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1 | INTRODUCTION

Prognostic and Natural History Study [PNHS]) aimed to validate robust quantification
in clinical settings. We report our comprehensive approach to amyloid-PET imple-
mentation, comprising scan acquisition, harmonization, data storing, and data sharing
strategies.

METHODS: Data from 28 scanners were harmonized using Hoffman phantoms. Three
quantification workflows were compared: AmyPype (PET-only), IXICO-LEAP, and the
standard Centiloid pipeline (magnetic resonance imaging [MRI]-based). Distributions
of Centiloids were assessed using Gaussian Mixture Modeling.

RESULTS: Binary quantification showed excellent concordance between pipelines (>
96%) and compared to visual reads (>90%). DPMS Centiloids had a bimodal distri-
bution while the PNHS showed a more skewed distribution toward higher Centiloids
modeled with three Gaussians (1t Gaussian mean + 2SD = 12 CL, emerging pathology).
DISCUSSION: The harmonization framework, providing strong cross-method correla-
tions in AMYPAD, has been adopted by EARL as the Brain PET/CT accreditation stan-
dard and provides a practical approach for other multi-center cohorts to implement

similar strategies.

KEYWORDS
Alzheimer’s, amyloid, Centiloid, PET, quantification

Highlights

* We share AMYPAD'’s end-to-end approach to amyloid positron emission tomogra-
phy (PET) quantification from data acquisition and handling, harmonization based
on Hoffman phantoms, quality control, image processing, to data storage, and data
sharing strategies.

* Centiloid quantification was compared across one PET-only (AmyPype) and two
PET-MR pipelines (standard Centiloid and IXIXO-LEAP). Excellent agreement in
dichotomized Centiloid valued was observed both between pipelines and when
compared to visual reads.

« Distribution of Centiloid values in the Prognostic and Natural History Study (PNHS)
and Diagnostic and Patient Management Study (DPMS) are in line with the initial
recruitment strategies of the trials.

* Harmonization of Amyloid-PET scans framework was adopted by EARL as the Brain

PET/CT accreditation standard for multicentre brain PET scans.

and is widely used to study the natural history of AD and in disease

modifying therapies trials.®”

Amyloid-beta (AB) positron emission tomography (PET) detects the
presence and spread of amyloid plaques in the brain, one of the earliest
pathological hallmarks of Alzheimer’s disease (AD).! Three Fluorine-
18 amyloid-PET tracers have been regulatory-approved for routine
clinical use: [18F]florbetapir (Amyvid™: Eli Lilly),% [18F]flutemetamol
(Vizamyl™; GE HealthCare),® and ['8F]florbetaben (Neuraceq®; Life
Molecular Imaging).* Amyloid-PET has shown clinical value in terms of
increased diagnostic confidence and changes in patient management,”

In clinical settings, amyloid-PET is usually assessed visually by a
trained specialist and rated as negative or positive. Recently, three
major developments have led to the use of quantification as adjunct to
visual read. First, AD diagnosis is more often made in an early stage
of the disease, where emerging AB pathology challenges high confi-
dence assessments.® Second, this shift toward earlier diagnoses has
led to improvements in risk stratification of pre-dementia patients.”10
Thirdly, anti-amyloid therapies requires the accurate identification of
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AB pathology and assessment of treatment effects. Quantification pro-
vides a continuous measure of amyloid burden, and is likely to become
essential in managing patients receiving amyloid-removing therapies.
Therefore, establishing accurate and robust methods for amyloid-PET
quantification is paramount.

Quantification of amyloid-PET has traditionally been performed
using the standardized uptake value ratio (SUVR) at a tracer equilib-
rium time interval. However, several shortcomings including between-
tracer differences limit the utility of this metric.!! To overcome those,
the Centiloid approach was proposed providing a standardized scale
of amyloid load irrespective of the amyloid tracer and processing
pipeline.!? This scale is based on converting 18F-amyloid tracers SUVR
to the 11C-PiB-equivalent SUVR and anchoring the values between
0 (mean level of amyloid PET tracer uptake in young controls) and
100 (average signal observed in typical mild-to-moderate AD dementia
patients). It is now widely implemented in current clinical trial design
and can become a practical and valuable metric for routine clinical
use of quantitative PET.1113 Indeed in 2024, the European Medicines
Agency endorsed a Biomarker Qualification Opinion on the Centiloid
scale EMADOC-1700519818-1200791).

