

Journal Pre-proof

Locomotion selectively enhances visual speed encoding in mouse medial higher visual areas

Edward A.B. Horrocks, Aman B. Saleem

PII: S2589-0042(25)02656-2

DOI: <https://doi.org/10.1016/j.isci.2025.114395>

Reference: ISCI 114395

To appear in: *iScience*

Received Date: 9 April 2025

Revised Date: 23 October 2025

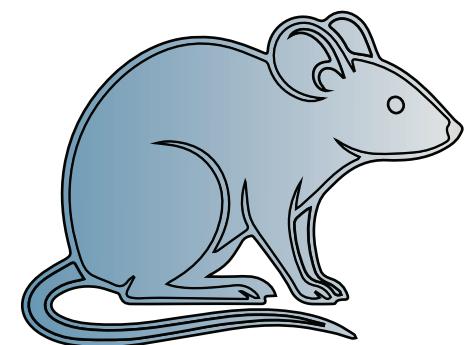
Accepted Date: 5 December 2025

Please cite this article as: Horrocks, E.A.B., Saleem, A.B., Locomotion selectively enhances visual speed encoding in mouse medial higher visual areas, *iScience* (2026), doi: <https://doi.org/10.1016/j.isci.2025.114395>.

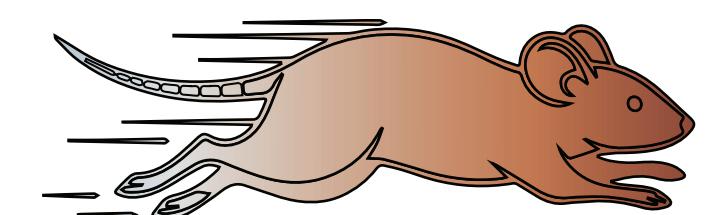
This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 The Author(s). Published by Elsevier Inc.

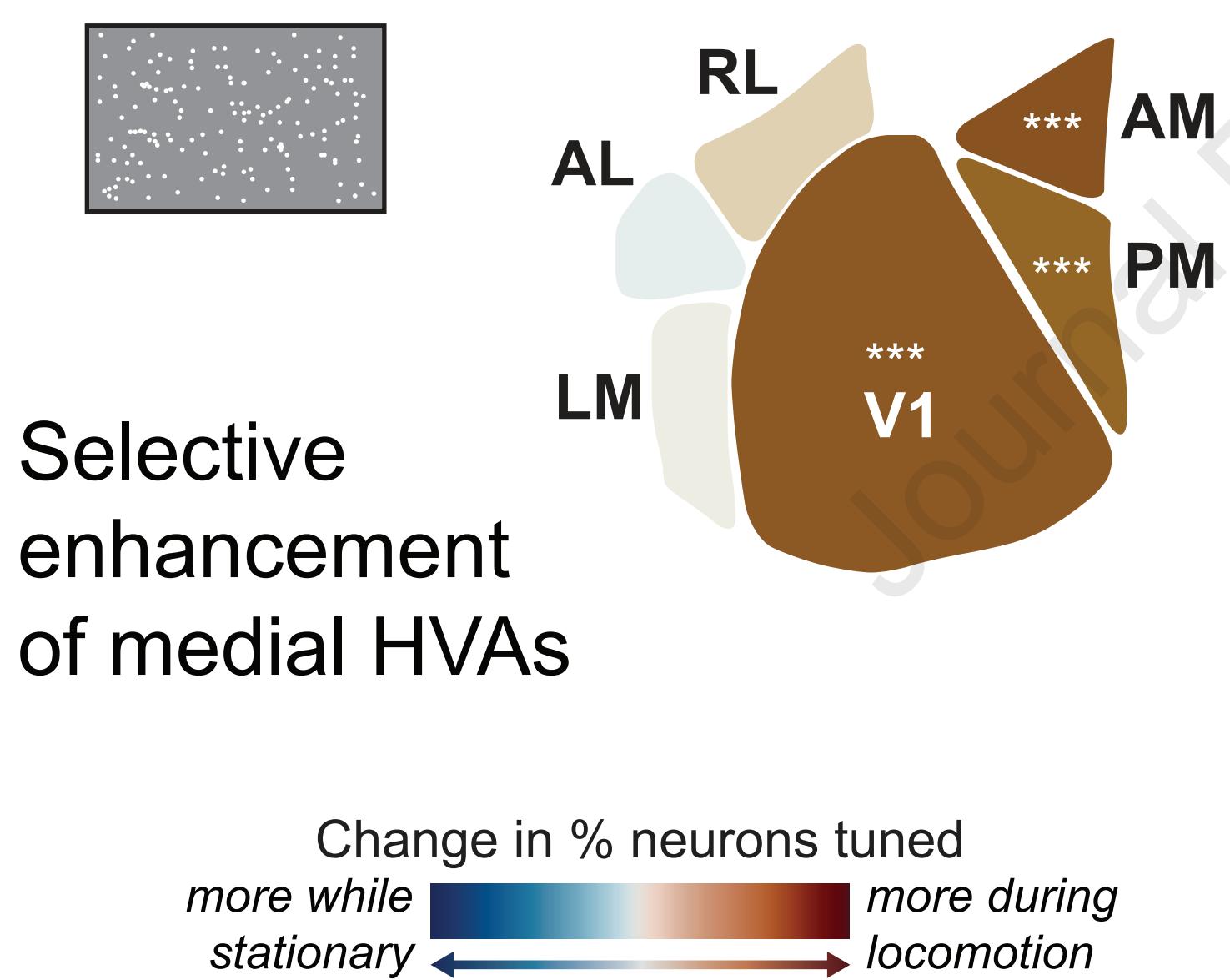
*How does behavioural state
change the neural encoding of
different visual features?*



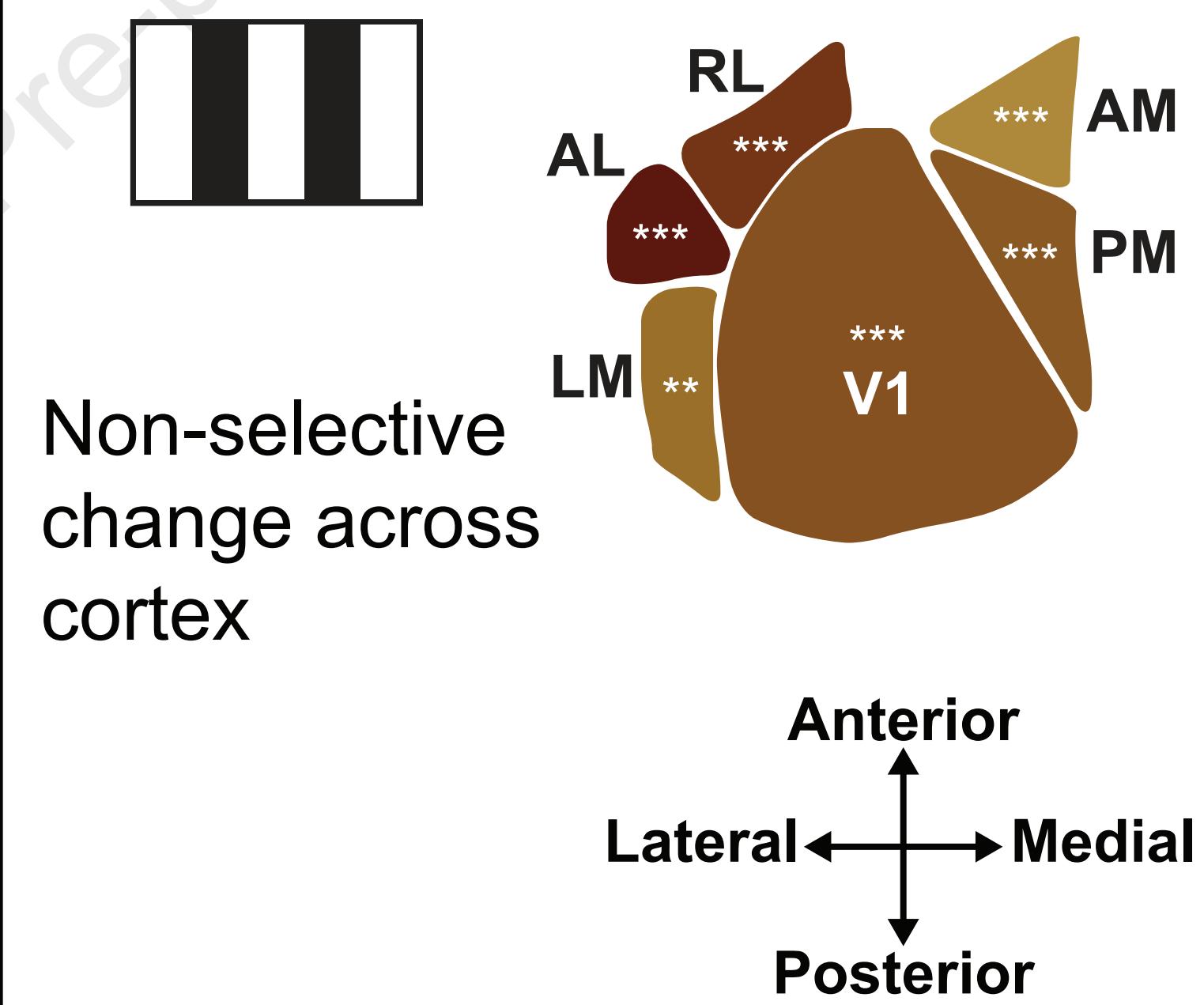
vs



Visual flow speed encoding



Drifting gratings direction encoding



1 Locomotion selectively enhances visual speed
2 encoding in mouse medial higher visual areas

3

4 Edward A. B. Horrocks^{1,2} & Aman B. Saleem¹

5 ¹ Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, United Kingdom.

6 ²Lead contact.

7 Correspondence: edward.horrocks.17@ucl.ac.uk; aman.saleem@ucl.ac.uk

Journal Pre-proof

8 Summary

9 Mammalian visual systems are comprised of multiple brain areas with distinct functional roles.
 10 Whilst functional specialisations have been proposed in the mouse based on visual feature
 11 encoding, the extent to which these specialisations are contingent on ongoing behaviour is
 12 unknown. To address this, we analysed neural encoding of visual motion stimuli by thousands
 13 of neurons recorded in six cortical and two thalamic visual areas while mice were stationary or
 14 locomoting. We found locomotion selectively enhanced visual speed encoding in medial higher
 15 visual cortical areas, indicating that these areas may be specialised for processing visual motion
 16 during locomotion. By contrast, encoding of drifting gratings direction was enhanced non-
 17 selectively across the mouse visual cortex during locomotion. Our results reveal how a complex
 18 interplay of sensory input and ongoing behaviour differentially shapes the efficacy of sensory
 19 processing in mouse higher visual areas, supporting context-dependent functional roles.

20 Introduction

21 Mammalian visual systems are comprised of multiple brain areas that are specialised for
 22 different functional roles^{1,2}. In primates, two parallel cortical visual processing streams have
 23 been identified - a ventral stream associated with object recognition and discrimination and a
 24 dorsal stream associated with encoding the spatial location and visual motion of objects, as well
 25 as enabling visually-guided actions such as locomotion, through, for example, the encoding of
 26 optic flow³⁻⁷. Analogous dorsal and ventral cortical processing streams have been proposed in
 27 the mouse visual system on the basis of anatomical connectivity⁸⁻¹¹ and differences in
 28 response properties to visual stimuli¹²⁻¹⁸. A particularly striking feature of mouse higher visual
 29 areas is their biased representations of the visual field, with lateral areas biased to the central
 30 visual field and medial areas to the periphery^{19,20}. These biases have led to the hypothesis that
 31 lateral higher visual areas may be specialised for the encoding of visual landmarks while medial
 32 higher visual areas are specialised for the encoding of visual self-motion signals such as optic
 33 flow²¹.

