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Abstract
Background and Objectives
The brain-predicted age difference (brain-PAD) is a novel marker of neurodegeneration in 
multiple sclerosis (MS). Brain-PAD has been associated with clinical disability in heteroge-
neous MS patient cohorts of varying ages and disease durations. In this study, we investigate the 
relation between clinical disability and brain-PAD in a unique birth-year cohort of people with 
MS (pwMS) and healthy controls (HCs) of the same age all born in 1966, eliminating age as 
a confounding factor.

Methods
This was a cross-sectional cohort study conducted in the Netherlands. Disability was quantified 
using the expanded disability status scale (EDSS), 9-hole peg test (9HPT), and the timed 25-
foot walk test (T25FWT). Cognition was assessed using the Minimal Assessment of Cognitive 
Function in MS battery. The brain-PAD was calculated by subtracting the person’s chrono-
logical age from the predicted brain age derived from 3-dimensional T1-weighted brain MRI 
scans using machine learning (brainageR software). Brain-PAD for HCs and MS subtypes 
(relapsing remitting, secondary progressive, and primary progressive) were compared using 
a generalized linear model. The relation between brain-PAD and disease duration and disability 
and cognitive measures were tested using univariate linear regression. In addition, the clinical 
explanatory value added by brain-PAD to those of brain parenchymal fraction (BPF) and T2 
lesion volume was investigated.

Results
The study included 116 HC (mean age 52.9 ± 1.1 years, 61% female) and 237 pwMS (mean age 
52.9 ± 0.9 years, median disease duration 16.3 years [interquartile range 8.2–24.4] and a median 
EDSS of 3.5 [interquartile range 2.5–4.0]). Brain-PAD was higher in pwMS compared with HC 
by 9.7 years (SE = 0.82, p < 0.0001). Longer disease duration was associated with a higher brain-
PAD (β = 0.21, p < 0.001). A higher brain-PAD was associated with worse performance on the 
T25FWT (β = 0.0063, p < 0.05), 9HPT (β = 0.0074, p < 0.001), and EDSS (β = 0.028, p < 
0.05). Brain-PAD was higher for cognitively impaired people with MS, compared with cog-
nitively preserved pwMS and HC (p < 0.0001). Brain-PAD had added explanatory value over 
BPF in clinical outcome measures.

Discussion
In a cohort unbiased by age differences, greater brain ageing was associated with worse per-
formance on disability and cognitive tests, underscoring the potential of brain-PAD as a marker 
for neurodegeneration and disease severity in MS.
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Introduction
Multiple sclerosis (MS) is a chronic neurodegenerative dis-
ease of the CNS that is characterized by neuroinflammation, 
demyelination, and neurodegeneration. 1 Next to physical 
disability, cognitive decline occurs in 40%–70% of patients 
with MS and severely affects daily functioning. 2,3 Age and 
neurodegeneration are associated with disease progression in 
MS, influencing both disability and cognitive decline. 4 Older 
individuals and those with more brain atrophy exhibit more 
disability and cognitive impairment regardless of disease du-
ration. 5 Some of the changes to brain structure observed in 
healthy ageing appear similar to neurodegenerative brain 
changes because of MS. 6 While atrophy is commonly assessed 
by MRI-based brain volume quantification, 7,8 that approach 
presents several limitations: brain volume is strongly age-
dependent, varies across different brain regions, and can be 
difficult to interpret clinically. 9

Recent artificial intelligence techniques, trained on healthy 
ageing individuals, can estimate a person’s age from con-
ventional brain-MRI scans. 10-12 This is quantified using the 
brain-predicted age difference (brain-PAD), which is the 
difference between the individual’s brain predicted age and 
chronological (true) age. In people with MS (pwMS), brain-
PAD was found to be higher than in healthy controls 
(HCs). 13,14 Previous research shows that in pwMS, higher 
brain-PAD is related to more clinical disability as measured 
by the expanded disability status scale (EDSS), 13 as well as to 
more cognitive decline 15 as measured with the Symbol 
Digits Modalities Test (SDMT). However, these studies 
used single measures of disability and cognition in groups 
with varying ages, which means that age remains an impor-
tant confounding factor.

