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We introduce a closed-form expansion for the transition density of elliptic and hypo-elliptic multivariate Stochas-
tic Differential Equations (SDEs), over a period A € (0, 1), in terms of powers of AJ 2, J 2 0. Our methodology
provides approximations of the transition density, easily evaluated via any software that performs symbolic calcu-
lations. A major part of the paper is devoted to an analytical control of the remainder in our expansion for fixed
A € (0, 1). The obtained error bounds validate theoretically the methodology, by characterising the size of the dis-
tance from the true value. It is the first time that such a closed-form expansion becomes available for the important
class of hypo-elliptic SDEs, to the best of our knowledge. For elliptic SDEs, closed-form expansions are available,
with some works identifying the size of the error for fixed A, as per our contribution. Our methodology allows for
a uniform treatment of elliptic and hypo-elliptic SDEs, when earlier works are intrinsically restricted to an elliptic
setting. We show numerical applications highlighting the effectiveness of our method, by carrying out parameter
inference for hypo-elliptic SDEs that do not satisfy stated conditions. The latter are sufficient for controlling the
remainder terms, but the closed-form expansion itself is applicable in general settings.
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1. Introduction

Stochastic Differential Equations (SDEs) constitute an effective tool for modelling non-linear dynamics
that arise in numerous application fields, including, e.g., finance, physics and neuroscience (Kloeden
and Platen, 1992). Over the past few decades, a large amount of research has contributed to methodolog-
ical and theoretical advances on the theme of parameter inference for SDEs. An overarching challenge
is that the transition density of a non-linear SDE is in general intractable, thus appropriate proxies must
be formulated to conduct likelihood-based inference. We propose a new closed-form (CF) transition
density expansion for SDEs, which can approximate the true density with high precision. In contrast
to previous approaches, one of the novelties of our methodology is that it covers a broad class of dif-
fusion processes, including hypo-elliptic SDEs, i.e. processes with a degenerate diffusion matrix and
a transition law that still admits a density with respect to (w.r.t.) the Lebesgue measure. Hypo-elliptic
SDEs appear in broad areas of applications (including physics, neuroscience) and parameter inference
for these models has been a very active area of research in the last years.

Let By = (B14,...,Bay), t 2 0, be the standard d-dimensional Brownian motion, d > 1, defined
upon the filtered probability space (Q, F,{F:}:>0,P). We consider N-dimensional SDEs, N > 1, of
the following general form:

X, =Vo(X,,0)dt+ > Vi(X;,0)dBj;, Xo=xoeRY, (1)
1<j<d

for parameter vector §# € ® C RV, Ng > 1, and functions Vi: RN x® = RMN,0< j<d We set
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used in applications. The first class is the elliptic one, where we consider SDEs of the following form:

X, =Vro(X,0)dt+ Y Vg j(X;,0)dBj,, Xo=xo€RN,
1<j<d

(E)

sothatV; =Vg ;,0< j<d. Wesetor=[Vg,1,...,VR.al,ar = O'Ra';, and assume that ag = ar(x, 0)
is positive definite for all (x,8) € RN x ©. Thus, w.l.o.g. here d = N. Class (E) includes a multitude
of models used in applications, see e.g. Kloeden and Platen (1992). The second model class we work
with is the hypo-elliptic one, where the SDE in (1) now splits into smooth and rough components as
X, =(Xst, XRrt) € RNs*NR g0 that N = Ng + Ng, Ng > 1, Ng > 1, and we re-express (1) as:

dXs,=Vso(X,0)dt;  dXp,=Vro(Xi,0)dt+ ) Vg ;(X;,0)dB,,,
1<j<d (H)

Xo = x0 = (x5.,0,XR.0) € RVSTNR,

In (H), the involved functions are defined as Vg o : RN x® - RNs Vg . :RN x@®@ - RNr 0 < j<d.
Model class (H) stems from the generic form (1), where we now have that, for (x,0) e RN x ©:

Vo(x.0) = [Vs.o(x.0) . Ve o(x.0)T] ", Vi(x.0)= [0} . Ve,;(x.0)T]T.  1<j<d.

Notice that component X5 ; is not driven by the Brownian motion, and consequently class (H) requires
a separate treatment from (E). Later on, we introduce sufficient requirements associated with the weak
Hdérmander’s condition, so that Vs o(X;,0) depends on Xg ;, thus Brownian noise propagates into the
smooth component, and the law of X;, ¢ > 0, admits a density w.r.t. the Lebesgue measure. Hypo-elliptic
models are used in several application fields, including, e.g.: the FitzHugh-Nagumo SDE (DeVille,
Vanden-Eijnden and Muratov, 2005) and the Jansen-Rit neural mass SDE (Ableidinger, Buckwar and
Hinterleitner, 2017) in neuroscience; the underdamped or generalised Langevin equation (Pavliotis,
2014) in physics.

We consider parameter inference for SDEs given a collection of discrere-time data {X; };cT,,, for the
set of time instances T, = {tg,11,...,t,}, n > 1. For simplicity, we consider equidistant step-sizes, with
A :=t; — t;—1. The likelihood function is given as:

La({Xi}ier,:0) = p(Xe:0) [ | pX(X,,. X0120),

1<i<n

for some initial law p(-; ), where x’ pi( (x,x”;6) is the transition density of SDE (1), with the
latter being in general unavailable in closed form. A practical standard approach to circumvent this
intractability is by introducing a time-discretisation scheme and using the induced CF approximate
transition density as a proxy for the true one. For instance, a common scheme is the Euler-Maruyama
one, which yields a conditionally Gaussian approximate density upon application to elliptic SDEs.
However, it is well-understood that such an approximation cannot correctly capture the true non-linear
dynamics unless the step-size A is close to 0. Thus, parameter estimation relying on such a simple
Gaussian approximation requires a high-frequency observation regime, with A <« 1. In practice, the
step-size of available data is usually fixed, and its value may not be too small.

In the context of fixed A, the prominent work of Ait-Sahalia (2002) proposes an elaborate approxi-
mation of the transition density for time-homogeneous univariate elliptic SDEs via a CF Hermite-series
expansion. Roughly, the expansion for the transition density is of the structure:

PX(x,7:0) ~ ga(x,y; ) x {1 + (correctionterm) }. )
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Here, y — ga(x,y;0) is a ‘baseline’ tractable density. The ‘correction term’ is given in closed-form,
and includes Hermite polynomials up to a degree J > 1, obtained via working with ga (x,y;6). The
correction term plays a key role in capturing non-linear/non-Gaussian effects in the true transitions. In
detail, Ait-Sahalia (2002) constructs the CF-expansion by first applying an 1-1 ‘Lamperti transform’
(Roberts and Stramer, 2001), thus replacing the original scalar X; with a process Y; of unit diffusion
coefficient, and then obtaining the Hermite series expansion for the transition density of ¥;. We refer
to this line of research as the Hermite approach. Ait-Sahalia (2002) proves convergence of the CF-
expansion to the true density for fixed A € (0, 1) as the degree of Hermite polynomials, J, grows to
infinity. The result is a qualitative one, as no order of convergence is provided. The Hermite approach
works only for the sub-class of ‘reducible’ elliptic SDEs for which the Lamperti transform is applicable.
Also, as stated in Ait-Sahalia (2008), convergence of the Hermite series expansion is not guaranteed
when back-transforming onto the original density of X;. To treat a wider class of non-reducible multi-
variate elliptic SDEs, Ait-Sahalia (2008) utilises the Kolmogorov backward/forward equations (PDEs)
to construct a series expansion in A and y — x. No analytical results are provided for fixed A. We refer
to this contribution as the PDE approach. Li (2013) develops a probabilistic approach, by making use
of Malliavin calculus and carrying out an asymptotic analysis of Wiener functionals (Watanabe, 1987,
Yoshida, 1992) to obtain a CF-expansion, accompanied by an analytic bound for the approximation
error, for fixed A. The expansion is given in terms of powers A//2, j > 0, for A € (0, 1). More precisely:

PXyi0)=aateyio)x fl+ 3 A el o)+ RO Y0, Il G)
1<j<J

for tractable coefficients egj ) (+), j = 1, and a remainder term R(-). Li (2013) proves under conditions

that the remainder is of size O(A/+!=N)/2) The probabilistic approach is extended to elliptic SDEs
with jumps in Li and Chen (2016). For time-inhomogeneous elliptic SDEs, Choi (2015) develops a
CF-expansion via the PDE approach, similarly to Ait-Sahalia (2008). Yang, Chen and Wan (2019)
use Itd-Taylor expansions and obtain a series of the form (3) that involves Hermite polynomials, with
explicit bounds provided on residuals as in Li (2013). Even if alternative approaches have been followed
in the literature, the produced expansions are closely related to each other. E.g., one can obtain a series
expansion as in (3) involving Hermite polynomials via the two different approaches in Li (2013), Yang,
Chen and Wan (2019). Furthermore, Lee, Song and Lee (2014) show that the Hermite expansion of
Ai't/—Sahalia (2002) can be expressed in the form (3) by rearranging terms in the expansion w.r.t. powers
A2 > 1.

