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Combined magnetic resonance imaging and
serum analysis reveals distinct multiple
sclerosis types
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Multiple sclerosis (MS) is a highly heterogeneous disease in its clinical manifestation and progression. Predicting in-
dividual disease courses is key for aligning treatments with underlying pathobiology. We developed an unsupervised
machine learning model integrating MRI-derived measures with serum neurofilament light chain (sNfL) levels to
identify biologically informed MS subtypes and stages. Using a training cohort of patients with relapsing-remitting
and secondary progressive MS (n=189), with validation on a newly diagnosed population (n=445), we discovered
two distinct subtypes defined by the timing of sNfL elevation and MRI abnormalities (early- and late-sNfL types).
In comparison to MRI-only models, incorporating sNfL with MRI improved correlations of data-derived stages with
the Expanded Disability Status Scale in the training (Spearman’s p = 0.420 versus MRI-only p = 0.231, P =0.001) and ex-
ternal test sets (p =0.163 for MRI-sNfL, versus p = 0.067 for MRI-only). The early-sNfL subtype showed elevated sNfL,
corpus callosum injury and early lesion accrual, reflecting more active inflammation and neurodegeneration, where-
as the late-sNfL group showed early volume loss in the cortical and deep grey matter volumes, with later sNfL eleva-
tion. Cross-sectional subtyping predicted longitudinal radiological activity: the early-sNfL group showed a 144%
increased risk of new lesion formation (hazard ratio =2.44, 95% confidence interval 1.38-4.30, P < 0.005) compared
with the late-sNfL group. Baseline subtyping, over time, predicted treatment effect on new lesion formation on the
external test set (faster lesion accrual in early-sNfL compared with late-sNfL, P = 0.01), in addition to treatment effects
on brain atrophy (early sNfL average percentage brain volume change: —0.41, late-sNfL = —0.31, P =0.04).
Integration of sNfL provides an improved framework in comparison to MRI-only subtyping of MS to stage disease pro-
gression and inform prognosis. Our model predicted treatment responsiveness in early, more active disease states.
This approach offers a powerful alternative to conventional clinical phenotypes and supports future efforts to refine
prognostication and guide personalized therapy in MS.
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Introduction

Multiple sclerosis (MS) affects >2.8 million people globally.
Although clinical descriptors categorize MS into relapsing-remit-
ting, secondary progressive and primary progressive, emerging evi-
dence reveals that these fail to capture the underlying biological
continuum.?? Although distinct in their disease burden, these clin-
ical phenotypes share pathobiological mechanisms.*® As a result,
our capacity to predict its course and personalize treatment re-
mains limited by our reliance on traditional clinical descriptors. A
shift towards a subtyping system grounded in pathobiological un-
derpinnings promises to facilitate earlier, more targeted therapeut-
icinterventions, potentially even before symptom onset, improving
our ability to predict individual patient outcomes and personalize
treatment strategies.

Unsupervised machine learning offers an objective way to un-
cover MS types based on underlying disease biology (pathobiology) ra-
ther than relying on predefined diagnostic labels or observable
symptoms. For example, Gross et al.® identified three distinct data-
derived MS types based on different immune cell markers of CD4
and CD8 T cells, natural killer cells and cytokine compartments.
These data-derived subtypes showed subtle variations in disease
course and treatment responses. However, their immediate clinical
use is limited because specialized immune cell markers defined
these subtypes, which are not collected routinely in clinical
practice.

MRI provides detailed spatial information about structural dam-
age and lesion formation, capturing the localized effects of the dis-
ease. The unsupervised learning model Subtype and Staging
Inference (SuStaln’) was used previously by Eshaghi et al.2 on brain
MRI data from 9390 MS patients to identify three distinct
MRI-derived subtypes. SuStaln clusters patients with similar pro-
gression patterns, characterizing subtypes by the alternative order
in which key variables reach thresholds of abnormality. They found
a ‘lesion-led’ subtype that was more responsive to high-efficacy
treatments in clinical trials and had faster worsening of disability
than the other two subtypes.® However, MRI alone does not fully
capture the underlying neuro-axonal damage that drives disease
progression. MRI is non-specific for underlying pathology and can
miss subtle or ongoing neurodegeneration.’ Integrating widely
available fluid biomarkers indicative of early and ongoing neuronal
injury has the potential for improved separation of patient sub-
groups and enhanced precision in disease course prediction and
personalized treatment selection.’®

The serum neurofilament light chain (sNfL) level is a systemic
measure of ongoing neuronal injury, reflecting disease activity
and neuronal loss.'>'? It is a component of the neuronal cytoskel-
eton and, therefore, a sensitive indicator of neuro-axonal damage.
In MS, the sNfL level increases at disease onset,*? is associated with
MRI changes of disease activity and neurodegeneration'* and is
sensitive to treatment effects.'>*® Serum NfL is becoming increas-
ingly available and accessible in clinical practice."”"*® Yet, because
serum-based biomarkers alone still face variability, low sensitivity
to disease activity and imperfect assay standardization, incorporat-
ing complementary data (such as MRI metrics) can strengthen their
clinical utility.**-?*

We hypothesized that integrating sNfL with MRI would yield
biologically distinct MS subtypes with improved prognostic accur-
acy in comparison to MRI alone. In this study, using two independ-
ent cohorts, we aimed to: (i) develop and validate a combined MRI-
sNfL subtyping system using unsupervised machine learning
(SuStaln); (ii) assess how incorporating sNfL can simplify and im-
prove data-derived subtypes in comparison to using MRI alone;
and (iii) evaluate how these novel subtypes evolve in their brain at-
rophy, treatment response and new lesion development.

Materials and methods

Figure 1 provides an overview of our study, a retrospective analysis
of two previously published longitudinal datasets. We trained an
unsupervised SuStaln model using cross-sectional MRI data and
sNfL levels from a phase 2 clinical trial (referred to as training
data in this manuscript).”? The training of this model included a
feature selection step to select MRI-derived variables based on their
correlation with Expanded Disability Status Scale (EDSS), which
makes the pipeline not entirely unsupervised despite using an un-
supervised model. Through cross-validation, we determined the
optimal number and pattern of data-derived subtypes, and the
most likely sequence of progression of abnormality across selected
MRI variables and sNfL levels. In the SuStaln framework, subtypes
are modelled as data-driven sequences of biomarkers. Each sub-
type captures a distinct ordering of disease events, but given that
individuals are assigned to subtypes probabilistically, from this
perspective, the subtypes can be considered a continuum. The
trained model assigned each patient both a stage (indicating their
position along the disease progression sequence) and a subtype
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Figure 1 Overview of the study. Initially, we processed MRIs to derive 35 features from 17 targeted brain regions, white matter hyperintensity volumes
and T1/T2 ratios of white matter regions. Next, we selected five MRI features within SuStaln based on their correlation with EDSS. We harmonized the
features from the external test dataset to match the distribution of the features in the training set. We normalized the features by computing z-scores
relative to a healthy population. We trained a SuStaln model with the selected MRI features and sNfL measures and performed cross-validation to se-
lect the optimal model. We applied the trained SuStaln model to cross-sectional and longitudinal data from subjects in the training and external test
datasets. We performed a statistical analysis to investigate how the newly obtained subtyping and staging system is related to clinical variables, and to
compare our models with an existing MRI-based SuStaln model. EDSS = Expanded Disability Status Scale; sNfL = serum neurofilament light (chain);

