rn×m and Pi,j = (xi, yj , zi,j); and Ai = conv{Pi,j : j ∈ [m]} and 
Bj = conv{Pi,j : i ∈ [n]}.

Theorem 2. With the above notation, either there is a line in the plane (xi, · , · ) for some 
i ∈ [n] intersecting m

6 sets out of B1, . . . , Bm, or there is a line in the plane ( · , yj , · )
for some j ∈ [m] intersecting n6 sets out of A1, . . . , An.
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Remark. The constant 1
6 depends on the bound in the fractional Helly theorem. By 

applying Kalai’s better bound for the fractional Helly theorem [5], we may replace 1/6
by the slightly larger number 1 − 3

√
1/2 ≈ 0.206.

Unlike Theorem 1, Theorem 2 only gives a fractional transversal; however, it guaran
tees that this transversal lies in one of the planes (xi, · , · ) or ( · , yj , · ).

The rest of this section comprises a proof of Theorem 2. We will start with the case 
n = m = 3 and extend this to Theorem 2 using the Fractional Helly Theorem. To simplify 
notation, we let Hi

x denote the plane (xi, · , · ) and Hj
y denote the plane ( · , yj , · ). (So 

Ai ⊂ Hi
x and Bj ⊂ Hj

y .)

Lemma 3. If n = 3, there is either a line �x in H2
x intersecting all sets Bj or there is a 

line �y in H2
y intersecting all sets Ai.

We note that Holmsen’s paper [4] extending the Montejano–Karasev theorem [9] al
ready implies that one of the two families in Lemma 3 can be pierced by a line; however, 
we also prove something about the location of the line, which will be necessary to prove 
Theorem 2.

Proof. Let Li,j be the vertical line dfined by (xi, yj , · ). Let Px be the intersection of 
the segment P2,1P2,3 with L2,2 and let Py be the intersection of the segment P1,2P3,2
with L2,2. (So Px is contained in A2 and Py is contained in B2.)

Consider the spatial quadrangle Q with vertices at Pi,j for i, j ∈ {1, 3}. We form �A
as the line segment that passes through both points in Q ∩H2

x; we also form �B as the 
line segment that passes through both points in Q ∩H2

y . (See Fig. 2.) Both �A and �B
intersect L2,2; in fact, they intersect at the same point, given by a weighted average of 
the four points Pi,j with i, j ∈ {1, 3}. (This is the place in the argument where we need 
the three planes in each family to be parallel—these lines would not necessarily intersect 
otherwise.) Denote this common intersection by R.

By convexity, the segment P2,2Px is contained in A2, while the interval P2,2Py is 
contained in B2. Consider the set Sy of segments in H2

x that intersect B1 and B3. The 
collection {S ∩ L2,2 : S ∈ Sy} is convex and contains both the points R and Px, so it 
contains the segment RPx. Similarly, let Sx be the set of segments in H2

y that intersect 
A1 and A3. The set {S ∩ L2,2 : S ∈ Sx} is convex and contains the points Py and R, so 
it contains the segment RPy.

If the segment RPx intersects the segment P2,2Py, then there is a line contained in 
H2

x that pierces B1, B2, B3. Similarly, if the segment RPy intersects the segment P2,2Px, 
then there is a line contained in H2

y that pierces A1, A2, A3. But one of these must occur, 
as in any topological embedding of S1 to R some two antipodal points are mapped to 
the same point; so one could say that we are using the d = 1 case of the Borsuk–Ulam 
theorem when we map onto RPxP2,2Py, but of course this one dimensional case can be 
proved more simply by checking a few cases. (See also the proof of Lemma 6 and the 
remark after it.) �
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R

Fig. 2. The quadrangle Q, the lines �A and �B , and their intersection at R. 

In Lemma 3, it is crucial that both families of planes are 
parallel. If this is not the case, then the claim may be false, 
as the following example shows. Dfine the points

x11 = (1, 1, 0) x31 = (3, 1, 0) x13 = (1, 3, 0) 

x35 = (3, 5, 1) x22 = (2, 2, 1
7 ),

then the points x11, x13, x31, x35 form the quadrangle shown 
at the right. However, for this grid, the line �B lies below �B
(as dfined in the proof of Lemma 3), while x22 lies between 
the two. Given

A1 = conv(x11, x13) B1 = conv(x11, x31)
A2 = conv(�A, x22) B2 = conv(�B , x22)
A3 = conv(x31, x35) B3 = conv(x13, x35),

then Ai ∩Bj �= ∅ for every i, j ∈ {1, 2, 3} and the sets in A = {A1, A2, A3} lie in parallel 
planes, but the sets in B = {B1, B2, B3} lie in three planes, only two of which are parallel. 
But �A is the only line contained in B2’s plane that can pierce A1 and A3, and �A does 
not pierce A2. Similarly, there is no line in A2’s plane that pierces B.

