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Abstract

The stiffness of tissue-engineered scaffolds significantly influences cell behaviour and phenotype.
However, current approaches to tuning stiffness often introduce unintended variations and
compromise topographical consistency. In this study, an innovative wet-electrospinning set-up,
incorporating a positively charged auxiliary electrode was developed to fabricate bundles with
adjustable stiffness. COMSOL-based electromechanical computing revealed that the auxiliary
electrode provided electrostatic force, which reduced stress concentration during continuous
polycaprolactone (PCL) bundle collection at speeds up to 120 m min~'. Tensile testing showed
that increasing collection speed significantly enhanced bundle stiffness, with Young’s modulus
rising from 40 to 107 MPa. X-ray diffraction analysis indicated that this strengthen effect was
associated with crystal disintegration and grain refinement within PCL fibre. These changes were
reflected in scaffold stiffness, thereby, further influenced cell behaviour, as bundles with higher
stiffness promoted a transition from non-polarised to spindle-like cell morphology. This
electrostatic-assisted collection wet-electrospun setup enables the fabrication of scaffolds with
tuneable mechanical properties while preserving topographical consistency, offering a robust
strategy for mechanobiology research and tissue engineering.

1. Introduction

The capability of modulating cell phenotype is
important in the design and manufacturing of tissue-
engineered scaffolds. Scaffold stiffness significantly
affects the intercellular stress conduction chain from
the matrix, focal adhesions, and stress fibres to the
nucleus, thereby modulating cellular behaviours such
as polarisation, migration, and differentiation [1-6].
The commonly used models to research matrix stift-
ness and cell behaviours are hydrogels [7, 8] or PDMS
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matrix [9, 10]. However, these matrices often lack the
extracellular matrix (ECM)-mimicked topographical
features of the native ECM, which limits the abil-
ity to replicate a bionic microenvironment for build-
ing multi-tissue in vitro models to research in-depth
interactions.

Electrospinning is a promising technique for fab-
ricating fibrous scaffolds with different topograph-
ies for ECM mimicking scaffold fabrication [11-
13]. Methods for achieving wide range stiffness are
limited, and the commonly used methods such as,
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changing solution system [14—16] or post-processing
[17-19], may compromise topography uniformity
and comparability. For example, physical processing
such as thermal treatment or chemical processing
such as crosslinking can alter not only the stiffness
but also the surface roughness, porosity, or chem-
ical composition of the material [14, 15, 18]. These
changes are linked with varying cellular responses,
making it difficult to attribute specific cell pheno-
type and behaviour changes to a single factor, such
as stiffness.

The fabrication of fibrous matrices through wet-
electrospinning is a promising technique, in which,
electrospun fibres are deposited into a liquid bath
filled with a non-solvent liquid [20-23]. This method,
which involves a secondary collection process, allows
for tuning physical properties such as fibre diameter
while maintaining topographical uniformity [24].
Stiffness modulation, however, has not been explored
in wet-electrospinning. This could be attributed to
the sub-microscale dimensions, whereby microscale
bundles are prone to breakage as they easily exceed the
maximum tensile force [25]. Due to this instability,
research on the effects of secondary collection beha-
viours on fibre stiffness adjustment is limited.

In this study, the electrostatic attraction force
from a positively charged auxiliary plate electrode can
serve as a protective method, preventing stress con-
centration and creating a stable collection environ-
ment across a wide range of collection speeds. This
auxiliary setup can be effectively combined with wet-
electrospinning during the bundle collection process,
as the liquid bath removes the charge on the fibres,
rendering them electrostatically neutral, which can
then be electrostatically attracted. The study finds that
adjusting the collection speed can tune the stiffness
of the fibres while maintaining their morphology,
enabling the production of stiffness-tunable bundles
and facilitating cell polarisation.

