JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Task Offloading and Position Optimization for Large Scale Unmanned
Aerial Vehicle Networks: A Mean Field Learning Approach

Huixian Gu, Graduate Student Member, IEEE, Liqiang Zhao, Member, IEEE, Kai Liang, Member, IEEE,
Gan Zheng, Fellow, IEEE, Kai-Kit Wong, Fellow, IEEE and Chan-Byoung Chae, Fellow, IEEE

Abstract—Unmanned aerial vehicle (UAV) networks have e-
merged as promising enablers in sixth generation (6G) com-
munication system because they can support delay-sensitive and
energy-constrained applications. However, the limited resources
of UAVs and the high computational complexity of traditional
methods complicate task offloading and position optimization. At
scale, the task offloading and position optimization decisions yield
non-stationary interactions among many agents, while standard
multi-agent deep reinforcement learning (MADRL) suffers from
poor scalability as the joint action space grows exponentially with
the number of UAVs. We formulate joint task offloading and 2D
position control as a Markov game that minimizes a weighted
energy-delay cost per UAV under practical flight constraints
(finite horizontal range, collision avoidance, and an elevation-
angle limit) and resource constraints. We then develop a mean-
field actor-critic (MFAC) framework that aggregates neighbors’
influence into a mean action and conditions both the actor
and the critic on local observations and the mean action. By
approximating the interactions among a large number of agents
through aggregating the influence of others into a mean action
representation, the input dimensionality of the critic part is
reduced from M + K P to M +2P, yielding an approximately K-
fold reduction and becoming independent of the agent population
size compared to traditional MADRL methods. Numerical results
demonstrate that our proposed algorithm can achieve an 80%
reduction in the number of episodes, a 70% reduction in training
time, a 38% reduction in energy consumption and a 28%
reduction in task delay compared to state-of-the-art approaches,
particularly under large-scale UAV deployment scenarios.

Index Terms—UAV network, task offloading, position optimiza-
tion, Markov game, mean field approximation, multi-agent deep

This work was supported in part by in part by the Key Research and
Development Program of Shaanxi (2024GX-YBXM-019), State Grid Jiangxi
Electric Power Co., Ltd. Technology Project (5218G024000K), National Natu-
ral Science Foundation of China under Grant 62401421. The work of G. Zheng
is supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) grant EP/X04047X/2 and EP/Y037243/1 for TITAN Telecoms Hub.
The work of K. K. Wong is supported by the Engineering and Physical
Sciences Research Council (EPSRC) under grant EP/W026813/1. The work
of C.-B. Chae was supported by NRF/IITP (2024-00428780, 2021-0-00486)
grants funded by the Korean government. (Corresponding authors: Ligiang
Zhao and Kai Liang)

Huixian Gu (e-mail: kyyghx @aliyun.com) is with the State Key Laboratory
of Integrated Service Networks, Xidian University, Xi’an, 710071, China.

Ligiang Zhao (e-mail: 1qzhao@mail.xidian.edu.cn) is with the State Key
Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071,
China, and also with the Guangzhou Institute of Technology, Xidian Univer-
sity, Guangzhou, 510100, China.

Kai Liang (e-mail: kliang@xidian.edu.cn) is with the State Key Laboratory
of Integrated Service Networks, Xidian University, Xi’an, 710071, China.

Gan Zheng (e-mail: gan.zheng@warwick.ac.uk) is with the School of
Engineering, University of Warwick, Coventry, CV4 7AL, UK.

K. K. Wong (e-mail: kai-kit.wong@ucl.ac.uk) is affiliated with the Depart-
ment of Electronic and Electrical Engineering, University College London,
Torrington Place, WCI1E 7JE, United Kingdom and he is also affiliated with
Yonsei Frontier Lab, Yonsei University, Seoul, Korea.

Chan-Byoung Chae (e-mail: cbchae@yonsei.ac.kr) is with the School of
Integrated Technology, Yonsei University, Seoul 03722, South Korea.

reinforcement learning.

I. INTRODUCTION

THE widespread adoption of unmanned aerial vehicles
(UAVs) in non-terrestrial networks (NTNs) has led to
the rapid emergence of a wide range of new tasks, such
as equipment inspection and crowd monitoring [1]. Market
research indicates that the UAV industry will expand from
USD 10.727 billion in 2025 to USD 19.083 billion by 2030,
representing a compound annual growth rate (CAGR) of
12.21%. Meanwhile, large-scale deployment of UAVs enables
automated sensing and control, which in turn generates a
substantial volume of data traffic and processing demands [2].
These demands must be processed in a timely and efficient
manner to ensure system responsiveness [3]. However, relying
solely on the limited onboard resources of UAVs is often insuf-
ficient to fulfill these demands. To overcome this bottleneck,
computation-intensive tasks can be offloaded to ground base
stations (GBSs) equipped with edge servers or to cloud servers
for more efficient execution [4], [5]. In this context, UAV
networks integrated with multi-access edge computing (MEC)
has emerged as a promising architectural paradigm that bridges
the gap between high computational demands and the limited
onboard capabilities of UAVs, enabling scalable, low-latency,
and distributed computing for intelligent and delay-sensitive
applications [6].

However, making effective task offloading and position
optimization decisions is nontrivial, as it requires careful-
ly balancing processing delay, energy consumption, and the
availability of network resources [7]. This challenge is further
exacerbated by the UAV mobility and the fluctuating quality
of wireless links, which complicate real-time resource coordi-
nation. In [8], the authors addressed task offloading in a post-
disaster UAV network and proposed a convex optimization-
based algorithm for efficient MEC resource allocation, aiming
to maximize system utility under resource constraints. In [9],
the authors addressed task offloading and resource allocation
in UAVs network for large-scale IoT networks. They applied
a penalty successive convex approximation (PSCA) method
with first-order Taylor expansion to solve the non-convex sub-
problem, improving solution quality under complex coupling
constraints. In [10], the authors investigated task offloading
and resource pricing in UAV networks using game-theoretic
approaches, employing a Stackelberg game to jointly optimize
server and user utilities. Song et al. [11] investigated a LEO-
UAV cooperative edge computing framework, where multi-
user devices (MUDs) offloaded tasks to resource-constrained

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

UAVs and LEO satellites. The task offloading problem was
modeled as a potential game (LUTO-Game) considering UAV
energy transfer and satellite coverage constraints. To jointly
optimize UAV deployment and task offloading, the authors in
[12] proposed a two-layer DECO algorithm, where differen-
tial evolution is applied to search for optimal 3D positions,
elevation angles, and transmission power of UAVs, and con-
vex optimization was employed to solve resource allocation
and offloading decisions under complex constraints. However,
traditional optimization methods, such as convex optimization
and game theory, often struggle to handle the dynamic and
uncertain nature of UAV task offloading scenarios [13], [14].

Recently, deep reinforcement learning (DRL) provides ef-
fective solutions for task offloading and position optimization,
particularly in highly dynamic and unpredictable environments
[15]. For example, the authors in [16] examined task offloading
within a multi-UAV cooperative MEC framework, with a
focus on UAV trajectory planning, offloading decisions, and
the allocation of computational and communication resources,
and developed a latent space-based DRL algorithm aimed
at maximizing overall system performance. The authors in
[17] introduced a UAV-assisted task offloading scheme, where
an improved particle swarm optimization was applied to
determine offloading decisions, while UAV trajectories were
optimized using DRL. The authors in [18] proposed a D-
DQN-based framework that combines convex optimization
to jointly optimize UAV trajectory and task offloading in a
UAV-MEC system. The authors in [19] proposed a UAV-
enabled cloud-edge cooperative scheduling system that lever-
ages deep deterministic policy gradient (DDPG) to jointly
optimize user scheduling, UAV trajectory, and task offloading
ratios, effectively minimizing processing delay while ensuring
fairness in 5G URLLC scenarios with energy constraints and
discrete variables. Their approach improves task execution
efficiency and UAV energy savings, outperforming DQN and
matching TSP-based solutions in key performance metrics.
The centralized execution paradigm and the scale of large
networks pose major challenges for DRL in achieving efficient
decision-making [20].

To overcome the limitations of DRL, multi-agent DRL
(MADRL) has emerged as a promising method, enabling
decentralized decision-making and improved scalability by
allowing agents to learn and act based on local observations
while coordinating through shared environments. In [21], the
authors formulated a joint optimization problem for UAV
trajectory planning, task offloading, and bandwidth alloca-
tion in a UAV-assisted MEC network, aiming to maximize
long-term energy efficiency. The problem was modeled as
a Markov game (MG), and a multi-agent DRL (MADRL)
algorithm was proposed to solve the problem under system
dynamics and uncertainty. In [22], the authors formulated
energy minimization in MEC-enabled air-ground networks as
a multi-agent Markov decision process and proposed a multi-
agent proximal policy optimization (MAPPO) algorithm to
jointly optimize UAV trajectories, resource allocation, and
queue-aware task offloading. The authors in [23] proposed
a multi-agent actor-critic (MAAC) algorithm to jointly op-
timize trajectory planning and task offloading, the approach

leverages causal reasoning to guide inter-UAV communication
and employs a generalized Bellman operator to learn a unified
policy representation across diverse objective preferences. In
[24], the authors addressed the fair computation offloading
problem in UAV-assisted MEC networks with heterogeneous
task types and UAV capabilities. To adapt to dynamic user
demands, an optimization-embedding MADRL algorithm was
developed, where each UAV learns its trajectory via MADRL
and computes offloading decisions by solving a mixed-integer
nonlinear program. In [25], a Nash Q-learning-based algorithm
was proposed to address task prioritization in MEC, enabling
adaptive task offloading by integrating Nash equilibrium prin-
ciples.