We now return to the proof of Theorem 2. A theorem of Santaló [10] from 1942 (see 
also [3] and [1]) states that: given a finite collection of parallel line segments in the 
plane such that every triple of these segments has a line transversal, there is a line that 
intersects all segments. The proof is based on Helly’s theorem using the fact that the set 
of lines intersecting a fixed vertical segment (if parametrized suitably) forms a convex 
set in the plane. Applying the fractional Helly theorem [6] to this situation, instead of 
Helly’s theorem, yields the following lemma.

Lemma 4 (Fractional Helly for vertical line segments). Suppose that L is a collection of 
parallel line segments in the plane such that at least α

(|L|
3 
)

triples of these segments can 
be stabbed by a line. Then there is a set of α3 |L| segments in L that can be stabbed by a 
single line.

We now have all the pieces to finish the proof.
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Proof of Theorem 2. The points (xi, yj) form an n ×m grid in the plane z = 0, which 
we will call G. A triple (j1, j2, j3) with 1 ≤ j1 < j2 < j3 ≤ m is called xi-good for some 
i ∈ [n] if there is a line in the plane (xi, · , · ) intersecting Bj1 , Bj2 , Bj3 . Analogously, the 
triple (i1, i2, i3) is yj-good if there is a line in the plane ( · , yj , · ) intersecting Ai1 , Ai2 , Ai3 . 
Lemma 3 says that in every 3× 3 subgrid {(xis , yjt), s, t = 1, 2, 3} of G, either (j1, j2, j3)
is xi2 -good or (i1, i2, i3) is yj2 -good.

Assume next that δ is the smallest number such that the number of xi-good triples 
is at most δ

(
m
3 
)

for every i ∈ [n], and the number of yj-good triples is at most δ
(
m
3 
)

for 
every j ∈ [m]. We show first that

δ ≥ 1
2 . (7)

The proof is by double counting. Any fixed xi-good triple, say (j1, j2, j3), will appear 
in exactly (i− 1)(n− i) 3 × 3 subgrids. This gives at most

δ

(
m

3 

) n−1∑
i=2 

(i− 1)(n− i) = δ

(
m

3 

)(
n

3 

)

3× 3 subgrids that contain an xi-good triple for some i. The same argument with x and 
y exchanged gives the same upper bound for the number of 3 × 3 subgrids that contain 
a yj-good triple for some j.

As the total number of 3×3 subgrids is 
(
n
3 
)(

m
3 
)
, Lemma 3 implies that there are at least (

n
3 
)(

m
3 
)

3× 3 subgrids that are xi- or yj-good for some i or j. Thus 
(
n
3 
)(

m
3 
)
≤ 2δ

(
n
3 
)(

m
3 
)
, 

which implies the inequality (7).
So there are at least 1

2
(
m
3 
)
xi-good triples for some i ∈ [n] or there are at least 1

2
(
n
3 
)

yj-good triples for some j ∈ [m]. The arguments are symmetric, so assume that the latter 
case occurs. The plane H = ( · , yj , · ) intersects the sets A1, . . . , An in parallel segments, 
and at least half of the triples of these segment have a line transversal. Lemma 4 implies 
that there is a line in H intersecting n6 of the sets A1, . . . , An. �
4. Partial extension to higher dimensions

How do we extend our results to higher dimensions? Informally, we can imagine the 
setup of vertical sets as taking an n× n grid in R2, and choosing a point in R1 for each 
intersection point of the grid. To extend to higher dimensions, we take an n×n×· · ·×n

“base'' grid in Rd, and choose a point in Rd−1 for each intersection point in the grid. We 
then form convex sets in R2d−1 by taking the convex hull of those points lying ``above'' 
a hyperplane in the d-dimensional grid and we group each collection of parallel sets into 
a family. (So we get d families overall.)

More formally, we choose vectors x1, . . . , xd ∈ Rn with xi
1 < xi

2 < · · · < xi
n and a point 

zt ∈ Rd−1 for each t = (t1, . . . , td) ∈ [n]d. Then we set Pt = (x1
t1 , . . . , x

d
td
, zt) ∈ R2d−1, 

and we form the convex sets
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Ai
j = conv(Pt : ti = j)

and the families F i := {Ai
j : 1 ≤ j ≤ n}.