In order to optimize the use of amyloid-PET, the amyloid imaging
to prevent Alzheimer’s disease (AMYPAD) consortium was set up in
2016. AMYPAD is a collaborative research program with the aim to
improve understanding, diagnosis, and management of AD through the
utilization of amyloid-PET. The project consisted of two trials: (1) Diag-
nostic and Patient Management Study (DPMS)* focused on patients
with AD across the disease continuum and the (2) Prognostic and Natu-
ral History Study (PNHS)!° focused on a population without adementia
diagnosis.

By leveraging data collected within AMYPAD, the consortium aimed
to determine the applicability of quantification for both research and
clinical settings. This was supported by the validation of the Centiloid
metric and the implementation of consistent and reproducible image
interpretation across multi-center studies. Another priority for the
consortium was to enable the integration of additional datasets and
facilitate collaborative access to the collected data.

In this work, we present the amyloid-PET standards for quantifi-
cation implemented across the two AMYPAD trials, relying on exten-
sive amyloid-PET harmonization efforts across 17 sites and cross-
validation of three Centiloid pipelines, providing a practical approach

for other multi-center cohorts to implement similar strategies.

2 | MATERIALS AND METHODS

2.1 | Description of AMYPAD cohorts: DPMS and
PNHS

2.1.1 | DPMS
The DPMS involved eight centers and completed its enrolment of 844

memory clinic patients suspected of AD in June 2020.1¢ In the DPMS,

AB burden was primarily assessed by visual reading, as per standard

Clinical Interventions

RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the literature
using traditional sources, meeting abstracts and pre-
sentations (PubMed, Google Scholar). Amyloid positron
emission tomography (PET) quantification workflows
in multi-centre cohorts often primarily and sometimes
solely focus on data processing.

2. Interpretation: We propose an end-to-end approach cov-
ering data acquisition and handling, harmonization based
on Hoffman phantoms, quality control, image processing,
to data storage, and data sharing strategies. These were
effective to ensure consistent amyloid PET interpreta-
tion across multi-center European studies. Distribution
of Centiloid values in the Prognostic and Natural History
Study (PNHS) and Diagnostic and Patient Management
Study (DPMS) are in line with the initial recruitment
strategies of the trials.

3. Future directions: Amyloid-PET data from AMYPAD is
now available for all researchers on ADDI. The DPMS and
PNHS datasets are well-positioned to help refine the role
of amyloid-PET for optimal diagnostic and management
of Alzheimer’s, as well as to study the natural progres-
sion of the disease, and get deeper insights into factors of

resilience.

clinical routine at the time. Quantification of A8 burden was performed
for secondary analyses. Other imaging modalities, including structural
magnetic resonance imaging (MRI), were acquired according to local
practice, and not systematically available for quantitative purposes. As

aresult, this dataset required a PET-only quantification pipeline.

212 | PNHS

The PNHS involved 17 sites and completed the enrolment of >1600
participants in June 2022.1> The PNHS was a natural history study
that aimed to evaluate how AB imaging could improve understand-
ing the natural course of AD and modeling biomarker trajectories
along preclinical stages. The study used amyloid-PET imaging as
an additional and relevant AD biomarker to complement the phe-
notypical characterization of participants in 11 European parent
study cohorts, including the European Prevention of Alzheimer’s
Dementia Longitudinal Cohort Study (EPAD LCS),'” European Med-
ical Information Framework for Alzheimer’'s Disease (EMIF-AD)
60++18 and 90+, Alzheimer’s and Family + (ALFA+).2? FundacioACE
Healthy Brain Initiative (FACEHBI),2° (Flemish Prevent Alzheimer’s
Disease Cohort KU Leuven) F-PACK,2! UCL-2010-412, Microbiota,
AMYPAD DPMS (via the Amsterdam University Medical Center
[AUMC]),*¢ DZNE-Longitudinal Cognitive Impairment and Dementia
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Study (DELCODE),?2 and Gothenburg H70 Birth cohort study?324).
Accurate quantitative measurements of A burden were central to
the project objectives. Therefore, research-quality 3D-T1 weighted
MRI scans were acquired to aid the analysis of amyloid-PET scans
with a substantial subset of participants underwent dual-time window
acquisition protocols.2>

2.2 | Amyloid-PET acquisition protocols

Complete explanations of the procedures below are available in Sup-

porting Information-Appendix A.

