
Error correction for quantum

computing at scale

Sam J. Griffiths

A thesis submitted in partial fulfilment of the requirements for

the degree of

Doctor of Philosophy

of

University College London.

Department of Physics and Astronomy

UCL

April 2025

I, Samuel Jacob Griffiths, confirm that the work presented in this thesis is

my own. Where information has been derived from other sources, I confirm

that this has been indicated in the thesis.

1

Acknowledgements

Firstly, I give enormous thanks to my supervisor, Prof. Dan Browne, whose

expert knowledge, steady guidance and reassuring mentorship has been truly

invaluable for this work and my time at UCL throughout. I also acknowl-

edge the Engineering and Physical Sciences Research Council (EPSRC) and

Riverlane (particularly, James Cruise and Neil Gillespie), who made this

work possible.

I thank my colleagues in Prof. Browne’s research group and the wider

UCL community for fostering a formative academic experience. In particular,

I thank Dr Asmae Benhemou for her contributions to our collaborative work

and her ever-present counsel. I also thank my newfound colleagues at OQC

for their support during the final stages of this work.

I thank my family and friends for their irreplaceable ability to reinvigorate

my motivation, focus and sanity. Finally, I thank Eleanor, for supporting me

through thick and thin, for raising me when low, and for believing when I

doubted.

2

UCL Research Paper Declaration Form: refer-

encing the doctoral candidate’s own published

work(s)

1. 1. For a research manuscript that has already been published

(if not yet published, please skip to section 2):

(a) What is the title of the manuscript? Union-find quantum

decoding without union-find

(b) Please include a link to or doi for the work: 10.1103/Phys-

RevResearch.6.013154

(c) Where was the work published? Physical Review Research

(d) Who published the work? APS

(e) When was the work published? 9th February 2024

(f) List the manuscript’s authors in the order they appear

on the publication: Sam J. Griffiths, Dan E. Browne

(g) Was the work peer reviewed? Yes

(h) Have you retained the copyright? Some author rights re-

tained as per the APS Transfer of Copyright Agreement

(i) Was an earlier form of the manuscript uploaded to a

preprint server (e.g. medRxiv)? If ‘Yes’, please give a

link or doi Yes: 10.48550/arXiv.2306.09767

If ‘No’, please seek permission from the relevant publisher and

check the box next to the below statement:

□ I acknowledge permission of the publisher named under 1d

to include in this thesis portions of the publication named as

included in 1c.

3

https://doi.org/10.1103/PhysRevResearch.6.013154
https://doi.org/10.1103/PhysRevResearch.6.013154
https://doi.org/10.48550/arXiv.2306.09767

2. For a research manuscript prepared for publication but that

has not yet been published (if already published, please skip to

section 3):

(a) What is the current title of the manuscript?

(b) Has the manuscript been uploaded to a preprint server

e.g. medRxiv?

If ‘Yes’, please please give a link or doi:

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended authorship

order:

(e) Stage of publication:

3. For multi-authored work, please give a statement of contribu-

tion covering all authors (if single-author, please skip to section 4):

The work was my own, with guidance and ideas from my supervisor

Dan Browne

4. In which chapter(s) of your thesis can this material be found?

These results are primarily presented and discussed in Chapter 3

e-Signatures confirming that the information above is accurate

(this form should be co-signed by the supervisor/senior author unless this is

not appropriate, e.g. if the paper was a single-author work):

Candidate:

Date: 9th April 2025

Supervisor/Senior Author signature (where appropriate):

Date: 19th April 2025

4

UCL Research Paper Declaration Form: refer-

encing the doctoral candidate’s own published

work(s)

1. 1. For a research manuscript that has already been published

(if not yet published, please skip to section 2):

(a) What is the title of the manuscript?

(b) Please include a link to or doi for the work:

(c) Where was the work published?

(d) Who published the work?

(e) When was the work published?

(f) List the manuscript’s authors in the order they appear

on the publication:

(g) Was the work peer reviewed?

(h) Have you retained the copyright?

(i) Was an earlier form of the manuscript uploaded to a

preprint server (e.g. medRxiv)? If ‘Yes’, please give a

link or doi

If ‘No’, please seek permission from the relevant publisher and

check the box next to the below statement:

□ I acknowledge permission of the publisher named under 1d

to include in this thesis portions of the publication named as

included in 1c.

2. For a research manuscript prepared for publication but that

has not yet been published (if already published, please skip to

section 3):

5

(a) What is the current title of the manuscript? Online Gaus-

sian elimination for quantum LDPC decoding

(b) Has the manuscript been uploaded to a preprint server

e.g. medRxiv?

If ‘Yes’, please please give a link or doi:

Yes: 10.48550/arXiv.2504.05080

(c) Where is the work intended to be published?

(d) List the manuscript’s authors in the intended authorship

order: Sam J. Griffiths, Asmae Benhemou, Dan E. Browne

(e) Stage of publication: Prepublished on arXiv

3. For multi-authored work, please give a statement of contri-

bution covering all authors (if single-author, please skip to section

4): The techniques and results presented were my own work, with help

for quantum code constructions used in simulations from Asmae Ben-

hemou, and with guidance and ideas from our supervisor Dan Browne

4. In which chapter(s) of your thesis can this material be found?

These results are primarily presented and discussed in Chapter 4

e-Signatures confirming that the information above is accurate

(this form should be co-signed by the supervisor/senior author unless this is

not appropriate, e.g. if the paper was a single-author work):

Candidate:

Date: 9th April 2025

Supervisor/Senior Author signature (where appropriate):

Date: 19th April 2025

6

https://doi.org/10.48550/arXiv.2504.05080

Abstract

Quantum error correction (QEC) is considered essential for the development

of scalable, fault-tolerant quantum computers in the medium- to long-term.

By encoding quantum information across many physical qubits, carefully-

designed measurements can be taken to gain limited knowledge as to errors

which may have occurred in the system, known as the error syndrome, with-

out causing quantum decoherence. In surface codes, qubits are arranged in

a two-dimensional topological space, such as a torus or plane. In quantum

low-density parity-check (qLDPC) codes, this is generalised to effectively

arbitrary arrangements of qubits and syndrome checks.

This work studies decoders: the algorithms responsible for inferring error-

correcting decisions from syndromes. In particular, the union–find decoder

is studied in terms of its performance at scale. A simulation of a union–find

decoding architecture is used to identify computational bottlenecks and pro-

pose improvements. In literature, it is assumed that the decoder runs in time

scaling quadratically in the number of qubits under a naive implementation,

but near-linearly when including two well-known optimisations. A key result

is that, under independent and phenomenological noise models on surface

codes, this complexity is strictly linear regardless of these optimisations. A

supporting analytical argument is presented using percolation theory.

Generalisation of the decoding problem to qLDPC codes is also studied,

with approaches broadly relying on Gaussian elimination to find appropriate

solutions. A strategy is proposed which uses a novel online variant of the

Gaussian elimination algorithm to solve this linear system incrementally on

growing local clusters, with accompanying complexity analysis and empir-

ical data demonstrating a reduction in runtime. An investigation into the

use of metachecks is also presented, inspired by single-shot decoding, with

implications for how such qLDPC decoders could be further improved.

7

Impact Statement

In a world increasingly dominated by digital information, computation and

communication, few emergent technologies bring such stark potential and

bold promises as the quantum computer. By finely leveraging the nuances of

quantum theory on physical systems, such devices can – in theory – solve a

wide range of problems deemed intractable on classical computers, in terms of

the time required to do so. Perhaps the most well-known example is Shor’s

algorithm for factorising integers on a quantum computer, which provides

a superpolynomial speedup over what is currently the best-known classical

algorithm for the same task [1]. Shor’s publication of this result in 1994

triggered widespread attention to the field; for example, many contemporary

cryptography schemes like RSA relied on the assumption that factorising in-

tegers is computationally intractable at scale, sparking a scramble to develop

‘post-quantum’ alternatives [2].

Beyond cryptography, the emergence of quantum computing is widely

considered to hold significant potential across fields with extremely high so-

cioeconomic impact such as drug discovery [3], artificial intelligence [4], cli-

mate modelling [5], materials science including battery design [6], and more.

This had led to increasingly intense economic strategy focus; indeed, a recent

report by Oxford Economics modelled that adoption of quantum technologies

could see UK economic productivity increase by 7% by 2045 [7]. Correspond-

ingly, UK governments have outlined strategies for quantum adoption [8] and,

most recently, announced an additional £121 million investment in quantum

technologies [9].

Before achieving such lofty goals, however, many serious challenges in

the field have yet to be resolved. By their very nature, quantum systems are

extremely volatile, susceptible to environmental noise and difficult to control

accurately [10]. It does not suffice to rely on developments in the physi-

8

cal engineering of quantum systems: realistically, just how error correction

has enabled deployment of reliable classical systems, quantum error correc-

tion (QEC) is widely considered essential for the feasibility of fault-tolerant

quantum computers at useful scale.

This project presents a review of contemporary techniques in QEC and

investigates ways of improving decoders, an essential algorithmic compo-

nent of QEC pipelines which forms a key bottleneck in the classical control

hardware stack required for practical implementations. Some techniques are

proposed and analysed which can improve the overhead of these algorithms

by reducing their runtime or memory consumption.

Inside academia, the results contained in this work provide additional

context and theoretical framework which can be used for developing decoders

and reasoning with the behaviour of such algorithms on a wide range of

error-correcting codes. The proposed improvements to existing decoders can

also directly aid both simulation and practical implementation of these QEC

schemes. Results from this work have been published or prepublished [11,

12] and presented at the APS March Meeting 2023 in Las Vegas [13]. At

the time of writing, these results have been cited by a number of subsequent

works [14–21] and most notably used directly in the development of other

novel decoders [22, 23].

Outside academia, this work contributes directly to efforts in deploying

fault-tolerant quantum computing at scale, hopefully helping to enable sig-

nificant socioeconomic advances in the aforementioned fields, in line with UK

scientific and economic strategy.

9

Contents

Acknowledgements 2

Abstract 7

Impact Statement 8

1 Introduction 13

2 Review of quantum error correction 17

2.1 Information theory . 17

2.1.1 Repetition codes . 17

2.1.2 Linear codes . 20

2.1.3 Quantum information 23

2.1.4 Quantum error correction (QEC) 26

2.1.5 Stabilisers and generators 28

2.2 Surface codes . 31

2.2.1 Toric code . 31

2.2.2 Planar code . 36

2.3 Measurement error . 38

2.3.1 Difference syndrome 38

2.3.2 Single-shot codes . 39

2.4 Surface-code decoding . 41

10

2.4.1 Optimal decoder . 41

2.4.2 MWPM decoder . 42

2.4.3 Union–find decoder . 45

2.5 Implementing union–find . 48

2.5.1 Disjoint-set data structure 48

2.5.2 AFS architecture . 51

2.6 LDPC codes . 53

2.6.1 qLDPC codes and Tanner graphs 53

2.6.2 3D toric code . 55

2.6.3 Colour codes . 56

2.7 LDPC-code decoding . 57

2.7.1 Belief propagation . 57

2.7.2 Generalised union–find 58

2.7.3 BP–OSD . 60

3 Surface-code decoding at scale 62

3.1 Motivation and methods . 62

3.2 AFS implementation and improvements 66

3.3 Observations . 67

3.3.1 Saturation regimes . 67

3.3.2 Redundancy of optimisations 69

3.4 Analytics . 74

3.4.1 Percolation theory . 74

3.4.2 Erasure percolation . 78

3.5 Conclusion . 82

4 LDPC-code decoding at scale 84

4.1 Motivation and methods . 84

4.2 Improving Gaussian elimination 86

11

4.2.1 Gaussian elimination 86

4.2.2 Online Gaussian elimination 90

4.2.3 Complexity analysis 93

4.2.4 Simulation . 95

4.3 Avoiding Gaussian elimination 100

4.3.1 Metacheck validation 100

4.3.2 Practicality . 102

4.4 Conclusion . 104

5 Summary 106

12

Chapter 1

Introduction

Quantum computing is a wide-ranging and increasingly popular field study-

ing the theory and implementation of quantum computers and related quan-

tum technology [10]. Quantum computers are devices which leverage the

distinct nonclassical effects of quantum mechanics on physical systems to

implement new models of computation which can, in theory, fundamentally

outperform classical computers. For example, let us take what is currently

the most popular model of quantum computing: the quantum bit, or qubit.

This is directly analogous to the classical bit, a variable which can only take

one of two states: one or zero, i.e. on or off. A qubit, similarly, is a two-level

quantum system, which means it can exist not just in one of these two states,

but as a superposition: a linear combination of these basis states forming a

probability density function, which only ‘collapses’ into one of these states

when measured. The superposition of states gives rise to distinct interfer-

ence effects, a property known as coherence, which separates this domain

from merely probabilistic computing. Alongside entanglement – the ability

of qubits to exhibit strong correlations which cannot be explained classically

– qubits provide a fundamentally more powerful model of computation and

communication than can exist under classical mechanics.

13

Perhaps the most well-known example of this is Shor’s algorithm for fac-

torising integers [1]. By delegating the task of discrete Fourier transform to a

specialised quantum algorithm, Shor’s algorithm provides a superpolynomial

improvement in time complexity over what is currently the best-known classi-

cal algorithm for factorisation, the general number field sieve [10]. This result

brought serious ramifications on contemporary techniques in cryptography

and spawned the field of post-quantum cryptography [2]. Other examples of

quantum algorithms which provide variously significant speedups over clas-

sical alternatives are Grover’s search algorithm for function inversion [24],

hybrid quantum–classical optimisation algorithms such as QAOA [25] and

VQE [26], and quantum phase estimation for general eigenstate calculation

[27].

In theory, any two-level quantum system can be used as a qubit. In

practice, the most popular physical implementations currently include su-

perconducting qubits [28], trapped-ion qubits [29], photonic qubits [30] and

neutral-atom qubits [31]. Regardless of the choice of implementation, a defin-

ing characteristic of these quantum systems is that, by their very nature, they

are extremely susceptible to environmental noise and difficult to control ac-

curately [10]. For this reason, quantum error correction (QEC) is considered

essential for the development of scalable, fault-tolerant quantum computers

in the medium to long term.

As in classical error correction, a key concept in QEC is the introduction

of redundancy: using a greater number of physical qubits to encode the infor-

mation of fewer logical qubits, in order to ease the detection and correction

of errors of physical errors. A wide range of approaches in this vein have been

proposed. Kitaev’s surface codes are one of the most well-studied schemes,

in which qubits are embedded on a regular lattice in a two-dimensional topo-

logical space, such as a torus or plane [32]. More recently, quantum low-

14

density parity-check (qLDPC) codes have also seen increased attention, as

a generalised family which includes surface codes, yet also includes more

arbitrary schemes which can more readily approach theoretically-optimum

performance [33, 34].

A key feature across these codes is that carefully-chosen quantum mea-

surements can indicate the presence of stochastic errors – information known

as the error syndrome – without disturbing the precious-yet-fragile quantum

logical state used for computation [10]. As part of this scheme, algorithms

which take observed syndromes and decode them into suitable corrections are

required. These decoders are classical in nature and form a critical compo-

nent of the control stack for quantum computers at scale. Many approaches

to decoding have been studied and proposed, ranging from statistical in-

ference [35] through to graph theory (e.g. matching) [36], machine learning

[37] and beyond. Whilst minimising the overall failure rate, these schemes

must also be as efficient as possible in order to avoid becoming an unaccept-

able bottleneck in the stack. A further compounding factor is noise in the

syndrome measurements themselves, which demands particular attention to

tackle and further reduces the degree of fault tolerance obtainable [36, 38].

The study and development of QEC, including decoders, is thus of utmost

importance to quantum computing as a field. Experimental work continues to

yield promising results and justify the approaches discussed, such as a recent

surface code demonstration with 101 qubits by Google [39]. Accordingly, this

project studies the state-of-the-art of modern QEC, with attention to both

surface and qLDPC codes, and investigates the impact of decoder algorithms

and ways in which they can be improved in order to enable fault tolerance

at scale.

In Chapter 2, a review of contemporary theory and techniques in QEC is

presented, ranging from foundational linear coding theory through to recent

15

advances in efficient decoding of qLDPC codes.

In Chapter 3, I present a study of the popular union–find decoder for

surface codes [40] and propose a variety of potential improvements to the

algorithm and its practical implementation. In particular, I present analyt-

ical and empirical arguments that the algorithm has lower time complexity

than previously assumed, even when simplifying implementation by omitting

certain optimisations which are identified as redundant.

In Chapter 4, I present a study of generalisations of the decoding problem

to qLDPC codes. Gaussian elimination, an old and well-known algorithm for

solving systems of linear equations, generally forms a distinct bottleneck in

decoding qLDPC codes; possibilities for both improving and avoiding Gaus-

sian elimination are discussed. In particular, I propose an online variant

of the Gaussian elimination algorithm, which can reduce the runtime of de-

coders which perform elimination multiple times on strictly-growing subprob-

lems, such as the generalised union–find decoder [41]. An online algorithm

here means an algorithm which can commence work even before the whole

problem input is known by iteratively building upon a solution [42]. Both

a formal complexity analysis and empirical data are presented to support

this proposal. Finally, I present the use of metachecks generated from linear

coding theory as a method of avoiding Gaussian elimination which may hold

some promise, with further thought required to implementation on specific

code families.

16

Chapter 2

Review of quantum error

correction

2.1 Information theory

2.1.1 Repetition codes

In classical computing, a bit may take one of two values: 0 and 1. The

simplest classical noise model is the binary symmetric channel, in which a

bit is flipped with probability p and left unchanged with probability 1 −
p. To protect against bit-flip errors, a fundamental approach is to employ

redundancy, copying the information such that discrepancies are more likely

to be detected and, hopefully, corrected. In this way, logical bits are encoded

into a subspace of a greater number of physical bits, known as the codespace

[43].

Take a simple repetition code of three bits, i.e. the (n, 1)-Hamming code

where n = 3 [44]. A logical 0 is encoded as three physical 0 bits and, likewise,

a logical 1 as three physical 1 bits. The codespace is therefore composed of

two words: 000 and 111. If any other word is received – for example, 001 or

17

110 – then a bit-flip error must have occurred on at least one of the physical

bits. The only situation in which an error is undetectable is if an error occurs

on every physical bit, thus flipping the logical bit.

One method of correcting the error – that is, returning the received word

back into the codespace such that it matches the intended word, rather than

the unintended one – is as simple as taking a majority vote. For example,

001 would be decoded to a logical 0, 101 to a logical 1 etc. This could be

facilitated by performing two parity checks: one comparing the first and

second bits for inequality, and another, likewise, for the second and third

bits. The outcomes of these checks form the error syndrome: any positive

result indicates the presence of an error, but also the location of the positive

result(s) indicates which bit needs to be flipped in order to return the word

to the codespace.

This majority-vote decoder on the n = 3 code succeeds if only one error

occurs (or, trivially, no errors) but fails if two or three occur. Therefore, for

a physical error rate p, the logical error rate is

pL = p3 + 3p2(1− p) (2.1)

which is less than p as long as p < 1/2. It is worth noting that if p > 1/2,

the majority-vote decision can simply be inverted. Therefore, p = 1/2 is the

worst-case scenario which maximises the logical error rate, which is intuitive

as p = 1/2 is the state with maximum information entropy.

The number of errors which occur follows a binomial distribution. In

general, for n physical bits, the scheme fails if the number of errors k is

greater than ⌊n/2⌋. Therefore, the logical error rate takes the form of an

18

0.0 0.2 0.4 0.6 0.8 1.0

Error rate, p

0.0

0.2

0.4

0.6

0.8

1.0

L
og

ic
al

er
ro

r
ra

te
,
p
L

Physical bits, n

3

7

11

Figure 2.1: Logical error rate pL of the classical repetition code as in equation
2.2, showing a threshold at p = 1/2 below which pL is suppressed as n
increases. The dashed line marks the case with no error correction scheme,
pL = p. Above the threshold, the fault-tolerant regime is left but note that
– in this simple classical case – the result may simply be inverted.

19

inverted cumulative binomial distribution:

pL = 1−
⌊n/2⌋∑
k=0

(
n

k

)
pk(1− p)n−k . (2.2)

Figure 2.1 shows this logical error rate of the classical repetition code for in-

creasing values of n, illustrating that the logical error rate can be suppressed

arbitrarily close to zero by increasing n as long as the physical error rate is

below the threshold of p = 1/2. The ability to achieve an arbitrarily low log-

ical error rate given the appropriate resources is known as the noisy-channel

coding theorem, a result with significant and promising implications and one

which is commonly regarded as critical to the establishment of information

theory as a discipline [45, 46].

The repetition code is amongst the simplest and most inefficient error

correction codes in practice, but it suffices here as a classical illustration of

the use of redundancy and the emergence of a threshold to achieve fault-

tolerance.

2.1.2 Linear codes

In general, an [n, k] code encodes k logical bits using n bits in total. We

denote the message of logical bits as the bitstring u = u1u2 . . . uk, which is

encoded into a codeword x = x1x2 . . . xn, where generally n > k to introduce

redundancy [43]. In a linear code, codewords are formed by linear combi-

nations of message bits, such that every linear combination of codewords is

itself a codeword.