SuStaln = subtype and stage inference.

classification with an associated probability of subtype member-
ship. We applied this classification to cross-sectional and longitu-
dinal observations within the training data and an independent
external interferon beta-1a trial dataset (referred to as the external
test set in this manuscript).?> We compared our data-derived sub-
types with MRI-only models to assess the added value of incorpor-
ating sNfL with MRI variables, where our approach differs only by
the addition of the sNfL biomarker, reduced MRI biomarker selec-
tion and the use of harmonization on the test set. We performed
statistical analyses to evaluate the relationship between clinical
outcomes and the derived stages, to validate model-derived sub-
types and stages against disability measures and to explore differ-
ences in outcomes across subtypes.

Participants

We included 634 participants across training and external test da-
tasets. For training, we used 189 participants from the previously
published phase 2 clinical trial of evobrutinib,?? and for independ-
ent testing, we used 445 from the phase 3 clinical trial on interferon
beta-1a (which we refer to as ‘early’ MS in this manuscript, al-
though in the published manuscript,?* according to the now obso-
lete McDonald 2005 diagnostic criteria, they were referred to as
clinically isolated syndrome; subsequent post hoc analyses of the
REFLEX clinical trial using retrospective application of the
McDonald 2017 criteria?* confirmed that almost half would have

been confirmed as having MS at baseline).>** Those in the training
dataset (evobrutinib trial) had established relapse-onset MS (re-
lapsing-remitting and secondary progressive). Given that SuStaln
requires data covering the full disease course for training, we se-
lected the evobrutinib trial data as the training set and the inter-
feron trial data with patients at the time of diagnosis of MS and
clinically isolated syndrome for the external test dataset.

In the training dataset (evobrutinib trial), we had follow-up vis-
its at Months 3, 4, 5, 6 and 12. A total of 167 participants had sNfL
measurements at screening visits. We consolidated participants
into treatment and control groups based on previously reported ef-
ficacy. Those who received either placebo (n=50) or evobrutinib
25 mg once daily (n=46) formed our control group, because these
doses had shown no significant treatment effect. Participants
who received higher doses [evobrutinib 75 mg once daily (n=46)
or twice daily (n=47)] formed our treatment group.

For the external test dataset (interferon trial), follow-up visits
occurred every 3 months from baseline to Month 24 during the
REFLEX trial,”® and every 6 months from Month 24 to Month 60 dur-
ing the REFLEXION extension study,?® in which the control group
switched to treatment. A total of 435 participants had sNfL mea-
surements at screening. Participants were grouped based on treat-
ment assignment: the placebo arm (n=144) served as our control
group, whereas those receiving either weekly (n=152) or thrice
weekly (n=149) interferon beta-la formed the treatment group.
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In our analyses, we incorporated the full 60 months of data for the
treatment group but restricted control group analyses to the first 24
months, prior to crossover treatment in the extension phase.

The clinical trial protocol and ethics approval were acquired by the
institutional ethical review boards, and informed written consent
was obtained from all participants or their designated caregivers
(ClinicalTrials.gov IDs: NCT02975349?% and NCT004043522%).

We used EDSS assessments with data available at Months 0
(screening), 3 and 6 in the training dataset. In the external test da-
taset, EDSS assessments were available from Month O (screening) to
Month 24 at 3 month intervals, and from Month 24 to Month 60 at
6 month intervals. We did not analyse relapses because they were
too rare (11 of 189 subjects in the training set and 21 of 445 in the
external test sets experienced a relapse).

The sNfL measurements for the evobrutinib phase 2 trial were ana-
lysed by Monogram Biosciences (LabCorp), using the Simoa assay.""
The sNfL measurements for the interferon trial were analysed by
the SMSC Data Center in Basel using the Simoa assay. We analysed
the laboratory-standardized z-scores, which were corrected for age
against a control population for the evobrutinib study, and cor-
rected for age and body mass index for the interferon study.?’

We used MRIs from visits conducted at Months 0 (screening), 3, 4, 5,
6 and 12 in the training dataset. For the external test dataset, MRI
scans were available at Months 0 (screening), 12, 24, 36, 48 and 60.
In the training set, MRI scans were acquired using 1.5 T scanners
and included two-dimensional T1-weighted, T2-weighted and
fluid-attenuated inversion recovery (FLAIR) sequences. Likewise,
MRI scans from the interferon trial were acquired using 1.5 T scan-
ners but included two-dimensional T1-weighted, T2-weighted and
proton density (PD) sequences. Full details of the MRI schedules and
trial protocols are published elsewhere (as previously mentioned,
NCT02975349%” and NCT00404352%%).

The objective of the MRI processing was to quantify: (i)
T2-hyperintense white matter lesion volumes; (ii) volumes for 17
brain regions, which include grey matter from the cortex, deep
grey matter and normal appearing white matter, as listed in
Supplementary Table 1; and (iii) the T1-weighted/T2-weighted ratio
on the same target regions after removing lesion voxels as a proxy
for normal-appearing microstructural tissue damage.?® We used le-
sion volume over T2 lesion or gadolinium-enhancing lesion counts
as continuous variables for modelling purposes. The full list of the
resulting 35 MRI-extracted variables is detailed in Supplementary
Table 2. We visually assessed the quality of all the MRI processing
outputs (i.e. lesion masks, neuroanatomical segmentation and
T1/T2 ratio maps) for outliers and erroneous segmentations. We
will explain these steps in more detail.
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We corrected all scans for field inhomogeneity (bias field correc-
tion)* and reduced noise using a spatially adaptive filter.*® We
aligned the Tl-weighted image to the Montreal Neurological
Institute (MNI) template,® and extracted a brain mask using the
ROBEX tool,?? which is then used as input for the Atropos algorithm
to segment the white matter.>®> We aligned the T2-FLAIR image
from the same MRI session to the T1-weighted image, and we nor-
malized the intensities of both images using the white matter mask
with the Fuzzy C-Means method.?* Next, we generated
T2-hyperintense lesion masks using the DeepMedic convolutional
neural network®® on the normalized images. This process was ap-
plied only to the training set, because the external test
dataset already did not have T2-FLAIR (instead, we used manually
annotated T2-hyperintense lesion masks).?* Finally, we calculated
the total lesion volume (in millimetres cubed) from these masks.

