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Towards time-resolved multiscale and

multimodal imaging

M| Check for updates

Jishizhan Chen

Current biomedical imaging focuses on spatial detail but overlooks time, limiting our understanding of
disease progression. There is an unmet need for temporal atlases that align multiscale and multimodal
data across defined timepoints, enabling dynamic mapping of pathophysiology. This framework will
pave the way for more personalised, time-aware diagnostics and interventions.

Biomedical Imaging Remains Trapped in Spatial
Resolution

Biomedical imaging has long prioritised spatial resolution, enabling us to
visualise the human body across multiple scales and modalities. These
capabilities have revolutionised the way we diagnose and study disease.
Despite these advances, most imaging remains in space rather than time. It
captures static snapshots, offering little insight into how biological processes
take place.

This reflects a fundamental limitation. Disease is dynamic by nature.
Tissues remodel gradually, tumours grow over weeks or months, and
neurodegeneration progresses over years. Without temporal information,
we miss the sequence of changes that shape disease. By relying on isolated
timepoints, we may identify damage but fail to understand how it developed.
Imaging studies may include different disease stages, but timepoints are
usually disconnected and opportunistic. This lack of systematic temporal
design limits our ability to track progression or intervene at pivotal
moments.

Today’s multiscale imaging methods reveal structure from the organ to
the cellular level, while multimodal strategies combine molecular, structural,
and functional signals. However, these techniques rarely capture how fea-
tures evolve over time (Fig. 1). Time is often treated as an external factor
rather than a core dimension of analysis. Several dynamic imaging mod-
alities already provide valuable temporal information, such as Doppler
ultrasound, contrast-enhanced CT/MRI, and calcium or fluorescence
imaging. These approaches capture fast physiological dynamics within a
single modality. However, these approaches operate at one spatial scale and
over short timeframes, and therefore do not address the longitudinal pro-
gression of disease. The temporal framework proposed here focuses on this
longer-term, multiscale evolution, which current dynamic imaging cannot
integrate. A few spatio-temporal models have been raised such as the Alz-
heimer’s Disease Course Map', developmental spatio-temporal white
matter atlases’, and omics-based trajectory inference frameworks’.
Although they highlighted the importance of temporal dynamics, these
approaches remain largely disease-specific, modality-restricted, or based on
inferred pseudotime rather than real biological timepoints.

To move forward, imaging must begin to consider time as fundamental
as space. Temporal disease atlases should be the emphasis at the next stage.
Datasets connect not only multiple imaging resolutions and modalities, but
also across biologically meaningful timepoints. Such atlases could reveal
how structural, functional, and molecular features co-evolve, supporting
earlier diagnosis, more accurate prognosis, and dynamic disease modelling.
Integrating time as the fourth dimension is essential to bridge the gap
between foundational mechanisms and clinical decision-making.

This perspective is therefore based on the hypothesis that the primary
limitation of current multiscale and multimodal imaging is not the lack of
spatial or molecular detail, but the absence of a coherent temporal frame-
work. We hypothesise that if imaging data across scales and modalities can
be systematically anchored to biologically meaningful temporal milestones,
then disease trajectories can be reconstructed in a clinically actionable
manner.

Multiscale and multimodal advances still miss time
Over the past decade, biomedical imaging has made remarkable progress in
both scale and depth. Techniques like high-resolution MRI, CT, and PET
have improved clinical diagnosis by providing detailed views of internal
structures and functional processes. In research, advances such as light-
sheet fluorescence microscopy (LSFM), synchrotron-based hierarchical
phase-contrast tomography (HiP-CT), and tissue clearing methods have
enabled the three-dimensional (3D) imaging of intact organs at near-
cellular resolution. There is a trend of combining these tools with molecular
approaches including spatial transcriptomics, multiplexed immuno-
fluorescence, and mass spectrometry imaging. Together, multiscale and
multimodal methods (Table 1) offer a rich, hierarchical view of biology from
gross anatomy to cellular phenotype and gene expression.

