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Combined magnetic resonance imaging and 
serum analysis reveals distinct multiple 
sclerosis types

Charles Willard,1,† Lemuel Puglisi,1,2,† Daniele Ravi,3 Mariia Dmitrieva,1

Rozemarijn M. Mattiesing,4 Frederik Barkhof,1,5,6,7,8,9 Daniel C. Alexander,1,9,10

Danielle E. Harlow,11 Daniela Piani-Meier12 and Arman Eshaghi1,5,7,9,10

†These authors contributed equally to this work.

See Brummer and Fleischer (https://doi.org/10.1093/brain/awaf400) for a scientific commentary on this article.

Multiple sclerosis (MS) is a highly heterogeneous disease in its clinical manifestation and progression. Predicting in
dividual disease courses is key for aligning treatments with underlying pathobiology. We developed an unsupervised 
machine learning model integrating MRI-derived measures with serum neurofilament light chain (sNfL) levels to 
identify biologically informed MS subtypes and stages. Using a training cohort of patients with relapsing–remitting 
and secondary progressive MS (n = 189), with validation on a newly diagnosed population (n = 445), we discovered 
two distinct subtypes defined by the timing of sNfL elevation and MRI abnormalities (early- and late-sNfL types).
In comparison to MRI-only models, incorporating sNfL with MRI improved correlations of data-derived stages with 
the Expanded Disability Status Scale in the training (Spearman’s ρ = 0.420 versus MRI-only ρ = 0.231, P = 0.001) and ex
ternal test sets (ρ = 0.163 for MRI–sNfL, versus ρ = 0.067 for MRI-only). The early-sNfL subtype showed elevated sNfL, 
corpus callosum injury and early lesion accrual, reflecting more active inflammation and neurodegeneration, where
as the late-sNfL group showed early volume loss in the cortical and deep grey matter volumes, with later sNfL eleva
tion. Cross-sectional subtyping predicted longitudinal radiological activity: the early-sNfL group showed a 144% 
increased risk of new lesion formation (hazard ratio = 2.44, 95% confidence interval 1.38–4.30, P < 0.005) compared 
with the late-sNfL group. Baseline subtyping, over time, predicted treatment effect on new lesion formation on the 
external test set (faster lesion accrual in early-sNfL compared with late-sNfL, P = 0.01), in addition to treatment effects 
on brain atrophy (early sNfL average percentage brain volume change: −0.41, late-sNfL = −0.31, P = 0.04).
Integration of sNfL provides an improved framework in comparison to MRI-only subtyping of MS to stage disease pro
gression and inform prognosis. Our model predicted treatment responsiveness in early, more active disease states. 
This approach offers a powerful alternative to conventional clinical phenotypes and supports future efforts to refine 
prognostication and guide personalized therapy in MS.
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Introduction
Multiple sclerosis (MS) affects >2.8 million people globally.1

Although clinical descriptors categorize MS into relapsing–remit
ting, secondary progressive and primary progressive, emerging evi
dence reveals that these fail to capture the underlying biological 
continuum.2,3 Although distinct in their disease burden, these clin
ical phenotypes share pathobiological mechanisms.4,5 As a result, 
our capacity to predict its course and personalize treatment re
mains limited by our reliance on traditional clinical descriptors. A 
shift towards a subtyping system grounded in pathobiological un
derpinnings promises to facilitate earlier, more targeted therapeut
ic interventions, potentially even before symptom onset, improving 
our ability to predict individual patient outcomes and personalize 
treatment strategies.

Unsupervised machine learning offers an objective way to un
cover MS types based on underlying disease biology (pathobiology) ra
ther than relying on predefined diagnostic labels or observable 
symptoms. For example, Gross et al.6 identified three distinct data- 
derived MS types based on different immune cell markers of CD4 
and CD8 T cells, natural killer cells and cytokine compartments. 
These data-derived subtypes showed subtle variations in disease 
course and treatment responses. However, their immediate clinical 
use is limited because specialized immune cell markers defined 
these subtypes, which are not collected routinely in clinical 
practice.

MRI provides detailed spatial information about structural dam
age and lesion formation, capturing the localized effects of the dis
ease. The unsupervised learning model Subtype and Staging 
Inference (SuStaIn7) was used previously by Eshaghi et al.8 on brain 
MRI data from 9390 MS patients to identify three distinct 
MRI-derived subtypes. SuStaIn clusters patients with similar pro
gression patterns, characterizing subtypes by the alternative order 
in which key variables reach thresholds of abnormality. They found 
a ‘lesion-led’ subtype that was more responsive to high-efficacy 
treatments in clinical trials and had faster worsening of disability 
than the other two subtypes.8 However, MRI alone does not fully 
capture the underlying neuro-axonal damage that drives disease 
progression. MRI is non-specific for underlying pathology and can 
miss subtle or ongoing neurodegeneration.9 Integrating widely 
available fluid biomarkers indicative of early and ongoing neuronal 
injury has the potential for improved separation of patient sub
groups and enhanced precision in disease course prediction and 
personalized treatment selection.10

The serum neurofilament light chain (sNfL) level is a systemic 
measure of ongoing neuronal injury, reflecting disease activity 
and neuronal loss.11,12 It is a component of the neuronal cytoskel
eton and, therefore, a sensitive indicator of neuro-axonal damage. 
In MS, the sNfL level increases at disease onset,13 is associated with 
MRI changes of disease activity and neurodegeneration14 and is 
sensitive to treatment effects.15,16 Serum NfL is becoming increas
ingly available and accessible in clinical practice.17,18 Yet, because 
serum-based biomarkers alone still face variability, low sensitivity 
to disease activity and imperfect assay standardization, incorporat
ing complementary data (such as MRI metrics) can strengthen their 
clinical utility.19-21

We hypothesized that integrating sNfL with MRI would yield 
biologically distinct MS subtypes with improved prognostic accur
acy in comparison to MRI alone. In this study, using two independ
ent cohorts, we aimed to: (i) develop and validate a combined MRI– 
sNfL subtyping system using unsupervised machine learning 
(SuStaIn); (ii) assess how incorporating sNfL can simplify and im
prove data-derived subtypes in comparison to using MRI alone; 
and (iii) evaluate how these novel subtypes evolve in their brain at
rophy, treatment response and new lesion development.

Materials and methods
Overview

Figure 1 provides an overview of our study, a retrospective analysis 
of two previously published longitudinal datasets. We trained an 
unsupervised SuStaIn model using cross-sectional MRI data and 
sNfL levels from a phase 2 clinical trial (referred to as training 
data in this manuscript).22 The training of this model included a 
feature selection step to select MRI-derived variables based on their 
correlation with Expanded Disability Status Scale (EDSS), which 
makes the pipeline not entirely unsupervised despite using an un
supervised model. Through cross-validation, we determined the 
optimal number and pattern of data-derived subtypes, and the 
most likely sequence of progression of abnormality across selected 
MRI variables and sNfL levels. In the SuStaIn framework, subtypes 
are modelled as data-driven sequences of biomarkers. Each sub
type captures a distinct ordering of disease events, but given that 
individuals are assigned to subtypes probabilistically, from this 
perspective, the subtypes can be considered a continuum. The 
trained model assigned each patient both a stage (indicating their 
position along the disease progression sequence) and a subtype 
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classification with an associated probability of subtype member
ship. We applied this classification to cross-sectional and longitu
dinal observations within the training data and an independent 
external interferon beta-1a trial dataset (referred to as the external 
test set in this manuscript).23 We compared our data-derived sub
types with MRI-only models to assess the added value of incorpor
ating sNfL with MRI variables, where our approach differs only by 
the addition of the sNfL biomarker, reduced MRI biomarker selec
tion and the use of harmonization on the test set. We performed 
statistical analyses to evaluate the relationship between clinical 
outcomes and the derived stages, to validate model-derived sub
types and stages against disability measures and to explore differ
ences in outcomes across subtypes.