2. Materials and methods

2.1. Materials

The polymers wused were
(PCL, Mw = 80 000),
fluoride-co-hexafluoropropylene)  (PVDF-co-HFP,
Mw = 455 000), polyacrylonitrile (PAN,
Mw = 150 000), and poly(vinyl chloride) (PVC,
Mn = 47 000). The solvents used were N,N-
dimethylformamide (DMF)/chloroform mixture for
PCL; DMF/acetone for PVDF-co-HFP; DMF for
PAN; and DMF/tetrahydrofuran (THF) for PVC. All
polymers and solvents were purchased from Sigma
(Merck, UK) and used without further purifica-
tion. The Dulbecco’s Modified Eagle Medium-low
glucose (DMEM-L glucose), PrestoBlue reagent,
Live/Dead assay kit, were purchased from Thermo
Fisher.

polycaprolactone
poly(vinylidene
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2.2. Set-up

An improved wet-electrospinning setup was used in
this study, which included a high-voltage generator
(0-40 kV, Linari, Italy) for the needle and another
high-voltage generator (0-30 kV, Teslaman, China)
for the auxiliary plate electrode, a pump (Model 300,
WPI, UK), and a modified collector. The modified
collector consisted of an earthed stainless steel liquid
bath (D = 20 c¢m) filled with distilled water (DI
water). A rotating drum (D = 9 ¢cm, 0-1300 rpm) was
mounted on a single-axis reciprocating motion plat-
form to drag the electrospun fibres. An auxiliary plate
electrode (2 x 5 x 0.1 cm, aluminium) was used to
provide an electrostatic attraction force. The schem-
atic of the setup is shown in figure 1.

Polymer solutions were loaded into a 20 ml PP
syringe, transferred via a PTFE tube (ID 1/8 inch),
and fitted with a 21 G stainless steel blunt needle, 9 cm
from the liquid bath. A 13 kV voltage was applied to
the needle, and an 11.5 kV voltage was applied to the
auxiliary plate electrode. The grounding electrodes
of both high-voltage generators were connected to
the liquid bath. The electrospun fibre bundle samples
were collected at room temperature with around 55%
humidity, dried in a hood overnight, and stored in a
vacuum desiccator.

During electrospinning, the positively charged
fibres deposited on the surface of the DI water at
25 °C, earthed), forming a neutralised charged fibre
mesh, followed by dragging and winding onto a rotat-
ing drum. During dragging, the non-woven fibre web
received force, causing the fibres to rearrange into
an aligned structure. The neutralised charged aligned
fibres then received electrostatic attraction from the
positively charged auxiliary plate electrode, reducing
the total corresponding tensile stress. The electro-
static attraction force provided by the auxiliary plate
offset part of the resistance and gravity, greatly redu-
cing the tensile stress and dramatically increasing the
collection speed range (figure 1(a)).

The top-down view of the wet-electrospinning
setup illustrates the bundle collection process
(figure 1(b)). A close-up image of the auxiliary elec-
trode, applying a higher voltage, generated an elec-
trostatic attraction force significantly greater than the
gravitational pull on the fibres, resulting in a dramat-
ically deformed trajectory (figure 1(c)).

2.3. Solutions preparation

The polymer solution systems are summarised in
table 1. PCL was dissolved in a mixed solvent of
DMF/chloroform (2/8 v/v) at a concentration of 13%
w/v [26-28]. PVDF-co-HFP was dissolved in a mixed
solvent of DMF/acetone (4/6 v/v) at a concentration
of 11.5% w/v [29-31]. PAN was dissolved in DMF
at a concentration of 8% w/v [32-34]. PVC was dis-
solved in a mixed solvent of DMF/THF at a con-
centration of 13% w/v [35, 36]. Those solution sys-
tems are commonly used in the wet-electrospinning
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Figure 1. (a) Schematic figure Illustration of the wet-electrospinning setup. (b) Top-down view photograph of the bundle
production in progress. (c) Close-up of auxiliary electrode images emphasising the electrostatic attraction force applied by the

Auxiliary electrode

auxiliary electrode.
Table 1. Summary of polymer solutions.
Flow
Concentration rate
Polymer Solvent (v/v) (wlv %) (ml/h)
PCL DMEF/Chloroform 2/8 13 1
PVDE-co-HFP DMF/Acetone 4/6 11.5 1
PAN DMF 8 1
PVC DMEF/THF 5/5 13 1

study due to the ductility of the materials and
their concentrations were adopted from previous
wet-electrospinning studies. Homogeneous solutions
were prepared by overnight stirring at room temper-
ature to achieve a uniform status.

2.4. Wet-electrospinning of PCL, PVDF-co-HFP,
PAN and PVC

The process parameters for electrospinning and
fibre bundle fabrication are summarised in table 2.
Polymer solutions (table 1) were electrospun into
liquid bath at different collection speeds to observe
the collection effects on the bundle width and fibre
morphology (table 2).