We segmented each bias-corrected T1-weighted MRI using a multi-
atlas approach. Initially, we used the lesion masks to fill hypoin-
tense areas in the T1-weighted scan. We applied non-linear regis-
tration® to align each Ti1-weighted MRI with 50 labelled
templates from the MindBoggle atlas.>® We then projected these la-
bels onto the original T1-weighted space using the inverse trans-
form. We used a joint label fusion method® to generate
consensus labels. The resulting segmentation allowed us to locate
and measure volume (in millimetres cubed) of each target region.

To calculate the T1-weighted/T2-weighted ratio, we first
co-registered each T2-weighted image to its corresponding
T1-weighted scan from the same MRI session using affine trans-
formation.®* We then calibrated the intensities of both images
through a linear scaling procedure (see the Supplementary
material) to standardize their scale. The voxel-wise ratio of these
calibrated images yielded the T1-weighted/T2-weighted ratio im-
age. We identified each target brain region within the ratio image
using the segmentation derived from the T1-weighted MRI (as de-
scribed in the ‘Brain volumetric analysis’ section). We computed
the median T1-weighted/T2-weighted value for each region.

We wused percentage brain volume change (PBVC) and
gadolinium-enhancing lesions from previously published clinical
trial results.?>??

Feature selection

To select an optimal subset of MRI-derived variables for the new
SuStaln model, we implemented a two-stage selection process.
Initially, from a pool of 35 available variables (Supplementary
Table 2), we identified the 10 variables that exhibited the strongest
correlation with EDSS in the training set, with the correlation ma-
trix presented in Supplementary Fig. 1. Subsequently, recursive
feature elimination®® was applied to this 10-variable subset to distil
the selection further, to five variables. The objective of the recursive
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feature elimination procedure was to identify the feature combin-
ation that optimized the correlation between the stages of the re-
sulting SuStaln models and EDSS. The specific number of
variables retained at each stage, 10 and five, respectively, was an ar-
bitrary decision guided by several considerations: the size of the
available training dataset (n = 189), the model parsimony and inter-
pretability, and the high collinearity among many MRI-derived
metrics.

Feature preprocessing

To summarize, we normalized anatomical volumes, T1-weighted/
T2-weighted and lesion variables into z-scores. For volumes and
T1/T2, we used the Human Connectome Project®® dataset as the ref-
erence distribution. The Supplementary material describes the
standardization process for the lesion volume. The sNfL measure-
ments were already laboratory standardized and provided as
age-adjusted z-scores against a control population, as explained
elsewhere.”

Model training

We applied the SuStaln algorithm to the first visit at the study entry
for each participantin the training set. We configured the algorithm
to discover models with one, two or three data-derived subtypes.
We conducted a 5-fold cross-validation to select the optimal num-
ber of subtypes by calculating, for each configuration,
log-likelihood and cross-validation information criteria (CVIC), as
defined by Younget al.” Based on these metrics, we selected the op-
timal model and used it to assign a data-derived subtype and stage
to each participant at every visit across both training and external
test datasets. We refer to this combined MRI and sNfL model as
the MRI-sNfL model.

As the primary benchmark for this study, and to assess whether in-
corporating sNfL levels improves the prediction of clinically mean-
ingful outcomes in comparison to extensively characterized and
validated MRI-derived MS subtypes, we used the previously pub-
lished SuStaln MRI-only model,® which is publicly available.*
This model incorporated 13 MRI-derived variables: volumetric
measurements of deep grey matter, frontal, occipital, parietal, tem-
poral lobes and limbic cortex; total lesion volume; and T1/T2 ratios
from specific white matter areas (cerebellar, temporal, cingulate,
corpus callosum and temporal-parietal). We will refer to this exist-
ing model as the MRI-only model. This model classified participants
into a lesion-dominant pattern (lesion-led), those with early abnor-
mality in normal-appearing white matter T1/T2 ratio (NAWM-led)
and those with early atrophy in the grey matter (GM-led).?

To evaluate the added value of sNfL better, we trained a SuStaln
model using only the five MRI variables included in the MRI-sNfL
model. We refer to this reduced-variable model as the 5-MRI model.
The same feature preprocessing pipeline as used in the MRI-sNfL
model was applied. The algorithm was configured to identify up
to two subtypes, consistent with the MRI-sNfL model, which we
generically refer to as ‘MRI Subtype 1’ and ‘MRI Subtype 2." The
5-MRI model was then used to classify and stage each participant
in both the training and external test sets.
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It has been shown that quantitative measures directly dependent
on the MRI intensity profile, such as the segmented structures
and T1-weighted/T2-weighted ratio, are sensitive to inter-study
differences (e.g. different MRI scanners or acquisition para-
meters).*" To mitigate the potential confounder, we used the
ComBat algorithm*? to harmonize the volumes and T1-weighted/
T2-weighted variables from the external test dataset with respect
to the training data.

We analysed outcomes across data-derived subtypes using longitu-
dinal visits from training and external testing datasets. Using linear
mixed-effects models with random-effects intercepts, we esti-
mated average change rates for three outcomes (EDSS, sNfL and
gadolinium-enhancing lesion counts) annually, with subject iden-
tity as the random effect. We analysed these in two ways. First,
we fitted separate mixed-effects models for each SuStaln subtype
group. Second, we fitted separate models for each SuStaln sub-
type-treatment interaction term to assess potential treatment ef-
fects. We used the Statsmodel Python package (version 0.13.5).

We assessed how SuStaln stage relates to three variables (chrono-
logical age, EDSS and the number of active lesions) using
Spearman’s rank correlation coefficient («=0.05). We performed
the analysis separately for the MRI-only and the MRI-sNfL models.
For each correlation, we computed the coefficient and its two-tailed
P-value with SciPy (v.1.10.0). To compare two independent correl-
ation coefficients, we applied Fisher’s z-test. Based on Schober
etal.,*® we classified correlations as weak (p =0.10-0.39), moderate
(p=0.40-0.69), strong (p =0.70-0.89) or very strong (p=0.90-1.00).

We use the PBVC between the baseline and final follow-up MRI
scans (Month 6 in the training set, and Month 24 (control) or
Month 60 (treatment) in the external test set) and express it as an
annualized rate of change for analysis.

We used a Cox proportional hazards model to assess the risk of de-
veloping a new gadolinium-enhancing lesion, with predictors
SuStaln subtype (MRI-sNfL model) and treatment assignment. An
increase in lesion count at any follow-up visit was treated as an
event at that visit. We estimated hazard ratios and 95% confidence
intervals (CI) with Lifelines (v.0.27.8). We did not analyse time to
EDSS worsening because the event rate was too low (training set
5.6%; external test set 43.6%).