However, MADRL approaches and the Nash Q-learning
algorithm suffer from high computational complexity when
solving MGs as the number of agents increases [5]. Mean
field theory has been introduced to MGs to simplify interaction
among agents and thus reduce the computational complexity
[26]. In [27], a scalable resource allocation scheme for UAV-
assisted NOMA V2X networks was proposed by integrating
mean-field theory with MARL, enabling distributed learn-
ing and reducing interaction overhead in large-scale agents.
In [28], the authors addressed the scalability and learning
inefficiencies of existing joint trajectory control and task
offloading (JTCTO) algorithms in UAV-assisted MEC. They
proposed a decentralized mean field-based multi-agent actor-
critic (MFMAAC) algorithm, which combines policy transfer
to accelerate learning and a mean field-based actor-critic
approach to handle large-scale UAV scenarios. The authors in
[29] proposed a MF deep Q network (MFDQN) framework for
resource allocation in ultra-dense UAV networks by optimizing
its trajectory, user association, and power control.

Compared with MAAC [23] and value-based mean-field
DQN (MFDQN) [29], our MFAC differs in both modeling
and algorithmic design. Specifically, large-scale UAV networks
make standard MADRL brittle, centralized critics scale the
input dimensionality as M + KP and the joint action s-
pace grows exponentially, incurring high training cost and
instability as K increases. Our key idea is to aggregate
neighbors’ influence via a mean-field action and condition both
actor and critic on (o, ak, ax). This reduces the critic input
dimensionality from M+ K P (centralized critics) to M +2P
without changing network depth/width (see Sec. III-D), there-
by eliminating the linear dependence of the critic input on the
population size K and improving stability in non-stationary
environments. Unlike MFDQN, which injects mean-field in-
formation into value-based updates and is more sensitive
to moving target policies, our policy-gradient updates with
target networks and replay yield more stable convergence in
large-scale settings. In this paper, we formulate a joint task
offloading and UAV position optimization problem in large
scale UAV networks. We present a mean field MADRL to
solve it. The key contributions of this work are outlined below:

1) We formulate an MG for joint UAV task offloading and

2D position optimization that considers practical con-
straints, such as finite flight region, collision avoidance,
and an elevation-angle limit, together with a weighted
energy-delay objective per UAV.

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

2) We develop an MFAC framework that conditions both
the actor and the critic on the agent’s local observations
and a mean-field action of neighbors. Unlike MAAC
(centralized critic) and value-based MFDQN, our actor-
critic design yields a per-agent critic input of size M +2P
(vs. M+KP in MAAC). Compared with MFDQN, the
policy-gradient updates with target networks and replay
further stabilize learning under non-stationarity. We pro-
vide a layer-wise complexity analysis showing that this
removes the linear dependence on the agent population
at the critic input, yielding an approximately K-fold
reduction in input dimensionality without changing the
network depth/width.

3) Numerical results demonstrate that our proposed algo-
rithm can achieve a reduction of 80% and 60% in the
number of episodes, a reduction of 70% and 10% in
the training time compared with MFDQN and MAAC
algorithms. Furthermore, our proposed algorithm can
achieve a reduction of 16%, 22% and 35% in energy
consumption and a reduction of 5%, 26% and 28% in
task delay compared with MFDQN, MAAC and FUPC.

The remainder of this paper is organized as follows. Section
II describes the system model and formulates the optimization
problem. In Section III, we propose the problem-solving
framework of the optimization problem. Section IV presents
extensive experimental results to validate the proposed ap-
proach, and Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a UAV task offloading
scenario involving applications such as aerial sensing and
smart logistics. These applications can be offloaded to GBSs,
which are equipped with edge servers for computing, or to a
cloud server (CS) for efficient processing. The task generated
by UAV £k is characterized by I, = {Sk, Cy, d’*"}, where Sy,
is the task size, C}, is the required number of CPU cycles to
execute the task, and d;'** is the maximum tolerable delay
of task k. The proposed system consists of three layers:
the UAV layer is responsible for generating computational
tasks, the edge layer is responsible for providing computa-
tional resources for resource-limited UAVs, and the cloud
layer is also responsible for supporting UAVs with additional
computational power. The key difference between the edge
and cloud servers lies in their characteristics: edge servers
can provide low-latency computation by offering resources
in close proximity to UAVs, whereas cloud servers offer
significantly higher computational capacity but are located
farther away, resulting in higher transmission delays. The set
of GBSs and UAVs are denoted by N = {1,2,--- N},
K = {1,2,--- , K}, respectively. Similar to [30], [31], to
simplify the trajectory design, the UAVs are assumed to oper-
ate at a constant altitude hy, the two-dimensional coordinates
of GBSs and UAVs are represented by ¢, = (z,,y,) and
¢x = (zk,yx), respectively. This article ignores the heights of
GBS and antennas and assumes that the location of GBSs are
fixed, which is in line with [32], [33]. The main notations
used in this paper are summarized in Table I. This paper

TABLE I. The main notations used in the paper

Notation | Explanation

N The set of GBSs

K The set of UAVs

hg The fly hight of UAVs

Cn The two-dimensional coordination of GBS

Ci The two-dimensional coordination of UAV

Sk The task size generated by UAV k

Ck The CPU cycles required to process one bit task
dprer The maximum tolerable delay of task generated by UAV k
Lmazx The limited flight distance of UAV

Daz The minimum distance between any two UAVs

Ok The maximum elevation angle of UAV k

din The distance between UAV k and GBS n

Ik,n The channel gain between UAV k and GBS n

Bo The channel gain when the reference distance is 1m
aq, a9 The path loss exponent

Vi, n The SINR between UAV k and GBS n

az " The Gaussian noise power between UAV k and GBS n
No The noise power spectrum density

Pk The transmission power of UAV k

Tk,n The transmission rate between UAV k and GBS n
Tk,e The transmission rate of UAV k and CS ¢

Mkl The task generated by UAV k processed locally

Pkn The task generated by UAV k processed at the GBS n
Hk,c The task generated by UAV k processed at the CS

T Mean Field
_/ Approximation

Fig. 1. System model.

adopts a binary offloading strategy. While [34] investigates
partial task offloading with broad applicability, many real-
world workloads are inherently indivisible. Thus, studying
binary offloading remains practically important. Furthermore,
because the size of the computed results is typically far smaller
than that of the offloaded tasks, the downlink latency can be
neglected [35].

A. UAV’s Reqiurements

Due to the UAVs fight at the fixed hight, the 2D coordinate
of UAV is denoted as Cr = (zx,yr). UAVS’ range of motion
is denoted as 0 < xx < Tinae and 0 < Y < Ymaz-

Assume that UAV k travels a horizontal distance of [(t)
in the direction specified by the angle 6, (t) € [0, 2x]. Then,
the coordinations of UAV £ at time slot ¢ 4+ 1 are given by

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

2p(t+ 1) = zp(t) + 1k(t) cos Ok (t) and yi(t +
I (t) sin Ok ().

Due to the limited horizontal-flight speed, the limited flight
distance of UAVs can be given by

1) = yx(t) +

() = |8 (E+ 1) = En(8)]]| < Lomae. (1)

On the other hand, due to the existing of multiple UAVs,
the collision should be avoided. Then, the collision constraint
of arbitrary two UAVs is represented as follows

Hék_éjl|2Dmaa:;Vk7jak7é] (2)

Due to the impact of maximum elevation angle, if UAV
k wants to offload the task to GBS n, it must satisfy the
constraint of the maximum elevation angle, i.e.,

hk Z V ||6k - an2 COth)- (3)

Following [36], [37], we adopt a simplified flight-energy
model in which the energy per slot depends solely on the
velocity vector. Specifically, e;, fly =¢ (%)2, with ¢ = 0.5Mp,
where M, denotes the payload of UAV £k, and 7 denotes the
fixed flight time of UAVs. We assume that each UAV offloads
tasks to a GBS while hovering in the air after completing the
position optimization. If UAVs offload tasks while flying, the
communication links between UAVs and GBSs would change
dynamically, which may lead to interruptions in task offloading
or failure to receiving the results [21].

B. The Communication Model

To avoid inter-UAV interference, orthogonal frequency divi-
sion multiplexing (OFDM) is adopted. Hence, the interference
among UAVs is effectively eliminated. The distance between
GBS n and UAV £ is represented by d, = |lc, — €xll,
where ||-|| denotes the Euclidean norm. Given that UAVs fly at
relatively high altitudes, the LoS channel is more predominant
compared with other channels, such as shadowing and small-
scale fading [38]. Hence, the LoS channel gain between GBS
n and UAV £ is modeled using the free-space path loss model
[39], which can be represented as gy, = Bod,;f;l, where Sy
denotes the channel gain measured at 1 meter, and «; is the
path loss exponent.

