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ABSTRACT: Toward the Net-Zero goal, deciphering trade-offs in
strategic decisions for the role of hydrogen is vital for transitioning
to low-carbon energy systems. This work proposes a two-stage
stochastic optimization framework to provide insights for infra-
structure investments in hydrogen production, storage, trans-
mission, and CO2 capture and storage. The mixed-integer linear
programming (MILP) model aims to minimize total system cost
with detailed spatiotemporal resolution to meet hydrogen demand
in Great Britain. Uncertainty is considered in hydrogen demand,
gas, and technology costs, as well as renewables and biomass
availability. To address the resulting combinatorial complexity,
scenarios are reduced using forward scenario reduction. Opti-
mization results indicate that a combination of autothermal
reforming and biomass gasification with carbon capture and storage (CCS) is the most cost-efficient strategy under uncertainty.
A what-if analysis explores the impact of water electrolysis penetration on the production mix. The results demonstrate that
considering uncertainties provides a risk-averse strategy for decision-making in low-carbon hydrogen pathways.

1. INTRODUCTION
Over the last few decades, combustion of fossil fuels has acted
as the primary driver behind the increased concentrations of
greenhouse gases in the atmosphere. This phenomenon has
adverse effects on the planet, including extreme heat, floods,
and wildfires, due to global temperature rise by almost 1 °C
since the mid-1970s.1 In 2023, U.K.’s net greenhouse
emissions were estimated to be 384.2 MtCO2e, with CO2
emissions reduced by 52.7% compared to 1990 levels.2

The major emitting sector in the U.K. is transportation,
accounting for 29% of all greenhouse gas emissions. Moreover,
buildings and industry sectors have a significant impact on the
environmental footprint, accounting for 20.2 and 13.7% of
total emissions.2 However, further reduction is required toward
a sustainable and economically efficient pathway to Net-Zero.
The U.K. was the first major economy globally that legislated
to reach Net-Zero carbon emissions by 2050. A Net-Zero
strategy was published setting out clear policies and proposals
for a decarbonized economy.3 In this context, the U.K.
government has set a goal of 75% emissions decrease from
public sector buildings by 2037 compared to a 2017 baseline.4

Thus, there is an urgency to explore low-carbon alternative
pathways, such as hydrogen, ammonia, and methane, to replace
carbon-based fuels. However, the complexity of energy systems
constitute a great challenge toward the Net-Zero transition.5

To address this issue, many works have focused on the
introduction of alternative fuels in future energy systems
investigating cost-optimal investments while reducing the
environmental impact.6−10

Hydrogen has emerged as a key vector in decarbonizing
energy systems either with its direct use as an alternative to
natural gas or as an energy carrier for renewable energy
generation. Recognizing the importance of a hydrogen-led
economy, the U.K. government has set a target of 5 GW of
low-carbon hydrogen production capacity by 2050.11 The
development of new hydrogen infrastructure networks is
inevitable to achieve the aforementioned goal. Consequently,
novel modeling tools for the hydrogen supply chain are
required to provide useful insights regarding strategical
investment decisions.
In the last decades, a considerable body of literature has

emerged addressing hydrogen supply chain infrastructure
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design using optimization-based approaches. More specifically,
mixed-integer linear programming (MILP) evolution models
have been developed for the hydrogen infrastructure invest-
ment decisions to meet hydrogen demand for fuel cell
vehicles.12−16 The aforementioned models include hydrogen
production, storage, and distribution through road using a
representative day per time period. Moreover, hydrogen
transmission through pipelines has been studied using spatially
explicit MILP frameworks.17−19

Industrial and mobility hydrogen markets were investigated
using a multiobjective optimization approach including
economic, environmental, and social aspects.20,21 Furthermore,
an MILP model was developed for a green hydrogen supply
chain to satisfy hydrogen industrial and maritime demand.22

The introduction of hydrogen in the heating sector was studied
using spatiotemporal frameworks.23,24 Given the fact that
heating demand has fluctuations during the day, hourly
temporal resolution is incorporated for this case to determine
both design and operational decisions.
Notwithstanding, the realization of a hydrogen economy by

2050 relies on several uncertain factors such as the cost and
availability of hydrogen technologies, gas and electricity prices,
and policy frameworks. Therefore, it is crucial to study the
uncertainties related to hydrogen infrastructure planning to
provide a viable energy transition strategy for low-carbon
hydrogen investments.
Therefore, in the last decades, studies have focused on the

introduction of uncertain parameters in hydrogen models using
optimization-based methods. Table 1 provides an overview of
hydrogen models with uncertainty considerations. As illus-
trated in Table 1, the majority of the works are formulated as
MILP models, while flexible programming (FP) has also been
employed.25 With respect to the temporal resolution, it is
observed that most of the models are multiperiod (MP), while
only a study considers multiple periods along with hourly
resolution (H) within a day.
As indicated in Table 1, a significant portion of research

focuses on the uncertainty of hydrogen demand26−33 (D).
Besides demand, uncertain wind34 and primary energy sources
availability35 (A) have been investigated, which are key
elements in investment decisions. Moreover, there are inherent
uncertainties in future hydrogen production cost estimates
regarding technologies with a low readiness level. Thus, studies
in the literature examined the role of uncertainty in operating

costs25 (C). Additionally, the combination of different
uncertain variables is explored, including demand, resources
availability as well as feedstock (F) and technology costs,
which further complicate decision-making in hydrogen invest-
ments.34,36,37

Concerning the uncertainty approach, most studies have
employed a two-stage stochastic programming approach (S) to
capture uncertainties26,28−30,37 while multistage stochastic
programming has been also implemented by fewer
works.27,32,35 Beyond stochastic programming, other optimi-
zation approaches have been utilized, including chance
constrained programming34 (C), probabilistic fuzzy program-
ming25 (F), and robust optimization33 (R).
Stochastic programming models are widely used in the

literature to incorporate uncertainty.38,39 Although these
models are computationally intensive due to the large number
of equations and variables, advancements in computational
capacity allow us to implement stochastic programming to
process systems applications. To address the combinatorial
complexity of stochastic programming, decomposition techni-
ques are applied, such as Benders decomposition and
Lagrangean relaxation.38

In this work, a multiperiod spatially explicit two-stage
stochastic framework is developed for hydrogen infrastructure
planning to meet residential, commercial, industrial, and
transportation heating hydrogen demand. The model considers
dual temporal resolution, including 10-year time steps and
representative days for strategic and operational decisions,
respectively. Uncertainty is incorporated in hydrogen demand,
natural gas price, biomass availability, seasonality, and water
electrolysis and wind and solar farm costs. The applicability of
the model is demonstrated through a case study of heat
demand in Great Britain (GB). The contributions of this paper
focus on:

• The development of a two-stage stochastic multiperiod
hydrogen optimization model with spatiotemporal
resolution;

• The combination of different uncertainty parameters
and the development of a scenario reduction framework
to reduce combinatorial complexity;

• The investigation of uncertainty effect in decision-
making regarding hydrogen infrastructure planning; and

• The impact of electrolytic hydrogen production on
investment planning.

Table 1. Overview of Hydrogen Planning models under Uncertainty

model type uncertainty approach spatial resolution
temporal
resolution uncertain parameters

paper MILP FP S C R F MP H D C F A

Almansoori and Shah27 x x x x x
Camara et al.35 x x x x x
Dayhim et al.28 x x x x x
Fazli-Khalaf et al.25 x x x x x
Hwangbo et al.30 x x x x
Kim et al.26 x x x x
Nunes et al.29 x x x x x
Ochoa-Bique et al.32 x x x x x
Robles et al.31 x x x x x
Sabio et al.36 x x x x x x
Yang et al.34 x x x x x x
Zhou et al.33 x x x x x x
proposed work x x x x x x x x x
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The remainder of the paper is structured as follows: The
problem description is given in Section 2. The optimization
framework is described in Section 3. A case study of hydrogen
infrastructure planning in Great Britain is described in Section
4. Results analysis is provided in Section 5. Finally, Section 6
summarizes the concluding remarks.

