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Abstract

Background:

Hypertrophic cardiomyopathy (HCM) associated with Rasopathy syndromes is the second
most common cause of HCM in childhood and represents a unique clinical entity
characterized by early-onset disease, variable phenotypic expression, and increased risk of

morbidity and mortality in childhood.

Objectives:

To characterize the phenotypic spectrum, natural history, electrocardiographic (ECG) and
imaging features, and risk predictors for major adverse cardiovascular events (MACE) and
sudden cardiac death (SCD) in a large, multicentre cohort of children with RAS-HCM (RAS-
HCM).

Methods:

This retrospective cohort study included data from paediatric patients with genetically or
clinically confirmed Rasopathy syndromes and HCM (RAS-HCM), recruited across multiple
international centres. Longitudinal data on clinical course, cardiac imaging, ECG and

ambulatory monitoring were analysed.

Results:

RAS-HCM presents with a heterogeneous phenotype, with marked differences in severity
and outcomes based on specific syndromes and genotypes. Key findings included a more
severe cardiac phenotype in patients with a RAF1 and RIT1 gene variant, and in the whole
cohort the finding of progressive left atrial dilation, diastolic dysfunction, and the
emergence of complex atrial arrhythmias in early adulthood. Functional status (NYHA/Ross
class > 1), presence of NSVT, unexplained syncope, and elevated LVOT gradient were
independently associated with adverse outcomes. The risk model currently used to predict
sudden cardiac death (SCD) in children with non-syndromic HCM, HCM Risk-Kids,

underperformed in risk stratification for this population.



Conclusions:
RAS-HCM is a distinct clinical entity requiring tailored approaches to diagnosis, monitoring,
and risk stratification. Early identification of high-risk patients is essential. Multimodal

longitudinal assessment should be considered to guide therapy and surveillance.



Impact statement

Rasopathy-associated hypertrophic cardiomyopathy (RAS-HCM) represents a
disproportionately understudied yet clinically high-impact subgroup of paediatric
cardiomyopathy. Despite accounting for a significant proportion of infantile-onset HCM,
RAS-HCM has historically been grouped with other syndromic forms or analysed through the
lens of sarcomeric disease, thereby obscuring its distinct natural history, risk factors, and
therapeutic considerations. The paucity of longitudinal, genotype-informed, and multimodal
phenotyping data has hindered the development of tailored surveillance protocols and risk
prediction models. Moreover, existing risk stratification tools—validated exclusively in non-
syndromic cohorts—may not adequately capture the arrhythmogenic or haemodynamic

complexities of RAS-HCM.

This thesis delivers the largest and most comprehensive deep phenotyping analysis of
paediatric RAS-HCM conducted to date. Drawing upon a uniquely assembled international
multicentre cohort, it directly addresses these gaps by providing a detailed and structured
analysis of RAS-HCM across clinical, imaging, electrocardiographic, and functional domains,
while simultaneously identifying limitations in current predictive models and proposing
syndrome-specific risk determinants. In doing so, it lays essential groundwork for the
redefinition of RAS-HCM as a discrete clinical entity deserving of bespoke diagnostic

algorithms, therapeutic approaches, and future trial frameworks.

A major clinical impact of this work lies in its direct relevance to precision cardiology. The
thesis demonstrates that RAS-HCM is not merely a syndromic variant of sarcomeric HCM
but represents a phenotypically and prognostically distinct disease with unique progression
patterns, genotype—phenotype correlations, and risk profiles. This is of vital importance for
cardiologists, as it challenges the conventional reliance on non-syndromic HCM paradigms
and urges a departure from the 'one-size-fits-all' model in paediatric cardiomyopathy
management. By identifying independent predictors of adverse outcomes—particularly

functional status, non-sustained ventricular tachycardia (NSVT), and left atrial dilation—this



study provides actionable metrics that can be integrated into routine surveillance and early

intervention pathways.

Another key implication is the evaluation of the HCM Risk-Kids prediction tool in the RAS-
HCM population. The study illustrates its limited predictive utility in this subgroup,
underscoring the urgent need for syndrome-specific risk stratification models. These insights
hold the potential to shape forthcoming clinical guidelines by the European Society of
Cardiology (ESC) and American Heart Association (AHA), ensuring they provide more
detailed recommendations for syndromic HCM subtypes. As clinical risk stratification
increasingly informs decisions regarding implantable cardioverter-defibrillators (ICDs),
transplant referral, and advanced therapies, this thesis provides further evidence for

children with RAS-HCM.

This thesis bridges molecular genetics with clinical cardiology by demonstrating that
genotype can inform phenotype, not only in terms of cardiac morphology but also
electrophysiological behaviour and functional decline. This integration paves the way for
biologically-informed disease modelling. In particular, the findings offer a framework for
future mechanistic studies exploring Ras/MAPK pathway dysregulation and its direct impact
on myocardial architecture, arrhythmogenesis, and fibrosis. Such a framework is essential

for translational research efforts targeting disease-modifying therapies.

Furthermore, this thesis lays the groundwork for therapeutic innovation. As MEK inhibitors
and other targeted molecular therapies emerge from oncology and rare disease research
into the cardiogenetics space, this thesis provides the clinical phenotype and natural history
data needed to design and power interventional trials in RAS-HCM. Moreover, it identifies
which patients might benefit from early pharmacological intervention, potentially modifying

disease trajectory before irreversible remodelling or arrhythmic events occur.

Finally, the multidisciplinary nature of this work, spanning genetics, paediatric cardiology,
imaging, electrophysiology, and clinical epidemiology, is an example of the current approach

required to tackle rare cardiovascular diseases. Its findings are relevant not only to



paediatric cardiologists, but also to geneticists, electrophysiologists, imaging specialists, and

clinical trialists, fostering collaborative networks essential for rare disease research.

