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1. Introduction and main results

In a paper on extensions of the Colorful Helly Theorem, Martinez, Roldan and Ru-
bin [7] ask the following: Suppose two finite families A and B of convex sets in R? have
the property that AN B # () whenever A € A and B € B. Is it true then that there is
a line intersecting a fixed positive fraction of the sets in A or in B? The best we know
is that it is true in some special cases. For instance, Barany [2] confirmed that when all
sets in A and B are cylinders, or if all sets have a bounded aspect ratio, then it is true.
In general, however, this question is wide open.

A different special case of this question, namely the case of wertical polygons, was
raised independently by Andreas Holmsen and Géza Téth (personal communication). A
vertical polygon in R3 is a convex polygon that lies in a plane orthogonal to the xy-
plane. Is there a real number v > 0 such that, whenever both A and B consist of vertical
polygons, there is a line intersecting a v-fraction of the sets in A or a y-fraction of those
in B? One motivation for studying this question is that the aspect ratio of a vertical
polygon is infinite, so it is as far as possible from the case of convex bodies with bounded
aspect ratio; perhaps a solution in this case could shed light on the general problem.
Even this special case, however, remains open.

Our main result, Theorem 1 below, states there is a line intersecting all sets of A or
of B, provided the vertical polygons in A lie in parallel planes and the vertical polygons
in B also lie in parallel planes. We also prove, under the same condition, that we can
restrict the location of the piercing line: Either there is a line in the plane of some A € A
intersecting %|B| sets in B, or there is a line in the plane of some B € B intersecting
%|A| sets in A. This is Theorem 2, which is stated and proved in Section 3.

We conclude the paper in Section 4 with a partial extension of our results to higher
dimensions.

2. Theorem 1 and its proof

We start with two families, A and B, consisting of vertical polygons such that all
the polygons in A are in parallel planes, all the polygons in B are in parallel planes,
and AN B # () whenever A € A and B € B. For each pair (A, B), take an arbitrary
point P(A,B) in AN B. If we replace A by conv{P(A,B) : B € B} and replace B
by conv{P(A,B) : A € A}, this new collection of vertical polygons is still parallel
and pairwise intersecting. If one of these new families has a line transversal, then the
corresponding original family does, as well. Moreover, the question is invariant under
non-degenerate affine transformations, so we can assume that the planes containing sets
in A are parallel with the yz-plane, and the planes containing sets in B are parallel with
the xz-plane.

Based on these reductions, we formulate our problem in a more convenient notation.
Let x € R",y € R™ and Z € R™*™, and for each i € [n],j € [m], let P;; := (x;,y;,2i;) €
R3. We form convex sets A; := conv({P;; : j € [m]}) and B; := conv({P;; : i € [n]}).
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Fig. 1. An illustration of the n = m = 3 case. The red sets form the family A and the blue sets form the
family B. (For interpretation of the colors in the figures, the reader is referred to the web version of this
article.)

By construction, every A; is contained in a plane parallel to the yz-plane, every B; is
contained in a plane parallel to the xz-plane, and every A; intersects every B;. (In this
setup, the point P;; corresponds to the point P(A;, B;) in the previous paragraph.) This
setup is illustrated in Fig. 1.

Theorem 1. With the setup of the previous paragraph, either
o there is a real number xg € R and a line £, in the plane (xq, -, -) intersecting all
sets Bj, or
o there is a real number yo € R and a line ¢, in the plane (-,yo, -) intersecting all
sets Aj;.

Because the problem is affine-invariant, this proves the theorem for any two collections
of vertical polygons that live in parallel planes.

Proof. We start by writing up the intended conclusions as a system of linear inequalities
which has a solution if and only if a piercing line exists.