Importantly, for developed CF-expansions to be theoretically validated, the remainder terms should
be controlled and vanish. This property guarantees convergence of the expansion, with a rate in A that
grows when more terms are used in the expansion. As mentioned, such an elaborate analysis has been
carried out in Li (2013), Yang, Chen and Wan (2019) in the context of elliptic SDEs.

The aforementioned works also demonstrate the effective use of a CF-expansion within parameter
inference procedures. In particular, the approaches provide an approximate Maximum Likelihood Es-
timator (MLE). Obtained numerical results showcase that: the proxy MLEs stays close to the true ones
even when the step-size A is not too small; the CF-expansions outperform proxy methods based on
Gaussian-type quasi-likelihoods. Chang and Chen (2011) provide analytical consistency and conver-
gence rate results for the proxy MLE, and demonstrate good performance of their CF-expansion by
clarifying the effect of the length of the expansion and of the fixed step-size A € (0, 1). In the con-
text of Bayesian inference for SDEs, Stramer, Bognar and Schneider (2010) utilise the expansion-based
likelihood and show advantages over the Gaussian-type (Euler-Maruyama-based) likelihood.
Critically, the development of CF-expansions in the literature is so far restricted to elliptic SDEs and

mited ! nypo- P on c.2 W1ln near d and constant d 18101 coelticien




4

and Paoli, 2017, Habermann, 2019), thus general hypo-elliptic SDEs specified as (H) have yet to be
covered even though the latter are widely used in applications. Available methods for elliptic SDE
build upon steps that cannot be readily extended to the hypo-elliptic setting. In brief, one limitation
derives from the definition of the reference Gaussian density ga(x,y;6) in the expansion relying on
positive definiteness of its covariance matrix, when such a property is violated within the hypo-elliptic
class (H). Our work develops a novel CF-expansion that covers both elliptic and hypo-elliptic SDEs in a
unified framework. To this end, we consider a non-degenerate baseline Gaussian density g (x, y; 6) that
is well-defined for both SDE classes, (E) and (H). We then construct a CF-expansion in the form of (3)
based on such a well-posed ga (x, y; #). We emphasise that the error analysis is much more challenging
in the hypo-elliptic setting than in the elliptic one, due to varying scales across the SDE co-ordinates.
'We manage to provide analytical error estimates for the proposed expansion by utilising a recent result
on estimates of the transition density for degenerate SDEs (Pigato, 2022), thus theoretically validating
our CF-expansion both within the elliptic and the hypo-elliptic classes of SDEs.

Beyond the above-mentioned literature on CF-expansions for elliptic SDEs with fixed A € (0, 1), our
work is also motivated by several recent developments in the area of parametric inference for hypo-
elliptic SDEs, albeit in a high-frequency observation regime, i.e. n — oo, A=A, — 0, nA, — oo,
together with an extra ‘design’ condition on A,. Indicatively, Ditlevsen and Samson (2019), Gloter
and Yoshida (2021), Melnykova (2020), Pilipovic, Samson and Ditlevsen (2024) propose contrast es-
timators, under the design condition A, = o(n~'/2). The latter is weakened to A, = o(n~'/3) and
An = o(n~'/P), for a general integer p > 2, by Iguchi, Beskos and Graham (2025) and Iguchi and
Beskos (2025a), respectively. Iguchi, Beskos and Graham (2024) also treat a class of ‘highly degener-
ate’ hypo-elliptic SDEs.

Our main contributions are briefly summarised as follows:

a. We propose a CF-expansion for the transition density of both elliptic and hypo-elliptic SDEs,
in (E) and (H), respectively. Within the elliptic class, a starting point for developing the CF-
expansion is motivated by the work of one of the co-authors in Iguchi and Yamada (2021). This
latter work lies in the area of numerical methods for SDEs and looks at the development of
approximation schemes for elliptic SDEs of improved weak order of convergence. To the best of]
our knowledge, this is the first time in the literature that a CF-expansion is obtained for hypo-
elliptic SDEs with a general form of coefficients.

b. Our proposed CF-expansion involves a linear combination of differential operators acting on
an appropriately chosen baseline Gaussian density, thus is easily computable via available soft-
ware with symbolic calculations. Though we initially obtain an expression of different structure
from (3), we later show that our CF-expansion indeed takes up the form of (3), i.e. a series ex-
pansion in powers of VA. Thus, our CF-expressions align with existing works for elliptic SDEs.

c. We theoretically validate our CF expansions by proving analytically, under appropriate condi-
tions, that the residuals are of size O(AK/2) for a step-size A € (0, 1), where K > 1 is an integer
differing between the elliptic and hypo-elliptic classes, and which depends on the model dimen-
sion N. In particular, the effect of the dimensionality varies amongst the two SDE classes.

d. We present numerical results showcasing that the use of the proposed CF-expansion leads to
effective parameter estimation for SDEs, with an emphasis on hypo-elliptic models. In particu-
lar, we conduct Bayesian inference for a real dataset and show that the posterior distribution is
accurately estimated by the proposed density expansion.

The structure of the paper is as follows. In Section 2 we outline our strategy for constructing a
CF-expansion which covers both (E), (H), and then proceed with the development of the expansion.
Section 3 provides a rigorous error analysis for the proposed CF-expansion, separately for classes (E)
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at https://github.com/Yugalgu/CF-density-expansion. Section 6 provides a summary and conclusions.
Most proofs are collected in a Supplementary Material.

Notation. We set Z> =N U {0}. For a multi-index « € Z’;O, k € N, we write |la|| =k, [a| = X <<k @),

||| = max|<j<x @i, a!= I—[;?:laj. For a € Z’;O and a sufficiently smooth ¢ : R™ — R, m € N, we
write d%¢(y) = dy,' - - 9y @(y), where 937 = 3% [dy;". We often write 9 ¢(y) = d%¢(y) to em-

phasise the argument upon which the derivative acts. The generator associated with SDE (1) writes
as:

Lop()= Y Vi O dip@)+3 D Y VIxOVE(x,0) diyiyp(x), “)

1<i<N 1<i.ib<N 1<j<d

(x,0) € RN x @, for @ RN — R, where we use integer superscripts to indicate co-ordinates in vectors.
For x € R, we write |x] = max{m € Z|m < x}. For differential operators D, D,, we define the com-
mutator as adp, (D2) = [D1, D3] = D1D; — DD . The k-times iteration of the commutator writes as
ad}, (Dy) = [Dy,ady; " (D2)], k > 1, with adODl (D,) = D».

2. Closed-Form Transition Density Expansion

We will present a new CF transition density expansion for a wide class of It6 processes in (1), including
the family of hypo-elliptic SDEs specified in (H). We write the transition density of X,,x given X; =
xeRN asy— pf(x,y;@) =P(Xy4a €dy| X; =x)/dy, witht >0, A > 0.

2.1. Conditions for Closed-Form Expansion

Assumption 2.1. For both model classes (E) and (H), the maps x — V;(x,0), 0 < j < d, are infinitely
differentiable for any 6 € ©.

For a vector-valued V : RY — RY | we make use of the standard correspondence V < Zf\:’ ] Vig;.

Assumption 2.2. We distinguish between model classes (E) and (H).

I. For class (E), it holds that ag(x,0) = (cror) ™ (x, ) is positive definite for all (x,0) € RN x ©.
This is equivalent to Span{Vg ;(x,6), 1 < j <d} =RV, forall (x,0) e RN x ©.
II. For class (H), it holds that:

Span{VR,j(x, 0),1<j< d} =RNR, Span{{V_,-(x,@), [\70,Vj](x,9)}, 1<j< d} =RN,

for all (x,0) € RN x ©, where Vj : RNV x© — RV is the drift function when the 1to SDE (H) is
written in a Stratonovich form, namely Vy(x, 8) = Vy(x, 6) — % Z;l:l Zfil V]’. (x,0)0x, Vj(x,6).