2. PROBLEM DESCRIPTION
2.1. Problem Statement. The goal of this work is the

development of a two-stage stochastic programming frame-
work for the optimal design of a hydrogen investment strategy
over a given planning horizon. The proposed optimization
framework aims to meet hydrogen demand and satisfy the Net-
Zero CO2 emissions target. Moreover, it investigates the
optimal infrastructure decisions in terms of type, capacity and
location of hydrogen production and storage investments,
capacity and location of H2 and CO2 pipelines, as well as the
location of CO2 reservoirs. Regarding the operational
decisions, the model aims to determine hydrogen production,
storage, and transmission rates within a set of representative
days.
Uncertainty is introduced in hydrogen demand, gas price,

biomass availability, technology costs, and seasonality (renew-
ables availability). First-stage (here-and-now) decisions, which
are common in all of the scenarios, include the optimal
location and capacity of production plants, storage sites as well
as H2 and CO2 pipeline connections. All of the other variables,
including operating decisions, are second-stage (wait-and-see)
decisions, which are scenario-dependent. The overall problem
statement can be summarized as follows. Given:

• Hydrogen demand and renewables availability hourly
profiles in each region, time step, representative day, and
scenario;

• Capital and operating costs for hydrogen production
plants, hydrogen storage sites, renewable farms, and H2
and CO2 pipelines;

• Minimum and maximum capacity, ramp rates, and
lifetime of production plants and storage sites;

• Minimum and maximum flow rate limits in pipelines;
• Capacity of hydrogen caverns and CO2 reservoirs;
• Hydrogen import price;
• Carbon tax and capture rates for CO2 emissions as well
as CO2 emission targets for each time step;

• Biomass and land availability.
Determine the optimal:

• Capacity and location of production plants and storage
sites;

• H2 production and storage rates in each region, time
step, representative day, time slice, and scenario;

• H2 and CO2 pipeline investments between regions;
• H2 and CO2 flow rates between regions in each time
step, representative day, time slice, and scenario;

• Electricity generation of renewable sources in each
region, time step, representative day, and time slice;

• H2 import rates in each time step, representative day,
and time slice.

So as to minimize the total system cost subject to CO2
emission targets, the key assumptions of the proposed model
are summarized below:

• Hourly gas demand profiles are used as a proxy for
industrial, residential, and commercial heating de-
mand;40

• Transportation demand is distributed equally to the
regions;

• Regional hydrogen transmission takes place through
pipelines;

• Transmission distances are calculated as the distance
between centroids of each region;

• Hydrogen pipeline connections are designed based on
the layout of the incumbent gas pipeline network;

• Hydrogen distribution within a region is not considered;
• Electricity generated from renewable farms is used in
water electrolysis units;

• Variable operating costs for renewable farms are not
considered;

• Curtailment costs are not taken into account;
• Gaseous hydrogen is solely considered.
2.2. Spatiotemporal Resolution. Spatial resolution is a

key feature of the model to capture regional differences
regarding hydrogen demand, renewables, and land availability.
Thus, GB is divided into 13 regions, as depicted in Figure 1,
according to the local distribution zones (LDZ) of the
incumbent gas network.41

Concerning temporal resolution illustrated in Figure 2, the
model considers three 10-year time steps (2030−2039, 2040−
2049, and 2050−2059) in which investment decisions can take
place. For each time step, the typical year is divided into 4
calendar seasons. Each season is represented by one typical day
(cluster), which is selected using the k-medoids method based
on real data hourly profiles for residential, commercial, and
industrial demand as well as solar, wind onshore, and wind

Figure 1. Hydrogen demand allocation in Great Britain.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.4c04211
Ind. Eng. Chem. Res. 2025, 64, 7431−7451

7433

https://pubs.acs.org/doi/10.1021/acs.iecr.4c04211?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c04211?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c04211?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c04211?fig=fig1&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.4c04211?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


offshore availability. The K-medoids clustering method is
employed as medoids (real data) can provide more accurate
results due to higher fluctuations than centroids (average
profiles).42 Operational decisions, such as production rate and
flow rates between regions, are determined at the daily level. In
this level, each day is divided into N time slices, which are
clustered using an MILP model, as presented in Appendix B.
Additionally, the peak demand day with hourly resolution is
introduced to ensure the ability of the system to meet the high
demand peaks.
2.3. Superstructure. This case study explores infra-

structure investments regarding hydrogen production, storage,
and transmission technologies, along with a carbon capture
and storage (CCS) system, as depicted in Figure 3, to meet
hydrogen residential, commercial, industrial, and transporta-
tion demand.
The considered hydrogen production technologies are steam

methane reforming (SMR) with CCS, autothermal reforming
(ATR) with CCS, biomass gasification (BG) with CCS, and
water electrolysis (WE). Concerning water electrolysis,
polymer electrolyte membrane (PEM) technology is employed
due to its high operating density and reduced environmental
impact.43 The electricity required for WE is generated from
renewable technologies, including solar, onshore, and offshore
wind farms.
Hydrogen storage is crucial for meeting future demands in

the hydrogen economy. This study takes into account two
types of storage vessels: high pressure storage vessel (HPSV)
and medium pressure storage vessel (MSPV). Additionally, the

installation of hydrogen storage caverns is considered.
Hydrogen transmission between regions takes place through
pipelines of 1 m diameter.
To minimize greenhouse gas emissions and environmental

impact, SMR, ATR, and BG technologies are integrated with a
CCS system. The CO2 emissions captured from the
production units are transported to CO2 reservoirs via onshore
and offshore pipelines with a diameter of 1.2 m. The CO2
reservoirs employed in this study can be established in the
North and Irish Sea. More specifically, CO2 reservoirs are
grouped into four GB offshore regions, including one in the
East Irish Sea Basin and three in the North Sea (northern,
central and southern).44

Comprehensive techno-economic data for the model were
collected from various references and are available in our
previous work.45

3. OPTIMIZATION FRAMEWORK
3.1. Mathematical Modeling. In this section, we present

a summary of the mathematical formulation based on the
model proposed in our previous work,45 which has now been
modified as a two-stage stochastic multiperiod spatially explicit
MILP model. A detailed description of the model constraints
can be found in Appendix A.
In stochastic formulations, two kinds of optimization

variables are considered: first-stage decision variables, which
are common in all scenarios (here-and-now), and second-stage
decision variables, which are different from scenario to scenario
(wait-and-see). First-stage decisions are the investment

Figure 2. Temporal resolution of the model.

Figure 3. Hydrogen and CO2 superstructure.
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decisions, including the optimal location and capacity of
production plants, storage sites, renewable farms, as well as H2
and CO2 pipeline connections. All of the other variables
constitute second-stage decisions, which are operational
decisions (e.g., production rates, flow rate between regions,
carbon emissions). This work incorporates uncertainties in
different parameters, including hydrogen demand, renewables,
and biomass availability as well as water electrolysis and solar
and wind farm technologies costs.

3.1.1. Total System Cost. The objective of the model is the
minimization of the total system cost (TSC), which is a
summation of the first-stage cost (TCF) and second-stage cost
(TCkS) in each scenario k multiplied by the probability (pbk) of
the occurrence of each scenario k, as presented in eq 1.

= + ·min TSC TC pb TC
k

k k
F S

(1)

The first-stage total cost (TCF) consists of the storage
capital cost (SCC), pipeline capital cost (PLCC), and
operational cost (PLOCk), as shown in eq 2. The second-
stage total cost (TCkS) consists of the production capital cost
(PCCk), production operational cost (POCk), storage opera-
tional cost (SOCk), carbon emissions cost (CECk), hydrogen
import costs (IICk), renewables cost (ReCk), biomass (BCk),
and natural gas (NGCk) costs, as presented in eq 3.