Participants

We included 634 participants across training and external test da
tasets. For training, we used 189 participants from the previously 
published phase 2 clinical trial of evobrutinib,22 and for independ
ent testing, we used 445 from the phase 3 clinical trial on interferon 
beta-1a (which we refer to as ‘early’ MS in this manuscript, al
though in the published manuscript,23 according to the now obso
lete McDonald 2005 diagnostic criteria, they were referred to as 
clinically isolated syndrome; subsequent post hoc analyses of the 
REFLEX clinical trial using retrospective application of the 
McDonald 2017 criteria24 confirmed that almost half would have 

been confirmed as having MS at baseline).23,25 Those in the training 
dataset (evobrutinib trial) had established relapse-onset MS (re
lapsing–remitting and secondary progressive). Given that SuStaIn 
requires data covering the full disease course for training, we se
lected the evobrutinib trial data as the training set and the inter
feron trial data with patients at the time of diagnosis of MS and 
clinically isolated syndrome for the external test dataset.

In the training dataset (evobrutinib trial), we had follow-up vis
its at Months 3, 4, 5, 6 and 12. A total of 167 participants had sNfL 
measurements at screening visits. We consolidated participants 
into treatment and control groups based on previously reported ef
ficacy. Those who received either placebo (n = 50) or evobrutinib 
25 mg once daily (n = 46) formed our control group, because these 
doses had shown no significant treatment effect. Participants 
who received higher doses [evobrutinib 75 mg once daily (n = 46) 
or twice daily (n = 47)] formed our treatment group.

For the external test dataset (interferon trial), follow-up visits 
occurred every 3 months from baseline to Month 24 during the 

REFLEX trial,23 and every 6 months from Month 24 to Month 60 dur

ing the REFLEXION extension study,26 in which the control group 

switched to treatment. A total of 435 participants had sNfL mea

surements at screening. Participants were grouped based on treat

ment assignment: the placebo arm (n = 144) served as our control 

group, whereas those receiving either weekly (n = 152) or thrice 

weekly (n = 149) interferon beta-1a formed the treatment group. 

Figure 1 Overview of the study. Initially, we processed MRIs to derive 35 features from 17 targeted brain regions, white matter hyperintensity volumes 
and T1/T2 ratios of white matter regions. Next, we selected five MRI features within SuStaIn based on their correlation with EDSS. We harmonized the 
features from the external test dataset to match the distribution of the features in the training set. We normalized the features by computing z-scores 
relative to a healthy population. We trained a SuStaIn model with the selected MRI features and sNfL measures and performed cross-validation to se
lect the optimal model. We applied the trained SuStaIn model to cross-sectional and longitudinal data from subjects in the training and external test 
datasets. We performed a statistical analysis to investigate how the newly obtained subtyping and staging system is related to clinical variables, and to 
compare our models with an existing MRI-based SuStaIn model. EDSS = Expanded Disability Status Scale; sNfL = serum neurofilament light (chain); 
SuStaIn = subtype and stage inference.
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In our analyses, we incorporated the full 60 months of data for the 
treatment group but restricted control group analyses to the first 24 
months, prior to crossover treatment in the extension phase.

Ethics and consent

The clinical trial protocol and ethics approval were acquired by the 
institutional ethical review boards, and informed written consent 
was obtained from all participants or their designated caregivers 
(ClinicalTrials.gov IDs: NCT0297534922 and NCT0040435223).

Assessments

Clinical assessments

We used EDSS assessments with data available at Months 0 
(screening), 3 and 6 in the training dataset. In the external test da
taset, EDSS assessments were available from Month 0 (screening) to 
Month 24 at 3 month intervals, and from Month 24 to Month 60 at 
6 month intervals. We did not analyse relapses because they were 
too rare (11 of 189 subjects in the training set and 21 of 445 in the 
external test sets experienced a relapse).

sNfL measurements

The sNfL measurements for the evobrutinib phase 2 trial were ana
lysed by Monogram Biosciences (LabCorp), using the Simoa assay.11

The sNfL measurements for the interferon trial were analysed by 
the SMSC Data Center in Basel using the Simoa assay. We analysed 
the laboratory-standardized z-scores, which were corrected for age 
against a control population for the evobrutinib study, and cor
rected for age and body mass index for the interferon study.27

MRI and acquisition protocols

We used MRIs from visits conducted at Months 0 (screening), 3, 4, 5, 
6 and 12 in the training dataset. For the external test dataset, MRI 
scans were available at Months 0 (screening), 12, 24, 36, 48 and 60. 
In the training set, MRI scans were acquired using 1.5 T scanners 
and included two-dimensional T1-weighted, T2-weighted and 
fluid-attenuated inversion recovery (FLAIR) sequences. Likewise, 
MRI scans from the interferon trial were acquired using 1.5 T scan
ners but included two-dimensional T1-weighted, T2-weighted and 
proton density (PD) sequences. Full details of the MRI schedules and 
trial protocols are published elsewhere (as previously mentioned, 
NCT0297534922 and NCT0040435223).

MRI processing

The objective of the MRI processing was to quantify: (i) 
T2-hyperintense white matter lesion volumes; (ii) volumes for 17 
brain regions, which include grey matter from the cortex, deep 
grey matter and normal appearing white matter, as listed in 
Supplementary Table 1; and (iii) the T1-weighted/T2-weighted ratio 
on the same target regions after removing lesion voxels as a proxy 
for normal-appearing microstructural tissue damage.28 We used le
sion volume over T2 lesion or gadolinium-enhancing lesion counts 
as continuous variables for modelling purposes. The full list of the 
resulting 35 MRI-extracted variables is detailed in Supplementary 
Table 2. We visually assessed the quality of all the MRI processing 
outputs (i.e. lesion masks, neuroanatomical segmentation and 
T1/T2 ratio maps) for outliers and erroneous segmentations. We 
will explain these steps in more detail.

T2-hyperintense lesion volume assessment

We corrected all scans for field inhomogeneity (bias field correc
tion)29 and reduced noise using a spatially adaptive filter.30 We 
aligned the T1-weighted image to the Montreal Neurological 
Institute (MNI) template,31 and extracted a brain mask using the 
ROBEX tool,32 which is then used as input for the Atropos algorithm 
to segment the white matter.33 We aligned the T2-FLAIR image 
from the same MRI session to the T1-weighted image, and we nor
malized the intensities of both images using the white matter mask 
with the Fuzzy C-Means method.34 Next, we generated 
T2-hyperintense lesion masks using the DeepMedic convolutional 
neural network35 on the normalized images. This process was ap
plied only to the training set, because the external test 
dataset already did not have T2-FLAIR (instead, we used manually 
annotated T2-hyperintense lesion masks).23 Finally, we calculated 
the total lesion volume (in millimetres cubed) from these masks.