Assumption 2.2 is related to Hormander’s condition (it suffices for Hormander’s condition to hold)
and implies that the law of X;, r > 0, admits a Lebesgue density. For the hypo-elliptic class (H), As-
sumption 2.2-1I guarantees that the noise in the rough component Xg ; (of size 1/? for a period of length
1) propagates into the smooth component Xg ;. Inclusion of the vector fields [Vy, V;](x,0), 1 < j < d,

relates to the appearance of terms fot Bi ds (of a different scale V73) in the smooth component Xg , af-

ter an It6-Taylor expansion of fol Vs.0(Xu, 6)du. Thus, the transition law of SDE (H) is non-degenerate
and admits a Lebesgue density even if not all coordinates are directly driven by the Brownian motion.
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2.2. Background Idea

Before presenting the CF-expansion we explain an idea that underpins its development — more precisely
the starting point of the latter. Consider the elliptic class (E) and the Euler-Maruyama (EM) scheme
which approximates the transition dynamics of X;.a|X; =x, with x € RN, 1>0,A>0, so that:

XN = x + VR o(x,0)A + oR (x,0) (Braa — By). (5)

Under regularity conditions on x = Vg j(x,6), 0 < j < d, and the requirement that the matrix
ar(x,0) = (a'Ra'; )(x,0) is positive definite for all (x,0) € RY x @, the EM scheme gives rise to
a well-defined baseline Gaussian transition density, y — pZ(EM (x,y;6). In the present elliptic setting
Iguchi and Yamada (2021) constructed a CF transition density approximation of the following form:

PX(x,y:0) ~ prM (xx,y;0) x (1 + (correction term)). (6)

The tools utilised in Iguchi and Yamada (2021) to derive the approximation include Taylor expansion,
Kolmogorov backward/forward equations, use of the infinitesimal generators for the target SDE and
its EM approximation. In the above expression, the ‘correction term’ involves A, partial derivatives of
the SDE coefficients and Hermite polynomials obtained via differentiating the transition density of the
EM scheme. As mentioned in the Introduction, other approaches are also available, including the ones
developed in Ait-Sahalia (2002, 2008), Li (2013), Yang, Chen and Wan (2019), and all such works also
assume invertibility of the matrix ag, thus are not relevant for the hypo-elliptic class (H).

To construct a CF transition density expansion for a broader family of SDEs that includes hypo-
elliptic SDEs, it is critical to choose an appropriate reference Gaussian density which is non-degenerate
for the target class of models. To achieve this, we consider the local drift linearisation (LDL) scheme,
which, upon application on the general SDE model in (1), is defined via the following expression, for
each given t > 0, A > 0, and for X/ =x e RN:

t+A
X0 =x +/ (Ax,0X? + by g)ds +0(x,0)(Brsa — Br), (7
t

where Ax ¢ € RNXN and b x.0 € RN are specified as follows:

Ax,9= [aijé(x,Q)] bx,sz()(xaQ)_Ax,Hx-

1<i,j<N’

That is, (7) is obtained from a 1st-order Taylor expansion of the drift V{ about the initial position
x and o () fixed at its initial value. Expression (7) corresponds to a linear SDE, with a solution for
X9 \|X? =x that has the following explicit form:

t+A t+A
Xﬁm =eMxox 4 / e(HA_S)Axf’bx,g ds + / e(”A_S)AX*GO'(x, 0) dB;.
t !

Thus, X 19+ A| Xf’ = x follows a Gaussian law, with mean (A, x, 0) and covariance (A, x, §) given as:

A
(A x,0) = Mo p¥ (A, x,0),  pF(Ax,0) =x+ / e A20p, ods, zeRN;  (8)
0

A
(A, x,0) = eAAX"’fl(A,x, Q)eAA;J’, i(A,x, 0) :=/ e_SAx»"a(x,H)e_SA;ﬂds, 9)
0
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where we recall @ = oo T. The introduction of the extra argument z in 4% (A, x, #) will be of use in later
developments.

In the sequel we show that 3 (thus also X) is positive definite for both model classes (E), (H) under
Assumption 2.2. Then, under regularity conditions on the SDE coefficients together with the invertibil-
ity X, we appropriately expand upon the direction followed by Iguchi and Yamada (2021) to construct
a CF transition density approximation that covers the model class (H) and writes as:

pA(x,y;6) ~ pf(x,y; 6) x (1 + (correctionterm)), (10)

where y — pi( (x,y;6) is the transition density of the LDL scheme (7). Similarly to the case of the
expansion for elliptic diffusions, the correction term appearing in (10) involves partial derivatives of
SDE coefficients w.r.t. the state argument and Hermite polynomials now defined via partial derivatives
of the non-degenerate Gaussian density pi( (x,y;0).

Remark 2.3. Iguchi and Yamada (2021) work in an elliptic setting to develop Monte-Carlo estimators
of improved weak order of convergence for E[¢(X7)], ¢ : RY — R, T > 0, and their expansion in
the form of (6) is used for such a purpose. In brief, they use samples from the baseline pXEM (x,y;0),
weighted by (1 + (correctionterm)), in an iterative procedure over |T/A] steps. Even if the initial
derivations in the CF-expansion we develop here resemble steps followed in Iguchi and Yamada (2021),
our objectives and, consequently, the structure of the CF-expansion and its theoretical analysis (and, in
general, the overall contribution) fully deviate from Iguchi and Yamada (2021).

Remark 2.4. LDL scheme (7) differs from the so-called Local Linearisation (LL) scheme (its defini-
tion can be found, e.g., in Jimenez, Mora and Selva (2017)) in the sense that the latter applies a first
order Taylor expansion for both drift and diffusion coefficients. As shown in the next subsection, in par-
ticular in Lemma 2.5, the LDL scheme follows conditionally a non-degenerate Gaussian distribution
that admits a transition density for (E) and (H) under Assumptions 2.1-2.2, leading to the development
of (10). The key idea here is that the noise in the rough component Xg propagates to the smooth compo-
nent Xg via the locally linearised drift. Similarly, the LL scheme can be shown to admit a well-defined
tractable Lebesgue density, thus it could also form the basis of a transition density expansion like (10).
In our analysis below, we employ the LDL scheme since its density admits a simpler expression and
suffices to build a tractable density expansion. Also, such a non-degenerate Gaussian approximation
can be constructed via a drift linearisation for partial coordinates (not full) so that the matrix Ay g is
upper-triangular, thus reducing the computation cost of calculating exp{A ¢}. We briefly discuss a
practical choice of A in the numerical experiment Section 4.1 and in Section 5 as well.

2.3. Non-Degeneracy of the LDL Scheme

As mentioned in Section 2.2, existence of a Lebesgue density for the transition dynamics of the LDL
scheme (7) is essential for the construction of our CF-expansion for both model classes (E) and (H).
In this section we show that such an existence is implied by Assumption 2.2. That is, we show under
Assumption 2.2, i.e. Hérmander’s condition for the target model classes (E) and (H), that the vector
fields defined via the LDL scheme (7) also satisfy Hormander’s condition. Specifically, the vector fields
defined from the coefficients of (7) coincide with those of the original SDE, upon fixing the argument

o the initial condition o We thus have the following result whose proof is given in Appendix A
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Lemma 2.5. Let (A,x,0) € (0,00) x RN x ©. Under Assumptions 2.1-2.2, the law of X;(iAere =X
defined in (7) admits a smooth Lebesgue density for model classes (E) and (H).

We describe a sub-class from (H) where the LDL scheme delivers well-posed Lebesgue densities for
SDE transition dynamics while the Euler-Maruyama scheme provides degenerate distributions.

Example (Underdamped Langevin Equation). We consider the following bivariate SDE:
dx!=xde;  dx? =(-V'(X})-aX?)dt+odBy,, (11)

for parameters @, o > 0 and potential V : R — R. Such dynamics are used to describe the motion of
a particle on the real line R, with th and th representing position and momentum, respectively. The
coefficients in SDE (11) correspond to the following vector fields, for x = (x,x3) € RZ:

V() = VO :)C28x] + (—V’ (X1) — CZ)CQ)ax2, V] = 0'6x2.
The diffusion matrix is degenerate, so (11) belongs to class (H). Also, Assumption 2.2-1I is satisfied as:
Vi =10,017,  [Vo,Vil(x) =VoVi(x) = ViVo(x) = [0, 0e] T, (12)

and, given o, @ > 0, we get that Span{V; (x), [Vo, V1](x)} = R, for all x € R?. The Euler-Maruyama

scheme for XPM|XFM = x writes as:
GEM, 1 , FEM,2
X\ =X +0A; X" =x+ (V' (x1) —axz) A+ 0 (Byrsa — Biys). (13)

So, the law of XEXW;EM involves a degenerate covariance matrix. In contrast, in this setting the LDL

scheme (7) contains the 2 X 2 matrix A and the vector b specified as follows:
[Ax]i1 =0, [Axlin=1, [Ax]a==V"(x1), [Ax]ln=-a, by=0, bi=-V'(x;)+V"(x1)x.
The vector fields associated with the coefficients of the LDL scheme are given as follows, for x, z € R?:

Vi= D [Ax+blidy,  Vi=ody,
i=1,2

where (with some abuse of notation) we introduce z € R? to represent the initial condition for (7), thus
distinguish the latter from argument x € R? upon which the linear drift in (7) applies. For the above
vector fields, Hormander’s condition holds via:

N =[00]T, Vi) =-NViEx) =[-0.0a]". (14)

Thus, the law of X;,A|X; admits a well-defined (Gaussian) transition density. Note that the vector fields
in (14) coincide with the ones in (12) defined for the original SDE (11), so the hypo-ellipticity of the
target SDE is inherited by its induced LDL scheme.