Results

In the training set, 161 participants (85%) had relapsing-remitting
MS and 28 (15%) had secondary progressive MS; 69% were women
(Table 1). The mean age of the cohort was 42 + 10 years, the mean
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Table 1 Demographics and screening characteristics of participants

Characteristic Training External test
Number of subjects 189 445
Number of visits 799 1214

MS phenotype

Self-reported sex

RRMS (n=161, 85%)
SPMS (n =28, 15%)
Female (n =131, 69%)
Male (n=58, 31%)

Newly diagnosed relapsing-remitting MS and clinically
isolated syndrome (n =445, 100%)

Female (n =284, 64%)

Male (n=161, 36%)

Median age, years (interquartile range)

Median disease duration, years from diagnosis
(interquartile range)

Prior treatments

41 (34, 50)
6.5(2.3,12.1)

77.2% no prior treatment

30 (24, 37)
Newly diagnosed

No prior treatment

17.5% moderate-efficacy

treatment

5.3% high-efficacy treatment

Treatment arms Placebo (n=50)

Evobrutinib 25 mg QD (n=

46)

75 mg QD (N = 47)
75 mg BID (n=46)

Median number of relapses within 2 years of study
commencement

Median screening sNfL z-score (interquartile range)

Median EDSS (interquartile range)

Median number of gadolinium-enhancing lesions
(interquartile range)

2(1,2)

1.28 (=0.12, 2.20)
3.0 (2.0, 4.5)
0(0,1)

Placebo (n=144)
Interferon-beta 1a 44 pg OW (n=152)
Interferon-beta 1a 44 pug TIW (n = 149)

No prior relapses
2.01 (0.54, 3.13)

1.5 (1.0, 2.0)
4(1,9)

Classification of prior treatments into moderate and high efficacy is detailed in Supplementary Table 5.
Abbreviations: BID = bis in die (twice daily); MS = multiple sclerosis; OW = once weekly; QD = quaque die (once daily); RRMS = relapsing-remitting multiple sclerosis; sNfL =
serum neurofilament light chain; SPMS = secondary progressive multiple sclerosis; TIW = three times weekly.

time since diagnosis 7.7 + 6.4 years and the median screening EDSS
3.In contrast, the external test set comprised individuals evaluated
at the point of diagnosis of MS or clinically isolated syndrome.
Amongthem, 284 (64%) were women, the mean age was 31 + 8 years
and the median EDSS 1.5. Baseline brain volume averaged
1177 + 123 ml in the training set and 1158 + 113 ml in the external
test set.

This model used five MRI variables: the limbic cortex, deep grey
matter, parietal cortex, total lesion volumes and corpus callosum
white matter T1-weighted/T2-weighted. Combined with the serum
biomarker sNfL, the MRI-sNfL model had six variables.

We compared models with one, two or three data-derived subtypes.
The two-subtype model (CVIC =3195, log-likelihood = -318.7) and
the three-subtype model (CVIC = 3189, log-likelihood = —318.22) fit-
ted the data better than the single-subtype model (CVIC = 3316,
log-likelihood = —330.8). We favoured the two-subtype model ow-
ing to its parsimony over the three-subtype model. It offered a sim-
pler explanation of the data while still effectively differentiating
between data-derived subtypes, whereas two subtypes in the
three-subtype model had highly similar patterns in their sequence
(stage), as shown in Supplementary Fig. 5. Given that each variable
can progress through three stages (mild, intermediate and severe)
based on where each variable was placed on the reference distribu-
tion (1, 2 or 3 standard deviations from the mean), the eventual

model staged patients into 18 stages (six variables multiplied by
three levels of abnormality).

Figure 2 shows the positional variance plot of two subtypes,
which we termed early-sNfL and late-sNfL subtypes. The
early-sNfL subtype is characterized by elevated sNfL levels, re-
duction of normal-appearing corpus callosal T1/T2 ratio and le-
sion accrual as early events among the variables examined. In
contrast, the late-sNfL subtype showed early volume loss in the
limbic cortex and deep grey matter, with sNfL elevation occurring
at later stages of abnormality accumulation. The demographic
and clinical characteristics of both subtypes are provided in
Table 2. For both the training and external test datasets, subtypes
exhibit age differences (P<0.001). Specifically, late sNfL was
more prevalent among older subjects, and in the training set,
was more disabled. Supplementary Fig. 4 illustrates the propor-
tions of subtypes stratified by prior treatment efficacy, for which
we found no significant association with subtype assignment (x>
test, P=0.24).

At the screening visit in the training dataset, 93 participants
(56%) were assigned to the late-sNfL subtype and 74 (44%) to the
early-sNfL subtype. During follow-up, 48 individuals (~29%) chan-
ged subtypes. Among those with high-confidence assignments
(n =95, probability >85%), only seven participants (~7%) switched
subtypes. In the external test dataset, 267 participants (61%) were
initially classified as early-sNfL and 168 (39%) as late-sNfL. Over
time, 177 individuals (41%) changed subtypes, reduced to 66 (23%)
among those with high-confidence assignments (n = 291). To assess
the sensitivity of this stability to the confidence threshold,
Supplementary Fig. 3 shows a sensitivity analysis using thresholds
of 80%, 85% and 90%. The results highlight that subtype switching
consistently decreases as the threshold increases, indicating that
higher-confidence assignments are more stable.
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Figure 2 Order of progression of abnormality in the early-sNfL and late-sNfL subtypes. Positional variance plot of early-sNfL and late-sNfL subtypes
shows the level of uncertainty in assigning each biomarker listed in the vertical axis with a certain stage shown on the horizontal axis. The three col-
ours show mild, moderate and severe abnormalities (z-scores of 4, 6 and 8). The colour shades for each level of abnormality show the associated un-
certainty in the model. The early-sNfL subtype is characterized by elevated sNfL levels, reduction of normal-appearing corpus callosal T1/T2 ratio, and
lesion accrual as early events among the variables examined. In contrast, the late-sNfL subtype showed early volume loss in the limbic cortex and deep
grey matter, with sNfL elevation occurring at later stages of multiple sclerosis worsening. Feature order is based on the progression sequence in the
early-sNfL subtype to aid interpretability. DGM = deep grey matter; sNfL = serum neurofilament light (chain); SuStaln = subtype and stage inference;

WM = white matter.

Table 2 Demographic and clinical data by subtype from the MRI-sNfL model

Parameter Training External test
Early-sNfL Late-sNfL t-test Early-sNfL Late-sNfL t-test
Sample, n (%) 74 (44%) 93 (56%) - 267 (61%) 168 (39%) -
Females in each subtype, n (%) 36 (49%) 77 (83%) - (155) 58% 123 (73%) -
Average age, years (mean =+ standard 37+9 46+9 P <0.001 30+8 34+8 P <0.001
deviation)
MS types, n (%) RRMS =63 RRMS =78 - RRMS =267 RRMS =168 -
(85%) (84%) (100%) (100%)
SPMS =11 (15%) SPMS =15
(16%)
Median EDSS, median (IQR) 2.5 (1.5, 3.5) 3.5(2.0,45)  P<0.001 1.5(1,2) 1.5(1,2) P=0.083

Clinical and demographic characteristics are presented for subtypes derived from the MRI-sNfL model (early-sNfL, late-sNfL). Data are shown separately for the training and

external test datasets.