Let us do this for the first possibility. Let the line ¢, be parametrized as {(xq,y, ay +
zp) : y € R}. The claim that ¢, pierces B; is equivalent to the existence of barycentric
coordinates (f8;; : i € [n]) such that >, 3;; Py = (xo0,y;,ay; + 20)-

Our system of linear inequalities specifying a piercing line (xg,y, ay + zo) is then

Z Bijri = To Vj € [m], (x-piercing)
Z Bijzij = ay; + 2o Vi € [m], (z-piercing)
Zﬂij =1 Vi € [ml], (barycentric)

z Bij =0 Vi € [n],j € [m]. (nonnegative)

We now apply Farkas’ Lemma to write up a system that is unsolvable in dual variables
U € R3*™ if and only if the above system is solvable in (3, a, xq, 20).
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U1 T; + U252i5 + U3j >0 Vi € [n],j S [m], (ﬁ)

ZUijj = 0, (a)
Zulj = 07 (.’Eo)

ZU%‘ =0, (20)

Z usz; < 0. (infeasible)
J

Below we describe the correspondence between the parts of the two systems of in-
equalities. The real vectors us;, ua;, us; correspond to equalities (x-piercing), (z-piercing),
(barycentric), respectively. The n x m inequalities of (f) correspond to the n X m non-
negative variables of 5. The equalities (a), (z¢), and (zo) correspond to the real variables
a, xg, Zg, respectively.

Our next step is to combine the above dual system with the analogous system written
up for the £, line. The combined system has z,y, Z,U,V as variables, and is bilinear,
non-semidefinite. This is in contrast with its two constituents that are linear when z,y, Z
are treated as parameters.

The complete system we get is:

Jz,y € R, 3Z € R™™ U € R¥>*™ V € R¥*™:

U105 + U252 + uz; > 0 Vi€ [nl],j € [m], (x:B)

V1iYj + V24245 + v3; > 0 Vi € [TL],] S [m

> usy; =0, (x:a)
J
Z VoiX; = 0, (y:a)
i
Zulj = Z’Uli = ZUQ]' = Z'UQ»L' = 0, (Xil'o, yYixo, XiZ0, y:ZO)
J 7 i %

Z uzj <0, (x:infeasible)
J

=
=

ZU:% < 0. (y:infeasible)
i

Having the combined system of inequalities at hand, we now finish the proof. We
demonstrate that this system is unsolvable rather directly, by writing up weighted sums
of our inequalities until a contradiction is reached. This implies that one of the original
systems must be solvable; in other words, either A or B has a piercing line.
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Remark. The argument could be formulated in the framework of Farkas’ lemma: if we
treat U,V as parameters and z,y, Z as variables, we can give a closed-form solution to
the dual of the resulting linear system of inequalities. In an interesting contrast with this,
if we treat x,y, Z as parameters and U, V' as variables, the dual formulation is equivalent
to presenting a piercing line, and we are not aware of any simple formula for a dual
solution.

Let us introduce the three variables
A I ey Do e
T; = V24X, yj = U24Y4, Zij 1= Ug5V2i %45
and the four sets

I+:{iZU2iZO} J+:{jZUQjZO}
I_:{iZU2i<0} J_:{j:u2j<0}.

By multiplying (x:/3) by ve; we obtain

Vie I, Vj:uyx; + z; + vaiugg > 0, (1)

Vi € I_, V] : uljl';- + Zgj + V2, U3 <0. (2)
Similarly, by multiplying (y:/3) by ua; we obtain
Vj e J-"_7 Vi : v“—y; + Zgj + U234 >0, (3)
Vj S J77 Vi : Uliy;' + Zz/'j + U2;5V3; S 0. (4)
By comparing (1) and (4), we obtain
V’L S I+, VJ S J7 : Uljl'; — 'Uh'y; —+ ’UQﬂng — ’U,Qj’l)gi Z 0 (5)
Similarly, from (2) and (3), we obtain
Viel , Vje Jt —uljxg + v”y;- — U2;u3; + U2;V3; > 0. (6)

We now sum the last two inequalities over each of their ranges and add them together;
this will give us a contradiction. To find it, we look separately at each of the four parts
of this sum, one for each summand in the inequalities (5) and (6).