Brain volumetric analysis

We segmented each bias-corrected T1-weighted MRI using a multi- 
atlas approach. Initially, we used the lesion masks to fill hypoin
tense areas in the T1-weighted scan. We applied non-linear regis
tration36 to align each T1-weighted MRI with 50 labelled 
templates from the MindBoggle atlas.36 We then projected these la
bels onto the original T1-weighted space using the inverse trans
form. We used a joint label fusion method37 to generate 
consensus labels. The resulting segmentation allowed us to locate 
and measure volume (in millimetres cubed) of each target region.

T1/T2 ratio

To calculate the T1-weighted/T2-weighted ratio, we first 
co-registered each T2-weighted image to its corresponding 
T1-weighted scan from the same MRI session using affine trans
formation.31 We then calibrated the intensities of both images 
through a linear scaling procedure (see the Supplementary 
material) to standardize their scale. The voxel-wise ratio of these 
calibrated images yielded the T1-weighted/T2-weighted ratio im
age. We identified each target brain region within the ratio image 
using the segmentation derived from the T1-weighted MRI (as de
scribed in the ‘Brain volumetric analysis’ section). We computed 
the median T1-weighted/T2-weighted value for each region.

Percentage brain volume change and 
gadolinium-enhancing lesions

We used percentage brain volume change (PBVC) and 
gadolinium-enhancing lesions from previously published clinical 
trial results.22,23

Model development

The MRI–sNfL model

Feature selection

To select an optimal subset of MRI-derived variables for the new 
SuStaIn model, we implemented a two-stage selection process. 
Initially, from a pool of 35 available variables (Supplementary 
Table 2), we identified the 10 variables that exhibited the strongest 
correlation with EDSS in the training set, with the correlation ma
trix presented in Supplementary Fig. 1. Subsequently, recursive 
feature elimination38 was applied to this 10-variable subset to distil 
the selection further, to five variables. The objective of the recursive 
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feature elimination procedure was to identify the feature combin
ation that optimized the correlation between the stages of the re
sulting SuStaIn models and EDSS. The specific number of 
variables retained at each stage, 10 and five, respectively, was an ar
bitrary decision guided by several considerations: the size of the 
available training dataset (n = 189), the model parsimony and inter
pretability, and the high collinearity among many MRI-derived 
metrics.

Feature preprocessing

To summarize, we normalized anatomical volumes, T1-weighted/ 
T2-weighted and lesion variables into z-scores. For volumes and 
T1/T2, we used the Human Connectome Project39 dataset as the ref
erence distribution. The Supplementary material describes the 
standardization process for the lesion volume. The sNfL measure
ments were already laboratory standardized and provided as 
age-adjusted z-scores against a control population, as explained 
elsewhere.27

Model training

We applied the SuStaIn algorithm to the first visit at the study entry 
for each participant in the training set. We configured the algorithm 
to discover models with one, two or three data-derived subtypes. 
We conducted a 5-fold cross-validation to select the optimal num
ber of subtypes by calculating, for each configuration, 
log-likelihood and cross-validation information criteria (CVIC), as 
defined by Young et al.7 Based on these metrics, we selected the op
timal model and used it to assign a data-derived subtype and stage 
to each participant at every visit across both training and external 
test datasets. We refer to this combined MRI and sNfL model as 
the MRI–sNfL model.

MRI-only model

As the primary benchmark for this study, and to assess whether in
corporating sNfL levels improves the prediction of clinically mean
ingful outcomes in comparison to extensively characterized and 
validated MRI-derived MS subtypes, we used the previously pub
lished SuStaIn MRI-only model,8 which is publicly available.40

This model incorporated 13 MRI-derived variables: volumetric 
measurements of deep grey matter, frontal, occipital, parietal, tem
poral lobes and limbic cortex; total lesion volume; and T1/T2 ratios 
from specific white matter areas (cerebellar, temporal, cingulate, 
corpus callosum and temporal–parietal). We will refer to this exist
ing model as the MRI-only model. This model classified participants 
into a lesion-dominant pattern (lesion-led), those with early abnor
mality in normal-appearing white matter T1/T2 ratio (NAWM-led) 
and those with early atrophy in the grey matter (GM-led).8

5-MRI model

To evaluate the added value of sNfL better, we trained a SuStaIn 
model using only the five MRI variables included in the MRI–sNfL 
model. We refer to this reduced-variable model as the 5-MRI model. 
The same feature preprocessing pipeline as used in the MRI–sNfL 
model was applied. The algorithm was configured to identify up 
to two subtypes, consistent with the MRI–sNfL model, which we 
generically refer to as ‘MRI Subtype 1’ and ‘MRI Subtype 2.’ The 
5-MRI model was then used to classify and stage each participant 
in both the training and external test sets.

Model testing

MRI feature harmonization

It has been shown that quantitative measures directly dependent 
on the MRI intensity profile, such as the segmented structures 
and T1-weighted/T2-weighted ratio, are sensitive to inter-study 
differences (e.g. different MRI scanners or acquisition para
meters).41 To mitigate the potential confounder, we used the 
ComBat algorithm42 to harmonize the volumes and T1-weighted/ 
T2-weighted variables from the external test dataset with respect 
to the training data.

Associations with longitudinal MRI and clinical outcomes

We analysed outcomes across data-derived subtypes using longitu
dinal visits from training and external testing datasets. Using linear 
mixed-effects models with random-effects intercepts, we esti
mated average change rates for three outcomes (EDSS, sNfL and 
gadolinium-enhancing lesion counts) annually, with subject iden
tity as the random effect. We analysed these in two ways. First, 
we fitted separate mixed-effects models for each SuStaIn subtype 
group. Second, we fitted separate models for each SuStaIn sub
type–treatment interaction term to assess potential treatment ef
fects. We used the Statsmodel Python package (version 0.13.5).

Correlation at screening (study entry) between SuStaIn 
stage and clinical outcomes

We assessed how SuStaIn stage relates to three variables (chrono
logical age, EDSS and the number of active lesions) using 
Spearman’s rank correlation coefficient (α = 0.05). We performed 
the analysis separately for the MRI-only and the MRI–sNfL models. 
For each correlation, we computed the coefficient and its two-tailed 
P-value with SciPy (v.1.10.0). To compare two independent correl
ation coefficients, we applied Fisher’s z-test. Based on Schober 
et al.,43 we classified correlations as weak (ρ = 0.10–0.39), moderate 
(ρ = 0.40–0.69), strong (ρ = 0.70–0.89) or very strong (ρ = 0.90–1.00).

Analysis of percentage brain volume change

We use the PBVC between the baseline and final follow-up MRI 
scans (Month 6 in the training set, and Month 24 (control) or 
Month 60 (treatment) in the external test set) and express it as an 
annualized rate of change for analysis.

Survival analysis on the risk of developing new 
gadolinium-enhancing lesions

We used a Cox proportional hazards model to assess the risk of de
veloping a new gadolinium-enhancing lesion, with predictors 
SuStaIn subtype (MRI–sNfL model) and treatment assignment. An 
increase in lesion count at any follow-up visit was treated as an 
event at that visit. We estimated hazard ratios and 95% confidence 
intervals (CI) with Lifelines (v.0.27.8). We did not analyse time to 
EDSS worsening because the event rate was too low (training set 
5.6%; external test set 43.6%).