A generator matrix G defines this encoding, such that uG = x. In the

example of a [5, 1] repetition code, the possible messages are u ∈ {0, 1} and
codewords are x ∈ {00000, 11111}. Therefore, the generator matrix of the

20

code is

G =
(
1 1 1 1 1

)
(2.3)

such that

0 ·G =
(
0 0 0 0 0

)
(2.4)

1 ·G =
(
1 1 1 1 1

)
. (2.5)

To detect errors, one or more parity checks (i.e. sum modulo 2) are per-

formed on the bits. This is represented by a parity-check matrix H, where

each row corresponds to a parity check on a subset of the bits.

For example, the parity-check matrix representing an n = repetition code

is

H =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 , (2.6)

which is equivalent to testing if pairs of neighbouring bits differ in value. The

outcomes of these parity checks can be represented as a syndrome vector σ,

sometimes more clearly denoted σ(x), such that

Hx⊤ = σ . (2.7)

x is in the codespace if and only if σ(x) = Hx⊤ = 0. If, in this example,

H


0
0
1
0
0

 =


0
1
1
0

 , (2.8)

then we know x has left the codespace because σ(x) ̸= 0.

If a code C comprises a set of codewords, then the dual code C⊥ comprises

21

the set of codewords which are orthogonal to every codeword in C, i.e.

C⊥ = {x | ⟨x, c⟩ = 0 ∀c ∈ C} . (2.9)

The parity-check matrix of C is equal to the generator matrix of C⊥ and vice

versa. Through this reasoning, it can be shown that if a parity-check matrix

is an (n− k)× n matrix of the form

H = [A | In−k] , (2.10)

then the corresponding generator matrix is the k × n matrix

G = [Ik | −A⊤] , (2.11)

noting that −A = A in Z2.

The Hamming distance between two bitstrings is the number of posi-

tions in which their value differs. The distance d of a code is the minimum

Hamming distance between any two codewords. For a linear code, this is

equivalent to the minimum weight of a nonzero codeword.

In the previous example of a [5, 1] repetition code, by inspection, d = 5.

Therefore, a minimum of 5 individual errors are needed to transform one

codeword into another, i.e. constitute an undetectable error overall. We

denote this example a [5, 1, 5] code.

In summary, given an intended codeword x subject to an error vector e,

the error-correction problem is equivalent to solving the equationH(x+e)⊤ =

σ; that is, decoding a syndrome σ into the most likely error explaining it,

returning to the codespace in a way which matches the intended message u

with as high probability as possible.

22

2.1.3 Quantum information

The fundamental concepts of error correction transfer elegantly to the do-

main of quantum computing, despite some compounding factors which serve

to complicate the problem. A quantum bit, or qubit, exists as a superposition

(that is, a linear combination) of the two basis states |0⟩ and |1⟩, forming a

two-level quantum system [10]. These basis states, known as the computa-

tional basis, are defined as

|0⟩ =
(
1
0

)
(2.12)

|1⟩ =
(
0
1

)
, (2.13)

such that a qubit |ψ⟩ takes the form

|ψ⟩ = a|0⟩+ b|1⟩ (2.14)

=

(
a
b

)
, (2.15)

where a and b are complex numbers such that |a|2 and |b|2 give the probability
of measuring the states |0⟩ and |1⟩, respectively. The state is thus constrained
by a normalisation condition:

|a|2 + |b|2 = ⟨ψ|ψ⟩ = 1 . (2.16)

This qubit state is a vector in two-dimensional Hilbert space, which can be

represented as a three-dimensional Bloch sphere, as shown in Figure 2.2. By

convention, the |0⟩ and |1⟩ basis states are set as positive and negative along

the z axis, respectively. All pure states (i.e. ‘true’, non-noisy superpositions)

23

Figure 2.2: Bloch sphere representation of a qubit. Image from [47].

lie on the surface of the sphere; for example, the equal superposition state

|+⟩ = |0⟩+ |1⟩√
2

(2.17)

points directly in the positive x axis. Any operation which takes a qubit

from one pure state to another can thus be interpreted as a three-dimensional

rotation.

Therefore, the first issue encountered is that unlike the classical case,

wherein only bit-flip errors need to be considered, qubits can be subjected

to a continuous spectrum of errors. Take the following operator definitions:

X =

(
0 1
1 0

)
(2.18)

Y =

(
0 −i
i 0

)
(2.19)

Z =

(
1 0
0 −1

)
. (2.20)

These, together with the identity matrix, form the set of Pauli matrices

P = {I,X, Y, Z}, also sometimes denoted P = {σ0, σ1, σ2, σ3}. The Pauli X

24

operator (an x-axis rotation by π) is equivalent to a bit flip:

X|0⟩ = |1⟩ (2.21)

X|1⟩ = |0⟩ . (2.22)

However, other errors have no classical equivalent. For example, the Pauli Z

operator (a z-axis rotation by π) performs a phase flip:

Z|0⟩ = |0⟩ (2.23)

Z|1⟩ = −|1⟩ (2.24)

which leaves the |0⟩ state unchanged and introduces a relative phase of −1
to the |1⟩ state.

Even if just considering the correction of only bit-flip errors, translating

directly from the classical repetition code, another issue which immediately

arises is decoherence: the act of measuring the quantum state causes it to

collapse, thus destroying the quantum information we wish to hold. Simply

attempting to copy the state and measure the copy will not suffice, as a

copy of the state will remain entangled with the original, with copying into

a separable (i.e. non-entangled) state proven impossible universally by the

no-cloning theorem [48].

25

2.1.4 Quantum error correction (QEC)

Similar to the classical case, a [[3, 1]] repetition code1 using three physical

qubits can be defined:

|0L⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ = |000⟩ (2.25)

|1L⟩ = |1⟩ ⊗ |1⟩ ⊗ |1⟩ = |111⟩ , (2.26)

such that any logical state takes the form

|ψL⟩ = |ψψψ⟩ (2.27)

= a|000⟩+ b|111⟩ , (2.28)

such as

|+L⟩ = |+++⟩ (2.29)

=
|000⟩+ |111⟩√

2
. (2.30)

Rather than considering the problem as one of measuring the three physical

qubits to take a majority vote, two parity checks can be taken – as in the

classical case – to compare the equality of the first and second qubits and,

likewise, the second and third. Measuring the observable ZZI (that is, Z ⊗
Z ⊗ I) yields a result of +1 if the first and second qubits are equal in the

computational basis and −1 if they are not. The observable IZZ achieves

the same for the second and third qubits.

If the syndrome measurements are both +1, then the qubits must be in

the form a|000⟩ + b|111⟩, so no bit-flip errors have occurred. If the ZZI

measurement is −1, the qubits must be in the form a|100⟩ + b|011⟩, so a

1Note the use of double brackets to distinguish a quantum code from a classical code.

26

majority vote would involve flipping the first qubit. By only measuring cor-

relations between physical qubits, no information is gained about the logical

qubit state a and b, so the original quantum information is preserved. There-

fore, this code can protect against single-qubit bit-flip errors. The analysis

of this scheme for now remains the same as in the classical case shown in

Figure 2.1, with a threshold of p = 1/2 above which the outcome may simply

be inverted.

Single-qubit phase-flip errors can similarly be protected against by the

same approach, instead encoding the logical qubit as

|0L⟩ = |+++⟩ (2.31)

|1L⟩ = |−−−⟩ , (2.32)

or, equivalently, instead obtaining an error syndrome by measuring the ob-

servables XXI and IXX. The Shor code combines these approaches by

nesting the encodings, i.e. encoding the logical qubit using nine physical

qubits:

|0L⟩ = |+++L⟩ (2.33)

=

(|000⟩+ |111⟩√
2

)(|000⟩+ |111⟩√
2

)(|000⟩+ |111⟩√
2

)
(2.34)

=
(|000⟩+ |111⟩) (|000⟩+ |111⟩) (|000⟩+ |111⟩)

2
√
2

, (2.35)

which can therefore protect against both bit-flip and phase-flip errors affect-

ing a single physical qubit [49]. This is more powerful than it may initially

seem: first, note that any single-qubit Pauli error E (as a three-dimensional

rotation on the Bloch sphere) may be decomposed in the form

E = e0I + e1X + e2Z + e3Y . (2.36)

27

By using the identity

ZX = −XZ = iY , (2.37)

the operator E can instead be decomposed in the form

E = e0I + e1X + e2Z + e3XZ . (2.38)

Therefore, correcting both bit-flip and phase-flip errors on a qubit is equiv-

alent to correcting any arbitrary error on a qubit. Additionally, X and Z

parity checks are strictly independent in many popular codes2; for this rea-

son, many QEC schemes need only discuss the correction of either X or Z

errors, as it can be assumed that the process may be conjugated and repeated

for the other, thus correcting any arbitrary error.

2.1.5 Stabilisers and generators

An operator A is said to stabilise a state |ψ⟩ if it leaves the state unchanged:

A|ψ⟩ = |ψ⟩ . (2.39)

In other words, |ψ⟩ is an eigenstate of A with eigenvalue +1.

Single-qubit bit-flip detection using the encoding for |ψL⟩ given in equa-

tion 2.28 is performed with any two of the three operators ZZI, ZIZ and

IZZ. These operators all stabilise |ψL⟩: they are physical error configura-

tions which do not actually alter the logical state. Another (trivial) stabiliser

of this state is the identity operator III. Together, they form a stabiliser

group S:

S = {III, ZZI, ZIZ, IZZ} . (2.40)

2Calderbank–Shor–Steane (CSS) codes are a broad group of codes with this condition,
to which the surface codes, colour codes and 3D toric code discussed below all belong [50].

28

Any two operators A and B commute if AB = BA, which can be quantified

by the commutator

[A,B] = AB −BA = 0 . (2.41)

A and B instead anticommute if AB = −BA. Note that all of the elements

in S commute with one another, thus it is an abelian group.

VS is the subspace of vectors which are stabilised by all of the operators

in S. For example, the subspace stabilised by ZZI is formed by all linear

combinations of the spanning set {|000⟩, |001⟩, |110⟩, |111⟩}. In other words,

ZZI stabilises any state where the first and second qubits are the same. The

subspaces stabilised by ZIZ and IZZ are similarly formed by the spanning

sets {|000⟩, |010⟩, |101⟩, |111⟩} and {|000⟩, |100⟩, |011⟩, |111⟩}, respectively.
Trivially, the subspace stabilised by III is the set of all states. Therefore,

VS is the subspace formed by the intersection of all four spanning sets, which

is merely {|000⟩, |111⟩}. This is the computational subspace as already defined

in equation 2.28. If any of the operators in S do not stabilise a state |ψL⟩,
then clearly |ψL⟩ /∈ VS, that is, some error has taken the logical state outside

of the computational subspace.

In general, if Ej is a unitary
3 error affecting the state |ψL⟩ with a stabiliser

Sj, the resultant state is Ej|ψL⟩. Measuring Sj results in +1 if Ej commutes

with Sj (i.e. Ej is also a stabiliser):

⟨Sj⟩ = ⟨ψL|E†
jSjEj|ψL⟩ (2.42)

= ⟨ψL|E†
jEjSj|ψL⟩ (2.43)

= ⟨ψL|Sj|ψL⟩ (2.44)

= ⟨ψL|ψL⟩ (2.45)

= 1 , (2.46)

3A is unitary if A† = A−1, where A† is the conjugate transpose.

29

but results in −1 if Ej anticommutes with Sj:

⟨Sj⟩ = ⟨ψL|E†
jSjEj|ψL⟩ (2.47)

= ⟨ψL|(−E†
jEjSj)|ψL⟩ (2.48)

= ⟨ψL|(−Sj)|ψL⟩ (2.49)

= −⟨ψL|ψL⟩ (2.50)

= −1 . (2.51)

Stabiliser measurements can therefore be used as an error syndrome, with

the error being detected if it anticommutes with at least one stabiliser of the

logical state.

The stabiliser group S can be represented more compactly by a generating

set, which is a set of operations from which all elements in S can be formed

via multiplication. For example, a possible set of generators for S here is

⟨ZZI, IZZ⟩ because the other elements of S may be formed as

ZIZ = (ZZI)(IZZ) (2.52)

III = (ZZI)2 = (IZZ)2 . (2.53)

Note that these two generators correspond to the syndrome measurements

defined in Chapter 2.1.4. The above statement may be strengthened such

that an error is detected if it anticommutes with at least one stabiliser gen-

erator.

In general, an [[n, k]] stabiliser code has m = n− k stabiliser generators,

yielding 2n−k stabilisers in S. Any error inflicted on n qubits belongs to the

30

n-qubit Pauli group, generated as

G1 = {±A,±iA ∀A ∈ P} = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}
(2.54)

Gn = {±A,±iA | A = A1 ⊗ · · · ⊗ An ∀(A1, . . . , An) ∈ P n} (2.55)

where P n is the n-ary Cartesian power4 of the set of Pauli matrices. The

number of elements in the n-qubit Pauli group is thus 4n+1.

The set of all undetectable errors is therefore the set of errors which

commute with every stabiliser in S. This is the centraliser Z of S in Gn,

defined as

ZGn(S) = {A ∈ Gn | AB = BA ∀B ∈ S} , (2.56)

and so the set of logical operators is the set of undetectable errors which are

not themselves stabilisers, i.e. ZGn(S) \ S.

2.2 Surface codes

2.2.1 Toric code

In the previous section, we saw how the stabiliser formalism can be used

as a powerful and broad framework to begin constructing quantum error-

correcting codes. One of the most popular contemporary categories of sta-

biliser code is topological codes, in which qubits and stabiliser measurements

lie on the edges, vertices or faces of a tessellation on a D-dimensional space

[36, 38, 51]. The most well-known of these are the surface codes, which are

codes on 2-dimensional grids based upon Kitaev’s toric code [32].

In the toric code, as the name suggests, qubits are arranged as a lattice

4(the set of all n-tuples of elements in a set)

31

Figure 2.3: Torus demonstrating two degrees of freedom as nontrivial cycles.
Image generated by code adapted from [52].

on the surface of a torus. The topology of the torus leads to periodic bound-

ary conditions in both dimensions of the 2D surface. Cycles on the surface

can be organised into equivalence classes, of which the torus has four. The

first class contains all trivial cycles, that is, those which form a boundary

and can be contracted to a single point. The other three classes contain the

nontrivial cycles in the two degrees of freedom, that is, those which are non-

contractible, as shown in Figure 2.3, and their combination. This topology

may be exploited to construct a stabiliser code.

Qubits are positioned on the edges of the lattice such that, in a lattice

of length L, there are 2L2 qubits. A plaquette (or face) operator is defined

as the combination of four Z operators on neighbouring qubits, forming a

trivial cycle on the primal lattice (Figure 2.4). Similarly, a star (or vertex)

operator is the combination of four X operators forming a trivial cycle on

the dual lattice [53].5 The ‘dual lattice’ here means the lattice formed by

perpendicular bisection of all edges in the original, or ‘primal’, lattice [54].

Note that the assignment of Z and X to the two types of operator is arbitrary

and largely by convention. Formally, the X star and Z plaquette operators

5Hereinafter, the terms ‘plaquette’ and ‘face’ will be used interchangeably, but ‘star’
will be preferred over ‘vertex’ to reduce ambiguity when discussing graph topology.

32

Figure 2.4: Toric code with L = 5. Physical qubits are circles on the edges of
the lattice. The dashed lines show the dual lattice. Plaquettes of Z operators
in red and stars of X operators in blue are stabilisers, as they form trivial
cycles on the primal and dual lattices, respectively.

can be defined using group homomorphisms as

SX
v =

∏
e∈∂v

Xe , S
Z
f =

∏
e∈∂f

Ze , (2.57)

where e ∈ ∂f is shorthand for e ∈ ∂2f (i.e. the set of edges on the boundary

of a face f) and e ∈ ∂v is shorthand for e | v ∈ ∂1e (i.e. the set of edges with
which a vertex v is associated) [55].

The L2 plaquettes and L2 stars are stabiliser generators – commuting

with themselves and each other – so any product of them are also stabilisers,

forming any trivial cycle on the lattice. Note that an individual plaquette is

identical to the product of all other plaquettes, such that there are in fact

L2−1 independent plaquettes, with the same holding true of stars. Therefore,

there are m = 2(L2 − 1) independent stabiliser generators. With n = 2L2

33

Figure 2.5: Logical operators Z and X for two logical qubits are nontrivial
cycles on the primal and dual lattices, respectively.

physical qubits, the number of logical encoded qubits is

k = n−m = 2 . (2.58)

Logical Z operators are defined as nontrivial cycles on the primal lattice

and logical X operators as nontrivial cycles on the dual lattice, as shown in

Figure 2.5. This gives the toric code a distance d exactly equal to L, making

it a [[2L2, 2, L]] code. These operators commute with the stabilisers but are

not themselves stabilisers, as they cannot be formed by multiplication of the

generators. Therefore, they act nontrivially on the logical qubits within the

codespace. The operators are defined such that Z̄1 and Z̄2 commute, as do

X̄1 and X̄2, but Z̄1 and X̄1 anticommute, as do Z̄2 and X̄2.

The above arises from the observation that two X/Z operators on the

lattice commute if the number of physical qubits they both act on is even.

We have seen that error detection can be performed by measuring the sta-

biliser generators to obtain an error syndrome. Here, measuring the X stars

34

Figure 2.6: A string of errors is detected by a −1 syndrome measurement
at each end (blue circles). The top error is transformed into a stabiliser by
applying a correction (green) in the same equivalence class, but the bottom
error is erroneously transformed into a logical operator by applying a correc-
tion in a different class.

gives +1 if an even number of Z operators are present at a star and −1 if an

odd number are present. A single error on an edge therefore has a syndrome

of −1 measurements at its two neighbouring vertices. These ‘excited’ parity-

check measurements constituting the syndrome are sometimes referred to as

defects ; for consistency, this terminology will be used hereinafter. Neigh-

bouring edge errors will form a string, with a defect at both ends, as shown

in Figure 2.6.

Error correction will involve forming and applying a correction operator

using the observed syndrome. It is not necessary to deduce the exact error

responsible for the syndrome, but rather any operator consistent with the

syndrome in the same topological equivalence class, which will transform the

error into a stabiliser. If the correction operator is in a different equiva-

lence class, however, the correction fails, transforming the error into a logical

35

operator.

2.2.2 Planar code

It is impractical to consider physically arranging qubits in a nontrivial topol-

ogy such as a torus, especially when considering desired interactions between

logical qubits. It is more convenient to consider qubits arranged on a more

trivial plane – thankfully, the periodic boundary conditions of the toric code

(whilst mathematically elegant) are not mandatory6, leading to planar codes

[36, 38].

In the previous section, only data qubits were discussed. In practice,

the lattice would also contain ancilla qubits, used to perform the four-way

syndrome measurements. We can represent this more practical view of the

lattice by alternating data qubits with both X and Z ancilla qubits, as shown

in Figure 2.7.

The periodic boundary conditions of the toric code are replaced by hard

boundaries of X ancillae in one dimension and Z ancillae in the other. There

are now d(d−1) independent plaquettes, and the same number of independent

stars. Therefore, there are m = 2d(d− 1) independent stabiliser generators.

As there are n = d2 + (d − 1)2 data qubits, the number of logical encoded

qubits is

k = n−m = 1 , (2.59)

thus the planar code encodes only one logical qubit as opposed to the toric

code’s two, making it a [[L2 + (L − 1)2, 1, L]] code. The logical operator

X̄ is defined as a string of X operators connecting the X boundaries, and

similarly for Z.

As mentioned, correction schemes on suitable codes can tackle X and

6This is because checks constituting the periodic boundaries are not linearly-
independent rows in the check matrix H (see Chapters 2.3.2 and 4.3).

36

Figure 2.7: Planar code (d = 5) with alternating data (white) and X and Z
ancilla (black) qubits. Image from [38].

Z errors independently, so we need only describe schemes for one of these

two regimes. Considering just the Z ancillae, for example, to detect and

correct X errors, the lattice will now appear uneven, with open (a.k.a. rough)

boundaries at the left and right and closed (a.k.a. smooth) boundaries at the

top and bottom (in terms of Figure 2.7, at least – recall that the configuration

of X and Z ancillae is ultimately arbitrary). An X logical operator is one

which connects the open boundaries, meaning a Z logical operator connects

the closed boundaries or, equivalently, the open boundaries on the dual lattice

[56]. Unlike the toric code, an odd number of defects can now appear (in the

case of an error occurring on the open boundary). This must be addressed

by decoding schemes when moving from toric to planar codes.

37

2.3 Measurement error

2.3.1 Difference syndrome

The schemes so far intend to tackle stochastic Pauli errors occurring in data

qubits; the most straightforward approach to modelling this is an indepen-

dent model, with an error inflicted on each qubit with probability p. Unfor-

tunately, these schemes are derailed by errors in the syndrome measurements

themselves. Consider instead a phenomenological error model, in which syn-

drome measurements are flipped with probability q. A decoder becomes far

more likely to fail due to defects appearing and disappearing in a manner no

longer representative of the Pauli data errors [36, 38].

To combat measurement errors, syndrome measurements can be per-

Figure 2.8: Planar code extended to 3D by an additional time dimension.
Changes in syndrome measurements are represented as timelike errors in the
vertical axis. Image from [38].

38

formed repeatedly over time, extending the lattice to three dimensions by

an additional time axis (Figure 2.8). Changes in a syndrome measurement

from one measurement round to the next are represented as ‘timelike’ errors

on the vertical edges between ancillae. The overall syndrome can be con-

verted to a difference syndrome, such that a defect at time t now indicates a

change from its state at time t− 1 [57].