Specifically, 13 w/v% PCL in DMF/Chloroform
(2/8, vIv) was used to reveal the effects of voltage
applied on auxiliary plate electrode, the working dis-
tance between needle and liquid bath and collec-
tion speed (set 1, table 2). The applied voltage on

auxiliary was varied from 8-12.5 kV (0.5 kV as inter-
val) and working distance between needle and liquid
bath was15 cm.

To reveal the mechanism of fibre bundle form-
ation and the relationship between collection
speed and fibre bundle width, 13 w/v% PCL in
DMF/Chloroform (2/8, v/v), 11.5 w/v% PVDF-co-
HFP in DMF/Acetone (4/6, v/v), 8% w/v PAN in
DMF and 13% w/v PVC in DMF/THEF were collected
at various collection speeds (set 4, table 2). To reveal
the relationship between collection speed and PCL
fibre bundle mechanical properties, 13% w/v PCL
in DMF/Chloroform (2/8, v/v) was used to fabric-
ate fibre bundle with around 100 pum thickness at
different collection speeds (set 1, table 2).

To evaluate the cell response on wet-electrospun
fibre bundle-based scaffold, PCL wet-electrospun
fibre bundles collected at different speeds were used
for in vitro cell culture. PCL electrospun random
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Table 2. Summary of wet-electrospun fibre bundle samples and collection parameters.

Electrospinning parameters
(needle voltage /working

Collection parameters
(auxiliary electrode voltage/

Solution distance) collection speed)

13% w/v PCL in 13 kV/15 cm 8-12.5kV/ 10-120 m min~!
DMF/chloroform (2/8, v/v)

11.5% w/v PVDF-co-HFP in 13 kV/15 cm 11.5kV/13-34 m min~’
DMF/acetone (4/6, v/v)

8% w/v PAN in DMF 13 kV/15 cm 11.5 kV/13-28 m min ™"
13% w/v PVC in DMF/THF 13 kV/15 cm 11.5kV/18-38 m min~!
(5/5, vIv)

and aligned fibre collected from rotation drum at
the speed of 60 rpm and 1000 rpm were selected
(figure 1(b)). The samples were ~100 pm thick and
punched into discs (diameter = 10 mm). All samples
were stored in a vacuum desiccator for 14 d to remove
retained solvents before testing.

2.5. Simulation

A 2D stationary study was conducted using the
‘Electrostatics’ and ‘Solid Mechanics’ modules in
COMSOL Multiphysics® 6.2 (COMSOL AB, Sweden)
to investigate the effect of changing secondary elec-
trode voltage on the electrostatic field and its applic-
ation in facilitating bundle collection.

The geometry setup replicated the experimental
conditions, with the bundle fixed at both ends, con-
nected to a rotary collector and a liquid bath surface.
Material properties were based on a bundle fabric-
ated at 50 m min~! using this setup. A sufficiently
large resolution domain filled with air was used to
compute the electrostatic field. The liquid bath was
earthed at the bottom, and the drum was set as the
floating potential to simulate a hollow rotating drum.
The electric field was applied using the Electrostatics
module at two voltage levels: 0 kV and 11.5 kV on
the secondary electrode, and 13 kV on the primary
electrode.

The model applied both gravity and electro-
static forces, assuming all geometric entities were
homogeneous in properties. Uniform potential was
set on the electrode boundaries without consider-
ing the electric field distribution within the elec-
trodes. Gravitational force was applied to the yarn
samples, and the coupling between electrostatic and
mechanical forces was handled using the built-in
‘Electromechanical Force’ node. The mesh was auto-
matically generated using the ‘extra fine’ setting. The
stress and strain results for the bundle were presented
in a colour map.

2.6. Characterisation

Optical microscopy (Axioskop 2 Plus, Zeiss, UK) was
used to measure the fibre bundle width and observe
wet-electrospun random fibres, wet-electrospun
bundle morphology and width under the 200x
magnificent. The determination of fibre morphology,

4

fibre bundle width, via optical microscopy imaging,
was performed by the collection of fibres or bundles
on a slide mounted on the collector (liquid bath sur-
face/rotation drum) at the beginning of the process.

Further, scanning electron microscopy (SEM;
Phenom ProX, USA) was applied with a 5 kV accel-
eration voltage to study wet-electrospun fibre and
bundle morphology and diameter. Carbon tape was
attached on collectors to capture samples (figure 2).
Gold coating enables samples to be electrically con-
ductive. ImageJ 1.8.0 (NIH, USA) was employed to
analyse the fibre bundle width (n = 6) from optical
microscope images and topography and fibre dia-
meter distribution (random selection of 100 nan-
ofibres) from SEM images.