In summary, this thesis significantly contributes to the understanding of a rare disease

entity, with implications for risk prediction, guideline development therapeutic targeting.
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Aims of thesis

This work comprises the largest comprehensive and systematic investigation of paediatric
Rasopathy-associated hypertrophic cardiomyopathy. The specific aims were to:

o Develop an international multi-centre cohort of children (presenting under the age
of 18 years) with hypertrophic cardiomyopathy and an underlying diagnosis of a
Rasopathy syndrome to allow the description of the natural history of this disease
and investigate potential predictors of major adverse cardiac events

o Describe the risk of sudden cardiac death in this population and seek to validate the
existing risk model for sudden cardiac death in childhood hypertrophic
cardiomyopathy (HCM Risk-Kids)

o Characterise the long-term phenotypic progression of this disease using serial data
and investigate for any independent-of-time risk factors for major adverse cardiac
events

O Explore for any population-specific markers in second line and advanced cardiac

investigations
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Chapter 1 - Introduction

1.1 Hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is the most common form of cardiomyopathy,
affecting approximately 1 in 500 individuals, and is known to be leading cause of sudden
cardiac death (SCD)%. It was first described in 1958 by an English pathologist, Dr Donald
Teare, as ‘a tumour of the heart’?. He noted the ‘disordered arrangement of muscle
bundles’ in the myocardium, now known as the hallmark of HCM, myocyte disarray. This
disease was later discovered to be familial and linked to sudden death, even in younger
individuals® 4. Now we know that HCM is a clinically and genetically heterogenous condition
characterised by left ventricular hypertrophy (LVH), unexplained by abnormal loading
conditions®. The first discovery of a molecular basis of HCM, linked to a missense variant in
the beta cardiac myosin heavy chain (MYH7) was made in 1990°. Since then, through
research, several gene variants have been identified and thought to have a causal link with
HCM and are most often mutations in sarcomere genes or mutation in sarcomere-related
proteins’. Causes also include inborn errors of metabolism (IEM), Rasopathy syndromes,
neuromuscular disease’. This is condition has a uniqueness in that it can present at any age,

from infancy to older individuals>0.
1.1.1 Hypertrophic cardiomyopathy in children

HCM is the most common cardiomyopathy in the paediatric population in Europe!?, second
most common in North Americal? and Australia!?, and a leading cause of sudden cardiac
death (SCD) in childhood*, with aetiological and clinical heterogeneity'>8. This may present
at any age, with the highest peak being in infancy, represented primarily by patients with no
family history of HCM, and a second peak in adolescence, with a higher proportion being

patients with familial HCM1217.19,

1.1.1.1 Epidemiology

HCM is rarer in the paediatric population compared to adults?®, with an estimated
prevalence of less than 3:100,000!*¢, There is a reported male predominance!”°, which
has been hypothesised to be secondary to sex hormones?!. However, since this difference
exists in the pre-adolescent population as well??, the aetiology might be multifactorial and

include epigenetic factors.
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1.1.1.2 Aetiology

Most cases in children, similarly to the adult population?3, are caused by mutations in the
genes encoding the sarcomeric units of the cardiac muscle fibres?* (see Figure 1-1),
inherited as an autosomal dominant trait. Syndromic and metabolic aetiologies nevertheless

account for a significant minority of cases, particularly in infancy and early childhood?’.
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Figure 1-1: Cardiac sarcomere unit demonstrating the proteins of which gene variants cause

HCMm*

In a microscopic level, mutations in sarcomeric proteins increase myofilament activation
resulting in cardiomyocyte hypercontractility, increased energy demand and usage?®-28,
Changes in the energy status of the cardiomyocytes are also known to be a result of
mutations affecting primary energy generation in the cells, such as in the mitochondrial RNA
or in variants of the AMP-activated protein kinase (AMPK)?6. Any such changes result in
impaired myocyte relaxation and promote myocyte growth accompanied by disarray and
fibrosis (see Figure 1-2). Additional disease mechanisms involve impaired Ca2+ regulation,
resulting in incomplete relaxation and impaired diastolic function, further increasing the

energy expenditure?,
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Following sarcomeric gene variants, Rasopathy syndromes are the second most common
cause of childhood HCM, accounting for up to 18% of paediatric HCM cases!”183233 and up
to 42% of cases in infancy3*. This will be discussed in further detail in chapter 1.2.2.2.1.
Inborn errors of metabolism (IEM) account for 8-10% of cases of paediatric HCM>17/1% The
majority of those are secondary to glycogen storage diseases!? such as Pompe disease,
Danon disease and AMPK disease. Other causes are disorders of fatty acid metabolism,
lysosomal storage disorders and cardiomyopathies secondary to mitochondrial syndromes.
They have an overall poor survival, especially in the early neonatal period, with a reported
1-year survival of 82% and a 10-year survival of 66%*7:32,

Neuromuscular disorders account for a similar percentage to IEMs!?171°, The most common
such disorder associated with HCM is Friedreich’s ataxia (FA)3°, with HCM being a feature in
up to 85% of cases® with a 10-year survival reported as 80%>’.

A non-genetic condition that is responsible for LVH in the paediatric population is that of an
infant of a diabetic mother. This is thought to be due to increased maternal levels of insulin-

like growth factor®® and is usually asymptomatic and transient in nature3®,

1.1.1.3 Clinical presentation

The presentation of HCM in children can be variable!!, but is most commonly diagnosed
secondary to referral to a paediatric cardiology centre for family screening, followed by an
incidental diagnosis during testing for another reason. Children are also being referred with
symptoms such as chest pain, exertional syncope to receive a diagnosis of HCM. Out-of-
hospital cardiac arrest (OOHCA) and SCD remain a rare, about 2-3%'%2°, but clinically
important proportion of first presentation and diagnosis of HCM. As in some cases HCM in
children might be secondary to an underlying syndrome, clinical presentation may vary

according to the underlying cause.