2.4. Transition Density CF Expansion

2.4.1. Preliminaries

We prepare some ingredients for the construction of our CF-expansion. We define the LDL scheme
starting from a point x € R™ with its coefficients being frozen at a point z € R" as:

dX% = (Az0X)* + b, o)dt +0(z,0)dB,,  XJ*=xoeRN. (15)
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Notice that [Xf’z|z:x |)_(09’Z =x]|= [)_(19|)_(5) = x]. The generator corresponding to (15) is given as:

L9te)= Y [Acox+booldie)+3 D > VI OVE(z0)05¢(x),

I<i<N 1<iy,ip<N 1<j<d

for ¢ : RN - R, x,z € RY, § € ©. Notice that X82|X9 = x ~ N (P20 0% (A, x,0),2(A, 2,6)),

where (1% and X are defined in (8) and (9), respectively. We write the density of X zH+ §| Xte 2 =x as

y pfz (x,y;60) and note that pfz (x,¥:0)|z=x = pf(x, y; 0), where the right-hand-side is the transi-
tion density of the LDL scheme (7).
We introduce semi-groups {Pf }e>0 and {Pf *%1,50 associated with the Markov processes {X;};>0

and {)_(ZH’Z},ZO, respectively as follows:
[ _ p0.z _ Xz . N
Py so(x)—/R e(pi(x,y;0)dy, Py so(x)—/RN e(yp; (x,y;0)dy, zeRY,  (16)

for ¢ : RN — R and (¢,x,6) € (0,00) x RN x @. For notational simplicity, we introduce:

Lr=Lg - L%, (17)
where we recall that %y is the generator associated with the target SDE, given in (4). The first steps in
the derivation of our CF-expansion are provided in the following two results whose proofs are provided

in Appendices B and C:

Lemma 2.6. Lett >0, x,y € RN and 6 € ©. Also, let ¢ € C*(RN;R). It holds that:
_ o
X y:0) = X (6, y10) [om + /0 PO ZZpX" (1 :0) (5)|amxds: (18)
PYo(x) = PO%p(x) oo + /O PO TP p(x)| s ls. (19)

Lemma 2.7. LetO<s<t, 6 €0 andz,x,y € RN. Then it holds that, for any K € N,

P e - MZK {adgosz)}P“so(x)%K“Z(srx9) 20)
PY=Zgpi, (. yi0)(x) = {adgozwﬂ}{p 0} () + Z5 (s x,v:0) 2D
0<k<K

where the remainder terms ZXK*'% and Z#K+1% are specified in the proof of Lemma 2.7 in Appendix
C.

Results similar to the above, for the elliptic case and for the Euler-Maruyama scheme used as a baseline
transition density, are obtained in Iguchi and Yamada (2021).
2.4.2. Construction of CF-Expansion

Based on the auxiliary results (Lemma 2.5, 2.6 and 2.7) in the previous subsections, we construct a CH

tion densi o in the followine f )
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Step 1. We recursively apply formula (19) within (18), from Lemma 2.6, to obtain for any M € N:

A
Y Z o Y <
PX(5,910) = pX (5,33 0) oo + /0 PO ZZpX° | (,330)()]eonds)

:pfx(x,y;0)+ Z TI(Ax,y,0) + %{"I(A,x,y;a), (22)
I<j<M-1
where we have set:
9J(A,x»y;9)= I(s1.0) SH/Z"S’ﬂZ S 1 —sj gz 31 éz"iﬂsz 51(’y;e)(x)|z=xdsj'“dsl;
S1:j
%{W(A’x’y’e):‘/l‘( )PH XZPSHIWZI —sp XZP_?IZSQXZPA_iSI('9y;9)(x)|zzxdsM"'dsls (23)
S1:M

I(s1.6) ={s16=(51,...,56):0<sp <---<s1 <A}, k=0,

with the conventipn so=A.
Step 2. Since 77 (A, x,y;0), 1 < j < M, is not tractable, we obtain a computable quantity for it via
use of Lemma 2.7. Let J, .(A,x,y;0) be the integrand of .7/ (A,x,y;0), so that 77 (A,x,y;0) =

S1:5

fl(sl' o i (A,x,y;0)ds; -~ ds;. Recursive application of Lemma 2.7 to 7, ., 1 < j < M — 1, gives:

[Ty (530 ¢
Ty Axyi)= Y e g Y o]+ 6 (Ao, @4)

asﬁ[i]

for a multi-index Bl/1 = (,BP] e ,Bﬁj]) € ZJ;O, where we have defined:

@f,’(’ ( iﬂ()z(,iﬂz))( ZOL(XZ)) (ad‘;oz(gz)) :eRN.gco, 25)

[l
and the residual éﬁg:; (A, x,y;0) is given in (A.54) of Supplementary Material. We now obtain, for
1<j<M-1:

TiAxy0)= Y Al K@ g (X (00 + B (Axy.0). 26)
G‘Sﬁ[j]

K(a) :=/ [T Goreds;--ds,
Ossj<<si<lycpe;

i glil [j]
%{’B (A,x,y,0) :=/ éas[ij (A,x,y;0)ds;---dsy. 27)

I(Slzj)

Step 3. From (22) in Step 1. and (26) in Step 2., we obtain the following CF-expansion for the true
(intractable) transition density. For any M > 1 and multi-indices 8171 € Z]>0, 1<j<M-1:

PRy =pXCeyi)+ > > A B 9L (L yi0) ()|

l<j<M-1 ,<plil
asp

7
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i gLl
+ 2 (Axy:0)+ Y 2P (Axy.0).  @8)
1<j<M-1

where %{VI s %2] B! are defined in (23), (27), respectively. Under assumptions, we show in Section
3.1 that the remainder terms are of size O(AP) for an arbitrary p > 0 by choosing a large enough
M and appropriate 8171, 1 < j < M — 1. The double sum in (28) involves tractable terms and can be
utilised as a proxy for the true transition density. In particular, the expansion is well-defined for both
model classes (E) and (H) since the Gaussian density pX*(x,y:0) and its partial derivatives (involved
in 2%¢ {pX"(-.:6)(x)}|z=x) are well-defined from Lemma 2.5. We note that the tractable double sum
in (28) is regarded as a CF-expansion, but the current form of the expansion does not yet correspond
to the ‘A’-expansion (3). For instance, the exponents of the step-size A are integers in (28), while they
are given as k/2, k € N, in (3). However, we emphasise that (28) will be ultimately expressed as a
A-expansion of the form in (3) after carefully working with the terms @f;e{ pfz (-,y;0)}(x). Indeed,
taking partial derivatives of x — pX~ (x, y; ), will give Hermite polynomials and powers A~%/2, where
the integer k depends on the number of derivatives. We explain this in detail later on in Section 3.2.

3. Error Analysis for the CF-Expansion

In Section 2.4 we have constructed a CF-expansion (28) for the true transition density. Our objective
now is to provide rigorous error estimates for this expansion, thus theoretically justifying its derivation,
similarly to results obtained by a few earlier works in the case of the elliptic class (E). We also describe
that the obtained expansion (33) can be given in the form (3), namely a series in powers of A. As the
error estimates vary for classes (E), (H), we make use of the notation w € {E, H} and write pX-(W) = pX|

G % i glil i glil
pX ) = pX, %i\/l,(w) = %’f"l and %2] B 2 %2]"8 " to indicate the class under consideration.

3.1. Main Result

i glil
We derive upper bounds for the residuals of the CF expansion %’f‘/’ and %é B specified in (23) and
(27), respectively. We will need the following additional assumptions.

Assumption 3.1. The parameter space © is compact. Also, for each x € RN, the function 6 Vi (x,0)
is continuous, 0 < j < d.

Assumption 3.2. Let x € RV be the initial state of the transition dynamics. The SDE coefficients
satisfy the following properties:

1 (Boundedness of drift at initial state): There exists a constant k¥ > 0 such that |x| + |V (x,0)| < «
for all 6 € ©;

2 (Uniform boundedness of diffusion coefficients): There exists a constant C > 0 such that
IVi(y,0)| <C,1<j<d,forall (y,0) € RN x©;

3 (Uniform boundedness of derivatives): There is a constant C > 0 such that Z‘f
for all @ € Z) with |a| > 1 and all (y,6) e RN x ©.

010y Vi(y.0)|<C
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Assumptions 3.1-3.3 suffice for obtaining appropriate bounds for the residuals of the CF-expansion.
The uniform boundedness for the derivatives of the SDE coefficients is a standard assumption for the
existence of a smooth transition density, when combined with Hoérmander’s condition. Such uniform
boundedness is also assumed in Li (2013) to control the residual of the expansion developed therein for
elliptic SDEs. Assumptions 3.2-3.3 are used mainly in the proof of Theorem 3.4, where we need an
upper bound for the true density y — pi( (x,y;80). Pigato (2022) shows that under Assumptions 3.2-3.3
the true transition density has a Gaussian-type bound as given later at (31). Based on this result, we
show that the errors are appropriately bounded, analogously to Yang, Chen and Wan (2019) who also
used a Gaussian-type bound for the true density to control the residuals of an expansion for inhomoge-
neous elliptic SDEs. We stress that Assumptions 3.1-3.3 are not necessary for the construction of the
CF-expansion, in the sense that our formulae can still be evaluated for SDEs with coefficients whose
partial derivatives exhibit, e.g., polynomial growth as assumed in earlier works (Ait-Sahalia, 2008,
Yang, Chen and Wan, 2019) for elliptic SDEs. Assumption 3.3 can be weakened as there is a possibility
to obtain an upper bound for the true transition density by carefully developing the arguments in Pigato
(2022). However, this is not straightforward and is beyond the scope of the present work. The relaxation
of our conditions is left for future research.