2.2.1 | Site setup, image management, and image
quality control

IXICO oversaw scanner qualifications and data collection for both
studies, ensuring compliance with European Union (EU) data protec-
tion regulations via its Trial Tracker platform. Images stored included
PET (attenuation-corrected and uncorrected) in DICOM format, and
any computed tomography (CT) or MRI images.

Prior to participant scanning, each site underwent qualification
using a phantom to assess adherence to specific imaging protocol,
image quality control, and appropriate quantitative performance as
per European Association of Nuclear Medicine Research Ltd. (EARL)
guidelines.?® For the DPMS study, suitable images were transferred
to GE HealthCare for technical and scientific quality checks, followed
by amyloid quantification using AmyPype,2” with dynamic data sent to
AUMC for parametric analysis (see imaging workflow in Figure 1A). For
PNHS, images underwent rigorous quality inspection, including brain
coverage, head positioning, signal-to-noise ratio, and motion artifacts,
before analysis via IXICO'’s pipeline; dual-phase images were sent to
AUMC for dynamic analysis, with further quality control checks on
metadata and motion alignment. The imaging workflow is imaged in
Figure 1B.

2.2.2 | Static acquisition protocol: DPMS and PNHS

As per the product label, scans were acquired according to the static
imaging protocol. This entailed acquisition at 90 min post-injection (p.i.)
of 300 MBq (+20%) [*8F]florbetaben/Neuraceq® (FBB) and 185 MBq
(+10%) [18F]flutemetamol/Vizamyl (FMM) and collected in four frames
of 5 min each.28:27

The dynamic (dual-time window) acquisition protocol can be found

in the Supporting Information-Appendix B.

2.2.3 | Harmonization of amyloid PET scans

Amyloid brain PET scans in the DPMS and PNHS studies were acquired

from 28 different scanners using site-specific reconstruction param-

eters, introducing significant heterogeneity in image properties and
potential bias in cerebral AS load estimation. To address this, a new
harmonization protocol was developed in collaboration with EARL
within the AMYPAD study,3 and is now adopted as the Brain PET/CT
accreditation standard. This method involved acquiring 3D Hoffman
phantom scans at each site with their specific reconstruction proto-
col, calculating the effective image resolution of the reconstructions,
and applying Gaussian post-smoothing filters to match the lowest
resolution across sites (Figure 2). This approach ensured consis-
tent and reliable global and regional quantitative metrics for pooled
data, and reduced post-processing errors. While MRI protocol vari-
ability across parent cohorts posed an additional challenge, robust
brain segmentation methods minimized its impact, keeping SUVR
variability within scan-rescan variability, and significantly lower than
the variability observed in amyloid-rich regions of interests (ROls).
This finding suggests that even when MR protocol differ, its impact
on the PET analysis is mitigated by the actual difference in PET
resolution.

2.3 | Visual assessment of amyloid-PET images

Visual interpretation of PET images was performed using a standard-
ized and blinded method by trained nuclear physicians or radiologists
who had followed the tracer-specific reader training. Details on read
methodologies and reporting can be found in Supporting Information—
Appendix C.

2.4 | Static PET quantification

24.1 | DPMS: PET-only pipeline | AmyPype
software

For the DMPS, AmyPype was designed to allow the harmonized
quantitative assessment of [!8F]flutemetamol and ['8F]florbetaben
amyloid-PET without the need for an individual’s structural MRI
images.27:31