1.1.1.4 Evaluation of phenotype

According to recent guidelines*®#!, the cardiac phenotype in paediatric HCM is evaluated
serially, through a constellation of investigations, each aimed to assess a different aspect of

the condition.
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1.1.1.4.1 Echocardiogram

1.1.1.4.1.1 Left ventricular hypertrophy

To reach a diagnosis of HCM in children, we must take into account somatic growth and
correct left ventricular (LV) wall thickness with normal values according to body surface area
(BSA). The definition of HCM in the paediatric population is therefore: a maximal left
ventricular wall thickness (MLVWT) greater than 2 standard deviations (>2 Z scores) above
the population mean>1°,

The distribution of LVH may vary and present as asymmetric septal hypertrophy (ASH),
which is overall the most common distribution of LVH'%'"1°, concentric, which is
commonest in syndromic aetiologies, such as Rasopathy-associated HCM (RAS-HCM), IEM or
FA1217,193437,4243 'hyt may more rarely present in other patterns*t,

The progression of LVH during childhood is incompletely understood. Initial studies from
1986 reported progression of LVH more frequently during adolescence®, and to date there
have not been any large studies investigating LVH progression serially in paediatric HCM.
However, there are more recent studies suggesting that earlier disease onset is an
important reality?? and along with studies reporting on regular screening of first-degree

relatives*®#’

and gene carriers*® have helped shift the paradigm® and current guidelines
recommend regular screening in gene-carriers and first-degree relatives from neonatal age
onwards*%41, The only cause of HCM in children whose progression has been most
characterised is Danon disease, where LVH is known to progress rapidly in men* and less so
in women®°,

Concomitant right ventricular hypertrophy (RVH) may co-exist in around 15% of cases, and
has been associated with worse LV function and major adverse cardiac events (MACE)>! in
the adult population. In children, co-existing RVH is a red flag for an underlying diagnosis of
a Rasopathy syndrome?l73443,

1.1.1.4.1.2 Left ventricular outflow tract obstruction

Left ventricular outflow tract obstruction (LVOTO) is a common finding in HCM, with varied
prevalence in childhood of 22-60%'7-3°2, likely reflecting the variance in underlying
aetiologies of HCM in children. It is defined as a maximal LVOT gradient, as measured using
Doppler echocardiography, above 30mmHg at rest or during provoking manoeuvres that

alter LV loading conditions (such as Valsalva or exercise)®, with haemodynamic effects
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typically being present at a gradient of 50mmHg or above®3. Exercise stress-echocardiogram
is recommended in symptomatic patients to elicit exercise-induced LVOTO?>, which may be
unveiled in up to 70% of patients®*. The mechanisms of LVOT obstruction are complex and
include a narrowed LVOT, basal anteroseptal hypertrophy and systolic anterior motion
(SAM) of the mitral valve®.

1.1.1.4.1.3 Left ventricular function

Systolic function in paediatric HCM is typically described as hyper-dynamic with preserved
global measures of LV function!’*2, In a minority of patients, typically with syndromic
disease, this can progress to a dilated phase with systolic dysfunction and LV thinning®>. In
those cases, heart transplant remains a viable long-term treatment option®®. Diastolic
dysfunction, although challenging to assess, has been observed in paediatric HCM, often
preceding the development of LVH>’.

1.1.1.4.1.4 Left atrial dilatation

Left atrial (LA) dilatation is a well-recognised feature of HCM and the mechanism behind this
is is likely due to a combination of SAM related mitral valve regurgitation and secondary to
diastolic impairment leading to increased atrial pressures. Another possible mechanism is
this of primary atrial myopathy component®8. LA enlargement is known to be a risk factor
for adverse outcomes in HCM®® and for the development of complex atrial arrhythmias,
specifically atrial fibrillation(AF)®, which in turn may lead to stroke in adults®® and much
more rarely in the paediatric population?i.

1.1.1.4.2 Electrocardiogram

The standard 12 lead electrocardiogram (ECG) is recommended in screening and
surveillance as it may show features of the disease such as Q waves®?, a feature associated
with septal hypertrophy®3, voltage criteria for LVH, ST segment and T wave abnormalities®?,
which is associated explained by asymmetric hypertrophy or myocardial scarring®?%3. ECG
changes may precede echocardiographic evidence of the condition® and a normal ECG is
present in less that 3% of children with HCMP®®,

The 12-lead ECG may also be suggestive of a specific underlying diagnosis based on certain
features®’. Ventricular pre-excitation with a short PR interval and a delta wave is a common
feature of several storage (Pompe®, Danon®°) and mitochondrial disorders®® whereas AV

block is more prevalent in mitochondrial aetiologies ’° and Anderson-Fabry disease’?.
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1.1.1.4.3 Ambulatory monitoring

Hypertrophic cardiomyopathy is associated with both atrial and ventricular arrhythmias.
Supraventricular tachycardias, which may be related to symptoms, occur in up to 37% of
patients’2. Complex atrial arrhythmias, in particular AF, while common in adults, are rare in
children. Nevertheless, AF, as previously explained, is associated with risk for stroke and
therefore its detection is important. Non-sustained ventricular tachycardia (NSVT), defined
as three or more consecutive ventricular beats occurring at a rate of 120 bpm or above® and
lasting <30 seconds, is a common finding in up to 25% of adults with HCM7274, and in
children it has been reported in up to 27% of ambulatory ECG monitors®?7>7¢, although this
is much lower in larger cohorts'?>1719 |t is a widely recognised risk factor SCD in patients
with HCM?”’, including children'#. Sustained, asymptomatic ventricular tachycardia (VT) has
also been described, although it is not considered to contribute more to SCD risk than
NSVT’8. Ambulatory ECG monitoring is therefore recommended in patients in HCM to help
unveil these arrhythmias and risk-stratify patients®°.

1.1.1.4.4 Cardiopulmonary exercise testing (CPET)

CPET encompasses conventional exercise evaluation parameters, including blood pressure,
electrocardiography, and symptom monitoring, in conjunction with ventilatory gas exchange
analysis. It provides objective quantification of cardiorespiratory fitness, delineates
mechanisms of exercise intolerance, and enables function-based prognostic
stratification’8°, In adults with HCM, CPET is being used*®*! to delineate disease
pathophysiology®!, assess symptom aetiology®? as a parameter of risk stratification for
sudden cardiac death and heart failure progression®, and to inform decision-making for
therapies®48>,

There is limited evidence in childhood HCM of the usefulness of CPET in predicting
outcomes®®®’ but this is still used in clinical practice primarily for symptom assessment®8
and to evaluate the presence of ventricular ectopy?®®.