34
 35 Sensory processing in the mouse is strongly modulated by behaviour²²⁻²⁴. In particular,
 36 locomotion has striking effects on visual processing, including enhancing the encoding of visual
 37 speed in mouse primary visual cortex²⁵. A key outstanding question is whether such behaviour-
 38 dependent effects on sensory processing vary between cortical visual areas. Selective
 39 enhancement of the encoding of specific visual features during different behaviours could
 40 provide important clues about functional specialisations of mouse cortical visual areas. Notably,
 41 while neurons in different mouse cortical visual areas exhibit varying distributions of tuning
 42 properties for locomotion speed²⁶⁻²⁹ the limited available evidence suggests that locomotion
 43 influences visual feature encoding similarly²⁴, perhaps reflecting a general cortex-wide increase
 44 in the efficacy of visual encoding. Here, we investigated whether visual flow speed encoding, a
 45 feature associated with dorsal-stream processing, is also enhanced globally across mouse
 46 visual cortex during locomotion or whether it is selectively enhanced in specific mouse visual
 47 areas.

48

49 We leveraged large-scale *in vivo* extracellular electrophysiological recordings of thousands of
 50 neurons in six cortical and two thalamic mouse visual areas (Allen Institute for Brain Science
 51 'Visual Coding' dataset^{30,31}) to analyse the encoding of dot field visual speed during stationary
 52 and locomotion behavioural states. We first characterised visual speed tuning properties and
 53 found that they differed substantially between visual areas. Broad ranges of tuning properties in
 54 V1 and thalamic areas were consistent with functional roles distributing varied information about
 55 visual motion throughout the mouse visual system. Narrower ranges of tuning properties in
 56 higher cortical visual areas were suggestive of more specialised roles in the processing of visual
 57 motion, with a posterior-to-anterior gradient of faster preferred visual speeds reflecting the visual
 58 field biases of mouse higher visual areas. When we compared visual speed encoding between
 59 behavioural states we found that locomotion enhanced visual speed encoding selectively in
 60 medial higher visual areas AM and PM. In contrast, we found a non-selective enhancement of
 61 drifting gratings direction encoding across the mouse visual cortex. These findings suggest that
 62 medial higher visual areas, which are biased to process the peripheral visual field, may be
 63 specialised for the encoding of locomotion-related optic flow. More generally, our findings reveal
 64 how a complex interplay of sensory input and ongoing behaviour differentially shapes the
 65 efficacy of sensory processing in mouse higher visual areas.

66 Results

67 We investigated the encoding of visual speed across the mouse visual system during different
 68 behavioural states by analysing the firing rate responses of thousands of neurons (n=5,707) to
 69 moving dot field stimuli while mice were in stationary or locomoting states (n = 19 mice, Figure
 70 1a) ^{30,31}. We classified trials as stationary if trial-mean locomotion speed was <0.5cm/s and
 71 remained under 3 cm/s for 75% of the trial. We classified trials as locomotion if trial-mean wheel
 72 speed was >3cm/s and remained over 0.5cm/s for 75% of the trial (see Figure S1 for
 73 distributions of locomotion speeds). We have previously shown this to be a robust criteria for
 74 defining the locomotor state of trials²⁵. In this dataset, individual mice tended to either locomote
 75 or remain stationary within the stimulus block we analysed. Six cortical visual areas (V1, LM,
 76 AL, RL, AM, PM) and two thalamic visual areas (LGN, LP) were simultaneously targeted in each
 77 recording using 6 neuropixel probes (Figure 1b). Stimuli consisted of fields of white dots which
 78 covered a large proportion of the contralateral visual field (120° azimuth and 95° elevation) and
 79 moved at one of seven visual speeds (0, 16, 32, 64, 128, 256, 512 °/s). We refer to single-
 80 neuron firing rate responses as a function of these visual speeds as visual speed tuning, in
 81 contrast to the spatial-frequency invariant speed tuning commonly described in response to
 82 drifting gratings stimuli.

83 Four classes of visual speed tuning across the mouse visual system

84 We found four classes of visual speed tuning curves in the mouse visual system. To
 85 characterise the shapes of tuning curves from neurons across the six cortical and two thalamic
 86 areas recorded, we initially performed an unsupervised hierarchical sorting procedure on all
 87 reliable tuning curves (n= 4,684; Figure S2), where reliability was assessed using the cross-

88 validated coefficient of determination ²⁵. This revealed that visual speed tuning curves could
 89 broadly be classified into four distinct shapes: lowpass, bandpass, bandreject and highpass). To
 90 characterise the encoding properties of these different tuning classes we performed a model-
 91 based classification^{26,27,29} of each reliable tuning curve based on the best-fitting of four
 92 representative descriptive template functions (Figure 1c,d; STAR Methods). The majority of
 93 tuned cells exhibited bandpass filtering properties for visual speeds presented (63%; Figure 1e).
 94 Lowpass and bandreject were the next most frequent tuning shapes (lowpass: 15%, bandreject:
 95 14%), followed by highpass (8%).
 96

97 Excitation and suppression differentially shape visual speed tuning curve classes. To determine
 98 whether the different tuning curve shapes were related to excitation or suppression, we
 99 compared the stimulus responses to pre-stimulus baseline activity levels. There was a
 100 significant association between tuning class and the proportions of excitatory and suppressive
 101 responses ($p<0.001$; Kruskal-Wallis test). Bandpass and lowpass tuning curves were shaped
 102 primarily by excitatory responses that were either selective or varied systematically as a function
 103 of the visual speeds presented (Figure 1f; Figure S3a, b). By contrast, highpass and bandreject
 104 tuning shapes were shaped by a more even mixture of excitation and suppression (Figure 1f;
 105 Figure S3c, d). Interestingly, we found bandreject and highpass tuning curves could result solely
 106 from excitatory responses, solely from suppressive responses, or from a mixture of both (Figure
 107 S3c, d). Suppressive response profiles are reminiscent of ‘suppressed-by-contrast’ cells
 108 previously reported in the retina³², LGN³³ and V1³⁴. Therefore, we demonstrate that selective
 109 suppression is a prominent component of visual speed tuning across the mouse visual system,
 110 including in higher cortical visual areas.
 111

112 Different tuning curve classes preferentially encode different visual speeds. To characterise how
 113 well different visual speeds are encoded by different tuning curve classes, we used stimulus-
 114 specific information (SSI), a mutual information ³⁵ measure that quantifies how much information
 115 is present in responses to a specific stimulus ³⁶. For example, a neuron that only responds
 116 above baseline levels to one stimulus will have high SSI for that stimulus and low SSI for all
 117 others. SSI tended to be positively correlated with spike counts for bandpass and highpass
 118 tuning classes and negatively correlated for the bandreject class (Figure 1c, d; Figure S3b-d).
 119 For lowpass tuning curves, mean SSI peaked for both the slowest and fastest speeds, i.e. the
 120 stimuli that evoked the largest and smallest spike count responses (Figure 1c, d). This resulted
 121 from lowpass tuning curves with peak SSI for the slowest visual speeds, tuning curves with
 122 peak SSI for the fastest visual speeds, and tuning curves with peaks for both slow and fast
 123 visual speeds (Figure S3a). Overall, visual speeds that evoked the maximum SSI response
 124 corresponded reasonably well with the preferred visual speed of a neuron (Figure 1g, h; Figure
 125 S3). Thus, low-pass tuning curves best encode slow and fast visual speeds, bandpass and
 126 bandreject tuning curves best encode intermediate visual speeds, and highpass tuning curves
 127 best encode fast visual speeds. These tuning classes therefore form a complementary coding
 128 scheme that encodes the full range of visual speeds presented.
 129

130 Distributions of visual speed tuning class vary between mouse visual areas. Having
 131 characterised visual speed tuning across the mouse visual system, we next investigated how it

132 varies between areas (Figure 2a, b). Whilst bandpass tuning was the most common class of
 133 tuning curve in each visual area (range: 44-74%), the overall distribution of tuning classes
 134 varied between areas ($p<0.001$; χ^2 test, see Figure S4a for pairwise comparisons). For
 135 example, in V1 and LP, ~26% of tuning curves were classified as lowpass, whereas this
 136 dropped to ~6% for RL and AM, with other areas exhibiting intermediate proportions of lowpass
 137 neurons. Interestingly, bandreject tuning comprised the second most common tuning class in
 138 areas AL (14%), RL (19%), AM (14%), PM (14%) and LGN (21%), demonstrating that this
 139 tuning curve shape is widespread in the mouse visual system.

140
 141 Distributions of preferred visual speeds vary between mouse visual areas. All higher visual
 142 cortical areas had distributions shifted to faster preferred visual speeds compared to V1. (Figure
 143 2c,d; all $p<0.001$ LME model followed by pairwise F -tests with Holm-Bonferroni correction for
 144 multiple comparisons; Suppl. Figure 3a). Amongst higher visual areas, there was an anterior-to-
 145 posterior gradient of fast-to-slow speed preferences, with anterior areas AL, RL and AM having
 146 the fastest speed preferences and LM and PM the slowest (Figure S4b). Thalamic nuclei had
 147 speed preferences intermediate between V1 and higher visual cortical areas. The variance of
 148 preferred visual speed distributions also varied between visual areas ($p<10^{-22}$ Levene's test;
 149 Figure 2e; Figure S4c). V1 and thalamic nuclei LGN and LP had broad distributions of visual
 150 speed preferences, consistent with the idea that projection neurons from these areas convey
 151 diverse information about visual speed to other visual areas^{10,28,37-39}. Higher visual cortical
 152 areas, in contrast, had more concentrated distributions of visual speed preferences, suggesting
 153 that these areas may be specialised for encoding specific ranges of visual speeds.

154 Locomotion selectively enhances visual speed tuning in medial higher
 155 visual areas AM and PM, as well as V1 and LGN

156 Tuning for visual features can be strongly modulated by behavioural state in the mouse visual
 157 system^{24,40,41}. We therefore investigated whether the prevalence and strength of visual speed
 158 tuning varied between behavioural states in cortical and thalamic areas of the mouse visual
 159 system. We assessed the strength of tuning using the cross-validated coefficient of
 160 determination method²⁵ (R^2 ; Figure 3a), a metric that determines how reliable a tuning curve is
 161 across repeated trials compared to a flat mean firing rate model. We classified a neuron to be
 162 tuned for visual speed if its tuning strength was both significant (assessed using a shuffled
 163 distribution of trial spike counts) and greater than a threshold ($R^2 \geq 0.1$). We obtained similar
 164 results regardless of the specific tuning strength threshold we used (Figure S5). Tuning strength
 165 is positively correlated with both a previously used measure of tuning reliability²⁹ and mutual
 166 information (Figure S6). We used mixed-effects models to test whether differences between
 167 behavioural states and visual areas were significant, as they allowed us to account for various
 168 random factors such as subject (see STAR Methods).

169
 170 The prevalence of visual speed tuning varied between visual areas during stationary states
 171 (Figure 3 b,c). Lateral higher visual areas AL and LM had the highest prevalence of visual

172 speed-tuned cells in the stationary state (Figure 3b-c; LM: 38%, AL: 39%; $p<0.01$ compared to
 173 all other visual areas; GLME model followed by pairwise F -tests with Holm-Bonferroni
 174 corrections for multiple comparisons), followed by V1 (31%). Medial higher visual area AM and
 175 PM had the next highest prevalence of visual speed tuning (AM: 27%, PM: 25%) followed by
 176 LP, RL and LGN (LP: 20%, RL: 18%, LGN: 12%). Thus, the prevalence of tuning tended to be
 177 lower in thalamic areas compared to cortex, except that LP was higher than RL (Figure 3b, c).
 178 The weak tuning for visual speed in LGN suggests that V1 either integrates weakly tuned
 179 feedforward inputs from LGN or that recurrent cortical circuits strengthen visual speed tuning in
 180 V1 during this state.