On the one hand, multiscale imaging technologies allow the same
biological sample to be visualised across spatial hierarchies from organ level
down to individual cells. Synchrotron-based HiP-CT can scan whole
human organs (e.g. lung, brain, kidney) while zooming into micrometre-
level subregions to capture local structural failure in disease progression®.
Recent advances in laboratory-based phase-contrast micro-CT enable
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Fig. 1 | A framework for integrating multiscale and multimodal imaging with
temporal evolution. Using intervertebral disc herniation as an example, the sche-
matic showing how temporally anchored stages of disc degeneration can be char-
acterised through integrated imaging. Time anchors include the initial stage
(microstructural weakening), progression stage (structural instability), and
advanced stage (extrusion and structural collapse). Multimodal approaches,
including CT, MRI, mass spectrometry imaging (MSI), spatial omics, and strain/
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hierarchies from millimetre-scale lamellar organisation to micrometre-scale col-
lagen fibre bundles and cellular matrix components. Together, these strategies
support the construction of time-resolved atlases that link structure, function, and
molecular state across disease evolution.

similar resolutions without requiring synchrotron access’. Optical expan-
sion techniques such as expansion microscopy further extend resolution
into the nanoscale domain®. Tissue clearing methods, including CLARITY’,
iDISCO?, and CUBIC’, do not generate images themselves but make large,
opaque samples transparent and antibody-permeable. When combined
with LSFM, these approaches enable volumetric imaging of intact organs at
cellular resolution'*". For instance, Susaki et al. demonstrated whole-brain
imaging in mice with single-cell detail"’.

On the other hand, multimodal imaging integrates distinct biological
data types within the same spatial framework. PET/MRI combine metabolic
and anatomical information, improving tumour localisation and
monitoring'”. Multimodal workflows in research settings go further. Zhao
et al.” used tissue clearing and immunolabelling to probe whole human
organs via LSEM, while also aligning results with clinical imaging. CODEX
technology enables simultaneous visualisation of dozens of protein
markers'*. Mass spectrometry imaging maps the spatial distribution of
metabolites"”. Spatial transcriptomics adds gene expression landscapes on
top of histological context'®”. Together, these methods bridge structural,
molecular, and functional perspectives across biological systems.

Despite these achievements, most imaging studies still rely on cross-
sectional analysis. They show where cells or molecules are located but not
how they change over time. Even when timepoints are included, they are
often few and poorly aligned. Longitudinal scans may vary in resolution,
orientation, or imaging modality, making direct comparison difficult. His-
tological sections from different timepoints often involve different samples,
introducing biological noise that limits conclusions.

This ‘snapshot mindset’ creates a fragmented understanding of disease.
Researchers may observe key features but miss their order of appearance.
Signals that appear important in late-stage samples might be consequences
rather than causes. Without a temporal anchor, the dynamics of disease are
flattened into static observations. Moreover, current imaging databases are

usually structured by anatomical region or modality, not by sequence or
trajectory. This makes it harder to reconstruct how a process unfolds or to
model change in a meaningful way.

The gap is caused by practical and conceptual challenges. Imaging
living systems over time is complex. It requires stable conditions, repeated
access to the same sample, and high-resolution methods that do not cause
damage. Even in animal models, these constraints limit the number and
frequency of timepoints. In humans, ethical and technical barriers further
restrict dynamic imaging, especially at microscopic scales. And while omics
technologies have begun to map cellular states in developmental or disease
trajectories, they often lack true temporal resolution. Pseudotime models
infer change from static populations but cannot capture actual progression
within a living system.

Despite these hurdles, the need to go beyond static snapshots is
growing. We now have the tools to image structure, molecules, and function
at high resolution. What we lack is a way to connect these images across
time. Without that link, our understanding of disease remains partial, and it
hinders the clinical translation of above-mentioned techniques.

Technical and conceptual challenges in capturing
temporal dynamics

Moving from spatial snapshots to temporal maps is not just a technical
improvement. It requires rethinking how we capture, align, and interpret
imaging data. At present, three core challenges stand in the way: fragmented
data, missing time anchors, and disconnected platforms.