1.1.1.4.5 Cardiac magnetic resonance imaging (CMR)

CMR plays a key role in assessing HCM, providing important data on cardiac morphology,
function and tissue characterisation in patients with HCM 4289, In particular, it can identify
and quantify areas of myocardial fibrosis with late-gadolinium enhancement (LGE)®°, which
has been shown to be progressive®! and present in ~33% of children with sarcomeric HCM®2,

In adults with HCM, LGE on CMR has been associated with adverse events including sudden
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cardiac death (SCD)%*%4. Similar findings have recently been reported in childhood HCM,

although the role of LGE in SCD risk stratification in children remains unclear®-°>°2,

1.1.1.5 Symptoms and treatment

In children, symptoms of HCM can be due to variable underlying mechanisms and may be
challenging to assess and treat. Chest pain, palpitations, dyspnoea, fatigue, presyncope and
syncope are the most common symptoms described’®.

Chest pain in HCM is typically multifactorial, due to LVOTO, diastolic dysfunction, or
myocardial ischaemia secondary to increased LV mass®. Heart failure symptoms such as
dyspnoea and fatigue are usually caused by diastolic function impairment, since systolic
impairment is rarer in the childhood setting’18, Syncope can be due to haemodynamic,
primarily secondary to LVOTO, or arrhythmic in nature, which is important to distinguish
from a risk stratification and management point of view.

Treatment focuses on symptomatic relief. In the presence of LVOTO, first line treatment is
beta-blockers®”. Additional options include disopyramide® and calcium channel
blockers®>1% which can be used in combination®°. In adults, there has been recent
introduction of myosin inhibitors (macavamten?01:192 and aficamten'%) in the management
options, with ongoing trials for the paediatric population. Surgical myectomy is reserved for
those with refractory symptoms or fixed obstruction, with low peri-operative mortality or
morbidity in experienced centres'®#1%, In the absence of LVOTO on standard
echocardiography, stress echocardiography can be useful to reveal exercise-induced
LVOTO®, If this is not present, symptoms could likely be attributable to diastolic
impairment or myocardial ischaemia. Treatment is aimed at reducing LV diastolic pressures
thus improving filling. Options include b-blockers and verapamil, with a cautious use of loop
diuretics to avoid dehydration®’. Ranolazine has also been proven to improve chest pain
symptoms in the absence of LVOTQ7.108,

Transplantation is a viable treatment strategy reserved in those patients developing heart
failure related symptoms not responding to maximal medical therapy, or, more rarely,
refractory arrhythmia. This has been reported to be the case in 1.5-2.1% of the paediatric
population?’, with limited data showing worse early survival post heart transplant than their

counterparts with dilated cardiomyopathy (DCM), but similar long term survival'®.
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1.1.1.6 Mortality

Initial publications of paediatric HCM populations were of small sample size and portrayed a
poor prognosis with annual mortality rates up to 7%. In more recent years, larger population
studies have provided us with an updated annual mortality of around 3%. However, there is
great variability depending on the underlying aetiology, and even further dependent of age
at presentation. Patients with non-syndromic disease have an overall higher survival,
approximately 83% at 5 years and 76% at 10 years. Conversely, survival is worse in children
with HCM due to an underlying IEM where survival is reported at around 54% at 1 year and
42% at 5 years!?. In cases where children present with infantile HCM, survival is reported to
be 85% at 1 year!?!19 likely reflecting the higher proportion of syndromic cases in this
population. However, in children surviving beyond the age of 1 year, mortality reaches a
plateau, with annual mortality rates of 1-2%'2, and is similar to this of children diagnosed at
a later stage in life, and comparable to the adult population.

Cause of death also varies depending on underlying aetiology and age at presentation.
Overall, the most common cause has been reported as SCD in about 3% of children with
HCM?’. Congestive heart failure is the most common cause of cardiovascular death in the
infantile population, where CHF represents up to 5% of deaths!!?, once again likely
representing the higher percentage of syndromic cases. It is important to note the
multifactorial cause of death in the syndromic population, reflecting the multi-system
involvement, which is not the case in children with familial disease”11,

An important cause of death linked to HCM is sudden cardiac death (SCD), which has an
overall estimated incidence in childhood of 1.3-8.5 per 100,000 patient years, representing
the most common cause of death in children outside of infancy, and is more frequent than
in the adult population. The mechanism of SCD is poorly understood, but likely occurs due
to a combination of inherent myocardial disarray and fibrosis, which disrupt normal
architecture, leading to abnormal conduction, as well as myocardial ischaemia and strain,
that potentially lead to arrhythmogenesis due to depolarisation abnormalities. Animal
studies in HCM models have shown an altered homeostasis of calcium, reducing the
refractory period in cardiomyocytes, causing transmural dispersion of repolarisation and

thus predisposing to ventricular arrhythmias.
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Stroke is a cause of morbidity and mortality in HCM patients with a reported incidence of
1% per year in the adult population but is much rarer in the paediatric population. This
occurs most likely as a result of left atrial dilatation, leading to stasis and atrial arrhythmias.

1.1.1.6.1 Prediction of mortality

Prediction of mortality in the paediatric population is a challenge due to the heterogeneity
in age at presentation, aetiology. Additional risk factors have been identified such as

presentation with CHF symptoms, concentric LVH, severe LVH and concomitant RVH.

1.1.1.6.1.1 Risk prediction of SCD and management

SCD is a devastating outcome in patients with HCM, and therefore its prediction and
prevention remain a cornerstone for the management of this group. Patients at an
estimated high risk of SCD are offered primary prevention implantable cardioverter-
defibrillator (ICD) implantation, while survivors of a significant event, such as aborted
cardiac arrest or ventricular tachycardia (VT)/ventricular fibrillation (VF) with
haemodynamic compromise, are offered secondary prevention ICD*%4%,

Several studies identified isolated risk factors of SCD in childhood HCM — malignant
arrhythmias, namely VT with haemodynamic compromise and VF°%75, a history of non-
sustained VT (NSVT) (defined as > 3 consecutive ventricular beats at a rate of > 100
bpm)76111 unexplained syncope’>112113 and extreme ventricular hypertrophy (MLVWT >
30mm / z-score > 6)!1, These parameters were included in the joint American College of
Cardiology Foundation (ACCF) and American Heart Association (AHA) task force guidelines
for HCM in 2011 and the European Society of Cardiology (ESC) guidelines from 2014° as
major risk factors for SCD in children. However, this approach was shown to have limited
discriminatory power and a low positive-predictive valuel?>.