Results
Participant characteristics

In the training set, 161 participants (85%) had relapsing–remitting 
MS and 28 (15%) had secondary progressive MS; 69% were women 
(Table 1). The mean age of the cohort was 42 ± 10 years, the mean 
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time since diagnosis 7.7 ± 6.4 years and the median screening EDSS 
3. In contrast, the external test set comprised individuals evaluated 
at the point of diagnosis of MS or clinically isolated syndrome. 
Among them, 284 (64%) were women, the mean age was 31 ± 8 years 
and the median EDSS 1.5. Baseline brain volume averaged 
1177 ± 123 ml in the training set and 1158 ± 113 ml in the external 
test set.

MRI–sNfL model results

Selected variables

This model used five MRI variables: the limbic cortex, deep grey 
matter, parietal cortex, total lesion volumes and corpus callosum 
white matter T1-weighted/T2-weighted. Combined with the serum 
biomarker sNfL, the MRI–sNfL model had six variables.

The chosen model discovered subtypes characterized by 
early-sNfL and late-sNfL activity

We compared models with one, two or three data-derived subtypes. 
The two-subtype model (CVIC = 3195, log-likelihood = −318.7) and 
the three-subtype model (CVIC = 3189, log-likelihood = −318.22) fit
ted the data better than the single-subtype model (CVIC = 3316, 
log-likelihood = −330.8). We favoured the two-subtype model ow
ing to its parsimony over the three-subtype model. It offered a sim
pler explanation of the data while still effectively differentiating 
between data-derived subtypes, whereas two subtypes in the 
three-subtype model had highly similar patterns in their sequence 
(stage), as shown in Supplementary Fig. 5. Given that each variable 
can progress through three stages (mild, intermediate and severe) 
based on where each variable was placed on the reference distribu
tion (1, 2 or 3 standard deviations from the mean), the eventual 

model staged patients into 18 stages (six variables multiplied by 
three levels of abnormality).

Figure 2 shows the positional variance plot of two subtypes, 
which we termed early-sNfL and late-sNfL subtypes. The 
early-sNfL subtype is characterized by elevated sNfL levels, re
duction of normal-appearing corpus callosal T1/T2 ratio and le
sion accrual as early events among the variables examined. In 
contrast, the late-sNfL subtype showed early volume loss in the 
limbic cortex and deep grey matter, with sNfL elevation occurring 
at later stages of abnormality accumulation. The demographic 
and clinical characteristics of both subtypes are provided in 
Table 2. For both the training and external test datasets, subtypes 
exhibit age differences (P < 0.001). Specifically, late sNfL was 
more prevalent among older subjects, and in the training set, 
was more disabled. Supplementary Fig. 4 illustrates the propor
tions of subtypes stratified by prior treatment efficacy, for which 
we found no significant association with subtype assignment (χ2 

test, P = 0.24).
At the screening visit in the training dataset, 93 participants 

(56%) were assigned to the late-sNfL subtype and 74 (44%) to the 
early-sNfL subtype. During follow-up, 48 individuals (∼29%) chan
ged subtypes. Among those with high-confidence assignments 
(n = 95, probability >85%), only seven participants (∼7%) switched 
subtypes. In the external test dataset, 267 participants (61%) were 
initially classified as early-sNfL and 168 (39%) as late-sNfL. Over 
time, 177 individuals (41%) changed subtypes, reduced to 66 (23%) 
among those with high-confidence assignments (n = 291). To assess 
the sensitivity of this stability to the confidence threshold, 
Supplementary Fig. 3 shows a sensitivity analysis using thresholds 
of 80%, 85% and 90%. The results highlight that subtype switching 
consistently decreases as the threshold increases, indicating that 
higher-confidence assignments are more stable.

Table 1 Demographics and screening characteristics of participants

Characteristic Training External test

Number of subjects 189 445
Number of visits 799 1214
MS phenotype RRMS (n = 161, 85%) 

SPMS (n = 28, 15%)
Newly diagnosed relapsing–remitting MS and clinically 

isolated syndrome (n = 445, 100%)
Self-reported sex Female (n = 131, 69%) 

Male (n = 58, 31%)
Female (n = 284, 64%) 
Male (n = 161, 36%)

Median age, years (interquartile range) 41 (34, 50) 30 (24, 37)
Median disease duration, years from diagnosis 

(interquartile range)
6.5 (2.3, 12.1) Newly diagnosed

Prior treatments 77.2% no prior treatment 
17.5% moderate-efficacy 

treatment 
5.3% high-efficacy treatment

No prior treatment

Treatment arms Placebo (n = 50) 
Evobrutinib 25 mg QD (n =  

46) 
75 mg QD (N = 47) 
75 mg BID (n = 46)

Placebo (n = 144) 
Interferon-beta 1a 44 μg OW (n = 152) 
Interferon-beta 1a 44 μg TIW (n = 149)

Median number of relapses within 2 years of study 
commencement

2 (1, 2) No prior relapses

Median screening sNfL z-score (interquartile range) 1.28 (−0.12, 2.20) 2.01 (0.54, 3.13)
Median EDSS (interquartile range) 3.0 (2.0, 4.5) 1.5 (1.0, 2.0)
Median number of gadolinium-enhancing lesions 

(interquartile range)
0 (0, 1) 4 (1, 9)

Classification of prior treatments into moderate and high efficacy is detailed in Supplementary Table 5.  

Abbreviations: BID = bis in die (twice daily); MS = multiple sclerosis; OW = once weekly; QD = quaque die (once daily); RRMS = relapsing-remitting multiple sclerosis; sNfL = 
serum neurofilament light chain; SPMS = secondary progressive multiple sclerosis; TIW = three times weekly. 
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Subtypes from the MRI-only model

In the training set, our previously published MRI-only model classi
fied 119 patients (56%) as lesion-led, 60 (28%) as grey matter 
(GM)-led, and the remainder were normal-appearing white matter- 
or NAWM-led. In the external test dataset, 221 (50%) were 
lesion-led, 152 (34%) GM-led and the rest NAWM-led. 
Supplementary Table 3 shows the demographic characteristics of 
subtypes classified by this model in both cohorts.

Subtypes from the 5-MRI model

Supplementary Fig. 2 depicts the progression patterns of the two 
identified MRI subtypes. Both Subtype 1 and Subtype 2 show an 

initial decline in the T1/T2 ratio of normal-appearing corpus callo
sal white matter. Subtype 1 is characterized by early deep grey mat
ter volume loss, whereas Subtype 2 exhibits early lesion 
accumulation. Supplementary Table 4 presents the demographic 
characteristics of participants assigned to each subtype in both 
cohorts.

Subtypes and stages correlated with demographic 
and disability variables

We refer to the stages derived from the MRI–sNfL model as ‘MRI– 
sNfL model stages’, those from the MRI-only model as ‘MRI-only 
model stages’ and those from the 5-MRI model as ‘5-MRI model 

Figure 2 Order of progression of abnormality in the early-sNfL and late-sNfL subtypes. Positional variance plot of early-sNfL and late-sNfL subtypes 
shows the level of uncertainty in assigning each biomarker listed in the vertical axis with a certain stage shown on the horizontal axis. The three col
ours show mild, moderate and severe abnormalities (z-scores of 4, 6 and 8). The colour shades for each level of abnormality show the associated un
certainty in the model. The early-sNfL subtype is characterized by elevated sNfL levels, reduction of normal-appearing corpus callosal T1/T2 ratio, and 
lesion accrual as early events among the variables examined. In contrast, the late-sNfL subtype showed early volume loss in the limbic cortex and deep 
grey matter, with sNfL elevation occurring at later stages of multiple sclerosis worsening. Feature order is based on the progression sequence in the 
early-sNfL subtype to aid interpretability. DGM = deep grey matter; sNfL = serum neurofilament light (chain); SuStaIn = subtype and stage inference; 
WM = white matter.