Abbreviations: EDSS = expanded disability status scale; IQR = interquartile range; MS = multiple sclerosis; RRMS = relapsing-remitting multiple sclerosis; sNfL = serum

neurofilament light chain; SPMS = secondary progressive multiple sclerosis.

Subtypes from the MRI-only model

In the training set, our previously published MRI-only model classi-
fied 119 patients (56%) as lesion-led, 60 (28%) as grey matter
(GM)-led, and the remainder were normal-appearing white matter-
or NAWM-led. In the external test dataset, 221 (50%) were
lesion-led, 152 (34%) GM-led and the rest NAWM-led.
Supplementary Table 3 shows the demographic characteristics of
subtypes classified by this model in both cohorts.

Subtypes from the 5-MRI model

Supplementary Fig. 2 depicts the progression patterns of the two
identified MRI subtypes. Both Subtype 1 and Subtype 2 show an

initial decline in the T1/T2 ratio of normal-appearing corpus callo-
sal white matter. Subtype 1is characterized by early deep grey mat-
ter volume loss, whereas Subtype 2 exhibits early lesion
accumulation. Supplementary Table 4 presents the demographic
characteristics of participants assigned to each subtype in both
cohorts.

Subtypes and stages correlated with demographic
and disability variables

We refer to the stages derived from the MRI-sNfL model as ‘MRI-
sNfL model stages’, those from the MRI-only model as ‘MRI-only
model stages’ and those from the 5-MRI model as ‘5-MRI model
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Table 3 Demographic and clinical data and their correlations with data-derived stages across the different models

Parameter Training External test
Spearman correlation with MRI-sNfL model stages
All Early-sNfL Late-sNfL All Early-sNfL Late-sNfL
Age 0.347 (P <0.001) 0.361 (P=0.002) 0.343 (P <0.001) 0.031 (P=0.517) 0.125 (P=0.041) 0.126 (P=0.102)
EDSS 0.420 (P<0.001)  0.396 (P<0.001)  0.457 (P<0.001)  0.163 (P<0.001)  0.196 (P=0.001)  0.075 (P =0.336)

Number of active lesions 0.093 (P=0.234) 0.115 (P=0.330)

0.109 (P =0.301)

0.636 (P<0.001)  0.571(P<0.001)  0.564 (P <0.001)

Spearman correlations with MRI-only model stages

All Lesion-led GM-led NAWM-led All Lesion-led GM-led NAWM-led
Age 0.275 (P< 0.230 (P= —-0.025 0.276 0.141 0.228 -0.026 0.106
0.001) 0.018) (P =0.858) (P =0.132) (P =0.003) (P < 0.001) (P =0.753) (P =0.375)
EDSS 0.231 (P= 0.278 (P= -0.272 0.501 0.067 0.112 0.029 0.172
0.001) 0.004) (P =0.049) (P = 0.004) (P =0.159) (P =0.099) (P =0.727) (P =0.149)
Number of active  —0.020 (P = —-0.063 (P= 0.004 0.202 0.223 0.367 0.174 0.355
lesions 0.785) 0.524) (P =0.977) (P =0.276) (P < 0.001) (P < 0.001) (P =0.033) (P =0.002)
Spearman correlation with 5-MRI model stages
All MRI subtype 1 MRI subtype 2 All MRI subtype 1 MRI subtype 2
Age 0.402 (P<0.001)  0.326 (P<0.001)  0.603 (P<0.001)  0.185(P<0.001)  0.122 (P=0.037)  0.329 (P <0.001)
EDSS 0.419 (P <0.001) 0.428 (P <0.001) 0.431 (P=0.002) 0.114 (P=0.017) 0.094 (P=0.108) 0.173 (P=0.036)

Number of active lesions 0.027 (P=0.710) 0.044 (P=0.606)

0.055 (P=0.715)

0.487 (P <0.001) 0.553 (P <0.001) 0.427 (P <0.001)

Spearman correlation coefficients between model-inferred disease stages and clinical variables (age, EDSS and number of active lesions) are reported for each subtype across the
MRI-sNfL, MRI-only and 5-MRI models. Analyses are separated by training and external test datasets. Subtypes include early-sNfL and late-sNfL (MRI-sNfL model), Lesion-led,

GM-led and NAWM-led (MRI-only model), and Subtypes 1 and 2 (5-MRI model).

Abbreviations: EDSS = expanded disability status scale; GM = grey matter; NAWM = normal appearing white matter; sNfL = serum neurofilament light chain.

stages’. All correlation coefficients between the SuStaln stages de-
rived from each of these models and clinical measures at study en-
try are summarized in Table 3.

Regarding EDSS, the MRI-sNfL model stages in the training set
showed a stronger correlation (p=0.420, P <0.001) compared with
the MRI-only model (p=0.231, P =0.001). In the external test data-
set, the MRI-sNfL model maintained a weak but significant correl-
ation (p=0.163, P<0.001), whereas the MRI-only model showed
no significant correlation (p=0.067, P =0.159). The MRI-sNfL sub-
types in the training set both showed moderate correlations with
EDSS: late-sNfL (p=0.457, P <0.001) and early-sNfL (p=0.396, P <
0.001). In the external test set, only early-sNfL maintained a statis-
tically significant correlation (p=0.196, P=0.001), whereas
late-sNfL did not (p=0.075, P=0.336). The 5-MRI model stage was
correlated with EDSS in the training set (p = 0.419, P < 0.001), similar
in strength to the MRI-sNfL model, but in the external test set the
correlation was weaker (p=0.114, P=0.017), suggesting that the
MRI-sNfL model generalized better.

For chronological age, both MRI-sNfL (p=0.347, P <0.001) and
MRI-only (p=0.275, P <0.001) stages showed weak correlations in
the training set. In the external test set, the MRI-sNfL
model showed no significant overall correlation (p=0.031, P=
0.517), although early-sNfL showed a weak but significant correl-
ation (p=0.125, P=0.041). The MRI-only model, in contrast,
retained a weak but significant correlation in the external test set
(p=0.141, P =0.003). The 5-MRI model showed stronger correlations
with age in comparison to the other models in both datasets: in the
training set (p =0.402, P <0.001) and external test set (p=0.185, P <
0.001).

Regarding active lesions, the MRI-sNfL model showed no signifi-
cant correlation in the training set (p=0.093, P=0.234), but

demonstrated a moderate correlation in the external test set (p=
0.636, P<0.001), with both early-sNfL (p=0.571, P<0.001) and
late-sNfL (p =0.564, P < 0.001) subtypes contributing similarly. The
MRI-only model showed no correlation in the training set, but a
weak significant correlation in the external test set (p=0.223, P<
0.001). The 5-MRI model showed no correlation with active lesions
in the training set, but a moderate correlation in the external test
set (p=0.487, P < 0.001), although this was weaker than that of the
MRI-sNfL model.