181
 182 Locomotion selectively increased the prevalence of tuning for visual speed in medial higher
 183 visual areas AM and PM, as well as V1 and LGN. When comparing the prevalence of visual
 184 speed tuning between stationary and locomotion states, we found clear area-dependent effects.
 185 Specifically, during locomotion there was a significant increase in the prevalence of visual speed
 186 tuning in medial higher visual areas AM (Figure 3b; $p<0.001$, 27% versus 43%) and PM
 187 ($p<0.001$, 25% vs 39%). By contrast, differences in lateral higher visual areas were small and
 188 not statistically significant (Figure 3b). We also found a significant increase in the proportion of
 189 neurons tuned for visual speed during locomotion in V1 ($p<0.001$, 31% vs 47%), in agreement
 190 with our previous findings²⁵, as well as in LGN ($p<0.001$, 12% vs 32%), but not in LP.

191
 192 Analysis of tuning strength values similarly revealed a selective enhancement of visual speed
 193 tuning in medial higher visual areas during locomotion. Distributions of tuning strength shifted
 194 towards higher values for AM ($p<0.001$, LME model analysis) and PM ($p<0.001$), but not for
 195 lateral higher visual areas during locomotion (Figure 3d). We also observed an increase in the
 196 strength of tuning for neurons in V1 during locomotion ($p<0.01$). The increase in tuning strength
 197 in LGN did not reach statistical significance after correcting for multiple comparisons (corrected
 198 $p=0.16$). When we restricted our analysis to cells that passed the tuning strength threshold, we
 199 also found a significant increase in tuning strength for V1 (mean \pm SEM in stationary states:
 200 0.35 ± 0.01 locomotion: 0.43 ± 0.01 , $p=0.002$), AM (stationary: 0.36 ± 0.01 , locomotion: 0.42 ± 0.01 ,
 201 $p=0.002$), PM (stationary: 0.33 ± 0.01 , locomotion: 0.40 ± 0.01 , $p=0<0.001$) and LGN (stationary:
 202 0.26 ± 0.02 , locomotion: 0.37 ± 0.02 , $p=0.047$). As a result of these changes, AM and V1 had the
 203 strongest tuning for visual speed during locomotion, compared to AL and LM during stationary
 204 states (Figure S5).

205 **Locomotion selectively enhances visual speed population decoding in
 206 medial higher visual areas AM and PM, as well as V1 and LGN**

207 We next investigated how locomotion affects visual speed decoding at a population level.
 208 Stimulus decoding provides a measure of how much stimulus information is contained within the
 209 responses of populations of neurons. We therefore compared the decoding performance of
 210 populations of neurons between behavioural states for each visual area (Figure 4), using a
 211 Poisson Independent Decodoe (PID)⁴²⁻⁴⁴. Because different numbers of neurons were
 212 simultaneously recorded in each visual area in each subject, we tested small populations of

213 simultaneously recorded neurons (n=10) at a time to facilitate a comparison of the different
 214 visual areas and behavioural states.

215

216 We found that locomotion was associated with enhanced decoding of visual speed in medial
 217 higher visual areas AM (mean \pm SEM performance during stationary states: 0.32 ± 0.01 ,
 218 locomotion states: 0.41 ± 0.01 , $p<0.001$ effect of state, LME model analysis) and PM
 219 (stationary: 0.30 ± 0.01 , locomotion: 0.38 ± 0.02 , $p<0.001$) as well as V1 (stationary: $0.34 \pm$
 220 0.01 , locomotion: 0.43 ± 0.01 , $p<0.001$) and LGN (stationary: 0.24 ± 0.01 , locomotion: $0.32 \pm$
 221 0.01 , $p<0.001$), in agreement with our findings that visual speed tuning is improved in these
 222 areas. By contrast, we found no significant difference in decoding performance between states
 223 for the lateral higher visual areas (LM, AL and RL) or the thalamic nucleus LP (all $p>0.05$).
 224 Thus, the area-specific changes in visual speed tuning we observed during locomotion were
 225 associated with corresponding area-specific changes in the ability to decode visual speed from
 226 neural population activity.

227 **Locomotion non-selectively enhances drifting gratings direction tuning
 228 across mouse visual cortex**

229 Does the selective enhancement of medial higher visual areas AM and PM during locomotion
 230 reflect general changes in visual processing across visual areas, or are these changes stimulus-
 231 specific? To address this question, we repeated our visual feature tuning analysis for drifting
 232 gratings direction in stationary and locomotion states (Figure 5) using a related dataset from
 233 Allen Institute ('*Brain Observatory 1.1*' stimulus set; Siegle *et al.*, 2021). The experimental
 234 protocols were identical to those analysed above except that a different set of stimuli was
 235 presented.

236

237 Locomotion non-selectively enhanced drifting gratings direction tuning across all cortical areas.
 238 Unlike visual speed encoding, there was no selective change in the encoding of drifting gratings
 239 direction during locomotion (Figure 5b-d). Instead, both the prevalence and strength of direction
 240 tuning increased for all visual areas during locomotion, except for LP. Indeed, the largest
 241 increases in the prevalence of drifting gratings direction tuning were in lateral visual areas AL
 242 and RL, in contrast to our findings of selective increases in the prevalence of visual speed
 243 tuning in medial higher visual areas AM and PM. Notably, neurons in area RL were robustly
 244 tuned for drifting gratings direction in both behavioural states (Figure 5), in contrast to our
 245 findings of weak visual speed tuning (Figure 3), indicating that moving dot fields are ill-suited to
 246 driving neurons in area RL (see also ⁴⁵). Our results establish that the effects of behavioural
 247 state on sensory processing in the mouse visual system exhibit a complex brain area-
 248 dependence that is contingent on the specific sensory feature being encoded.

249 **Discussion**

250 We have shown that the effects of behavioural state on sensory processing differ between
 251 mouse higher visual areas, providing evidence that their functional roles are contingent on
 252 ongoing behaviour. By comparing the responses of thousands of neurons recorded across six

253 cortical and two thalamic visual areas, we found that the encoding of visual flow speed is
 254 selectively enhanced in medial higher visual areas during locomotion (Figure 3). This is in direct
 255 contrast to the non-selective enhancement of drifting gratings direction encoding that occurs
 256 globally across mouse visual cortex during locomotion (Figure 5; see also²⁹). Our findings
 257 establish that during locomotion there is not simply a cortex-wide increase in the efficacy of
 258 visual encoding, but instead that locomotion-dependent changes in visual processing vary non-
 259 trivially between visual areas, dependent on the specific visual feature being encoded.

260
 261 Why are improvements in visual speed encoding during locomotion specific to medial higher
 262 visual areas AM and PM? A prominent feature of mouse higher visual areas is their biased
 263 representations of the visual field¹⁹. These biases have been hypothesised to reflect distinct
 264 functional specialisations during active navigation²¹. Medial higher visual areas AM and PM
 265 have representations biased to the peripheral visual field, leading to the suggestion that they
 266 may be specialised for processing optic flow during self-motion²¹. Consider that during forward
 267 locomotion, with a focus of expansion directly ahead, optic flow vectors in the periphery are
 268 generally largest and therefore likely to be most informative about many aspects of self-motion.
 269 Indeed, human perceptual studies indicate that peripheral vision may play a particularly
 270 important role in the visual estimation of forward self-motion speed^{46–48}. If a similar reliance on
 271 the periphery for estimating forward self-motion speed is present in mice, then the selective
 272 enhancement of visual speed encoding in mouse medial higher visual areas may serve to
 273 improve this perceptual estimation during locomotion. Why the mouse visual system exhibits
 274 area-selective changes in the encoding of some visual features but non-selective changes in the
 275 encoding of others remains an intriguing open question.

276
 277 Supporting evidence for the hypothesis that AM and PM are important for optic flow processing
 278 during self-motion is that they have been identified anatomically as mouse dorsal stream areas
 279 with connectivity to motor and navigation-related areas⁹. Indeed, AM and PM are located
 280 between primary visual cortex and retrosplenial cortex, the latter an area considered important
 281 for visuospatial processing during navigation and with strong connections to the hippocampus.
 282 AM and PM also exhibit large receptive field sizes and weak surround suppression^{30,49}, features
 283 suitable for encoding wide-field visual motion such as optic flow. These features are reminiscent
 284 of primate dorsal stream area MST, which is specialised for encoding optic flow. Neurons in
 285 area MST have large receptive field sizes, preferentially receive projections from populations
 286 that represent the peripheral visual field and can be modulated by non-visual self-motion signals
 287^{50–52}. The enhanced encoding of the visual speed in AM and PM during locomotion may
 288 therefore reflect a functional specialisation for visually-guided self-motion estimation.

289
 290 The different visual field biases in higher visual areas may also explain their different visual
 291 speed tuning properties. We observed an anatomical gradient of average preferred visual
 292 speeds, with neurons in anterior higher visual areas AL, RL and AM preferring the fastest visual
 293 speeds overall (Figure 2c, d). Anterior higher visual areas are biased towards lower elevations
 294 of the visual field¹⁹ which may naturally expose them to faster visual speeds due to the proximity
 295 of the floor plane in mice. The variance of preferred visual speed distributions also differed
 296 substantially between areas (Figure 2c, e), with broad distributions of preferred visual speeds in

297 V1 and thalamic areas LGN and LP. These broad distributions are consistent with these areas
 298 distributing varied visual motion information throughout the mouse visual cortex^{18,28}. The
 299 narrower distributions in higher visual cortical areas, which were concentrated at intermediate to
 300 fast visual speeds, suggest more specialised roles in processing specific visual speeds.

301
 302 Our results provide new insights into mouse higher visual area PM, whose functional role has
 303 been particularly ambiguous. Whilst anatomically located within the mouse dorsal stream⁹, the
 304 spatiotemporal tuning properties of PM neurons in response to drifting gratings stimuli are more
 305 ventral stream-like i.e. selectivity for high spatial frequency and low temporal frequency^{12,13,16}.
 306 Indeed, in agreement with a more ventral stream-like role, we found that visual speed encoding
 307 was poor in PM in stationary states (Figure 3b, c; Figure 4). However, during locomotion we
 308 observed a large, significant enhancement of visual speed encoding, a feature that one might
 309 associate with dorsal-stream visual processing. Additionally, our finding that PM neurons tend to
 310 exhibit faster visual speed preferences than V1 appears, at first glance, to contrast with previous
 311 work that reported that PM neurons preferred slow-moving gratings¹². This discrepancy may
 312 instead reflect robust stimulus-dependent tuning properties of neurons in the mouse visual
 313 system. While PM neurons may be tuned to high spatial and low temporal frequencies for
 314 spatially localised grating stimuli, our analysis reveals that for wide-field, moving dot field stimuli,
 315 they are tuned to faster speeds than V1 neurons. This striking stimulus-dependence is
 316 consistent with previous work showing that the visual tuning properties of mouse V1 neurons
 317 can differ substantially between drifting gratings and visual flow stimuli⁵³. Other experimental
 318 differences, for example Ca²⁺ imaging in¹² compared to extracellular electrophysiology here,
 319 may also contribute to differences in findings.