The various approaches for decoding 2D surface codes which will be dis-

cussed below scale naturally to incorporate an additional dimension in the

decoding graph, making the inclusion of measurement errors surprisingly el-

egant to tackle in many cases. The 3D correction operator calculated by

these decoders will therefore include both horizontal (spacelike) corrections

and vertical (timelike) corrections. Of course, only the spacelike corrections

hold physical meaning after the final round of measurements, so a 2D correc-

tion operator is inferred from this result by simply extracting the spacelike

corrections from across the time slices. A step-by-step illustration of this

approach via computational simulation can be seen in Figure 3.1.

2.3.2 Single-shot codes

In the difference-syndrome approach discussed above, repeated rounds of

measurements are taken and the entire syndrome history is used by the de-

coder. In contrast, for suitable codes, single-shot decoding uses only the

current noisy syndrome round at each decoding stage [58]. One approach to

determining suitability is confinement. In short, a code is linearly confined

if the weights of syndromes increase no less than linearly with the weights of

errors which cause them.

More generally, first define the reduced weight |x|red of an error x as the

minimum weight of all errors which share the same syndrome as x. A code

39

is (t, f)-confined if, for all x with |x|red < t,

f(|σ(x)|) ≥ |x|red , (2.60)

where f is some increasing function with f(0) = 0. Linear confinement is

sufficient for a code to be single-shot under stochastic noise, and more general

confinement can show codes to be single-shot under adversarial noise (errors

chosen as if by an intentional adversary) [59]. These properties ensure that

data and measurement errors remain bounded over repeated rounds and will

not become uncorrectable.

The 2D toric code is not confined – a string of errors will yield two defects

no matter the length of the string – and thus it is not an example of a single-

shot code [60].

Generally, there are two approaches to decoding a single-shot code. Firstly,

single-stage decoding applies a decoder to the noisy syndrome and relies on

the single-shot property to bound the accumulation of residual error. In

contrast, two-stage decoding first attempts to correct a noisy syndrome be-

fore then proceeding to decode the error. This instead relies on redundan-

cies of parity checks (i.e. linear dependencies between rows of H) to yield

metachecks. In other words, the syndrome itself is treated as a codespace,

Figure 2.9: (a) the 4-bit classical repetition code; (b) the 4-bit classical
repetition code with an additional check and corresponding metachecks. C0

are bits, C1 are checks and C2 are metachecks. Image from [61].

40

where invalid syndromes might themselves be detected with parity checks

[59]. Figure 2.9 shows Tanner graphs illustrating a simple example of this

layout (for an introduction to Tanner graphs, see Chapter 2.6.1). Note that

not all single-shot codes necessarily have metachecks; that is, their parity-

check matrices can be full-rank [60].

2.4 Surface-code decoding

2.4.1 Optimal decoder

As mentioned, a critical part of the error-correction process is the decoding

problem: the task of inferring the most likely intended codeword given an er-

ror syndrome σ. Classically, this is usually a matter of determining the most

likely error; for quantum surface codes, it suffices to find any topologically-

equivalent error as a correction operator which results in a stabiliser of the

logical state.

Formally, for a set of edges E and vertices V , the decoding problem is

one of selecting a correction operator C ⊂ E consistent with a syndrome

(i.e. a set of defects) σ ⊂ V in the same topological equivalence class as

the data errors EZ ⊂ E, i.e. selecting C as an approximation of EZ up to a

stabiliser. Therefore, the optimal strategy is to calculate the probabilities of

all possible candidates for EZ consistent with σ and thus determine the most

likely equivalence class.

In Chapter 2.1.1, we saw the emergence of a code threshold : a critical

value for the data error rate p below which the logical error rate pL is sup-

pressed asymptotically by increasing the code distance d. We denote the

code threshold pc, which becomes a singularly useful metric for quantifying

the fault-tolerance of a given correction scheme, with direct indication of the

scalability of a scheme in practice.

41

decoder worst-case complexity threshold, pc
optimal O(2n) ∼0.1100
MWPM O(n3) ∼0.1031
HDRG O(n2) ∼0.0840

union–find O(nα(n)) ∼0.099
Table 2.1: Comparison of some 2D decoder algorithms, in terms of code
threshold under independent noise and complexity in the number of physical
qubits. Note that the complexity for union–find is amortised and α(n) is
extremely slow-growing.

The threshold for the optimal decoder on the toric code with an indepen-

dent noise model has been shown to be pc ≈ 0.1100. This can be derived

as a root of R = 1 − 2H(p), where R is the asymptotic rate of error-free

transmission, dropping to zero at the threshold [36, 50].7 The problem also

has a dual in statistical mechanics and has been mapped onto the random-

bond Ising model (RBIM) in which the code threshold emerges as a phase

transition. For example, this technique is utilised in [63] to obtain a result

of pc = 0.1094± 0.0002, consistent with the value obtained using R.

The space of possible errors scales exponentially in the number of physical

qubits n. At scale, this measurement–decoding cycle must be repeated after

every logical operation, or at least on the same order of magnitude [64]; it

is no surprise, then, that the use of an exponential-time decoder is generally

considered infeasible in practice. The development of decoders which strike a

balance between computational efficiency and achieving a threshold as close

as possible to the optimal is thus a popular open problem.

2.4.2 MWPM decoder

An approximation of determining the most likely equivalence class is instead

determining the single most likely error consistent with the syndrome σ.

7H(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy function, or Shannon
entropy. Similarly, the hashing bound (a generalisation of the Shannon entropy) gives the
correct threshold for the toric code under depolarising noise [62].

42

Conceptually, this is a relatively straightforward task, as it is equivalent

to the minimum-weight perfect matching (MWPM) of all defects. In the

independent error model of uniform p for all qubits, the syndrome graph is

unweighted, such that the matching graph comprises the Manhattan distance

between all defects, that is, the L1 distance, equal to the sum of the horizontal

and vertical distances.

The MWPM of the matching graph is the connection of defects into pairs

such that the total weight of the connection is minimised. This is intu-

itively equivalent to the single most likely error consistent with the syn-

drome. This can itself be considered a good approximation of the most likely

equivalence class, as the threshold for the MWPM decoder has been shown

to be only slightly less than that of the optimal decoder, with a result of

pc = 0.1031 ± 0.0001 obtained through the RBIM technique [65]. A result

of pc = 0.0293 ± 0.0002 is also given for three-dimensional MWPM, that is,

the phenomenological error model with measurement error rate q = p. We

therefore expect phenomenological error thresholds to be approximately one

order of magnitude smaller than independent error thresholds.

When transitioning from the toric to the planar code, recall that an odd

number of defects may be present, due to lone defects occurring which should

be matched to an open boundary. This is incorporated by adding to the

matching graph the distance from each defect to its nearest open boundary

[66]. An additional caveat arises that these ‘virtual’ boundary nodes must

also participate in the matching, which would force all defects to match to the

open boundary. To prevent this, the virtual boundary nodes are connected

together with zero-weight edges, such that unused boundary nodes may be

‘paired-off’ for zero cost (Figure 2.10).

Minimum-weight perfect matching can be performed in time polynomial

in the number of vertices. The blossom algorithm introduced by Edmonds

43

Figure 2.10: Matching graph for a planar code. All defects (a) are connected
to each other and their nearest open boundaries, weighted by Manhattan
distance (b), with the boundary nodes interconnected with zero weight (c).
Image from [66].

in 1965 finds the MWPM in O(|E||V |2) time [67]. As the matching graph

consists of the distances between all defects, it is a perfect graph, such that

|E| = |V |(|V | − 1)/2. Therefore, the time complexity of Edmonds’ blos-

som algorithm becomes O(V 4). There have been many improvements of the

blossom algorithm over time, improving complexity to O(V 3). Currently, a

overall frontrunner in performance is Blossom V, introduced by Kolmogorov

in [68].

In general, then, a MWPM decoder runs in time polynomial in the num-

ber of physical qubits. The MWPM decoder is generally considered the foun-

dational approach from which multiple variations have been proposed and

against which decoders are frequently compared. A local variant of MWPM

given in [57, 69] considers only the matching graph formed from them nearest

neighbours of each defect – providing a notable speedup over exact matching

– with a linear time complexity in m and a threshold which converges upon

that of exact matching for approximately m ≥ 16 in the phenomenological

model.

Local matching is justifiable due to the likelihood with which defects

are located close together compared to the overall size of the lattice, which

by definition occurs for sub-threshold error rates on arbitrarily large-scale

systems (see Chapter 3.4.1). This insight can be used by alternative ap-

44

proaches based in clustering, such as the hard-decision renormalisation group

(HDRG) decoder [70]. The HDRG decoder iteratively searches the neigh-

bourhood of each defect formed by increasing Manhattan distance and triv-

ially matches with the first defect discovered within this neighbourhood

(hence hard-decision) [71]. This forms a greedy approximation of minimum-

weight matching which runs in quadratic time, with a correspondingly re-

duced threshold of pc = 0.0840± 0.0001 [72].

2.4.3 Union–find decoder

A leading alternative decoder scheme is the union–find (UF) decoder [40].

The primary motivation behind the UF decoder is the concept of an erasure

error : any error occurring in quantum hardware wherein a qubit is taken

out of the computational subspace, but which also has the mitigating qual-

ity of a known position. For example, a qubit which uses the |0⟩ and |1⟩
states of some physical system may leak into the unused |2⟩ state, which is

detectable by the projective measurement |0⟩⟨0|+ |1⟩⟨1| without decohering
the computational subspace.

When erasure is detected on a physical qubit, it can be returned to the

computational subspace, e.g. with a maximally-mixed (i.e. depolarised) state

or a basis state, with syndrome extraction then proceeding as normal. An

erasure is therefore equivalent to a random Pauli error at a known location;

an appropriate decoder can use this positional information accompanying the

syndrome for more efficient and accurate error correction [73].

The UF decoder exploits this by reinterpreting the syndrome of Pauli

errors with a covering set of erasure errors; intuitively, this is beneficial as

it subjectively reduces the uncertainty in the location of errors. Correcting

erasure errors can be performed in linear time [73] and ‘converting’ Pauli

errors to erasure errors can be performed in near-linear time, forming a two-

45

Figure 2.11: Syndrome validation in the union–find decoder. Note that whilst
both a syndrome and initial erasure are provided in this example, the decoder
also works without an initial erasure. Image from [40].

stage, near-linear-time decoder overall.

The first stage, referred to as syndrome validation, is performed by iter-

atively growing clusters from each defect, not dissimilarly to the clustering

approaches discussed above. Given an observed syndrome σ ⊂ V and an

initial observed erasure ε0 ⊂ E (i.e. the set of qubits with a detected erasure

error), a cluster is created for each defect, which is grown out by a half-edge

each iteration (such that two adjacent defects are connected by one edge af-

ter a single iteration). Whenever clusters meet, they are merged together in

a disjoint-set, or union–find, data structure. Only clusters which support an

odd number of defects continue to grow, such that validation finishes as soon

as all clusters are even. All grown edges are added to the modified erasure ε

(Figure 2.11).

Next, a correction operator must be found within ε. In order to ensure

optimal complexity by limiting suboptimal choices, cycles are removed from

46

ε; in other words, a spanning forest Fε is found upon ε [73]. This can trivially

be performed in linear time via depth-first search [74], Kruskal’s algorithm

[75] etc. The peeling decoder from [73] can then be applied to Fε to obtain

a correction operator C. A leaf is defined as an edge {u, v} connected to

Fε only by vertex v, such that vertex u is defined as a pendant. Until Fε is

empty, a leaf e = {u, v} is removed from Fε and, if u ∈ σ, e is added to C,
u is removed from σ and v is flipped in σ (that is, v is removed from σ if

present and added if not).

The peeling decoder requires only minor alteration when moving to the

planar code. Previously, the spanning forest Fε is chosen arbitrarily. In a

planar code, if any of the edges in ε lie on an open boundary, the correspond-

ing spanning tree must be seeded in – that is, grown from – that open edge,

with peeling then performed in the reverse direction. This ensures the open

edge is not merely treated as a leaf and is included in the final correction

operator.

The amortised time complexity8 of a single operation in the union–find

data structure is O(α(n)), where α(n) is the inverse Ackermann function,

which is so extremely slow-growing that it is effectively constant (see Chap-

ter 2.5.1). In the worst case, n−1 merges are performed; therefore, syndrome

validation runs in O(nα(n)). Both construction of a spanning forest and the

peeling decoder are linear-time algorithms, so the overall complexity of the

UF decoder is O(nα(n)), i.e. almost linear-time. This is a significant improve-

ment over the polynomial-time decoders discussed above, yet the threshold

for the two-dimensional UF decoder under independent noise is as high as

0.099. Similarly, the three-dimensional phenomenological threshold is as high

as 0.026, compared to 0.0293 for MWPM given above. This is intuitive when

interpreting the UF decoder graphically as finding a good local approxima-

8Amortised complexity refers to the limit of the complexity of a single operation over
arbitrarily many operations [76].

47

tion of MWPM [77].

A weighted variant of the UF decoder has similarly been proposed, yield-

ing a threshold of 0.0062 under circuit-level depolarising noise, compared to

0.0072 for weighted MWPM [78].

2.5 Implementing union–find

2.5.1 Disjoint-set data structure

The basis of the syndrome validation stage of the union–find decoder is the

ability to track clusters merging together as disjoint (i.e. non-intersecting)

sets of vertices. This can be efficiently implemented using a disjoint-set data

structure, also known as a union–find data structure, so named after its two

operations: union and find. The find operation must determine which set a

given element belongs to, whilst the union operation must merge the sets of

two given elements together [79].

A common method of implementing this structure is as a forest of ele-

ments, with each element pointing to its parent to form trees (Figure 2.12).

Each set is identified by a representative element which is the root of the tree;

1

2

3 4

5

6

Figure 2.12: Example of a disjoint-set data structure. Elements 1, 2 and 3
form a set (with 2 as the root, or representative element), as do 4 and 5 (with
5 as the root), and finally 6 is the root of its own set.

48

the element forming the root is arbitrary and depends on the exact method

by which and order in which sets are merged. Root elements are their own

parent: the structure is initialised with all elements pointing to themselves.

Given an element, the find operation traverses up the tree until reaching

an element which is its own parent, reporting this as the root of the set.

Given two elements, the union operation sets the parent of one of the tree’s

roots to be the other’s root, thus merging the two sets into one.

Naively, the trees can grow with arbitrary height; in the worst case, trees

degenerate into lists, such that the worst-case complexity of traversing them

is O(n). Therefore, performing m operations takes O(mn) time. This would

give the union–find decoder a complexity of O(n2), as the number of oper-

ations in the decoder varies with the number of defects, which is of order

np.

Two optimisations can be used in order to improve the complexity of the

operations. Firstly, one can ensure that when merging two trees, the smaller

tree is always merged into the larger tree; that is, ensuring the root of the

larger tree becomes the new root of the union. This is known as union-by-size

when defining the size of a set as the number of nodes in the tree (rank may

be used as an alternative metric, which is an upper bound on the height of

a node). When using union-by-size, a single operation may still take O(n)

time if the two trees are of the same size. However, performing union-by-size

bounds the height of trees to order O(log n) instead of O(n), thus the time

taken by m operations is now bounded by O(m log n) [80]. This would give

the union–find decoder an improved complexity of O(n log n).

Secondly, the find operation can be altered to change the structure of the

trees as they are traversed. Path compression changes the parent pointer

of every node traversed to point directly to the root after it is found, such

that performing the find operation in future on any of those nodes again

49

Figure 2.13: Example of path compression. If all nodes form a tree as shown
and the find operation is invoked on node 8, all nodes encountered when
traversing to the root (node 1) have their parent set to the root ex post
facto, such that nodes 5, 7 and 8 all become direct descendants of the root,
optimising any future operations involving these nodes.

(assuming no union operations are performed since) becomes constant-time

(Figure 2.13). When combining this technique with union-by-size, the time

taken by m operations becomes O(mα(n)), where α(n) is the inverse Ack-

ermann function. The derivation of this emergent term in the complexity is

nontrivial and beyond the scope of this review [79]. It suffices to note that

this function is extremely slow-growing:

α(61) = 3 (2.61)

α(22
22

16

− 3) = 4 (2.62)

α(22
22

216

− 3) = 5 . (2.63)

In the computational regime, then, α(n) is a local constant which is effec-

tively global. This gives the union–find decoder an optimised complexity of

O(nα(n)), which is effectively linear-time.

50

2.5.2 AFS architecture

In reality, any viable error correction scheme must be implemented on phys-

ical microarchitecture with efficient and scalable design. Das et al. present

such a design in [81], implementing the union–find decoder discussed in Chap-

ter 2.4.3, named the AFS (‘accurate, fast and scalable’) decoder. The pri-

mary design consists of three modules, each consisting of the data structures

required to implement the three stages of the decoder, as shown in Fig-

ure 2.14.

The first module, the graph generator, is responsible for the syndrome

validation stage. In this module, the spanning tree memory (STM) stores

syndrome measurements in a grid data structure, with two edge cells between

each vertex cell, implementing the half-edge growth. The zero data register

(ZDR) stores a bit for each row of the STM signifying whether they have any

non-zero bits, speeding up traversal of the STM by allowing empty rows to

be skipped. The root and size tables manage the union–find data structure,

storing for each vertex the parent and, if it is a root, the size of the set tree.

The traversal registers note the elements encountered in a find operation such

Figure 2.14: Three-stage pipeline of the AFS microarchitecture. Image from
[81].

51

that their parent pointers can be set to the root once found, implementing

path compression. The parity registers store the parity of each cluster (that

is, whether the number of defects supported is odd or even) in order that only

odd clusters are grown. The fusion edge stack (FES) stores any grown edges

which would connect to another cluster, delaying writing them to the STM

until all clusters have grown in that iteration. This prevents ‘double growth’,

in which the second cluster would include the first in its new boundary and

would thus grow out again from all edges in the first cluster.

The second module, the depth-first search (DFS) engine, is responsible

for performing depth-first search on a fully-grown cluster in order to remove

cycles, i.e. find a spanning tree. Depth-first search is easily codified by a stack

data structure (‘last-in, first-out’, or LIFO). As edges are discovered by the

depth-first search, they are added to the pending edge stack. When edges

are expanded, they are placed on an edge stack, forming a list of edges in the

spanning forest in the order in which they were expanded. The architecture

allocates two edge stacks (S0 and S1), such that the third module can work

on a spanning tree stored in one stack whilst the DFS engine can work on

the next cluster, building a spanning tree in the other stack.

The third module, the correction engine, is responsible for implement-

ing the peeling algorithm to generate the final correction operator for each

cluster. The correction engine updates the error log, which persists from the

previous error correction cycle, with the new correction bits. The syndrome

hold registers are used to store when vertices are removed from or flipped in

σ as part of the peeling algorithm.

Minimisation of memory consumption is a key design goal in the archi-

tecture, with attention given to how the size of the largest components (such

as the STM and edge stacks) varies with code distance d. The proposal

demonstrates how memory consumption can be lower than that of a MWPM

52

implementation, especially as d increases. To parallelise the solution in prac-

tice, multiple instances of all three modules can be used. As much more time

is spent working in the graph generator than the other two modules, the

proposal includes how the architecture can be scaled more intelligently by

multiplexing fewer DFS and correction engines with more graph generators,

at varying ratios.

The proposal concludes by briefly considering some different data com-

pression strategies for the syndrome data in order to alleviate bandwidth de-

mands. The most straightforward approach, a sparse representation, starts

with an indicator bit which is one if there are any ones in the data, followed

by the indices of all ones. Another approach, dynamic zero compression

(DZC), splits the data into equal partitions of width m; the data starts with

one indicator bit for each block (which is zero if its corresponding block

is non-zero) followed by all of the non-zero data blocks in order. Finally,

geometry-based compression extends DZC to higher-dimensional partitions

to align more closely with the lattice-based structure of the correction code.

It is reasoned that sparse representation is preferable when the error rate is

very low, due to the vanishingly small number of nonzero bits present; in a

noisier regime, the other approaches become more effective.

2.6 LDPC codes

2.6.1 qLDPC codes and Tanner graphs

Recall the general definition of a linear code, defined by a parity-check matrix

H. Classically, a low-density parity-check (LDPC) code was defined as one

with a small number j ≥ 3 of checks associated with each bit, and a small

number w > j of bits associated with each check [33]. In modern QEC usage,

a quantum LDPC (qLDPC) code can often be defined to include any code

53

Hx = σ

(
1 0 1 0 1 0 1
0 1 1 0 1 1 0
0 0 0 1 1 1 1

)
0
0
0
0
0
1
0

 =

(
0
1
1

)

Figure 2.15: On the left, a Tanner graph of the [[7, 1, 3]] Steane code, with
qubits on the lefthand nodes and checks on the righthand nodes (image from
[41]). On the right, an equation showing the parity-check matrix represented
by the Tanner graph (as well as the highlighted error mechanism and syn-
drome).

with a sufficiently sparse H: most sources do indeed consider surface codes

as LDPC because the above values j and w remain constant as the size of

the code increases [82, 83], but the term is commonly used to indicate codes

which in contrast are not necessarily topological or graphlike [84].

A characteristic feature of topological codes is that checks are heavily

local; that is, checks are generally performed between spatially-neighbouring

qubits. In the general case, this is no longer true, although various LDPC

codes can exhibit parametric notions of locality. Significantly, in surface

codes, qubits (on edges) are associated with exactly two checks (on vertices),

meaning that the decoding graph is strictly graphlike.9 On arbitrary codes,

however, qubits can be associated with any number of checks, forming hy-

pergraphs.