= + +TC SCC PLCC PLOCF (2)

= + + + +
+ + +

k

TC PCC POC SOC CEC IIC
ReC BC NGC

K

k k k k k k

k k k

S

(3)

A detailed description of system costs can be found in
Appendix A in eq A1 (A11).

3.1.2. Mass and Energy Balances. Hydrogen energy
balance is described by eq 4. More specifically, in each region
g, time step t, representative day (cluster) c and time slice h,
the total production rate (Prpgtchk), the flow rate (Qg′gtchk) to
region g, the rejected hydrogen from storage site s and the
imported hydrogen (Impgtchk) are equal to the flow rate
(Qgg′tchk) from region g, the injected hydrogen to storage sites s
(QgstchkI ), and the total demand (TDgtchk).

+ + +

= + +

g G t T c C h H k K

Pr Q Q Imp

Q Q TD

, , , ,

p P
pgtchk

g N
g gtchk

s GS
gstckh
R

gtchk

g N
gg tchk

s GS
gstchk
I

gtchk

g g
pipe

gs

gg
pipe

gs

(4)

The mass balance of CO2 is expressed by eq 5. The left-hand
side represents the onshore CO2 flow rates to region g from
other regions g′ (Qg′gtchk) and the captured CO2, which is equal
to the hydrogen production rate (Prpgtch) multiplied by a
coefficient of CO2 capture for each production technology type
(yptc ). The right-hand side represents the onshore CO2 flow
rate from region g to other regions g′ (Qgg′tchk) and the
offshore CO2 flow rate (Q grtchk) from region g to reservoir r.

+

= +

g G t T c C h H k K

Q y Pr

Q Q

, , , ,

g N
g gtchk

p P
pt
c

pgtchk

g N
gg tchk

r GR
grtchk

g g

gg gr

(5)

3.1.3. Capacity Expansion. Capacity expansion decisions
are here-and-now, as infrastructure investments are common
for all scenarios. The production plants availability is defined
by eq 6.

= +

t

NP NP IP IP

p P, g G, T

t
t n

pgt pg, 1 pgt
pg, (

LT
)p

P

(6)

where NPpgt stands for the available production plants, IPpgt
stands for the newly invested plants, and LTpP is the lifetime of
production technology p. Storage site availability is presented
in eq 7.

= +

{ } t

NS NS IS IS

s, g GS , T

t t n
sgt sg, 1 sgt sg, (

LTs
)

gs

s

(7)

where NSsgt and ISsgt are the available and the new invested
storage sites, respectively, while LTss is the lifetime of storage
technology s, and n is the duration of each time step.
Pipeline availability for hydrogen transmission between

regions and to the storage caverns as well as for onshore and
offshore CO2 transmission are defined by eqs 8−11.

= +

{ } <

AY AY Y Y

g g N t T g g, , ,

t t t t n

gg
pipe

gg gg , 1 dgg gg , ( LT )
pipe

(8)

= +

{ }

AY AY Y Y

s SC g G t T, ,

gst
S

gs t
S

gst
S

gs t LT
n

S

s

, 1
, ( )

pipe

(9)

= +

{ } <

AY AY Y Y

g g N t T g g, , ,

gg t gg t gg t gg t LT
n

gg

, ( )
pipe

(10)

Figure 4. Storage modeling visual representation.
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= +

{ }

AY AY Y Y

g r GR t T, ,

grt gr t grt gr t LT
n

gr

, 1 , ( )
pipe

(11)

where AYgg′Pt and Ygg′t represent the available and newly
commissioned hydrogen pipeline connections between re-
gions, respectively. AYgstS and YgstS are the available and new
pipeline connections for the underground storage caverns.
Additionally, AYgg′t, Ygg′t, AYgrt, and Ygrt are the available and
the newly invested pipeline connections for onshore and
offshore CO2 transmission.

3.1.4. Storage Constraints. To represent storage within a
time step t, the daily (intraday) storage profile and the
accumulated (interseasonal) storage between the seasons are
modeled, as illustrated in Figure 4.
The intraday storage rate (Stsgtchk) is equal to the storage

rate in the previous time slice and the hydrogen that is
injected, minus the hydrogen which is withdrawn in each
storage site s, region g, time step t, cluster c, and time slice h.
Stinit is the initial storage rate in the first time slice. QgstchI and
QsgtchR stand for injected and retrieved hydrogen from storage
type s.

= | + +

{ }

=St St St Q Q

s g GS t T c C h H k K

( )

, , , , ,

sgtchk
init

h sgtc h ch gstch
I

sgtch
R

gs

1 , 1

(12)

where θch denotes the number of hours in a cluster c and time
slice h. The interseasonal storage rate BSsgtck is calculated for
each cluster c separately according to eq 13.

= + ·

{ }

BS BS WF St St

s g GS t T c C k K

( )

, , , ,

sgtck sgt c k c sgt c H k sgt c k

gs

, 1, 1 , 1, , , 1,1,

(13)

where WFc is the weight of cluster c and H stands for the last
time slice of each cluster c. Total storage rate is limited by
lower and upper bounds, as defined in eq 14.

· + ·

{ }

cap NS St BS cap NS

s g GS t T c C h H k K, , , , ,
s
S

sgt sgtchk sgtck s
S

sgt

gs

min max

(14)

where capsmin and caps
Smax are the minimum and maximum

storage rates, respectively, while NSsgt is the number of
available storage sites of technology s, region g, and time step t.

3.1.5. Emissions Target. An emission target (ett) for
hydrogen production is considered in the model, as defined
by eq 15.

E et t T k K,tk t (15)

where Etk stands for the total CO2 emissions from hydrogen
production in time step t and scenario k. For this case study,
the emission target is focused exclusively on 2050, with the aim
of achieving Net-Zero total emissions.

3.1.6. WE Penetration. Water electrolysis is a key element
to achieve a green transition in the energy mix. To this end,
U.K. hydrogen strategy policy forecasts an increase in
electrolytic hydrogen production.46 Therefore, eq 16 enforces
that at least a β percentage of the total average production is
from water electrolysis.

· · ·

· · ·

pb WF Pr

pb WF Pr

g G t T c C h H k K
k c ch WE

p P g G t T c C h H k K
k c ch pgchtk

,gchtk

(16)

It is worth noting that β is equal to 0 for the base case. Apart
from the aforementioned equations, the mathematical model
includes hydrogen production, storage, transmission, and
import constraints as well as electricity production, CO2
emissions, and CO2 reservoir constraints. The proposed
framework is formulated as an MILP model and aims to
minimize the total cost subject to eqs 1−16 and (A1−AA30).
3.2. Solution Scheme. The mathematical framework

considers spatiotemporal resolution as well as uncertainty in
several parameters (costs, availability, demand), resulting in a
computationally intensive model. Thus, a hierarchical approach
is used to tackle the combinatorial complexity, achieving cost-
efficient design decisions in less computational time, as
described in detail in our previous work.45 The hierarchical
solution approach can be described in the following steps:

• Solve the model without considering the H2 and CO2
pipeline network decisions;

• Determine the production (NPpgt) and storage (NSsgt)
investment decisions;

• Fix NPpgt and NSsgt decisions for all time steps;

Figure 5. Scenario reduction steps.
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• Solve the reduced model;

• Determine the H2 and CO2 pipeline design and all
continuous variables.

eq 8−11, (A5, A6), and (A17−A19) are not included in the
first step as they are related to pipeline costs, availability, and
maximum flow rate. Thus, the number of discrete variables
decreases, which reduces the complexity. The feasibility of the
model regarding pipeline network is ensured by setting an
upper bound in the regional flow rates, which is equal to the
maximum flow.
Future hydrogen network design involves many uncertain-

ties related to the costs and demands of the energy systems.
The proposed model incorporates uncertainty in hydrogen
demand, natural gas price, techno-economic data, biomass, and
renewables availability. It is assumed that the scenarios are
equal to all of the possible combinations of realizations of the
uncertain parameters. Thus, a large number of scenarios are
obtained, which makes the model computationally prohibitive.
To deal with combinatorial complexity, scenario reduction is

essential. Using a scenario reduction method, the cardinality of
scenarios decreases while trying to keep the information on the
full set in the reduced one.47 The concept of scenario
reduction was introduced by ref 48, which uses a probability
metric to obtain the closest subset from a larger scenario set.
GAMS−SCENRED49 is a popular software using probabilistic
information apdeteplied in stochastic programming ap-
proaches.50−53