320
 321 The bias for superior visual speed encoding in lateral higher visual areas in stationary mice
 322 (Figure 3c) is unexpected. Whilst area AL has been characterised as a dorsal stream area⁹ and
 323 has been previously shown to perform well encoding the motion direction of random dot
 324 kinematograms similar to those used here¹⁷, area LM is often considered a ventral stream area
 325 with properties more suitable for visual texture discrimination^{17,54}. This lateral bias is not a
 326 general principle of visual processing since there was no significant difference in the prevalence
 327 of drifting gratings tuning between higher visual cortical areas during stationary states (Figure
 328 5c). Nor was this lateral bias for visual speed encoding present during locomotion, but instead
 329 replaced by a more even distribution of visual speed encoding across the mouse visual cortex
 330 (Figure 3b). One possibility is that strong visual speed encoding in lateral higher visual areas
 331 serves object motion perception during stationary states.

332
 333 In conclusion, our results reveal important insights into the functional roles of mouse higher
 334 visual cortical areas by demonstrating that the effects of behaviour are both brain area and
 335 stimulus-dependent. These findings emphasise a complexity of function that is context-
 336 dependent, promoting the importance of considering behaviour, and context more generally
 337 when determining functional specialisations of mouse visual areas. As such, future
 338 experimentation taking into account ongoing behaviour and task context will be important for
 339 elaborating the functional roles mouse visual areas serve in visual perception and visually-
 340 guided action.

341 **Limitations of the Study**

342 A limitation of our study is that we were unable to perform detailed within-neuron comparisons
343 of visual speed tuning during stationary and locomotion states. This was because individual
344 subjects tended to either locomote or remain stationary for the majority of the stimulus blocks
345 we analysed, coupled with the modest number of trial repeats per stimulus condition.
346 Additionally, while a large number of cells were analysed from each visual area, recordings
347 were consistently targeted at the retinotopic centre of each area⁵⁵ and were biased to record
348 more cells from cortical layer 5. Thus, it is possible that the populations of cells recorded and
349 analysed do not fully capture the properties of the visual areas in which they are located. Where
350 comparisons are available, our results are in agreement with prior work - our findings replicate a
351 previous study²⁹ showing that the encoding of drifting gratings direction encoding is enhanced
352 across mouse visual cortex during locomotion. We also previously reported enhanced visual
353 speed encoding in mouse V1 during locomotion²⁵.

354 **Resource Availability**

355 **Lead contact**

356 Requests for further information and resources should be directed to and will be fulfilled by the
357 lead contact, Edward A. B. Horrocks (edward.horrocks.17@ucl.ac.uk).

358 **Materials availability**

359 This study did not produce any new unique reagents.

360 **Data and Code Availability**

361 We analysed an open-access dataset from the Allen Institute for Brain Science^{30,31}. We provide
362 minimally preprocessed data and analysis code to make reproduction of our results easier.

363

364 Minimally processed data have been deposited at Figshare
365 (<https://doi.org/10.5522/04/30136174.v1>).

366

367 All original code is available on Github
368 (https://github.com/eabhorrocks/HorrocksSaleem_AllenVisSpeed) and has been deposited at
369 Zenodo (<https://doi.org/10.5281/zenodo.17512798>).

370 **Acknowledgements**

371 This work was supported by The Sir Henry Dale Fellowship from the Wellcome Trust and Royal
372 Society (200501); the Human Frontier in Science Program (RGY0076/2018), Biotechnology and
373 Biological Sciences Research Council grant (R004765 and BB/W01579X/1), UKRI Frontier
374 Research grants (EP/Y024656/1) to A.B.S.; and Biotechnology and Biological Sciences
375 Research Council studentship to E.H. We thank Sam Solomon for comments on the manuscript.

376 **Author Contributions**

377 This work was conceptualised by E.H. and A.B.S.; Methodology, software and formal analysis were
378 by E.H.; Visualisation and writing by E.H. and A.B.S.; and Supervision and funding acquisition by
379 A.B.S.

380 **Declaration of interests**

381 The authors declare no competing interests.

382 **Declaration of Generative AI and AI-assisted technologies in the writing
383 process**

384 During the preparation of this work the authors used Gemini (Google) and ChatGPT (OpenAI)
385 large language models in order to improve clarity of the text. After using this tool/service, the
386 authors reviewed and edited the content as needed and take full responsibility for the content of
387 the publication.

388

Journal Pre-proof

389 **Figure 1: Four classes of visual speed tuning curve across the mouse visual system**
 390 **a** Schematic of experimental setup. Mice were presented trials of moving random dot field
 391 stimuli whilst free to locomote on a circular treadmill. **b** Schematic of neuropixel probe insertions
 392 - six probes simultaneously targeted six cortical and two thalamic visual areas. **c** Examples of
 393 four different tuning curve classes from four different neurons (Lowpass unit ID: 951005818,
 394 Bandpass: 951002872, Bandreject: 951167265, Highpass: 950997203). *Top row*: Example
 395 tuning curves. Each grey circle is a single-trial spike count. Thicker lines are gaussian
 396 descriptive function fits. Dashed lines indicate mean pre-stimulus baseline firing rates. *Bottom*
 397 row: Stimulus-specific information (SSI) for the corresponding examples in the top row. See also
 398 Figures S2 and S3. **d** Same as a) for population means of each tuning class. Shaded regions
 399 indicate the mean \pm 95% confidence intervals. Numbers above plots indicate the number of
 400 classified tuning curves within each class. **e** Probability histogram of tuning class for all reliable
 401 tuning curves. **f** Stacked bar chart showing the number of significant responses for each tuning
 402 class (sign-rank test of evoked firing rate vs baseline firing rate, ($\alpha < 0.05$, Holm-Bonferroni
 403 corrected for multiple comparisons). Bars are split into excitatory (dark colours) and suppressed
 404 (light colours) responses, based on the difference from activity during pre-stimulus baseline
 405 periods. **g** Discrete conditional probability distribution of $P(\text{Peak SSI} | \text{Preferred Speed})$ showing
 406 correspondence between the two measures. **h** Probability histograms of preferred visual speed
 407 for all tuning curves. Stacked bars are colour code according to the classified tuning shape in **c**-
 408 **f**.
 409

410 **Figure 2: Visual speed tuning properties vary between mouse visual areas**
411 **a** Schematic of 8 mouse visual areas (*top* - cortex, *bottom* - thalamus) illustrating the colour
412 code applied to all figure panels. **b** Distributions of tuning class for each visual area.
413 **c** Distributions of preferred visual speeds for each visual area. Circles and horizontal lines
414 indicate the centre of mass and variance of each distribution. Numbers above plots indicate the
415 number of contributing tuning curves. **d** Centre of mass of preferred visual speeds distributions
416 for each brain area (errorbars indicate means and 95% confidence intervals). **e** Same as **d** for
417 the variance of preferred visual speeds distributions. See also Figure S4.
418

419 **Figure 3: Locomotion selectively enhances visual speed tuning in medial higher visual**
 420 **areas, as well as V1 and LGN**

421 **a** Example tuning curves with different tuning strength (R^2) values. Circles indicate individual
 422 trial spike counts and black lines the stimulus-conditioned mean of those spike counts. Inset
 423 icon illustrates stimulus consisting of moving dot fields. **b** Probability of tuning for visual speed
 424 by visual area during stationary states (*left*), locomotion states (*centre*) and the difference
 425 between locomotion and stationary states (*right*). *p*-values are calculated using post-hoc *F*-tests
 426 on generalized linear mixed effects (GLME) model weights to test for effect of state on
 427 probability of being tuned in each visual area, with Holm-Bonferroni multiple comparisons
 428 correction. **c** Pairwise comparisons of *P*(tuned) between visual areas during stationary (*left*) and
 429 locomotion (*right*) states. *p*-values are calculated using post-hoc *F*-tests on GLME model
 430 weights for each visual area within a state with Holm-Bonferroni correction. **d** Distributions of
 431 tuning strength for each visual area, separately for stationary (dark colours) and locomotion
 432 (light colours) states. The dashed vertical line indicates the threshold used to determine tuning.
 433 Numbers in brackets indicate number of contributing tuning curves. *p*-values are calculated
 434 using post-hoc *F*-tests on linear mixed effects (LME) model weights to compare the effect of
 435 state in each visual area and are corrected for multiple comparisons using Holm-Bonferroni
 436 correction. See also Figures S5 and S6.

437 * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ (with Holm-Bonferroni multiple comparisons correction).

438

439 **Figure 4: Locomotion selectively enhances visual speed population decoding in medial**
440 **higher visual areas AM and PM, as well as V1 and LGN**

441 Poisson Independent Decoder (PID) decoding performance (fraction of correctly predicted held
442 out test trials) of subsampled populations (n=10) in each visual area during stationary (darker
443 left-side boxplots) and locomoting (lighter right-side box plots) states. Box plots indicate full
444 distributions (boxes are interquartile range, white lines are medians). *** $p<0.001$ (Holm-
445 bonferroni-corrected) post-hoc F -tests on LME model weights to test for effect of state on
446 decoding performance, for each visual area.

447

Journal Pre-proof

448 **Figure 5: Locomotion non-selectively enhances drifting gratings direction tuning across**
449 **mouse visual cortex**

450 **a** Example tuning curves with different tuning strength (R^2) values. Circles indicate individual
451 trial spike counts and black lines the stimulus condition mean of those spike counts. Inset icon
452 illustrates stimulus consisting of drifting gratings moving in different directions. **b** Probability of
453 tuning for drifting grating direction by visual area during stationary states (*left*), locomotion states
454 (*centre*) and the difference between locomotion and stationary states (*right*). *p*-values are
455 calculated using post-hoc *F*-tests on generalized linear mixed effects (GLME) model weights to
456 test for effect of state on probability of being tuned in each visual area, with Holm-Bonferroni
457 multiple comparisons correction. **c** Pairwise comparisons of *P*(tuned) between visual areas
458 during stationary (*left*) and locomotion (*right*) states. *p*-values are calculated using post-hoc *F*-
459 tests on GLME model weights for each visual area within a state with Holm-Bonferroni
460 correction. **d** Distributions of tuning strength for each visual area, separately for stationary (dark
461 colours) and locomotion (light colours) states. The dashed vertical line indicates the threshold
462 used to determine tuning. Numbers in brackets indicate number of contributing tuning curves. *p*-
463 values are calculated using post-hoc *F*-tests on linear mixed effects (LME) model weights to
464 compare the effect of state in each visual area and are corrected for multiple comparisons using
465 Holm-Bonferroni correction.

466 * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ (with Holm-Bonferroni multiple comparisons correction).

467 **STAR★Methods**468 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

469 We analysed a large-scale *in-vivo* extracellular electrophysiology dataset (*Visual Coding -*
 470 *Neuropixels*^{30,31}) made open access by the Allen Institute. We analysed two datasets with
 471 separate stimulus sets. Mice were maintained in the Allen Institute for Brain Science animal
 472 facility and used in accordance with protocols approved by the Allen Institute's Institutional
 473 Animal Care and Use Committee. The experiments were covered by IACUC protocol #1805 at
 474 the time they were performed. Analysis of visual speed encoding used the *Functional*
 475 *Connectivity* stimulus set, and analysis of drifting gratings direction encoding used the *Brain*
 476 *Observatory 1.1* stimulus set. Experimental protocols were identical for the two stimulus sets
 477 except for the visual stimuli presented. A full overview of the experimental subjects included for
 478 analysis is available in Table S1. We provide a summary below:

479
 480 We analysed 12 *Functional Connectivity* sessions with sufficient stationary trials (n = 7 male, n =
 481 5 female; age 114-142 days; n = 8 wild-type C57BL/6J, n = 3 Sst-IRES-Cre × Ai32, n = 1 Vip-
 482 IRES-Cre × Ai32) and 8 *Functional Connectivity* sessions with sufficient locomotion trials (n = 5
 483 male, n = 3 female; age 108-135 days; n = 4 wild-type C57BL/6J, n = 2 Sst-IRES-Cre × Ai32, n
 484 = 2 Vip-IRES-Cre × Ai32).