As MS disease duration is correlated with age, disentangling 
their individual contributions to disease progression remains 
challenging. A clearer understanding of how neurodegenera-
tive processes affect the brain in MS requires studying cohorts 
independent of chronological age. This study investigates the 
individual differences of brain-PAD for pwMS in a population 
based cross-sectional cohort of pwMS all born in the same 
year of 1966. 16 The goal of this study was to investigate the

association of brain-PAD with (1) different MS disease sub-
types, (2) clinical disability, and (3) cognitive impairment in 
a cohort of pwMS of the same age. In addition, we examine 
the added explanatory value of brain-PAD to the brain pa-
renchymal fraction (BPF) and to T2 lesion volume (T2LV) 
on the clinical outcome measures.

Methods
Study Population
This retrospective study included participants who were part 
of Project Y from the MS Centre Amsterdam, as previously 
described, 16 which is a population based cross-sectional co-
hort of pwMS born in 1966 in the Netherlands. To be con-
sidered eligible for participation in Project Y, patients were 
required to meet all of the following criteria: (1) born in the 
Netherlands in 1966; (2) currently living in the Netherlands; 
(3) diagnosis of MS according to the 2010 17 or 2017 18 

McDonald criteria. HC had to meet the following criteria (1) 
born in the Netherlands between 1965 and 1967; (2) cur-
rently living in the Netherlands; (3) no history of MS. After 
screening, a total of 367 pwMS were included, of which 271 
pwMS and 125 HC visited our center for a full day of tests. 
Inclusion criteria of this analysis were pwMS and HC who had 
undergone MRI, cognitive assessments, and, for pwMS, dis-
ability evaluations. Participants were excluded if they had 
missing data on the clinical measures or if no MRI scan of 
sufficient quality was available.

Standard Protocol Approvals, Registrations, 
and Patient Consents
The Medical Ethical Committee of the Amsterdam UMC, 
location VUmc approved the Project Y protocol. Written 
informed consent was obtained from all participants at in-
clusion, according to the Declaration of Helsinki. The study is 
registered at the Netherlands Trial Register (NL6362).

Physical Disability
All examinations were performed during a 1-day study visit, 
between December 2017 and January 2021. To assess dis-
ability, the EDSS was used. 19 Upper limb functioning was 
quantified using the 9-hole peg test (9HPT), 20 where the 
average of the 2 dominant hand and 2 nondominant hand

Glossary
3D = 3-dimensional; 9HPT = 9-hole peg test; ANOVA = analysis of variance; BPF = brain parenchymal fraction; brain-PAD = 
brain-predicted age difference; BVMT-R = Brief Visuospatial Memory Test-Revised; CI = cognitively impaired; COWAT = 
Controlled Oral Word Association Test; CP = cognitively preserved; D-KEFS = Delis-Kaplan Executive Function System 
sorting test; EDSS = expanded disability status scale; FLAIR = fluid attenuated inversion recovery; GLM = general linear model; 
GPR = Gaussian Process Regression; HC = healthy control; HSD = honestly significant difference; JLO = Benton Judgment of 
Line Orientation Test; MACFIMS = Minimal Assessment of Cognitive Function in MS; MS = multiple sclerosis; PCA = 
principal component analysis; PMS = progressive MS; PPMS = primary progressive MS; pwMS = people with MS; RRMS = 
relapsing remitting MS; SDMT = Symbol Digits Modalities Test; SPMS = secondary progressive MS; T1w = T1-weighted; 
T2LV = T2 lesion volume; T25FWT = timed 25-foot walk test; VLGT = Verbale Leer-en Geheugentaak.
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trials was used. Lower limb functioning was quantified using 
the timed 25-foot walk test (T25FWT) 21 and was scored by 
averaging 2 trials.

Cognitive Measures
Objective cognitive functioning was measured using a test 
battery based on the Minimal Assessment of Cognitive Func-
tion in MS (MACFIMS) study. 21 The battery consists of 
multiple tests assessing: verbal fluency (Controlled Oral Word 
Association Test, COWAT), visuospatial perception (Benton 
Judgment of Line Orientation Test, JLO), visuospatial memory 
(Brief Visuospatial Memory Test-Revised, BVMT-R), verbal 
memory (Verbale Leer-en Geheugentaak, VLGT, the Dutch 
version of the California verbal learning test), information 
processing speed (SDMT), and executive functioning (Delis-
Kaplan Executive Function System sorting test, D-KEFS).