A hypergraph is a mathematical generalisation of a graph, in which hy-

peredges can be associated with any number of vertices, rather than exactly

two. One approach to a graphlike representation of a hypergraph is a bipar-

9(ignoring open boundary conditions in planar constructions)

54

tite graph, with one set of nodes representing vertices and the other repre-

senting hyperedges. In the context of error correction, this is often referred

to as a Tanner graph [85]. Figure 2.15 shows a simple example of a code

represented as a Tanner graph.

2.6.2 3D toric code

Our first example of a code with a hypergraphlike decoding structure is the

generalisation of the 2D toric code, introduced in Chapter 2.2.1, to higher-

dimensionality topologies; specifically, we can extend to a 3D toric code by

adding an additional dimension with the same periodic boundary conditions

[86, 87]. Qubits are similarly embedded on the edges of this cubic lattice,

with the X and Z stabiliser checks defined as star and plaquette operators,

respectively, in the same manner as the 2D toric code (Equation 2.57).

Although these operators use the same fundamental definition as the 2D

case, it is important to note how their properties differ on this new topology.

The star operators become weight-6 (rather than weight-4 as in the 2D code)

as each vertex now has exactly 6 incident edges; the decoding graph on star

operators is still graphlike, however, because each edge is still incident to

exactly 2 vertices. In contrast, the plaquette operators, now also known

as face operators, remain weight-4; however, the decoding graph on face

operators is now hypergraphlike, because each edge is now incident to 4

edges.

As there are now three topological degrees of freedom, the 3D toric code

with periodic boundary conditions intuitively encodes k = 3 logical qubits,

versus the 2D toric code’s k = 2. However, the differing structures of the

stabiliser checks as discussed above lead to an asymmetrical error-correcting

capacity: the minimum logical-Z weight is still L, but the minimum logical-

X weight is now L2. Therefore, the code distance is variant with the type of

55

Pauli noise, making it a [[3L3, 3, dX = L2, dZ = L]] code [87].

Finally, note that the 3D toric code is not to be confused with the

difference-syndrome approach discussed in Chapter 2.3.1, which instead ex-

tends a 2D surface code to a 3D decoding graph by adding a timelike dimen-

sion.

2.6.3 Colour codes

A 2D colour code is a topological code in which qubits are embedded on

the vertices of a 2D lattice satisfying two properties: first, that each vertex

has three incident edges; second, that the faces formed by the lattice are

3-colourable, i.e. they can be assigned one of three ‘colours’ (conventionally

‘red’, ‘green’ and ‘blue’) such that no two neighbouring faces share a colour

[55, 89].

Formally, contrasting with the operators defined for the surface codes in

Equation 2.57, the stabiliser generators for the colour codes are defined as

SX
f =

∏
v∈∂f

Xv , S
Z
f =

∏
v∈∂f

Zv . (2.64)

Note that, unlike the surface codes, these generators are homogeneous – they

Figure 2.16: 6.6.6 colour code with triangular boundaries. Image from [88].

56

are defined as the same (face) operators, such that the parity-check matrices

defining the X and Z stabiliser checks are identical.

Few 2D lattices satisfy the above conditions: arguably the simplest is

the 6.6.6 (a.k.a. honeycomb/hexagonal) tiling, as shown in Figure 2.16. The

code is most commonly seen in its planar version with triangular boundaries,

but can equally be considered with periodic boundary conditions.

Finally, to see how such a code translates to a hypergraphlike decoding

problem, note that the 6.6.6 colour code for d = 3 is equal to the [[7, 1, 3]]

Steane code shown in Figure 2.15.

2.7 LDPC-code decoding

2.7.1 Belief propagation

Belief propagation (BP) is an algorithm for calculating marginal distributions

on graphical probability models (such as Markov random fields or, indeed,

Tanner graphs) based on an observation [35]. It is a message-passing algo-

rithm in which each node provides its neighbours with a function able to

calculate beliefs based on the information provided by its own neighbours.

For a graphical model of n random variables forming a tree, BP provides an

exact solution after a single pass in time O(n). On general graphs (i.e. con-

taining cycles), then ‘loopy’ BP can provide an approximate solution after

multiple iterations, although in some cases it may only converge on a local

optimum or fail to converge at all. Generally, loopy BP tends to perform well

for approximate solutions outside of adversarial models, especially as exact

marginal calculation is NP-hard in the general case [90].

BP can therefore be used as a decoder for LDPC codes, by approximating

the marginal error probabilities for each bit given an observed syndrome. In

each iteration, the marginal probability for each bit P (xi = 1) is updated as

57

a soft decision, such that the hard decision for each bit is calculated as

xi =

1, P (xi) ≥ 0.5

0, P (xi) < 0.5 .
(2.65)

If the hard decision on the error is consistent with the observed syndrome,

then the decoder has converged and can terminate, else the iteration contin-

ues [91].

Although Tanner graphs are not trees in the general case, the BP decoder

nonetheless tends to perform very well on classical LDPC codes, due to the

fact that sparse bipartite graphs are locally tree-like [92, 93]. However, BP

is less applicable to quantum LDPC codes due to degeneracy; the existence

of multiple optimal solutions means that the decoder can frequently fail to

converge [91].

2.7.2 Generalised union–find

An alternative approach to decoding LDPC codes is to attempt to generalise

the union–find decoder, as introduced in Chapter 2.4.3. As in the original

version for surface codes, the generalised approach is to start with the error

syndrome σ and iteratively add neighbouring nodes until a grown erasure

forest E covers a valid correction operator [41]. The key difference is that

clusters are now grown on a hypergraph, i.e. a bipartite Tanner graph, instead

of a graphlike structure with local edges.

Firstly, given a set of vertices A ⊆ V , the interior of the set Int(A) is

defined as only the elements of A which are not part of the boundary, where

the boundary constitutes all elements which have neighbours outside of A.

The erasure E is initialised to σ. The neighbours of E are iteratively added

to E until at least one valid correction operator is contained within Int(E).

58

Here, ‘valid’ simply means an error mechanism consistent with the syndrome.

Only the interior is considered because any qubits on the boundary of E by

definition must act on checks outside of E and therefore cannot be part of a

valid correction.

This generalisation as given in [41] is more akin to a meta-algorithm

which relies on two black-box functions: syndrome validation and solution

generation. The former tells us when to stop growing clusters, i.e. when a

valid correction operator exists. In the original UF algorithm, this is simply

when clusters support an even number of qubits, but this condition does not

extend to the hypergraph case. The latter finds a valid correction operator

within a fully-grown cluster, which is equivalent to the peeling algorithm,

although this likewise does not trivially extend to the hypergraph case.

The approach used for these functions in [41] is to use Gaussian elimina-

tion to directly solve the decoding equation Hx = σ in cubic time. Applied

independently, this could be considered the most general decoder for lin-

ear codes, with the clear downside that a naive implementation effectively

returns an arbitrary valid correction operator, yielding extremely poor de-

coding accuracy. The generalised UF decoder, therefore, acts as a way to

optimise this ‘Gaussian decoder’ by considering a reduced system of checks

and qubits – specifically, the minimum set of nodes containing a solution.

This guides Gaussian elimination to approach a minimum-weight solution.

Each growth step, as nodes are added, rows and columns are added to

a reduced parity-check equation representing E and Gaussian elimination is

performed, from which the presence of a solution becomes clear. If a solution

exists, then growth terminates and a solution can be easily generated from

the results of Gaussian elimination. This process is explained in more detail,

including its strengths and weaknesses, in Chapter 4.2.1.

A key weakness of the generalised UF decoder is that clusters can grow

59

extremely quickly on an arbitrarily densely-connected Tanner graph. How-

ever, it is shown in [41] that the decoder performs well for certain classes of

LDPC code. The covering radius of a syndrome σ is defined as the number

of growth steps needed to cover a valid correction operator, denoted ρcov(σ).

It was shown that if the covering radius is upper-bounded logarithmically in

error weight, then the decoder successfully corrects all errors below a cer-

tain weight. Take a code with distance d whose Tanner graph has maximum

degree δ. Formally, if there exist constants w and C such that

ρcov(σ) ≤ C log |x| ∀|x| < w , (2.66)

then the generalised UF decoder successfully corrects errors with weight

|x| < min(w,Adα) , (2.67)

where

α =
1

1 + C log δ
, A =

(
1

2δ2

)α

. (2.68)

Let us hereinafter refer to codes which satisfy this condition as ‘well-behaved’

codes; such codes will be explored in a complexity analysis of the generalised

UF decoder in Chapter 4.2.3. Some broad examples of codes proved in [41] to

be well-behaved by this definition are hyperbolic codes [94], locally-testable

codes [95] (e.g. expander codes [96]) andD-dimensional toric codes forD ≥ 3.

2.7.3 BP–OSD

In Chapter 2.7.1, belief propagation (BP) was introduced as a linear-time de-

coder popular for classical LDPC codes, but insufficient for quantum LDPC

codes due to degeneracy. In Chapter 2.7.2, we saw how generalised union–

find (UF) relies upon Gaussian elimination to solve the decoding equation

60

Hx = σ. This system of equations is, in general, underdetermined : there

exist multiple valid solutions for the error x given a syndrome σ. Rather

than return any arbitrary correction, generalised UF attempts to approxi-

mate a minimum-weight solution by performing Gaussian elimination on a

neighbourhood no larger than the covering radius.

An alternative approach is to perform Gaussian elimination on the global

system, but to use the results of an unconverged BP to inform the choice

of free variables, rather than setting them arbitrarily. This is equivalent to

reordering the columns (i.e. bits) in descending order of their soft-decision

marginal probabilities before performing Gaussian elimination on a full-rank

submatrix. This technique is known as ordered statistics decoding [97], form-

ing the BP–OSD decoder [91, 98].

61

Chapter 3

Surface-code decoding at scale

3.1 Motivation and methods

In Chapter 2.4.3, the union–find (UF) decoder was introduced as an accu-

rate and fast decoder for surface codes. It remains one of the most popular

choices in this regime as it forms a good local approximation of minimum-

weight perfect matching (MWPM) with significantly lower time complexity.

In addition, it performs particularly well under the erasure noise channel.

Experimental attention is increasingly prevalent on engineering qubits where

erasure is the dominant noise, due to the relative ease of detection and cor-

rection. Indeed, erasure dominance is one of the key advantages of implemen-

tations such as photonic qubits [30], with recent work in developing dual-rail

techniques to attain this same attribute with superconducting qubits [99].

For these reasons, the UF decoder seems a rewarding approach to focus fur-

ther study upon.

Due to the frequency with which decoding rounds must be performed, de-

coder time complexity forms a key bottleneck on the performance of an error-

corrected quantum computer at scale, especially with a difference-syndrome

approach or similar [64]. Space complexity (i.e. memory consumption) is also

62

(a) A data error is in-
flicted on each round for-
ward in time with prob-
ability p. Each ancilla
is also inflicted with a
measurement error with
probability q.

(b) Syndrome measure-
ments are performed as
usual via edge parity,
flipped if a measurement
error was inflicted.

(c) The syndrome is con-
verted to a difference
syndrome, wherein a de-
fect at t indicates a
change from t− 1.

(d) MWPM is performed
on the difference syn-
drome.

(e) The correction op-
erator is collapsed (sum
modulo two). Note that
this successfully corrects
the final round in (a).

Figure 3.1: Example difference-syndrome correction on a 2D planar code,
where p = q = 0.01 and the final measurement round is at the bottom.

63

a concern with embedded implementations, especially in cryogenic systems

[81], as is the overall simplicity of implementation. Therefore, it is critical to

identify and solve fine-grained performance decisions.

In order to inspect the behaviour of decoding algorithms on surface codes,

I developed an exhaustive simulation library in C++. This included custom

implementations of 2D toric and planar lattices (Chapters 2.2.1 and 2.2.2),

the MWPM decoder using the LEMON library1 and the union–find decoder

based on the AFS architecture (Chapter 2.5.2). I also implemented a simula-

tion of difference-syndrome decoding with a phenomenological model (Chap-

ter 2.3.1), using the Easy3D library2 for 3D lattice visualisation, as seen in

Figure 3.1. In Section 3.2, I present brief notes on some novel decisions I

made in the implementation detail of the decoder.

With this simulation library, I initially performed basic timing experi-

ments where the real time taken by the AFS simulation to decode 5000 ran-

dom instances was measured (Figure 3.2). The naive approach and union-by-

size (UBS) generally performed similarly, whereas adding path compression

caused the time taken to increase, especially prevalent at greater p and d.

This is a surprising result, as complexity analysis in the literature (as intro-

duced earlier in Section 2.5.1) suggests that both UBS and path compression

should act to improve the amortised time complexity.

To explain this observation, in Section 3.3.1 I first present the results of

a deeper investigation into the complexity of the disjoint-set data structure

itself, identifying a mode of operation in which UBS and path compression

worsen runtime, which I denote the unsaturated regime. In Section 3.3.2,

I present more rigorous empirical data confirming that adding UBS and/or

path compression to the union–find decoder strictly increases the number of

root and size table accesses. These concepts are then directly linked together

1https://lemon.cs.elte.hu
2https://github.com/LiangliangNan/Easy3D

64

https://lemon.cs.elte.hu
https://github.com/LiangliangNan/Easy3D

52 92 132 172 212 252 292 332 372

Code distance squared, d2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
(s

ec
o
n

d
s)

Error rate, p

0.004

0.008

0.012

0.016

0.020

0.024

naive

UBS

(a)

52 92 132 172 212 252 292 332 372

Code distance squared, d2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
(s

ec
o
n

d
s)

Error rate, p

0.004

0.008

0.012

0.016

0.020

0.024

naive

UBS+path compression

(b)

Figure 3.2: Wall-clock time taken by the AFS simulation to decode 5000
random instances. Each point is the minimum time from 10 identical runs.
The plots compare the time taken by a naive approach with (a) UBS and (b)
both UBS and path compression.

65

by percolation theory, which I introduce briefly in Section 3.4.1 and then use

to prove that the clusters formed by the decoder for d → ∞ are strictly

sparse, and thus operate in the unsaturated regime, in Section 3.4.2.

I implemented the simulation for the percolation analysis in Section 3.4.2

in Python using the NetworkX library.3

Finally, Section 3.5 offers concluding remarks, such as the potential prac-

tical benefits of forgoing these optimisations, and points to some ways in

which these published results have been cited and used [14–23].

3.2 AFS implementation and improvements

First, let us consider the AFS architecture [81] as an example implementation

of the UF decoder and briefly discuss some alternative decisions – or even

improvements – used for the simulations in the remainder of this work.

Whilst the AFS architecture describes the practice of recalculating clus-

ter boundaries in each iteration of growth during syndrome validation, my

simulations instead store and update lists of boundary sites, with the benefit

that this data becomes readily available for analysis (as used in Chapter 3.4).

In the AFS architecture, a fusion edge stack (FES) is used to prevent

double-growth by delaying the writing of edges between newly-connected

clusters to the STM. As we are now storing boundary lists, I similarly define

and use a new edge stack (NES) to store and delay the writing of every

newly-grown edge, to prevent a similar issue. I also define a confinement

register (one bit per vertex) to disable the growth of clusters which meet the

open boundary.

A notable benefit of this approach is that the NES, by definition, contains

exactly the new boundary list for a grown cluster. Therefore, the boundary

3https://networkx.org

66

https://networkx.org

list and NES can operate as a double buffer, wherein the NES becomes the

new boundary list. Swapping the two lists and clearing the new NES (now

containing the old boundary data) ready for reuse can both be performed in

O(1) (constant) time.

The main drawback of this approach is that boundary lists must be con-

catenated when clusters are to be merged. Using arrays, this has time com-

plexity linear in the size of the shorter list. Using linked lists, this can be

improved to constant time, but this is unlikely to be worthwhile overall due

to cache inefficiency and roughly doubling memory usage.

3.3 Observations

3.3.1 Saturation regimes

Firstly, let us consider the complexity analysis in practice of the disjoint-set

data structure (as introduced in Chapter 2.5.1) independently of applica-

tion to surface-code decoding. Figure 3.3 demonstrates the amortised time

complexity of operations on a standalone disjoint-set data structure via a

Monte Carlo simulation, constituting m merge operations between two ran-

dom elements in a forest of size n. By dividing the observed number of root

table accesses by m, we expect the plots to collapse onto a single trend,

representing the amortised complexity irrespective of m.

For n ≪ m, a linear growth in the number of root table accesses is ob-

served with n under naive implementation. This changes to logarithmic with

union-by-size (UBS) and near-constant with both UBS and path compres-

sion. Specifically, in the latter case, the number of accesses converges upon

a constant4 of exactly 8, because asymptotically effectively all elements be-

4This constant is technically local but effectively global, due to the extremely slow-
growing nature of the α(n) term as discussed in Chapter 2.5.1.

67

saturated regime unsaturated regime

n
a
iv
e

0 200 400 600 800 1000

Number of elements, n

0

100

200

A
cc

es
se

s
p

er
o
p

er
a
ti

o
n

(a)

20000 40000 60000 80000 100000

Number of elements, n

0

2000

4000

A
cc

es
se

s
p

er
o
p

er
a
ti

o
n

(b)

U
B
S

0 200 400 600 800 1000

Number of elements, n

4.5

5.0

5.5

A
cc

es
se

s
p

er
o
p

er
a
ti

o
n

(c)

20000 40000 60000 80000 100000

Number of elements, n

4

5

A
cc

es
se

s
p

er
o
p

er
a
ti

o
n

(d)

U
B
S
+
p
a
th

co
m
p
re
ss
io
n

0 200 400 600 800 1000

Number of elements, n

7.6

7.7

7.8

7.9

8.0

A
cc

es
se

s
p

er
o
p

er
a
ti

o
n

Number of operations, m

25000

50000

75000

100000

(e)

20000 40000 60000 80000 100000

Number of elements, n

6

7

8

A
cc

es
se

s
p

er
o
p

er
a
ti

o
n

(f)

Figure 3.3: Monte Carlo simulation showing the amortised time complexity
of operations on a disjoint-set data structure. This data is from stochastically
simulating workload on a standalone data structure (i.e. this data is not from
surface-code decoding). Each point is the number of root table accesses on
a forest of size n taken by m random merge operations, divided by m. (a)
shows a naive approach, (c) shows UBS and (e) shows both UBS and path
compression, demonstrating linear, logarithmic and near-constant scaling,
respectively. (b), (d) and (f) extend these plots to higher n, showing a
change of the scaling in the unsaturated regime. (b) and (d) converge down
to 3, whilst (f) converges down to 5.

68

come a direct descendant of the same root, yielding exactly 4 accesses per

find operation.5 Therefore, I denote this mode of operation the saturated

regime, because the data structure is dominated by a single set, i.e. a single

tree spanning the entire forest.

With n ≪ m, the emergent behaviour accurately reflects the theoretical

amortised complexity because the number of operations m is effectively infi-

nite. However, if n ≪̸ m, trees do not have opportunity to form at or near

their bounded height, such that the complexity is seen to degenerate – the

heights of the trees are now bounded by m, not n. As the trees of charac-

teristic height do not dominate the forest, I denote this mode of operation

the unsaturated regime. In this regime (as n→∞) every random merge will

be between two isolated elements, which are sparsely distributed throughout

the forest and previously untouched by merges. Therefore, the amortised

complexity converges down to the minimum number of accesses required by

this situation (5 if using path compression, 3 if not).

3.3.2 Redundancy of optimisations

Next, let us return to the context of the union–find decoder for surface codes.

For a clearer view on the operation of the decoder than the wall-clock times

in Figure 3.2, I performed simulations capable of counting the number of

root table (and size table) accesses. Figure 3.4 shows the scale factor in the

number of root table accesses when adding UBS and path compression; that

is, the number of accesses divided by the corresponding number from the

naive implementation. The number of accesses decreases marginally when

5In each find operation, the parent of the descendant is queried (which is the root),
then the parent of the root is queried (which is its own parent), then both are rewritten
due to path compression, hence 4 accesses. This occurs for both merge arguments, hence
8 accesses. A final 9th merging access does not occur asymptotically as all elements will
have converged into one global set.

69

adding UBS, although this then requires the maintaining and accessing of a

size table in conjunction. In the worst case, adding path compression (or path

splitting6) exactly doubles the number of accesses, decreasing only marginally

below this at scale.

As a more specific example, Figure 3.5 shows histograms of the num-

ber of table accesses in a simulation with d = 49 and p = 0.08. A naive

implementation required 4818.79 root table accesses on average (mean over

106 instances). With UBS, this was reduced to 4489.41, but also required

3722.97 size table accesses, thus requiring 3393.59 more accesses in total.

When adding path compression, the number of size table accesses remained

the same, but the number of root table accesses increased to 7841.13, thus

requiring 6745.31 more accesses than the naive implementation in total.

It is apparent that both UBS and path compression not only fail to pro-

vide an improvement in decoding time, but in fact tend to worsen it at scale.

In the case of UBS, marginal reduction in root table accesses is dwarfed by

the additional overhead of maintaining and accessing a size table. In the

case of path compression, root table accesses are strictly increased, with the

additional overhead of tree traversal registers. Even if path splitting is used

in place of compression – saving the overhead of registers and a second pass

– the increase in the number of root table reads is identical.

The reasoning for this is twofold. First, recall our definition of the data

structure’s unsaturated regime, in which the time complexity degenerates if

the sets are bound by their population rate, not by the size of the system,

with these sets sparsely distributed throughout the system. This logic is

found verbatim in percolation theory, which states that if the population rate

of clusters on a lattice is below some threshold, the clusters are sparse with

6Splitting is an efficient alternative strategy in which each node’s parent pointer is
set to its grandparent as they are discovered, i.e. in a single pass, but is asymptotically
equivalent to compression [79].