485
 486 We analysed 16 *Brain Observatory 1.1* sessions with sufficient stationary trials (n = 13 male, n =
 487 3 female; age 98-140 days; n = 9 wild-type C57BL/6J, n = 4 Pvalb-IRES-Cre × Ai32, n = 3 Vip-
 488 IRES-Cre × Ai32) and 6 *Brain Observatory 1.1* sessions with sufficient locomotion trials (n = 4
 489 male, n = 2 female; age 93-122 days; n = 1 wild-type C57BL/6J, n = 4 × Sst-IRES-Cre × Ai32, n
 490 = 1 Vip-IRES-Cre × Ai32).

491
 492 We did not include sex in our study design as it was unlikely to be relevant to our scientific
 493 findings. Additionally, there was insufficient statistical power to analyse the effects of sex on our
 494 results.

495 **METHOD DETAILS**496 *In vivo* electrophysiology

497 In each recording session (one per mouse) six single-shank neuropixel probes were acutely
 498 inserted to record extracellularly in six cortical visual areas: primary visual cortex (V1; Allen
 499 CCFv3 acronym 'V1Sp'), lateromedial area (LM; 'V1Sl'), anterolateral area (AL; 'V1Sa'),
 500 rostralateral area (RL; 'V1Sr'), anteromedial area (AM; 'V1Sam') and posteromedial area (PM;
 501 'V1Spm'), and two thalamic areas: dorsal lateral geniculate nucleus (LGN; *dLGN*) and lateral
 502 posterior nucleus (LP; *LP*). Each neuropixel probe targeted the retinotopic centre (i.e. along the
 503 optic axis of the contralateral eye) of each visual cortical area, based on a previously generated
 504 retinotopic map obtained using intrinsic signal imaging. During each session, mice were head-

505 fixed and free to locomote on a circular treadmill whilst passively viewing stimuli, of which we
 506 analysed a subset.

507 **Visual stimuli**

508 To investigate the encoding of visual speed, we analysed neural responses to moving dot field
 509 stimuli ('Functional Connectivity' visual stimulus set). Stimuli consisted of fields of ~200 white
 510 moving dots (diameter = 3°) which covered a large proportion of the contralateral visual field
 511 (120° azimuth and 95° elevation). On each trial, dots moved at one of seven visual speeds
 512 (speeds = 0, 16, 32, 64, 128, 256, 512°/s) in one of 4 directions (0°, 45°, 90°, 135°, where 0° =
 513 left-to-right), with 90% coherence. Stimulus duration was 1s with a 1s grey screen inter-stimulus
 514 interval. Because many cells in the mouse visual system exhibit direction-selectivity, and speed
 515 tuning could vary as a function of direction of motion, we analysed each direction of motion
 516 independently. To control for any potential effects of direction of motion on our results we
 517 included direction as a random factor in our statistical analyses (see below).

518

519 We also analysed the encoding of drifting grating direction ('Brain Observatory 1.1' visual
 520 stimulus set). Full-screen sinusoidal drifting gratings (spatial frequency = 0.04 cycles/°, contrast
 521 = 80%) moved in one of 8 directions (0-315°, equally spaced) at one of 5 temporal frequencies
 522 (1, 2, 4, 8, 15Hz). Stimulus duration was 2s with a 1s grey screen inter-stimulus interval. As with
 523 our analysis of speed tuning for moving dot fields, we analysed tuning for drifting gratings
 524 direction independently for each temporal frequency. To control for any potential effects of
 525 temporal frequency as a random factor in our statistical analyses (see below).

526 **Spike-sorting**

527 Data were spike-sorted using the Allen Institute's in-house spike sorting pipeline³⁰ which uses
 528 Kilosort2⁵⁶ to perform initial spike sorting followed by a number of custom post-processing
 529 modules that remove double-counted spikes and noise units and compute a number of
 530 waveform and cluster quality metrics.

531

532 We restricted our analysis to 'good' clusters, which we defined based on 3 criteria^{25,57}: 1)
 533 Refractory period violations ≤10%; 2) Amplitude distribution cut-off ≤ 10%; and 3) Mean
 534 amplitude ≥ 50uV.

535

536 Based on these criteria we analysed 4,500 units in the *Functional Connectivity* dataset (V1, stat:
 537 443, run: 347; LM, stat: 359, run: 190; AL, stat: 271, run: 387; RL, stat: 282, run: 269; AM, stat:
 538 445, run: 303; PM, stat: 279, run: 170; LGN, stat: 139, run: 121, LP, stat: 294, run: 201) and
 539 4,712 units in the *Brain Observatory 1.1* dataset (V1, stat: 639, run: 226; LM, stat: 290, run: 58;
 540 AL, stat: 566, run: 139; RL, stat: 489, run: 195; AM, stat: 548, run: 189; PM, stat: 275, run: 94;
 541 LGN, stat: 377, run: 111, LP, stat: 333, run: 183).

542

543 QUANTIFICATION AND STATISTICAL ANALYSES

544 Statistical parameters such as *n* values, measures of central tendency and measures of
 545 dispersion are reported in the main text and figure legends. Details of all statistical tests can be
 546 found in Table S2.

547 Classification of trials according to behavioural state

548 We classified the behavioural state of trials (defined as the stimulus duration epoch) according
 549 to the locomotion speed of mice recorded by a rotary encoder. We classified trials as stationary
 550 if trial-mean locomotion speed was <0.5cm/s and remained under 3 cm/s for 75% of the trial.
 551 We classified trials as locomotion if trial-mean wheel speed was >3cm/s and remained over
 552 0.5cm/s for 75% of the trial. We have previously shown this to be a robust criteria for defining
 553 the locomotor state of trials²⁵.

554

555 To calculate locomotion speed, we resampled the rotary encoder data at 100Hz and smoothed
 556 it using a gaussian kernel with a standard deviation of 35ms.

557

558 To investigate visual speed tuning we considered each direction of motion independently. To
 559 investigate drifting grating direction tuning we considered each temporal frequency
 560 independently. We only analysed responses where there were at least 8 trials for each visual
 561 speed/motion direction that were classified with the same behavioural state (stationary or
 562 locomotion).

563 Tuning strength

564 To assess tuning strength we calculated the cross-validated Coefficient of Determination (R^2) on
 565 trial-based spike counts²⁵. To enable a fair comparison we downsampled trial counts to 8
 566 (minimum required for data inclusion).

567 We implemented 3-fold cross-validation by randomly dividing trials into a training set comprising
 568 2/3 of the trials and a test set comprising the remaining 1/3 (equally sampled from each stimulus
 569 condition). During each iteration, two models were created using the training data: a tuning
 570 curve model (trained model) representing the mean spike count responses to individual stimulus
 571 conditions and a null model representing the average spike count across all stimulus conditions.
 572 Using the test data, we constructed a test model by calculating the mean spike count for each
 573 stimulus condition.

574 To evaluate the performance of the trained model and the null model, we calculated the sum-of-
 575 squared residuals between each model and the test model. The coefficient of determination (R^2)
 576 was then computed using the following equation:

$$577 \quad R^2 = 1 - \frac{SS_{model}}{SS_{null}} \} \text{ if } SS_{model} \leq SS_{null}$$

578
$$R^2 = -1 + \frac{SS_{null}}{SS_{model}} \} \text{ if } SS_{model} > SS_{null}$$

579 (Eq. 1)

580 where SS_{model} is the sum of squared residuals between the *trained model* and the *test model*
 581 and SS_{null} is the sum of squared residuals between the *null model* and the *test model*.

582 We computed the mean R^2 value over the 3 cross-validations, using a unique set of test trials on
 583 each iteration. We repeated this entire process 10 times with different random splits of train and
 584 test trials, providing 10 estimates of R^2 , and took the final estimate of R^2 as the mean of these
 585 10 values. To assess the statistical significance of these tuning strength values, we also
 586 generated a shuffled distribution of R^2 values for each neuron by performing the same 3-fold
 587 cross-validation procedure on randomly shuffled spike counts, repeated 100 times.

588 We considered a neuron to be tuned if $R^2 \geq 0.1$ and $R^2 \geq 95$ th percentile of the shuffled
 589 distribution ($p \leq 0.05$). For comparisons of tuning strength we set a floor of $R^2 = 0$.

590 Tuning curve sorting

591 To sort tuning curves for visual speed we used an unsupervised hierarchical method. We first
 592 determined which tuning curves were reliably ‘tuned’ using the criteria described above. We
 593 then generated a dissimilarity matrix by calculating the euclidean distance between pairs of (z-
 594 scored) reliable tuning curves. Following this, we obtained an initial dendrogram (Matlab
 595 function *linkage*) with the unweighted average distance. We then found the optimal leaf order
 596 using an algorithm that minimises the sum of pairwise distances between neighbouring leaves⁵⁸
 597 (Matlab function *optimalleaforder*).

598 Tuning shape classification

599 We classified tuning curves using the best-fitting of four descriptive functions (lowpass,
 600 bandpass, bandreject and highpass). Descriptive functions were gaussians parameterised as:
 601

602
$$f(x) = b + ae^{\frac{(x-u)^2}{2\sigma^2}}$$
 (Eq. 2)

603

604 Where b is a baseline firing rate parameter, a is an amplitude parameter, u is the mean, σ is
 605 the standard deviation, and x is the index of the stimulus conditions (i.e. 1:7 for the seven visual
 606 speeds presented).

607 Tuning classes were differentiated using different parameter bounds. Lowpass and highpass
 608 were described by two functions each (with negative and positive amplitudes). Each function
 609 has an appropriately bounded mean parameter. The upper bound of bandpass and bandreject

611 was limited to ensure well-defined maxima or minima. Additionally, for a tuning curve to be
 612 classified as bandpass or bandreject, the fitted function was required to exhibit a peak with a
 613 prominence of at least 1/3 of the spike-count range of the tuning curve, else the next best-fitting
 614 function was used to classify the tuning shape. We calculated prominence using the Matlab
 615 function *findpeaks*. In the case of a single-peaked gaussian, the prominence is calculated as
 616 follows (paraphrased from Matlab documentation): 1) Find the peak of the descriptive function;
 617 2) find the minimum of the signal to the left and right of the peak; 3) take the larger of these two
 618 values as the reference level; 4) calculate the prominence as the distance between the peak
 619 height and the reference level. Bandreject functions were inverted before performing this
 620 calculation.

621
 622 To determine if there was a statistically significant difference in the distributions of tuning shape
 623 between visual areas we performed a χ^2 test of homogeneity. Pairwise comparisons between
 624 areas were Bonferroni-Holm-corrected for multiple comparisons.

625 Preferred visual speed classification

626 Preferred visual speeds were classified as the visual speed that evoked the maximum mean
 627 spike count response for lowpass, bandpass and highpass tuning curves and as the visual
 628 speed that evoked the minimum mean spike count response for bandreject tuning curves.