Why do we choose a point in Rd−1 for each intersection point, instead of R1? If we 
were to use R1, then it would be trivial to prove the analogue of Theorem 1 in higher 
dimensions: Restricting to a 2-dimensional subgrid of the base space recreates the 3
dimensional scenario of Section 2. To avoid a trivial reduction like this, we need d − 1
additional dimensions.

There is an extrinsic reason for this choice of dimension, as well: According to Holm
sen’s extension [4] of the Montejano–Karasev theorem [9], if n = 3, then one of the 
families has a line transversal. The goal of this section is to prove a strengthened version 
of this statement in our setting—the analogue of Lemma 3 for higher dimensions.

Proposition 5. Set n = 3 in the setup above. For some i, there is a line whose first d
coordinates are (x1

2, x
2
2, . . . , x

i−1
2 , · , xi+1

2 , . . . , xd
2) that pierces F i = {Ai

1, A
i
2, A

i
3}.1

Proof. Let

Bi =
{
(x1

2, x
2
2, . . . , x

i−1
2 , y, xi+1

2 , . . . , xd
2) : y ∈ R} ×Rd−1.

We are looking for an i such that Bi contains a line that pierces F i. Say that xi
2 =

αi
1x

i
1 +αi

3x
i
3 where αi

1 +αi
3 = 1 and αi

1, α
i
3 ≥ 0. (The values αi

r are determined uniquely.) 
Given J ⊆ [d] and r ∈ {1, 3}J , dfine tJ,r ∈ [n]d by

(tJ,r)i =
{

2 if i / ∈ J

ri if i ∈ J

so for example t[d],r = r and t∅,r = 2. Also let PJ,r := PtJ,r . Now, for each J ⊆ [d], dfine 
the point

QJ =
∑

r∈{1,3}J

(∏
j∈J

αj
rj

)
PJ,r.

Since 
∑

r∈{1,3}J

(∏
j∈J αj

rj

)
=

∏
j∈J (αj

1+αj
3) = 1, the point QJ is a convex combination 

of the points PJ,r.
The coefficients are chosen in this convex combination so that the first d coordinates of 

QJ are (x1
2, x

2
2, . . . , x

d
2). Moreover, we have two properties of QJ : If i / ∈ J , then PJ,r ∈ Ai

2
for every r ∈ {1, 3}J , so QJ ∈ Ai

2. On the other hand, if i ∈ J , then

QJ = αi
1

∑
r∈{1,3}J

ri=1

( ∏
j∈J\{i}

αi
rj

)
PJ,r + αi

3
∑

r∈{1,3}J

ri=3

( ∏
j∈J\{i}

αi
rj

)
PJ,r,

1 In other words, the line lies ``above'' one of the central lines in the base 3 × 3 × · · · × 3 grid.
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which is a convex combination of a point in Bi ∩Ai
1 and a point in Bi ∩Ai

3.
If there is an i such that

conv(QJ : i ∈ J) ∩ conv(QJ : i / ∈ J) �= ∅,

then we are done. To see why, let Q denote the point in the intersection. On the one 
hand, because Q ∈ conv(QJ : i / ∈ J), we know that Q ∈ Ai

2. On the other hand, because 
Q ∈ conv(QJ : i ∈ J), Q is contained in a line that pierces Ai

1 and Ai
3 but is itself 

contained in Bi.
Since the first d coordinates of QJ are the same for every J , the QJ ’s are contained 

in a (d− 1)-dimensional a˙ine subspace. Thus, the following Lemma 6 proves that such 
an i always exists. �
Lemma 6. If QJ ∈ Rd−1 for each J ⊆ [d], there is an index i such that

conv(QJ : i ∈ J) ∩ conv(QJ : i / ∈ J) �= ∅.

Proof. Suppose the conclusion is false. Then for each i ∈ [d], there is a hyperplane 
Hx that separates the sets {QJ : i ∈ J} and {QJ : i / ∈ J}. These hyperplanes divide 
Rd−1 into cells, and each point QJ must lie in a separate cell. However, we know that d
hyperplanes divide Rd−1 into at most

d−1 ∑
i=0 

(
d

i 

)
= 2d − 1

cells, which is a contradiction. �
Remark. We can alternatively prove Lemma 6 via topology. The function f : J �→ QJ can 
be considered instead as a function f : {−1, 1}d → Rd−1. We can extend f to a function 
f̃ on the boundary of the unit cube in which f̃(F ) = conv

(
f(F )

)
for every facet F . By 

the Borsuk–Ulam theorem, there is a pair of antipodal points u,−u ∈ ∂[−1, 1]d such 
that f̃(u) = f̃(−u); the facets that u and −u belong to correspond exactly to a partition 
of vertices as described in Lemma 6.
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