In more recent years, two models for 5-year risk prediction of SCD in non-syndromic
childhood HCM have been published.

HCM Risk-Kids was published in 2019, using data from 1024 children aged 1-16 years with
a diagnosis of non-syndromic HCM. This identified five non-invasive clinical parameters that
can be used in an algorithm to estimate the 5-year risk for SCD in paediatric non-syndromic
HCM - left atrial diameter (LAd), MLVWT, LVOT gradient, presence of NSVT and unexplained
syncope. The C-index of the model was 0.69 (95% 0.66-0.72) with a calibration slope of 0.98

(95% Cl 0.59-1.38) and risk-groups were categorised into low risk (<4% 5-year estimate risk),
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intermediate risk (4-6%) and high risk (>6%). The model was found to out-perform its adult
equivalent in a childhood population. These findings were validated in an external,
independent cohort of 421 patients in 20211® and two further smaller studies!!”1¥, HCM
Risk-Kids has been recommended in the 2023 ESC guidelines for the management of
cardiomyopathies®.

A more recent model, PriMaCy!!® was published in 2020, using data from 572 patients < 18
years of age with a diagnosis of HCM due to a non-syndromic cause. This model uses age at
diagnosis, intraventricular septal thickness (IVST) z-score, left ventricular posterior wall
thickness (LVPWT) z-score, LAd, LVOT gradient, the presence of NSVT and a history of
syncope as its parameters, with an alternate model using genetic data also, giving a C-index
of 0.75 and 0.76 respectively. Similarly, the patients were split in 3 risk categories, low
(<4.7%), medium (4.7-8.3%) and high risk (>8.3%). These findings were, in the same study,
validated with an independent cohort of 285 patients. An independent study in 2023120
confirmed that the discrimination between low and high risk groups were similar between
HCM Risk-Kids and PriMaCy, but the latter overestimates risk for some patients, potentially

leading to more patients being offered preventative ICD implantation.

1.2 The Rasopathies

The Rasopathies are a group of genetic syndromes caused by germline mutations in genes
that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK)
pathway, with a cumulative incidence of approximately 1 in 1000-2000 live births!?!. The
Ras/MAPK pathway plays an essential role in regulating the cell cycle and cellular growth,
differentiation, and senescence, all of which are critical to normal development!??,
Collectively known as the Rasopathy syndromes, these disorders include neurofibromatosis
type 1, Noonan Syndrome (NS), Noonan Syndrome with multiple lentigines (NSML;
previously known as LEOPARD syndrome — lentigines, electrocardiographic conduction
abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormalities of the
genitals, retardation of growth, deafness), capillary malformation—arteriovenous
malformation syndrome, Costello Syndrome (CS), cardiofaciocutaneous syndrome (CFCS),
NS with loose anagen hair (NS-LAH), and Legius syndrome!?!, Of these, NS, NSML, CS, CFCS

and NS-LAH share a number of distinct features, including distinct dysmorphic features,

34



propensity for tumours, short stature/growth delay, variable degree of developmental

delay, and cardiovascular involvement23,

1.2.1 Genetics and molecular pathogenesis

The Ras/MAPK pathway, also known as the Ras-Raf-MEK-ERK pathway, is a signal

transduction pathway that transmits signals from the cell surface to the nucleus, where

gene expression is regulated'?4. This pathway consists of multiple protein kinases arranged

in a cascade, with each kinase activating the next one in the sequence (Figure 1-3).
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Figure 1-3: The Ras/MAPK signal transduction pathway
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(d) MEK activation
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(e) ERK activation

This pathway therefore regulates a wide range of biological processes, including cell growth

and proliferation, differentiation, survival, migration and metabolism2>127,

In some genetic disorders (e.g., Rasopathies), cancer, and other diseases, components of the

Ras/MAPK pathway can become mutated or dysregulated, resulting in uncontrolled cell

growth and survival, leading to pathological consequences!?1:126:128,

Several genes that regulate the Ras/MAPK pathway are commonly affected in Rasopathies.

Some of the most important ones include:

o KRAS, NRAS, HRAS: Mutations in these genes can cause Ras to bind on permanently,
leading to overactive signalling??°-131,

o BRAF, MEK1, MEK2, RAF1: These genes are involved in the downstream part of the
Ras/MAPK pathway. Mutations in these can lead to increased MAPK signalling,
contributing to cell overgrowth or developmental issues!313>,

o PTPN11: Mutations in this gene, which encodes the SHP-2 protein, lead to abnormal
activation of the Ras/MAPK pathway!36-138,

o SOS1: This gene is involved in stabilising Ras in an inactive form and therefore
mutations result in the increase of active Ras and hyperactivation of the Ras/MAPK

pathway?,

1.2.2 Phenotype

Because the Ras/MAPK pathway regulates key cellular functions, its dysregulation can cause
a variety of symptoms and developmental issues seen in Rasopathies. In line with their
shared molecular pathogenesis, there are significant similarities and overlap among NS,
NSML, CS, CFCS and NS-LAH and they are sometimes referred to as NS and related
syndromes. Table 1-1 details the different genetic variants and phenotypic features of each

clinical syndrome.
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Table 1-1: Phenotypic features of Rasopathy syndromes associated with HCM*3%-141

Syndrome Gene

Phenotype

NS PTPN11  Craniofacial dysmorphic features, CHD; short stature; undescended
SOS1 testicles; ophthalmologic abnormalities; bleeding disorders; normal
RAF1 neurocognitive function or mild impairment; predisposition to cancer
KRAS
NRAS
SHOC2
CBL
RIT1
LZTR1
NSML PTPN11  Same as NS, but with possible development of multiple skin lentigines
RAF1
RIT1
cs HRAS Coarse craniofacial dysmorphisms; CHD; FTT; short stature;
ophthalmologic abnormalities; multiple skin manifestations; normal
neurocognitive function or mild impairment; hypotonia; predisposition
to cancer
CFCS BRAF Craniofacial dysmorphisms; CHD; FTT; short stature; ophthalmologic
MAP2K1 abnormalities; multiple skin manifestations; normal neurocognitive
MAP2K2  function or mild impairment; hypotonia
KRAS