Thus, the SINR from GBS n to UAV k can be expressed as
Vien = pg%k’”, where o, = NoBin. No is the noise power

spectrum density. By, = % is the pre-allocated bandwidth
between GBS n and UAV £k, where B,, is the total bandwidth
of GBS n. p;; denotes the transmit power of UAV k. Therefore,
the transmission rate between UAV k and GBS n is

B,
Tk = 5 logy (1 + Yi,n)-)

Similarly, the transmission rate between UAV k and CS 7y, .
is denoted by

B.
The = 5= log2(1 + Vo))

Pkgk c

where Yk,ce = > Gk,c —BO kc s dk:c - ||Ck C(,6||7 K

is the pre- allocated bandwidth between UAV k and CS and

the bandwidth of CS is < B, €5 = [Z¢, Ye, 0] is the fixed
location of CS.

The above LoS/free-space and orthogonal-access assump-
tions simplify analysis and may bias absolute performance
estimates in real deployments. In particular: (i) ignoring shad-
owing, small-scale fading, and Doppler often overestimates
SINR and reduces temporal variance, leading to optimistic
(lower) delay and energy consumption; (ii) neglecting inter-
cell and inter-UAV interference may overstate the achievable
throughput, especially in dense deployments. A robustness ex-
tension with probabilistic LoS, log-normal shadowing/Rician
fading, and explicit interference modeling is left for future
work.

C. Computing Model and Energy Model

In the following, we analyze the latency and energy con-
sumption of our proposed system. After generating the task
I, UAV k determines whether to handle the task onboard
or offload it to edge or cloud computing resources. We denote
task processing at UAV k, the GBS n, and CS as p,; € {0,1},
tin € {0,1} and py . € {0,1}, respectively.

1) UAV Computing: The UAV’s processing latency and
energy consumption include the execution delay di; = fux,; %
and the energy consumption ey = rijug 1 Cr fi, where f is the
computing resource of UAV k and « is the effective switched
capacitance, with 2.5 < v < 3 [40].

2) GBS Computing: If the task I needs to offload to GBS
for processing, the processing delay and energy consumption
include the UAV’s transmission delay dj, = ju, nrk , the
UAV’s transmission energy consumption e?n = pkdzrn and
the GBS’s execution delay d”, = pk n fC where f;, i, is the
computing resource of GBS n pre allocated to UAV k.

3) Cloud Computing: Due to the powerful computing ca-
pacity of cloud servers, we ignore the computational latency
at the CS. In addition, the results of the computed task are
smaller than the task, hence, we ignore the downlink delay
for sending the results to the UAV. The delay and energy
consumption of cloud computing consist of the UAV’s trans-
mission delay df, = “kvcriﬂ; and the UAV’s transmission
energy consumption e;, = pkdffc

D. Problem Formulation

Since task [only can be processed locally, at GBS n or
at CS, the delay of UAV £k can be expressed as

N

dp = dify +) (A7 + dil) + dil + Ty, (6)
n=1

where 7, +0) indicates that if UAV k£ decides to change to

a now position to execute the task, it incurs an additional

flight time 7. Moreover, after completing the tasks, the energy

consumption of UAV k can be represented as follows

ek:ezﬁ—l—Zekn—l—ekc—l—eﬂy. @)

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Similar to [41], we adopt the weighted sum of energy
consumption and task latency as UAV £’s utility, that is
U, = widg + waeeg, where wy and wy denotes the relative
importance oof energy consumption and task delay. w; < wo
indicates the energy-saving scenarios, w; > wsy denotes the
delay sensitive scenarios. Due to the inconsistency in the value
ranges of delay and energy consumption, we normalize the
utility as follows to evaluate the impact of the weighting
factors.

€k

dy,
UTLO'I” — ,
k W1 ———— + Wo —k

1 maz
dk

(®)

where d}'** and Ej, are the maximum processing delay and
energy of UAV k. Then, each UAV needs to minimize U;°" by
optimizing the UAV £’s position ¢ and task offloading deci-

sion iy 1, e, n and g . We use m, = {ci, ik 15 fkons Mk e} tO
denote UAV £’s policy. Specifically, the optimization problem
can be formulated as follows

min UJ",Vk € K,

Tk

st. Cl: Mkl Bk,ny Bk,c S {07 1}7

N
C2: Mkl + Z Hk,n + Hk.c = 17

n=1

N
Z Hi,n < 17
n=1

dk S d;nawv Vka

T

Zek < Ej,

t=1

O S xk(t) S mmamao S yk(t) S ymaIaVk S IC,

(1), (2),(3),

C3:
C4:
C5:

6 :

CcT7:
©))
In the formulated problem, each UAV needs to find a policy
7, that maximizes the long-term cumulative expected reward.
We use m = {71, 7o, - , Tk } to represent the joint strategy of
all UAVs. Constraints C1, C2, and C3 denote the offloading
constraints. Constraint C'4 requires that the completion time of
task Ij can not exceed its corresponding threshold. Constraint
C’5 represents that the energy consumption during flight can
not exceed the battery energy. Constraints C'6 and C7 denote
the position and flight limitations of UAVs.

However, the above-stated problem has the following dif-
ficulties: 1) The decisions of each UAV not only depend on
its own decisions, but also on those of other UAVs; 2) To
compute the optimal solution for the previously mentioned
problem, UAV k needs to maximize its long-term cumulative
expected reward. However, optimizing the cumulative reward
for UAV £k relies on the joint actions of all UAVs. Therefore,
the above statement is in line with Nash equilibrium (NE). In
an NE, each UAV’s optimal strategy is its best response to the
decisions of all other UAVs.

III. THE MEAN FIELD ACTOR CRITIC (MFAC)
ALGORITHM FOR TASK OFFLOADING AND UAV POSITION
OPTIMIZATION

In this section, the above optimization problem is first
formulated as an MG in Section III-A. Then, a mean field
approximation approach is utilized to simplify the interaction
of the MG in Section III-B. Finally, considering the complex
environment of MEC environment, we propose a DRL-enabled
algorithm to solve the optimization problem in Section III-C.

A. MG Formulation

Since UAVs need to make task offloading and position
decisions to minimize their own cost based on other UAV’s
current actions, we formulate the optimization problem as an
MG as follows.

1) Definition of an MG: The K-player MG can be defined
as T = (S, { A}, {rx} 5., p,7), and each element can be
defined as follows

e State Space S: At time slot ¢, the state consists of
the coordinations of UAVs, the remaining energy e}°(¢),
the task size Si(t) and required CPU cycles Cy(t)
of task Ij. Then, the state can be written as s(t) =
{ex(t), e (t), Sk, Ck frek-

o Action Space Ay: Aj denotes the action space of
UAV k, and the joint action of UAVs is represent-
ed by a(t) = {ai(t),---,ax(t)}. Specifically, the
action space ap(t) of UAV k at time slot ¢ is
ap(t) = {/Lk,g(t), Mk,n s /ijc(t), I (1), O (t)} The feasible
ranges are: li(t) € [0, Lmaz), 0k(t) € [0,27), and
pii(t), pic(t) € 0,1. The flying angle at time ¢ is
discretized into [0,7/6,7/3,...,2r), and the flying dis-
tance into [0, Lymaz/6, Linax/3, - - -, Lmaz]. The one-hot
encoding technique is used for the action space, enabling
decision-making via deep neural networks.

e Reward Function rj: After taking action ax(t) at state
s(t), the immediate reward received by UAV k can
be defined as ri. Since our optimization objective is
to minimize the weighted cost of UAV k, we define
ri(s(t), an(t) = = 32—y UR (8).

o State transition probability p: UAV k selects action ay(t)
and receives a reward 7 (t), and the state s (t) transitions
to state si(t + 1). Therefore, the probability transition
p:Sx A X x A — p(S).

e Discount Factor ~v: v € [0,1) indicates the impact of
future rewards on the current decision.

2) NE Strategy: For an MG, an NE is a joint strategy under

which each UAV will not change its strategy if the other UAVs’
strategy do not change. Therefore, the NE can be represented

as ™= {my, w2, -+ , MK}, such that for UAV k
Ok (S, Ty T g) 2 Ok (S, Th, T), (10)
where 7, = (mi,--- ,Ti_q, s Mht1, -+ , M) denotes

the optimal strategies of UAVs except UAV k, vi(s) =
E. [, 7' E(rt)] is the value function of UAV k.

Since NE serves as the theoretical foundation for the con-
vergence of MARL algorithms, the authors in [42] proposed a

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[Environment
T Ok Ok aKT
v | v !

{ v y
(vavi) ... (Uz‘\V] [UAVK]

¥ :]
(_Replay Buffer)4% = Zak'
Mini BalchL]V;‘ &2

X .
o, GIT Koo, Oy Tk Ok

[UAVk

(Owa/c’ak”'/uolk)
(0,,a,)

Actor Network [™| Critic Network

(04,)V Qek (0. a,,a,)

Soft Update

Target Actor
Network

Soft Update

% Target Critic
Network
0, (0,.4,.a)

uonuN,| $SOT

Fig. 2. The architecture of the proposed algorithm.

Nash Q-learning algorithm to identify the NE and proved its
convergence. In this algorithm, the Q-function is updated as
follows

Qi (s,a) + Qfi(s,a)+a (R(s,a) +yup *"(s') — Q(s,a)).