Tensile test was performed to research the effects
of collection speed on PCL fibre bundle mechanical
properties, compared with random and aligned elec-
trospun samples (n = 11). The PCL electrospun fibre
bundle, random and aligned samples were cut into
30 x 10x 0.1 mm samples. Tensile test performed on
the Zwick 005 machine (Germany), with a 20 mm ini-
tial gap-to-gap separation, 15 kPa pre-loaded stress,
50 mm min~! test speed, to record the stress-strain
curve.

Sample porosity was indirectly measured via
apparent density method. wet-electrospun PCL fibre
bundle and electrospun random and aligned PCL
fibre (n = 5) were cut 1010*0.1 mm. The volume
was calculated via measuring thickness, width and
length of samples. The thickness was measured via
thickness (1 pm) gauge. The weight was measured via
microbalance (Mettler Toledo, UK).

To identify the effects of collection speed on crys-
talline changes, wet-electrospun PCL bundles collec-
ted at 0, 50, and 110 m min—! were tested via X-ray
diffraction (XRD) (Rigaku, MiniFlex 600). The tests
were performed using CuKa radiation at a scanning
rate of 2°min~! (26), with an operating voltage of
40 kV and a current of 15 mA, over a range of 10°—
40°. Local software was used to automatically process
the data.

2.7. In vitro evaluation

Sheep bone marrow mesenchymal stem cells
(BMMSCs) were evaluated on fibre bundle scaffolds.
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Cell culture was described in previous work [37, 38].
In brief, BMMSCs were cultured in flasks at 37 °C and
5% CO; in a humidified atmosphere. The cell culture
medium was Dulbecco’s modified Eagles’ medium
(DMEM, Sigma, Merk, UK), added with 10% fetal
calf serum (FCS, First Link, UK), 1% penicillin and
streptomycin (P/S, Gibco, UK). 80% confluence was
regarded as the necessity of cell passage. Cells at pas-
sages 5—15 were used

Wet-electrospun PCL fibre bundles (n = 5) were
evaluated for cell proliferation, viability (Live/Dead
assay), and morphology (SEM). The samples were cut
into 10 mm diameter discs and sterilised in 70% eth-
anol overnight. After three washes with phosphate-
buffered saline (PBS; 5 min each), the samples were
pre-conditioned in low-glucose DMEM overnight.
The discs were then transferred into 48-well plates.
A 20 pL cell suspension containing 30 000 cells was
seeded onto each pre-wetted scaffold. After 4 h of
incubation, 400 uL of complete cell culture medium
was added to each well.

PrestoBlue was used to assess cell proliferation
on days 1, 3, and 7, following the supplier’s pro-
tocol. Briefly, before each measurement, the samples
were transferred to a fresh 48-well plate. A mixture
of 400 uL of culture medium and PrestoBlue (9:1,
v/v) was added to each well, followed by incuba-
tion for 1 h. Absorbance was measured at 570 nm
with 600 nm as a reference wavelength. Cell numbers
were estimated using a standard calibration curve.
For viability staining, 4 uM ethidium homodimer
and 2 uM calcein AM were added to each well,
followed by incubation for 30 min at room tem-
perature in the dark. Fluorescence microscopy was
used to capture images of viable and non-viable
cells. To assess cell morphology, samples from days
1 and 7 were fixed in 2.5% (v/v) glutaraldehyde and
dehydrated in a graded ethanol series. Final dehyd-
ration was performed using hexamethyldisilazane for
5 min, followed by air drying overnight. The SEM
imaging parameters were the same as previously
described.

2.8. Statistical analysis

All results are presented as mean =+ standard devi-
ation. Statistical analyses and plotting were conduc-
ted using Origin software. For comparisons involving
the fibre diameter, an independent T-test was used
to determine the significance of differences between
two groups. For cell proliferation experiments, two-
way analysis of variance was used to analyse the sig-
nificance level of differences between timepoints and
groups, and post-hoc comparisons were performed
using the Tukey’s honest significant difference test,
with results displayed as P-values, where *, **, and
*** correspond to P < 0.05, P < 0.01, and P < 0.001,
respectively.