MRI
All participants underwent 3T MRI of the brain, using the 
same scanner for all subjects (3T, Discovery MR750; GE, 
Milwaukee, WI). Brain age was determined using a 3-
dimensional (3D) T1-weighted (T1w) fast spoiled gradient-
echo sequence (repetition time 8.2 milliseconds, echo time 
3.2 milliseconds, flip angle 12°, 1 × 1 × 1 mm voxel size, 
acquisition direction: sagittal). A 3D fluid attenuated in-
version recovery (3D-FLAIR) image (repetition time 8,000 
milliseconds, echo time 125 milliseconds, inversion time 
2,350 milliseconds, 1.2 × 1 × 1 mm voxel size, acquisition 
direction: sagittal) was used for brain T2 lesion detection.

Brain Age Prediction
Brain age was predicted using a publicly available software 
(brainageR), 10,22-24 which uses unprocessed 3D T1w-MRI 
scans to predict brain age with Gaussian Process Regression 
(GPR). 25 brainageR was trained on data from 3,377 healthy 
individuals (mean age ± SD 40.6 ± 21.4 years; range 18–92 
years) across 7 publicly available datasets and tested on an 
independent cohort of 857 healthy individuals (mean age ± 
SD 40.1 ± 21.8 years; range 18–90 years). All participants 
were confirmed healthy based on local study data.

Our input T1w scans were preprocessed with SPM12 26 for 
segmentation and normalization to a template, then con-
verted into feature vectors representing grey matter, white 
matter and CSF, which were masked using a brainageR-
specific template and reduced through principal component 
analysis (PCA) using PCA parameters derived from the 
original training set, as part of the standard pipeline. The input 
T1w scans were not lesion filled, based on previous work that 
showed lesion filling did not significantly influence brain age 
estimations. 27 Principal components were used as input to the 
GPR model to predict brain age. Brain-PAD was calculated as 
brain predicted age minus chronological age.

MRI Features
Raw 3D T1w-MRI scans were bias-field corrected using 
ANTS, 28 followed by skull-stripping for T1w and 3D-FLAIR

images using HD-BET. 29 After linearly registering FLAIR to 
T1w, lesion segmentation was performed using nicMSlesions. 30 

The resulting lesions masks were manually corrected and used 
for T1 lesion filling with Lesion Segmentation Tool 31 to avoid 
potential variation on tissue segmentation because of MS 
lesions. 32 The manually corrected masks were used to determine 
T2 lesion volume with fslstats, from the FMRIB Software Li-
brary. 33 The recon-all pipeline of FreeSurfer 7.1.1 34 was used to 
automatically perform whole-brain tissue-type segmentation on 
the lesion-filled 3D T1w images. The BPF was obtained by 
dividing the total brain volume excluding ventricles (BrainSeg-
VolNotVent) by the estimated total intracranial volume. Volume 
of the ventricles, white matter volume, deep grey matter volume, 
and cortical thickness were also obtained. These volumes were 
normalized for estimated total intracranial volume.

Statistical Analyses
Statistical analyses were performed using R Statistical Soft-
ware (version 4.3.2; R Foundation for Statistical Computing, 
Vienna, Austria). Variables were tested for normality using 
histogram and QQ-plot inspection. The 9HPT and T25FWT 
scores were log-transformed. A p value <0.05 was considered 
statistically significant.

Group Differences
Brain-PAD and BPF were compared between HC and pwMS, 
and the subtypes relapsing remitting MS (RRMS), secondary 
progressive MS (SPMS), and primary progressive MS 
(PPMS), using a general linear model (GLM) corrected for 
sex. Explanatory analysis was done to investigate group dif-
ferences between HC, RRMS, and progressive MS (PMS, 
SPMS, and PPMS grouped), given the recognition of MS as 
a disease continuum. 35 Post hoc comparisons were conducted 
using Tukey’s honestly significant difference (HSD) test, to 
account for multiple comparisons.