To provide a statement of our main result, we introduce some notation. We set:

m(E) =N, m(H) :=4d. 29)

Also, @) 1 (0,00) xRN xRN x® > R, w e {E,H}, is a mapping characterised as follows. There
exist constants C, ¢ > 0 such that:

(E) _m(E) ly—x|?

|€4 (t,x,y,9)|SCt 2 Xexp(—c—t ); (30)
(H) _m(H) lys—xs=Vs,o(x,0)t]* | |yr-xr|?

(9 x 3.0 <2 xexp (e s eoxel ) (3D)

for all (1,x,y,0) € (0,00) x RY x RY x ©. Notice that for some constant C > 0, for A € (0, 1):

m(w)
sup |€¢(W)(A,x,y,0)| <CA "2,
(x,y,0)€RN xRN x0 we {E H} (32)
sup / \%(”’)(A,x,y,e)\dy <C,
(x,0)eRN x@ JRN

which implies that the size of @ W) in Li-norm is O(1) irrespective of the model classes (E) or (H).

Theorem 3.4 (Bound for %{VI W) ). Letx € RN be the initial state of the transition dynamics and M >
1. Under Assumptions 2.1-3.3, there exists a constant C > 0 such that for all (A, y, 6) € (0,1) xRN x@:

|9?fw’(w)(A,x,y;9)| < CA% X ‘%(”’)(A,x,y,9)|, we{E H}.

i glil
Theorem 3.5 (Bound for %2] B ’(W)). Let x € RN be the initial state of the transition dynamics,
andlet1 <j<M-1,MEeN, ﬂ[j] = (ﬂgj], .. ,B][.j]) € ZiO' Under Assumptions 2.1-3.3, there exists
constant C > 0 such that for all (A, y,6) € (0,1) xRN x ©:

7B, (w) .0V < CAKI (BUD) o fap(w) :




K|
KULEgLTy .= B . kULHgl] LB _
(BY1) 112121 5 +3 5 (BYY) = Inzm/ 2('. 5 J

The proofs of Theorems 3.4-3.5 are given in Section A of Supplementary Material. From Theorem
3.5, by selecting the multi-index gl/1-(") e Z]>0 so that KL71-w (gLl (w)y > %, we have that:

X( ") (x,y:0) = px( ) (x,y:0)

e B
>, AR g ()| + 6™ (A i),
1<j<M -1 g<plil.(w)

(33)

for a residual &) so that for any initial state x € RV there exists a constant C > 0 such that for all
(A,y,0) € (0,1) xRN x @:

, M ,
EM (Ax,y;0)| < CAZ x| (A,x,y,0)],  we{EH).

3.2. Series Expansion in A

We study the CF-expansion given in (33) in detail. Expression (33) 1nvolves A""” in front of each
summand, but an additional A=Xe/2 for some K, € N, is produced from 2% O pX PA “(-,y:0)}(x), where
we recall that @f,’g is the differential operator defined in (25). We show that upon rearrangement of
terms in powers of A, the right-hand-side of (33) attains the form of the A-expansion in (3), i.e. a
series expansion in (positive) powers of VA. In particular, we clarify below that differentiating the
Gaussian density pX (x,y;6) w.rt. the initial state x € RV produces additional powers A~X/2, for
K > 1 depending on the number of derivatives. For the model class (H), the value of K varies depending
on whether the differentiation acts on smooth or rough components. We define, for a € Z]>Vo

—1 _3 1
lalle:=zlal,  llelln = slas|+ 3larl, (34)

where, for class (H), we interpret a = (as,1,...,®s Ng,¥R,1,---,¥R,Ng) for given ag € zNs agR €

>0’
ZIZV(’;. We then have the following key result whose proof is prov1ded in Section A.2 of Supplementary
Material:

Lemma 3.6. Letx,y RN, 0€©, A>0. Also, let a € Zgo. Under Assumptions 2.1-3.3, we have that:
% p (W)(x 1:0)|ox = A~ llellw X%(W)(A X, y,g)pX (W)(x,y;é?), we{E,H},

where y %”(,(W) (A, x,y;0) is obtained explicitly defined via differentiation of x — pfz’(w) (x,y;0)
and is characterised as follows. There exists a constant C > 0 such that for all A > 0, x,y € RN, 9 € ©:

|%”(,(w)(A,x,y,0) P (W)(x v; 6’)| < C|%(W)(A X, v, 0)|

In brief, Lemma 3.6 states the following. For model class (E), taking k € N partial derivatives of x

X5 (¢ 1 0) yield _IZCE lass (HD. takine k € N partial derivafi F X ye0)
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3
w.r.t. the smooth components (resp. the rough components) produces the term A2k (resp. the term

A_é). Based upon Lemma 3.6, the form of the CF-expansion is determined from the expression of the
differential operator .@f;g and the number of derivatives involved therein. A detailed characterisation
for the differential operator @fy’e is provided in Supplementary Material. In particular, Lemma B.3 in
Supplementary Material states that the operator admits the following expression. For ¢ € C®(RV;R),
ae€Z , jeNand (r,0) e RN x©:

>0’

25" M oWl = Y U 00)07p(x),  we{EH), (35)
Y€ Fw(a)

where _#,, (@) is a set of multi-indices Z’ZVO defined in (B.21) in Supplementary Material and 7/7[“] :

RN x ® — R is explicitly determined from products of partial derivatives of the SDE coefficients and
can be evaluated in applications using software performing symbolic calculations. Due to (35) and
Lemma 3.6, we have that for w € {E, H}:

K .0, Xz,
Al KL 2000 X500 (i)} ()|
1<jsM -1 g<plil B

=YY Al K@ pdal ) 00 (4, v:0) g0 (e, v30)
1<j<M -1 g<plil ye #y (a)

k — —
= Z A2 - e](CW) (A, x,y;0) - pf’(w) (x,y;0) +%3(W) (A, x,y;6) pf’(w) (x,y;0), (36)
1<k<M-1

where in the last line, we rearrange the sum in ascending order in powers of VA and have defined:

e,(cw) (A, x,y;0)

=y KT?W}“](x,e)fﬁW)(A,x,y;e)-1|a|+j_“7“ s 37)
1</SM-1 4 <glil ye Fun(a) v2

%éw)(A,x,y;H)

=0 2 oy Al K el g 0 (Ax.y:0) -1 M-

al+j=llyllw=>5
1< <M1 g<plil ye s (a) ve2

Under Assumptions 2.1-3.3, from Lemma 3.6, there exists a constant C > 0 such that:

_ M
|%3(W) (A,X, y’g)pf’(W) ()C, y’e)i < CAT|€¢(W) (A’x’y’9)|’ (38)

for all (A,y,0) € (0,1) x RN x @©. Working with Theorems 3.4-3.5, (33), (36) and (38), we finally
obtain the following ‘minimal’ representation of density expansion for diffusion models (E) and (H).

Theorem 3.7 (A-Expansion). Let (A,x,y,6) € (0,1) xRN xRN x ®. Under Assumptions 2.1-3.3, the
transition density admits the following expansion. For every J e N and w € {E,H}:

X, X, $
py ™ (x.y:0) = p (W)(x,y;9)~{1+ Z A2 -eﬁw)(A,x,y;H)}+%J’<W)(A,x,y;9)- (39)
1<j<J
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The coefficients e}w) are explicitly determined in (37). Also, for 1 < j < J, there exists a constant C > 0

such that for all (A,y,0) € (0,1) xRN x 0,

|e§.w)(A,x,y;9) X pf’(w)(x,y;9)| < C‘%(W)(A,x,yﬁ)l.

For the residual #’-™) there exist constants Cy, Ca, C3 > 0 such that for all (A, y,0) € (0,1) xRN x0O:

2 (40)

J+l m(w)
2

|27 (A, x,y:0)| < clAJT”|g<W>(A,x,y, )| < CA

and

J+1

/N|,%J’(W)(A,x,y;6)|dySCgA 2. (41)
R

We note that the pointwise error bound (40) differs across model classes (E) and (H) due to m(w)
taking a larger value in the latter case. In brief, this is due to Xg in (H) being a smooth component,
driven by a Gaussian noise fOA Byds of size O(A3/?) rather than by By of size O(A!/2) in the case of]
XR, thus Xg has a smaller variance for a fixed A € (0, 1). Le., the existence of the smooth component Xg
in (H) leads to a sharper density and/or concentration around the mode in the X coordinate. However,
in terms of Lj-error, its order only depends on the choice of J and not on the model class because
y — %™ (x,y,6) can be treated as a Gaussian density for any (x, 0, w) € R x © x {E, H}; recall also
(32).