H Wang et al

3. Results

3.1. Wet-electrospun PCL fibres and bundles

3.1.1. Experimental

The experimental results of PCL bundle collection
demonstrated that the voltage applied to the auxiliary
plate electrode significantly increased the maximum
collection speed. A series of tests gradually increasing
the auxiliary voltage from 0 to 13 kV were conduc-
ted to determine the optimal condition (figure 2(a)).
When the voltage exceeded 11.5 kV, the excessive elec-
trostatic force disrupted fibre alignment and hindered
continuous collection. The highest stable collection
speed was achieved at 11.5 kV, allowing continu-
ous bundle formation at 120 m min~!. This indic-
ates that at 11.5 kV, the electrostatic assistance effect-
ively counterbalanced gravitational sagging and min-
imised stress accumulation at the bundle ends, pro-
moting a more stable collection process. This change
in collection speed was attributed to the electro-
static force applied to the bundle. In the initial
stage+-, as the voltage increased, the electrostatic force
strengthened, offsetting gravity. However, beyond
the optimal range, the overwhelming electrostatic
force destabilised the bundle trajectory (figure 1(c)).
Therefore, 11.5 kV was selected as the optimised
voltage for the following experiments. Subsequent
simulation analysis further confirmed the stress dis-
tribution regulation under the auxiliary electrode
condition.

A decrease in the fibre bundle width was observed
(figure 2(b)). The width of the PCL fibre bundle
was 344.63 £+ 50.07 um at 10 m min~! collec-
tion speed, reaching a plateau at 50 m min~!
(59.60 £ 10.30 pm), and showing an ultra-fine
fibre bundle at 100 m min~! collection speed
(30.29 + 5.36 pm).

Fibre diameter reduction was observed within the
fibres collected at 0, 20, 50, 80, and 110 m min—!.
Other features such as morphology retention and
single-layer aligned fibre bundles were noted as
well (figure 2(c)). In PCL wet-electrospun random
samples, micro sized fibres (1.42 £ 0.42 pm) with
rough surfaces featuring surface pores. These fea-
tures were consistently observed in SEM images
across all bundle samples. The holes in PCL samples
are expected to form due to water droplet con-
densation on the fibres, resulting from the rapid
endothermic solvent volatilisation. Additionally, fibre
loops were observed in the structure. The fibre dia-
meter of PCL electrospun random fibres was sig-
nificantly thicker (1.80 £ 0.30 pm) than those
collected via wet-electrospinning. The fibre dia-
meter decreased with the increase in collection
speed, reaching 1.02 £ 0.27 um at the highest
speed (figure 2(d)). This trend is likely due to
the stretching force exerted on the fibres during
collection.
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Figure 2. Wet-electrospun PCL bundle collection under various parameter settings. (a) The effect of voltage applied on auxiliary
plate electrode and collectors on continuous collection speed. (b) The effect of collection speed and fibre bundle width of PCL.
(c) Influence of collection speed on the morphology of fibre bundles. SEM images captured at high and low magnification show
the fibre bundles collected at speeds of 0, 20, 50, 80, and 110 m min~"'. (d) The fibre diameters were statistically analysed, and the
results were compared with those at 0 m min—!. Significant differences are indicated by asterisks: * for p < 0.05, and *** for
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3.1.2. Simulation

The effect of the secondary electrode on fibre
bundle collection was investigated using a coupled
Electrostatics and Solid Mechanics model in
COMSOL Multiphysics. Simulations were conducted
under two conditions by applying 0 kV and 11.5 kV
to the secondary electrode to assess the electrostatic

influence (figure 3(a)). The results indicated that
applying voltage to the secondary electrode signific-
antly enhanced the electric field strength in the vicin-
ity of the yarn, thereby increasing the electrostatic
force during the collection process.

In the absence of voltage on the secondary elec-
trode, the yarn was primarily affected by gravity
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Figure 3. The summary of simulation results. (a) Electric field distribution patterns at 0 kV (left) and 11.5 kV (right) applied on
the secondary electrode. Deformation and stress distribution of the bundle under the influence of gravity and electrostatic force
froma (b) 0kV or (c) 11.5 kV secondary electrode. The left panel shows the deformation pattern of the yarn, indicating the
overall displacement due to the combined forces. The enlarged view of the stress concentration areas within the yarn.