NS-LAH SHOC2

Craniofacial dysmorphisms; darkly pigmented and hairless skin; LAH;
CHD; FTT; short stature; severe GH deficiency; mild psychomotor delay

with ADHD; ectodermal abnormalities

NS: Noonan syndrome; NSML: Noonan syndrome with multiple lentigines; CS: Costello syndrome;

CFCS: cardio-facio-cutaneous syndrome; NS-LAH: NS with loose anagen hair; CHD: congenital

heart defects; FTT: failure to thrive; GH: growth hormone; ADHD: attention deficit and

hyperactivity disorder
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1.2.2.1 Non-cardiac phenotype

Craniofacial

Coarse craniofacial features are a distinctive characteristic of Rasopathy syndromes.
Overarching features include widely spaced eyes, downslanting palpebral fissures, ptosis,
low set ears and a broad, webbed neck!42. These may be more apparent in young children
than with increasing age.

Lymphatic

Abnormalities of the lymphatic system are frequent in NS and related syndromes, but this
varies according to underlying genotype and may take various forms such as congenital
lymphoedema, chylothorax, pleural effusions or ascites, identified both pre and postnatally.

Prenatal findings such as polyhydramnios!43

, cystic hygroma, pleural effusion, ascites and
non-immune hydrops can raise the suspicion for an underlying Rasopathy syndrome44,
Patients with NS syndrome, particularly secondary to SOS1 and RIT1 variants seem to be
more affected!®. Lymphatic anomalies are often a bad prognostic sign and an impediment
to cardiothoracic surgery!®.

Endocrine

Short stature is a common feature of NS, thought to be either due to complete or partial
growth hormone (GH) insensitivity and reduced response to insulin-like growth factor | (IGF-
1)147. This affects children as they grow older, while neonatal weight and height are usually in
the normal range*®. Delayed puberty is another common finding which may exacerbate the
short stature, along with delayed bone maturation!4°. Short stature is more pronounced in
patients with CS and patients with SOS1 and RIT1 variants are most often of normal adult
stature®®®. In some patients, GH supplementation becomes necessary, and produces
reassuring results>%151, Nevertheless, considering that GH affects other areas apart from

152

somatic growth, including hypertrophy in cardiomyocytes™<, where studies show a strong

stimulating effect of GH'*3 and a resulting increase in LV mass, even in non-syndromic
g

154 Most often HCM is considered a

patients with previously normal echocardiograms
contraindication for GH therapy!*®1>>, even though there have been studies demonstrating
a favourable cardiovascular safety profile in children with NS'>%15¢ even in the presence of
cardiac comorbidities, including HCM, albeit with limited cases, owing to the rarity of the

condition.
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Haemato-oncology

The RAS-MAPK pathway is involved, as previously detailed in chapter 1.2.1, cell growth and
proliferation, differentiation, survival, migration and metabolism!?>1?” and as such, somatic
mutations of this pathway have been implicated in several cancers>”/*8, Similarly, patients
with Rasopathy syndromes have a predisposition for malignancies and tumour-like lesions,
with a higher predisposition in patients with CS, with a reported cumulative incidence of
cancer of 15% by age 20 in patients with CS, compared to 4% in NS*>°. Most commonly

overall malignancies include juvenile myelomonocytic leukaemial®®

, myeloproliferative
disorders'®!, neuroblastoma and rhabdomyosarcoma'®2. Screening for such conditions is
recommended in this population at regular intervals.

Moreover, there is a link between Rasopathy syndromes and bleeding disorders63164,
particularly in NS, with 50-89% of patients affected®®. Four aetiologies are primarily
suggested in literature —thrombocytopaenia, platelet dysfunction, von Willebrand disease
and specific factor deficiencies!®®. This association becomes particularly important when we
consider the peri-operative risks of bleeding and as such, patients with Rasopathy
syndromes should be screened for bleeding disorders before any procedures.
Genitourinary

Cryptorchidism is the most common genitourinary abnormality, reported in up to 50% of
males!®®. Other abnormalities include pyelectasis, duplex collecting systems and unilateral
renal agenesist?1/166,

Gastrointestinal

Feeding difficulties in neonates are very common, but severity is variable!®”.18 and these are
more pronounced in CS and CFCS with resulting failure to thrive. These issues most
commonly resolve outside of childhood®.

Neurological

Neurological and cognitive difficulties are reported in up to 50% of patients with NS and
related disorders, with patients with PTPN11, KRAS, RAF1 and SHOC2 having a higher
prevalence of cognitive impairment!7°.

Musculoskeletal

Several musculoskeletal issues are commonly reported in patients with Rasopathy

syndromes, most prominently pectus deformities in 70-95% of patients, both carinatum and

excavatum!#¥171 joint hyperextensibility and cubitus valgus®4.
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1.2.2.2 Cardiac phenotype
1.2.2.2.1 Congenital heart defects (CHD)

The original description of Noonan syndrome was in 1968, as an ‘Turner phenotype’
associated with congenital heart disease, namely pulmonary valve stenosis'’2. In 1975, the
association between Noonan syndrome and hypertrophic cardiomyopathy was made!’3.
Since then, there have been multiple large studies, reporting cardiac associations in 60-90%
of patients with Rasopathy syndromes!?3146.174-176_ The most common associated congenital
heart defects include pulmonary valve stenosis (PS), atrial (ASD) and ventricular (VSD) septal
defect5146'175'177.