Table 4 reports results from linear mixed-effects models estimating
annual changes in EDSS, lesion counts and sNfL levels by subtype
and treatment group. In the treatment group of the training set,
subjects classified as early-sNfL showed a significantly faster re-
duction in active lesion counts (8 = —4.9568, 95% CI —-8.741, —1.173,
P=0.01) compared with the late-sNfL subtype (3 =1.1053, 95% CI
—2.039, -0.172, P=0.02). We found no significant differences in
the control group of the training set.

In the treatment group of the external test dataset, the late-sNfL
subtype showed no significant change in gadolinium-enhancingle-
sion count (8 =-0.079, 95% CI —0.175, 0.017, P =0.106), whereas the
early-sNfL subtype had a significant increase (=0.212, 95% CI
0.047, 0.378, P=0.012). In the control group, both the early-sNfL (8
=0.513, 95% CI -0.109, 1.135, P=0.106) and late-sNfL (3=0.393,
95% CI 0.142, 0.644, P = 0.002) subtypes showed positive rates of ac-
tive lesion accrual, although statistical significance was not
reached for the early-sNfL subtype.
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Table 4 Longitudinal analysis for each subtype

C. Willard et al.

Variable Subtype Treatment group Training P-value External Test P-value
EDSS Early-sNfL Both 0.190 [0.014, 0.367] 0.035 —0.031 [-0.051, —0.01] 0.004
Control 0.277 [-0.034, 0.587] 0.080 —0.241 [-0.328, —0.154] <0.001
Treatment 0.086 [-0.041, 0.213] 0.183 —0.021 [-0.042, 0.001] 0.057
Late-sNfL Both —0.107 [-0.195, —0.019] 0.017 —0.017 [-0.043, 0.01] 0.222
Control —0.176 [-0.311, —0.040] 0.011 —0.246 [-0.36, —0.132] <0.001
Treatment —0.028 [-0.134, 0.078] 0.603 —0.003 [-0.03, 0.024] 0.840
Active lesion count Early-sNfL Both —2.002 [-4.527, 0.524] 0.120 0.223 [0.065, 0.382] 0.006
Control 0.628 [-2.694, 3.950] 0.711 0.513 [-0.109, 1.135] 0.106
Treatment —4.957 [-8.741, -1.173] 0.010 0.212 [0.047, 0.378] 0.012
Late-sNfL Both —0.515 [-1.046, 0.015] 0.057 —0.046 [-0.134, 0.042] 0.308
Control 0.055 [-0.484, 0.593] 0.842 0.393 [0.142, 0.644] 0.002
Treatment —1.105 [-2.039, —-0.172] 0.020 —0.079 [-0.175, 0.017] 0.106
sNfL Early-sNfL Both —0.909 [-1.282, —0.536] <0.001 —-1.071 [-1.173, —0.968] <0.001
Control —0.439 [-0.806, —0.072] 0.019 —0.929 [-1.109, —0.748] <0.001
Treatment —-1.489 [-2.157, —0.822] <0.001 —1.131 [-1.256, —1.006] <0.001
Late-sNfL Both —0.128 [-0.517, 0.261] 0.518 —0.156 [-0.262, —0.050] 0.004
Control —0.087 [-0.680, 0.506] 0.774 —0.108 [-0.300, 0.084] 0.27
Treatment —-0.176 [-0.663, 0.311] 0.479 —0.180 [-0.307, —0.053] 0.005
PBVC, % Early-sNfL Both -1.612 [-2.543, —0.680] 0.8 —0.463 [-0.529, —0.396] 0.002
Late-sNfL —1.465 [-2.205, —0.725] - —0.311 [-0.373, —0.249] -
Early-sNfL Control —0.976 [-2.235, 0.283] 0.47 —0.544 [-0.686, —0.403] 0.015
Late-sNfL —1.552 [-2.560, —0.545] - —0.305 [-0.424, —0.186] -
Early-sNfL Treatment —2.225 [-3.634, —0.816] 0.33 —0.407 [-0.463, —0.350] 0.038
Late-sNfL -1.363 [-2.507, —0.220] - —0.315 [-0.381, —0.250] -

Longitudinal analysis for clinical variables Expanded Disability Status Scale (EDSS), number of active lesions, serum neurofilament light chain (sNfL) and percentage brain

volume change (PBVC). PBVC was measured between screening MRI and follow-up MRI (Month 6 for the training set, Month 36 for the external test dataset). This was also further
divided into control and treatment subgroups for both training and external test datasets. We analysed EDSS, active lesion count, and sNfL using mixed-effects models. Yearly
trends, confidence intervals, and P-values are provided for these variables. PBVC is reported as an annual rate along confidence intervals. For PBVC, the P-values result from
t-tests assessing statistically significant differences among subtypes distributions. Similar analysis for the MRI-only model is available in Supplementary Table 6.

Analysis of annual sNfL trends in the training set showed significant
reductions in the early-sNfL subtype for both control (3 = —0.4388, 95%
CI -0.806, —0.072, P =0.019) and treatment (8 = —1.4894, 95% CI —2.157,
—0.822, P < 0.001) groups, whereas the late-sNfL subtype showed no
significant changes. The external test dataset confirmed these pat-
terns: early-sNfL subjects showed reduced levels over trial years in
both control (B =-0.9286, 95% CI —1.109, —0.748, P < 0.001) and treat-
ment (B=-1.1311, 95% CI -1.256, -1.006, P<0.001) groups.
Additionally, treated late-sNfL subjects in the external test dataset
demonstrated a modest but significant decrease in sNfL
(B=-0.1798, 95% CI —0.307, —0.053, P = 0.005).

In the training set, as shown in Table 4, PBVC values were similar
between early-sNfL (—1.612% + 3.4460%) and late-sNfL (—1.465% +
3.3266%, P=0.805) groups. In the external test dataset, the
early-sNfL subtype had a faster rate of brain volume loss than the
late-sNfL group (-0.463% + 0.4263% versus —0.305% + 0.4157%, P=
0.002).

As Table 4 shows, in the training set, we found no statistically
significant differences in PBVC values between early-sNfL and
late-sNfL. groups in both control (-0.976% +3.182% versus
—1.552% + 3.274%, P=0.471) and treatment (—2.225% + 3.634% ver-
sus —1.363% + 3.429%, P =0.332) groups.

In the external test dataset, early-sNfL participants showed a
statistically significant faster rate of PBVC than the late-sNfL sub-
type in the treatment group (-0.407% + 0.2773% versus —0.315% +

0.2675%, P =0.038) and in the control group (-0.544% + 0.5720% ver-
sus —0.305% + 0.4157%, P =0.015).

Figure 3 presents Kaplan-Meier plots for the training and external
test datasets, stratified by MRI-sNfL subtype with and without
treatment groups. After adjusting for treatment effects, we found
that the early-sNfL group had a 144% increase in the risk of new le-
sion development in the training set compared with the late-sNfL
group (hazard ratio=2.44, 95% CI 1.38, 4.30, P <0.005). Similar
trends were observed in the external test dataset, where
early-sNfL classification had, on average, higher risk of lesion de-
velopment by 22% (hazard ratio =1.22, 95% CI 0.92, 1.63), although
this finding did not reach statistical significance (P=0.17).
Treatment effects were observed across both MRI-sNfL subtypes
and in both the training and external test datasets. These results
are summarized in Table 5.