In AmyPype, late-phase PET-only images undergo frame-to-frame
alignment. Summed images are spatially normalized to the standard
Montreal Neurological Institute (MNI152) space using an adaptive
template registration method.32 Briefly, this method uses an adaptive
template consisting of two tracer-specificimages in the standard space,
whose linear combination can generate the optimal template for regis-
tering any given amyloid-PET scan. Next, the Centiloid Cortical target
mask is applied to the images, as well as a gray-matter parcellated
cortical-volume of interest mask, consisting of the regions in the Auto-
mated Anatomical Labeling atlas®® that typically accumulate AB. The
whole cerebellum is used as reference region (Figure 3). The volume
of interest overlayed on the PET image data is checked visually from
AmyPype quality control output. In case of any observations/issues,
these were recorded in the quantitation report and when necessary,

sites were provided feedback.
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FIGURE 1 Imagingdataflow in the DPMS (A) and PNHS (B). The parametric pipeline corresponds to the dynamic data processing workflow,

which is described in the Supporting Information. DPMS, Diagnostic and Patient Management Study; LEAP, learning embeddings for atlas
propagation; PACS, picture archiving and communication system; PNHS, Prognostic and Natural History Study; QC, quality control.
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Pre-harmonization Post-harmonization
(A) cOV=30.54% (A’) cOv=8.01%

(B’) COV=6.32%

a2 0 aa

(C) cov=22.8% (c’) cov=7%

(D’) COV=8.12%

1§ @

FIGURE 2 Examples of Hoffman phantom scans from four AMYPAD imaging sites, shown before (left) and after (right) harmonization.?? Units
in the colorscale represent voxel intensity normalized to the activity concentration. After harmonization, the coefficient of variance (COV%)—an
indicator of image heterogeneity—shows comparable values across all sites. The COV% corresponds to the ratio of the standard deviation of the
activity concentration in five regions of interest drawn on the white matter, over the mean activity concentration in these regions (x100).
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FIGURE 3 AmyPype: PET-only pipeline built on CortexID Suite for the analysis of the DPMS scans. It is based on the adaptive-normalization
of AB PET scans, and outputs SUVR, Z-scores, and Centiloid values for both [18Flflutemetamol and [18F]florbetaben scans. Ag, amyloid-beta;
DPMS, Diagnostic and Patient Management Study; PET, positron emission tomography; SUVR, standardized uptake value ratio.
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Pre-process:

- remove poor quality frames

- co-register and average frames
- align with subject TIW MRI

Register Atlas and Subject
T1W MRI - Map Atlas
ROIs to Subject TIW MRI

Compute
SUVR,
centiloid,
Suv

FIGURE 4 |IXICO-LEAP workflow: MR-based quantification pipeline built on LEAP for the PNHS. This method works in the subject’s space by
co-registering PET scans with their corresponding MR scan, which was parcellated using the LEAP method. Two target regions were used: the
GAAIN global cortical average and a composite of cortical LEAP regions (see Supporting Information-Appendix D for the list of regions).
Reference regions were all based on the LEAP parcellation. This pipeline was calibrated to render comparable Centiloid values for both
[*8F]flutemetamol and [18F]florbetaben scans, on top of SUV and SUVR values. GAAIN, Global Alzheimer’s Association Interactive Network; LEAP,
learning embeddings for atlas propagation; MR, magnetic resonance; PET, positron emission tomography; PNHS, Prognostic and Natural History
Study; SUV, standardized uptake value; SUVR, standardized uptake value ratio.

Users can request access to AmyPype through the following con-

tact: amypype.downloads@gehealthcare.com.

2.4.2 | PNHS: PET and MR pipeline | IXICO
in-house workflow “IXICO-LEAP”

For all scans marked suitable for analysis in the PNHS study, SUVR, and
Centiloid computation were performed using IXICO’s in-house fully
automated regional SUVR workflow.

To maximize the quantitative accuracy of individual Ag load, this
method employed a subject-specific multi-atlas structural MRI seg-
mentation approach named learning embeddings for atlas propagation
(LEAP;3435), which allows for flexibly selecting multiple single and/or
composite regions for the analysis. In this article, the workflow is
referred to as “IXICO-LEAP”.

IXICO-LEAP methodology consisted of co-registering PET frames
and creating an average image aligned to the corresponding MRI
scan. The MRI scan was then parcellated using the multi-atlas LEAP
methodology, and these masks were used to compute SUVR and
Centiloid values in native space (Figure 4). Apart from computing
SUVR for regions defined in IXICO’s LEAP atlas (full list in Sup-
porting Information-Appendix D), standard space templates were
incorporated to include additional regions. In this case, standard
space templates were used to define the Global Alzheimer’s Associ-

ation Interactive Network (GAAIN) global cortical average region in

the native space, and the Harvard-Oxford white matter reference
region,® which was then additionally refined using morphological
operations to ensure that non-white-matter tissue was excluded.
The analysis was then implemented in a validated and centralized
computer system and overseen by IXICO’s in-house trained image
analysts.