First of all, biomedical imaging data are still highly fragmented. Most
imaging is designed for single-use interpretation. In clinical practice, scans
are often performed using different machines, acquisition parameters, and
protocols depending on the clinical purpose, such as diagnosis or follow-up.
These variations make it challenging to perform consistent longitudinal
comparisons. In research, even longitudinal datasets often involve different

npj Imaging| (2025)3:67


www.nature.com/npjimaging

https://doi.org/10.1038/544303-025-00131-w Perspective

2 samples at each timepoint. This is especially true in human tissue studies,
g where repeated sampling is limited. As a result, we are often left comparing
5 = separate images that do not form a continuous timeline.
Bl |o ~ o o |F T [P |7 Most imaging lacks proper temporal anchoring. Without consistent
reference points, even high-quality data cannot be meaningfully aligned
& 5 8 across time. In developmental biology, time is often inferred from mor-
£ g é = g phological stage. In disease studies, it may be based on symptom onset or
2 g 5 2 |3 |2 |8 S |« 2 treatment schedule. But these markers are coarse and Varla.ble. Imaging
£ |E %'m; E |s % g |2 é 8 needs more precise anchors. Specifically, biological or .techmcal cues t.hat
£ |2|55[5 |2 s | = % s | § allow images to be matched across stages. These coujld 1n.clude‘ anatomical
8|2 5% :ﬁ K ‘% s |5 |2 landmarks, spatial gene expression patterns, or physiological signals.
5 [ 81563 § 4 % ?r) § % ¢ Imaging platforms remain largely isolated. Each modality (MRI, PET,
:g % ke :i % § % é § - § 4 E CT, LSFM, HiP-CT) has its own hardware.z, Sf)ftware,. and flata format. Whlle
ol S5 2| SE £ |£8|35g §_ = f g S £ multimodal imaging has made progress in integrating signals at one tlpe—
-§ 55 k: %é g,|5 § %‘é 23| 5 33 gg point, integrating across time remains rare. The lack of staqdardlsed
£ § § 2 % 2|53 % s g S %; Tgl § § £ S workflows and interoperable file formats makes it hard to combine scans
585|8|28|88 2288 28|8 |82|25 from different systems. Even within the same modality, changes in resolu-
tion, orientation, or noise levels can disrupt alignment. In multiscale ima-
%: % § @ ging, there is no unified framework for linking data in time. .
® 2 |o 5 *ﬁ 3 3 These challenges can be tackled. The ﬁe¥d has already made progress in
e |3 E g g |8 EC, § ” spatial alignment, cross-platform .reg.lstratlon, and metadata standards.
8 é T |8 E’ 8 § E % Extension into the temporal dor.naln is What we need for the next stage.
s | = 2 |E |5 |8 |8-% 2 s Temporal sequences must b.e de.51gned in imaging protoc.ols, not just space.
s |gl2 E g 2 |s%|s §» 3 Metadata must include timing information that allows images to be mat-
5 |3 % $ % g |c¢ ? S = ched and compared. And computational methods must be developed t.o
g 1512 |2 |3 |8 g 813 g |5 handle change across timepoints. Without addressing these issues, dynamic
HEEE N % ) g S S § disease mapping will remain out of reach.
2 |88  |g +§; = § ﬁ § 2 Principals for temporal atlas of disease