70

U
B
S

5292 132 172 212 252 292 332 372

Code distance squared, d2

0.994

0.996

0.998

1.000

A
cc

es
se

s
sc

a
le

fa
ct

o
r

(a)

p
a
th

co
m
p
re
ss
io
n

5292 132 172 212 252 292 332 372

Code distance squared, d2

1.994

1.996

1.998

2.000

A
cc

es
se

s
sc

a
le

fa
ct

o
r

(b)

U
B
S
+
p
a
th

co
m
p
re
ss
io
n

5292 132 172 212 252 292 332 372

Code distance squared, d2

1.985

1.990

1.995

2.000

A
cc

es
se

s
sc

a
le

fa
ct

o
r

(c)52 92 132 172 212 252 292 332 372

1.986

1.988

1.990

1.992

1.994

1.996

1.998

2.000

A
cc

es
se

s
sc

a
le

fa
ct

o
r

Error rate, p

0.004

0.008

0.012

0.016

0.02

0.024

Figure 3.4: Monte Carlo simulation showing the scale factor in the number
of root table accesses when applying (a) UBS, (b) path compression and (c)
both UBS and path compression to the graph generator during surface-code
decoding. Each point is the total number of reads over 105 runs, divided by
the corresponding number from the naive implementation.

71

n
a
iv
e

4000 6000 8000 10000 12000 14000

Number of accesses, X

0.00000

0.00025

0.00050

0.00075

0.00100
P

ro
b

a
b

il
it

y
d

en
si

ty root table

(a)

U
B
S

4000 6000 8000 10000 12000 14000

Number of accesses, X

0.00000

0.00025

0.00050

0.00075

0.00100

P
ro

b
a
b

il
it

y
d

en
si

ty root table

size table

total

(b)

U
B
S
+
p
a
th

co
m
p
re
ss
io
n

4000 6000 8000 10000 12000 14000

Number of accesses, X

0.00000

0.00025

0.00050

0.00075

0.00100

P
ro

b
a
b

il
it

y
d

en
si

ty

root table

size table

total

(c)

Figure 3.5: Histograms showing the number of root table and size table
accesses required in each of 106 shots by the graph generator during surface-
code decoding, with d = 49 and p = 0.08. (a) shows a naive approach, (b)
shows UBS and (c) shows both UBS and path compression. The mean of
each dataset is marked, highlighting how the mean total number of accesses
is increased by both UBS and path compression. It transpires that an alpha
distribution fits the number of accesses X particularly well, as shown by the
bold contour lines, which is defined as 1/X being both normally distributed
and nonnegative [100, p. 173]. This could possibly model hyperbolically-
decaying boundary effects on a binomial distribution in the sparse regime.

72

sizes bound solely by population, not by the size of the lattice [101]. In other

words, percolation theory can be applied to find a threshold for p below

which the clusters formed by the union–find decoder are sparsely distributed

and thus, for d → ∞, the number of accesses in each merge operation con-

verges down to its minimum (Figure 3.3). Percolation theory is introduced

in more depth in Chapter 3.4.1, then used to develop this analytical model

proving that the data structure indeed operates in the unsaturated regime

in Chapter 3.4.2.

In proving that the data structure operates in the unsaturated regime,

it is guaranteed that both UBS and path compression only worsen runtime

at scale, because they require strictly more total table accesses on sparse

sets, with their benefits only emerging on sets involved in multiple merge

operations (hence why they benefit only the amortised complexity).

Second, the complexity analysis in Chapter 2.5.1 assumes the use of merge

operations between two elements in the forest selected randomly and uni-

formly. In the context of the decoder, however, merge arguments are not

uniformly distributed and are instead much more likely to contain at least

one cluster root. This is due to the fact that the decoder iterates over odd

and unconfined clusters to grow and therefore begins growth with preexist-

ing knowledge of the root. In the simplest yet ubiquitous case, a cluster

merges with an unpopulated vertex – with both arguments roots of their re-

spective sets, no traversal at all is required. This nonuniform operation acts

to naturally limit the tree heights formed without requiring explicit path

compression.

73

3.4 Analytics

3.4.1 Percolation theory

In order to prove that the data structure acts in the unsaturated regime, we

can turn to a mathematical framework known as percolation theory. This

framework studies the addition of edges to sets of vertices and how clusters

subsequently emerge [101].

Specifically, when considering a population rate p on some regular lattice

(that is, the independent and uniform probability that a bond on the lattice is

occupied/present), there emerges a distinct threshold pc above which there

tends to exist a single cluster which connects opposing boundaries of the

lattice, i.e. a cluster which percolates the lattice. The existence of this state

transition is a key phenomenon and this framework is used in a wide range of

models such as solid-state mechanics (e.g. dielectric breakdown [102]), forest

fires [103] and porous media (e.g. coal [104] and ground coffee [105]).

In this section, let us briefly familiarise ourselves with percolation theory

from first principles in the literature and derive some expressions to clearly

argue the expected behaviour of clusters on generalised lattices (including

the square lattices relevant for Kitaev surface codes).

Consider a regular square lattice of vertices, where edges – or bonds – can

be independently populated with a uniform probability p (Figure 3.6). The

percolation rate – that is, the probability that randomly-populated edges

connect two opposite boundaries of the lattice – naturally increases with p.

Indeed, if plotting the percolation rate against p, a sigmoid curve will be

observed. The sigmoid will steepen as the length of the lattice L increases,

such that it converges on a step function for L→∞ (Figure 3.7). This state

transition looks exactly like that which we saw previously in the modelling of

logical error rates (Figure 2.1) which is no coincidence: this distinct threshold

74

Figure 3.6: Illustration of bond percolation for varying population rates on a
2D square lattice. Asymptotically, clusters spanning opposite lattice bound-
aries emerge above the threshold, i.e. for p > 0.5. Image from [106].

which emerges in percolation theory is a direct analogue to the code threshold

in error correction, especially when considering topological codes.

In one dimension, the percolation threshold pc = 1 exactly, as every

single bond must be populated in order to percolate in an infinitely long

linear chain. Accordingly, exact solutions for the statistics of clusters in one

dimension are known [101, p. 19].

In two or more dimensions, few exact solutions are known. It is possi-

ble but nontrivial to prove that pc = 0.5 exactly on the 2D square lattice

[107], as shown empirically in Figure 3.7. In general, thresholds for arbitrary

structures tend to be only approximable and/or empirical.

Finally, it is important to understand the scaling of the average number

of clusters and average cluster size in the sub-threshold vs super-threshold

regimes. Take a hypercubic lattice with D dimensions (i.e. a square lattice

for D = 2, a cubic lattice for D = 3 etc.) and length L. The size s of

a cluster is the number of sites belonging to it. Above the threshold, for

75

0.0 0.2 0.4 0.6 0.8 1.0

Bond probability, p

0.00

0.25

0.50

0.75

1.00

P
er

co
la

ti
o
n

ra
te

Lattice length, L

10

15

20

Figure 3.7: Monte Carlo simulation of bond percolation on a 2D square
lattice, demonstrating logistic fits converging to a step function at pc = 0.5
for L→∞ (dashed line). Each point is obtained from 500 samples.

L→∞, there is exactly one cluster, which percolates the lattice; therefore,

the size of this cluster is bound directly by the number of lattice sites LD.

More generally, below the threshold, the normalised cluster number ns is the

expected number of clusters of s-size per lattice site [101, p. 20].

A general postulate for the scaling of the normalised cluster number, for

a fixed rate p, is

ns ∝ e−s , (3.1)

i.e. clusters of increasingly large size are exponentially less likely to occur

[101, p. 35]. As this represents the number of s-clusters per site, let us

express the expected total number of s-clusters across the lattice as

Ns = LDns , (3.2)

and therefore the expected total number of clusters overall is the sum across

all possible cluster sizes:

N̄ ≈
LD∑
s=1

LDe−s (3.3)

≈ LD(e−1 + e−2 + · · ·+ e−LD

) . (3.4)

76

So, we have shown that the mean total number of clusters sub-threshold

scales linearly with LD (more precisely, the scaling quickly converges upon

linear for LD →∞).

A correlation function g(r) gives the probability that sites separated by a

distance of r belong to the same cluster, yielding a correlation length ξ, which

is an average distance between two sites within a cluster. The correlation

length is related to p:

ξ ∝ |p− pc|−ν , (3.5)

where ν is a critical exponent constant with lattice dimensionality7, showing

that ξ diverges as p → pc [101, pp. 59–60]. When p ≪ pc, L ≫ ξ, therefore

the mean cluster size S scales according to

S ∝ ξ
γ
ν (3.6)

∝ |p− pc|−γ , (3.7)

where γ is another critical exponent8 [101, p. 37] [108, p. 30]. Therefore, the

mean cluster size scales only with p.

At the threshold, however, L ̸≫ ξ, so instead

S ∝ L
γ
ν , (3.8)

such that the mean cluster size instead scales with L [108, p. 30] (i.e. the

single percolating cluster is bound definitionally by the size of the lattice, as

previously stated).

7For D = 2, ν = 4/3 exactly, and for D = 3, ν ≈ 0.88 [101, Table 2]. It is strongly
suggested that the values of critical exponents depend only on the dimensionality and not
on any specific lattice structure beyond that [101, p. 51].

8For D = 2, γ = 43/18 exactly, and for D = 3, γ ≈ 1.80 [101, Table 2].

77

3.4.2 Erasure percolation

Consider the erasure clusters formed by syndrome validation. Boundary

effects at small code distance d limit cluster sizes, preventing a truly constant

relation with d. The prevalence of clusters incident to the boundary scales

as 1/d (via a trivial perimeter-over-area argument), tending to zero as d

increases. Thus, the mean cluster size follows a plot of A − B/d, where

A is dependent on the error rate p (Figure 3.8). Let us also define the

perimeter of clusters as the length of the list of boundary sites – this follows

similar scaling to the size. The mean total number of clusters, however, scales

linearly with d2 (or d3 in 3D) assuming a uniform error distribution. This

patently agrees with the reasoning from percolation theory for sub-threshold

behaviour presented in the previous section.

The time taken in each find operation depends on the height of the trees

formed in the forest. In the sparse regime, the tree heights are – as with clus-

ter size – invariant with d barring hyperbolically-decaying boundary effects.

If it can be shown that the erasure clusters exist in a sparse regime (as is

implied by the trends in Figure 3.8), then it is clear that the data structure

operates in an unsaturated regime, with average cluster sizes depending only

on p and invariant with d. Clusters are grown from defects, which have

a nontrivial population distribution arising from p. Syndrome percolation

is defined in [72] as the existence a path of neighbouring defects between

opposite boundaries of the lattice in the initial syndrome. However, we wish

to more specifically consider the size of erasure trees formed at the conclusion

of syndrome validation. Let us instead define erasure percolation as the

existence of an erasure tree spanning between opposite boundaries of the

lattice. This is a more relaxed definition than syndrome percolation, as it

can arise, for example, from fewer defects positioned equidistantly across a

dimension, requiring multiple growth iterations.

78

52 172212 252 292 332 372 412 452 492

Code distance squared, d2

1.8

2.0

2.2

2.4

2.6
M

ea
n

cl
u

st
er

si
ze

(a)

52 172212 252 292 332 372 412 452 492

Code distance squared, d2

7

8

9

M
ea

n
cl

u
st

er
p

er
im

et
er

(b)

52 172212 252 292 332 372 412 452 492

Code distance squared, d2

0

20

40

60

M
ea

n
cl

u
st

er
n
u

m
b

er Error rate, p

0.004

0.008

0.012

0.016

(c)

Figure 3.8: Sub-threshold, the mean cluster size (a) and perimeter (b) is
bound solely by p, when accounting for hyperbolically-decaying boundary
effects. The mean number of clusters (c) scales linearly with d2. Each point
is obtained from 105 runs.

79

0.0 0.1 0.2 0.3 0.4 0.5

Error rate, p

0.0

0.1

0.2

0.3

E
ra

su
re

p
er

co
la

ti
o
n

ra
te

Lattice length, L

5

9

13

17

21

(a)

0.0 0.1 0.2 0.3 0.4 0.5

Error rate, p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
ra

su
re

p
er

co
la

ti
o
n

ra
te

Lattice length, L

5

7

9

(b)

Figure 3.9: Erasure percolation on the planar code with 2D independent
(a) and 3D phenomenological (b) error models (q = p). Instead of sigmoids
showing a threshold value, percolation rates strictly tend to zero for L→∞.
Each point is obtained from 500 samples, with error bars using the Wilson
score with two standard deviations (∼95% confidence interval) [109].

80

Therefore, not only is there abstraction from the distribution of qubit er-

rors to the distribution of defects in the syndrome, but to the distribution of

all vertices included in grown clusters. In order to model the erasure perco-

lation threshold at higher dimensions without requiring full implementation

of syndrome validation for D > 2, I instead find a minimum-weight perfect

matching on the initial syndrome graph and estimate the erasure trees which

would be formed by including all vertices within distance ⌊w/2⌋ from each

defect in a matching, where w is the weight of the matching. In other words,

as clusters grow uniformly in all directions, we assume that clusters resemble

hyperspheres meeting at the middle with radius ⌊w/2⌋.
If an erasure percolation threshold exists and is greater than the code

threshold, then it follows that the decoder will always operate the data struc-

ture in the unsaturated regime (for relevant usage, as there is little motivation

to consider behaviour above the code threshold). Figure 3.9 shows the re-

sults of a Monte Carlo simulation of syndrome validation on the 2D planar

code with both 2D independent and 3D phenomenological error models.9

One might expect sigmoid plots converging on a step function at p = pc for

L→∞, as in Figure 3.7.

Instead, we see that the erasure percolation rate converges to zero for

all p for L → ∞. This indicates that an erasure percolation threshold does

not exist at all for any mode of operation of the union–find decoder; that is,

the decoder at scale will asymptotically never experience syndromes yielding

erasure percolation. Intuitively, this is due to the ability of defects to merge

across periodic boundary conditions in the toric code (or, equivalently, to

merge to the boundary in the planar code); for example, two defects separated

by an axis-aligned error string of weight w > L/2 will merge across the

9Percolation is detected by adding shared neighbouring nodes to all opposite boundary
nodes and using Dijkstra’s algorithm to determine if an uninterrupted path exists between
them.

81

boundary, such that erasure percolation will only occur if w = L/2 exactly.

As the average size of erasure clusters will never be bound by the size

of the lattice (ignoring boundary effects on small lattices), the disjoint-set

data structure operates strictly in the unsaturated regime, confirming that

both union-by-size and path compression are asymptotically irrelevant (and

indeed counterproductive).

3.5 Conclusion

In Chapter 2.5.1, we saw how existing literature suggests that the worst-case

time complexity of a naive implementation of the union–find decoder (i.e.

forgoing union-by-size and path compression) would be O(n2), as opposed

to O(nα(n)) when including the optimisations. However, the numerical data

which I presented in this chapter does not support this. The derivation of

that scaling assumes that the complexity of each find operation is O(n) in

the naive case, which is true only if the size of clusters varies with the lattice

size. These results demonstrate that the nature of the decoder algorithm

leads to a strictly sparse (i.e. never-percolating) regime of erasure clusters.

Therefore, the number of clusters may be linear in n, but their average size

depends only on p, instead yielding an overall complexity of just O(n). I

demonstrated this absence of a percolation threshold in both 2D independent

and 3D phenomenological models for the planar surface code. In other words,

the probability of the worst-case complexity scenario (of erasure clusters

percolating) is suppressed to zero for d→∞.

Therefore, one can suggest that both union-by-size and path compression

may be comfortably omitted from implementations of the union–find decoder

without paying a penalty, and indeed memory usage and runtime are actually

improved. In the example of the AFS architecture in [81], this would involve

82

omitting the size tables and traversal registers, as well as their associated

logic. The size table is stated to be the single most memory-consuming

component (e.g. 54.9 KB out of a total 133 KB for d = 25), so forgoing union-

by-size would yield significant gains in a memory-critical (e.g. cryogenic)

environment.

Finally, I suggested an alternative implementation of syndrome validation

based upon the AFS architecture, which stores boundary lists (instead of

recalculating them in each iteration) whilst minimising overhead via double-

buffering with a new edge stack (NES). Depending on the exact method with

which it is contrasted, this may save computational time over the course of

decoding at the slight expense of storage and merging.

At the time of writing this thesis, these results have been cited and used

to justify forgoing the aforementioned optimisations in implementations of

the UF decoder [14], to quote the more accurate O(n) time complexity of

the UF decoder [15], and to reason with cluster statistics in order to develop

novel approaches such as the breadth-first graph traversal union–find decoder

[22] and the local clustering decoder [23]. These results have also been cited

by a number of works to more generally help justify the relevance and perfor-

mance of the UF decoder and its properties [16–20] and as an example of the

application of percolation theory (from the perspective of nanotechnological

structures and effects) to quantum technology [21].

83

Chapter 4

LDPC-code decoding at scale

4.1 Motivation and methods

In Chapter 2.6, quantum low-density parity-check (qLDPC) codes were intro-

duced as a wide-ranging class of codes (including, but not limited to, surface

codes) satisfying a sparse structure of stabiliser generators. Such generalised

codes constitute an increasingly popular area of research. Classically, it is

well-understood that LDPC codes can approach optimum performance un-

der many noise channels [110], yet are computationally efficient due to their

sparsity: their locally-tree-like Tanner graphs make the linear-time belief

propagation (BP) decoder perform very effectively [92, 93]. This motivation

extends to qLDPC codes: it has been proven that ‘good’ qLDPC codes ex-

ist, by which we mean codes with logical qubits k and distance d scaling no

slower than linearly with n [34].

For qLDPC codes, the BP decoder has failure modes caused by solution

degeneracy, so it is not as effective alone as with classical LDPC codes. Some

of the leading alternative approaches to decoding for qLDPC codes were

introduced in Chapter 2.7. BP–OSD uses cubic-time Gaussian elimination to

solve the decoding equation, informed by the posterior probabilities given by

84

BP. Alternatively, the union–find (UF) decoder can be generalised to Tanner

graphs, repeatedly performing Gaussian elimination on an increasingly large

neighbourhood of the decoding graph.

In generalised UF, the key problems arise from the two black-box sub-

routines: syndrome validation and solution generation. Both of these are

computationally-easy problems in the surface code case, with the former

consisting of simple parity checks and the latter consisting of the peeling

algorithm. Neither of these generalise readily to LDPC codes, in which the

decoding graph becomes a hypergraph.

To understand why, consider a hypothetical generalised peeling decoder.

In the graphlike case, peeling is commenced from leaves, i.e. edges connected

to the erasure forest through only one endpoint, and vertices are flipped in

and out of membership of σ, effectively moving defects together to annihi-

late [73]. In the hypergraph case, however, it cannot be assumed that leaves

are unambiguously defined and that parities trivially annihilate in this way.

Instead, consider attempting to directly find an optimal solution on the era-

sure without peeling. Whilst minimum graph matching can be performed in

polynomial time (see Chapter 2.4.2), minimum hypergraph matching is an

NP-hard problem which, regardless, no longer guarantees a valid solution, as

is the more general problem of minimum set cover [111]. We are left with

the option of a greedy approach, although a major problem is the presence

of invalid choices, i.e. selecting qubits which do not appear in any valid solu-

tion. Backtracking would allow the decoder to undo invalid choices, although

this is equivalent to an informed depth-first search on a combinatorial space

which also runs in exponential time [74]. Thus, Gaussian elimination appears

to be necessary for computational tractability in the general case.

Two separate approaches to improving a generalised UF decoder which

I explored are presented hereinafter: improving Gaussian elimination and

85

avoiding it entirely. In Chapter 4.2, I present a novel online variant of Gaus-

sian elimination, with a complexity analysis showing improved runtime in

the general case and simulations demonstrating its performance on various

qLDPC codes. I constructed these simulations in C++ using the Eigen li-

brary1 for optimised matrix manipulation, with custom Z2 arithmetic (i.e.

XOR row, dot-product and matrix-product operations). In Chapter 4.3, I

present notes on techniques for avoiding Gaussian elimination via inspiration

from single-shot codes.

4.2 Improving Gaussian elimination

4.2.1 Gaussian elimination

As stated in Equation 2.7, the decoding problem ultimately deconstructs to

solving a system of linear equations of the form

Ax = b , (4.1)

where A is the m × n coefficient matrix representing m equations and n

variables. Gaussian elimination is an algorithm which takes a matrix into

row echelon form (REF), which is defined as a matrix in which the first

nonzero entry of each row, known as the pivot, is to the right of the pivots

of all rows above. Rows containing only zeroes are relegated to the bottom

of the matrix.

The Gaussian elimination algorithm takes a matrix into REF by repeat-

edly applying three elementary row operations:

1. Swapping two rows;

1https://eigen.tuxfamily.org

86

https://eigen.tuxfamily.org

2. Multiplying a row by a constant;

3. Subtracting a multiple of a row from another row.

These operations, and thus the algorithm itself, can be defined for fields

beyond real numbers. Conveniently for our context, the Z2 field (i.e. binary

with addition/subtraction modulo 2) is arguably the simplest possible variant

of Gaussian elimination. Subtraction modulo 2 is merely the XOR operation

and the only possible nonzero constant is 1, simplifying Operation 3 and

removing Operation 2 entirely. Algorithm 1 lists pseudocode for an explicit

implementation of Gaussian elimination in Z2.