The first part is

! /
E E:U1j$¢* E E U154,

ielt jeJ— iel— jeJt

which we deal with by introducing the shorthand
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+ . + _ l
u] 7Zjeﬁu1] x *Zjeﬁ '
- ' - )
Uy = e Uy T =g Ty
From (), we have uj = —u], and from (y:a), we have 2+ = —z~. Thus, the first part

of the sum is ufxf — ufxf = ufxf — ufxf =0.
The second part of the sum also vanishes; the proof is the same, using the variables

v =it YT =001
V1 =D ier- Vi Y= ZjeJ— y;-.

To deal with the third part of the sum, we introduce

+ , + ‘
Uy =D ier+ V2 Uz = Zj€J+ Uu3zj
Uy =D e V2 Uz =D g- Usg
thus vy + v, = 0 and ud +uz = 0. The third part of the sum is vy u; — vy uy =

vy uz + v ug, which is negative by (x:infeasible), unless vy = 0. If vy = 0, then vg; = 0
for all 4, in which case the sum of (y:3) over all ¢ is >, v3; = 0, which contradicts
(y:infeasible).

In a similar way, we can obtain that the fourth part of the sum is also negative. But
this contradicts the fact that the sum of the four parts should be nonnegative; therefore
the system is unsolvable. O

2.1. Comments on the proof

In this section, we present some remarks on the peculiarity of the above proof: It is
a non-constructive existence proof, which proceeds by using linear programming duality
twice.

To highlight the unusual structure of this proof, we now abstract away the concrete
details. In what follows, a corresponds to a configuration of convex sets (A, 3), while b
roughly corresponds to the piercing line whose existence is stated in Theorem 1. We will
clarify the exact semantics of b after the proof outline.

Rather than constructing a b for every a, its existence is non-constructively proven
in the following way: Let ¢ be a potential witness to the fact that b does not exist for a
given a. For a given ¢, we construct a witness d to the fact that c is not in fact a witness
for any given a. To elaborate:

o We would like to prove that Va : 3b : Si(a,b). (a and b are real vectors; S; is a

bilinear system of inequalities.)

o We treat a as a parameter and b as a variable, and apply Farkas’ lemma to get

equivalent statement Va : =3¢ : Sa(a, ¢).

o We switch quantifiers: Ve : Va : =Ss2(a, ¢).

o We now treat c as a parameter and a as a variable, and apply Farkas’ lemma again:

Ve :3d : Ss(c,d).
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o The above steps were all equivalences. Hence Va : 3b : S (a, b) if and only if Ve : 3d :
Ss(c, d).

o We prove Ve : 3d : Ss(c, d) by explicitly constructing a witness d for any c.

The correspondence between the above scheme and the actual notation in the proof of
Theorem 1 is as follows:

o a corresponds to our configuration of sets (A, B), parametrized by (x,y, Z).

o b corresponds to the pair of lines (¢;,¢,). Its exact parametrization appears in
the proof only implicitly, but it can be described by (xg, a, 2o, 8) in the z direction,
(yo,a’, 2}y, 8') in the y direction, with an extra slack variable s whose sign determines
which of the two directions is supposed to be piercing.

o Si(a,b) is the bilinear system of inequalities that states that b pierces a.

o c¢ is the potential witness of b’s non-existence, parametrized by (U, V).

o Sa(a,c) is the dual system stating that c¢ is a dual witness for a, disproving the
existence of a piercing line b for the given a.

o d is a weighting on the inequalities of the dual system.

o S3(c,d) states that the d-weighted sum of the inequalities of the dual system Ss(a, ¢)
leads to a contradiction, which proves that ¢ cannot be a dual witness for any a.

We have not succeeded in streamlining this seemingly roundabout proof structure, and

we now believe that such a streamlining is, in fact, not possible. That is, we formulate the
following informal meta-mathematical conjecture: Any proof of Theorem 1 is necessarily
non-constructive.

Let us note, however, that we can construct a piercing line for any given configuration

a by solving a linear program. Using Megiddo’s algorithm for constant dimensional linear
programming [8], we can construct the piercing line in linear time. In that sense, b can be
constructed. Another sense in which b can be constructed is that for a given fixed n, the
space of possible a configurations can be partitioned into finitely many simplices such
that a piecewise linear map assigns a piercing b to any a. That is an explicit (gigantic)
formula for b. Our informal meta-mathematical conjecture states that there is no such
explicit formula independent of n. Of course, to fully formalize this conjecture, we would
have to specify the set of allowed operations on vectors (such as sum, maximum, argmax,
argsort, etc.).