Table 2 Demographic and clinical data by subtype from the MRI–sNfL model

Parameter Training External test

Early-sNfL Late-sNfL t-test Early-sNfL Late-sNfL t-test

Sample, n (%) 74 (44%) 93 (56%) – 267 (61%) 168 (39%) –
Females in each subtype, n (%) 36 (49%) 77 (83%) – (155) 58% 123 (73%) –
Average age, years (mean ± standard 

deviation)
37 ± 9 46 ± 9 P < 0.001 30 ± 8 34 ± 8 P < 0.001

MS types, n (%) RRMS = 63 
(85%) 

SPMS = 11 (15%)

RRMS = 78 
(84%) 

SPMS = 15 
(16%)

– RRMS = 267 
(100%)

RRMS = 168 
(100%)

–

Median EDSS, median (IQR) 2.5 (1.5, 3.5) 3.5 (2.0, 4.5) P < 0.001 1.5 (1, 2) 1.5 (1, 2) P = 0.083

Clinical and demographic characteristics are presented for subtypes derived from the MRI–sNfL model (early-sNfL, late-sNfL). Data are shown separately for the training and 

external test datasets. 
Abbreviations: EDSS = expanded disability status scale; IQR = interquartile range; MS = multiple sclerosis; RRMS = relapsing-remitting multiple sclerosis; sNfL = serum 

neurofilament light chain; SPMS = secondary progressive multiple sclerosis.
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stages’. All correlation coefficients between the SuStaIn stages de
rived from each of these models and clinical measures at study en
try are summarized in Table 3.

Regarding EDSS, the MRI–sNfL model stages in the training set 
showed a stronger correlation (ρ = 0.420, P < 0.001) compared with 
the MRI-only model (ρ = 0.231, P = 0.001). In the external test data
set, the MRI–sNfL model maintained a weak but significant correl
ation (ρ = 0.163, P < 0.001), whereas the MRI-only model showed 
no significant correlation (ρ = 0.067, P = 0.159). The MRI–sNfL sub
types in the training set both showed moderate correlations with 
EDSS: late-sNfL (ρ = 0.457, P < 0.001) and early-sNfL (ρ = 0.396, P <  
0.001). In the external test set, only early-sNfL maintained a statis
tically significant correlation (ρ = 0.196, P = 0.001), whereas 
late-sNfL did not (ρ = 0.075, P = 0.336). The 5-MRI model stage was 
correlated with EDSS in the training set (ρ = 0.419, P < 0.001), similar 
in strength to the MRI–sNfL model, but in the external test set the 
correlation was weaker (ρ = 0.114, P = 0.017), suggesting that the 
MRI–sNfL model generalized better.

For chronological age, both MRI–sNfL (ρ = 0.347, P < 0.001) and 
MRI-only (ρ = 0.275, P < 0.001) stages showed weak correlations in 
the training set. In the external test set, the MRI–sNfL 
model showed no significant overall correlation (ρ = 0.031, P =  
0.517), although early-sNfL showed a weak but significant correl
ation (ρ = 0.125, P = 0.041). The MRI-only model, in contrast, 
retained a weak but significant correlation in the external test set 
(ρ = 0.141, P = 0.003). The 5-MRI model showed stronger correlations 
with age in comparison to the other models in both datasets: in the 
training set (ρ = 0.402, P < 0.001) and external test set (ρ = 0.185, P <  
0.001).

Regarding active lesions, the MRI–sNfL model showed no signifi
cant correlation in the training set (ρ = 0.093, P = 0.234), but 

demonstrated a moderate correlation in the external test set (ρ =  
0.636, P < 0.001), with both early-sNfL (ρ = 0.571, P < 0.001) and 
late-sNfL (ρ = 0.564, P < 0.001) subtypes contributing similarly. The 
MRI-only model showed no correlation in the training set, but a 
weak significant correlation in the external test set (ρ = 0.223, P <  
0.001). The 5-MRI model showed no correlation with active lesions 
in the training set, but a moderate correlation in the external test 
set (ρ = 0.487, P < 0.001), although this was weaker than that of the 
MRI–sNfL model.

Longitudinal analysis of gadolinium-enhancing 
lesion counts in SuStaIn subtypes

Table 4 reports results from linear mixed-effects models estimating 
annual changes in EDSS, lesion counts and sNfL levels by subtype 
and treatment group. In the treatment group of the training set, 
subjects classified as early-sNfL showed a significantly faster re
duction in active lesion counts (β = −4.9568, 95% CI −8.741, −1.173, 
P = 0.01) compared with the late-sNfL subtype (β = 1.1053, 95% CI 
−2.039, −0.172, P = 0.02). We found no significant differences in 
the control group of the training set.

In the treatment group of the external test dataset, the late-sNfL 
subtype showed no significant change in gadolinium-enhancing le
sion count (β = −0.079, 95% CI −0.175, 0.017, P = 0.106), whereas the 
early-sNfL subtype had a significant increase (β = 0.212, 95% CI 
0.047, 0.378, P = 0.012). In the control group, both the early-sNfL (β  
= 0.513, 95% CI −0.109, 1.135, P = 0.106) and late-sNfL (β = 0.393, 
95% CI 0.142, 0.644, P = 0.002) subtypes showed positive rates of ac
tive lesion accrual, although statistical significance was not 
reached for the early-sNfL subtype.

Table 3 Demographic and clinical data and their correlations with data-derived stages across the different models

Parameter Training External test

Spearman correlation with MRI–sNfL model stages

All Early-sNfL Late-sNfL All Early-sNfL Late-sNfL

Age 0.347 (P < 0.001) 0.361 (P = 0.002) 0.343 (P < 0.001) 0.031 (P = 0.517) 0.125 (P = 0.041) 0.126 (P = 0.102)
EDSS 0.420 (P < 0.001) 0.396 (P < 0.001) 0.457 (P < 0.001) 0.163 (P < 0.001) 0.196 (P = 0.001) 0.075 (P = 0.336)
Number of active lesions 0.093 (P = 0.234) 0.115 (P = 0.330) 0.109 (P = 0.301) 0.636 (P < 0.001) 0.571 (P < 0.001) 0.564 (P < 0.001)

Spearman correlations with MRI-only model stages

All Lesion-led GM-led NAWM-led All Lesion-led GM-led NAWM-led

Age 0.275 (P <  
0.001)

0.230 (P =  
0.018)

−0.025 
(P = 0.858)

0.276 
(P = 0.132)

0.141 
(P = 0.003)

0.228 
(P < 0.001)

−0.026 
(P = 0.753)

0.106 
(P = 0.375)

EDSS 0.231 (P =  
0.001)

0.278 (P =  
0.004)

−0.272 
(P = 0.049)

0.501 
(P = 0.004)

0.067 
(P = 0.159)

0.112 
(P = 0.099)

0.029 
(P = 0.727)

0.172 
(P = 0.149)