The row echelon form reveals useful information about the matrix and its

dimensionality. For example, the rank of a matrix – defined as the number of

linearly independent rows (or, equivalently, columns) – is trivially the number

of nonzero rows in the REF.

To solve a system of the form in Equation 4.1, we first define the aug-

mented matrix A|b as the matrix A with the vector b appended as an addi-

tional column. As per the Rouché–Capelli theorem, the system is inconsis-

tent, i.e. has no solutions, if rank(A|b) > rank(A), but it is consistent, i.e.

has one or more solutions, if rank(A|b) = rank(A) [112]. Both of these ranks

can be calculated by performing Gaussian elimination on A|b.
If the system is consistent, then a solution(s) can be obtained by back-

substitution: the lowermost equation in REF contains only one unknown and

so is trivially solvable, which is then substituted into the equation above it

such that it too contains only one unknown, and so on. If rank(A|b) =

rank(A) = r and n = r, then the system is determined and there exists a

unique solution, but if n > r, then it is underdetermined and there exist

infinitely many solutions generated by n− r free variables (or, in the case of

Z2, a finite yet exponentially large number of solutions).

87

Algorithm 1 Gaussian elimination in Z2

Input: m× n matrix A
Output: m× n matrix A in row echelon form
1: r ← 0, c← 0
2: while r < m and c < n do
3: i← r ▷ Find next row with a one in column c

4: while i < m and A[i, c] = 0 do
5: i← i+ 1
6: end while
7: if i = m then ▷ If column had only zeroes left, move on to next column

8: c← c+ 1
9: else
10: Swap A.row[i] and A.row[r]
11: i← r + 1 ▷ Eliminate ones beneath the pivot in this column by XORing rows

12: while i < m do
13: if A[i, c] = 1 then
14: A.row[i]← A.row[i]⊕A.row[r]
15: end if
16: i← i+ 1
17: end while
18: r ← r + 1, c← c+ 1 ▷ Move on to next row and column

19: end if
20: end while

88

Algorithm 2 LUP decomposition in Z2

Input: m× n matrix A
Output: Matrices L,U, P satisfying PA = LU , where L and P are m×m, and U is m×n

in row echelon form
1: L← 0m
2: U ← A
3: P ← Im
4: r ← 0, c← 0
5: while r < m and c < n do
6: i← r ▷ Find next row with a one in column c

7: while i < m and U [i, c] = 0 do
8: i← i+ 1
9: end while
10: if i = m then ▷ If column had only zeroes left, move on to next column

11: c← c+ 1
12: else
13: Swap L.row[i] and L.row[r]
14: Swap U .row[i] and U .row[r]
15: Swap P .row[i] and P .row[r]
16: i← r + 1 ▷ Eliminate ones beneath the pivot in this column by XORing rows

17: while i < m do
18: if U [i, c] = 1 then
19: U .row[i]← U .row[i]⊕ U .row[r]
20: L[i, r]← 1
21: end if
22: i← i+ 1
23: end while
24: r ← r + 1, c← c+ 1 ▷ Move on to next row and column

25: end if
26: end while
27: L← L+ Im ▷ Set leading diagonal to onesa

aPA = LU is satisfied when L is unit-triangular, i.e. has ones along its leading diagonal.
For online update, this would require repeatedly subtracting/adding I at the start/end of
every iteration. This is merely a mathematical constraint rather than storing meaningful
information, therefore it is most efficient to skip this entirely for the online variant.

89

4.2.2 Online Gaussian elimination

Recall that the generalised union–find decoder as given in [41] delegates two

black-box subroutines: syndrome validation and solution generation. To

understand this problem clearly, let us first define H ′ as the ‘reduced’ parity-

check matrix H, filtered to contain only rows and columns representing the

checks and variables, respectively, currently contained in Int(E). Gaussian

elimination solves this problem in the general case: one or more solutions

exist, and thus clusters can stop growing, when rank(H ′|σ) = rank(H ′) = r,

yielding a solution generator with n − r free variables, as we can expect

degeneracy (i.e. underdetermination) in the general case.2

The decoder is initialised with E = σ and neighbouring nodes are iter-

atively added until a solution(s) exists. By definition, ρcov(σ) growth steps

are required, meaning Gaussian elimination is performed this many times on

a matrix H ′|σ of strictly increasing size.

Instead, I present an online variant of Gaussian elimination which removes

redundant computational work between growth steps. An online algorithm

is one in which a valid solution is maintained as new input is obtained over

time, i.e. the final problem data is not required in whole to commence work

[42].

Let H0 be an augmented matrix in REF from a previous growth step and

H1 be the same matrix with additional rows and columns appended. The

new data must be brought up-to-date with decisions made in previous growth

steps. Decisions made by the rounds of Gaussian elimination are recorded

by maintaining an LUP decomposition. This is equivalent to Gaussian elim-

ination, except the elementary row operations are explicitly represented by

2Recall that the rank of each matrix block is calculated simply as the number of nonzero
rows in the block after Gaussian elimination.

90

a matrix factorisation of the form

PA = LU , (4.2)

whereA is the original matrix and U is the matrix in row echelon form (upper-

triangular). Swapped rows are recorded by the permutation matrix P and

row subtractions are recorded by the lower-triangular matrix L. Algorithm 2

shows how this factorisation is equivalent to performing Gaussian elimination

(Algorithm 1) whilst recording decisions.

Firstly, by maintaining the matrix factors P and L, previous row oper-

ations can be performed on new rows and columns when they are added to

the system. Secondly, by definition of the decoder, H0 represents an inconsis-

tent system, suggesting the existence of ‘missing’ pivots (i.e. zeroes) from the

leading diagonal of U . These positions are candidates for pivots to be found

within the newly-added rows. Commencing from the first missing pivot po-

sition, Gaussian elimination is performed, except that only the newly-added

rows need to be searched through and, by extension, subtracted from. This

is justified as H0 is already in REF and is thus upper-triangular, such that

only zeroes can be present beneath the leading diagonal in the old rows. In

this way, the LUP decomposition is updated in each growth step to return

U into REF given the new rows and columns. Algorithm 3 lists pseudocode

for this online LUP decomposition update performed in each growth step.

91

Algorithm 3 Online LUP decomposition update in Z2

Input: Matrices L,U, P where all have rnew new rows and U has cnew new columns
Output: Updated matrices L,U, P satisfying PA = LU , with U returned to row echelon

form
1: U [old rows, new cols]← PU [old rows, new cols] ▷ Swap new cols in old rows from old P a

2: r ← 1 ▷ XOR new cols according to L

3: while r < rold do
4: c← 0
5: while c < r do
6: if L[r, c] = 1 then
7: U [r, new cols]← U [r, new cols]⊕ U [c,new cols]
8: end if
9: c← c+ 1
10: end while
11: r ← r + 1
12: end while
13: r, c← 0 ▷ Recommence Gaussian elimination procedure

14: while r < m and c < n do
15: i← r ▷ Find next row with a one in column c

16: if U [i, c] = 0 then ▷ (skip to new rows if still in old columns)

17: if c < cold then
18: i← max(rold, r + 1)
19: else
20: i← r + 1
21: end if
22: while i < m and U [i, c] = 0 do
23: i← i+ 1
24: end while
25: end if
26: if i = m then ▷ If column had only zeroes left, move on to next column

27: c← c+ 1
28: else
29: Swap L.row[i] and L.row[r]
30: Swap U .row[i] and U .row[r]
31: Swap P .row[i] and P .row[r]
32: if c < cold then ▷ Eliminate ones beneath the pivot in this column by XORing rows

33: i← max(rold, r + 1) ▷ (skip to new rows if still in old columns)

34: else
35: i← r + 1
36: end if
37: while i < m do
38: if U [i, c] = 1 then
39: U .row[i]← U .row[i]⊕ U .row[r]
40: L[i, r]← 1
41: end if
42: i← i+ 1
43: end while
44: r ← r + 1, c← c+ 1 ▷ Move on to next row and column

45: end if
46: end while

aGeneralised slicing notation where U [a, b] is the intersection of rows and columns given
by the tuples a and b.

4.2.3 Complexity analysis

For a square n × n matrix (as arises with an exactly-determined system of

equations) the time complexity of Gaussian elimination is O(n3). More gener-

ally, for anm×n (i.e. rectangular) matrix, time complexity isO(mnmin(m,n)),

a.k.a. big-times-small-squared [113].

It is straightforward to see how the cubic complexity arises. For each

of the n pivots, the row is subtracted from O(n) other rows, which each

contain n elements. No order of complexity is added by obtaining an LUP

decomposition, as this amounts to merely logging the operations which have

been performed (Algorithm 2). Finally, back-substitution is trivially O(n2).

In contrast, the online LUP update (Algorithm 3), for each of the O(n)

outstanding pivot positions, needs only search through and subtract from the

newly-added rows. Therefore, it is asymptotically equivalent to performing

a single LUP decomposition on the final-sized system.

Once one or more solutions exist, the erasure E stops growing and the

final reduced parity-check matrix H ′ has dimensions r× c where r+ c = |E|.
The number of XOR operations required by Gaussian elimination on H ′ –

and thus by the online decoder – is O(|E|3). In the worst case, |E| = n,

taking n to be the total of both qubits and checks in the code to simplify

analysis. This gives the online decoder a worst-case complexity of O(n3).

This can be contrasted with the original offline description of the decoder

in [41]. Gaussian elimination is performed anew for each of the ρcov(σ) growth

steps (denoted ρ for concision), in each of which the size of the erasure is

increased by a factor of δ, where δ is the maximum degree of the Tanner

graph. In other words, the size of the erasure after the ith iteration |E|i ≈
δ|E|i−1. Reversing this logic, with a final erasure size n, the penultimate

erasure size is approximately n/δ. The number of operations required in the

worst case can thus be approximated by the following sum (with a symbolic

93

expansion on the right-hand side):

ρ∑
i=0

(n
δi

)3
=
n3δ−3ρ(δ3ρ+3 − 1)

δ3 − 1
, (4.3)

from which it follows that the offline decoder also has a worst-case complexity

of O(n3). However, it is apparent that the online decoder has significantly

reduced overhead; indeed, the number of operations skipped by the online

variant is therefore approximately

ρ−1∑
i=0

(n
δi

)3
=
n3δ3−3ρ(δ3ρ − 1)

δ3 − 1
, (4.4)

which is itself O(n3).

This analysis can be refined in the case of a ‘well-behaved’ code, defined

in Chapter 2.7.2 as the property identified in [41], where ρ ≤ C log |x| for all
|x| < w for some constants C,w. In this case, the decoder corrects all errors

where |x| < min(w,Adα), where A and α are constants which depend on the

degree of the Tanner graph (see Equation 2.68), d is the code distance, and

the erasure formed is bounded by

|E| ≤ δ2|x| · δρ (4.5)

≤ δ2|x|1+C log δ . (4.6)

The number of operations performed by the online decoder is approximately

|E|3 ≤ δ6|x|3+3C log δ , (4.7)

and thus the number performed by the offline decoder is approximately

(δ6|x|3)(1 + |x|3 + · · ·+ |x|3C log δ) , (4.8)

94

where the upper bound for |x| varies with code-dependent properties. In this

well-behaved regime, it is bounded in terms of the code distance d by Adα,

defined as

Adα =

(
d

2δ2

) 1
1+C log δ

. (4.9)

This suggests an upper bound for the size of the erasure formed:

|E| ≤ δ2 · d
2δ2

=
d

2
, (4.10)

which implies that the online decoder has a complexity of O(d3) and that the

number of operations skipped in contrast to the offline decoder is approxi-

mately

(δ2|x|1+C log δ−1)3 =

(
d

2|x|

)3

(4.11)

=

(
d

2Adα

)3

. (4.12)

4.2.4 Simulation

The complexity analysis above appears to show a well-defined speed-up for

the online decoder versus the offline decoder. However, this relies on certain

assumptions as to the exact behaviour of Gaussian elimination on the de-

coding instances. To illustrate this, I performed Monte Carlo simulations on

three different code constructions: the 2D toric code, 3D toric code and 2D

6.6.6 colour code with periodic boundary conditions. Note that it was shown

in [41] that the toric codes are well-behaved as per the definition above,

but this does not trivially extend to the colour code despite the structural

similarity of these code families.

Figure 4.1 shows the mean and maximum number of XOR operations per-

formed by both online and offline decoders on code instances of increasing

95

0 10000 20000 30000 40000 50000 60000 70000 80000

Mean number of operations

0

50000

100000

150000

200000

250000

300000

350000

M
a
x

n
u

m
b

er
of

o
p

er
at

io
n

s

offline

online

(a) 2D toric code with L = (7, 9, . . . , 23).

0 50000 100000 150000 200000 250000 300000 350000

Mean number of operations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ax

n
u

m
b

er
of

o
p

er
at

io
n

s

×106

offline

online

(b) 3D toric code with L = (3, 5, . . . , 11).

0 20000 40000 60000 80000

Mean number of operations

0

25000

50000

75000

100000

125000

150000

175000

M
ax

n
u

m
b

er
of

op
er

at
io

n
s

offline

online

(c) 2D colour code with n = (18, 36, 72, 144, 288, 432, 648).

Figure 4.1: Parametric plots showing the maximum and mean number of
operations performed by offline and online decoders for increasing system
size. Data for three different codes are shown: the 2D toric code (a), the 3D
toric code (b), and the 2D 6.6.6 colour code (c), all generated using p = 0.05
and 60 shots per point.

96

0 500 1000 1500 2000

Number of qubits, n

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
ea

n
n
u

m
b

er
of

it
er

a
ti

o
n

s

2D toric

3D toric

2D colour

(a)

0 500 1000 1500 2000

Number of qubits, n

2

3

4

M
ax

n
u

m
b

er
of

it
er

a
ti

on
s

2D toric

3D toric

2D colour

(b)

Figure 4.2: Plots showing the mean (a) and maximum (b) number of it-
erations performed by the same decoding instances as in Figure 4.1. The
numbers of qubits for the 2D and 3D toric codes are obtained via 2L2 and
3L3, respectively. These statistics apply to both offline and online versions
as that implementation detail does not affect the covering radius.

97

0 500 1000 1500 2000

Number of qubits, n

0

1000

2000

3000

4000

T
ot

al
ch

ec
k

w
ei

g
h
t

2D toric

3D toric

2D colour

Figure 4.3: Total parity-check matrix weight for the three codes studied
above.

size. Specifically, decoding of X stabilizer measurements is demonstrated,

under independent noise with p = 0.05 with 60 shots per data point. Firstly,

it is clear that across all three codes, the max number of operations is re-

duced by the online variant for increasing n, i.e. the worst-case complexity is

invariably improved. This is broadly consistent with the complexity analy-

sis above, which suggests a polynomially-scaling reduction in the number of

operations.

Secondly, the behaviour of the mean number of operations, i.e. the average-

case complexity, is more nuanced. The mean number of operations also

clearly improves for the 2D toric code, although this improvement is more

slight for the 3D toric code – meanwhile, the online decoder actually per-

forms worse on this metric for the 2D colour code. To understand why,

the covering radius was empirically determined for these same instances by

recording the number of growth iterations, as shown in Figure 4.2. By the

nature of the online update, it is intuitive that a greater improvement should

98

correlate with a higher number of iterations; that is, we expect the improve-

ment to be starker on codes with a higher covering radius. The 2D toric

code demonstrates the highest covering radius for increasing n, so it comes

as no surprise that it should see the greatest improvement in average-case

complexity. Whilst the complexity analysis suggests that the online vari-

ant should perform strictly faster regardless of covering radius, the reality is

that retaining information between growth iterations may lead to subopti-

mal choices in pivot selection. The Gaussian elimination procedure has fewer

rows (and thus pivots) to choose from at each stage on the smaller systems

of earlier cluster growth cycles, such that these decisions are based on less

information of the final system when compared to the equivalent final offline

procedure.3 This can subtly increase the number of operations required at

later growth cycles when filling missing pivots; the effect is dwarfed by the

asymptotic improvement for higher covering radii, but can be significant for

lower covering radii.

Finally, however, we see that the mean covering radius for the 2D colour

code begins to converge somewhere between that of the other two codes, and

yet it displays the worst performance for the online decoder. This can be at-

tributed to the fact that, despite the number of iterations averaging between

those of the toric codes, the mean number of operations is higher compared

to the toric codes for similar values of n. This is demonstrated more clearly in

Figure 4.3, which shows the total weight of the parity-check matrices (i.e. the

total number of ones) for each code with increasing n. The 2D colour code

outpaces both toric codes, demanding a greater number of operations for a

similar covering radius; we can thus expect any suboptimal choices made

by the online decoder to have a greater impact on its performance. This,

3More literally, the online procedure may skip over all-zero columns in search of a pivot
candidate on earlier cycles, despite the fact that new rows from later cycles may have had
a one in that column.

99

however, is promising, as it suggests that this technique performs better for

sparser parity-check matrices, which more closely represent the LDPC codes

it is intended for.

4.3 Avoiding Gaussian elimination

4.3.1 Metacheck validation

One of the key problems solved by Gaussian elimination is syndrome valida-

tion: knowing when a solution exists and thus when to stop growing clusters.

In the surface code case, due to parities on a graphlike structure, a solution

exists when a cluster supports an odd number of defects. In the LDPC case,

it appears that no such trivial arguments can be made in the general case.

In Chapter 2.3.2, single-shot codes were introduced, an approach which

can involve the use of metachecks to detect noisy syndrome measurements.

In this section, I investigate the possibility of similarly using metachecks to

determine when a syndrome becomes valid in order to stop growing clusters.

An [n, k] linear code C has generator matrix GC and parity-check matrix

HC . Firstly, note that a generator matrix can be trivially formed by listing

all codewords as rows (although this representation may be reducible due

to linearly-dependent rows). Let us define the corresponding syndrome code

S as the one which ‘encodes’ the n physical bits into syndrome bits. The

generator matrix of this code, GS, is equal to the transpose of HC . Then,

recall from Chapter 2.1.2 that the parity-check matrix of a code is equal

to the generator matrix of its dual code and vice versa. Thus, in order to

find the parity-check matrix of the syndrome code, HS, we must find the

dual of the syndrome code. HS defines the metachecks which can be used to

determine if a syndrome is valid.

For a worked example, take the [5, 1] repetition code with periodic bound-

100

ary conditions:

HC =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

 . (4.13)

The corresponding syndrome code S encodes 5 physical bits into 5 syndrome

bits. The codewords in S are obtained by:

GS = H⊤
C =


1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 . (4.14)

Recall the standard forms of the matrices H and G given in Equations 2.10

and 2.11; HS can be obtained by determining the submatrix A, which is

equivalent to taking GS into reduced row echelon form via Gauss–Jordan

elimination:

(GS)RREF =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0

 , (4.15)

and then taking only nonzero rows as the k×n (here 4×5) generator matrix

in standard form:

(GS)std =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 = [Ik | −A⊤] . (4.16)

So, finally, the parity-check matrix of the syndrome code is the (n − k) × n
matrix formed as

HS = [A | In−k] =
(
1 1 1 1 1

)
. (4.17)

101

By inspection, this is the single parity check which determines if the syndrome

has even weight, as expected.

4.3.2 Practicality

We have seen a procedure for generating metachecks capable of syndrome

validation from general linear code definitions. Ideally, these metachecks

could be implemented with the purpose of stopping cluster growth once the

observed syndrome becomes valid on the currently-supported code H ′, avoid-

ing the need for Gaussian elimination for rank inspection.

Crucially, a number of caveats arise. Firstly, metachecks are generated

at each growth step for the reduced system H ′, with the intent of avoiding

Gaussian elimination; however, we have seen that Gauss–Jordan elimination

is required for generating metachecks. This is intuitive as the problem is

not only equivalent, but in fact more general: generating metachecks pro-

vides a system for checking any syndrome, not just the augmented observed

syndrome σ.

Instead, we might hope that we could find the corresponding syndrome

code S once on the global code, which could be filtered in a similar fashion

as clusters are grown during decoding. However, metachecks might only

emerge when considering a local cluster and may not be present in the global

syndrome code. In the extreme case, every combination of checks might be

a valid syndrome for the global code, i.e. there are no global metachecks at

all.

For example, take the same [5, 1] repetition code as in Equation 4.13 but

102

with open boundary conditions, such that the parity-check matrix is now

HC =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 . (4.18)

Following the same procedure as above (that is, performing Gauss–Jordan

elimination on the transposed matrix) gives the following generator matrix

for the syndrome code in reduced row echelon form:

(GS)RREF =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 . (4.19)

Note how the rightmost column of ones no longer appears, due to the fact

that there were no longer any linearly-dependent rows in HC ; that is, HC

is full-rank. This means that no metachecks exist: the parity-check matrix

of the syndrome code HS is empty. This is consistent with the fact that all

odd syndrome vectors are valid with open boundary conditions, not just even

ones.

It is clear, then, that Gauss–Jordan elimination must be performed on

the subcode formed by each instance of a grown cluster in order to obtain the

correct metacheck(s) for syndrome validation. In order to gain benefit from

this approach, it could be effective to cache the metachecks of clusters, or

otherwise precompute common configurations as in a lookup-table decoder.

This would intuitively be more effective in a sparse error regime where small

error configurations are likely to repeatedly occur. In particular, it would be

effective in codes with a high level of translational invariance, maximising

the reusability potential of precomputed/cached metachecks; an example of

103

such codes, generally, would be topological codes.