3. Fractional line transversals

In this section, we maintain the same notation as established at the beginning of
Section 2. For convenience, we also assume that z1 < ... < z, and y; < ... < Ym.
As before, Z € R"™™ and P, ; = (x;,9;,2i,;); and A; = conv{P;; : j € [m]} and
B; =conv{P,; ; : i € [n]}.

Theorem 2. With the above notation, either there is a line in the plane (x;, -, -) for some
i € [n] intersecting 7§ sets out of By,..., B, or there is a line in the plane (-,y;, -)
for some j € [m] intersecting § sets out of Ay, ..., A,.
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Remark. The constant é depends on the bound in the fractional Helly theorem. By
applying Kalai’s better bound for the fractional Helly theorem [5], we may replace 1/6
by the slightly larger number 1 — ¢/1/2 = 0.206.

Unlike Theorem 1, Theorem 2 only gives a fractional transversal; however, it guaran-
tees that this transversal lies in one of the planes (x;, -, -) or (-, y;, -).

The rest of this section comprises a proof of Theorem 2. We will start with the case
n = m = 3 and extend this to Theorem 2 using the Fractional Helly Theorem. To simplify
notation, we let H’ denote the plane (z;, -, -) and H{l denote the plane (-,y;, -). (So
A; C H; and Bj C Hé)

Lemma 3. If n = 3, there is either a line £, in H? intersecting all sets B; or there is a
line €y in Hj intersecting all sets A;.

We note that Holmsen’s paper [4] extending the Montejano—Karasev theorem [9] al-
ready implies that one of the two families in Lemma 3 can be pierced by a line; however,
we also prove something about the location of the line, which will be necessary to prove
Theorem 2.

Proof. Let L; ; be the vertical line defined by (x;,y;, -). Let P, be the intersection of
the segment P51 Ps 3 with Lo and let P, be the intersection of the segment P 2Ps 9
with Ly o. (So P, is contained in Ay and P, is contained in Bs.)

Consider the spatial quadrangle @ with vertices at P; ; for 4,5 € {1,3}. We form {4
as the line segment that passes through both points in Q@ N HZ; we also form ¢p as the
line segment that passes through both points in @ N Hj (See Fig. 2.) Both ¢4 and ¢p
intersect Lo o; in fact, they intersect at the same point, given by a weighted average of
the four points P; ; with ¢,j € {1,3}. (This is the place in the argument where we need
the three planes in each family to be parallel—these lines would not necessarily intersect
otherwise.) Denote this common intersection by R.

By convexity, the segment P 2P, is contained in As, while the interval PP, is
contained in B,. Consider the set S, of segments in H? that intersect B; and Bs. The
collection {S N Lyo: S € Sy} is convex and contains both the points R and Py, so it
contains the segment RP,. Similarly, let S, be the set of segments in HS that intersect
Ay and As. The set {SN Lyy:S € S,} is convex and contains the points P, and R, so
it contains the segment RP,.

If the segment RP, intersects the segment P»2P,, then there is a line contained in
Hg that pierces Bi, Bo, B3. Similarly, if the segment RP, intersects the segment P> 2 P,
then there is a line contained in Hy2 that pierces Aq, Ay, A3. But one of these must occur,
as in any topological embedding of S' to R some two antipodal points are mapped to
the same point; so one could say that we are using the d = 1 case of the Borsuk—Ulam
theorem when we map onto RP,P» > P,, but of course this one dimensional case can be
proved more simply by checking a few cases. (See also the proof of Lemma 6 and the
remark after it.) O
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Fig. 2. The quadrangle Q, the lines ¢4 and £p, and their intersection at R.