1D
where v 2" (s') is the equilibrium value for the agent k under
state s’

B. A Mean-Field Learning Approach

In large-scale, partially observable UAV-MEC systems,
computing a Nash equilibrium is intractable. We therefore
approximate pairwise interactions by conditioning the critic
on the agents observation oy, its action ay, and the average
neighbor action ay = ﬁ Y oke N (k) Ok and the joint-action
critic admits the mean-field form (Appendix A, Theorem. 1)

Q(ox,a) ~ Q(ox,ay,ax),

which removes the linear dependence on the population size K
at the critic input (from M+ K P to M +2P) while preserving
decentralized execution. The mean-field Bellman update is
then

12)

Q(o}, ak,af) + (1 —=n)Q() +alry +yv*(s)], (13)

where Uk(s/) = Eak Wk(ak|8/, @k) E(—lk(a_k) [Q(Ok, ag, dk)]
Full derivations are provided in Appendix A.

C. The Whole Algorithm

Due to the strong representational ability of neural network,
we utilize neural networks to obtain an NE solution within
the mean field learning framework. The framework of the
proposed algorithm is shown in Fig. 2. To enhance decision-
making performance, we adopt the actor-critic reinforcement
learning framework, which builds upon traditional policy gra-
dient methods. Furthermore, target networks and experience
replay are integrated into the algorithm to reduce action-value
overestimation and promote more stable training. The whole

workflow of the proposed algorithm is described al follows:
in the actor part, an action is output based on the input
observation og(t). In the critic part, the Q value is computed
based on the input observation og(t), the action of agent k
and mean field action a(t).

1) Neural Network Initialization: UAV k trains its own
neural network independently. In this paper, the actor-critic
architecture is adopted to improve learning efficiency. The
actor is responsible for determining the action, and the critic
part responsible for calculating the value function.

2) Action Execution: The actor part consists of the actor
network and the target actor network. At time slot ¢, the UAV k
chooses action af, according to its policy 7y, which is generat-
ed by the actor network based on the observation o (t) and the
mean field action @ (t). The selected action determines UAV
k’s offloading strategy and movement strategy. Meanwhile, the
target actor network is updated to maximize the long-term
discounted cumulative reward, ensuring stable policy learning.
Furthermore, a Boltzmann action selection strategy is adopted
to select actions and can be denoted as

exp(ﬁQ}i(s, ag, ak))
Za;EA eXp(ﬂQz(S, a;w dk))’

where [is the temperature used to control the exploration rate.

3) Batch Data Collection: To enable the neural network to
obtain good strategies, the local observations, actions, mean
field action, and next states are recorded in batches for each
UAV. In this manner, each UAV can train its learning model
through minimizing its loss function.

4) Model Training: UAV k trains its individual learning
model. Given the adoption of the actor-critic architecture, the
loss function for the critic is

mr(akls, ax) = (14)

L(0y) = E[(Y} — Qo, (o}, al, ak))?), (15)

where
th = TZ J’_Zokﬂ-/tc(ok"s/a dk)Eak(a—k""Wik) [QZ(S/’ Ok’dk)} :

(16)
Furthermore, the gradient for the actor part is defined as

VL (wk) =F [Vwk IOg Twp (Oz)on (Olltcv Cﬁm L_ZZ)} .

The whole algorithm is shown in Algorithm 1.

a7

D. Complexity Analysis of the Mean Field Learning Approach

We compare the computational complexity of the multi-
agent actor-critic (MAAC) algorithm and the mean field actor-
critic (MFAC) algorithm by analyzing the structure of their
actor and critic networks. Specifically, the analysis focuses
on three components: the input layer, hidden layers, and the
output layer. For both algorithms, the actor and critic networks
are assumed to have the same L hidden layers with Z neurons
in each layer.

Let M denote the local observation dimension of each
agent, P denote the dimension of the action space, and K
denote the total number of agents.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Algorithm 1 MFAC algorithm for Task Offloading and Posi-
tion Optimization Problem

Require:
The parameters: episodes N,;, each episode length T,
batch size Npqien, soft update 7, and ai for all k£ €
{1,--,K}.
thresholds € 4,e¢c, patience P, warmup Uy, streak <
0, u<+0.
Ensure:
Optimal decisions A;, which include optimal task offload-
ing decision and bandwidth allocation decision decision;
Randomly initialize critic network)y and actor network
7, with parameters 6 and w, respectively;
Randomly initialize the target networks Q;/ and network
77;/ with 8’ + 0 and W' + w;
Randomly initialize mean field action ag;
1: for episode 0,1, , Nep; — 1 do
22 fort=0,1,---,T—1do

3: Select an action based on Boltzmann policy ax(t) =
o (0k(t),)
4; Execute action ag(¢) in the system, observe cost 7 ()

and the next state o (¢ + 1), and compute mean field
action ag(t);
5: Store transition (o (t), ar(t), ag(t), ri(t), op(t + 1))
in replay bufferR;
: Sample a Npq¢cn, from replay buffer R ;
7: Set y; = 1 + Qg (0i(t), ai(t),a;(t)), for i =

1,-+, Npatehs
8: Compute the critic:
L(Ok) = 52— X0 — Qo (01(0), as(t), @i (1)
9: Compute the actor policy using the gradient V,,J:
Vo J(Wk) ~ Nbitch ZZ log 7, (Oi)QQk (05, aﬁ, @5)
10: go < [[VoLll2, ga < Vw2
11: if go <ec or ga < e4 then
12: break
13: end if
14: Update target networks:
15: 0+ 710+ (1—71)0;
16: W Tw4 (1 —71)';
17: end for
18: end for

19: return 7/,

1) MAAC: For the actor network, each agent uses its local
observation (dimension M) to output an action (dimension
P). The network has L layers, and each hidden layer has Z
neurons. The computational complexity is: O(MZ + (L —
1)Z%+ PZ).

For the critic network, the input combines the agent’s
observation and the actions of all K agents, with a total
input size of M + K P. The computational complexity is
O(M+KP)Z+ (L-1)Z2%+ 2).

2) MFAC: The actor network in MFAC takes the local
observation of dimension M and the mean field action of
dimension P as input, its output is an action of dimension
P. Consequently, its complexity is given by O((M + P)Z +

TABLE II. Computational Complexity of the Algorithm

Algorithm | Actor Critic
MAAC O(MZ+(L-1)Z?+PZ) | O(M + KP)Z + (L —
122+ 2)
MFAC O(M + P)Z 4+ (L — | O(M + 2P)Z + (L —
1)Z2% + PZ) 122+ 2)

(L-1)Z%+ PZ2).

The critic network, however, differs significantly due to the
adoption of mean field approximation. Instead of using the full
joint action of all agents, the MFAC critic takes as input the lo-
cal observation (M), the agent’s own action (P), and the mean
action of its neighbors (P). This reduces the input dimension
from M + K P to M + 2P. Therefore, the complexity of the
critic network becomes O((M + 2P)Z + (L — 1)Z? + Z).

3) Comparison and Discussion: The key difference lies in
the critics input. In MAAC, the critic takes all agents actions,
resulting in an input size of O(K P). In contrast, MFAC uses
a mean action, reducing this to O(P). This greatly lowers the
input size and computational cost, especially when the number
of agents K is large. As a result, the input dimensionality of
the critic part is reduced from M+ K P to M +2P, yielding an
approximately K -fold reduction and becoming independent of
the agent population size compared with traditional MADRL
methods without changing the network structure. In summary,
MAAC relies on a centralized critic whose input concatenates
all agents actions, resulting in an M+K P critic input per
agent and degraded scalability. MFDQN injects mean-field
information into a value-based learner, but remains sensitive
to non-stationarity in multi-agent training. Our MFAC keeps
the benefits of mean-field aggregation while leveraging policy-
gradient updates and target networks; empirically this yields
more stable convergence and linear wall-clock scaling in K.
The complexity comparison is summarized in Table II.

IV. PERFORMANCE EVALUATION

This section presents the experimental evaluation using
Tensorflow 2.2 and Python 3.8 to demonstrate the effectiveness
of the proposed algorithm. The number of UAVs and GBSs are
set to 20 and 3, respectively. Specifically, UAVs are randomly
deployed in a square area of 1000m x 1000m, and the hight
of the UAVs is fixed at 100m.