4.4 Conclusion

In this chapter, some open challenges surrounding the use of qLDPC codes

at scale have been presented, with primary focus on the difficulty of decoding

such generalised quantum codes efficiently. Reliance on Gaussian elimination

to solve a parity-check equation was identified as a key bottleneck in qLDPC

decoding, with the generalised union–find decoder performing Gaussian elim-

ination repeatedly upon clusters grown iteratively on Tanner graphs. Two

different research directions were therefore identified: improving Gaussian

elimination, and avoiding it entirely.

On the former, Chapter 4.2 introduced an online variant of the Gaussian

elimination subroutine used in qLDPC decoding. It was shown that – in

theory – one can expect a polynomially-increasing reduction in the number

of operations required compared to a standard offline implementation via

complexity analysis inspired by the framework in [41]. While this asymp-

totic improvement competes with the negative effects of making suboptimal

choices in pivot selection, it was shown that the online variant still outper-

forms offline in codes with a sparser parity-check matrix (i.e. LDPC codes)

and higher covering radius.

During completion of this project, we became aware of recently-published

work by Hillmann et al. in [114], where a technique related to online Gaussian

elimination is discussed. In their localised statistics decoding (LSD), clus-

ters initialised from a syndrome are grown by one variable node at a time,

based on the next-most-likely error mode informed by marginal probabilities

from an initial application of belief propagation. This BP–LSD decoder can

therefore be interpreted as a weighted variant of the generalised union–find

104

decoder with explicit parallelisation of cluster growth. An LUP decompo-

sition is similarly used to retain row-operation decisions between iterations.

Whilst the BP–LSD decoder uses this online strategy in this context, the

exact algorithm, complexity analysis and empirical reasoning presented in

this chapter hold novelty in the broad application of this strategy to qLDPC

decoding and similar sparse linear problems.

As for avoiding Gaussian elimination, Chapter 4.3 presented notes on

defining a syndrome code to solve the problem of syndrome validation, in-

spired by single-shot codes. The possibility of observed syndromes being in-

valid on local subcode clusters necessarily implies the existence of metachecks

given by the local syndrome code; however, generating these metachecks is

itself reliant on Gauss–Jordan elimination. It was reasoned that it may be ef-

fective to cache or precompute metachecks in a lookup-table-style approach,

especially on codes with a high level of translational invariance, such as topo-

logical codes.

105

Chapter 5

Summary

In this work, a review of modern theory and techniques in quantum error

correction (QEC) has been presented, a field increasingly deemed critical for

the development of practical quantum computing at scale. Decoding algo-

rithms have been identified as key bottlenecks in most major current QEC

protocols. For surface codes, the union–find (UF) decoder was studied, with

a variety of potential improvements identified and proposed. In particular,

a novel complexity analysis was presented – via the application of percola-

tion theory on grown erasure clusters – which suggests that the UF decoder

has time complexity strictly linear in the number of qubits n. This means

that the decoder implementation can be simplified considerably by forgoing

union-by-size and path compression, leading to a reduction of both runtime

and memory consumption in practice.

Future work could investigate how this reasoning affects the implemen-

tation and development of related decoders, especially distributed variants;

indeed, these results have already been cited in subsequent works to justify

forgoing the aforementioned optimisations [14], to quote an accurate com-

plexity analysis of the UF decoder [15], to reason with the scaling of erasure

clusters in order to develop novel decoders [22, 23], to justify the UF decoder

106

and its properties more generally [16–20] and as an example of a nanotech-

nological theory applied to quantum technology [21].

For quantum low-density parity-check (qLDPC) codes, a generalisation

of the UF decoder was studied. By identifying Gaussian elimination as a

bottleneck in generalised decoders, methods to either improve or avoid Gaus-

sian elimination were investigated. In particular, a novel online variant of the

Gaussian elimination algorithm was presented, which can reduce the runtime

of decoders which apply this algorithm repeatedly, such as the generalised

UF decoder. As the overhead of decoding qLDPC codes remains significantly

greater than decoding surface codes, this result will hopefully enable more

efficient future iterations of qLDPC decoders. The use of metachecks was

also discussed: while the theoretical benefit of using them to avoid Gaussian

elimination is apparent, fundamental costs involved in their calculation make

it unclear how best to apply them effectively. Further work could investigate

precomputation approaches, especially for topological qLDPC codes.

107

Bibliography

[1] P. Shor, “Algorithms for quantum computation: Discrete logarithms

and factoring,” in Proceedings 35th Annual Symposium on Founda-

tions of Computer Science, Nov. 1994, pp. 124–134. doi: 10.1109/

SFCS.1994.365700.

[2] D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds., Post-Quantum

Cryptography. Berlin, Heidelberg: Springer, 2009, isbn: 978-3-540-

88701-0. doi: 10.1007/978-3-540-88702-7.

[3] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum

computing for drug discovery,” IBM Journal of Research and Devel-

opment, vol. 62, no. 6, 6:1–6:20, Nov. 2018, issn: 0018-8646. doi:

10.1147/JRD.2018.2888987.

[4] V. Dunjko and H. J. Briegel, “Machine learning & artificial intelligence

in the quantum domain: A review of recent progress,” Reports on

Progress in Physics, vol. 81, no. 7, p. 074 001, Jun. 2018, issn: 0034-

4885. doi: 10.1088/1361-6633/aab406.

[5] M. Singh, C. Dhara, A. Kumar, S. S. Gill, and S. Uhlig, “Quantum

artificial intelligence for the science of climate change,” in Artificial

Intelligence, Machine Learning and Blockchain in Quantum Satellite,

Drone and Network, CRC Press, 2022, isbn: 978-1-003-25035-7.

108

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1147/JRD.2018.2888987
https://doi.org/10.1088/1361-6633/aab406

[6] A. Ho, J. McClean, and S. P. Ong, “The promise and challenges of

quantum computing for energy storage,” Joule, vol. 2, no. 5, pp. 810–

813, May 16, 2018, issn: 2542-4785, 2542-4351. doi: 10.1016/j.

joule.2018.04.021.

[7] “Ensuring that the UK can capture the benefits of quantum comput-

ing,” Oxford Economics, Feb. 6, 2025.

[8] “National quantum strategy missions,” Department for Science, Inno-

vation and Technology. (Dec. 14, 2023), [Online]. Available: https:

//www.gov.uk/government/publications/national-quantum-

strategy/national-quantum-strategy-missions.

[9] “£121 million boost for quantum technology set to tackle fraud, pre-

vent money laundering and drive growth,” Department for Science, In-

novation and Technology. (Apr. 14, 2025), [Online]. Available: https:

/ / www . gov . uk / government / news / 121 - million - boost - for -

quantum- technology- set- to- tackle- fraud- prevent- money-

laundering-and-drive-growth.

[10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information, 10th Anniversary Edition. Cambridge University Press,

Dec. 9, 2010, isbn: 978-1-107-00217-3. doi: 10.1017/CBO9780511976667.

[11] S. J. Griffiths and D. E. Browne, “Union-find quantum decoding with-

out union-find,” Physical Review Research, vol. 6, no. 1, p. 013 154,

Feb. 9, 2024. doi: 10.1103/PhysRevResearch.6.013154. arXiv:

2306.09767 [quant-ph].

[12] S. J. Griffiths, A. Benhemou, and D. E. Browne. “Online Gaussian

elimination for quantum LDPC decoding.” arXiv: 2504.05080 [quant-ph].

(Apr. 7, 2025), [Online]. Available: http://arxiv.org/abs/2504.

05080, pre-published.

109

https://doi.org/10.1016/j.joule.2018.04.021
https://doi.org/10.1016/j.joule.2018.04.021
https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-missions
https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-missions
https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-missions
https://www.gov.uk/government/news/121-million-boost-for-quantum-technology-set-to-tackle-fraud-prevent-money-laundering-and-drive-growth
https://www.gov.uk/government/news/121-million-boost-for-quantum-technology-set-to-tackle-fraud-prevent-money-laundering-and-drive-growth
https://www.gov.uk/government/news/121-million-boost-for-quantum-technology-set-to-tackle-fraud-prevent-money-laundering-and-drive-growth
https://www.gov.uk/government/news/121-million-boost-for-quantum-technology-set-to-tackle-fraud-prevent-money-laundering-and-drive-growth
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevResearch.6.013154
https://arxiv.org/abs/2306.09767
https://arxiv.org/abs/2504.05080
http://arxiv.org/abs/2504.05080
http://arxiv.org/abs/2504.05080

[13] S. J. Griffiths, “Union–find quantum decoding without union–find,”

presented at the APS March Meeting (Las Vegas, Nevada), Mar. 7,

2023.

[14] T. Chan and S. C. Benjamin, “Actis: A strictly local union–find de-

coder,” Quantum, vol. 7, p. 1183, Nov. 14, 2023. doi: 10.22331/q-

2023-11-14-1183.

[15] T.-H. Lin and C.-Y. Lai, “Union-intersection union-find for decoding

depolarizing errors in topological codes,” IEEE Journal on Selected

Areas in Information Theory, vol. 6, pp. 163–175, 2025, issn: 2641-

8770. doi: 10.1109/JSAIT.2025.3581810.

[16] M. Fu, C. Tian, Z. Fan, and H. Ma, “Resource-efficient decoding of

topological color codes via neural-guided union-find optimization,”

Applied Sciences, vol. 15, no. 16, p. 8937, Jan. 2025, issn: 2076-3417.

doi: 10.3390/app15168937.

[17] A. Benhemou, K. Sahay, L. Lao, and B. J. Brown, “Minimising surface-

code failures using a color-code decoder,” Quantum, vol. 9, p. 1632,

Feb. 17, 2025. doi: 10.22331/q-2025-02-17-1632.

[18] A. Benhemou, “Progress in quantum error correction and simulation,

a many-body physics approach,” Doctoral, UCL (University College

London), Jun. 28, 2025, 244 pp.

[19] T. Chan. “Snowflake: A distributed streaming decoder.” arXiv: 2406.

01701 [quant-ph]. (Dec. 15, 2024), [Online]. Available: http : / /

arxiv.org/abs/2406.01701, pre-published.

[20] A. Ghosh, A. Chatterjee, and S. Ghosh. “Design automation in quan-

tum error correction.” arXiv: 2507.12253 [quant-ph]. (Jul. 16, 2025),

[Online]. Available: http : / / arxiv . org / abs / 2507 . 12253, pre-

published.

110

https://doi.org/10.22331/q-2023-11-14-1183
https://doi.org/10.22331/q-2023-11-14-1183
https://doi.org/10.1109/JSAIT.2025.3581810
https://doi.org/10.3390/app15168937
https://doi.org/10.22331/q-2025-02-17-1632
https://arxiv.org/abs/2406.01701
https://arxiv.org/abs/2406.01701
http://arxiv.org/abs/2406.01701
http://arxiv.org/abs/2406.01701
https://arxiv.org/abs/2507.12253
http://arxiv.org/abs/2507.12253

[21] S. N. Domgueu, J. V. Nguepnang, C. M. Ekengoue, and A. K. Jiotsa,

“Investigation of polaron properties in semiconductors quantum dot

under the influence of an oscillating electric radiation,” Brazilian Jour-

nal of Physics, vol. 55, no. 3, p. 104, Mar. 11, 2025, issn: 1678-4448.

doi: 10.1007/s13538-025-01733-w.

[22] M. C. Löbl, S. X. Chen, S. Paesani, and A. S. Sørensen. “Breadth-first

graph traversal union-find decoder.” arXiv: 2407.15988 [quant-ph].

(Jul. 22, 2024), [Online]. Available: http://arxiv.org/abs/2407.

15988, pre-published.

[23] A. B. Ziad et al. “Local clustering decoder: A fast and adaptive hard-

ware decoder for the surface code.” arXiv: 2411.10343 [quant-ph].

(Nov. 15, 2024), [Online]. Available: http://arxiv.org/abs/2411.

10343, pre-published.

[24] L. K. Grover, “A fast quantum mechanical algorithm for database

search,” in Proceedings of the Twenty-Eighth Annual ACM Sympo-

sium on Theory of Computing, ser. STOC ’96, New York, NY, USA:

Association for Computing Machinery, Jul. 1, 1996, pp. 212–219, isbn:

978-0-89791-785-8. doi: 10.1145/237814.237866.

[25] E. Farhi, J. Goldstone, and S. Gutmann. “A quantum approximate

optimization algorithm.” arXiv: 1411.4028 [quant-ph]. (Nov. 14,

2014), [Online]. Available: http://arxiv.org/abs/1411.4028, pre-

published.

[26] A. Peruzzo et al., “A variational eigenvalue solver on a photonic quan-

tum processor,” Nature Communications, vol. 5, p. 4213, Jul. 23, 2014,

issn: 2041-1723. doi: 10.1038/ncomms5213. PMID: 25055053.

111

https://doi.org/10.1007/s13538-025-01733-w
https://arxiv.org/abs/2407.15988
http://arxiv.org/abs/2407.15988
http://arxiv.org/abs/2407.15988
https://arxiv.org/abs/2411.10343
http://arxiv.org/abs/2411.10343
http://arxiv.org/abs/2411.10343
https://doi.org/10.1145/237814.237866
https://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1411.4028
https://doi.org/10.1038/ncomms5213
http://www.ncbi.nlm.nih.gov/pubmed/25055053

[27] A. Kitaev, “Quantum measurements and the Abelian stabilizer prob-

lem,” Electronic Colloquium on Computational Complexity (ECCC),

TR96-003, Jan. 17, 1996. arXiv: quant-ph/9511026.

[28] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson,

and W. D. Oliver, “A quantum engineer’s guide to superconducting

qubits,” Applied Physics Reviews, vol. 6, no. 2, p. 021 318, Jun. 17,

2019, issn: 1931-9401. doi: 10.1063/1.5089550.

[29] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-

ion quantum computing: Progress and challenges,” Applied Physics

Reviews, vol. 6, no. 2, p. 021 314, May 29, 2019, issn: 1931-9401. doi:

10.1063/1.5088164.

[30] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and

G. J. Milburn, “Linear optical quantum computing with photonic

qubits,” Reviews of Modern Physics, vol. 79, no. 1, pp. 135–174,

Jan. 24, 2007. doi: 10.1103/RevModPhys.79.135.

[31] M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information

with Rydberg atoms,” Reviews of Modern Physics, vol. 82, no. 3,

pp. 2313–2363, Aug. 18, 2010. doi: 10.1103/RevModPhys.82.2313.

[32] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” An-

nals of Physics, vol. 303, no. 1, pp. 2–30, Jan. 2003, issn: 00034916.

doi: 10.1016/S0003-4916(02)00018-0. arXiv: quant-ph/9707021.

[33] R. Gallager, “Low-density parity-check codes,” IRE Transactions on

Information Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962, issn: 2168-

2712. doi: 10.1109/TIT.1962.1057683.

[34] P. Panteleev and G. Kalachev, “Asymptotically good quantum and

locally testable classical LDPC codes,” in Proceedings of the 54th An-

nual ACM SIGACT Symposium on Theory of Computing, ser. STOC

112

https://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5088164
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1016/S0003-4916(02)00018-0
https://arxiv.org/abs/quant-ph/9707021
https://doi.org/10.1109/TIT.1962.1057683

2022, New York, NY, USA: Association for Computing Machinery,

Jun. 10, 2022, pp. 375–388, isbn: 978-1-4503-9264-8. doi: 10.1145/

3519935.3520017.

[35] J. Pearl, “Reverend Bayes on inference engines: A distributed hier-

archical approach,” in Probabilistic and Causal Inference: The Works

of Judea Pearl, 1st ed., vol. 36, New York, NY, USA: Association for

Computing Machinery, Mar. 4, 2022, pp. 129–138, isbn: 978-1-4503-

9586-1. doi: 10.1145/3501714.3501727.

[36] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quan-

tummemory,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–

4505, Sep. 2002, issn: 0022-2488, 1089-7658. doi: 10.1063/1.1499754.

arXiv: quant-ph/0110143.

[37] R. Sweke, M. S. Kesselring, E. P. L. van Nieuwenburg, and J. Eis-

ert, “Reinforcement learning decoders for fault-tolerant quantum com-

putation,” Machine Learning: Science and Technology, vol. 2, no. 2,

p. 025 005, Dec. 2020, issn: 2632-2153. doi: 10.1088/2632-2153/

abc609.

[38] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,

“Surface codes: Towards practical large-scale quantum computation,”

Physical Review A, vol. 86, no. 3, p. 032 324, Sep. 2012, issn: 1050-

2947, 1094-1622. doi: 10.1103/PhysRevA.86.032324. arXiv: 1208.

0928.

[39] Google Quantum AI and Collaborators, “Quantum error correction

below the surface code threshold,” Nature, vol. 638, no. 8052, pp. 920–

926, 2025, issn: 0028-0836. doi: 10.1038/s41586-024-08449-y.

PMID: 39653125.

113

https://doi.org/10.1145/3519935.3520017
https://doi.org/10.1145/3519935.3520017
https://doi.org/10.1145/3501714.3501727
https://doi.org/10.1063/1.1499754
https://arxiv.org/abs/quant-ph/0110143
https://doi.org/10.1088/2632-2153/abc609
https://doi.org/10.1088/2632-2153/abc609
https://doi.org/10.1103/PhysRevA.86.032324
https://arxiv.org/abs/1208.0928
https://arxiv.org/abs/1208.0928
https://doi.org/10.1038/s41586-024-08449-y
http://www.ncbi.nlm.nih.gov/pubmed/39653125

[40] N. Delfosse and N. H. Nickerson, “Almost-linear time decoding algo-

rithm for topological codes,” Quantum, vol. 5, p. 595, Dec. 2021. doi:

10.22331/q-2021-12-02-595.

[41] N. Delfosse, V. Londe, and M. E. Beverland, “Toward a union-find

decoder for quantum LDPC codes,” IEEE Transactions on Informa-

tion Theory, vol. 68, no. 5, pp. 3187–3199, May 2022, issn: 1557-9654.

doi: 10.1109/TIT.2022.3143452.

[42] A. Borodin and R. El-Yaniv, Online Computation and Competitive

Analysis. Cambridge University Press, Feb. 2005, isbn: 978-0-521-

61946-2.

[43] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting

Codes. Elsevier, 1977, isbn: 978-0-444-85010-2.

[44] R. W. Hamming, “Error detecting and error correcting codes,” The

Bell System Technical Journal, vol. 29, no. 2, pp. 147–160, Apr. 1950,

issn: 0005-8580. doi: 10.1002/j.1538-7305.1950.tb00463.x.

[45] C. E. Shannon, “A mathematical theory of communication,” The Bell

System Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948, issn:

0005-8580. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[46] S. Verdu, “Fifty years of Shannon theory,” IEEE Transactions on

Information Theory, vol. 44, no. 6, p. 22, 1998.

[47] Glosser.ca. “Bloch Sphere.svg.” (Dec. 19, 2012), [Online]. Available:

https://commons.wikimedia.org/wiki/File:Bloch_Sphere.svg.

(This file is licensed under the Creative Commons Attribution-Share

Alike 3.0 Unported licence.)

[48] J. L. Park, “The concept of transition in quantum mechanics,” Foun-

dations of Physics, vol. 1, no. 1, pp. 23–33, Mar. 1970, issn: 1572-9516.

doi: 10.1007/BF00708652.

114

https://doi.org/10.22331/q-2021-12-02-595
https://doi.org/10.1109/TIT.2022.3143452
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://commons.wikimedia.org/wiki/File:Bloch_Sphere.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://doi.org/10.1007/BF00708652

[49] P. W. Shor, “Scheme for reducing decoherence in quantum computer

memory,” Physical Review A, vol. 52, no. 4, R2493–R2496, Oct. 1995.

doi: 10.1103/PhysRevA.52.R2493.

[50] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting

codes exist,” Physical Review A, vol. 54, no. 2, pp. 1098–1105, Aug.

1996, issn: 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.54.1098.

arXiv: quant-ph/9512032.

[51] V. V. Albert and P. Faist. “Topological code,” The Error Correc-

tion Zoo. (2022), [Online]. Available: https://errorcorrectionzoo.

org/c/topological.

[52] Krishnavedala. “Torus cycles.svg.” (Apr. 14, 2014), [Online]. Avail-

able: https://commons.wikimedia.org/wiki/File:Torus_cycles.

svg. (This file is made available under the Creative Commons CC0

1.0 Universal Public Domain Dedication.)

[53] J. Bausch, T. S. Cubitt, A. Lucia, D. Perez-Garcia, and M. M. Wolf,

“Size-driven quantum phase transitions,” Proceedings of the National

Academy of Sciences, vol. 115, no. 1, pp. 19–23, Jan. 2, 2018. doi:

10.1073/pnas.1705042114.

[54] R. K. Pathria and P. D. Beale, “Phase transitions: Exact (or almost

exact) results for various models,” in Statistical Mechanics (Fourth

Edition), R. K. Pathria and P. D. Beale, Eds., Academic Press, Jan. 1,

2022, pp. 487–554, isbn: 978-0-08-102692-2. doi: 10.1016/B978-0-

08-102692-2.00022-3.

[55] H. Bomb́ın, “Topological codes,” in Quantum Error Correction, D. A.

Lidar and T. A. Brun, Eds., Cambridge: Cambridge University Press,

Sep. 2013, pp. 455–481, isbn: 978-0-521-89787-7. doi: 10 . 1017 /

CBO9781139034807. arXiv: 1311.0277 [quant-ph].