In Lemma 3, it is crucial that both families of planes are
parallel. If this is not the case, then the claim may be false,
as the following example shows. Define the points

11 = (1, 1,0) Ir31 — (3, 1,0) Tr13 = (1,3,0)
T35 = (3757 1) T22 = (2u27 %)7

then the points x11, 13, 31, 35 form the quadrangle shown
at the right. However, for this grid, the line g lies below ¢g

(as defined in the proof of Lemma 3), while x99 lies between
the two. Given

A1 = COHV(II?ll, $13) Bl = COHV(II?ll, $31)
As = conv(Ly, xa0) By = conv({p, x22)
Az = conv(xgl, x35) B3 = COHV(1’13, $35)7

then A; N B; # () for every 4,5 € {1,2,3} and the sets in A = {4, Az, A3} lie in parallel
planes, but the sets in B = { By, Bs, B3} lie in three planes, only two of which are parallel.
But £4 is the only line contained in Bsy’s plane that can pierce A; and As, and ¢4 does
not pierce A,. Similarly, there is no line in A5’s plane that pierces B.

We now return to the proof of Theorem 2. A theorem of Santals [10] from 1942 (see
also [3] and [1]) states that: given a finite collection of parallel line segments in the
plane such that every triple of these segments has a line transversal, there is a line that
intersects all segments. The proof is based on Helly’s theorem using the fact that the set
of lines intersecting a fixed vertical segment (if parametrized suitably) forms a convex
set in the plane. Applying the fractional Helly theorem [6] to this situation, instead of
Helly’s theorem, yields the following lemma.

Lemma 4 (Fractional Helly for vertical line segments). Suppose that L is a collection of
parallel line segments in the plane such that at least a(‘g‘) triples of these segments can
be stabbed by a line. Then there is a set of §|L| segments in L that can be stabbed by a
single line.

We now have all the pieces to finish the proof.
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Proof of Theorem 2. The points (z;,y;) form an n x m grid in the plane z = 0, which
we will call G. A triple (j1,J2,73) with 1 < j1 < jo < j3 < m is called z;-good for some
i € [n] if there is a line in the plane (z;, -, -) intersecting Bj,, Bj,, Bj,. Analogously, the
triple (41,42, i3) is yj-good if there is a line in the plane ( -,y;, - ) intersecting A;,, 4;,, Ai,.
Lemma 3 says that in every 3 x 3 subgrid {(z;,,v;,),s,t = 1,2,3} of G, either (j1, ja, j3)
is z;,-good or (i1, 12,13) is y;,-good.

Assume next that 0 is the smallest number such that the number of x;-good triples
is at most 0('y) for every i € [n], and the number of y;-good triples is at most 6(y) for
every j € [m]. We show first that

o>

: (7)

N | =

The proof is by double counting. Any fixed x;-good triple, say (j1, j2, j3), will appear
in exactly (¢ — 1)(n —14) 3 x 3 subgrids. This gives at most

5@) 2(2 (i) = 5(7;) <§>

3 x 3 subgrids that contain an x;-good triple for some ¢. The same argument with = and
y exchanged gives the same upper bound for the number of 3 x 3 subgrids that contain
a y;j-good triple for some j.

As the total number of 3 x 3 subgrids is (g) (7;1), Lemma 3 implies that there are at least
(5) (%) 3 x 3 subgrids that are 2;- or y;-good for some i or j. Thus (3) (%) < 26(%) (%),
which implies the inequality (7).

So there are at least 3 (') @;-good triples for some i € [n] or there are at least % (;)
yj-good triples for some j € [m]. The arguments are symmetric, so assume that the latter
case occurs. The plane H = (-,y;, - ) intersects the sets Ay, ..., A, in parallel segments,
and at least half of the triples of these segment have a line transversal. Lemma 4 implies

that there is a line in H intersecting ¢ of the sets Ay,..., 4,. O
4. Partial extension to higher dimensions

How do we extend our results to higher dimensions? Informally, we can imagine the
setup of vertical sets as taking an n x n grid in R2, and choosing a point in R! for each
intersection point of the grid. To extend to higher dimensions, we take an n xn x---xn
“base” grid in R, and choose a point in R%~! for each intersection point in the grid. We
then form convex sets in R2¢~! by taking the convex hull of those points lying “above”
a hyperplane in the d-dimensional grid and we group each collection of parallel sets into
a family. (So we get d families overall.)