g |88 |E :’:’» s [g<l2 [2 |8 Unlike isolated snapshot data, a temporal atlas systematically integrates
§ 2 é % § § % %é s “é % information across spatial scales, biological modalities, and clinically rel.e-
8 2 Slg| g 2 3 & |25 % P 3 vant timepoints. We propose that future efforts focus on three essential
g 2 g|3 g 1t |3 g § ;"’: ¢ S principals: data stacking, temporal anchoring, and change modelling. Each
é § g é g égj E % § § % % é needfft'o b aPph; ‘ ?tcliojls' time,' mocflz?clietsy,szsizlcaiﬁallenges Longitudinal
ime as a fou imension .
5 s 2 | % scans are often inconsistent, most datasets_ lack reliablef temporal apchors,
5 % o 3 |g |§ and multimodal or multiscale data are Fllfﬁcglt t.o align across time. In
@ § 8 2 % 5 = practice, uniformly high spatloten}porz'il imaging is not always necessary.
2 g | 2|8 s |gs |2 |2 |& |8 Low-resolution, high-frequency imaging can l?e used for continuous
g 3 g g |2 |8 |E s |5 |8 § monitoring, and to acquire high-resolution imaging only at key transition
E »; % § g % g % f% g ﬁ points. .
S 5 [% s | 2 |2 |B 2 5 | £ Stacking multiscale and multimodal data across.tlme can recon.struct
3 °¢| 5|2 % 5 |2 g s |2 2 the true trajectory of pathology. Rather than analysing ea.ch modality or
g é s é 5 T S §, 33 8l s e 2 resolution in isolation, researchers should build lhongiFudmal sta.cks that
.? 25 :f é % g 8 § ‘§ S § g’ combine repeated measurements across different b.1olog1cal modalities. for
E - 52 2 § % § E %ﬁ § % E example, a liver fibrosis atlas might include s§r1a1 MR¥ scafls_ shown.lg
o 2 22/8l8 s |8 |8 |28 § % s macroscopic architectural changes; PET data tracing fibrotic activity; spatlal
8 % % Z g § g 5 _é % g ° -é 3 2 transcriptomics of ECM gene expression in biopsy cores; e'md LSFM 1rpa—
3 § 3 § 8|£ | 3 | |55|88|8 |2 ging of immune cell dynamics. These data must be acquired at mgltlple
E timepoints and linked across anatomical landmarks to track disease
g evolution.
-g > % 3 Anchoring data through shgred biologi.cal references is essential to
© S > | § register different datasets across time, modality, and scale. It allows long-
3 8 3 |= itudinal and multimodal comparisons. Temporal anchors define when a
E 5 s % 2 sample or image fits in the progression of disease (e.g., symptom ons.et,
ERE] 5|8 = E |« |8 § treatment response, or molecular thresholds like collagen density). Modality
£ -g 3 g g |z |3 = E a 2 = anchors help align images from different platforms by using shared spatial
S § % g U% é % 3 a 8 s ) features (e.g., vasculature, organ boundaries). Scale anchors allow data
% collected at different resolutions (e.g., MRI vs. histology) to be spatially
e 3 “ integrated. . .
2 g & Modelling dynamic biological change transforms static data into pre-
2 % % dictive insight. Once data are stacked and anchpred, tergporal atlases mqst
° g lé g be computationally modelled tolrecons.truct 1r.1termed1a.te states, predict
s & % £ future changes, and infer causality. This requires algorthms capable' of
s S| = = translating across scales and modalities. Recent advances in deep-learning