115

https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.54.1098
https://arxiv.org/abs/quant-ph/9512032
https://errorcorrectionzoo.org/c/topological
https://errorcorrectionzoo.org/c/topological
https://commons.wikimedia.org/wiki/File:Torus_cycles.svg
https://commons.wikimedia.org/wiki/File:Torus_cycles.svg
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.1073/pnas.1705042114
https://doi.org/10.1016/B978-0-08-102692-2.00022-3
https://doi.org/10.1016/B978-0-08-102692-2.00022-3
https://doi.org/10.1017/CBO9781139034807
https://doi.org/10.1017/CBO9781139034807
https://arxiv.org/abs/1311.0277

[56] N. Delfosse, P. Iyer, and D. Poulin. “Generalized surface codes and

packing of logical qubits.” arXiv: 1606.07116 [quant-ph]. (Jun. 22,

2016), [Online]. Available: https://arxiv.org/abs/1606.07116,

pre-published.

[57] O. Higgott and N. P. Breuckmann, “Subsystem codes with high thresh-

olds by gauge fixing and reduced qubit overhead,” Physical Review X,

vol. 11, no. 3, p. 031 039, Aug. 2021, issn: 2160-3308. doi: 10.1103/

PhysRevX.11.031039. arXiv: 2010.09626.

[58] H. Bomb́ın, “Single-shot fault-tolerant quantum error correction,”

Physical Review X, vol. 5, no. 3, p. 031 043, Sep. 2015. doi: 10.1103/

PhysRevX.5.031043.

[59] A. O. Quintavalle, M. Vasmer, J. Roffe, and E. T. Campbell, “Single-

shot error correction of three-dimensional homological product codes,”

PRX Quantum, vol. 2, no. 2, p. 020 340, Jun. 2021. doi: 10.1103/

PRXQuantum.2.020340.

[60] O. Higgott and N. P. Breuckmann, “Improved single-shot decoding

of higher dimensional hypergraph product codes,” PRX Quantum,

vol. 4, no. 2, p. 020 332, May 2023, issn: 2691-3399. doi: 10.1103/

PRXQuantum.4.020332. arXiv: 2206.03122 [quant-ph].

[61] E. T. Campbell, “A theory of single-shot error correction for adversar-

ial noise,” Quantum Science and Technology, vol. 4, no. 2, p. 025 006,

Feb. 2019, issn: 2058-9565. doi: 10.1088/2058-9565/aafc8f.

[62] J. Roffe, L. Z. Cohen, A. O. Quintavalle, D. Chandra, and E. T.

Campbell, “Bias-tailored quantum LDPC codes,” Quantum, vol. 7,

p. 1005, May 15, 2023. doi: 10.22331/q-2023-05-15-1005.

116

https://arxiv.org/abs/1606.07116
https://arxiv.org/abs/1606.07116
https://doi.org/10.1103/PhysRevX.11.031039
https://doi.org/10.1103/PhysRevX.11.031039
https://arxiv.org/abs/2010.09626
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1103/PRXQuantum.2.020340
https://doi.org/10.1103/PRXQuantum.2.020340
https://doi.org/10.1103/PRXQuantum.4.020332
https://doi.org/10.1103/PRXQuantum.4.020332
https://arxiv.org/abs/2206.03122
https://doi.org/10.1088/2058-9565/aafc8f
https://doi.org/10.22331/q-2023-05-15-1005

[63] A. Honecker, M. Picco, and P. Pujol, “Nishimori point in the 2D +/-

J random-bond Ising model,” Physical Review Letters, vol. 87, no. 4,

p. 047 201, Jul. 2001, issn: 0031-9007, 1079-7114. doi: 10 . 1103 /

PhysRevLett.87.047201. arXiv: cond-mat/0010143.

[64] Y. S. Weinstein, “Quantum error correction during 50 gates,” Physical

Review A, vol. 89, no. 2, p. 020 301, Feb. 5, 2014. doi: 10.1103/

PhysRevA.89.020301.

[65] C. Wang, J. Harrington, and J. Preskill, “Confinement-Higgs tran-

sition in a disordered gauge theory and the accuracy threshold for

quantum memory,” Annals of Physics, vol. 303, no. 1, pp. 31–58, Jan.

2003, issn: 0003-4916. doi: 10.1016/S0003-4916(02)00019-2.

[66] D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L. Hollenberg,

“Threshold error rates for the toric and planar codes,” Quantum In-

formation & Computation, vol. 10, no. 5, pp. 456–469, May 1, 2010.

doi: 10.26421/QIC10.5-6-6. arXiv: 0905.0531 [quant-ph].

[67] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of Math-

ematics, vol. 17, pp. 449–467, Jan. 1965, issn: 0008-414X, 1496-4279.

doi: 10.4153/CJM-1965-045-4.

[68] V. Kolmogorov, “Blossom V: A new implementation of a minimum

cost perfect matching algorithm,” Mathematical Programming Com-

putation, vol. 1, no. 1, pp. 43–67, Jul. 2009, issn: 1867-2957. doi:

10.1007/s12532-009-0002-8.

[69] O. Higgott, “PyMatching: A Python package for decoding quantum

codes with minimum-weight perfect matching,” ACM Transactions

on Quantum Computing, vol. 3, no. 3, 16:1–16:16, Jun. 30, 2022. doi:

10.1145/3505637.

117

https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1103/PhysRevLett.87.047201
https://arxiv.org/abs/cond-mat/0010143
https://doi.org/10.1103/PhysRevA.89.020301
https://doi.org/10.1103/PhysRevA.89.020301
https://doi.org/10.1016/S0003-4916(02)00019-2
https://doi.org/10.26421/QIC10.5-6-6
https://arxiv.org/abs/0905.0531
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1145/3505637

[70] S. Bravyi and J. Haah, “Analytic and numerical demonstration of

quantum self-correction in the 3D cubic code,” Physical Review Let-

ters, vol. 111, no. 20, p. 200 501, Nov. 2013, issn: 0031-9007, 1079-

7114. doi: 10.1103/PhysRevLett.111.200501. arXiv: 1112.3252.

[71] J. Wootton, “A simple decoder for topological codes,” Entropy, vol. 17,

no. 4, pp. 1946–1957, Apr. 2015, issn: 1099-4300. doi: 10.3390/

e17041946.

[72] H. Anwar, B. J. Brown, E. T. Campbell, and D. E. Browne, “Fast

decoders for qudit topological codes,” New Journal of Physics, vol. 16,

no. 6, p. 063 038, Jun. 2014, issn: 1367-2630. doi: 10.1088/1367-

2630/16/6/063038.

[73] N. Delfosse and G. Zémor, “Linear-time maximum likelihood decod-

ing of surface codes over the quantum erasure channel,” Physical Re-

view Research, vol. 2, no. 3, p. 033 042, Jul. 9, 2020. doi: 10.1103/

PhysRevResearch.2.033042.

[74] R. E. Korf, “Artificial intelligence search algorithms,” in Algorithms

and Theory of Computation Handbook: Special Topics and Techniques,

2nd ed., Chapman & Hall/CRC, Jan. 1, 2010, p. 22, isbn: 978-1-58488-

820-8.

[75] J. B. Kruskal, “On the shortest spanning subtree of a graph and the

traveling salesman problem,” Proceedings of the American Mathemat-

ical Society, vol. 7, no. 1, pp. 48–50, 1956, issn: 0002-9939, 1088-6826.

doi: 10.1090/S0002-9939-1956-0078686-7.

[76] R. E. Tarjan, “Amortized computational complexity,” SIAM Journal

on Algebraic Discrete Methods, vol. 6, no. 2, pp. 306–318, Apr. 1985,

issn: 0196-5212. doi: 10.1137/0606031.

118

https://doi.org/10.1103/PhysRevLett.111.200501
https://arxiv.org/abs/1112.3252
https://doi.org/10.3390/e17041946
https://doi.org/10.3390/e17041946
https://doi.org/10.1088/1367-2630/16/6/063038
https://doi.org/10.1088/1367-2630/16/6/063038
https://doi.org/10.1103/PhysRevResearch.2.033042
https://doi.org/10.1103/PhysRevResearch.2.033042
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1137/0606031

[77] Y. Wu, N. Liyanage, and L. Zhong. “An interpretation of union-

find decoder on weighted graphs.” arXiv: 2211.03288 [quant-ph].

(Nov. 6, 2022), [Online]. Available: https://arxiv.org/abs/2211.

03288, pre-published.

[78] S. Huang, M. Newman, and K. R. Brown, “Fault-tolerant weighted

union-find decoding on the toric code,” Physical Review A, vol. 102,

no. 1, p. 012 419, Jul. 2020, issn: 2469-9926, 2469-9934. doi: 10.1103/

PhysRevA.102.012419. arXiv: 2004.04693.

[79] R. E. Tarjan and J. van Leeuwen, “Worst-case analysis of set union

algorithms,” Journal of the ACM, vol. 31, no. 2, pp. 245–281, Mar.

1984, issn: 0004-5411. doi: 10.1145/62.2160.

[80] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms. MIT Press, Jul. 2009, isbn: 978-0-262-53305-8.

[81] P. Das et al., “AFS: Accurate, fast, and scalable error-decoding for

fault-tolerant quantum computers,” in 2022 IEEE International Sym-

posium on High-Performance Computer Architecture (HPCA), Apr.

2022, pp. 259–273. doi: 10.1109/HPCA53966.2022.00027.

[82] N. P. Breuckmann and J. N. Eberhardt, “Quantum low-density parity-

check codes,” PRX Quantum, vol. 2, no. 4, p. 040 101, Oct. 11, 2021.

doi: 10.1103/PRXQuantum.2.040101.

[83] L. Golowich and V. Guruswami, “Decoding quasi-cyclic quantum LDPC

codes,” in 2024 IEEE 65th Annual Symposium on Foundations of

Computer Science (FOCS), Oct. 2024, pp. 344–368. doi: 10.1109/

FOCS61266.2024.00029.

[84] D. Poulin and Y. Chung, “On the iterative decoding of sparse quan-

tum codes,” Quantum Information & Computation, vol. 8, no. 10,

119

https://arxiv.org/abs/2211.03288
https://arxiv.org/abs/2211.03288
https://arxiv.org/abs/2211.03288
https://doi.org/10.1103/PhysRevA.102.012419
https://doi.org/10.1103/PhysRevA.102.012419
https://arxiv.org/abs/2004.04693
https://doi.org/10.1145/62.2160
https://doi.org/10.1109/HPCA53966.2022.00027
https://doi.org/10.1103/PRXQuantum.2.040101
https://doi.org/10.1109/FOCS61266.2024.00029
https://doi.org/10.1109/FOCS61266.2024.00029

pp. 987–1000, Nov. 1, 2008, issn: 1533-7146. doi: 10.26421/QIC8.

10-8. arXiv: 0801.1241 [quant-ph].

[85] R. Tanner, “A recursive approach to low complexity codes,” IEEE

Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, Sep.

1981, issn: 1557-9654. doi: 10.1109/TIT.1981.1056404.

[86] C. Castelnovo and C. Chamon, “Topological order in a three-dimensional

toric code at finite temperature,” Physical Review B, vol. 78, no. 15,

p. 155 120, Oct. 21, 2008. doi: 10.1103/PhysRevB.78.155120.

[87] A. Kulkarni and P. K. Sarvepalli, “Decoding the three-dimensional

toric codes and welded codes on cubic lattices,” Physical Review A,

vol. 100, no. 1, p. 012 311, Jul. 8, 2019. doi: 10.1103/PhysRevA.100.

012311.

[88] Y. Takada and K. Fujii, “Improving threshold for fault-tolerant color-

code quantum computing by flagged weight optimization,” PRX Quan-

tum, vol. 5, no. 3, p. 030 352, Sep. 17, 2024. doi: 10.1103/PRXQuantum.

5.030352.

[89] H. Bomb́ın and M. A. Martin-Delgado, “Topological quantum distil-

lation,” Physical Review Letters, vol. 97, no. 18, p. 180 501, Oct. 30,

2006. doi: 10.1103/PhysRevLett.97.180501.

[90] G. F. Cooper, “The computational complexity of probabilistic infer-

ence using Bayesian belief networks,” Artificial Intelligence, vol. 42,

no. 2, pp. 393–405, Mar. 1990, issn: 0004-3702. doi: 10.1016/0004-

3702(90)90060-D.

[91] J. Roffe, D. R. White, S. Burton, and E. T. Campbell, “Decoding

across the quantum LDPC code landscape,” Physical Review Re-

search, vol. 2, no. 4, p. 043 423, Dec. 2020, issn: 2643-1564. doi: 10.

1103/PhysRevResearch.2.043423. arXiv: 2005.07016 [quant-ph].

120

https://doi.org/10.26421/QIC8.10-8
https://doi.org/10.26421/QIC8.10-8
https://arxiv.org/abs/0801.1241
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1103/PhysRevB.78.155120
https://doi.org/10.1103/PhysRevA.100.012311
https://doi.org/10.1103/PhysRevA.100.012311
https://doi.org/10.1103/PRXQuantum.5.030352
https://doi.org/10.1103/PRXQuantum.5.030352
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1016/0004-3702(90)90060-D
https://doi.org/10.1016/0004-3702(90)90060-D
https://doi.org/10.1103/PhysRevResearch.2.043423
https://doi.org/10.1103/PhysRevResearch.2.043423
https://arxiv.org/abs/2005.07016

[92] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the

sum-product algorithm,” IEEE Transactions on Information Theory,

vol. 47, no. 2, pp. 498–519, Feb. 2001, issn: 1557-9654. doi: 10.1109/

18.910572.

[93] M. Mézard and A. Montanari, Information, Physics, and Computa-

tion. Oxford University Press, Jan. 2009, isbn: 978-0-19-154719-5.

[94] L. Guth and A. Lubotzky, “Quantum error correcting codes and 4-

dimensional arithmetic hyperbolic manifolds,” Journal of Mathemat-

ical Physics, vol. 55, no. 8, p. 082 202, Aug. 6, 2014, issn: 0022-2488.

doi: 10.1063/1.4891487.

[95] D. Aharonov and L. Eldar, “Quantum locally testable codes,” SIAM

Journal on Computing, vol. 44, no. 5, pp. 1230–1262, Jan. 2015, issn:

0097-5397. doi: 10.1137/140975498.

[96] A. Leverrier, J.-P. Tillich, and G. Zémor, “Quantum expander codes,”

in 2015 IEEE 56th Annual Symposium on Foundations of Computer

Science, Oct. 2015, pp. 810–824. doi: 10.1109/FOCS.2015.55.

[97] M. Fossorier and S. Lin, “Soft decision decoding of linear block codes

based on ordered statistics for the Rayleigh fading channel with coher-

ent detection,” IEEE Transactions on Communications, vol. 45, no. 1,

pp. 12–14, Jan. 1997, issn: 1558-0857. doi: 10.1109/26.554278.

[98] P. Panteleev and G. Kalachev, “Degenerate quantum LDPC codes

with good finite length performance,” Quantum, vol. 5, p. 585, Nov.

2021. doi: 10.22331/q-2021-11-22-585.

[99] J. Wills, M. T. Haque, and B. Vlastakis. “Error-detected coherence

metrology of a dual-rail encoded fixed-frequency multimode supercon-

ducting qubit.” arXiv: 2506.15420 [quant-ph]. (Jun. 18, 2025), [On-

line]. Available: http://arxiv.org/abs/2506.15420, pre-published.

121

https://doi.org/10.1109/18.910572
https://doi.org/10.1109/18.910572
https://doi.org/10.1063/1.4891487
https://doi.org/10.1137/140975498
https://doi.org/10.1109/FOCS.2015.55
https://doi.org/10.1109/26.554278
https://doi.org/10.22331/q-2021-11-22-585
https://arxiv.org/abs/2506.15420
http://arxiv.org/abs/2506.15420

[100] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate

Distributions, 2nd ed. Wiley, Oct. 1994, vol. 1, 784 pp., isbn: 978-0-

471-58495-7.

[101] D. Stauffer and A. Aharony, Introduction to Percolation Theory, Re-

vised 2nd ed. London: Taylor & Francis, Jul. 18, 1994, 181 pp., isbn:

0-7484-0253-5. doi: 10.1201/9781315274386. (Cited page numbers

correspond to the print version matching the ISBN, not the eBook

matching the DOI.)

[102] R. Degraeve et al., “New insights in the relation between electron trap

generation and the statistical properties of oxide breakdown,” IEEE

Transactions on Electron Devices, vol. 45, no. 4, pp. 904–911, Apr.

1998, issn: 1557-9646. doi: 10.1109/16.662800.

[103] A. Duane, M. D. Miranda, and L. Brotons, “Forest connectivity per-

colation thresholds for fire spread under different weather conditions,”

Forest Ecology and Management, vol. 498, p. 119 558, Oct. 2021, issn:

0378-1127. doi: 10.1016/j.foreco.2021.119558.

[104] D. W. van Krevelen, “Development of coal research — a review,”

Fuel, vol. 61, no. 9, pp. 786–790, Sep. 1982, issn: 0016-2361. doi:

10.1016/0016-2361(82)90304-0.

[105] A. Fasano, F. Talamucci, and M. Petracco, “The espresso coffee prob-

lem,” in Complex Flows in Industrial Processes, A. Fasano, Ed., Boston,

MA: Birkhäuser, 2000, pp. 241–280, isbn: 978-1-4612-1348-2. doi:

10.1007/978-1-4612-1348-2_8.

[106] B. Suki, “The major transitions of life from a network perspective,”

Frontiers in Physiology, vol. 3, p. 94, Apr. 2012, issn: 1664-042X. doi:

10.3389/fphys.2012.00094.

122

https://doi.org/10.1201/9781315274386
https://doi.org/10.1109/16.662800
https://doi.org/10.1016/j.foreco.2021.119558
https://doi.org/10.1016/0016-2361(82)90304-0
https://doi.org/10.1007/978-1-4612-1348-2_8
https://doi.org/10.3389/fphys.2012.00094

[107] H. Kesten, “The critical probability of bond percolation on the square

lattice equals 1/2,” Communications in Mathematical Physics, vol. 74,

no. 1, pp. 41–59, Feb. 1980, issn: 1432-0916. doi: 10.1007/BF01197577.

[108] K. Christensen. “Percolation theory,” Imperial College London. (Oct. 9,

2002), [Online]. Available: https://www.physics.rutgers.edu/

~morozov/677_f2016/Physics_677_2016_files/student_papers/

percol_notes.pdf.

[109] R. G. Newcombe, “Two-sided confidence intervals for the single pro-

portion: Comparison of seven methods,” Statistics in Medicine, vol. 17,

no. 8, pp. 857–872, 1998, issn: 1097-0258. doi: 10.1002/(SICI)1097-

0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E.

[110] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans-

actions on Information Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001,

issn: 1557-9654. doi: 10.1109/18.910578.

[111] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Al-

gorithms (Algorithms and Combinatorics). Berlin, Heidelberg: Springer,

2018, vol. 21, isbn: 978-3-662-56038-9. doi: 10.1007/978-3-662-

56039-6.

[112] I. R. Shafarevich and A. O. Remizov, Linear Algebra and Geometry.

Springer Science & Business Media, Aug. 2012, isbn: 978-3-642-30994-

6.

[113] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra:

Vectors, Matrices, and Least Squares. Cambridge University Press,

Jun. 2018, isbn: 978-1-316-51896-0.

123

https://doi.org/10.1007/BF01197577
https://www.physics.rutgers.edu/~morozov/677_f2016/Physics_677_2016_files/student_papers/percol_notes.pdf
https://www.physics.rutgers.edu/~morozov/677_f2016/Physics_677_2016_files/student_papers/percol_notes.pdf
https://www.physics.rutgers.edu/~morozov/677_f2016/Physics_677_2016_files/student_papers/percol_notes.pdf
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
https://doi.org/10.1109/18.910578
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-662-56039-6

[114] T. Hillmann, L. Berent, A. O. Quintavalle, J. Eisert, R. Wille, and

J. Roffe. “Localized statistics decoding: A parallel decoding algo-

rithm for quantum low-density parity-check codes.” arXiv: 2406 .

18655 [quant-ph]. (Jun. 26, 2024), [Online]. Available: https://

arxiv.org/abs/2406.18655, pre-published.

124

https://arxiv.org/abs/2406.18655
https://arxiv.org/abs/2406.18655
https://arxiv.org/abs/2406.18655
https://arxiv.org/abs/2406.18655

	Acknowledgements
	Abstract
	Impact Statement
	Introduction
	Review of quantum error correction
	Information theory
	Repetition codes
	Linear codes
	Quantum information
	Quantum error correction (QEC)
	Stabilisers and generators

	Surface codes
	Toric code
	Planar code

	Measurement error
	Difference syndrome
	Single-shot codes

	Surface-code decoding
	Optimal decoder
	MWPM decoder
	Union–find decoder

	Implementing union–find
	Disjoint-set data structure
	AFS architecture

	LDPC codes
	qLDPC codes and Tanner graphs
	3D toric code
	Colour codes

	LDPC-code decoding
	Belief propagation
	Generalised union–find
	BP–OSD

	Surface-code decoding at scale
	Motivation and methods
	AFS implementation and improvements
	Observations
	Saturation regimes
	Redundancy of optimisations

	Analytics
	Percolation theory
	Erasure percolation

	Conclusion

	LDPC-code decoding at scale
	Motivation and methods
	Improving Gaussian elimination
	Gaussian elimination
	Online Gaussian elimination
	Complexity analysis
	Simulation

	Avoiding Gaussian elimination
	Metacheck validation
	Practicality

	Conclusion

	Summary