In the MFAC algorithm, the simulation parameters include
a maximum elevation angle of 6, = 44.24°, allocated band-
widths By = 10M Hz, transmit powers p, = 0.2W and
pr = 1W, path loss exponents a; = g = 3, noise power
spectral density of Ng = —174dBm/Hz, and a channel gain
of By = —50dB. The computational capability of a UAV is
Fy, = 5Gceycles/s, and its payload capacity My, = 15kg. The
computational capability of CS is F. = 15Gcycles/s. Fur-
thermore, the task size is uniformly distributed in [100, 200]
kbits, and the required CPU cycles are uniformly distributed
in [5, 15] G-cycles. We adopt an actor-critic with a mean
field approximation of the joint action space. Specifically, the
actor’s input layer has 133 dimensions and consists of the
observation o of agent k and the mean field action. The

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE III. Network Parameters

Parameter Value
Maximum elevation angle 0, 44.24°
Allocated bandwidth between IIoT and UAV By 10 MHz
ﬁggza;z(rlvsrar}gxfih between UAV and 30 MHz
Transmit power of ID p;, 02 W
Transmit power of UAV py 1w

Path loss exponent o1 and oo 3

Noise power spectral density Ng -174 dBm/Hz
Channel gain with 1 meter distance SBo -50 dB

The hight of UAV hy 100 m

The horizontal movement range of UAV zj and yg 100 m, 100 m
Computational capability of UAV Fj, 5 G-cycles/s
Effective switched capacitance 10—27
Payload of UAV M} 15 kg
Computational capability of cloud server F, 15 G-cycles/s

numbers of neurons in each hidden layer are 1024, 512 and
256. We use ReLU as the activation function. The output is
a 128 dimensional discrete action. Similarly, the critic’s input
layer has 261 dimensions and consists of the observation oy,
the action ay, and the mean field action a,. The numbers
of neurons in the subsequent layers are 1024, 512, 256, and
128. The output of the critic network is state-action value
Q(og,ay,ar). The training process is conducted over 1000
episodes, with each episode consisting of 50 steps. A replay
buffer with a capacity of 1000 transitions is employed to store
agent experiences for off-policy learning. During each update,
a mini-batch of 128 samples is randomly drawn from the buffer
for parameter optimization. The actor network is trained with a
learning rate of a,, = 0.001, while the critic network is trained
with a learning rate of o, = 0.002, and the discount factor
is v = 0.95. We also adopt soft target updates for both actor
and critic at every gradient step with 7 = 0.002. Furthermore,
we employ a gradient-based stopping rule: after a warm-up of
Umin = 50000 updates, training is stopped once the /2 norms
of the actor and critic gradients satisfy g4 = ||V, J|l2 < 1073
and gc = ||[VeL|2 < 5 x 1073, The parameter settings are
summarized in Table III. Unless explicitly stated otherwise, all
parameters not being swept in a figure are fixed to the values
in Table III.

To evaluate the performance of our proposed algorithm,
we conduct the following benchmark solutions.

e The FUPC scheme, unlike the proposed method, only
optimizes task offloading under a fixed UAV position,
in this scheme, we assume all the UAVs are uniformly
distributed with the square [11].

o The MAAC scheme, similar to the proposed algorithm,
involves agents making decisions based on the actions of
others, with policy gradient methods adapted for discrete
action spaces [23].

o The MFDQN scheme integrates MFT into DQN, allow-
ing each agent to use the mean field approximation of its
neighbors’ actions instead of considering their individual
actions [29].

o The SWA: First, with UAV positions fixed, each UAV

——The proposed I
---------- MFDQN
- - -MAAC

0 200 400 600 800
Episodes

1000

Fig. 3. The convergence performance.

150

Il The proposed ‘ ‘ =
I MFDQN
= |[EEMAAC
E1o0}
L
E
=
=T)]
A=)
= L
'E 50
}
H
0 =
5 10 15 20 25
Number of UAVs

Fig. 4. Training time vs. number of UAVs.

chooses local/GBS/cloud execution by minimizing a
SINR-based surrogate of the weighted energy-delay cost
(rate estimated from the current SINR). Then, keeping
the offloading decisions fixed, each UAV slightly adjusts
its heading and step length subject to inter-UAV distance
and elevation-angle constraints [43], [44].

Fig. 3 compares the convergence performance of MFAC,
MAAC and MFDQN algorithms. As can be seen from the
figure, the three algorithms all can converge, and the proposed
MFAC algorithm achieves an 80% and a 60% reduction in the
number of episodes required to reach convergence compared
with MAAC and MFDQN algorithms, respectively. This is
primarily because the mean field approximation in MFAC
simplifies each agents learning problem by replacing interac-
tions with all other agents by an aggregated mean action. As
a result, the neural network’s input dimensionality is signif-
icantly reduced, thereby lowering computational complexity
and accelerating convergence. Second, MFAC outperforms
MFDQN in convergence speed not only due to reduced input
complexity, but also to fundamental differences in algorithmic
structure. While MFDQN integrates mean field information
into the Q-function, it still requires the Q-network to adapt to
the evolving action distributions of neighboring agents. This
introduces greater learning complexity and increases sensitiv-
ity to non-stationarity, as the underlying policy dynamics of
other agents continuously shift during training. In contrast,
MFAC directly applies mean field approximation within the

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

—&—The proposed

—=—MFDQN
MAAC

——SWA

Z06 —T_FUPC Zz
E Z0s
U U
_ 03 S04
0.4 03
0.3 02
10 15 20 25 30 35 40 10 20

GBS computational capability (Gceycles/s)

(@) wy = 0.1, wy = 0.9

GBS computational capability (Gceycles/s)

(D) wy =0.5,wy =05

0.8
—6—The proposed —&—The proposed
—=—MFDQN 07 —=—MFDQN
MAAC : MAAC
——SWA ——SWA
——FUPC 506 —+—FUPC
N
505
S
0.4
0.3
0.2
30 40 10 20 30 40

GBS computational capability (Gceycles/s)

(€) wy =0.9,wy =0.1

Fig. 5. Delay vs. GBS computational capability.

N
]

-

=)

wn

/

Energy consumption (J)

s s

=5 =6

£]

g ¥

2, 9

£4 ES

s =

w w

= =

S3 Sy

: —e—The proposed e

& 1 —s—MFDQN EJS

g 2 MAAC 2 34

& ——SWA 5
1 | —v—FUPC) |
10 20 30 40 10 20

GBS computational capability (Gceycles/s)

() wy; = 0.1, wy = 0.9

GBS computational capability (Gceycles/s)

() wy =0.5wy =05

—6—The proposed 4 —6—The proposed
—=—MFDQN [—=—MFDQN
MAAC 3 MAAC
——SWA ——SWA
——FUPC 2 | —¥_FUPC
30 40 10 20 30 40

GBS computational capability (Geycles/s)

(C) wy = 0.9, wg = 0.1

Fig. 6. Energy consumption vs. GBS computational capability.

actor-critic framework, allowing each agent to optimize its
policy based only on local observations and the average
behavior of others. This design enables scalability with respect
to the number of agents and promotes greater learning stability.
Furthermore, MFAC benefits from the inherent advantages of
policy gradient methods, which often yield more stable con-
vergence in multi-agent environments compared with value-
based approaches such as DQN. Third, after convergence, the
proposed algorithm achieves a higher reward compared with
MAAC and MFDQN algorithms. This is primarily attributed
to the use of mean field approximation, which enables scalable
and stable policy learning by reducing the dependence on high-
dimensional joint action spaces. Moreover, the actor-critic
structure of MFAC, combined with policy gradient updates,
facilitates better convergence to near-optimal strategies in
large-scale multi-agent settings.

Fig. 4 compares the training time of MFDQN, MAAC,
and MFAC algorithms with different numbers of UAVs. As
can be seen from the figure, first, the training time of both
MFAC and MFDQN increases approximately linearly with
the number of UAVs, and the training time of MFDQN is
slightly higher than that of MFAC. Second, the training time
of the MAAC algorithm grows significantly with the number
of agents and incurs the highest computational cost among
the three methods. For example, when the number of UAVs
is 25, the training time of MFAC achieves reductions of
10% and 70% compared with MFDQN and MFAC. This
phenomenon can be explained as follows. In MFAC and
MFDQN, the use of mean field approximation decouples the

dependency on the joint agent actions, resulting in fixed-
size network inputs for each agent. Consequently, the overall
computational complexity scales linearly with the number of
agents. Although both methods benefit from this scalability,
MFDQN typically requires more training time than MFAC due
to the greater instability and learning complexity associated
with value-based methods, which often need more updates and
longer convergence periods compared with actorCcritic meth-
ods. In contrast, MAAC requires each agent’s critic network
to process the full joint observation and action space, whose
dimensionality increases with the number of agents. This
leads to significantly higher computational demands for policy
learning and results in slower convergence as the network must
explore a much larger input space.

Figs. 5 and 6 compare the delay and energy consumption
under varying GBS computational capabilities and different
weighted coefficients. As can be seen from the figures, on
the one hand, as the GBS computational capability increas-
es, delay decreases and energy consumption increases under
the four solutions. On the other hand, the MFAC algorithm
achieves the lowest delay and energy consumption, while
FUPC has the highest delay and energy consumption for a
fix GBS computational capability. For example, with a GBS
computational capability of 10 Gceycles/s, MFAC achieves
delay reductions of 8%, 14%, 15.5% and 17.7% compared
with MFDQN, MAAC, SWA and FUPC. Furthermore, MFAC
achieves energy consumption reductions of 25%, 37.5%, 42%
and 46% compared with MFDQN, MAAC, SWA and FUPC.
The reasons behind this phenomenon are that, first, stronger

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

1.2¢ 1.1
11§ 11 1
1 0.9 _
z z O
P \\ 08 £
D D D
|08 —©—The proposed _ 0.7 |~ The proposed = —6—The proposed
—=—MFDQN —=—MFDQN 0.6 |—=—MFDQN
0.7 |+~ maac 0.6 | Maac MAAC
——SWA - [——SwaA ——SWA
0.6| < pupc 0.5 IZZoFURC 0.4 ZZ=FUPC
80 120 160 200 240 80 120 160 200 240 80 120 160 200 240
GBS bandwidth (MHz) GBS bandwidth (MHz) GBS bandwidth (MHz)
(@) wy; = 0.1, wy = 0.9 (B) wy =0.5,wy =05 (C) wy =0.9,wy =0.1
Fig. 7. Delay vs. GBS bandwidth.
4 4.5 5
- —O—The proposed - —O—The proposed . —O—The proposed
= ——MFDQN) 4 —o—MFDQN 34.5 ——MFDQN
=35 MAAC = MAAC = MAAC
£ ——SWA £ ——SWA £ ——SWA
= ——FUPC 23.5 —7—FUPC s 4 —v—FUPC
= : :
g 25 E 3 é 35
o 225 s 3
Es &6 &6
3 2 3 3
= = 2 =25
= = =
1.5 1.5 2
80 120 160 200 240 80 120 160 200 240 80 120 160 200 240
GBS bandwidth (MHz) GBS bandwidth (MHz) GBS bandwidth (MHz)