Number of active 
lesions

−0.020 (P =  
0.785)

−0.063 (P =  
0.524)

0.004 
(P = 0.977)

0.202 
(P = 0.276)

0.223 
(P < 0.001)

0.367 
(P < 0.001)

0.174 
(P = 0.033)

0.355 
(P = 0.002)

Spearman correlation with 5-MRI model stages

All MRI subtype 1 MRI subtype 2 All MRI subtype 1 MRI subtype 2

Age 0.402 (P< 0.001) 0.326 (P < 0.001) 0.603 (P < 0.001) 0.185 (P < 0.001) 0.122 (P = 0.037) 0.329 (P < 0.001)
EDSS 0.419 (P < 0.001) 0.428 (P < 0.001) 0.431 (P = 0.002) 0.114 (P = 0.017) 0.094 (P = 0.108) 0.173 (P = 0.036)
Number of active lesions 0.027 (P = 0.710) 0.044 (P = 0.606) 0.055 (P = 0.715) 0.487 (P < 0.001) 0.553 (P < 0.001) 0.427 (P < 0.001)

Spearman correlation coefficients between model-inferred disease stages and clinical variables (age, EDSS and number of active lesions) are reported for each subtype across the 

MRI–sNfL, MRI-only and 5-MRI models. Analyses are separated by training and external test datasets. Subtypes include early-sNfL and late-sNfL (MRI–sNfL model), Lesion-led, 

GM-led and NAWM-led (MRI-only model), and Subtypes 1 and 2 (5-MRI model). 
Abbreviations: EDSS = expanded disability status scale; GM = grey matter; NAWM = normal appearing white matter; sNfL = serum neurofilament light chain.
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Longitudinal analysis of sNfL in data-derived 
subtypes

Analysis of annual sNfL trends in the training set showed significant 
reductions in the early-sNfL subtype for both control (β = −0.4388, 95% 
CI −0.806, −0.072, P = 0.019) and treatment (β = −1.4894, 95% CI −2.157, 
−0.822, P < 0.001) groups, whereas the late-sNfL subtype showed no 
significant changes. The external test dataset confirmed these pat
terns: early-sNfL subjects showed reduced levels over trial years in 
both control (β = −0.9286, 95% CI −1.109, −0.748, P < 0.001) and treat
ment (β = −1.1311, 95% CI −1.256, −1.006, P < 0.001) groups. 
Additionally, treated late-sNfL subjects in the external test dataset 
demonstrated a modest but significant decrease in sNfL 
(β = −0.1798, 95% CI −0.307, −0.053, P = 0.005).

Comparison of atrophy rates between subtypes

In the training set, as shown in Table 4, PBVC values were similar 
between early-sNfL (−1.612% ± 3.4460%) and late-sNfL (−1.465% ±  
3.3266%, P = 0.805) groups. In the external test dataset, the 
early-sNfL subtype had a faster rate of brain volume loss than the 
late-sNfL group (−0.463% ± 0.4263% versus −0.305% ± 0.4157%, P =  
0.002).

As Table 4 shows, in the training set, we found no statistically 
significant differences in PBVC values between early-sNfL and 
late-sNfL groups in both control (−0.976% ± 3.182% versus 
−1.552% ± 3.274%, P = 0.471) and treatment (−2.225% ± 3.634% ver
sus −1.363% ± 3.429%, P = 0.332) groups.

In the external test dataset, early-sNfL participants showed a 
statistically significant faster rate of PBVC than the late-sNfL sub
type in the treatment group (−0.407% ± 0.2773% versus −0.315% ±  

0.2675%, P = 0.038) and in the control group (−0.544% ± 0.5720% ver
sus −0.305% ± 0.4157%, P = 0.015).

Time to radiological disease activity

Figure 3 presents Kaplan–Meier plots for the training and external 
test datasets, stratified by MRI–sNfL subtype with and without 
treatment groups. After adjusting for treatment effects, we found 
that the early-sNfL group had a 144% increase in the risk of new le
sion development in the training set compared with the late-sNfL 
group (hazard ratio = 2.44, 95% CI 1.38, 4.30, P < 0.005). Similar 
trends were observed in the external test dataset, where 
early-sNfL classification had, on average, higher risk of lesion de
velopment by 22% (hazard ratio = 1.22, 95% CI 0.92, 1.63), although 
this finding did not reach statistical significance (P = 0.17). 
Treatment effects were observed across both MRI–sNfL subtypes 
and in both the training and external test datasets. These results 
are summarized in Table 5.

Discussion
This study identified two data-derived MS subtypes, distinguished 
by the timing of sNfL elevation within an evolving landscape of 
MRI-derived abnormalities. Termed ‘early-sNfL’ and ‘late-sNfL’ 
subtypes, these categories reflect distinct biological profiles: the 
early-sNfL subtype displayed elevated sNfL levels, compromised 
corpus callosal integrity and lesion accrual early in the disease, 
consistent with active inflammatory and neurodegenerative pro
cesses manifesting in parallel. In contrast, the late-sNfL subtype be
gan with tissue-specific volumetric loss (notably in the limbic 

Table 4 Longitudinal analysis for each subtype

Variable Subtype Treatment group Training P-value External Test P-value

EDSS Early-sNfL Both 0.190 [0.014, 0.367] 0.035 −0.031 [−0.051, −0.01] 0.004
Control 0.277 [−0.034, 0.587] 0.080 −0.241 [−0.328, −0.154] <0.001

Treatment 0.086 [−0.041, 0.213] 0.183 −0.021 [−0.042, 0.001] 0.057
Late-sNfL Both −0.107 [−0.195, −0.019] 0.017 −0.017 [−0.043, 0.01] 0.222

Control −0.176 [−0.311, −0.040] 0.011 −0.246 [−0.36, −0.132] <0.001
Treatment −0.028 [−0.134, 0.078] 0.603 −0.003 [−0.03, 0.024] 0.840

Active lesion count Early-sNfL Both −2.002 [−4.527, 0.524] 0.120 0.223 [0.065, 0.382] 0.006
Control 0.628 [−2.694, 3.950] 0.711 0.513 [−0.109, 1.135] 0.106

Treatment −4.957 [−8.741, −1.173] 0.010 0.212 [0.047, 0.378] 0.012
Late-sNfL Both −0.515 [−1.046, 0.015] 0.057 −0.046 [−0.134, 0.042] 0.308

Control 0.055 [−0.484, 0.593] 0.842 0.393 [0.142, 0.644] 0.002
Treatment −1.105 [−2.039, −0.172] 0.020 −0.079 [−0.175, 0.017] 0.106

sNfL Early-sNfL Both −0.909 [−1.282, −0.536] <0.001 −1.071 [−1.173, −0.968] <0.001
Control −0.439 [−0.806, −0.072] 0.019 −0.929 [−1.109, −0.748] <0.001

Treatment −1.489 [−2.157, −0.822] <0.001 −1.131 [−1.256, −1.006] <0.001
Late-sNfL Both −0.128 [−0.517, 0.261] 0.518 −0.156 [−0.262, −0.050] 0.004

Control −0.087 [−0.680, 0.506] 0.774 −0.108 [−0.300, 0.084] 0.27
Treatment −0.176 [−0.663, 0.311] 0.479 −0.180 [−0.307, −0.053] 0.005