To standardize the neuropsychological test scores, all scores 
were corrected for effects of age, sex, and years of education 
present in the HC group, using linear regression models. 
Corrected scores were converted to Z-scores for all partic-
ipants based on the means and standard deviations of the HC 
group. Participants were considered cognitively preserved 
(CP) if no more than 1 of 6 test scores fell below Z = −1.5, and 
otherwise as cognitively impaired (CI). Brain-PAD was 
compared between controls, CP and CI using a generalized 
linear model, adjusting for sex. The Tukey HSD test was used 
to account for multiple comparisons.

Univariate Regression Models
To investigate the influence of disease duration on brain 
ageing, we assessed its association with brain-PAD using lin-
ear regression, corrected for sex and disease type. The analysis 
was repeated for the association of BPF and disease duration. 
Linear regression corrected for sex was performed to in-
vestigate the association between brain-PAD and BPF, ven-
tricle volume, white matter volume, deep grey matter volume, 
and cortical thickness.
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Univariate linear regression models were used to examine the 
relation between brain-PAD as a predictor and disability as the 
outcome measure, for EDSS, and the log-transformed 9HPT 
and T25FWT. Patients unable to perform the T25FWT 
(≥180 seconds) or 9HPT (≥300 seconds) were excluded. To 
assess whether brain-PAD provides additional explanatory 
value beyond BPF and T2LV in relation to EDSS, we con-
ducted a model comparison analysis. We used analysis of 
variance (ANOVAs) to compare models with BPF or T2LV 
as the sole predictor to models that additionally included 
brain-PAD. We also compared the adjusted R 2 values of the 
models to quantify the additional variance explained by 
brain-PAD.

The association between brain-PAD and each neuro-
psychological test (Z-score) was assessed using univariate 
linear regression, with neuropsychological performance 
modelled as the outcome. To evaluate the additional ex-
planatory value of brain-PAD beyond BPF and T2LV on 
cognition as captured by the SDMT, we used again 
ANOVAs and compared the adjusted R 2 for the models with 
and without brain-PAD. All aforementioned regression 
models were corrected for sex and not corrected for multiple 
testing.

Data Availability
Data may be shared (pseudonymized) at the request of any 
qualified investigator for purposes of replicating procedures 
and results.

Results
Descriptives and Group Differences
Demographic, clinical, and MRI characteristics are presented 
in Table 1. From the original Project Y cohort, we excluded 
130 out of 367 pwMS and 9 out of 125 HC because of missing 
or insufficient quality data. The final cohort in this study 
included 116 HC (75% female) and 237 pwMS (72% female), 
comprising 150 RRMS, 54 SPMS, and 33 PPMS. Mean age 
was 52.9 (±1.14) years for HC and 52.8 (±0.90) years for 
pwMS. There were no differences in the distributions of age 
and sex between pwMS and HC. The median EDSS was 3.5 
(interquartile range 2.5–4.0). The disease duration varied for 
all MS subtypes: 16.0 (±9.4) years for RRMS, 20.8 (±8.3) 
years for SPMS, and 10.3 (±7.2) years for PPMS. PwMS had 
a lower median educational level compared with HC (level 5 
for pwMS vs level 6 for HC).

Group Differences
Brain-PAD was significantly lower than 0 for HC at −5.74 
(±6.5) years (p < 0.0001). In our cohort, compared with HC, 
brain-PAD was higher for all pwMS (+9.7 years, p < 0.0001) 
and each separate disease type: RRMS (+8.7 years, p < 
0.0001), SPMS (+12.7 years, p < 0.0001), and PPMS (+- 
9.5 years, p < 0.0001). Brain-PAD was higher for SPMS vs 
RRMS (+4.0 years, p < 0.01) (Figure 1). Brain-PAD of

PPMS did not differ from RRMS and SPMS. BPF was lower 
for all pwMS (BPF = 0.712 ± 0.035) compared with HC 
(BPF = 0.737 ± 0.028). When grouping SPMS and PPMS 
to PMS, brain-PAD was not significantly higher for PMS, 
compared with RRMS (2.49 years, p = 0.062). There were 
no differences in BPF between MS subtypes (Figure 2). 
BPF did not differ between RRMS and PMS (−0.00098, 
p = 0.97).