(a) wy = 0.1, wg = 0.9

() wy =0.5wy =05

(C) wy = 0.9, wg = 0.1

Fig. 8. Energy consumption vs. GBS bandwidth.

edge computing encourages more task offloading and triggers
more aggressive repositioning and uplink transmissions. Al-
though each transmission is faster, the cumulative flight and
transmission energy grow, leading to higher overall energy
cost. Second, in the FUPC method, UAVs operate under static
deployment without adapting their positions to task demand
or channel conditions, leading to inefficient communication
links, longer transmission delays, and unbalanced resource
usage. Static UAV positioning limits the system’s ability
to optimize link quality and workload distribution, which
ultimately results in poor task offloading performance. SWA
method adopts a greedy SINR-based association followed by
local position adjustment, ignoring the energy-delay trade-
off and lacking coordination among UAVs. This makes it
prone to congestion and constraint conflicts, ultimately leading
to higher delay and energy consumption. MFDQN adopts
mean field approximation, with value-based updates making
it more sensitive to non-stationarity. MAAC depends on a
centralized critic whose input dimension grows linearly with
the number of UAVs, which degrades stability as K increases.
The MFAC integrates mean field theory with the actor-critic
architecture, allowing each agent to make decisions based
on the average behavior of others in a scalable manner. By
leveraging this approximation, the MFAC algorithm effectively
captures the interactions among agents while significantly
reducing computational complexity. Consequently, it enables
more efficient allocation of communication and computational
resources, leading to improved energy efficiency and lower
task latency, while satisfying delay constraints.

Furthermore, it can be observed that for any scheme, as w;
increases, and ws decreases, with the computational capability
of UAVs fixed, the delay shows a downward trend, indicating
that the system prioritizes lower task delay under higher delay
weights. Meanwhile, energy consumption gradually rises be-
cause energy consumption optimization is given lower priority.
These results clearly illustrate the trade-off between energy
consumption and delay, with the magnitude and rate of change
varying across different optimization schemes, reflecting their
respective adaptability and effectiveness under dynamically
adjusted weights.

As can be seen from Figs. 7 and Fig. 8, on the one hand,
increasing the bandwidth of the GBSs leads to a reduction
in delay and energy consumption. On the other hand, under
the same bandwidth, the MFAC algorithm achieves the lowest
delay and energy consumption, whereas the FUPC scheme
achieves the highest. For example, with a GBS bandwidth of
80 MHz, the delay of MFAC achieves a reduction of 10%,
14%, 16.7% and 19.6% compared with MFDQN, MAAC,
SWA and FUPC. Furthermore, MFAC achieves energy con-
sumption reductions of 9.6%, 20%, 22% and 28% compared
with MFDQN, MAAC, SWA and FUPC. The reasons be-
hind this phenomenon are as follows, first, as the available
bandwidth increases, the transmission rate rises. A higher rate
shortens the end-to-end task delay. A shorter transmission
time also reduces transmission energy. Second, in MFAC, task
offloading and position decisions are jointly optimized using
a mean field approximation, MFAC accounts for the influence
of neighbors, and avoids the input dimensionality increasing

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

—O—The proposed 2 —O0—The proposed 1.6 [—0—The proposed
—o—MFDQN —o—MFDQN —o—MFDQN
MAAC MAAC 1.4
—0—SWA —0—SWA
215 |—rure 5 115 |=—Fupc 212
> > =
) =)
= s 3 14
a l§ a 1) =]
0.8
0.6
0.5 0.5
15 20 25 30 15 20 25 30 15 20 25 30
Number of UAVs Number of UAVs Number of UAVs
(@) wy; = 0.1, wy = 0.9 (b) wy = 0.5, wy =0.5 (C) wy =0.9,wy =0.1
Fig. 9. Delay vs. number of UAVs.
7.5 8 8.5
S 7 S5 S 4
g g s
£ 6.5 £ 7 €75
£ £ £
5 6 565 s 7 /o
£ £ £
s55 s 6 S 6.5
;‘ —O—The proposed < —O—The proposed : B —O0—The proposed
& 5 —o—MFDQN @5.5 —o—MFDQN B —o—MFDQN
e MAAC 2 MAAC 2 MAAC
545 —0—SWA = 3 ——SWA =55 —swa
4 —7—FUPC 45 ——FUPC - —v—FUPC
15 20 25 30 “15 20 25 30 15 20 25 30
Number of UAVs Number of UAVs Number of UAVs

(@) wy; = 0.1, wy = 0.9

(b) wy =0.5.wy = 0.5

(C) wy = 0.9, wy = 0.1

Fig. 10. Energy consumption vs. number of UAVs.

with the number of agents, thereby enabling decisions that
achieve the lowest delay and energy consumption. MFDQN
incorporates mean-field approximation but uses a value-based
update, which is more sensitive to nonstationary in multi-
agent systems and thus suffers larger estimation bias. As a
result, its overall performance is worse than MFAC. Nev-
ertheless, because it leverages mean-field approximation, it
outperforms MAAC. SWA tends to associate many UAVs with
a few high-SINR GBSs, causing contention for computing
resources; despite high per-link rates, the overall execution
delay becomes longer. Meanwhile, SWA only performs local
position adjustments and lacks multi-UAV coordination under
geometric constraints, which increases mobility energy and
degrades link quality. By contrast, learning-based methods
adaptively balance load under dynamic environments, thus
achieving lower delay and energy under the same bandwidth.
In the FUPC method, UAVs operate with fixed positions,
which prevents them from dynamically responding to varia-
tions in task distribution, channel quality, and network load.
As a result, tasks may be offloaded inefficiently, leading to
longer transmission distances, increased queuing delays, and
suboptimal use of computational resources. Furthermore, it can
be observed that for any scheme, as w; increases, and w2
decreases, with the GBS bandwidth fixed, the delay shows a
downward trend, indicating that the system prioritizes lower
task delay under higher delay weights. Meanwhile, energy
consumption gradually rises because energy consumption op-
timization is given lower priority.

In Figs. 9 and 10, we compare the delay and energy

consumption under different number of UAVs and different
weighting coefficients. As can be seen from the figures, as
the number of UAVs increases, MFAC achieves the lowest
delay and energy consumption, and FUPC achieves the highest
energy consumption and delay. For example, when the number
of UAVs is 15, MFAC achieves delay reductions of 6%,
22%, 33%, and 36% compared with MFDQN, MAAC, SWA,
and FUPC. Furthermore, MFAC achieves energy-consumption
reductions of 10%, 19.6%, 22.4%, and 25% compared with
MFDQN, MAAC, SWA, and FUPC. The reasons behind this
phenomenon are that, first, when more UAVs are present,
the transmission rate per UAV decreases. The slower rate
increases transmission delay, and the longer delay increases
energy consumption. Second, MFAC utilizes mean field ap-
proximation within the actor-critic framework, enabling each
UAV to make decisions based on local observations and the
average behavior of others. This leads to highly efficient and
scalable resource allocation, especially as the number of UAVs
increases. MAAC, while effective in small-scale settings due
to its centralized critic structure, suffers from scalability issues
as it requires modeling the joint action space, resulting in
increased training complexity and degraded performance in
larger networks. MFDQN partially mitigates this issue by
employing value-based learning with mean field approxima-
tion, but its reliance on Q-learning makes it more sensitive to
non-stationarity and less stable during training. SWA ignores
multi-UAV coordination and does not balance the trade-off
between energy and delay. As a result, it tends to attach many
UAVs to a few high-SINR GBSs, causing compute-resource

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

257,

—O—The proposed

—o—MFDQN

| MAAC
—0—SWA

—v—FUPC

Delay (s)
[
9]

0.5
100

140 160

120
Different UAV altitude (m)

10,

—O—The proposed
—o—MFDQN

9 [l-2-MAAC
—0—SWA
H=v—FUPC

Energy consumption (J)

140 160

120
Different UAV altitude (m)

100

Fig. 11. Delay and Energy consumption vs. different UAV altitude.

1000

* GBS

600 4

¥ (m)

400 4

A4 P

—

0

0 200 400 600 800 1000
X (m)

Fig. 12. The trajectory of 20 UAVs.

congestion and conflicts with geometric constraints, which in
turn leads to higher execution latency and energy consumption.
FUPC, which assumes fixed UAV positions and lacks adaptive
learning or coordination mechanisms, is unable to dynamically
adjust to changing task loads or network conditions. As a
result, it demonstrates the worst performance in terms of both
energy consumption and delay, particularly as the number of
UAVs increases and resource contention intensifies.