(figure 3(b)), resulting in a characteristic catenary
shape with stress concentrated at both the rotating
drum end and the water surface exit point. In con-
trast, when voltage was applied, the yarn experienced
upward electrostatic forces that counteracted gravity,
reducing stress at both ends and distributing it more
uniformly along the yarn (figure 3(c), as indicated by
red arrows).

3.2. Validation of wet-electrospun bundle
fabrication system versatility with other materials
The same bundle-forming characteristics were also
observed in wet-electrospun fibres and bundles fab-
ricated from 11.5%w/v PVDF-co-HFP, 8%w/v PAN,
and 13%w/v PVC (figure 4). For all materials,
fibre bundle width decreased with increasing col-
lection speed. In PVDF-co-HFP bundles, the width
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Figure 4. Evaluation of System Versatility Using Different Materials. PVDF-co-HFP, PAN, and PVC were evaluated. Bundle width,
bundle morphology, and fibre diameter were assessed. The ‘ns’ and “***” mean P > 0.05 and P < 0.005 respectively. (n = 100).

reduced from 1012.50 + 507.68 um at 18 m min~'— Fibre morphology remained consistent across all
82.47 4 30.00 wm at 38 m min~'. In PAN bundles, materials, maintaining a single-layer aligned struc-
the width decreased from 321.15 + 78.82 pm at ture. Loop-like structures were also present, likely
13 mmin~!-93.46 + 24.74 um at 28 m min~'. Asig- resulting from fibre bending during the collec-
nificant reduction was also observed in PVC bundles, tion process. A reduction in fibre diameter with
from 839.32 £ 161.30 um to 120.89 £ 27.95 pm at  increasing collection speed was also observed in all
18 m min~! and 38 m min~!, respectively. groups.
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Figure 5. The effect of collection speed on the mechanical properties and porosity of wet-electrospun PCL bundles. The figure
includes: (a) a typical stress and strain curve, (b) Young’s modulus, (c) maximum strength, (d) strain at break, and (e) porosity.

3.3. Collection speed modulating PCL bundle
strength

Tensile tests were performed on PCL electrospun
random fibres, aligned fibres, and wet-electrospun
bundles collected at different speeds (n = 10) to
investigate the effects of fabrication method and
collection speed on mechanical properties, includ-
ing Young’s modulus, maximum tensile strength,
and strain at break. Figure 5 shows representative
stress—strain curves for each sample. Random fibres
exhibited a Young’s modulus of 17.42 £+ 1.01 MPa
(figure 5(b)), a maximum tensile strength of

3.26 £ 0.33 MPa (figure 5(c)), and (a) strain at break
of 522.59 + 52.74% (figure 5(d)). In comparison,
wet-electrospun PCL bundles showed significantly
enhanced mechanical properties. As the collection
speed increased, both Young’s modulus and max-
imum tensile strength improved, while strain at
break decreased. Specifically, the Young’s modulus
increased from 39.98 + 4.89 MPa at 20 m min~!—
107.26 + 9.68 MPa at 80 m min~'. The cor-
responding maximum tensile strength rose from
7.69 £ 0.72 MPa to 16.06 = 1.07 MPa. In contrast,
the strain at break decreased from 468.45 + 13.01%
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Figure 6. XRD data of wet-electrospun PCL bundle collected at various speeds.
Table 3. Summary of peaks results at 21.5° and 24°.
Height FWHM Int. I
(cps) (deg) (cps deg) Size(ang.)
21.5° Control 11 263.42 0.4057 7533.02 208.22
50 m min~! 14 401.27 0.5393 12 285.32 156.65
110 m min~" 15 602.89 0.867 19 312.79 97.42
24° Control 2876.34 0.5812 2230.05 145.94
50 m min~" 3923.08 0.7058 3349.9 120.18
110 m min~! 4702.84 0.9885 6655.26 85.8

to 114.51 £ 2.67%. Notably, even bundles collected
at 80 and 110 m min ™' retained sufficient elongation
to meet the mechanical flexibility requirements for
soft scaffold applications.

The porosity of the samples (n = 5) was
determined using a gravimetric method (figure 5(e)).
All wet-electrospun samples exhibited high porosity
values, with a minimum of 66.04 4 2.02%. The PCL
random fibres demonstrated the highest porosity at
77.65 £ 1.65%, which was significantly greater than
that of fibres collected from the liquid bath surface.
The porosity of fibre bundles collected at different
speeds ranged from 66.04% to 73.85%, with no stat-
istically significant differences. This suggests that the
observed variations in mechanical properties were
not primarily influenced by differences in porosity.