Classification based on 2 or more cognitive tests with 
a Z-score below −1.5 classified 149 pwMS as CP, and 86 
pwMS as CI. Analyses for differences between HC, CP and CI 
using a GLM showed group differences in brain-PAD be-
tween all 3 cognitive groups (all p < 0.0001, Figure 3): mean 
brain-PAD was −5.74 (±6.5) years for HC, 2.23 (±7.9) years 
for CP, and 6.99 (±8.8) years for CI.

Univariate Regression Models
Brain-PAD was associated with longer disease duration (β = 
0.210, p < 0.001) (Figure 4). The association indicates that for 
every 10 years of disease duration, brain-PAD gets higher by 
2.10 years. BPF was associated with disease duration 
(β = −8.28e-05, p = 0.00123). This association was stronger 
for brain-PAD (std. β = 0.261) than for BPF (std. β = 0.21), 
when comparing standardized betas.

Brain-PAD was significantly correlated to EDSS (β = 0.028, 
p < 0.05). In addition, brain-PAD was associated with the 9-
HPT (β = 0.0074, p < 0.001) and the T25FWT (β = 0.0063, 
p < 0.05) (Figure 5). In addition, we investigated whether 
brain-PAD adds explanatory value to the relation between 
BPF and EDSS. The model comparison using ANOVA 
revealed a significant improvement in model fit with the ad-
dition of brain-PAD (p < 0.01). The adjusted R 2 of the model 
of only BPF was 0.030, while the model including brain-PAD 
had an R 2 of 0.054, indicating that brain-PAD explains addi-
tional variance in EDSS. The adjusted R 2 of only T2LV on 
EDSS was 0.054, while the model including brain-PAD had an 
adjusted R 2 of 0.067. The model comparison using ANOVA 
showed no significant improvement with the addition of 
brain-PAD to T2LV (p = 0.10). Higher brain-PAD was as-
sociated with lower BPF, higher ventricle size, lower white 
matter volume, deep grey matter volume, and lower cortical 
thickness (eTable 1).

Linear regression with brain-PAD as predictor showed an 
association with the Z-scores of all cognitive tests: SDMT:
β = −0.056, p < 0.0001; COWAT: β = −0.023, p < 0.05; JLO:
β = −0.021, p < 0.01; DKEFS: β = −0.021, p < 0.01; VLGT:
β = −0.031, p < 0.01; and BVMT: β = −0.036, p < 0.001 
(eFigure 1). Additional analysis showed that adding brain-
PAD to the model significantly improved the explanation of 
the relation between BPF and SDMT (p < 0.001). The ad-
justed R 2 of the model without brain-PAD was 0.160, while 
the model including brain-PAD had an adjusted R 2 of 
0.191, indicating that brain-PAD explained additional 
variance for the SDMT beyond BPF. The adjusted R 2 of
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only T2LV on SDMT was 0.195, while the model in-
cluding brain-PAD had an adjusted R 2 of 0.216. The 
model comparison using ANOVA showed significant im-
provement with the addition of brain-PAD to T2LV (p < 
0.001).

Discussion
To better understand the relation of the brain-PAD with 
disability and cognitive function in multiple sclerosis, without 
the confounding effects of age, we investigated these associ-
ations in a large cohort of pwMS of the same age (52.8 years). 
In this same-age cohort, pwMS had higher brain-PAD than 
HC, and higher brain-PAD was significantly associated with 
worse physical and cognitive disability. In addition, brain-

PAD had added value over BPF in explaining clinical disability 
and cognition outcome measures.

We have found that brain-PAD of HC was significantly below 
zero, indicating that their predicted brain age is consistently 
lower than their chronological age. A brain-PAD deviating 
from zero may reflect a systematic bias in the brain age model, 
possibly because of differences in MRI parameters or scanner 
effects, 36 emphasizing the need for harmonization or adjust-
ment strategies. In addition, this could be due to different 
demographics in the study population and the population 
used to train the brain age model which should be validated 
with an additional control dataset. Such baseline offsets un-
derscore the importance of considering model bias when 
interpreting group differences: Absolute brain-PAD values 
may be shifted, but relative comparisons between patient and

Table 1 Demographics, Clinical, and MRI Characteristics of People With MS and HC

HC (n = 116) All patients (n = 237) RRMS (n = 150) SPMS (n = 54) PPMS (n = 33)

Demographic features

Age, y, mean (SD) 52.9 (1.14) 52.8 (0.90) 52.8 (0.93) 52.7 (0.78) 53.1 (0.94)