Dynamic quantification is described in Supporting Information-
Appendix B.

2.5 | Statistical analysis

In total, 51 scans from the DPMS were processed with AmyPype, the
IXICO-LEAP workflow, and the standard Centiloid pipeline, and all
scans from the PNHS were processed with the latter two, allowing
head-to-head comparison with correlation and Bland-Altman plots.
For each pair of pipelines, performance metrics used were the cor-
relation coefficient R2, intercept, slope, and 95% limits of agreement
(mean difference + 1.96 standard deviation [SD]). Agreement with
visual read was also considered based on the percentage of concor-
dant/discordant cases and Cohen’s kappa. In these scenarios, CL values
were dichotomized using a 24.4 CL cutoff, chosen from an indepen-
dent histopathology-based threshold (detecting moderate-to-frequent
neuritic plaques based on the Consortium to Establish a Registry
for Alzheimer’s Disease [CERAD] score’). We also included percent-

age agreement between pipeline and kappa scores around the three
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clinically-relevant thresholds from the donanemab phase Ill trial (11,
25,and 37 CL), in Supporting Information-Appendix E.

In addition, quantification results are shown across clinical groups,
compared between radiotracers (i.e., FBB and FMM), and against visual
read status (i.e., negative/positive). In the DPMS, clinical groups cor-
resond to indivudals with subjective cognitive decline +, mild cognitive
impairement or dementia. In the PNHS, clinical groups were defined as
cognitively unimpaired (CU) and cognitively imparaired (Cl) based on a
Clinical Dementia Rating scale (CDR) of O or 0.5 respectively. A Gaus-
sian Mixture Modeling (GMM) was performed on the distribution of CL
values in the DPMS and the PNHS, using the Akaike Information Crite-
rion (AIC) to select the number of Gaussian functions that best model
the data.

All statistical analyses were performed in R version 4.3.1.

2.6 | Data sharing

The PNHS dataset, containing the tabulated harmonized clinical
and biomarker data, is available for individuals via a formal data
access request on the Alzheimer’s Disease Data Initiative Work-
Bench (ADWB) and their Findability, Accessibility, linteroperability,
and Reusability (FAIR) Data Service.3® Users can create an account
and a dedicated Workspace on the ADWB in which they host the data
and perform their analyses. Furthermore, preprocessed PET scans are
available via the Health Rl XNAT platform,? the request for which is
also made via the ADWB and FAIR Data Service.

3 | RESULTS

3.1 | Comparison of Centiloid quantification
pipelines

Three Centiloid pipelines were compared: AmyPype, IXICO-LEAP
workflow, and the standard Centiloid pipeline, using data from the
DPMS and PNHS.

Global demographic characteristics were described in details previ-
ously for the two cohorts.?>1¢ |n the subset of 51 scans from the DPMS
processed with all three pipelines, the mean age was 70.2 + 7 years old,
27% of participants were female, 53% had a CDR of 0.5, and 47% were
visually positive (split between tracers: FBB, N = 44; FMM, N = 7).

IXICO-LEAP pipeline and the standard Centiloid pipeline were
strongly correlated with minimal bias, both in the PNHS and in the sub-
set of the DPMS data processed with those workflows (Figure 5A,B:
R2> 0.96, slope from 0.94 to 0.97, intercept from 1.4 to 3.3 CL, limits
of agreement ~[—13, 9] CL). In the sub-sample of 51 scans from the
PNHS processed with all three pipelines, the AmyPype software was
also highly correlated with the standard Centiloid pipeline, with a neg-
ative shift in the intercept and notable variability at the individual level
(Figure 5B: RZ = 0.96, slope = 1, intercept = —6.7 CL, limits of agree-

ment ~[—21, 12] CL). Similar trends were observed when compared to

the IXICO-LEAP pipeline (R? = 0.94, slope = 1.1, intercept = —7.3 CL,
limits of agreement ~[-26, 19] CL).