J
Remark 3.8. Let 7l/1-0") (A x,y;0) := Di<jcs A2 - e;w)(A,x,y;G). To avoid negative values for

710" e use a standard technique (see e.g. Stramer, Bognar and Schneider (2010) for a related
approach) where 1 + & = exp{log(l + f)} =exp{Ty (&)} exp{Ry (&)}, for J' > 1, with Ty () :=

Z]J.;l (—1)j+1§7j the J’-order Taylor expansion of & — log(1 + &) and R/ (&) its residual. Via sim-

ple arguments, for [£] < § < 1 one has |(1 +&) - exp{TJ/(f)}| < C6’"*1, for C > 0. The above suggests
the use of the following proxy:

[71”0 (x,y;6) := pf’(w) (x,y;0) - exp {TJ/ (71'[”’(“’) (A, x,y; 9))} (42)

Thus, 7l/1: ") includes powers A2 A2 (assuming non-zero e;’s), so is of size § = O(Al/z) and
the residual in (39) is O(AY+D/2) _ in the sense of the first bound in (40). For the replacement by
the Taylor approximation to only affect terms of size O(A/+1)/2) one should select J” as the smallest
even integer so that J' > J. An even J’ guarantees integrability of the density proxy.

4. Numerical Experiments

‘We focus on the bivariate FitzHugh-Nagumo (FHN) SDE used in neuroscience. This model writes as:

dVi=L(v, -V} -U, -s)dt;  dU, =(yV, - U, +B)dt+ 0 dB,, (43)

with V describing the membrane potential of a single neuron and the recovery variable U expressing
he ion channel kinetics. Also, s is the magnitude of the stimulus current and is often controlled and 8 =
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(€,7,B,0) is the parameter. This SDE does not satisfy the boundedness conditions in Assumption 3.2
as there is a non-Lipschitz term in the drift. Statistical inference for the FHN SDE is an important topic
from a theoretical and a practical viewpoint, see Ditlevsen and Samson (2019), Melnykova (2020),
Samson, Tamborrino and Tubikanec (2025). SDE (43) belongs in class (H) as the weak Hérmander’s
condition (specifically, Assumption 2.2-II) holds in this case. The transition density is intractable and
we approximate it with the CF-expansion given in Section 3.2. We investigate the accuracy of the CF-
expansion in Section 4.1 and use the expansion to carry out Bayesian inference with real data in Section
4.2.

4.1. Accuracy of the CF-Expansion

We produce two expansions via use of different baseline Gaussian densities. In particular, for a given
initial value x = (x,x2) € R*, A > 0 and J € N, we work with the CF-expansions:

k
v pl ](x,y;e);=pg‘)(x,y;e)x{1+ > Ai.e,i”(A,x,y)}, Le (LI},  (44)
1<k<J

with the reference density p( )( -), t € {I, 1T}, corresponding to the following ‘full’ (for ¢ =1) or ‘partial’
(for ¢ =1I) LDL scheme:

dX(L) (A(t) X(l) b(L) )dl‘+ dBi ., (45)

where we consider the following two choices:

A0 [(1=300%) /e ~1/e L [(1=3G0?) /e ~1/e|
x,0 v -1 ’ x,0 " 0 1 5

b = [(M - (x1)’ —x2+5) /e S

yx1—x2+p

The el(:) ’s are found starting from expansion (28), with .,2”3 *“ (used by the differential operator 9@’9)
corresponding to the generator associated with (45) for ¢ € {1, I1}, and then re- arranging terms in powers
of VA as described in Section 3.2. Matrix AV is upper-triangular, so the baseline PA (D takes a simpler
form compared to when using A In both cases, the reference Gaussian laws are non-degenerate. To

calculate the e,(:)’

Material. Due to the SDE noise being additive, we have w](;) =0, for k = 1,2, ¢ € {I,L11}. Thus, the
CF-expansions with J € {1,2} coincide with the baseline. The reference density for ¢ =I involves full
linearisation, so the e,(( ) (I )’s see Section C.1 in Supplementary
Material for details.

We choose s = 0.01, initial value x = (Vp, Up) = (=0.1,0.2) and 6 = (&,y,8,0) =(0.1,1.2,0.3,0.8).
We consider A € {0.1,0.05,0.02} and compute CF-expansions using the transform pa described in

Remark 3.8, which we denote here 12N 5 (W11 ,te {LII}. We try J =2,3,4,5, and for pp we set J' =2,

s we use Mathemat ica with full expressions given in Section C in Supplementary

s have simpler expressions than the e,

as the correction term includes powers A3/2, 3 ...,A?12 J <5, and the transform can only affect terms
of 51ze O((A3/2)“ Dy =0(A%?). We find the benchmark * true’ dens1ty via a 31mu1at10n that: (1) uses
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Figure 1. Contours of the benchmark densities pr). Left: A=0.1. Middle: A =0.05. Right: A =0.02.

standard Kernel Density Estimator (KDE) approach to reconstruct the density. We write the benchmark
density as p(AB). Densities are evaluated on a regular 51 x 51 grid D = {(s,-, rj)|0<i,j< 50} c R? for
reals rg < --- <rs0 and sg < - - - < 550 defined in an apparent way.

Fig. 1 shows the contours of the benchmark pr) , which indicate the unimodality of the target tran-

sition densities. Fig. 2 plots the absolute errors,
LI B LT
<§’A(L) Ul (x,y:0) = |p2 ) (x,y:0) —ﬁ(AL) [ ](x,y;0)|, yeD,

between piB) and the CF-expansions of order J =2, 3,4, 5. Fig. 3 summarises the overall performance

of the CF-expansions. Fig. 3(a) gives the L;-error of the CF-expansions, defined as LE‘)’[” (A, x;0) =

2yeD cfA(L)’[J](x,y;H) X 8y X 0y, where y = (s50 — 50)/50, v = (rso — ro)/50. Fig. 3(b) shows the
average running time of DE-I and DE-II (denoting the two density expansions for ¢ € {I,11}), with the
average taken from the 3 choices of A. Fig. 2 demonstrates that absolute errors diminish as J increases.
In particular, the error of single mode and variance (or higher order moments) between the benchmark
and approximate transition densities gradually diminishes as J increases. We observe a similar decrease
in L-error in Fig. 3(a). Note that the errors by the two CF-expansions with J =5 are less than half of
those with J = 2. Also, errors decrease for smaller A. In terms of computing cost, for the DE with
J =2, i.e. the baseline Gaussian density without correction, DE-II is computationally cheaper due to
the simpler expression in the matrix exponential. Costs are similar between DE-I with J =2 and DE-II
with J = 4. Costs grow as J increases, but the growth rate seems faster in DE-II since the latter makes
use of the simpler but slightly less accurate baseline density, thus involves more correction terms as J
SrOows.

4.2. Application to Bayesian Inference

4.2.1. MCMC via CF-expansion — Design of Posterior

We use our CF-expansion to carry out Bayesian inference for SDEs. In this subsection we consider
general SDEs rather than just the FHN SDE as the approach is relevant in a wide setting. Via the
CF-expansion we obtain a posterior law that can be integrated within well-established MCMC method-
ologies, including centred/non-centred parameterisations (Papaspiliopoulos, Roberts and Skold, 2007),
Particle MCMC and Particle Gibbs algorithms (Andrieu, Doucet and Holenstein, 2010). Note that early
literature (Stramer, Bognar and Schneider, 2010) investigated the use of CF-expansions (for elliptic
models) within a standard Metropolis-Hastings method under centred parametrisation, thus the options
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Figure 2. Heatmap of the absolute error for the CF-expansion in the case of the hypo-elliptic FHN model (see
Section 4). Rows correspond to 3 choices A = (0.1,0.05,0.02) and columns to 4 choices J =2,3,4,5.

provided were limited. Particle-based MCMC methods require sampling from the SDE transition den-
sity, i.e. in our case from the CF-expansion used as its proxy. It is typically difficult to simulate from
the CF-expansion. However, notice that the expansion writes as ‘Gaussian density’ X ‘correction term’.
Thus, particle-based MCMC and general Sequential Monte Carlo (SMC) methodology can be imple-
mented using the baseline density (which we can sample from) with the correction term being attached
in the ‘weights’ within the algorithm. Furthermore, the CF-expansion structure of ‘Gaussian density’ X

3 bl
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Figure 3. Summary for performance of density expansions.

one in our numerics in the next section. We provide more details on the mentioned algorithms directly
below.