Sex (female), n (%) 87 (75) 171 (72) 122 (81) 33 (61) 16 (48)

Level of education, median (IQR) a 6 (5–6) b 5 (5–6) 6 (5–6) 5 (5–6) 6 (5–6)

Clinical features

Disease duration since onset, y, median (IQR) 16.3 (8.2–24.4) 16.0 (8.1–24.4) 20.8 (15.7–27.9) 10.3 (5.0–15.1)

Time since last clinical MS relapse

DMT ever (yes), n (%) 172 (69.9) 114 (73.1) 47 (83.9) 11 (32.4)

Brain age, y, mean (SD) 47.2 (6.7) b 56.8 (8.6) 55.8 (9.0) 59.8 (8.1) 56.8 (6.9)

Brain-PAD, y, mean (SD) −5.7 (6.5) b 4.0 (8.6) 3.0 (9.0) 7.0 (8.0) 3.8 (6.7)

Brain parenchymal fraction, mean (SD) 0.737 (0.028) b 0.712 (0.035) 0.712 (0.030) 0.711 (0.037) 0.712 (0.048)

T2 lesion volume mL, median (IQR) 0.62 (0.0026–0.54) b 10.1 (2.9–13.2) 9.0 (2.8–11.7) 13.0 (3.7–18.3) 10.4 (2.7–12.9)

Clinical scores

EDSS, median (IQR) 3.5 (2.5–4.0) 3.0 (2.3–4.0) 5.5 (3.75–6.25) 4.0 (3.5–6.0)

9HPT (left and right), s, median (IQR) c 21.7 (19.5–25.1) 4.0 (18.9–23.4) 24.2 (21.5–39.5) 23.1 (21.7–27.7)

T25FWT, s, median (IQR) c 4.9 (4.2–6.4) 4.5 (3.9–5.4) 7.2 (5.0–15.7) 5.9 (4.9–8.0)

SDMT, mean (SD) 58.8 (8.3) 50.6 (10.9) 52.7 (10.1) 46.5 (10.4) 48.4 (12.9)

COWAT, mean (SD) 13.8 (3.7) 12.0 (4.0) 12.6 (3.8) 10.8 (3.7) 11.3 (4.7)

JLO, mean (SD) 26.5 (3.2) 25.4 (4.1) 25.5 (3.8) 25.4 (5.0) 25.4 (3.1)

DKEFS, mean (SD) 10.9 (1.9) 9.9 (2.3) 10.1 (2.2) 9.7 (2.4) 9.3 (2.6)

VLGT-r, mean (SD) 10.9 (2.1) 9.7 (2.2) 10.0 (2.1) 9.2 (2.3) 9.3 (2.4)

BVMT-r, mean (SD) 8.9 (1.5) 7.8 (2.2) 8.0 (2.0) 7.5 (2.2) 7.7 (2.7)

Abbreviations: BVMT-r = Brief Visuospatial Memory Test-Revised; COWAT = Controlled Oral Word Association Test; DKEFS = Delis-Kaplan Executive Function 
System sorting test; DMT = disease-modifying therapy; IQR = interquartile range; JLO = Benton Judgment of Line Orientation Test; 9HPT = 9 hole peg test; PPMS
= primary progressive multiple sclerosis; RRMS = relapsing-remitting multiple sclerosis; SDMT = symbol digit modalities test; SPMS = secondary progressive 
multiple sclerosis; T25FWT = timed 25 foot walk test; VLGT-r = Verbale Leer-en Geheugentaak-Revised.
a The scale used to assess education ranged from 1 (did not finish primary school) to 7 (university or higher); 5 = secondary vocational education (MBO); 6 = 
higher professional education (HBO).
b Indicates a significant difference (p < 0.05) between patients with MS and HC.
c The average of the measurements is shown.
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control groups remain informative if bias affects both groups 
similarly. Because this study examined only a single cohort, 
relative comparisons within the groups are valid despite any 
baseline offset in absolute brain-PAD values. Brain-PAD was 
higher for all subtypes of MS compared with HC, and be-
tween the MS subtypes, brain-PAD was found to be higher in 
individuals with SPMS compared with RRMS. This difference 
is likely driven by longer disease duration in SPMS, as we also 
found a positive relation between disease duration and brain-
PAD. These findings support the concept that brain-PAD 
reflects cumulative neurodegenerative processes over time 
because of MS, which are independent of ageing. 27 We did not 
observe differences in BPF between any of the MS subtypes.