PS is observed in overall 65% of patients with Rasopathy syndromes and ranges from severe,
in around 30% of cases, moderate in an estimated 10% or mild in the majority of
cases!’>178179 Severe or moderate-severe pulmonary valve stenosis may need urgent
balloon valvuloplasty, with high rates of reintervention’4179180 Those with mild PS are
unlikely to need intervention and their long-term outcomes have been shown to be similar
to those without PSt81182,

Atypical CHD have been reported in association with Rasopathy syndromes?®3 both in
isolation and in combination with each other. Most noteworthy such defects are
atrioventricular canal defects, in up to 15% of cases'’”18 which may explain the higher
prevalence of mitral valve abnormalities’#17817% and coronary artery abnormalities!,
mainly aneurysms, which may contribute to myocardial ischaemia.

Table 1-2 details the most common cardiac defects associated with each clinical syndrome.
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Table 1-2: Primary cardiac associations with different Rasopathy syndromes?’#18%,185

Syndrome Cardiac involvement Percentage
NS Pulmonary valve stenosis 60-70%
Hypertrophic cardiomyopathy 14-30%
Atrial septal defect 10-30%
Atrioventricular canal defect 5-15%
Ventricular septal defect 5-10%
Aortic coarctation 3-10%
NSML Hypertrophic cardiomyopathy 20-73%
cs Hypertrophic cardiomyopathy 70-75%
CFCS Pulmonary valve stenosis 33-40%
Hypertrophic cardiomyopathy 33-40%

NS: Noonan syndrome; NSML: Noonan syndrome with multiple lentigines; CS: Costello syndrome;

CFCS: Cardiofaciocutaneous syndrome; HCM: hypertrophic cardiomyopathy

1.2.2.2.1 Rasopathy-associated hypertrophic cardiomyopathy

1.2.2.2.1.1 Epidemiology

The prevalence of HCM in patients with Rasopathy syndromes varies depending on the
underlying gene involved. HCM is reported in 80-100% of patients with RAF1 and RIT1
variants!39140 and in 60-70% of patients with HRAS variants!®, whereas the prevalence of
HCM in patients with BRAF, SHOC2, PTPN11 and SOS1 variants is 37.5-75%, 30%, 20% and
16%, respectivelyl?3185187,

1.2.2.2.1.2 Aetiology

Histologically RAS-HCM is indistinguishable from sarcomeric HCM, with myocyte disarray
and fibrosis'®189 the clinical presentation and natural history can be substantially different.
The pathogenesis of HCM in Rasopathies is not fully understood but is thought to be linked
to the abnormal activation of the Ras/MAPK signalling pathway, which disrupts normal
cardiac muscle development and function, promoting cardiomyocyte growth, proliferation
and survival137:190.191,

1.2.2.2.1.3 Clinical presentation

Patients with RAS-HCM are generally diagnosed at an earlier age, with a peak in

infancy34174192 and have a smaller BSA3 than their counterparts with sarcomeric HCM,
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owing to their syndromic nature. In addition, HCM appears to often co-exist with CHD3%174,
both of which are common in patients with RAS-HCM and have been shown to be linked to

worse outcomes!’®.

1.2.2.2.1.4 Evaluation of cardiac phenotype

1.2.2.2.1.4.1 Echocardiography

A few distinct features of RAS-HCM have been describe, serving as ‘red flags’ for their
diagnosis®’. They commonly present with biventricular hypertrophy3#174, likely in part owing
to the pulmonary valve involvement. Even if there is no severe stenosis, the pulmonary
valve often appears thickened and dysplastic!’>18, To this point, there is also commonly
concomitant right ventricular outflow tract obstruction (RVOTQ)3*174:192,

Patients with RAS-HCM present with a generally smaller, more hyperdynamic left ventricle
with less severe LVH than sarcomeric patients3%174, Impaired LV relaxation has been shown
to be a feature of children with RAS-HCM secondary to NSML%4,

Finally, LVOTO is more common in patients with Rasopathy syndromes3*174192 which is
hypothesised to be, in addition to SAM, due to anomalous insertion of the mitral valve
chordae or displacement of papillary muscles!*®1%_ In fact, polyvalvulopathy is another
feature in patients with RAS-HCM#®, as multiple valves may be dysplastic. This primarily
affects the pulmonary and mitral valves as previously discussed, but the aortic and tricuspid
valves have been reported to be dysplastic as well*®3, In the case of mitral valve anomalies
specifically, limited data has linked them to worse long-term outcomes?°®,

1.2.2.2.1.4.2 ECG

ECG abnormalities characteristic to Rasopathy syndromes, primarily Noonan syndrome,
have been reported'®’, even in the absence of HCM!®®1%9 These include left axis deviation in
up to 50% of cases, small R waves in the left precordial leads in nearly 25% of cases with no
HCM. A unique ECG feature of RAS-HCM has been reported to be ‘extreme northwest axis’
in a small cohort of patients with Noonan syndrome and HCM*¥’,

Data on other Rasopathy syndromes and specific genotypes has not yet been reported in
the literature.

1.2.2.2.1.4.3 Ambulatory monitoring

While serial ambulatory monitoring is key in the monitoring process of patients with HCM,

both for diagnosing arrhythmias and delineating the risk of SCD, as previously discussed in
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this chapter, there is no specific guidance for children with RAS-HCM. There is little known
about the prevalence of ectopy in patients with RAS-HCM, except for case reports?°9291 and
a small sub-cohort in a larger study*, reporting the presence of both atrial and ventricular
ectopy in this population. Therefore, currently, guidance on performing cardiac ambulatory
monitoring is extrapolated from standardised practices in patients with non-syndromic
HCM.

1.2.2.2.1.5 Symptoms and management

There is no specific data on symptoms in children with RAS-HCM and current data on
management is extrapolated from that of non-syndromic HCM, according to the most

recent European and American guidelines**,

1.2.2.2.1.6 Natural history and outcomes

Large registry studies of paediatric HCM have provided valuable information regarding the
long-term prognosis of patients with sarcomeric and non-syndromic HCM'”:32, but the data
are more limited for non-sarcomeric aetiologies.