XRD analysis revealed that increasing the col-
lection speed resulted in reduced grain size and
increased crystallinity (figure 6). Specifically, at
20 = 21.5°, the crystal size decreased from 208.22 A
in the control group to 97.42 A at 110 m min~},
while at 20 = 24°, it decreased from 145.94 A to
85.8 A table (3). Concurrently, the full width at half
maximum (FWHM) values increased with collection
speed, indicating a broadening of diffraction peaks.
This trend suggests the refinement and partial crys-
tal disintegration. Overall, higher collection speeds
led to smaller grain sizes and more dispersed crystal
structures.
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3.4. In vitro evaluation

Figure 7 shows the cell number on each sample at
days 1, 3, and 7. An increasing trend in cell num-
ber was observed across all groups, indicating that
wet-electrospun PCL bundles support cell prolifer-
ation. At all time points, no statistically significant
differences were found between bundles fabricated at
different collection speeds, suggesting that collection
speed had a limited effect on surface topography or
the resulting cell microenvironment.

SEM was used to examine cell morphology and
the cell-material interface (figure 8). Enhanced cell
proliferation was observed from day 1 (D1) to day
7 (D7). On D1, cells adhered to all samples, as evid-
enced by the extension of filopodia. However, cells on
D1 appeared smaller and more rounded compared to
those on D7. After 7 d, cells showed greater spread-
ing, with spindle-shaped morphologies aligned along
the fibre direction. This alignment was observed on
all samples except the wet-electrospun bundle collec-
ted at 20 m min~!, suggesting that fibre orientation
may guide cell elongation and alignment.

To further evaluate cell viability and distribu-
tion, Live/Dead staining was performed on days 1
and 7. Viable cells were stained green, while dead
cells were stained red. The results were consistent
with both proliferation and SEM findings, demon-
strating cell survival and expansion on all samples.
On DI, a limited number of viable cells and a



10P Publishing

Biomed. Mater. 20 (2025) 045031

H Wang et al

[ 120 m/min
[ ] 50 m/min

1207 X3 80 m/min
R 110 m/min
100 ~
3
‘: 80 - [
IS I
& 60+ [/l/
o AN
% 40 - \/\\
O /\
a I T I } T t /\
0 TP , A , /\ -
D1 D3 D7

Figure 7. Cell number wet-electrospun fibre bundle fabricated under the 20. 50. 80, 100 m min™! collection speed, at 1, 3, 7 d of

culture. No significant difference was observed.(n = 5).

few dead cells were observed. The initial cell dens-
ity on wet-electrospun bundles was lower than that
on random electrospun fibres. By D7, live cells
had reached confluence on the random electrospun
samples and covered most of the surface area of the
wet-electrospun fibre bundles.

4. Discussion

This work introduces an electrostatic-assisted
wet-electrospinning setup, enabling scaffold stiff-
ness modulation and controlling cell polarisation.
Understanding how mechanical modulation via col-
lection speed affects scaffold stiffness and the fol-
lowing cellular responses is the focus. Although wet-
electrospinning has been used to fabricate bundles, its
effect on fibre properties and mechanotransduction
remains poorly understood. This section will discuss
set-up improvements, mechanical tuning mechan-
isms, and explore implications for cellular behaviour,
as well as the limitations.

In terms of wet-electrospinning setups, the
benchmark was established by Smit et al [23], primar-
ily focusing on bundle formation through float-
ing collection. Since then, various parameters have
been investigated to optimise bundle morphology,
including bath liquid selection, bath temperature
adjustment, and the introduction of accessories to
modulate surface patterns, bundle diameter, and
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twisting configurations. However, electrofield, this
intrinsic property, was overlooked in the dynamic
wet-electrospinning process, where the fibre bundle
is collected from a liquid bath to a rotary drum. Our
research revealed that the electrofield not only plays a
vital role in electrospun fibre deposition [39, 40], but
also acts as a key factor during the secondary fibre
collection process.

The successful role of the secondary electrode
relies on the liquid bath, which removes the charge
from the deposited fibre and maintains fibre mobil-
ity. The mobility of the deposited fibre in the bath
liquid allows the use of a secondary collector, such
as a drum, to draw the fibre from the liquid bath to
the drum. The removal of the charge neutralises the
fibre, enabling it to be attracted by the secondary high
voltage via electrostatic force and, therefore, enabling
high-speed collection.