In addition to the LoS baseline, we include a Rician-
fading model where each link gain is gy, = Bo d,;‘:; [Pk %

K j 1
h’kﬂl = meﬂ¢k,n + "1

K-factor, ¢y, ~ U[0,2r), and Ay, ~ CN(0,1), and we
examine the impact of UAV altitude by sweeping hj over a
representative range while keeping all other parameters fixed,
and report the resulting delay and energy consumption under
both channel models. As can be seen from Fig. 11, as the
UAV flies higher, the link distance to ground stations becomes
longer. This increases path loss, which lowers the signal to
noise ratio. A lower signal to noise ratio leads to a lower data
rate, so the same amount of data takes more time to transmit.
The longer transmission time raises the overall delay. Energy
consumption also increases. Transmit energy grows with the

iLkm, where K is the Rician

time spent sending data, and UAVs may need to use more
power to maintain a reliable link. In some cases, the UAV
system shifts more tasks to local computing to meet latency
constraints when the link is poor, which adds computing
energy. Higher altitude can also expose the UAV to more LoS
interference from other UAVs, further reducing the effective
link and amplifying the increase in both delay and energy
consumption.

As shown in the Fig. 12, the learned trajectories exhibit
three consistent properties: first, UAVs autonomously migrate
toward high-SINR regions and nearby GBSs, shortening links
and reducing path loss, thereby markedly lowering end-to-end
latency and communication energy. Second, the mean-field
policy encourages spatial dispersion by referencing neighbors
average behavior, avoiding crowding at any single base station
while improving resource utilization and system throughput.
Third, trajectories progressively settle into stable dwell points
with substantially reduced oscillation in later stages, demon-
strating good convergence and training stability, with greater
robustness to bandwidth and load perturbations.

V. CONCLUSION

In this paper, we investigated the task offloading and
UAV position optimization in UAV networks. By integrating
mean field approximation and MADRL, we developed a low-
complexity MFAC algorithm for task offloading and position
optimization in large-scale UAV networks. The representation
capability of mean field theory, combined with the adaptability
of DRL in handling uncertain and dynamic environments,
enables the proposed algorithm to make robust decisions
in large-scale UAV networks. Numerical results show the
effectiveness of the proposed scheme. MFAC outperforms
the MFDQN, MAAC and FUPC schemes with respect to
convergence performance, training time, energy consumption
and delay. The results highlight the decision-making efficiency
of MFAC, positioning it as an effective approach for task
offloading in large-scale UAV-assisted networks. In our future
work, we will focus on the following potential directions. First,
we aim to extend the current framework to heterogeneous UAV

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

scenarios with different computing and communication capa-
bilities. Second, incorporating advanced reflected intelligent
surface (RIS) and fluid antenna (FA) would further enhance
resource utilization in large-scale UAV networks. Third, we
will investigate three-dimensional UAV position optimization
and incorporate the effects of downlink transmission on system
latency and energy consumption. Lastly, we intend to carry
out real-world deployments to further assess the feasibility
and applicability of the proposed approach in practical UAV
networks.

APPENDIX A
MEAN-FIELD APPROXIMATION

A. Preliminaries

We consider the K-player Markov game with local obser-
vations oy, joint action a, and value

vg(s) =E, Z’ytri =

(A.1)
D> ru(s(t). al) w(s(t). a()
t a(t)
Thus,
vE(s(0) = maxEn, | Qu, (s(0),a(1)] . (A2)
with

Q‘n’ik(s(t)va(t)) =
Er-, [Tk((t),

+WZ

s(t+1)
(A3)

Variable Q+ (s(t),a(t)) represents the marginal value for
selecting action ay(t) at state s(t) by UAV k. Due to each
UAV only can obtain local information of the system to make
decisions. Thus, we use og(t) to replace s(t).

B. Pairwise Factorization and Mean-Field Action

Calculating the Q-function Q7 (ox(t),a(t)) depends on
the joint action a(t) of all UAVs, however, UAV k can not
obtain other UAVs’ actions a_j(t), and with the increasing
of UAVs, learning standard Q-function Q- (o (t),a(t)) be-
comes infeasible due to the large action space of joint action.
To address this issue, we use pairwise local interaction to
factorized the Q-function Q7 (ox(t),a(t)) as

Qﬂ' “ (Oka Z Qﬂ' Oka aka ak/) (A4)
k'eN (k)
where the mean action aj, = w >, af, and af, = a} +
fafc)k,.
Theorem 1 (Mean-field approximation): The Q-function

Qx=, (0},a") of TV n can be approximated by mean field
action aj, and action af, i..,

s(t+1)Is(t), a(t)) v(s(t+1)) .

Qr= (0}, a") = Qn= (0}, aj, aj).

To facilitate understanding, interested readers are referred
to the similar proof presented in [26], [45]-[47]. Thus, with
the aid of pairwise interaction and mean field approximation,
the Q-+ (0}, a’) can be approximated by Q- (o}, a},,a}).

(AS)

C. Mean-Field Bellman Update
Using (A.5), the mean-field critic update is

(1= n) Q(o}, a, ay) + a (rf, + v v(s))
(A7)

Q(Oka alw ak)

where

= Zﬂltc(ak‘slvdk) E(’Lk(a,k)wﬂt_k [Q(Ogm afl‘/cv (_17];)] .
o (A8)

REFERENCES

[1] H. Xu et al., “A Survey on UAV Applications in Smart City Man-
agement: Challenges, Advances, and Opportunities,” IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens., vol. 16, pp. 8982-9010, Sep. 2023.
Z. Zhou, Y. Tian, J. Xiong, J. Ma and C. Peng, “Blockchain-Enabled
Secure and Trusted Federated Data Sharing in IIoT,” IEEE Trans. Ind.
Informat., vol. 19, no. 5, pp. 6669-6681, May 2023.

[3] X. Zhang et al., “A Data Trading Scheme With Efficient Data Usage
Control for Industrial I0T,” IEEE Trans. Ind. Informat., vol. 18, no. 7,
pp. 4456-4465, Jul. 2022.

[4] Y. Wang et al., “Task Offloading for Post-Disaster Rescue in Unmanned
Aerial Vehicles Networks,” IEEE/ACM Trans. Netw., vol. 30, no. 4, pp.
1525-1539, Aug. 2022.

[5] H. Gu, L. Zhao, Z. Han, G. Zheng and S. Song, “Al-Enhanced
Cloud-Edge-Terminal Collaborative Network: Survey, Applications,
and Future Directions,” IEEE Commun. Surveys Tuts., vol. 26, no. 2,
pp. 1322-1385, 2ndquarter 2024.

[6] Z. Ning et al., “Mobile Edge Computing and Machine Learning in
the Internet of Unmanned Aerial Vehicles: A Survey”, ACM Comput.
Surv., vol. 56, no. 1, pp. 1-31, Jan. 2024.

[7]1 E. Khoramnejad, A. Syed, W. Sean Kennedy and M. Erol-Kantarci,

“Energy and Delay Aware General Task Dependent Offloading in UAV-

Aided Smart Farms,” IEEE Trans. Netw. Serv. Manag., vol. 21, no. 5,

pp. 5033-5048, Oct. 2024.

G. Sun et al., “Joint Task Offloading and Resource Allocation in Aerial-

Terrestrial UAV Networks With Edge and Fog Computing for Post-

Disaster Rescue,” IEEE Trans. Mobile Comput., vol. 23, no. 9, pp.

8582-8600, Sept. 2024.

[9] H. He, X. Yang, F. Huang, H. Shen and H. Tian, “Enhancing QoE
in Large-Scale U-MEC Networks via Joint Optimization of Task
Offloading and UAV Trajectories,” IEEE Internet Things J., vol. 11,
no. 21, pp. 35710-35723, Nov. 2024.

[10] Z. Chen, Y. Yang, J. Xu, Y. Chen and J. Huang, “Task Offloading

and Resource Pricing Based on Game Theory in UAV-Assisted Edge

Computing,” IEEE Trans. Serv. Comput., vol. 18, no. 1, pp. 440-452,

Jan. 2025.

Y. Chen, J. Zhao, Y. Wu, J. Huang and X. S. Shen, “Multi-User Task

Offloading in UAV-Assisted LEO Satellite Edge Computing: A Game-

Theoretic Approach,” IEEE Trans. Mobile Comput., vol. 24, no. 1, pp.

363-378, Jan. 2025.

[12] Z. Kuang, H. Wang, J. Li and F. Hou, “Utility-Aware UAV Deployment
and Task Offloading in Multi-UAV Edge Computing Networks,” IEEE
Internet Things J., vol. 11, no. 8, pp. 14755-14770, Apr. 2024.

[13] M. Landers and A. Doryab, “Deep Reinforcement Learning Verifica-
tion: A Survey”, ACM Comput. Surv., vol. 55, no. 14, pp. 1-31, Jul.
2023.

[14] L. Jia et al., “Game Theory and Reinforcement Learning for Anti-
Jamming Defense in Wireless Communications: Current Research,
Challenges, and Solutions,” IEEE Commun. Surv. Tutor., vol. 27, no.
3, pp. 1798-1838, Jun. 2025.

2

—

[8

—_

[11]

JOURNAL OF KIgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

N. C. Luong et al., “Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133-3174, 4thquarter 2019.

H. Hao, C. Xu, W. Zhang, S. Yang and G. -M. Muntean, “Joint Task
Offloading, Resource Allocation, and Trajectory Design for Multi-UAV
Cooperative Edge Computing With Task Priority,” IEEE Trans. Mobile
Comput., vol. 23, no. 9, pp. 8649-8663, Sep. 2024.