The suggested framework consists of two steps, and it is
illustrated in Figure 5. The first reduction step (Step I) is
performed on seasonality scenarios, decreasing the number
from an initial set SS1 to a reduced set SS2. This step is
employed, as it is observed that a similar number of scenarios
need to be used for the different parameters in the second step.
Assuming initial sets of demand scenarios SD, gas price
scenarios SG, technologies cost scenarios ST, and biomass
scenarios SB, the second reduction step (step II) is performed
on the combination of the aforementioned sets and the
reduced set SS2. Both steps are conducted through fast forward
selection using GAMS−SCENRED. The number of scenarios
in the reduced set SS2 is determined using a user-defined
threshold: the marginal relative probability distance metric
(mRPD).50 Mathematical description of mRPD can be found
in Appendix C. Additionally, the computational time of the
optimization model is employed as an indicator for scenario
number selection, as presented in Section 5.1.

4. CASE STUDY
The two-stage stochastic MILP framework investigates the
optimal infrastructure planning regarding hydrogen produc-
tion, storage, and transmission in Great Britain. The model
aims to satisfy uncertain hydrogen residential, commercial,
industrial, and transportation demand, while uncertainty is also
introduced in biomass availability, gas price, technology costs,
and seasonal renewable sources availability. In this section, the
uncertain parameters are described while the detailed techno-
economical data used in this analysis can be obtained from the
Supporting Information of our previous work.45

4.1. Hydrogen Demand. The hydrogen roadmap in the
U.K. forecasts a significant increase in hydrogen demand to
decarbonize industry and provide a greener transition in
transport, residential, and commercial heat sectors.11

There is high uncertainty about the precise role of hydrogen
in the future energy mix and related policies and regulations.
According to the analysis of the Sixth Carbon Budget,54

around 200−460 TWh of hydrogen could be needed in 2050.
Thus, the demand constitutes a highly uncertain parameter.
Total demand consists of residential, commercial, industrial,

and transport demand. Spatially explicit historical hourly gas
profile data are obtained for residential, commercial, and
industrial sectors. Hydrogen profiles are adjusted as a
penetration to the gas profiles to provide a realistic demand,
capturing seasonality and peaks.
To this end, in the present work, hydrogen demand

scenarios (SD = 5) are considered, with a total demand
range from 205 to 465 TWh in 2050. Scenarios 1 and 2 (30%
probability each) are obtained from National Grid ESO
demand scenarios,55 while scenarios 3−5 (with probabilities
10, 20, and 10%) are calculated as a penetration of 25, 50, and
75% in the historical natural gas demand, respectively.40

Detailed data for the demand are presented in Appendix D.
4.2. Biomass Availability. Biomass gasification coupled

with CCS is a key element technology due to the resulting
negative emissions, which are vital to achieve Net-Zero goal.
However, biomass availability is limited, which constitutes an
additional uncertain parameter of the current work.
In this case study, nonwaste biomass feedstock is considered,

consisting of agricultural residues, forestry residues, and energy
crops. Different scenarios for future U.K. nonwaste biomass
production are explored by the Department for Energy
Security and Net-Zero in the U.K.56 based on existing policies
and evidence. Two illustrative scenarios (ambitious and
restricted) are included in the aforementioned analysis, in
which the differences are based on future land use and policies
around cultivation. These two scenarios are considered as the
low and high scenarios (with a probability of 30% each), while
a base scenario (with a probability of 40%) is introduced as the
mean case (SB = 3). An assumption of 50% availability of the
nonwaste biomass for gasification technologies is made as
biomass can be used as feedstock for other processes such as
power generation, methane gas production, etc. Biomass
availability for each scenario can be found in Appendix D.
The available biomass feedstock (energy crops, agricultural

residues, forestry) is discretized in the 13 regions of Great
Britain according to local gas distribution zones (LDZ).
Biomass transportation between the regions is not taken into
account in this work. Therefore, the availability of biomass
sources in each region is calculated using a geographically
distributed data analysis.57

4.3. Gas Price. Future gas prices play a significant role in
hydrogen investment strategic decisions,45 as gas is used as
feedstock in reforming technologies. However, forecasting the
natural gas price constitutes a challenge due to the many
factors influencing gas markets.
To this end, an analysis of historical gas prices is conducted,

and forecast scenarios (SG = 5) up to 2050 are obtained using
an empirical distribution function based on natural gas
forecasts of National Grid ESO.55 The probabilities for
scenarios 1−5 are 26.8, 62.5, 9.7, 0.7, and 0.3%, respectively.
The prices of each scenario are listed in Appendix D.
4.4. Technology Cost. Another parameter which is crucial

for infrastructure planning is technologies cost. Thus, with
regard to less mature technologies, there is an inherent
uncertainty in capital and operating costs. In this context,
uncertainty is introduced in water electrolysis capital and
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operational costs as well as in capital costs in solar, wind
onshore, and offshore farms.
For all of the technologies, we assume low, base, and high-

cost scenarios (SC = 3) according to data obtained from the
Department for Energy Security and Net-Zero in U.K.58,59

Probabilities assigned are 25, 50, and 25% for low, base, and
high scenarios, respectively. Detailed data for the costs are
described in Appendix D.
4.5. Seasons. As described in Section 2.2, a typical day for

each season is employed to capture different demand and
renewable availability fluctuations. Uncertainty is introduced in
the selection of the typical day to increase the fidelity of the
model.
In this context, k-medoids clustering is used to select three

typical days in each season and assign the probability. The
hourly profiles, which are clustered, include solar wind onshore
and wind offshore availability as well as residential,
commercial, and industrial demand profiles for each LDZ
region.
After the generation of the typical days for each season, it is

assumed that all possible combinations between seasons are
allowed, resulting in an initial set of SS1 = 81 scenarios. As
depicted in Figure 5, after scenario reduction in Step I, the
number of scenarios is decreased to SS2 = 5, which is used in
the scenario reduction in Step II.

5. COMPUTATIONAL RESULTS AND DISCUSSION
This section demonstrates the applicability of the proposed
framework through the implementation described in Section 4.
Section 5.1 focuses on scenario reduction. Section 5.2 presents
the base case results, while Section 5.3 focuses on the
penetration of WE in the hydrogen mix.
The computational runs were performed on an Intel Core

i9−10980XE CPU operating at 3.00 GHz with 128 GB of
RAM, using GAMS 46.1.060 and Gurobi 11.0.061 solver with
default options. The machine has 18 cores, while 30 threads
are used in each optimization. Termination criteria for each
optimization are set to 24 h CPU time-limit or 5% relative
optimality gap for each step. Upper bounds of 50 and 80 are
employed for IPpgt and ISsgt variables, respectively.
5.1. Scenario Reduction. The number of selected

scenarios constitutes a crucial trade-off decision. A larger
number of scenarios provide a more accurate representation of
the uncertainty space, thereby enhancing decision-making. On
the other hand, as the number of scenarios increases, the
combinatorial complexity of the model grows exponentially,
making it intractable to solve.
An initial set of 1125 scenarios is generated as described in

Section 4, while scenario reduction is conducted following the
procedure described in Section 3.2. Marginal relative
probability distance (mPRD) metric and computational time
are used to select the number of scenarios in the reduced set.
Mathematical definitions for mRPD can be found in Appendix
C.
Figure 6 shows how the marginal relative probability density

(mRPD) decreases as the number of selected scenarios
increases. The mRPD is expected to decrease monotonically
with an increase in the number of scenarios. Thus, using a
stopping criterion based on mRPD allows us to retain only
those scenarios that reduce the relative probability distance by
at least a certain threshold. Although this threshold is
somewhat subjective, it provides a clearer method for
balancing information accuracy with the number of scenarios.