Discussion

This study identified two data-derived MS subtypes, distinguished
by the timing of sNfL elevation within an evolving landscape of
MRI-derived abnormalities. Termed ‘early-sNfL’ and ‘late-sNfL’
subtypes, these categories reflect distinct biological profiles: the
early-sNfL subtype displayed elevated sNfL levels, compromised
corpus callosal integrity and lesion accrual early in the disease,
consistent with active inflammatory and neurodegenerative pro-
cesses manifesting in parallel. In contrast, the late-sNfL subtype be-
gan with tissue-specific volumetric loss (notably in the limbic
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Figure 3 Kaplan-Meier plots showing the time to new lesions in the training and external test dataset, stratified by subtype and treatment group. (A
and B) Early-sNfL and late-sNfL subtypes in the training (A) and external test (B) datasets. (C and D) Control group: early-sNfL and late-sNfL subtypes in
training (C) and external test (D) datasets. Note that in C, the early-sNfL curve ends at Month 6 because there were no follow-up data available at Month
12 for the remaining subjects in this group. (E and F) Treatment group: early-sNfL and late-sNfL subtypes in the training (E) and external test (F) data-
sets. The early-sNfL subtype exhibits an increased risk of developing new lesions across both datasets relative to the late-sNfL subtype. The treated
subtypes show a reduced risk of new lesions in comparison to the control groups in both datasets. The expected time to event was longer in the
late-sNfL subtype than the early-sNfL subtype in both training and external test datasets, although this is most clearly shown in the training dataset.

sNfL = serum neurofilament light (chain).

cortex and deep grey matter) before sNfL levels became abnormal,
suggesting a more insidious trajectory of neurodegeneration that
precedes overt neuroaxonal injury. By integrating MRI and sNfL
measures in a single unsupervised model, we have defined bio-
logically grounded MS types that capture diverse disease pathways

and their clinical implications.

We trained our model on a cohort that included both relapsing-
remitting and secondary progressive MS (mean disease duration 7.7
years), then validated it in a larger, younger cohort of newly diag-
nosed MS (including clinically isolated syndrome), confirming gen-

eralizability at early stages. Our design identified

subtypes

spanning the entire disease course, essential for SuStaln model
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Table 5 Risk of developing new lesions in data-derived subtypes

C. Willard et al.

Training set

External test set

With treatment group adjustment, hazard ratio [95% confidence intervals] (P-value)

Early-sNfL versus late-sNfL
Treated versus controls

Early-sNfL

Late-sNfL

2.44 [1.38, 4.30] (P < 0.005)

0.13 [0.05, 0.38] (P < 0.001)
0.10 [0.02, 0.44] (P =0.002)

1.22[0.92, 1.63] (P=0.17)

0.48[0.33,0.71] (P < 0.001)
0.27 [0.16, 0.46] (P < 0.001)

Cox regression analysis results within subtypes derived in this study, termed early-sNfL and late-sNfL, show the risk of developing new gadolinium-enhancing lesions based on
assigned treatment groups was consistently higher in early-sNfL group. Hazard ratios are reported with 95% confidence intervals and P-values. Similar analysis for the MRI-only

model is available in Supplementary Table 7.
Abbreviation: sNfL = serum neurofilament light chain.

training. As expected, the younger test cohort had more active dis-
ease by gadolinium-enhancing lesion count. Although these co-
horts differed demographically and clinically (a typical source of
bias in machine-learning models), SuStaln differs from typical
models not specifically designed for disease progression modelling
and remains robust. SuStaln assigns both a subtype and a stage to
each patient, and therefore, our design and choice of cohorts with
demographic differences allowed us to validate both the subtyping
and staging by the model. Integration of sNfL with MRI improved
correlations with disability (EDSS) and inflammation (enhancingle-
sions and sNfL), demonstrating that sNfL provides complementary
information.

The newly identified MRI-sNfL subtypes demonstrated demo-
graphic and biological differences. The late-sNfL subtype included
more women and older individuals, whereas the early-sNfL sub-
type comprised younger patients with more active disease. In com-
parison to the late-sNfL group, early-sNfL patients showed greater
reductions in active lesion counts and sNfL levels over time, par-
ticularly among those receiving treatment. Although treatments
such as interferons and evobrutinib have shown limited efficacy
in clinical trials, the observed differences in treatment response
across subtypes support the biological relevance of our subtyping
approach. In both datasets, the early-sNfL subtype exhibited faster
brain atrophy rates, probably reflecting more severe neurodegen-
eration driven by inflammation. Together, these findings suggest
that the MRI-sNfL subtypes capture meaningful differences in dis-
ease activity, treatment response and progression risk.

Various pathophysiological biomarkers to classify MS disease
course based on Dbiological understanding have been
proposed.*®?7444> Recent studies investigated MRI-based MS types
with distinct patterns of brain volume loss correlated with clinical
outcomes and sNfL independent of traditional clinical phenotypes,
but have not used sNfL in subtyping tasks.*> Although MRI provides
unique spatial information on the pathological spread, it lacks
pathological specificity.’ Our new MRI-sNfL. model represents a
step change from our previous MRI-only approach, which offered
valuable but incomplete insights into MS heterogeneity.
MRI-based clustering revealed distinct subtypes driven by anatom-
ical and microstructural features, but it could not fully capture the
physiological processes driving disease activity and progression. By
adding sNfL (an established indicator of neuroaxonal injury), we
have advanced beyond the structural snapshot provided by MRI
alone. Overall, our results support the added value of sNfL to MRI.
When looking at the addition of sNfL to MRI in two MRI-only models
(one previously published and one with the same five MRI vari-
ables), the MRI-sNfL model provided the highest correlation with
active lesions, similar correlations with disability, but better gener-
alization when comparing correlation coefficients in the training

and external test set (the correlation coefficients declined for all
models, but the absolute correlation coefficients remained highest
for MRI-sNfL model). The decline in EDSS correlation between all
models is attributable to the limited range of EDSS in the external
test cohort of newly diagnosed MS and clinically isolated syndrome
patients. In addition, stronger EDSS correlations in the training set
compared with the testing set are observed as expected, owing to
the use of EDSS-based feature selection within the training dataset.

sNfL has been linked to both active and chronic inflammation in
earlier studies.?>*¢*° The most consistent finding is its association
with gadolinium-enhancing lesions, although radiological activity
and sNfL rises do not always coincide.?’ Srpova et al.*® also showed
that, in some patients, sNfL elevation precedes brain atrophy. Our
results corroborate the link between active lesions and high sNfL
and newly show that elevated sNfL helps to stratify patients by in-
flammatory profile and the temporal evolution of sNfL and MRI ab-
normalities in subgroups of patients.