J. Zhang, G. Zhang, X. Wang, X. Zhao, P. Yuan and H. Jin, “UAV-
Assisted Task Offloading in Edge Computing,” IEEE Internet Things
J., vol. 12, no. 5, pp. 5559-5574, Mar. 2025.

C. Liu, Y. Zhong, R. Wu, S. Ren, S. Du and B. Guo, “Deep Rein-
forcement Learning Based 3D-Trajectory Design and Task Offloading
in UAV-Enabled MEC System,” IEEE Trans. Veh. Technol., vol. 74,
no. 2, pp. 3185-3195, Feb. 2025.

H. Chen, H. Cui, J. Wang, P. Cao, Y. He and M. Guizani, “Computation
Offloading Optimization for UAV-Based Cloud-Edge Collaborative
Task Scheduling Strategy,” IEEE Trans. Cogn. Commun. Netw., early
access, doi: 10.1109/TCCN.2025.3544822.

X. Wang et al., “Deep Reinforcement Learning: A Survey,” IEEE
Trans. Neural Netw. Learn. Syst.., vol. 35, no. 4, pp. 5064-5078, Apr.
2024.

J. Li et al., “A Learning-Based Stochastic Game for Energy Efficient
Optimization of UAV Trajectory and Task Offloading in Space/Aerial
Edge Computing,” IEEE Trans. Veh. Technol., vol. 74, no. 6, pp. 9717-
9733, Jun. 2025.

M. Hevesli, A. M. Seid, A. Erbad and M. Abdallah, “Multi-Agent DRL
for Queue-Aware Task Offloading in Hierarchical MEC-Enabled Air-
Ground Networks,” IEEE Trans. Cog. Commun. Netw., early access,
doi: 10.1109/TCCN.2025.3555440.

Z. Gao, J. Fu, Z. Jing, Y. Dai and L. Yang, “MOIPC-MAAC:
Communication-Assisted Multiobjective MARL for Trajectory Plan-
ning and Task Offloading in Multi-UAV-Assisted MEC,” IEEE Internet
Things J., vol. 11, no. 10, pp. 18483-18502, May 2024.

X. Li, X. Du, N. Zhao and X. Wang, “Computing Over the Sky: Joint
UAV Trajectory and Task Offloading Scheme Based on Optimization-
Embedding Multi-Agent Deep Reinforcement Learning,” IEEE Trans.
Commun., vol. 72, no. 3, pp. 1355-1369, Mar. 2024.

K. Li, Y. Hu, J. Wang, L. Li, S. Zhang and G. Luo, “Task Pri-
oritization in Multiagent Environments: A Novel Approach Using
Nash Q-Learning,” IEEE Trans. Consum. Electron., early access, doi:
10.1109/TCE.2025.3542833.

Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean
field multi-agent reinforcement learning,” in Proc. Mach. Learn. Res.
(ICML)., Jul. 2018, pp. 5567-5576.

Y. Xu, L. Zheng, X. Wu, Y. Tang, W. Liu and D. Sun, “Joint Resource
Allocation for UAV-Assisted V2X Communication With Mean Field
Multi-Agent Reinforcement Learning,” IEEE Trans. Veh. Technol., vol.
74, no. 1, pp. 1209-1223, Jan. 2025.

Z. Gao, G. Wang, L. Yang and Y. Dai, “Transfer Learning for
Joint Trajectory Control and Task Offloading in Large-scale Partially
Observable UAV-Assisted MEC,” IEEE Trans. Mobile Comput., early
access, doi: 10.1109/TMC.2025.3579748.

F. Song, Z. Wang, J. Li, L. Shi, W. Chen, S. Jin, “Dynamic Trajectory
and Power Control in Ultra-Dense UAV Networks: A Mean-Field
Reinforcement Learning Approach”, arXiv:2411.14052.

S. Akter, D. Van Anh Duong and S. Yoon, “Joint Optimization of
AAV Trajectory, Task Offloading, and Resource Allocation in AAV-
Aided Emergency Response Operations,” IEEE Internet Things J., vol.
12, no. 12, pp. 21944-21959, Jun. 2025.

M. Wu, H. Wu, W. Lu, L. Guo, I. Lee and A. Jamalipour, “Security-
Aware Designs of Multi-UAV Deployment, Task Offloading and Ser-
vice Placement in Edge Computing Networks,” IEEE Trans. Mobile
Comput., doi: 10.1109/TMC.2025.3574061.

S. Shakoor, Z. Kaleem, D.-T. Do, O. A. Dobre, and A. Jamalipour,
“Joint optimization of UAV 3D placement and path loss factor for
energy efficient maximal coverage,” IEEE Internet Things J., vol. 8,
no. 12, pp. 9776-9786, Jun. 2021.

L. Zhang and N. Ansari, “Approximate algorithms for 3-D placement
of IBFD enabled drone-mounted base stations,” IEEE Trans. Veh.
Technol., vol. 68, no. 8, pp. 7715-7722, Aug. 2019.

J. Tian, D. Wang, H. Zhang and D. Wu, “Service Satisfaction-
Oriented Task Offloading and UAV Scheduling in UAV-Enabled MEC
Networks,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8949-
8964, Dec. 2023.

L. Huang, S. Bi, and Y. -J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581-2593, Nov. 2020.

Y. Zeng, S. Chen, J. Li, Y. Cui and J. Du, “Online Optimization in UAV-
Enabled MEC System: Minimizing Long-Term Energy Consumption
Under Adapting to Heterogeneous Demands,” IEEE Internet Things J.,
vol. 11, no. 19, pp. 32143-32159, Oct. 2024.

Y. Zeng and R. Zhang, “Energy-Efficient UAV Communication With
Trajectory Optimization,” IEEE Trans. Wireless Commun., vol. 16, no.
6, pp. 3747-3760, Jun. 2017.

J. Ji, K. Zhu, C. Yi, and D. Niyato, “Energy consumption minimiza-
tion in UAV-assisted mobile-edge computing systems: Joint resource
allocation and trajectory design,” IEEE Internet Things J., vol. 8, no.
10, pp. 8570-8584, May 2021.

D. Yang, Q. Wu, Y. Zeng, and R. Zhang, “Energy trade-off in
ground-to-UAV communication via trajectory design,” IEEE Trans.
Veh. Technol., vol. 67, no. 7, pp. 6721-6726, Jul. 2018.

S. Guo, J. Liu, Y. Yang, B. Xiao and Z. Li, “Energy-Efficient Dynamic
Computation Offloading and Cooperative Task Scheduling in Mobile
Cloud Computing,” I[EEE Trans. Mob. Comput., vol. 18, no. 2, pp.
319-333, Feb. 2019.

Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and
resource allocation in UAV-enabled mobile edge computing,” IEEE
Internet Things J., vol. 7, no. 4, pp. 3147-3159, Apr. 2020.

J. Hu and M. P. Wellman, “Nash Q-Learning for General-Sum Stochas-
tic Games”, J. Mach. Learn. Res., vol. 4, pp. 1039-1069, Nov. 2003.
X. Meng, W. Wang, Y. Wang, V. K. N. Lau, and Z. Zhang, “Closed-
form delay-optimal computation offloading in mobile edge computing
systems,” IEEE Trans. Wireless Commun., vol. 18, no. 10, pp. 4653-
4667, Oct. 2019.

Y. Wang, M. Kong, G. Zhang, W. Wang, T. Nakachi and J. Liou,
“Adaptive Task Offloading for Mobile Edge Computing With Forecast
Information,” IEEE Trans. Veh. Technol., vol. 74, no. 3, pp. 4132-4147,
Mar. 2025.

X. Wang, Z. Ning, L. Guo, S. Guo, X. Gao and G. Wang, “Mean-Field
Learning for Edge Computing in Mobile Blockchain Networks,” IEEE
Trans. Mobile Comput., vol. 22, no. 10, pp. 5978-5994, Oct. 2023.
G. Wu, H. Wang, H. Zhang, Y. Shen, S. Shen and S. Yu, “Mean-
Field Game-Based Task-Offloaded Load Balance for Industrial Mobile
Edge Computing Systems Using Software-Defined Networking,” IEEE
Trans. Mobile Comput., vol. 23, no. 12, pp. 13773-13786, Dec. 2024.
Z.Zhang, L. Lu, Q. Li, Y. Chai, D. Wu and Y. Zhang, “Joint Al Service
Placement, Task Scheduling, and Resource Allocation for IoT in 6G
Networks,” IEEE Internet Things J., vol. 12, no. 18, pp. 39042-39060,
Sep. 2025.

	Introduction
	System Model and Problem Formulation
	UAV's Reqiurements
	The Communication Model
	Computing Model and Energy Model
	UAV Computing
	GBS Computing
	Cloud Computing

	Problem Formulation

	The Mean Field Actor Critic (MFAC) algorithm for Task Offloading and UAV Position Optimization
	MG Formulation
	Definition of an MG
	NE Strategy

	A Mean-Field Learning Approach
	The Whole Algorithm
	Neural Network Initialization
	Action Execution
	Batch Data Collection
	Model Training

	Complexity Analysis of the Mean Field Learning Approach
	MAAC
	MFAC
	Comparison and Discussion

	Performance Evaluation
	Conclusion
	Appendix A: Mean-Field Approximation
	Preliminaries
	Pairwise Factorization and Mean-Field Action
	Mean-Field Bellman Update

	References