PBVC, % Early-sNfL Both −1.612 [−2.543, −0.680] 0.8 −0.463 [−0.529, −0.396] 0.002
Late-sNfL −1.465 [−2.205, −0.725] – −0.311 [−0.373, −0.249] –
Early-sNfL Control −0.976 [−2.235, 0.283] 0.47 −0.544 [−0.686, −0.403] 0.015
Late-sNfL −1.552 [−2.560, −0.545] – −0.305 [−0.424, −0.186] –
Early-sNfL Treatment −2.225 [−3.634, −0.816] 0.33 −0.407 [−0.463, −0.350] 0.038
Late-sNfL −1.363 [−2.507, −0.220] – −0.315 [−0.381, −0.250] –

Longitudinal analysis for clinical variables Expanded Disability Status Scale (EDSS), number of active lesions, serum neurofilament light chain (sNfL) and percentage brain 

volume change (PBVC). PBVC was measured between screening MRI and follow-up MRI (Month 6 for the training set, Month 36 for the external test dataset). This was also further 

divided into control and treatment subgroups for both training and external test datasets. We analysed EDSS, active lesion count, and sNfL using mixed-effects models. Yearly 
trends, confidence intervals, and P-values are provided for these variables. PBVC is reported as an annual rate along confidence intervals. For PBVC, the P-values result from 

t-tests assessing statistically significant differences among subtypes distributions. Similar analysis for the MRI-only model is available in Supplementary Table 6.
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cortex and deep grey matter) before sNfL levels became abnormal, 
suggesting a more insidious trajectory of neurodegeneration that 
precedes overt neuroaxonal injury. By integrating MRI and sNfL 
measures in a single unsupervised model, we have defined bio
logically grounded MS types that capture diverse disease pathways 
and their clinical implications.

We trained our model on a cohort that included both relapsing– 
remitting and secondary progressive MS (mean disease duration 7.7 
years), then validated it in a larger, younger cohort of newly diag
nosed MS (including clinically isolated syndrome), confirming gen
eralizability at early stages. Our design identified subtypes 
spanning the entire disease course, essential for SuStaIn model 

Figure 3 Kaplan–Meier plots showing the time to new lesions in the training and external test dataset, stratified by subtype and treatment group. (A 
and B) Early-sNfL and late-sNfL subtypes in the training (A) and external test (B) datasets. (C and D) Control group: early-sNfL and late-sNfL subtypes in 
training (C) and external test (D) datasets. Note that in C, the early-sNfL curve ends at Month 6 because there were no follow-up data available at Month 
12 for the remaining subjects in this group. (E and F) Treatment group: early-sNfL and late-sNfL subtypes in the training (E) and external test (F) data
sets. The early-sNfL subtype exhibits an increased risk of developing new lesions across both datasets relative to the late-sNfL subtype. The treated 
subtypes show a reduced risk of new lesions in comparison to the control groups in both datasets. The expected time to event was longer in the 
late-sNfL subtype than the early-sNfL subtype in both training and external test datasets, although this is most clearly shown in the training dataset. 
sNfL = serum neurofilament light (chain).
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training. As expected, the younger test cohort had more active dis
ease by gadolinium-enhancing lesion count. Although these co
horts differed demographically and clinically (a typical source of 
bias in machine-learning models), SuStaIn differs from typical 
models not specifically designed for disease progression modelling 
and remains robust. SuStaIn assigns both a subtype and a stage to 
each patient, and therefore, our design and choice of cohorts with 
demographic differences allowed us to validate both the subtyping 
and staging by the model. Integration of sNfL with MRI improved 
correlations with disability (EDSS) and inflammation (enhancing le
sions and sNfL), demonstrating that sNfL provides complementary 
information.

The newly identified MRI–sNfL subtypes demonstrated demo
graphic and biological differences. The late-sNfL subtype included 
more women and older individuals, whereas the early-sNfL sub
type comprised younger patients with more active disease. In com
parison to the late-sNfL group, early-sNfL patients showed greater 
reductions in active lesion counts and sNfL levels over time, par
ticularly among those receiving treatment. Although treatments 
such as interferons and evobrutinib have shown limited efficacy 
in clinical trials, the observed differences in treatment response 
across subtypes support the biological relevance of our subtyping 
approach. In both datasets, the early-sNfL subtype exhibited faster 
brain atrophy rates, probably reflecting more severe neurodegen
eration driven by inflammation. Together, these findings suggest 
that the MRI–sNfL subtypes capture meaningful differences in dis
ease activity, treatment response and progression risk.

Various pathophysiological biomarkers to classify MS disease 
course based on biological understanding have been 
proposed.4-6,27,44,45 Recent studies investigated MRI-based MS types 
with distinct patterns of brain volume loss correlated with clinical 
outcomes and sNfL independent of traditional clinical phenotypes, 
but have not used sNfL in subtyping tasks.45 Although MRI provides 
unique spatial information on the pathological spread, it lacks 
pathological specificity.9 Our new MRI–sNfL model represents a 
step change from our previous MRI-only approach, which offered 
valuable but incomplete insights into MS heterogeneity. 
MRI-based clustering revealed distinct subtypes driven by anatom
ical and microstructural features, but it could not fully capture the 
physiological processes driving disease activity and progression. By 
adding sNfL (an established indicator of neuroaxonal injury), we 
have advanced beyond the structural snapshot provided by MRI 
alone. Overall, our results support the added value of sNfL to MRI. 
When looking at the addition of sNfL to MRI in two MRI-only models 
(one previously published and one with the same five MRI vari
ables), the MRI–sNfL model provided the highest correlation with 
active lesions, similar correlations with disability, but better gener
alization when comparing correlation coefficients in the training 

and external test set (the correlation coefficients declined for all 
models, but the absolute correlation coefficients remained highest 
for MRI–sNfL model). The decline in EDSS correlation between all 
models is attributable to the limited range of EDSS in the external 
test cohort of newly diagnosed MS and clinically isolated syndrome 
patients. In addition, stronger EDSS correlations in the training set 
compared with the testing set are observed as expected, owing to 
the use of EDSS-based feature selection within the training dataset.

sNfL has been linked to both active and chronic inflammation in 
earlier studies.21,46-49 The most consistent finding is its association 
with gadolinium-enhancing lesions, although radiological activity 
and sNfL rises do not always coincide.21 Srpova et al.48 also showed 
that, in some patients, sNfL elevation precedes brain atrophy. Our 
results corroborate the link between active lesions and high sNfL 
and newly show that elevated sNfL helps to stratify patients by in
flammatory profile and the temporal evolution of sNfL and MRI ab
normalities in subgroups of patients.

In training and external test datasets, the early-sNfL patients 
showed similar patterns compared with the late-sNfL (younger in 
early-sNfL and more women in the late sNfL) and, importantly, a 
similar proportion of patients with relapsing–remitting and sec
ondary progressive MS in the training set with these two pheno
types. Our results underline that biology-grounded MS subtypes 
are largely independent of clinical course descriptors. These add 
to the evidence that biofluid biomarkers complement MRI to define 
the biological basis of MS disease evolution better.12,14,27,50

Longitudinal application of the model allows us to assess how sub
type and stage assignments change over time. Although the model 
does not explicitly allow for deterministic transitions between sub
types, we occasionally observe ‘subtype switching’, whereby the 
most probable subtype assignment of a patient changes between 
visits. We interpret this as reflecting either uncertainty in subtype 
classification for borderline cases or genuine overlap between tra
jectories. Given that 7% of patients switched from one subtype to 
another in the training dataset, and 23% switched in the testing da
taset, these subtypes are likely to represent a continuum of under
lying pathology. SuStaIn captures this with probability-based 
membership, evidenced by the reduction in subtype switching 
when membership certainty was increased. Data-derived subtyp
ing can, therefore, impact future disease course descriptions and 
prognosticate MS outcomes. From a clinical perspective, we can 
speculate that this might indicate a shift from a dominant inflam
matory profile to a more neurodegenerative phase or vice versa. 
Future research with longer follow-ups can clarify this.