Consider the data %}, = {Y;, }o<k<n at instances ¢, 0 < k < n, for which we assume an equidistant
step-size A. We consider the setting of noisy observations, so that there is a density p (Y, | Xy, ), assumed
known. Under a data augmentation approach, we set q := (6, 2;,) € R4 x RN*(*+1) "where 2, :=
{X# }1<k<n- The posterior density on the augmented state q = (6, Z,,) writes as:

Pl | [ p@al)fx{ [T p¥( Xa:0)f xpoXo) xpo(6).  46)

0<k<n 1<k<n

where pg, pg denote priors on the initial value X and the parameter 6, respectively. We replace the
true transition density with the CF-expansion as given in (42), that is:

[1 P X0~ [] pXG Xz x [ exp(T (r7(A Xy 0 X030)) @)

1<k<n 1<k<n 1<k<n

The approximate posterior obtained via (46)-(47) can now be used within standard or particle-based
MCMC methods: (i) For standard MCMC, the ‘correction terms’ can be treated as a part of the likeli-
hood function, so that a-priori the dynamics of the X-process are determined by the baseline density.
This allows for application of centred/non-centred algorithms, as in the latter case one can use as la-
tent components the standard Gaussian noise that generates samples from the baseline density; (ii) For
particle-based methods, the ‘correction terms’ can become part of the weights and one can apply, e.g.,
particle filters by sampling from the tractable baseline density.

Remark 4.1. In the above, we have discussed the use of baseline Gaussian density as a ‘proposal’
within the standard/particle-based MCMC computational framework with ‘correction terms’ becoming
part of the weights, rather than directly sampling from the approximate density of the form (baseline
Gaussian density) X (1 + (correction)), as the latter approach is in general unavailable. However, one
may employ a methodology proposed by Davie (2022) who constructed a tractable sampling scheme via
a corresponding density expansion in an elliptic setting, in a way so that the used expansion preserves
a high order proximity in Wasserstein distance. Extension to hypo-elliptic SDEs is not straightforward
and could be an interesting future research direction
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4.2.2. Experimental Design and MCMC Results

We apply our CF-expansion to carry out Bayesian inference for the FHN SDE (43) with the real dataset
used in Samson, Tamborrino and Tubikanec (2025). The data are available at https://data.mendeley.
com/datasets/ybhwtngzmm/1 which provides 20 neural recordings of the 5th lumbar dorsal rootlet
from a single adult female rat with time length 250ms and equidistant step-size 0.02ms. In our study
we choose a particular dataset, specifically the file 1554.mat from the above URL, which was obtained
while the 5th lumber dermatome was stimulated. We subsample the first 40ms of data with a step-size
0.08ms, i.e. we have (T, A) = (40,0.08) and a number of datapoints n = 501, so A is relatively large. As
in Samson, Tamborrino and Tubikanec (2025), we set s = 0 and focus on the parameter 6 = (¢, 7y, 8, 0).
We assume that the data %, = {¥;, }o<k<n are observed with a small measurement noise as Y;, =
M4 4(0,0.012). We adopt a
non-centred parametrisation, assign log-normal priors on 6, i.e., loge,log 8,logy,log o Hd (0,1)
and set Vg ~ 47(0,0.12), Uy ~ .#(0,0.22) for the initial state. We employ Hybrid Monte Carlo (HMC)
to sample from the posterior, using the Python package Mici (https://pypi.org/project/mici/) which
offers a variety of MCMC methods based on Hamiltonian dynamics. We use a dynamic integration-
time HMC implementation (Betancourt, 2017) with a dual-averaging algorithm (Hoffman et al., 2014)
to adapt the step-size of the leapfrog integrator. The mass matrix is set to identity.

We consider 3 designs of tractable posteriors: [PO] Benchmark ‘true’ posterior. This is constructed
via a local Gaussian (LG) transition density scheme (Gloter and Yoshida, 2021), which provides an
approximation of the transition density of the hypo-elliptic SDE (H) for a sufficiently small step-size. A
data augmentation step is applied, whereby djs = 100 signal points are added in-between observation
pairs to eliminate the bias. The obtained posterior values are treated as the benchmark true values;
[P1] Posterior based on the partial LDL scheme given in (45) with ¢ = II; [P2] Posterior produced via
implementation of the non-centred parameterisation of the initial target given by (46)-(47), based on
the CF-expansion around the partial LDL scheme with J = 3. For each posterior, we run two HMC
chains of 8,000 iterations with the first 4,000 iterations used as an adaptive warm-up phase.

Fig. 4 shows results for targets PO-P2. Results for the true posterior PO are given in black and are over-
laid in the sub-figures to observe the accuracy of posteriors P1-P2. Table 1 shows average running times
per iteration from two chains. Additional convergence diagnostics provided in Table 1 of Section C.2
in Supplementary Material show similarly good convergence performance for all 3 cases, we can thus
conclude that the posteriors shown in Fig. 4 are reliable. In Fig. 4 it is clear that P2 (i.e. scheme based
upon the CF-expansion) captures PO more accurately than P1 (i.e. scheme without correction terms)
does. Thus, the inclusion of the correction term eliminates the bias even for J = 3, with the algorithm
targeting P2 having a computing cost approximately 10 times smaller than that of the benchmark PO
(see Table 1). Our experiment implies that, in this case, the CF-expansion is effective both from the
perspectives of computational cost and estimation accuracy. We remark that a centred-parametrisation
led to MCMC chains with very poor convergence performance.

Vi, + €, with V the smooth coordinate in the FHN SDE and ¢y, .. ., &,

Table 1. Computational cost of MCMC chains for the FHN model. Schemes: PO— benchmark; P1— Modified
LDL; P2 — CF-Expansion, J = 3.

scheme PO P1 P2
time(sec)/iter | 4.745 0.237 0.460
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Figure 4. Posterior estimates. PO (benchmark posterior) is overlaid in each figure in black.

S. Discussion on Practical Perspectives
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(a) P1 (Partial LDL scheme) (b) P2 (CF-expansion with J =3)

Data augmentation between data points. We have developed a density expansion and discussed
its use in statistical inference for the setting where the step-size A between observations is less
than 1. In a general setting where A > 1, one can still employ the density expansion in a Data
Augmentation framework (Papaspiliopoulos, Roberts and Stramer (2013)), i.e., by imputing the
latent variables between data points via time-discretisation. This can indeed be realised by gen-
erating a Markov chain of the baseline Gaussian scheme with the products of correction terms
attached to the test function as a weight. As illustrated at the experiments in Section 4.2, the use
of the correction terms can lead to efficient inference with a smaller number of discretisations
in-between data points, compared to the case without the corrections. Similar efficiency gains
were studied and illustrated in Iguchi, Beskos and Graham (2025) where a weak second-order
sampling scheme is compared with the Euler-Maruyama (weak first order) one in a Bayesian data
augmentation framework.

Numerical properties of the LDL scheme. Motivated by the use of the LDL scheme in a data
augmentation framework, one may be interested in its numerical properties such as stability or
(geometric) ergodicity. Though a full investigation is beyond the scope of this paper, we will make
some comments below on the preservation of ergodicity by the LDL scheme. Let us consider the
following Langevin-type equation:

dX, = b(X,)dt + =dB,, (48)

where X; e R4, ¥ e R4*4 and {B;}:>0 is a d-dimensional Wiener process. We assume standard
sufficient conditions for (48) to be ergodic, specifically, (i) minorisation and (ii) Lyapunov con-
dition, see e.g. Lemma 2.3. and Assumption 2.2., respectively, in Mattingly, Stuart and Higham
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(2002). We will check if such conditions are inherited by the LDL scheme applied to (48). We
first notice that this is not generally true for the Euler-Maruyama scheme unless the drift function
is globally Lipschitz. In particular, the second condition can break down when the drift is only
locally Lipschitz, while the minorisation condition can still hold, see, e.g., the proof of (Mat-
tingly, Stuart and Higham, 2002, Corollary 7.4.), regardless of the growth of the drift. In a similar
manner, the minorisation condition should hold for the LDL scheme as well, thus we focus on the
Lyapunov condition. Here, we will show that such a preservation can occur for the LDL scheme
applied to the following 1-dimensional SDE with non-globally Lipschitz drift:

dX,=-X}dt+dB,,, Xo=x€R. (49)

We note that (Mattingly, Stuart and Higham, 2002, Lemma 6.3.) proved that for any step-size and
initial state, the Euler-Maruyama scheme applied to (49) can be unstable with a positive proba-
bility, thus does not preserve the ergodic property. Then, the LDL scheme {Y% } x>0 is defined as
follows, for O <t,,_1 <tpand A=t, —t,_1:

A tn
Yn =exp(=3Y2_ | A)Y,_ +2Y; / exp(=3Y?>_s)ds + / exp(=3Y2_,(t, — 5))dB 5. (50)
0

th-1

We use the Lyapunov function V(x) = x> and write ,_; as the o-algebra generated by the
Markov chain {Y;, }x<n—1. We have that:

A
E[V(Y,,)mH]=m(A,Y,,_1)2+/ exp(—6Y2_ 5)ds < m(A,Y,_1)* +A,
0

where m(A,Y,,—1) = exp(—3Yj_1 ANY, _1 + ZYi1 fOA exp(—3Y3_1 s)ds. We derive an upper bound
for m(A,Y,_1)? and for a fixed & > 0 consider the following three cases separately: (a) ¥;,,_; = 0;
) |Y,—1] > &: () |Yn-1]| £ &,Y,-1 # 0. For (a), we immediately see that m(A,Y,_1) = 0. We note
that, when Y,,_1 #0:

l—exp(—SYﬁ_] A)

m(A,Y,_1) = exp(—3Y3_1A)Yn,1 + 2Y3—1 X 7 = (% + % exp(—SYr%_]A))Yn,l.
n-1

Therefore, for case (b), we have that:

2
m(A, Yn1)? < (§ + %exp(—382A)) xY2_ = px V(Y1)
with p € (0,1). In case (¢), it also follows that:
m(A Y, 1)? = p X V2, +24/p(exp(-3Y2_,A) - exp(=36°8) |2
2 2 2 2
+ (exp(—BYn_]A) —exp(-3e A)) Y.,
<pXV(Yyo1)+(2p + )&’

We thus conclude that the discrete-time Lyapunov condition holds for (50), i.e., there exists @ €
(0,1)and B> 0s.t.:

E[VY)|Fp-1l<aV(Yy-1)+B,  ¥neN.
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In summary, due to minorisation and discrete-time Lyapunov conditions, the LDL scheme (50)
preserves (geometric) ergodicity for the SDE (49) with locally Lipschitz drift. This example is
used as an indication that the LDL scheme can preserve ergodicity for general SDEs with non-
globally Lipschitz drift. Detailed analysis is left as future work.

3. Design of local drift linearisation — choice of matrix A. In the development of the density ex-
pansion, we considered full-drift linearisation, i.e., first-order Taylor expansion of the drift for all
coordinates to define the matrix A. However, as mentioned in Section 4.1, one can also consider
a partially linearised drift approximation, e.g., with the matrix A being upper-triangular, in order
to reduce the computational cost of calculating exp(A), as long as the vector field defined in the
baseline scheme satisfies Hormander’s condition as in Lemma 2.5. For preservation of hypoellip-
ticity, at least linearisation of Vi ¢ (drift of the smooth component Xg) w.r.t. X is required so that
the noise in the rough component X is lifted to Xs. The optimal way of linearisation (choice of
A) would depend on the model at hand, but if a user considers a lower level of density expansion
*J’, say, J =2,3,4, which is indeed sufficient to see improvements in estimation accuracy, then
the partial drift linearisation will be a better option in terms of computational cost; recall e.g.,
DE-II in Figure 3-(b).

4. Computational cost w.r.t. the state dimension. We stress that our CF-expansion converges expo-
nentially fast with J > 1, so small values of J will typically provide accurate proxies. Such a
consideration counterbalances the computing cost for increasingx state dimension N. Following
the analytical expressions of the e¢j’e for the FHN model in Section C of Supplementary Mate-
rial, in the case of additive noise, one has e; = e; =0, while the calculation of e5 requires all
3rd order derivatives of the baseline Gaussian density, at a cost of O(N3). An extra derivative is
added in the calculation when increasing k in e by one. Note that calculations involving just the
baseline Gaussian transition density will typically already involve costs of O(N?) due to matrix
inversions, so in the additive noise setting using J = 5 will not increase computing costs vs J =0
as an order of N.

6. Conclusion

We propose a new CF-expansion for the transition density of multivariate SDEs over a time interval
with fixed length A € (0, 1), of the form ‘baseline Gaussian density’ X ‘correction term’, where the
‘correction term’ involves quantities of size A/ 2 j=0,...,J, for J > 1. Analytical expressions can
be obtained via any software that carries out symbolic calculations. We have shown analytically that
the error has a size of O(A(/*1)/2), The proposed CF-expansion covers hypo-elliptic classes of SDEs,
whereas most of the developments in earlier works are dedicated to elliptic SDEs. In the numerical
studies in Section 4 the errors from our CF-expansion are fastly eliminated as J increases for a fixed
Ae(0,1).

We also mention the following. First, we take the direction described in the paper to produce our CF-
expansion because potential alternative approaches used in the literature for the elliptic class (involv-
ing, e.g., Malliavin calculus) are arguably much more challenging in terms of producing a practical and
theoretically validated methodolology. Second, several recent works on the theme of parameter infer-
ence for hypo-elliptic SDEs produce methodology and analytical results in the high-frequency scenario
A — 0, see e.g. Ditlevsen and Samson (2019), Gloter and Yoshida (2021), Iguchi, Beskos and Graham
(2024), Iguchi and Beskos (2025a), Iguchi, Beskos and Graham (2025), Melnykova (2020), Pilipovic,
Samson and Ditlevsen (2024). Then, numerical experiments are used to check the precision for a fixe
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A > 0 given in practice. In contrast, our contribution assumes a fixed A, thus is expected to be more
robust in deviations of A from 0 than high-frequency approaches.
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Appendix A: Proof of Lemma 2.5

We write the LDL scheme (15) with a frozen variable z € R™V as the following differential form:

d
dX* =VE(X)5,00dt+ Y VI Z,0)dB) . Xo=1x,
j=1

for (x,0) € RNV x ©, where we have set:
V5 (x,0) = Az ox+bz 0, Vi, 0) =V;(z,0), 1<j<d. (51)
Since the diffusion coefficients are independent of the state )—(tﬁ,z’ the above Ito-type SDE identifies
with the Stratonovich one. We show under Assumption 2.2 that the vector fields determined from the
coefficients of the above SDE satisfy Hormander’s condition for each model class E and H.
Elliptic model E. We immediately have from Assumption 2.2-I that
Span{V(x,0)|z=x, 1<j<d}= RN, (52)

for all (x,6) e RN x @.

Hypo-elliptic model H. We firstly note that

VS,O(X, 0) = VS’()()C,Q), V;(x, 0) = [OLS’VRJ(Z’ Q)T]T, 1<j<d.
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Then Assumption 2.2-1I is equivalent to the following condition:
Span{VR,j(x, 0),1<j< d} =RNR;
Span{Projl,NS{[Vo,Vj](x, O 1<j< d} = Span{&IRVS’O(x, O)VR,j(x,0), 1 <j< d} =RNs, &9
The condition (53) leads to:
Span{Vg_ j(z,0)|,=x, 1 < j < d} =RNR,
and
Span{Projl’Ns{[Vz,Vf](x, H)IZ:x}, 1<j< d} = Span{Projl,NS{Az,gi(x, Nlz=x}, 12j < d}

= Span{d,,, Vs,0(z,0)Vr,j(2,0)|;=x, 1 < j <d} =R"s.

Thus, we obtain:

span{{V5(x,0), [V, Vi1(x,0)} o=y, 1 < j <d =R, (54)

for all (x,6) € RN x @. The proof is now complete.

Appendix B: Proof of Lemma 2.6

We define
- Xz . X .
6= [ pEEnopnEolads 520

Noticing that p{{ (x,y;6) = 6y, (x) and p(’)_((x, y;60) =y (x), we have

_ A
X5, 9:0) = p X (1,3 0)|ox = G(A) - G (0) = /0 G (s)ds.

Also, note that the transition densities pf(x, y;60) and pfz (x,y;0) satisfy the following back-
ward/forward Kolmogorov equations:

0 pX(x,y:0) = Lo{py (L y:0)}(x), 8 p(x,y:0) = Ly {pF (x, 50} (); (55)
8 pX (x,9:0) = L2HpX (,y:0)} (). (56)

It then follows that:

6= [ L OO (r.E:0)]emde
+ [ PR n0Z Y (x5 0) Ol
RN

== [ L 0N (0 end

. / Lo lp X (0O X (5. £:0) o dE
RN
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The proof is now complete.

Appendix C: Proof of Lemma 2.7

We focus on showing the formula (20), and (21) is obtained from a similar argument. We make use of
the approach used in Iguchi and Yamada (2021, Proposition 2.1). We define

§7i ) = P Zg Pl = [ Pl pF (o) de (57
and consider the Taylor expansion of g"(?; (s)ats=0:

~ J — k
gjf!(s)=26kgjfl(s)ls 0 X F*'%)M i(s,t,x;0),  JEN,

where %27+ (s, 1, x; 9)—sJ+1f 8J+1g$9 (su)(1 ”) du. We have from (57) that
057 (s) = / FEPp(e0) 0up X (v,8130) dé + / ZE0, P2 () pX (x,6030) i
- /R S LaPle@) (L9 pE (1 0)) (€1) dér ~ / Lo Ly Pl 5pEn) pY (v.61:6) déy

- [ 1205 Zpteen pF (. vio)de

0,z Z
=gl %" i),

where we made use of (56) and integration by parts in the second and third lines, respectively. Thus,
the higher-order derivatives of g‘g 0 () are given as:

(adgg,ak(%)

o*gZi (s)=g (5) = P (ad 0.:) “ZOIPe),  0<k<l,

and then,
0% 70 (5)]s=0 = { (ad o) (Z)} P ().

The proof is now complete.
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