More formally, we choose vectors z!, ..., 2% € R" with 2} < 2} < --- < 2!, and a point
z € R for each t = (t1,...,tq) € [n]%. Then we set Py = (xf,...,2f,2) € R?1
and we form the convex sets
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Aj— = conv(P; : t; = j)

and the families F? := {Az :1<j<n}

Why do we choose a point in R?~! for each intersection point, instead of R'? If we
were to use R!, then it would be trivial to prove the analogue of Theorem 1 in higher
dimensions: Restricting to a 2-dimensional subgrid of the base space recreates the 3-
dimensional scenario of Section 2. To avoid a trivial reduction like this, we need d — 1
additional dimensions.

There is an extrinsic reason for this choice of dimension, as well: According to Holm-
sen’s extension [4] of the Montejano—Karasev theorem [9], if n = 3, then one of the
families has a line transversal. The goal of this section is to prove a strengthened version
of this statement in our setting—the analogue of Lemma 3 for higher dimensions.

Proposition 5. Set n = 3 in the setup above. For some i, there is a line whose first d
coordinates are (v, x3,... ab~t - xbtt  xd) that pierces F' = { A}, Ab, AL}

Proof. Let
B = {(xé,:cg, conab by ettt ad) sy e RY x RO

We are looking for an i such that B contains a line that pierces F'. Say that z% =
ozt +adzl where of +af = 1 and of, af > 0. (The values o are determined uniquely.)
Given J C [d] and r € {1,3}”, define t;, € [n]? by

(1) {2 ifigJ

r; ifielJ

so for example t(g » = r and ty , = 2. Also let Py, := P,,. Now, for each J C [d], define
the point

Q= Y, (H Olij)PJ,r.

re{1,3}7 jeJ
Since 3, eq1,337 (Hje, aﬁj) = HjEJ(a{+ag) = 1, the point Q) ; is a convex combination
of the points Py .
The coefficients are chosen in this convex combination so that the first d coordinates of
Qy are (z3,22,...,29). Moreover, we have two properties of Q: If i ¢ J, then Py, A}
for every r € {1,3}7, so Qs € A}. On the other hand, if i € J, then

Qi=ai ¥ (I ab)pwtas X ( TI ab)re
re{1,3}7  JjeJ\{i} re{1,3}7 JjeJ\{i}

r;=1 r;=3

! In other words, the line lies “above” one of the central lines in the base 3 X 3 X - -+ X 3 grid.
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which is a convex combination of a point in B* N A} and a point in B N Aj.
If there is an i such that

conv(Qy:i € J)Nconv(Qy : i & J) # 0,

then we are done. To see why, let (Q denote the point in the intersection. On the one
hand, because Q € conv(Q : i ¢ J), we know that Q € A%. On the other hand, because
Q € conv(Qy : i € J), Q is contained in a line that pierces A% and A% but is itself
contained in B’

Since the first d coordinates of @) are the same for every J, the @ ;’s are contained
in a (d — 1)-dimensional affine subspace. Thus, the following Lemma 6 proves that such
an ¢ always exists. 0O

Lemma 6. If Q; € R~ for each J C [d], there is an index i such that
conv(Qy i€ J)Nconv(Qy:i ¢ J) # 0.

Proof. Suppose the conclusion is false. Then for each ¢ € [d], there is a hyperplane
H, that separates the sets {Q : i € J} and {Q; : i ¢ J}. These hyperplanes divide
R4 into cells, and each point Q; must lie in a separate cell. However, we know that d
hyperplanes divide R%~! into at most

cells, which is a contradiction. O

Remark. We can alternatively prove Lemma 6 via topology. The function f: J +— @ can
be considered instead as a function f: {—1,1}¢ — R%~!. We can extend f to a function
f on the boundary of the unit cube in which f(F) = conv (f(F)) for every facet F. By
the Borsuk-Ulam theorem, there is a pair of antipodal points u, —u € d[—1,1]¢ such
that f(u) = f(—u); the facets that u and —u belong to correspond exactly to a partition
of vertices as described in Lemma 6.
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