Moreover, an exponential increase in computational time of
the proposed two-stage optimization model is observed as the
number of selected scenarios grows. In the case of 15
scenarios, the computational time is about 5 h, while for 25
scenarios, it increases to approximately 31 h. This sharp
increase in CPU time makes the model intractable beyond 25
scenarios. Therefore, computational time becomes a crucial
factor in determining the size of the reduced scenario set.
In this case, an approximate value of 1% for mRPD is used,

identified as an elbow point. Additionally, sensitivity analysis
shows that the model becomes computationally intractable
with more than 20−25 scenarios, depending on the case study.
Based on these criteria, 25 scenarios are selected as the base
case for the reduced scenario set, while 20 scenarios are
implemented for WE penetration cases. A more detailed
sensitivity analysis is presented in Section 5.2.
5.2. Base Case. Within this section, a comprehensive

analysis of the basic case is presented. Initially, the time slices
within a day are defined, establishing the temporal framework.
Following this, the number of scenarios is determined,
evaluating the impact in the computational results. Finally,
computational results are discussed along with a comparison
between deterministic and stochastic programming ap-
proaches.
To capture the temporal variability in the system, the

number of time slices within a day needs to be defined. 24
hourly time slices constitute the most widely used approx-
imation for the operating decisions. However, this increases
significantly the equations and variable number, affecting the
computational complexity of the model and making it
intractable.
To this end, each representative day is divided into 4 and 6

time slices using an MILP model, as presented in Appendix B.
The effect of the number of time slices for different scenario
numbers is illustrated in Figure 7. While the 4 time slice model
results in a slightly less expensive system compared to the 6
time slice case, this difference can be attributed to the lower
temporal resolution. However, the 6 time slice model offers a
more detailed and accurate representation of daily fluctuations
in demand and renewable availability, leading to a better
approximation of the system.
To assess the quality of the solutions across the different

number of time slices, system cost (SC) is compared with the
expected system cost (ESC). ESC is derived by enforcing the
first-stage variables obtained from each solution to the initial
scenario set (1125 scenarios) with 24 h time slice resolution.

Figure 6. mRPD for different cardinalities of reduced scenario sets
from Step II reduction.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.4c04211
Ind. Eng. Chem. Res. 2025, 64, 7431−7451

7438

https://pubs.acs.org/doi/10.1021/acs.iecr.4c04211?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c04211?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c04211?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c04211?fig=fig6&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.4c04211?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


This comparison enables an evaluation of how closely the time
slice approximations reflect the results of hourly resolution
modeling. For the 25 scenarios, where SC is approximately
equal for 4 and 6 time slices, the ESC for the 4 time slice
configuration is 1% higher, as presented in Table 2. This
observation suggests that despite the higher system costs, the
finer granularity of 6 time slices provides more accurate
insights into system behavior.

An analysis for a different number of scenarios is carried out
to investigate the impact of the deterministic (i.e., one
scenario) and stochastic programming approaches on the
computational results. Figure 8 depicts SC and ESC for

different numbers of scenarios. ESC is calculated from the
enforcement of first-stage variables in the initial scenario set
(1125 scenarios) so as to test the quality of solutions. The
deterministic approach (1 scenario case) includes the base case
for all of the uncertain parameters, which has the biggest
probability. On the other hand, the stochastic approach
includes a number of scenarios that result from scenario
reduction, as described in 3.2. For the 1 scenario case, the ESC
increase compared to the corresponding SC is equal to 15.6%.

As the scenario number increases, this value decreases,
reaching 0.6% for 25 scenarios. Thus, taking into account
also the analysis from Section 5.1, 25 scenarios are selected for
the base case study.
The optimal infrastructure design of hydrogen production

plants in Great Britain to meet the hydrogen demand is shown
in Figure 9. A total of 4 GW is installed, consisting of ATR
CCS and BG CCS technologies, with key locations in
Scotland, the West Midlands, North East, South East, and
South West England. Capacity expands significantly to 52 GW
by 2040 and 82 GW by 2050, with production units located in
all GB regions. ATR CCS technology dominates the
production mix due to its cost efficiency and reduced CO2
emissions. Additionally, the BG CCS plays an important role in
further lowering overall net emissions. SMR CCS is not
included in the optimal design, as despite its lower capital cost
compared to ATR CCS, it falls short in delivering the same
level of cost efficiency and emissions reductions.
Figure 10 illustrates hydrogen storage maps from 2030 to

2050. Storage is a key element of a hydrogen network, ensuring
the security and reliability of the hydrogen network. By 2030, 8
GWh of storage capacity of pressure vessels is installed, located
with key facilities in Scotland and Central/South England. As
hydrogen demand grows, storage requirements increase,
reaching 74 GWh mostly located in West England. Finally,
by 2050, total hydrogen storage capacity rises to 153 GWh
while 58 GWh are installed in the West Midlands and 32 GWh
in the South West. This expanded storage infrastructure is
critical to maintain supply security, manage seasonal variations
in demand, and support the broader energy transition.
Hydrogen transmission between regions is facilitated by

pipeline networks. As shown in Figure 11, the hydrogen
pipeline network will connect most Great Britain regions by
2050. This network will be critical for establishing a fully
integrated infrastructure to transport low-carbon hydrogen
across GB.
To support CCS in low-carbon hydrogen production, CO2

pipelines are established, as illustrated in Figure 11. In
addition, two major CO2 storage reservoirs are established,
one located in the southern North Sea and the other in the
East Irish Sea Basin. These reservoirs serve as key hubs for
storing captured carbon, playing a crucial role in reducing
emissions across the system.
In Table 3, the MILP model size and computational

performance of the base case are summarized. The total
computational time is 31 h, while an optimality gap below 3%
is achieved in both steps of the hierarchical approach.
Monolithic approach results underscore the significance of
model decomposition as it achieves a 49% larger objective
function in 48 h.
To evaluate the quality of stochastic programming approach,

a comparison with the deterministic approach is carried out.
Figure 12 provides a detailed breakdown of the system costs
alongside the expected system costs for the two approaches. It
can be observed that feedstock costs are overestimated by 8%
in the stochastic approach and by 16% in the deterministic
approach when compared with ESC values due to significant
fluctuations in demand scenarios. Additionally, Figure 12
highlights the substantial increase in import costs. More
specifically, in the stochastic case, import costs rise from a SC
of £b 0.12 to an ESC of £b 1.56, while the increase is more
significant in the deterministic case, jumping from £b 0.43 to
£b 8.79. This indicates that the deterministic approach may

Figure 7. System cost for 4 and 6 time slices for different numbers of
scenarios

Table 2. System Cost (SC) and Expected System Cost
(ESC) of 25 Scenarios for Different Time slices

number of time slices 4 6

SC 36.5 36.5
ESC 37.6 37.2

Figure 8. System cost (SC) and expected system cost (ESC) for a
different number of scenarios.
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lead to suboptimal decisions, driving a higher reliance on
imports and significantly elevating overall system costs.

Figure 13a demonstrates that while the deterministic
approach offers slightly better outcomes in low-cost scenarios,

Figure 9. Production capacity maps.