Next, focusing on dichotimized of CL values around 24.4 CL as pos-
itivity threshold, the percentage agreement between pipelines was
very high in both in the DPMS and in the PNHS (Figure 5C: Con-
cordant binary assessement in the DPMS: 49/51 = 96% and in the
PNHS: 1495/1542 = 97%). In the PNHS, the amyloid load of the
47 scans with discordant results (Possiandard/Negixico-Leap: N = 10;
Pos\xico-LEap/Ne8standard: N = 37) were in the intermediate 10-30 CL
range (Standard pipeline: 22+5 CL; IXICO-LEAP: 26+4 CL).

Last, the percentage agreement between CL quantification and
visual reads was high for all three software, both in the DPMS
and PNHS datasets (Figure 5D: concordance cases >90%). Cohen’s
kappa were also high in the PNHS (kstangara = 0.79 [0.77, 0.82];
xixico-Leap = 0.8 [0.74, 0.8]) and in the DPMS (xsiandarg = 0.85 [0.72,
0.98]; xixico-Leap = 0.9 [0.76, 0.99]; xamypype = 0.8 [0.67, 0.96]).
Focusing on the 10-60 CL range in the PNHS data (N = 465), the
agreement between quantification and visual read was lower (standard
pipeline: 79.8% concordance, kstangard = 0.56 [0.48, 0.64]; IXICO-LEAP:
75.6% concordance, xxco-Leap = 0.5 [0.41, 0.57]). The majority of
the discordant cases were Centiloid positive (>25)/visual read nega-
tive (standard pipeline: 13.5% CLstangard + /VR-; IXICO-LEAP: 18.6%
CLixico-Leap + /VR -). Details of agreement with visual reads across
tracers and levels of read confidence can be found in Supporting
Information-Appendix E.

Subsequent analysis results were obtained using the Standard
CL pipeline for the PNHS and the AmyPype pipeline for the
DPMS.

3.2 | Distribution of Centiloids in the DPMS and
PNHS

Figure 6A shows the frequency distribution of the Centiloid values for
729 baseline scans of the DPMS. The data presents a bimodal distri-
bution as expected from the sampling of clinical populations. For the
DPMS, the optimal number of Gaussians was two, corresponding to
the “negative” and “positive” groups (Figure 6A: 15t Gaussian: mean
CL=0.6,SD = 13.2 CL; 2" Gaussian: mean = 84.4, SD = 31.0 CL), with
expected differences by diagnostic stratum (Figure 6E). This behavior
was observed for both tracers.

The frequency of CL values of 1545 baseline PNHS is shown in
Figure 6B. The distribution for the PNHS is strongly skewed toward
lower CL values and shows a relatively reduced range of CL values
compared to that of the DPMS. This was expected given that the
PNHS mainly recruited cognitively unimpaired participants (CDR = 0,
as depicted in pink in Figure 6F). The PNHS showed a more skewed
distribution toward higher Centiloids modeled with three Gaussians
(based on the AIC): one for the negative group (mean = -0.4,SD = 6.3
CL), one for the positive group (mean = 58.5,SD = 36.6 CL), and a third
onein line with emerging pathology or lower bound of an “intermediate

range”/gray-zone (mean=8.9,SD = 9.8 CL).
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FIGURE 5 Comparison of three Centiloid pipeline: the standard Centiloid pipeline (in black), AmyPype (in blue), and IXICO-LEAP workflow (in
purple). Correlation and Bland-Altman plots are shown for the DPMS (A) and the PNHS (B) datasets. Venn diagrams representing the percentage
agreement between pipelines after dichomization of Centiloid values are displayed in (C) (positivity defined as amyloid load > 24.4 CL,
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History Study.
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4 | DISCUSSION

By implementing standardized acquisition protocols, phantom-based
calibration with post-reconstruction harmonization strategies, we
demonstrate that robust cross-center harmonization is feasible at
scale. Importantly, our work highlight that different data processing
approaches for Centiloid quantification can yield highly consistent
results when harmonization and standardization principles are applied.