In the training cohort, patients classified in the early-sNfL sub
type displayed a more rapid decline in gadolinium-enhancing le
sions when treated, whereas those in the late-sNfL subtype did 
not show this rapid reduction. Interestingly, this subtype-specific 

Table 5 Risk of developing new lesions in data-derived subtypes

Training set External test set

With treatment group adjustment, hazard ratio [95% confidence intervals] (P-value)
Early-sNfL versus late-sNfL 2.44 [1.38, 4.30] (P < 0.005) 1.22 [0.92, 1.63] (P = 0.17)

Treated versus controls
Early-sNfL 0.13 [0.05, 0.38] (P < 0.001) 0.48 [0.33, 0.71] (P < 0.001)
Late-sNfL 0.10 [0.02, 0.44] (P = 0.002) 0.27 [0.16, 0.46] (P < 0.001)

Cox regression analysis results within subtypes derived in this study, termed early-sNfL and late-sNfL, show the risk of developing new gadolinium-enhancing lesions based on 
assigned treatment groups was consistently higher in early-sNfL group. Hazard ratios are reported with 95% confidence intervals and P-values. Similar analysis for the MRI-only 

model is available in Supplementary Table 7. 

Abbreviation: sNfL = serum neurofilament light chain.
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effect was not seen in the control (untreated) group, suggesting that 
early-sNfL patients respond more robustly to treatment regarding 
reduction in active lesions. Conversely, in the test cohort, 
early-sNfL patients exhibited a faster decline in brain volume com
pared with late-sNfL patients, a finding not observed in the training 
data. Across both the training and test cohorts, early-sNfL patients 
also showed a higher likelihood of new lesion formation relative to 
late-sNfL patients. The inferred ‘stages’ of the MRI–sNfL model are 
a proxy for pathological accumulation that showed stronger associa
tions with both EDSS and active lesions than our MRI-only model.

Within the treated cohorts, the early-sNfL subtype had a rapid 
gadolinium-enhancing lesion reduction, suggesting a more pro
nounced and immediate therapeutic effect in this subgroup. In con
trast, the late-sNfL subtype did not have such a drop, indicating 
potential differences in the underlying disease mechanism. 
Meanwhile, in patients who were not on treatment, serum NfL le
vels still declined in both early- and late-sNfL subtypes over the 
course of the study. We attribute this reduction (despite the lack 
of active treatment) to the eligibility criteria of the clinical trials, 
which required participants to have ongoing disease activity (re
cent relapse or enhancing lesions). Consequently, this decrease 
might reflect ‘regression to the mean’ once the most active phase 
of inflammation subsides rather than a true therapeutic effect.51

Correlations between our model stages and EDSS were weak, 
mirroring the many reports of only weak biomarker–EDSS associa
tions. This is expected, because EDSS is weighted towards motor 
function and captures only a narrow slice of MS burden, whereas 
MRI and serum biomarkers typically change before clinical symp
toms become evident. Hence, attenuated cross-sectional correla
tions do not undermine the clinical promise of the model. 
Instead, they highlight the need for longer prospective studies 
that pair the model with broader outcome measures (cognition, 
quality of life and other patient-reported domains) beyond EDSS 
alone. Nonetheless, we can speculate that our model can provide 
staging of MS to facilitate future early interventions (before disabil
ity emerges) and simultaneously stratifies patients by their bio
marker profiles, with potential to guide personalized therapy.

We should address several hurdles to bring our research model 
into everyday clinical care. Clinicians first need tools that convert 
routine MRI scans into precise measures of the brain structures of 
each patient. Although new tools are becoming available for brain 
MRI processing of real-world data,52 few hospitals have the infra
structure for these tasks. Even where such tools exist, the variabil
ity of everyday scans introduces new heterogeneity that demands 
further study. As sNfL is becoming widely available and digital in
frastructure improves, we expect our multimodal model to evolve 
into future decision aid systems after further rigorous research on 
real-world data. Because subtype assignment is possible from a sin
gle cross-sectional scan, the model remains usable even when rou
tine follow-up is sparse; our longitudinal analyses demonstrate 
that these baseline labels carry prognostic weight over time. 
Although harmonization can reduce variability across imaging 
sites, it also creates practical challenges for clinical adoption. 
Notably, the MRI–sNfL model retained strong performance even 
without harmonization (see Supplementary Table 8), supporting 
its use in settings with limited data or infrastructure.

Although the MRI–sNfL model provides an interpretable frame
work for subtyping and staging MS, it operates under several key 
assumptions. The SuStaIn algorithm models disease progression 
as a monotonic sequence of biomarker changes, with each subtype 
following a fixed order of abnormality accumulation. This assump
tion allows for tractable modelling of complex data but might limit 

sensitivity to fluctuating trajectories. To manage uncertainty, 
SuStaIn uses a Bayesian framework with Markov chain Monte 
Carlo sampling, which enables probabilistic estimates of both sub
type and stage assignments. Although recent extensions of SuStaIn 
have introduced methods for accommodating missing data,53 all 
participants in our study had complete biomarker profiles, and 
missing data handling was not required here. These modelling as
sumptions should be considered when interpreting subtype assign
ments, particularly in broader clinical settings.

This study has several limitations. First, we drew our training 
and testing samples from clinical trial cohorts, which do not fully 
represent the broader MS population, including those with co
morbidities or underrepresented ethnic groups and primary pro
gressive MS, with strict eligibility criteria. As a result, for 
example, disability range was limited in the external testing data
set. Despite this, our MRI–sNfL model stages showed significant 
correlations with disability, showing the added value even with 
limited EDSS ranges. Therefore, future studies in diverse clinical 
settings are required for clinical translation. Second, our model 
was trained on both relapsing–remitting and secondary progressive 
cases, and is trained across the MS continuum, yet its accuracy in 
late-stage disease still warrants prospective validation, because 
our testing cohort was limited to early MS. Third, although adding 
sNfL enhanced the biological relevance of the model and, in some 
cases, clinical correlations, other fluid biomarkers or advanced im
aging modalities (such as myelin-sensitive MRI sequences) will pro
vide more comprehensive insights into disease progression. 
However, addition of more advanced measures reduces the acces
sibility and introduces obstacles to eventual clinical translation.

Conclusion
Our findings advance the understanding of MS heterogeneity by re
vealing distinct biological trajectories rooted in MRI and fluid biomar
kers. sNfL, despite being a non-specific marker related to neuronal 
cytoskeleton, complements MRI measures of disease activity and 
neurodegeneration. Integrating sNfL with MRI refines subtyping 
and provides a foundation for earlier, more individualized prognosis. 
Ultimately, this approach might pave the way for more targeted 
therapeutic strategies and improved patient outcomes.
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