Figure 10. Storage capacity maps.
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the stochastic solution results in a narrower distribution of
ESC. Furthermore, it is shown that 90% of scenarios provide a
solution lower than £b 55 for the stochastic case compared to
£b 65 for the deterministic one. This suggests that in the

majority of scenarios, the stochastic approach delivers a more
cost-effective solution, as illustrated also in Figure 13b. Thus,
by incorporating uncertainties, the stochastic approach
provides a more risk-neutral and balanced strategy, which
leads to a more sustainable and cost-effective pathway to meet
hydrogen demand.
5.3. Water Electrolysis Penetration. The U.K. govern-

ment has set goals for hydrogen production capacity, with a
commitment that water electrolysis will be included in the
production mix.46 This focus on electrolytic hydrogen
production underscores the U.K.’s commitment to developing
low-carbon hydrogen pathways, leveraging renewable elec-
tricity to produce clean hydrogen through electrolysis.
Achieving this target is expected to play a critical role in the
country’s broader decarbonization efforts.
As discussed in Section 5.2, it can be concluded that ATR

and BG technologies coupled with CCS constitute the most
cost-efficient options for a low-carbon hydrogen strategy.
However, the U.K. government and policymakers incorporate
water electrolysis, which relies on renewable electricity, into
their hydrogen strategy due to its environmental advantages as
a greener option. Therefore, this section focuses on different
electrolysis penetration cases to investigate different infra-
structure strategies and the impact of uncertainty.
Thus, a constraint is imposed requiring that a certain

percentage of hydrogen production must come from
electrolysis. Two cases are examined: 10 and 20% electrolysis
penetration. For this analysis, 20 scenarios are considered for
the base and WE penetration cases, as a larger number of

Figure 11. H2 and CO2 pipeline network in 2050.

Table 3. Base Case Model Size and Computational
Performance

hierarchical

approach Step 1 Step 2 monolithic

continuous variables 1,067,474 1,067,474 1,067,474
discrete variables 246 384 384
equations 1,410,273 1,697,889 1,697,889
computational time (h) 15.6 15.4 48.0
optimality gap (%) 1.42 2.72 39.10
objective function (£b) 36.5 54.4

Figure 12. Cost breakdown.
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scenarios would render the model computationally intractable
for WE cases.
A comparison of the three cases in terms of the production

capacity mix is illustrated in Figure 14 for 2050. It is observed
that there is a slight increase in the total production capacity,
as the penetration of electrolytic hydrogen rises from 81.5 GW
in the base case to 82.6 GW and 84.3 GW for 10 and 20%
penetration, respectively. Notably, production capacity in
Scotland exhibits a significant increase with higher electrolysis
penetration. In the 10% case, 7.1 GW are installed, of which
6.7 GW are dedicated to electrolysis and 0.5 GW to BG CCS.
In the 20% case, investments reach 18.7 GW, including 10.7
GW of electrolysis, 7.5 GW of ATR CCS, and 0.5 GW of BG
CCS. This expansion can be attributed to Scotland’s abundant
wind resources, as both onshore and offshore wind farms are
established to power electrolysis in both scenarios. For the
20% case, WE plants are located also in the east Midlands,
northern and southeast England, with solar, wind onshore, and
offshore farms generating the required electricity.
Storage allocation is depicted in Figure 15 for the three

different WE penetration cases. In contrast to production,

storage capacity decreases when WE penetration increases.
Base case optimal design suggests a total of 153 GWh storage
capacity while 137 and 132 GWh are invested in 10 and 20%
of cases, respectively. Moreover, it can be observed that in 20%
of cases, capacity is decentralized with investments in most of
the regions, both in northern and southern GB. On the other
hand, in the base case in which no electrolytic hydrogen is
produced, storage capacity is located mostly in the center of
GB. This centralization of storage highlights a more localized
approach to meet demand in the absence of WE. However, the
decentralized storage may better support regional flexibility
and system resilience, given the fact that electrolytic hydrogen
depends on renewables availability.
Regarding hydrogen transmission, investments in water

electrolysis can play an important role in decisions of the
pipeline network. As illustrated in Figure 16, when there is no
penetration of electrolysis, regions are not fully connected.
However, water electrolysis production using electricity
generated from renewable sources can have significant
fluctuations, and thus, full connectivity of pipeline network is
observed.

Figure 13. (a) Probability of system cost. (b) Expected system cost of scenarios.

Figure 14. Production capacity maps (a) without any penetration constraint, (b) 10% penetration, and (c) 20% penetration in 2050.
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Figure 17 presents a comparison of levelized cost of
hydrogen and total CO2 net emissions for the three cases.
The levelized cost is increased with the rise of total electrolytic
hydrogen production, as expected. On the other hand, CO2

emissions for all of the cases remain nearly the same across all
scenarios across all cases. This is primarily because biomass
gasification with CCS plays a crucial role in reducing emissions
as it has a net-negative impact. Since all scenarios include the

Figure 15. Storage capacity maps (a) without any penetration constraint, (b) 10% penetration, and (c) 20% penetration.

Figure 16. Hydrogen network maps (a) without any penetration constraint, (b) 10% penetration, and (c) 20% penetration.
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installation of 8 GW of gasification capacity, the consistent
emissions across cases are reasonable.
MILP model size and computational performance of the

three cases are summarized in Table 4. It should be noted that
for both WE penetration cases, the total computational time
exceeds 40h as the model is highly computational intensive.
In Figure 18, system cost and expected system cost are

illustrated for the three cases, comparing both deterministic

and stochastic approaches. As WE penetration increases, the
deterministic approach shows a marginal rise in system cost,
while the expected system cost experiences a substantial
increase. In contrast, as previously discussed, both system and
expected cost in the stochastic approach grow proportionally
with higher WE penetration. More specifically, in the 20% WE
penetration scenario, the expected system cost increases by
20.5% for the deterministic approach, while it rises by only
3.4% for the stochastic approach.
The importance of the stochastic approach can be

highlighted, particularly when WE is integrated in the
production mix. Electrolysis is highly influenced by uncertain
parameters such as technology costs and renewable sources
availability. To this end, incorporation of uncertainty provides
a more realistic strategy to investigate optimal pathways to
achieve energy system decarbonisation.

6. CONCLUDING REMARKS
This work proposes a stochastic MILP framework to facilitate
the investigation of optimal low-carbon hydrogen infra-
structure design and operating decisions to meet hydrogen
demand in GB. The spatially explicit model considers 3 time
steps from 2030 to 2050 while typical days are selected for
each calendar season of the time steps. An intraday time
aggregation model is developed to define the optimal duration
of time slices in each representative day. The continuity
between the days within a time step is preserved to provide a
more comprehensive and efficient storage strategy.
The two-stage stochastic model incorporates uncertainty in

gas price, hydrogen demand, technology costs, and biomass
and renewables availability. The combination of the afore-
mentioned parameters results in a large scenario set. Forward
scenario reduction is applied to decrease the number of
scenarios, balancing the trade-off between the scenario set
accuracy and computational time. The value of the stochastic
approach is evident in its ability to achieve significantly lower
expected costs compared to the corresponding deterministic
approach, offering a risk-averse strategy.
The framework considers production, storage, and trans-

mission of hydrogen as well as captured CO2 transmission and
storage to obtain insights for policy making over the next
decades. A total of 82 GW of production hydrogen capacity are
commissioned for the base case consisting of ATR with CCS
combined with BG with CCS offering the most cost-effective
low-carbon infrastructure strategy, considering technology and
feedstock cost and availability uncertainties. Additionally,
storage capacity of 153 GWh is required to support the
system mainly located in central England.
A sensitivity analysis is carried out to investigate how the

penetration of electrolysis will affect the system. It is observed
that there is an increase in production capacity, especially in
north GB. Moreover, storage capacity is more equally located
across GB, while more pipeline connections are essential to
meet the demand with electrolytic hydrogen. Regarding system
cost, a 20% penetration of electrolysis leads to a 17% increase
in the levelized cost in comparison with the base case.
Furthermore, the scenario-based approach is necessary to
mitigate the risk, considering cost and availability uncertainties.
Future research will focus on the impact of economies of

scale in infrastructure design decisions of a hydrogen system.

Figure 17. Levelized cost of hydrogen and CO2 emissions.