629
 630 To determine if there was a statistically significant difference in the preferred visual speeds of
 631 neurons in different visual areas we used a linear mixed-effects (LME) model with the following
 632 equation:

633
 634 $Preferred\ Visual\ Speed \sim Area + (1|Subject) + (1|Direction) + (1|RF)$ (Eq. 3)

635
 636 where *Preferred Visual Speed* is the \log_2 -transformed preferred visual speed of a tuning
 637 curve, *Area* is a categorical variable representing the area the neuron was recorded from,
 638 $(1|Subject)$ is a random intercept that takes into account variation between subjects and
 639 $(1|Direction)$ is a random intercept that takes into account variation between different directions
 640 of motion. Pairwise comparisons between areas were performed using post-hoc *F*-tests and
 641 Bonferroni-Holm-corrected for multiple comparisons.

642
 643 To determine if there was statistically significant differences in the variance of preferred visual
 644 speed distributions between visual areas we used Levene's test for equality of variance.
 645 Pairwise comparisons between areas were Bonferroni-Holm-corrected for multiple comparisons.

646 Stimulus-specific information (SSI) and Mutual Information

647 To calculate SSI we first binned responses into 7 quantiles (after downsampling to 8 trials for
 648 each stimulus condition) to enable a fair comparison between cells with large differences in
 649 firing rates. We then calculated SSI using the following equation from Butts, (2003):

651 $i_{ssi}(s) = \sum_r p(r|s)\{H[S] - H[S|r]\}$ (Eq. 4)

652

653 Where $i_{ssi}(s)$ is the stimulus-specific information for stimulus s , $p(r|s)$ is the conditional
 654 probability distribution of responses r given stimulus s , $H[S]$ is the entropy of the stimulus
 655 distribution and $H[S|r]$ is the conditional entropy associated with response r . The $\{H[S] -$
 656 $H[S|r]\}$ term is collectively known as the specific information of a response r .

657

658 We also computed the total mutual information between a set of spike counts and the stimuli
 659 presented, which in the case of equal trial counts is the mean value of SSI across the different
 660 stimuli presented.

661 **Response excitation and suppression**

662 To determine whether a spike-count response to an individual stimulus condition was excitatory
 663 or suppressed we compared it to the baseline firing rate (200ms before stimulus onset). For
 664 each tuning curve we tested whether there was a significant change in firing rate between pre-
 665 stimulus and stimulus epochs using the Holm-Bonferroni-corrected Wilcoxon signed-rank test.
 666 We then determined responses with significant changes in firing rate as excitatory or
 667 suppressed based on the direction of change in firing rate. To test whether there was a
 668 statistically significant difference in the proportions of excitatory vs suppressive response
 669 between different tuning classes we calculated the proportion of significant responses that were
 670 excitatory for all tuned cells with at least one significant response). We then performed a
 671 Kruskal-Wallis test on these values, grouped by tuning class.

672 **Statistical analysis of tuning strength**

673 We utilised mixed-effects models for many of our statistical analyses. Since multiple neurons
 674 were recorded from each subject, individual measurements are not independent, violating a key
 675 assumption of standard linear models. Mixed-effects models resolve this by simultaneously
 676 estimating the fixed effects of interest (e.g., differences across brain areas or between
 677 behavioural states) and the random variance attributable to grouping factors like individual
 678 subjects. This allowed us to handle unbalanced sample sizes across subjects (i.e. different
 679 numbers of neurons were recorded in each brain area in each animal) and preserves the
 680 statistical power of the full dataset without resorting to averaging, which could obscure effects at
 681 the single-neuron level.

682

683 To test whether there were statistically significant differences in the probability of neurons being
 684 tuned for visual speed or drifting grating direction between different brain areas and behavioural
 685 states we used a generalized linear mixed effects (GLME) model:

686

687 $ResponseVariable \sim Area:State + (1|Subject) + (1|Direction) + (1|RF)$ (Eq. 5)

688

689 Where $ResponseVariable$ was $P(Tuned)$, a binomial response variable indicating whether a set
 690 of responses were tuned (1) or not (0), $Area:State$ denotes an interaction between brain area

691 and behavioural state, $(1|Subject)$ is a random intercept that takes into account variation
 692 between subjects, $(1|Direction)$ is a random intercept that takes into account variation between
 693 different directions of motion and $(1|RF)$ is a random intercept that takes into account variation
 694 due to the presence or not of a significant receptive field. We found that including random
 695 effects did not improve the GLME's used to assess the probability of tuning as a function of
 696 brain area and behavioural state (assessed using likelihood ratio), so we did not include these
 697 variables.

698

699 To test whether there were statistically significant differences in the tuning strength of neurons
 700 between brain areas and behavioural states we used a linear mixed effects (LME) model using
 701 Eq. 5 with the exception that *ResponseVariable* term was a continuously valued Tuning
 702 Strength variable. In this case random effects did improve the performance of the models.

703

704 We used a similar approach to analyse tuning for drifting gratings direction, with the difference
 705 that we included temporal frequency as a random factor instead of motion direction.

706

707 We performed pairwise *F*-tests on model coefficients to test for statistical significance between
 708 different areas and behavioural states. To control the family-wise error rate when performing
 709 multiple comparisons we used the Holm-Bonferroni correction. The raw p-values were first
 710 ordered from smallest to largest. Each p-value was then compared to a progressively less
 711 stringent alpha level, calculated as $\alpha/(m-i+1)$, where α was set at 0.05, m was the total number
 712 of comparisons, and i was the p-value's rank. The procedure ceased at the first instance where
 713 a p-value exceeded its adjusted alpha level, and all subsequent comparisons were considered
 714 non-significant.

715 Receptive field significance

716 We used pre-computed p-values for the significance of receptive fields (see ³⁰ for details) as
 717 provided by the Allen Institute SDK. Briefly, a 2D histogram of spike counts is computed in
 718 response to presentations of a 9x9 grid of Gabor stimuli. A chi-square test statistic was then
 719 computed as follows:

720

$$721 \quad \chi^2 = \sum_{i=0}^n \frac{(E_i - O_i)^2}{E_i} \quad (\text{Eq. 6})$$

722 Where O_i is the average response of a cell at stimulus location i and E_i is the expected grand
 723 average response per stimulus presentation.

724

725 The statistical significance of this Chi-square value was then determined by comparing it against
 726 the null distribution of test statistics calculated after shuffling stimulus locations.

727

728 Decoding analysis

729 To decode visual speed from the spike counts of neurons we used a Poisson Independent
 730 Decoder (PID) that assumes independent neurons^{42–44}. For each session, populations of 10
 731 neurons were randomly selected without replacement from individual visual areas. Decoding
 732 was conducted separately for each direction of motion.

733
 734 To compare decoding performance across populations recorded in different sessions, we
 735 standardized the number of trials used for decoding by limiting the dataset to 8 trials per
 736 stimulus condition (8 trials × 7 speeds = 56 trials total). Leave-one-out cross-validation was
 737 used, wherein spike counts from all but one trial per condition (9 trials × 7 speeds = 63 trials)
 738 were used to train the decoder, and the remaining trials (1 trial × 7 speeds = 7 trials) were used
 739 to test it. This process was repeated until all trials were tested. Decoder performance was
 740 determined as the proportion of correctly classified test trials.

741 For each trial, the predicted visual speed was determined by maximizing the following log-
 742 likelihood function:

$$743 \quad \log L(\theta) = \sum_{i=1}^N W_i(\theta)r_i - B(\theta) \quad (\text{Eq. 7})$$

744 Where i indexes over N neurons, $W_i(\theta)$ is the log of the mean spike count of neuron i for a
 745 given stimulus θ learned from training data, r_i is the number of spikes produced by neuron i on
 746 the trial being predicted and $B(\theta)$ is a bias correction term calculated as the sum (over N
 747 neurons) of mean spike counts for stimulus θ .

748
 749 To test whether there were statistically significant differences between behavioural states for
 750 each brain area we first fit an LME with Eq. 5, where the *Response Variable* was Decoding
 751 Performance. We then performed pairwise *F*-tests on model coefficients (see analysis of tuning
 752 above).

1 References

- 2 1. Van Essen, D. C. Visual areas of the mammalian cerebral cortex. *Annu. Rev. Neurosci.* **2**,
3 227–263 (1979).
- 4 2. Wang, Q. & Burkhalter, A. Area map of mouse visual cortex. *J. Comp. Neurol.* **502**, 339–357
5 (2007).
- 6 3. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. *Trends*
7 *Neurosci.* **15**, 20–25 (1992).
- 8 4. Van Essen, D. C. & Gallant, J. L. Neural mechanisms of form and motion processing in the
9 primate visual system. *Neuron* **13**, 1–10 (1994).
- 10 5. Andersen, R. A. Neural mechanisms of visual motion perception in primates. *Neuron* **18**,
11 865–872 (1997).
- 12 6. Milner, D. & Goodale, M. The Visual Brain in Action. *Vis. Brain Action* **9780198524**, 1–320
13 (2006).
- 14 7. Pisella, L., Binkofski, F., Lasek, K., Toni, I. & Rossetti, Y. No double-dissociation between
15 optic ataxia and visual agnosia: Multiple sub-streams for multiple visuo-manual integrations.
16 *Neuropsychologia* **44**, 2734–2748 (2006).
- 17 8. Wang, Q., Gao, E. & Burkhalter, A. Gateways of ventral and dorsal streams in mouse visual
18 cortex. *J. Neurosci.* **31**, 1905–1918 (2011).
- 19 9. Wang, Q., Sporns, O. & Burkhalter, A. Network analysis of corticocortical connections
20 reveals ventral and dorsal processing streams in mouse visual cortex. *J. Neurosci.* **32**,
21 4386–4399 (2012).
- 22 10. Glickfeld, L. L., Andermann, M. L., Bonin, V. & Reid, R. C. Cortico-cortical projections in
23 mouse visual cortex are functionally target specific. *Nat. Neurosci.* **16**, 219–226 (2013).
- 24 11. Wang, Q. & Burkhalter, A. Stream-related preferences of inputs to the superior colliculus
25 from areas of dorsal and ventral streams of mouse visual cortex. *J. Neurosci.* **33**, 1696–

26 1705 (2013).

27 12. Andermann, M. L., Kerlin, A. M., Roumis, D. K., Glickfeld, L. L. & Reid, R. C. Functional
28 specialization of mouse higher visual cortical areas. *Neuron* **72**, 1025–1039 (2011).

29 13. Marshel, J. H., Garrett, M. E., Nauhaus, I. & Callaway, E. M. Functional specialization of
30 seven mouse visual cortical areas. *Neuron* **72**, 1040–1054 (2011).

31 14. Murakami, T., Matsui, T. & Ohki, K. Functional segregation and development of mouse
32 higher visual areas. *J. Neurosci.* **37**, 9424–9437 (2017).

33 15. Nishio, N. *et al.* Higher visual responses in the temporal cortex of mice. *Sci. Rep.* **8**, 1–12
34 (2018).

35 16. Han, X., Vermaercke, B. & Bonin, V. Diversity of spatiotemporal coding reveals specialized
36 visual processing streams in the mouse cortex. *Nat. Commun.* **13**, 3249 (2022).

37 17. Yu, Y., Stirman, J. N., Dorsett, C. R. & Smith, S. L. Selective representations of texture and
38 motion in mouse higher visual areas. *Curr. Biol.* **32**, 2810-2820.e5 (2022).

39 18. Han, X. & Bonin, V. Higher-order cortical and thalamic pathways shape visual processing
40 streams in the mouse cortex. *Curr. Biol.* **0**, (2024).

41 19. Zhuang, J. *et al.* An extended retinotopic map of mouse cortex. *eLife* **6**, (2017).

42 20. Garrett, M. E. *et al.* Topography and areal organization of mouse visual cortex. *J. Neurosci.*
43 **34**, 12587–12600 (2014).