3
npj Imaging | (2025)3:67


www.nature.com/npjimaging

https://doi.org/10.1038/s44303-025-00131-w

Perspective

frameworks now enable high-throughput mass spectrometry to reconstruct
fine biochemical patterns across entire brain sections'*. By linking molecular
signals at the cellular level with tissue-scale architecture, these methods offer
amultiscale view of spatial organisation. However, such integration remains
focused on static snapshots. To reveal how diseases evolve, similar algo-
rithms must be extended to align changes over time.

Non-destructive imaging can also be complemented by virtual his-
tology, where deep learning models enable longitudinal inference of histo-
logical events across time'. In addition, transferring models across species
may help align temporal patterns between basic research and clinical ima-
ging, supporting reverse translation and improving the continuity of tem-
poral assessments™. These approaches expand the information that can be
incorporated into a temporal atlas without repeated destructive procedures.

Constructing such atlases requires coordinated efforts across dis-
ciplines. Imaging protocols should emphasise longitudinal consistency and
robust metadata collection. Data repositories need to be designed with
temporal relationships in mind, while bioinformatics pipelines ought to
facilitate alignment, registration, and meaningful interpretation. Open
access also plays a critical role in enhancing transparency, reproducibility,
and the translation of research into clinical practice.

From vision to implementation

Rather than proposing a specific algorithm or a disease-specific temporal
model, the following sections outline a practical roadmap for implementing
temporal atlases across imaging modalities, spatial scales, and biological
contexts. The construction of a temporal atlas is not only a scientific
ambition but a practical necessity. To achieve it, the imaging community
must align efforts across three key aspects: data acquisition, standardisation,
and collaborative infrastructure.

1. Standardised longitudinal imaging protocols: while existing studies
may span early, middle, and late stages of disease, these timepoints are
often selected opportunistically, driven by clinical availability rather
than biological logic. Imaging is typically performed at diagnosis,
during treatment, or at follow-up, but seldom aligned with the
underlying dynamics of pathology, such as the onset of cellular
senescence, immune infiltration, or fibrotic remodelling. In both
clinical and research contexts, this demands harmonised imaging
windows, standardised acquisition settings, and explicit annotation of
disease stages from the outset. Such a shift moves biomedical imaging
from a collection of static snapshots toward a dynamic framework
capable of capturing progression. It also lays the foundation for
downstream applications such as trajectory modelling, personalised
prognosis, and time-aware Al models. Temporal sampling does not
need to be uniform. Chronic diseases may only require sparse imaging
on key clinical milestones, whereas rapidly progressing conditions may
need more frequent imaging around suspected transition phases.
Multicentre and longitudinal imaging also require consistent standards
across machines and sites. Practical strategies include harmonised
acquisition parameters, routine phantom-based quality control, and
simple computational normalisation methods such as intensity
standardisation or histogram matching. These procedures are widely
used in many multicentre studies without requiring identical hardware.
When technology evolves, consistency can be preserved by scanning
shared phantoms before and after upgrades. Recording reconstruction
and metadata parameters also improves harmonisation.

2. Establishment of time-aware standard and anchors: to support
temporal integration, imaging datasets must change from isolated
snapshots to structured trajectories. A key step is the definition of
biologically meaningful time anchors using reference points such as
symptom onset, peak inflammation, therapeutic response, or early
molecular shifts. Current studies often rely on opportunistic sampling,
aligned with clinical schedules or model availability rather than
pathological logic. This leads to fragmented timelines and inconsistent
interpretations. True temporal anchoring does not require absolute
synchronisation across patients or animal models. Instead, it enables

semantic alignment, where datasets collected at different times or
conditions can still be compared based on shared biological milestones.
In animal studies, induction protocols allow for planned sampling, and
retrospective analysis can assign anchors post hoc using molecular or
structural indicators. In clinical settings, anchors may be defined by
standard events (e.g., diagnosis, treatment initiation), complemented
by clinical scores, imaging features, or molecular biomarkers.
Standardising these anchors and embedding them in metadata lays
the foundation for longitudinal comparison across platforms and
studies. Initiatives like the Human Cell Atlas and Allen Brain Atlas
have introduced shared schemas, but few include time. Establishing
such standards will enable multiscale and multimodal datasets to be
synchronised in both space and time, supporting more coherent
analyses.

3. Development of tools and platforms for temporal modelling: analysis
tools and public databases are expected to support longitudinal
alignment, not just cross-sectional querying. Platforms should enable
the stacking of heterogeneous data, registration across modalities, and
interpolation across timepoints. Open-source libraries, federated
data models, and user-friendly visualisation tools will be
essential. These platforms may support both biological discovery
and clinical translation, allowing clinicians to compare a
patient’s data trajectory against disease atlases derived from
population-level dynamics.

4. Encouragement of cross-disciplinary collaboration: dynamic imaging
is at the intersection of radiology, microscopy, computational
modelling, systems biology, and clinical practice. Funding bodies
should prioritise projects that bridge these domains. Training
programmes should prepare researchers to work across experimental
and computational environments. Ethics frameworks must adapt to
protect patient identity in longitudinal, high-dimensional datasets,
while also supporting data sharing and re-use.

Realising a temporal atlas of disease requires more than technological
innovation but calls for shared standards, open collaboration, and a sus-
tained commitment to turning time into a dimension of human health.
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