Table 4. Model Size and Computational Performance

base case 10% penetration 20% penetration

case step 1 step 2 step 1 step 2 step 1 step 2

continuous variables 854,104 854,104 854,104 854,104 854,104 854,104
discrete variables 246 384 246 384 246 384
equations 1,128,150 1,361,676 1,128,150 1,361,676 1,128,150 1,361,676
computational Time (h) 7.1 6.4 20.1 24.0 19.6 24.0
optimality gap (%) 1.34 3.38 1.11 5.95 3.52 6.47

Figure 18. System cost and expected system cost for stochastic and
deterministic approaches.
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In addition, the role of hydrogen in other sectors, such as the
power sector, will be explored. In parallel, the investigation of
new solution approaches and decomposition techniques will be
conducted to deal with the combinatorial complexity and high
computational times of the models.

■ APPENDIX A
In this section, the proposed mathematical formulation is
presented in detail based on the spatially explicit evolution
model developed in our previous work,45 which has been
modified as a two-stage stochastic multiperiod spatially explicit
mixed-integer linear programming (MILP) model.

Production Costs.
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Storage Costs.
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Transportation Costs.
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Renewables Cost.
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Carbon Emissions Cost.
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Import Cost.
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Fuels Cost. The cost of the natural gas used in the reforming
technologies can be calculated from eq A10.
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t T

t tk tk
gas gas

(A10)

Similarly, the cost of biomass, which is used for biomass
gasification, can be estimated from eq A11.
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H2 Production. The hydrogen production rate is limited by
an upper and lower bound according to eq A12.
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The operation of production plants is restricted by their
ramp-up and ramp-down capabilities.

· ·

>

Pr Pr

p P g G t T c C k K h

RU cap NP

, , , , , 1

pgtchk pgtc h k p p
P

pgt, 1,

(A13)

· ·

>

Pr Pr

p P g G t T c C k K h

RD cap NP

, , , , , 1

pgtc h k pgtchk p p
P

pgt, 1,

(A14)

H2 Storage. Moreover, upper bounds are imposed for the
injection and removal rate.
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where Qs
Imax and Qs

Rmax are the maximum injection and removal
rates for each storage type s.

H2 and CO2 Pipeline. The maximum flow rate in the
pipelines can be described by (eqs A17−A19) for the
hydrogen flow rate (Qgg′tchk), onshore CO2 flow rate (Qgg′tchk),
and offshore CO2 flow rate (Qgrtchk).
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CO2 Reservoirs. The reservoir CO2 inventory for each time
step is equal to the inventory of the previous time step and the
total flow rates to the reservoir.
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The inventory level is limited by an upper bound, as
described in the constraint below.
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H2 Imports. The import rate cannot exceed a percentage (ι)
of the total hydrogen demand.
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Electricity Production from Renewables. Hydrogen pro-
duced by water electrolysis is calculated according to eq A23.
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The electricity generation depends on the availability of the
renewable sources e and the renewable capacity according to
eq A24.
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The renewables capacity expansion is represented in eq A25,
and it is limited by land availability, as described in eq A26.
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Fuel Consumption. Gas consumption depends on the
production rate of reforming technologies, which include SMR
and ATR and their efficiencies.
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Biomass consumption depends on the production rate of
biomass gasification and the efficiency, and it is restricted
according to biomass availability, as presented in eq A29.
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CO2 Emissions. The total CO2 emissions are calculated
according to eq A30
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■ APPENDIX B
The computational complexity of the proposed framework
makes it imperative to reduce the model size. Historical
demand and renewable sources availability have an hourly
resolution. K-medoids clustering technique method is used for
the selection of typical days per season, as described in Section
2.2. Moreover, further clustering to reduce the number of time
slices within the day is necessary. To this end, a simple MILP
model is formulated to merge the similar elements in the same
intraday time slice.
In this case, hourly profiles of domestic, commercial, and

industrial demand as well as solar, wind onshore, and offshore
availability in all regions and clusters (seasons) are merged,
decreasing the total intraday time slices from 24 to a smaller
number. The aforementioned profiles for all of the regions are
considered as different elements w.
The proposed model aims to minimize the summation Ω of

distances dcwhl of the new merged profiles from the original
profiles for all of the clusters c, elements w, hours l, and time
slices h, as presented in eq B1.

= dmin
c C w W l L h H

cwhl
(B1)

A binary variable Zlh is used to indicate in which time slice h
the hour l is merged into. Thus, eq B2 guarantees that each
hour l should be allocated to one time slice h. The continuity is
enforced by eq B3 while the first hour l belongs to the first
time slice h, as presented in eq B4.

=Z l L1
h H

lh
(B2)

++ + +Z Z Z l L h H,lh l h l h1, 1, 1 (B3)

=Z 11,1 (B4)

The distance of the normalized merged value Xcwh of each
cluster c, element w, and time slice h and initial normalized
profiles PNclw of each cluster c, hour l, and element w are
calculated, as presented in eqs B5 and (B6).
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The mathematical framework is formulated as an MILP
model minimizing the distances subject to eqs B1−(B6). The
model is implemented in GAMS version 46.1.060 and solved
with Gurobi version 11.0.0 using 0% relative optimality gap as
the termination criterion.

■ APPENDIX C
The relative probability distance (RPD) between the reduced
and original scenario sets is a metric to evaluate the quality of
reduced scenario set in comparison with the original one. It
can be defined as the absolute probability distance (RD)
divided by the absolute probability distance when reduced
scenario consists of one scenario (RD1), as presented in eq C1.

=RPD
PD
PD1 (C1)

Probability distance between initial scenario set Sinit and
reduced set SN of scenarios N can be calculated from the
formula, as presented in eq C2.

= ·
\

PD ( min ( ))
p s S S

s s S
init

pss
N

N

init (C2)

where πsinit stands for the original probability of scenario s and
γpss′ stands for the distance of random variable p normalized
realizations between scenario s and s′.50,62
Marginal relative probability distance (mRPD) is defined as

the difference between RPDN when scenario reduction selects
N scenarios and RPDN−1 when scenario reduction selects N−1
scenarios.50 More specifically, it represents the marginal RPD
reduction of the original and reduced scenario set when N
scenarios are selected, as described in eq C3.

=mRPD RPD RPDN N1 (C3)

■ APPENDIX D
In this Appendix, hydrogen demand, biomass availability, gas
price, and technology costs data are presented in Tables D1,
DD2, DD3, DD4 and DD5.
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Table D1. Demand Data Across Scenarios in 2050
[TWh]40,55

scenario

sector 1 2 3 4 5

residential 145 43 72 144 216
commercial 46 21 24 47 71
transportation 138 86 112 112 112
industrial 88 54 22 45 67
total 417 204 230 348 466

Table D2. Biomass Availability [TWh]56

scenario

year low base high

2030 45 74 103
2040 40 67 93
2050 49 83 117

Table D3. Gas Price [£/MWh]

scenario

year 1 2 3 4 5

2030 11.7 22.2 32.8 43.3 53.8
2040 12.6 23.8 34.8 45.8 56.8
2050 13.4 25.5 37.5 49.6 61.7

Table D4. Cost of Water Electrolysis Plant in Time Step t58

2030 2040 2050

capital cost [£k/MW] low 494 442 429
base 671 633 613
high 975 910 878

operating fixed cost [£k/MW/y] low 29.9 28.7 28.7
base 30.1 29.6 29.3
high 34.1 32.9 32.3

operating variable cost [£/MWh] low 2.9 2.8 2.8
base 4.2 4.0 4.0
high 6.1 5.8 5.7

Table D5. Capital Cost of Renewable Farm Type e in Time
Step t [£k/MW]58

2030 2040 2050

solar low 375 275 275
base 420 320 320
high 485 385 385

wind onshore low 993 993 993
base 1304 1304 1304
high 1502 1502 1502

wind offshore low 1316 1216 1216
base 1874 1824 1824
high 2204 2534 2534
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■ NOTATION