44 21. Saleem, A. B. Two stream hypothesis of visual processing for navigation in mouse. *Curr.*
45 *Opin. Neurobiol.* **64**, 70–78 (2020).

46 22. Busse, L. *et al.* Sensation during Active Behaviors. *J. Neurosci. Off. J. Soc. Neurosci.* **37**,
47 10826–10834 (2017).

48 23. Parker, P. R. L., Brown, M. A., Smear, M. C. & Niell, C. M. Movement-Related Signals in
49 Sensory Areas: Roles in Natural Behavior. *Trends Neurosci.* **43**, 581–595 (2020).

50 24. Horrocks, E. A. B., Mareschal, I. & Saleem, A. B. Walking humans and running mice:
51 perception and neural encoding of optic flow during self-motion. *Philos. Trans. R. Soc. B*

52 *Biol. Sci.* **378**, 20210450 (2022).

53 25. Horrocks, E. A. B., Rodrigues, F. R. & Saleem, A. B. Flexible neural population dynamics
54 govern the speed and stability of sensory encoding in mouse visual cortex. *Nat. Commun.*
55 **15**, 6415 (2024).

56 26. Saleem, A. B., Ayaz, A. I., Jeffery, K. J., Harris, K. D. & Carandini, M. Integration of visual
57 motion and locomotion in mouse visual cortex. *Nat. Neurosci.* **16**, 1864–1869 (2013).

58 27. Erisken, S. *et al.* Effects of locomotion extend throughout the mouse early visual system.
59 *Curr. Biol.* **24**, 2899–2907 (2014).

60 28. Blot, A. *et al.* Visual intracortical and transthalamic pathways carry distinct information to
61 cortical areas. *Neuron* **109**, 1996-2008.e6 (2021).

62 29. Christensen, A. J. & Pillow, J. W. Reduced neural activity but improved coding in rodent
63 higher-order visual cortex during locomotion. *Nat. Commun.* **13**, 1676 (2022).

64 30. Siegle, J. H. *et al.* Survey of spiking in the mouse visual system reveals functional hierarchy.
65 *Nature* **592**, 86–92 (2021).

66 31. Allen Institute for Brain Science. The Allen Brain Observatory Visual Coding Neuropixels
67 Dataset. (2019).

68 32. Rodieck, R. W. Receptive Fields in the Cat Retina: A New Type. *Science* **157**, 90–92
69 (1967).

70 33. Tailby, C. *et al.* A New Code for Contrast in the Primate Visual Pathway. *J. Neurosci.* **27**,
71 3904–3909 (2007).

72 34. Niell, C. M. & Stryker, M. P. Modulation of Visual Responses by Behavioral State in Mouse
73 Visual Cortex. *Neuron* **65**, 472–479 (2010).

74 35. Shannon, C. E. A Mathematical Theory of Communication. *Bell Syst. Tech. J.* **27**, 379–423
75 (1948).

76 36. Butts, D. How much information is associated with a particular stimulus? *Netw. Comput.*
77 *Neural Syst.* **14**, 177–187 (2003).

78 37. Oh, S. W. *et al.* A mesoscale connectome of the mouse brain. *Nature* **508**, 207–214 (2014).

79 38. Tohmi, M., Meguro, R., Tsukano, H., Hishida, R. & Shibuki, K. The extrageniculate visual
80 pathway generates distinct response properties in the higher visual areas of mice. *Curr.
81 Biol.* **24**, 587–597 (2014).

82 39. Roth, M. M. *et al.* Thalamic nuclei convey diverse contextual information to layer 1 of visual
83 cortex. *Nat. Neurosci.* **19**, 299–307 (2016).

84 40. Dadarlat, M. C. & Stryker, M. P. Locomotion Enhances Neural Encoding of Visual Stimuli in
85 Mouse V1. *J. Neurosci. Off. J. Soc. Neurosci.* **37**, 3764–3775 (2017).

86 41. Mineault, P. J., Tring, E., Trachtenberg, J. T. & Ringach, D. L. Enhanced spatial resolution
87 during locomotion and heightened attention in mouse primary visual cortex. *J. Neurosci.* **36**,
88 6382–6392 (2016).

89 42. Zhang, K., Ginzburg, I., McNaughton, B. L. & Sejnowski, T. J. Interpreting neuronal
90 population activity by reconstruction: Unified framework with application to hippocampal
91 place cells. *J. Neurophysiol.* **79**, 1017–1044 (1998).

92 43. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information by neural
93 populations. *Nat. Neurosci.* **9**, 690–696 (2006).

94 44. Graf, A. B. A., Kohn, A., Jazayeri, M. & Movshon, J. A. Decoding the activity of neuronal
95 populations in macaque primary visual cortex. *Nat. Neurosci.* **14**, 239–247 (2011).

96 45. Sit, K. K. & Goard, M. J. Distributed and retinotopically asymmetric processing of coherent
97 motion in mouse visual cortex. *Nat. Commun.* **11**, 3565 (2020).

98 46. McManus, M., D'Amour, S. & Harris, L. R. Using optic flow in the far peripheral field. *J. Vis.*
99 **17**, (2017).

100 47. Caramenti, M., Pretto, P., Lafortuna, C. L., Bresciani, J.-P. & Dubois, A. Influence of the
101 Size of the Field of View on Visual Perception While Running in a Treadmill-Mediated Virtual
102 Environment. *Front. Psychol.* **10**, (2019).

103 48. Solari, F. *et al.* A Biologically-Inspired Model to Predict Perceived Visual Speed as a

104 Function of the Stimulated Portion of the Visual Field. *Front. Neural Circuits* **13**, (2019).

105 49. Murgas, K. A., Wilson, A. M., Michael, V. & Glickfeld, L. L. Unique spatial integration in
106 mouse primary visual cortex and higher visual areas. *J. Neurosci.* **40**, 1862–1873 (2020).

107 50. Gattas, R., Sousa, A. P., Mishkin, M. & Ungerleider, L. G. Cortical projections of area V2 in
108 the macaque. *Cereb. Cortex* **7**, 110–129 (1997).

109 51. Gu, Y., Watkins, P. V., Angelaki, D. E. & DeAngelis, G. C. Visual and nonvisual
110 contributions to three-dimensional heading selectivity in the medial superior temporal area.
111 *J. Neurosci.* **26**, 73–85 (2006).

112 52. Ungerleider, L. G., Galkin, T. W., Desimone, R. & Gattass, R. Cortical Connections of Area
113 V4 in the Macaque. *Cereb. Cortex* **18**, 477–499 (2008).

114 53. Dyballa, L., Hoseini, M. S., Dadarlat, M. C., Zucker, S. W. & Stryker, M. P. Flow stimuli
115 reveal ecologically appropriate responses in mouse visual cortex. *Proc. Natl. Acad. Sci. U.*
116 *S. A.* **115**, 11304–11309 (2018).

117 54. Bolaños, F. *et al.* Efficient coding of natural images in the mouse visual cortex. *Nat.*
118 *Commun.* **15**, 2466 (2024).

119 55. Allen Institute for Brain Science. *Allen Brain Observatory Neuropixels Visual Coding*.
120 [https://brainmapportal-live-4cc80a57cd6e400d854-f7fdcae.divio-
121 media.net/filer_public/80/75/8075a100-ca64-429a-b39a-
122 569121b612b2/neuropixels_visual_coding_-_white_paper_v10.pdf](https://brainmapportal-live-4cc80a57cd6e400d854-f7fdcae.divio-media.net/filer_public/80/75/8075a100-ca64-429a-b39a-569121b612b2/neuropixels_visual_coding_-_white_paper_v10.pdf) (2019).

123 56. Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. & Kenneth D., H. Kilosort: realtime
124 spike-sorting for extracellular electrophysiology with hundreds of channels. *bioRxiv* 061481
125 (2016) doi:10.1101/061481.

126 57. Laboratory, I. B. *et al.* Reproducibility of in vivo electrophysiological measurements in mice.
127 2022.05.09.491042 Preprint at <https://doi.org/10.1101/2022.05.09.491042> (2024).

128 58. Bar-Joseph, Z., Gifford, D. K. & Jaakkola, T. S. Fast optimal leaf ordering for hierarchical
129 clustering. *Bioinformatics* **17**, 22–29 (2001).