To assess the robustness of amyloid quantification, we conducted a
comparative analysis of three Centiloid workflows: AmyPype, IXICO-
LEAP workflow, and the standard Centiloid pipeline. We found a strong
correlation among these methods, especially between the IXICO-
LEAP and the standard Centiloid pipeline. In the DPMS subset, when
comparing AmyPype to the other pipelines, we observed a small under-
estimation of low amyloid loads (g 40 CL) and overestimation of very
high amyloid loads (Z 100 CL). However, the sample size was rela-
tively small, and all pipelines showed very high agreement with visual
reads (>90% concordance, Cohen’s kappa > 0.8, or [0.67, 0.99] across
all software). In the 10-60 CL subsample of the PNHS data covering
the intermediate range (gray-zone), a higher proportion of discordant
cases was found compared to the whole cohort, which is in line with
results from the IDEAS real-world study.*®

While our work did not include a comparison with histopathology
as the standard of truth, several studies have also evaluated currently
available research and commercial tools providing a Centiloid out-
put, including against histopathology, and showed generally consistent
results across software.*1-43 As anti-amyloid therapies are emerging,
future studies comparing recently regulatory-approved software are
warranted, to ensure that clinical decision-making is not influenced by
the choice of amyloid quantification software.

Previous work from AMYPAD assessed the robustness of the Cen-
tiloid scale to many processing parameters, conducted by testing 32
combinations of pipeline settings.** In short, the CL was most influ-
enced by the selection and delineation of reference regions. The whole
cerebellum or “whole cerebellum + brainstem” provided consistent
results across tracers while the pons and cerebellar gray matter are not
recommended. Additionally, the standard Centiloid pipeline was shown
to berobust against atrophy, differences inimage resolution, and image
harmonization. Importantly, while harmonization through smoothing
based on accurate Hoffman-based measurements can reduce some of
the variance between scanners, residual differences related to detec-
tor technology,*” reconstruction methods, and noise properties remain
and can affect Centiloid quantification.

From a clinical perspective, the distribution of Centiloid values
reflects the expected patterns in clinical populations, with a bimodal
distribution in the DPMS, indicative of distinct “negative” and “positive”
amyloid groups, and a trimodal distribution in the PNHS, highlight-
ing the successful recruitment of a sample enriched for individuals
displaying incipient amyloid pathology. Interestingly in the PNHS, the
mean + 2 SD of the ‘Normal’ Gaussian corresponds to 12.2 CL, which
was the pathology-based threshold found to detect CERAD moderate-
to-frequent neuritic plaques.®” It is also in line with the lower cutoff of

the “intermediate range” category established by the consortium.#¢:4”

Clinical Interventions

The AMYPAD consortium experience offers several practical con-
siderations for generalizability to other multi-center cohorts. First,
harmonization requires early integration of standardized protocols
across sites, supported by rigorous quality control. Second, harmo-
nization of the effective image resolution by applying scanner-specific
smoothing kernel can help mitigate heterogenous image quality across
sites. Third, for amyloid-PET quantification, cross-validation between
pipelines remains essential. It is recommended that studies adhere to
the data acquisition guidelines provided for each tracer and follow
the AMYPAD harmonization protocol, available on the EARL website,
to prospectively harmonize their amyloid PET scans using prede-
fined effective image resolutions. These considerations can support
interoperability and comparability of amyloid-PET data across diverse
research and clinical settings.

Clinical implications are equally important. While concordance
between quantification approaches was high, residual differences
between pipelines may influence amyloid positivity classification,
which in turn could affect diagnostic and treatment decisions for AD
at the individual level. Discordance between methods (whether across
quantification pipelines or compared to visual reads), even if limited,
carries the potential for misclassification, particularly near relevant or
common threshold values. This highlights the need for caution when
transitioning between pipelines, as well as the importance of validating

thresholds within harmonized frameworks.

5 | CONCLUSION

The AMYPAD consortium has developed a comprehensive approach
to amyloid-PET implementation. The distribution of Centiloid values
in the PNHS and DPMS are in line with the initial recruitment strate-
gies of the trials, which are well positioned to address pivotal research
questions regarding early therapeutic interventions and the impact
of lifestyle risk factors on AD progression. Additionally, the cross-
validation of the Centiloid across software engenders confidence for
the future use of amyloid PET for initiating and monitoring recently
approved anti-amyloid therapies.
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