Acronyms and Abbreviations
ATR autothermal reforming
BG biomass gasification
CCS carbon capture and storage
ESC expected system cost
GHG greenhouse gas
HA hierarchical approach
MILP mixed-integer linear programming
PEM polymer electrolyte membrane
SC system cost
SMR steam methane reforming
WE water electrolysis
Indices
c cluster-representative day
e renewable technology
g region
h time slice
k scenario
l hour
p production technology
r reservoir
s storage technology
t time step
w element
Sets
C set of clusters c
E set of renewable technologies e
H set of time slices h
G set of regions g
N set of neighboring regions g and g′
Npipe set of pipeline connections between region g and g′
P set of production technologies p
R set of reservoirs r
S set of storage technologies s
T set of time steps t
SC set of storage caverns s
SV set of storage vessels s
GI set of regions g in which international import can take

place
GR set of collection points g and reservoir r connections
GS set of regions g in which storage technologies s are

located
Parameters
β percentage of electrolytic hydrogen production (%)
δ ratio of hydrogen regional pipeline operating costs to

capital costs (%)
δ ratio of CO2 onshore regional pipeline operating costs

to capital costs (%)
ratio of CO2 offshore regional pipeline operating costs
to capital costs (%)

ηptk efficiency of production technology p of each time
step t (MW H2/MWe or MWh fuel)

ι maximum percentage of international hydrogen
imports over the total demand (%)

θch duration of intraday time slice h for each cluster c

AVegchk
availability of renewable technology e in region g,
cluster c, time slice h, and scenario k (%)

bagtk biomass availability in time step t, region g, and
scenario k (MWh)

cappP unit capacity for production type p (MW/unit)
capp

Pmax maximum capacity of a hydrogen production plant of
type p (MW/unit)

capp
Pmin minimum capacity of a hydrogen production plant of

type p (MW/unit)
caprR total capacity of reservoir r (kg CO2)
capsS unit capacity for storage type s (MWh/unit)
caps

Smax maximum capacity of a storage facility of type s
(MWh/unit)

caps
Smin minimum capacity of a storage facility of type s

(MWh/unit)
ctbio cost of biomass in time step t (£/MWh)
ctkgas cost of gas in time step t and scenario k (£/MWh)
crf capital recovery factor
ctt carbon tax in time step t (£/kg CO2)
dfct discount factor for capital costs in time step t
dfot discount factor for operating costs in time step t
Dgg′Pipe delivery distance of a pipeline between regions g and

g′ (km)
DgrRes distance from CO2 collection point in region g to

reservoir r (km)
Dgg′Road delivery road distance of hydrogen between regions g

and g′ (km)
DgsSt distance between region g and storage cavern s
dr discount rate (%)
ett CO2 emissions target for time step t (MtCO2)
laeg land availability for renewables technology e and

region g (MW)
LTon lifetime of onshore CO2 pipeline (y)
LToff lifetime of offshore CO2 pipeline (y)
LTpipe lifetime of hydrogen pipeline (y)
LTpP lifetime of production technology p (y)
LTsS lifetime of storage technology s (y)
n duration of time steps (y)
nel economic life cycle of capital investments (y)
PNclw initial normalized profiles of each cluster c, hour l, and

element w
pimp price of hydrogen import (£/MWh)
pbk probability of occurrence of each scenario k (%)
pc capital costs of a hydrogen pipeline (£/km)
pc capital costs of an onshore CO2 pipeline (£/km)
pc capital costs of an offshore CO2 pipeline (£/km)
pccptk capital cost of a production plant of type p and

scenario k (£/MW)
pocptkF fixed operating production cost in a production plant

of type p and scenario k (£/MW/y)
pocptkV variable operating production cost in a production

plant of type p and scenario k (£/MW)
qHmax maximum flow rate in a hydrogen pipeline (MW/h)
qCmax maximum flow rate in a CO2 pipeline (kg CO2/h)
Qs
Imax maximum injection rate for each storage type s (MW/

h)
Qs
Rmax maximum retrieval rate for each storage type s (MW/

h)
rcetk capital cost of renewable technology e in time step t

(£/MW)
RDp maximum ramp down for production technology p

(%)
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roet operating cost of renewable technology e in time step t
(£/MW/y)

RUp maximum ramp up for production technology p (%)
sccs capital cost of a storage facility of type s (£/MWh)
socsF fixed operating storage cost in a production plant of

type p (£/MWh/y)
socsV variable operating storage cost in a production plant

of type p (£/MWh)
TDgtchk total hydrogen demand in region g, time step t, cluster

c, and time slice h (MW)
WFc weight of cluster c (d)
yptc coefficient of CO2 capture for production technology

p in time step t (kg CO2/MWh H2)
ypte coefficient of CO2 emissions for production technol-

ogy p in time step t (kg CO2/MWh H2)

Integer Variables
IPpgt number of investments of the new production

technologies p in region g in time step t (units)
ISsgt number of investments of new storage facilities of type s

in region g in time step t (units)
NPpgt number of available production technologies p in region

g in time step t (units)
NSsgt number of available storage facilities of type s in region g

in time step t (units)

Binary Variables
AYgg′t availability of hydrogen pipeline between regions g and

g′ in time step t
AYgstS availability of hydrogen pipeline between region g and

storage cavern s in time step t
AY gg′t availability of onshore CO2 pipeline of between regions

g and g′ in time period t
AYgrt

availability of offshore CO2 pipeline between region g
and reservoir r in time step t

Ygg′t establishment of hydrogen pipeline between regions g
and g′ in time step t

YgstS establishment of hydrogen pipelines between region g
and storage cavern s in time step t

Y gg′t establishment of onshore CO2 pipeline between
regions g and g′ in time step t

Ygrt
establishment of offshore CO2 pipeline between region
g and reservoir r in time step t

Zlh hour l is allocated in time slice h

Continuous Variables
Ω summation of distances between merged and original

profiles
BSsgtck interseasonal storage inventory in a storage facility of

type s in region g in time step t, cluster c, and scenario
k (MWh) (£)

BGk biomass cost in scenario k (£)
CECk carbon emissions cost in scenario k (£)
dcwhl distance of the new merged profiles from the original

profiles of the cluster c, element w, hour l, and time
slice h

Etk total CO2 emissions in time step t and scenario k
(MtCO2)

IICk international import cost in scenario k(£)
Impgtchk flow rate of international import in region g in time

step t and scenario k (MW)
IRegt new invested capacity of renewable technology e in

region g and time step t (MW)
NGCk natural gas cost in scenario k(£)

NRegt available capacity of renewable e in region g and time
step t (MW)

PCCk production capital cost in scenario k (£)
PLCC pipeline capital cost (£)
PLOC pipeline operating cost (£)
POCk production operating cost in scenario k (£)
Prpgtchk production rate of production technology p in region

g, time step t, cluster c, time slice h, and scenario k
(MW)

Pregtchk
electricity production from renewable technology e in
region g, time step t, cluster c, time slice h, and
scenario k (MW)

Qgg′tchk flow rate of H2 in region g in time step t, cluster c,
time slice h, and scenario k (MW)

Qgstchk
I flow rate of H2 via pipeline from region g to storage

type s in time step t, cluster c, time slice h, and
scenario k (MW)

Qsgtck
R flow rate of H2 via pipeline from storage type s to

region g in time step t, cluster c, time slice h, and
scenario k (MW)

Q gg′tchk flow rate of CO2 via onshore pipelines between
regions g and g′ in time step t, cluster c, time slice h,
and scenario k (kg CO2/h)

Q grtchk
flow rate of CO2 via offshore pipelines from a
collection point in region g to a reservoir r in time
step t, cluster c, time slice h, and scenario k (kg CO2/
h)

RIrtk inventory of CO2 in reservoir r in time step t and
scenario k (kg CO2)

SCC storage capital cost (£)
SOCk storage operating cost in scenario k (£)
Stsgtchk storage inventory in a storage facility of type s in

region g in time step t, cluster c, time slice h, and
scenario k (MWh)

TCk total cost in scenario k (£)
TSC total system cost (£)
Vgtkbio consumption of biomass in time step t region g and

scenario k (MWh)
Vtkgas consumption of natural gas in time step t and scenario

k (MWh)
Xcwh normalized merged value of each cluster c, element w,

and time slice h
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