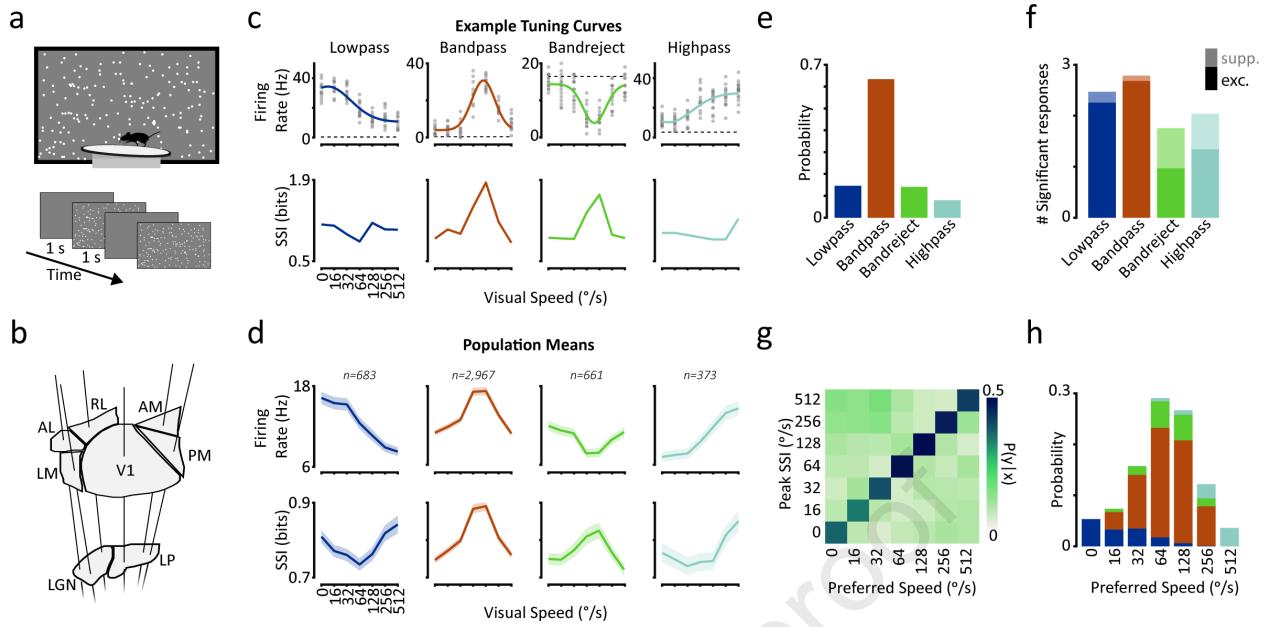
130 **Supplemental information**

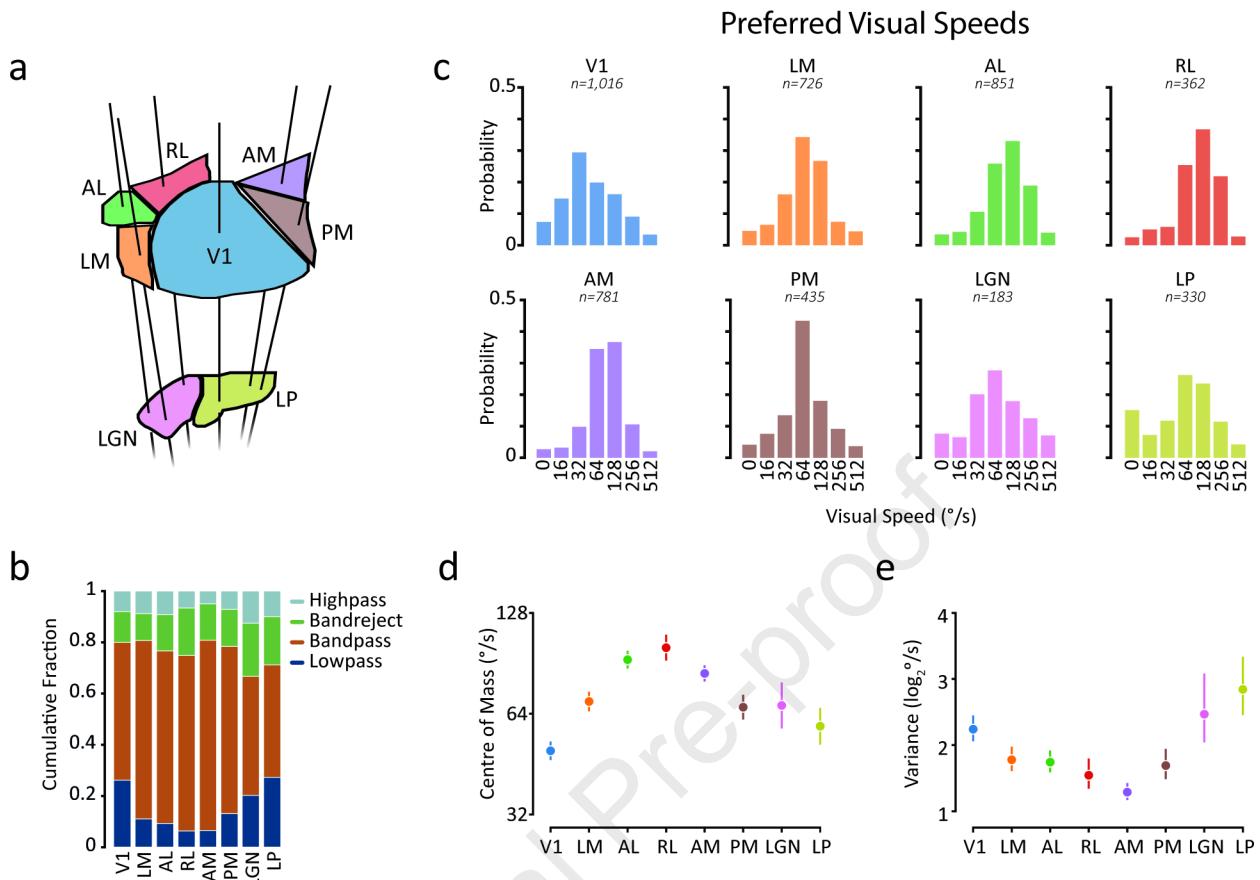
131 Supplementary Figures. Figures S1–S6.

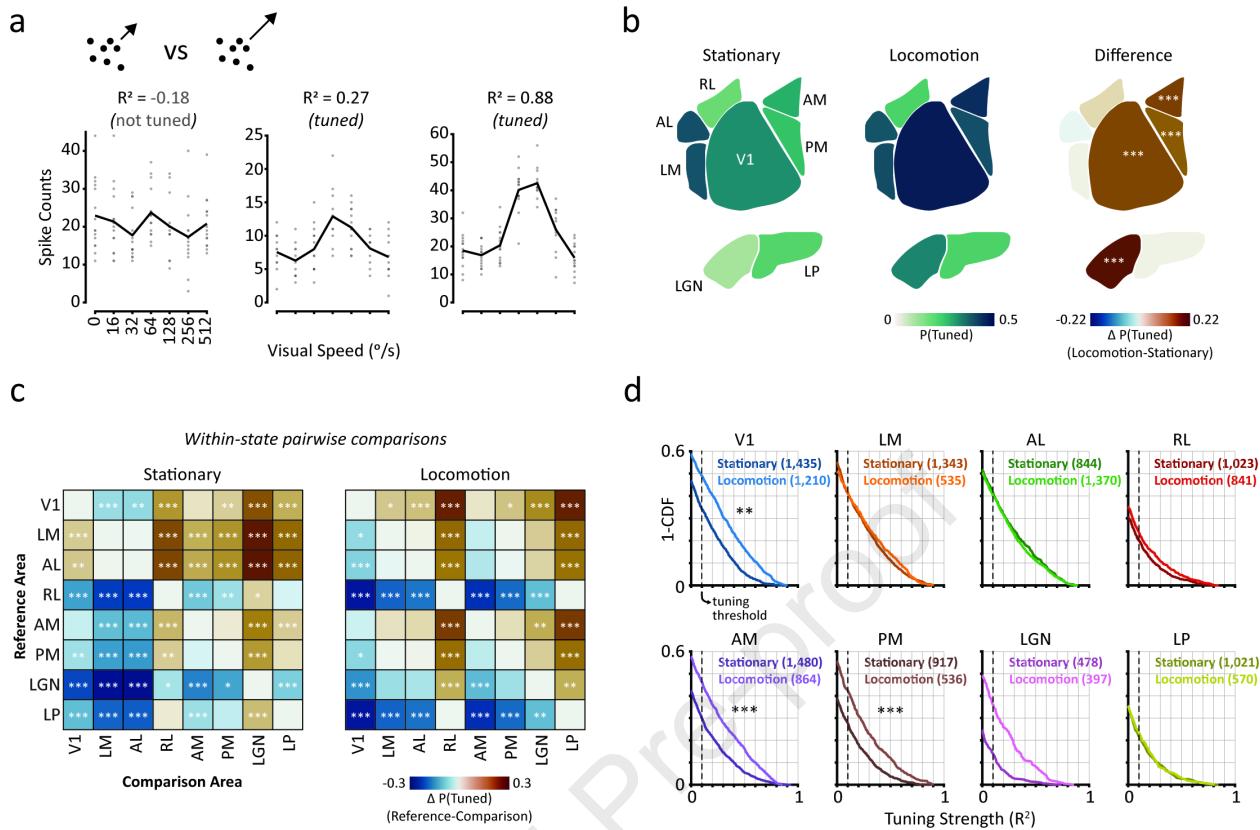
132 Table S1. Overview of sessions included for analysis.

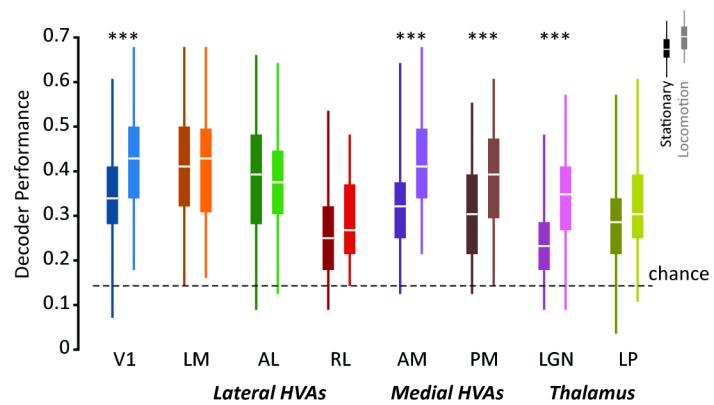
133 Table S2. Supplementary Statistical Information.

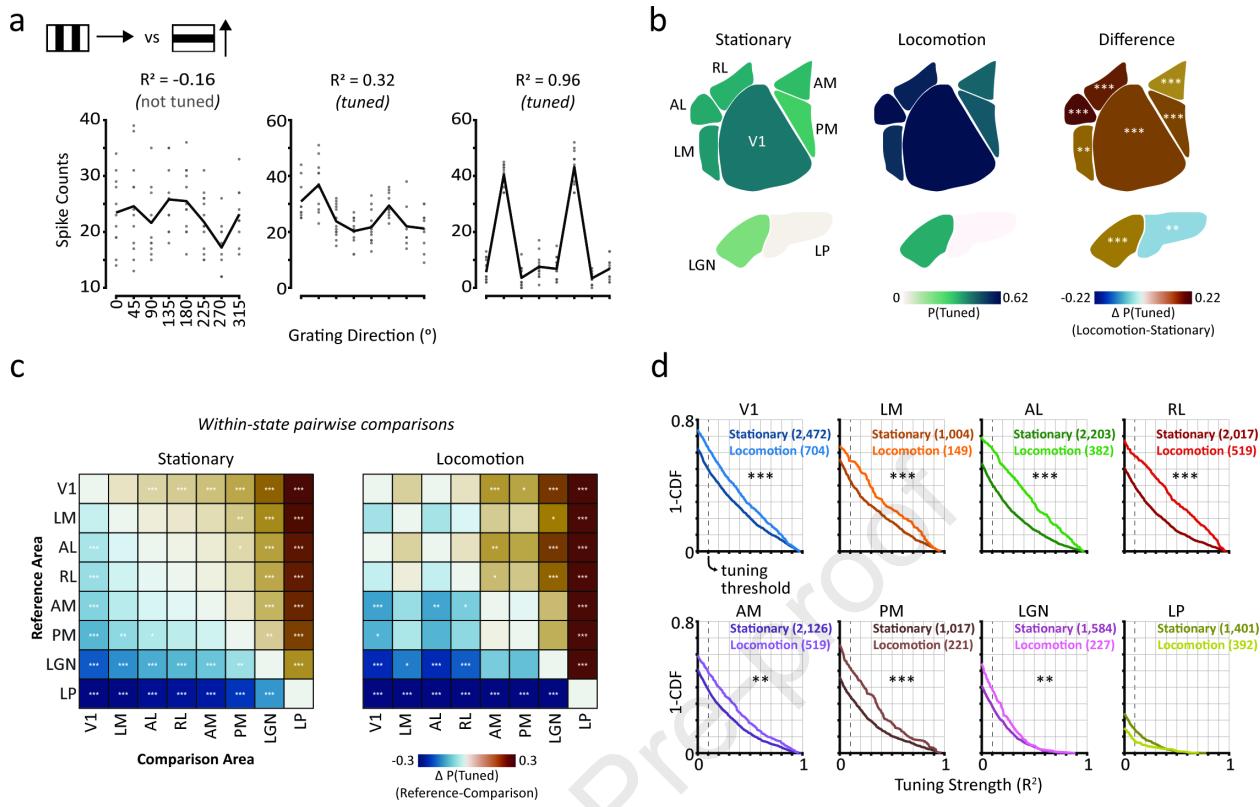
Journal Pre-proof











- We characterised visual speed encoding in 1000s of neurons in 8 mouse visual areas
- Dot field visual speed tuning properties varied between visual areas
- Locomotion selectively enhanced visual speed encoding in medial higher visual areas
- In contrast, locomotion non-selectively enhanced drifting grating direction encoding

Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Deposited data		
Allen Brain Observatory - Visual Coding - Neuropixels Dataset	Allen Institute for Brain Science	brain-map.org/explore/circuits/visual-coding-neuropixels
Processed data Alen Brain Observatory data	This paper; Figshare	https://doi.org/10.5522/04/30136174.v1
Experimental models: Organisms/strains		
C57BL/6J mice	Jackson Laboratories	N/A
Pvalb-IRES-Cre × Ai32 mice	Allen Institute for Brain Science	N/A
Sst-IRES-Cre × Ai32 mice	Allen Institute for Brain Science	N/A
Vip-IRES-Cre × Ai32 mice	Allen Institute for Brain Science	N/A
Software and algorithms		
Matlab 2023a	MathWorks	N/A
Custom analysis code	Github & Zenodo	https://github.com/eabhorrocks/HorrocksSaleem_AllenVisSpeerd (https://doi.org/10.5281/zenodo.17512798)