The stiffness change was attributed to the ten-
sion from high-speed collection, which affects the
PCL bundle crystal structure. According to previous
AFM studies, electrospun PCL fibre consists of lamel-
lar crystal stacks perpendicular to the fibre axis, con-
nected by amorphous ties [41, 42]. The application of
tensile force aligns the amorphous PCL chains, break-
ing the large crystals into smaller ordered structures
to increase stiffness [43]. In this study, as the collec-
tion speed increased, fibres were subjected to higher
extensional forces during alignment and winding,
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which may fragment lamellar structures into smaller
crystalline domains. A significant reduction in crystal
size was measured, with crystal size decreasing from
208 A when collected at 0 m min~! to 97 A when col-
lected at 110 m min—! [43]. This value was smaller
than that reported by Jordan and Korley [43], where
during tensile testing of PCL fibres, the crystal size
measured at the (110) plane was reduced from 400A
initially to around 1504 after 60% strain and then sta-
bilised. This difference may be due to approximately
1% to 15% [44, 45] residual solvent in the as-spun
fibres, which may cause the crystals between fibres to

slip or disintegrate more easily. Together, these effects
explain the observed modulus enhancement across
the collection speed gradient.

Compared with current stiffness modulation
methods, this approach maintains consistent topo-
graphy and does not introduce additional chemical
components. The topographic consistency was attrib-
uted to selecting deionised water as the bath liquid,
refining fibres into a single-layer bundle structure.
Specifically, water with high surface tension kept the
deposited electrospun fibre floating on the surface,
maintaining a parallel arrangement from deposition

12
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to rearrangement and drawing from the bath liquid
to the air. Also, this method does not introduce addi-
tional chemicals, as the DI water evaporates after
collection.

Cellular polarisation modulation is another high-
light of this scaffold. High-stiffness matrices support
cytoskeletal organisation through mechanosensing,
promoting the formation of aligned actin filaments
and nuclear elongation, which benefits tendon and
ligament scaffold development due to its influence on
cell phenotype [46—48]. A high-stiffness matrix con-
strains cell contraction and therefore maintains high
intercellular stress, promoting aligned actin network
formation. Interestingly, cells lost their spindle shape
to some degree at higher stiffness, such as in fibres
collected at 110 m min~!, a phenomenon that has
been reported with limited mechanistic explanation
[49-52]. A recent study by Doss et al [53] sug-
gests that overexpression of actin arising from a
high-stiffness matrix requires an even higher matrix
stiffness. If the increase in material stiffness cannot
match the increase in cell stiffness, cell polarisation
disappears.

Despite demonstrating scaffold stiffness modu-
lation and preliminary control of cell morphology,
several limitations should be acknowledged. First,
this study primarily focused on mechanical charac-
terisation, while detailed biological responses such
as cell behaviours, gene expression, and cytoskeletal
changes were not investigated. The intracellular struc-
ture should be stained to further refine the fibre—
cell interaction. The bundle matrix would benefit
from additional AFM-based mechanical mapping.
Future work will focus on cell behaviours to elucid-
ate the broader impact of scaffold stiffness on cellular
function.

Together, these findings highlight the poten-
tial of electrostatic-assisted wet-electrospinning for
controlled mechanical tuning of fibre bundles and
scaffold-based mechanobiological studies, warrant-
ing further exploration in future research.

5. Conclusion

In this study, we developed a wet-electrospinning
system integrated with a positively charged auxiliary
electrode, enabling scaffold stiffness modula-
tion while preserving topographical consistency,
ultimately leading to controlled modulation of cell
morphology. This tunable stiffness was achieved
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via high-speed collection, during which the applied
tensile stress induced crystal disintegration and
refinement within the PCL bundles. The smooth
and continuous collection process was facilitated by
the auxiliary electrode, which provided electrostatic
force to reduce stress concentration at the bundle
ends. As a result, a desirable tunable stiffness range
from 40 MPa to 120 MPa was achieved and effect-
ively used to modulate cell phenotype. Unlike con-
ventional approaches that alter topographical cues or
require changes in chemical composition to tune stiff-
ness, this method maintains topographical compar-
ability. This electrostatic-assisted collection strategy
provides a reliable platform for fabricating stiffness-
tunable scaffolds, supporting investigations in mus-
culoskeletal tissue engineering and mechanotrans-
duction models.
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