This suggests that brain-PAD captures brain changes that are 
not fully reflected by global volumetric measures. Grouping 
SPMS and PPMS to PMS did not show differences between 
RRMS and PMS for both brain-PAD as BPF, indicating that 
brain-PAD is sensitive to disease stage (i.e., RRMS/SPMS) 
and not to disease subtype (RRMS vs PPMS/PMS). In 
a previous study on these data of differences in MRI measures 
of brain damage and disability and MS subtypes, the differ-
ence between subtypes was found to be significantly smaller 
than the difference between patients and controls. 37

Our findings show that brain-PAD was associated with more 
severe disability in pwMS. Higher brain-PAD were related to

Figure 1 Boxplots of Brain-PAD for HC and MS Subtypes

Boxplots depicting the distributions of brain-PAD in years 
for HC and the 3 subtypes of MS (RRMS, SPMS, and PPMS). 
There were no significant differences between PPMS and 
the other MS-subtypes. **p < 0.01, ****p < 0.0001. Brain-
PAD = brain-predicted age difference; HC = healthy control; 
MS = multiple sclerosis; PPMS = primary progressive MS; 
RRMS = relapsing remitting MS; SPMS = secondary pro-
gressive MS.

Figure 2 Boxplots of Brain Parenchymal Fraction for HC and MS Subtypes

Boxplots depicting the distributions of BPF for HC and the 3 
subtypes of MS (RRMS, SPMS, and PPMS). There were no 
significant differences between the MS-subtypes. **p < 0.01, 
****p < 0.0001. BPF = brain parenchymal fraction; HC = 
healthy control; MS = multiple sclerosis; PPMS = primary 
progressive MS; RRMS = relapsing remitting MS; SPMS = 
secondary progressive MS.
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higher EDSS scores and worse performance on the 9HPT and 
T25FWT, indicating that greater brain ageing is related to 
higher global disability and reduced upper and lower limb 
functioning. These results are consistent with previous studies 
reporting associations between increased brain age and physical 
disability in MS. 27,38 Adding brain-PAD to the model improved 
the explained variance for EDSS beyond BPF, suggesting that 
brain-PAD captures much of the relevant neurodegenerative 
burden related to disability. This aligns with the concept that 
brain-PAD may reflect broader neurodegenerative changes 
associated with disability, highlighting its potential role as 
a marker of disease severity. 39 The modest adjusted R 2 values of

our models align with the multifactorial nature of disability and 
cognitive measures in MS, which are influenced by a wide range 
of biological and clinical factors. This means that these findings 
should be interpreted cautiously, particularly with regard to 
their predictive value at the individual patient level. Brain-PAD 
did not statistically significant explain additional variance be-
yond T2LV for EDSS. Brain-PAD was associated with all MRI 
measures of structural brain damage, indicating that it reflects 
structural changes across the entire brain.

In addition, we examined the relation with cognitive perfor-
mance using the MACFIMS battery, providing additional

Figure 3 Boxplots of Brain-PAD for HC and Cognitive Groups

Boxplots depicting the distributions of brain-PAD in years 
for HC, cognitively preserved and cognitively impaired 
pwMS. There were differences between all 3 groups. 
****p < 0.0001. Brain-PAD = brain-predicted age difference; 
HC = healthy control.