In training and external test datasets, the early-sNfL patients
showed similar patterns compared with the late-sNfL (younger in
early-sNfL and more women in the late sNfL) and, importantly, a
similar proportion of patients with relapsing-remitting and sec-
ondary progressive MS in the training set with these two pheno-
types. Our results underline that biology-grounded MS subtypes
are largely independent of clinical course descriptors. These add
to the evidence that biofluid biomarkers complement MRI to define
the biological basis of MS disease evolution better.'?427:%
Longitudinal application of the model allows us to assess how sub-
type and stage assignments change over time. Although the model
does not explicitly allow for deterministic transitions between sub-
types, we occasionally observe ‘subtype switching’, whereby the
most probable subtype assignment of a patient changes between
visits. We interpret this as reflecting either uncertainty in subtype
classification for borderline cases or genuine overlap between tra-
jectories. Given that 7% of patients switched from one subtype to
another in the training dataset, and 23% switched in the testing da-
taset, these subtypes are likely to represent a continuum of under-
lying pathology. SuStaln captures this with probability-based
membership, evidenced by the reduction in subtype switching
when membership certainty was increased. Data-derived subtyp-
ing can, therefore, impact future disease course descriptions and
prognosticate MS outcomes. From a clinical perspective, we can
speculate that this might indicate a shift from a dominant inflam-
matory profile to a more neurodegenerative phase or vice versa.
Future research with longer follow-ups can clarify this.

In the training cohort, patients classified in the early-sNfL sub-
type displayed a more rapid decline in gadolinium-enhancing le-
sions when treated, whereas those in the late-sNfL subtype did
not show this rapid reduction. Interestingly, this subtype-specific
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effect was not seen in the control (untreated) group, suggesting that
early-sNfL patients respond more robustly to treatment regarding
reduction in active lesions. Conversely, in the test cohort,
early-sNfL patients exhibited a faster decline in brain volume com-
pared with late-sNfL patients, a finding not observed in the training
data. Across both the training and test cohorts, early-sNfL patients
also showed a higher likelihood of new lesion formation relative to
late-sNfL patients. The inferred ‘stages’ of the MRI-sNfL model are
a proxy for pathological accumulation that showed stronger associa-
tions with both EDSS and active lesions than our MRI-only model.

Within the treated cohorts, the early-sNfL subtype had a rapid
gadolinium-enhancing lesion reduction, suggesting a more pro-
nounced and immediate therapeutic effect in this subgroup. In con-
trast, the late-sNfL subtype did not have such a drop, indicating
potential differences in the underlying disease mechanism.
Meanwhile, in patients who were not on treatment, serum NfL le-
vels still declined in both early- and late-sNfL subtypes over the
course of the study. We attribute this reduction (despite the lack
of active treatment) to the eligibility criteria of the clinical trials,
which required participants to have ongoing disease activity (re-
cent relapse or enhancing lesions). Consequently, this decrease
might reflect ‘regression to the mean’ once the most active phase
of inflammation subsides rather than a true therapeutic effect.>*

Correlations between our model stages and EDSS were weak,
mirroring the many reports of only weak biomarker-EDSS associa-
tions. This is expected, because EDSS is weighted towards motor
function and captures only a narrow slice of MS burden, whereas
MRI and serum biomarkers typically change before clinical symp-
toms become evident. Hence, attenuated cross-sectional correla-
tions do not undermine the clinical promise of the model.
Instead, they highlight the need for longer prospective studies
that pair the model with broader outcome measures (cognition,
quality of life and other patient-reported domains) beyond EDSS
alone. Nonetheless, we can speculate that our model can provide
staging of MS to facilitate future early interventions (before disabil-
ity emerges) and simultaneously stratifies patients by their bio-
marker profiles, with potential to guide personalized therapy.

We should address several hurdles to bring our research model
into everyday clinical care. Clinicians first need tools that convert
routine MRI scans into precise measures of the brain structures of
each patient. Although new tools are becoming available for brain
MRI processing of real-world data,” few hospitals have the infra-
structure for these tasks. Even where such tools exist, the variabil-
ity of everyday scans introduces new heterogeneity that demands
further study. As sNfL is becoming widely available and digital in-
frastructure improves, we expect our multimodal model to evolve
into future decision aid systems after further rigorous research on
real-world data. Because subtype assignment is possible from a sin-
gle cross-sectional scan, the model remains usable even when rou-
tine follow-up is sparse; our longitudinal analyses demonstrate
that these baseline labels carry prognostic weight over time.
Although harmonization can reduce variability across imaging
sites, it also creates practical challenges for clinical adoption.
Notably, the MRI-sNfL model retained strong performance even
without harmonization (see Supplementary Table 8), supporting
its use in settings with limited data or infrastructure.

Although the MRI-sNfL model provides an interpretable frame-
work for subtyping and staging MS, it operates under several key
assumptions. The SuStaln algorithm models disease progression
as a monotonic sequence of biomarker changes, with each subtype
following a fixed order of abnormality accumulation. This assump-
tion allows for tractable modelling of complex data but might limit
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sensitivity to fluctuating trajectories. To manage uncertainty,
SuStaln uses a Bayesian framework with Markov chain Monte
Carlo sampling, which enables probabilistic estimates of both sub-
type and stage assignments. Although recent extensions of SuStaln
have introduced methods for accommodating missing data,”® all
participants in our study had complete biomarker profiles, and
missing data handling was not required here. These modelling as-
sumptions should be considered when interpreting subtype assign-
ments, particularly in broader clinical settings.

This study has several limitations. First, we drew our training
and testing samples from clinical trial cohorts, which do not fully
represent the broader MS population, including those with co-
morbidities or underrepresented ethnic groups and primary pro-
gressive MS, with strict eligibility criteria. As a result, for
example, disability range was limited in the external testing data-
set. Despite this, our MRI-sNfL model stages showed significant
correlations with disability, showing the added value even with
limited EDSS ranges. Therefore, future studies in diverse clinical
settings are required for clinical translation. Second, our model
was trained on both relapsing-remitting and secondary progressive
cases, and is trained across the MS continuum, yet its accuracy in
late-stage disease still warrants prospective validation, because
our testing cohort was limited to early MS. Third, although adding
sNfL enhanced the biological relevance of the model and, in some
cases, clinical correlations, other fluid biomarkers or advanced im-
aging modalities (such as myelin-sensitive MRI sequences) will pro-
vide more comprehensive insights into disease progression.
However, addition of more advanced measures reduces the acces-
sibility and introduces obstacles to eventual clinical translation.

Conclusion

Our findings advance the understanding of MS heterogeneity by re-
vealing distinct biological trajectories rooted in MRI and fluid biomar-
kers. sNfL, despite being a non-specific marker related to neuronal
cytoskeleton, complements MRI measures of disease activity and
neurodegeneration. Integrating sNfL with MRI refines subtyping
and provides a foundation for earlier, more individualized prognosis.
Ultimately, this approach might pave the way for more targeted
therapeutic strategies and improved patient outcomes.
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