Figure 4 Scatterplot of Brain-PAD Plotted Against Disease Duration

Scatterplot of the brain-PAD in years of the 3 MS-subtypes 
plotted against the disease duration in years and the cor-
responding correlation (β = 0.21, p < 0.001). Brain-PAD = 
brain-predicted age difference; MS = multiple sclerosis; 
PPMS = primary progressive MS; RRMS = relapsing remitting 
MS; SPMS = secondary progressive MS.
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insights into the cognitive domains affected in MS. We found 
that brain-PAD was higher for CI pwMS, compared to CP 
pwMS and HC. Interestingly, CP individuals with MS also 
showed higher brain-PAD compared with HC, despite no 
measurable cognitive impairment. This suggests that CP may 
already exhibit subtle brain ageing related changes, which is in 
line with the concept of cognitive reserve. 40 However, the 
extent of these changes may not yet be sufficient to cause 
clinical consequences. This may be explained by cognitive 
reserve, which can help maintain cognitive functioning 
despite underlying brain aging-related changes, thereby 
delaying the onset of observable symptoms. Greater brain 
aging may serve as an early marker of neurodegenerative 
burden for cognitive impairment. These findings are in 
line with previous research demonstrating associations 
between brain age and SDMT performance in MS. 
Extending this work, our study shows that advanced brain 
ageing is not only related to worse performance on SDMT 
but is also associated with broader cognitive impairment 
as assessed by the full MACFIMS battery. 15 Individual 
analysis using univariate linear regression of brain-PAD 
and the cognitive measures showed a relation between 
brain-PAD and each cognitive domain. The strongest re-
lation was found for the SDMT and the BVMT, indicating 
that accelerated ageing of the brain affects the cognitive 
domains of information processing speed, and the visuo-
spatial memory the most. Brain-PAD significantly im-
proved the prediction of the SDMT-scores, beyond BPF 
and T2LV. The increase in explained variance suggests 
that next to brain volume measurements and lesion vol-
ume, brain-PAD carries additional, independent in-
formation relevant to cognitive performance.

The strength of this study is the unique cohort of pwMS and 
HC all of the same age used in this study, minimizing age-
related variation. All participants were scanned on the same 
MRI scanner, eliminating the need to correct for different 
scanner of software differences. Building on earlier research, 
this study adds value by incorporating well-documented and

comprehensive measures of disability and cognition to in-
vestigate brain age in MS.

Several limitations should be acknowledged. First, the cross-
sectional design of the study prevents assessment of the 
evolution of brain-PAD and its effect on disability progression. 
Second, the small sample size of the PPMS group may have 
influenced the results, potentially explaining inconclusive 
findings for this subtype. In addition, including patients with 
a short disease duration would be of interest, although this is 
not feasible in the current cohort consisting of relatively older 
patients. Finally, only 1 brain age prediction method, brain-
ageR, was used in this study. While brainageR is considered one 
of the widely used methods, 41 other models may yield different 
or potentially more accurate results, which could further en-
hance our understanding of brain aging in MS.

Future studies should examine the influence of disease 
modifying factors not related to MS on brain aging to provide 
further insight into how these variables relate to brain-PAD. 
We plan to investigate how the different brain structures and 
volumetrics relate to brain-PAD, to explain what the driver of 
an increase in brain age is in MS, in additional cohorts with 
different disease durations. Given its association with both 
disability progression and cognitive decline, brain-PAD could 
serve as a valuable biomarker for monitoring neurodegeneration 
in pwMS. Further validation in larger, longitudinal studies is 
necessary to confirm its clinical utility and establish standardized 
protocols for its use in routine clinical practice. These studies 
could clarify whether brain-PAD can complement existing clin-
ical tools, such as quantitative MRI measures or clinical testing. 
Future studies should also address issues of feasibility, including 
computational demands, interpretability for clinicians, in-
tegration into existing diagnostic workflows, and potential legal 
considerations, such as those relating to ethics and governance. 
In addition, these longitudinal studies could stratify patients 
based on progression independent of relapse activity vs relapse-
driven progression because progression independent of relapse 
activity reflects underlying neurodegeneration 42 and brain age

Figure 5 Scatterplot of Disability Measures Plotted Against Brain-PAD

Relation between brain-PAD and (A) EDSS (p < 0.05), (B) timed 25-foot walk test (p < 0.05), and (C) 9-hole peg test (p < 0.001). Brain-PAD = brain-predicted age 
difference; EDSS = expanded disability status scale.
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may serve as a useful marker of this process, which we were 
unable to do in this study.

To conclude, this study demonstrates that individuals with 
MS exhibit excessive brain aging compared with HCs, even 
within an age-matched, population-based cohort. Greater 
brain aging is associated with longer disease duration and 
greater disease severity. Older-appearing brains are related to 
more severe physical disability and reduced cognitive func-
tioning. These findings underscore the potential of brain age 
as a marker for neurodegeneration and overall disease severity 
in MS.
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