Population-based studies suggest that five-year survival rates for children with RAS-HCM are
worse than those for children with non-syndromic HCM?'’ (see Figure 1-4), primarily due to
heart failure-related mortality3*1’4. However, it seems that while they have increased
morbidity during the early disease course3*432%2 they have favourable long-term outcome
with lower late mortality3#174, It has also been suggested that patients with RAS-HCM are
more likely to need early surgical septal myectomy during childhood*® as well as catheter-
based or surgical interventions to their pulmonary valves!’4181,

Disease specific risk factors are limited in literature, with early age at diagnosis and
concomitant CHD requiring surgery being linked to a worse outcome**14¢, but genotypic

data or population specific echocardiographic parameters have been studied.
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Figure 1-4: Kaplan-Meier curve for survival free from all-cause mortality or cardiac

transplantation, stratified by aetiology of hypertrophic cardiomyopathy?”

1.2.2.2.1.7 Risk prediction for SCD and management

Historically, sudden cardiac death (SCD) has been thought to be extremely rare!”32:34174 jn
patients with RAS-HCM, but it has recently been shown in a UK national cohort study of
childhood HCM that SCD can occur in up to 3% of children with this diagnosis!* and perhaps
even carry a risk comparable to that of sarcomeric disease?®3. Furthermore, a model for
predicting the 5-year estimated risk for SCD in children with HCM has been developed and
validated, but only for children with non-syndromic disease'*1®, Further insight is needed
with studies focusing specifically on SCD in this population and its predictors.

Despite differences, the clinical management and risk stratification of patients with
Rasopathy-related HCM is currently extrapolated from that of sarcomeric HCM, and specific
clinical evaluation and management guidelines for RAS-HCM have not been developed. An
improved understanding of the relationship between aetiology, phenotype and outcomes is

necessary in order to optimise clinical care in this distinct population.
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1.2.2.2.1.8 Targeted therapies in RAS-HCM

Targeted treatments for Rasopathy syndromes are still an evolving area of clinical research.
In the last decade, novel therapeutic approaches that target the underlying
pathophysiological mechanism in the RAS/MAPK pathway have shown promise for the
prevention and regression of HCM in specific patients with Rasopathy syndromes.

MEK inhibitors is the most studied drug in the context of RAS-HCM. These drugs were first

used in NF-1 related plexiform neurofibromas?%

, and have shown promise in benefiting
patients with Rasopathy syndromes with a RIT1 and RAF1 mutation2%>2%, Since MEK is a key
component of the MAPK cascade, the initial premise was that inhibiting it can block the
hyperactivation of the pathway that is central to these diseases. MEKi therefore work by
blocking the MEK1/MEK2 kinases, which are activated downstream of Ras and Raf in the
MAPK pathway. By inhibiting MEK, these drugs can reduce the activation of ERK, the final
kinase in the pathway, and thus dampen the downstream effects on gene expression, cell
growth, and survival?®’. Trametinib, a highly selective reversible allosteric inhibitor of
MEK1/2 activity, has been shown to alter contractility of in myocardial cells of children with
RAS-HCM?% and was used on two patients with severe early-onset HCM caused by RIT1
mutations with hypertrophy regression and obstruction improvement as well as catch up in
somatic growth within 4 months of initiation of treatment?®. An open-label study of
MEK162 inhibitor in NS adults with HCM has been commenced?®. The identification of
HRAS mutations as the molecular cause of CS raised the possibility that farnesyl transferase
inhibitors may provide clinical benefit to patients?l. Low doses of dasatinib, a multitargeted
inhibitor of bcr-abl and Src family kinases approved for paediatric cancers, in a mouse model
of NS improved cardiac function and in NSML prevented progression of HCM?1°, A recent
retrospective study comparing 30 children with RAS-HCM treated with trametinib plus
standard of care treatment for cardiomyopathy versus 31 children with RAS-HCM using
standard of care treatment, showed decreased mortality and morbidity, improved cardiac
status and minimal, non-life threatening side effects?!!. Larger, human studies are needed
to best determine which Rasopathy patients, with perhaps specific genotypes, will benefit

from specific treatments and at which timepoint in their disease phenotype.
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1.2.3 Unmet needs in paediatric Rasopathy-associated hypertrophic cardiomyopathy

Natural History

Large registry studies of paediatric HCM have provided valuable information regarding the
long- term prognosis of patients with sarcomeric and non-syndromic HCM”32, but the data
are more limited for non-sarcomeric aetiologies. Furthermore, despite differences between
sarcomeric and RAS-HCM as previously described in this chapter, the clinical management
and risk stratification of patients with RAS-HCM is currently extrapolated from that of
sarcomeric HCM, and specific clinical evaluation and management guidelines for RAS-HCM
have not been developed. An improved understanding of the relationship between
aetiology, genotype, phenotype and outcomes is necessary in order to optimise clinical care

in this distinct population.

Sudden cardiac death and its prediction

Historically, SCD has been thought to be extremely rare in patients with RAS-HCM, but it has
recently been shown in a UK national cohort study of childhood HCM that SCD can occur in
up to 3% of children with this diagnosis!4. Furthermore, a model for predicting the 5-year
estimated risk for SCD in children with HCM has been developed and validated, but only for
children with non-syndromic disease'*1, Further insight is needed with studies focusing

specifically on SCD in this population and its predictors.

Disease progression

Regression of infantile HCM in patients with Rasopathies has been described in up to 17% of
patients**174 It is not clear whether this represents true regression of LVH or relative wall
thinning in relation to somatic growth of the LV cavity. However, progression of LVH is also
reported in up to 34% of patients*?, as well as LVH stabilisation!’4212, A systematic approach
to reviewing disease progression and the role genotype plays in this is needed to better

understand this cohort and help guide tailored management, including with novel therapies.
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Chapter 2 - General methods

2.1 Study population

An initial patient cohort was formed consisting of patients < 18 years with a Rasopathy
syndrome (NS, NSML, CS, CFCS, NS-LAH and Noonan-like syndrome) and HCM from all 13 UK
paediatric cardiology centres and one in Dublin, Republic of Ireland, consecutively evaluated
between January 1%, 1985 and December 315, 2023.

This initial cohort was then supplemented by adding patients from the Heart Centre in
Munich, Germany, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
and Virgen de la Arrixaca Hospital, Murcia, Spain.

A diagnosis of HCM was defined as a left-ventricular wall thickness greater than 2 standard
deviations above the body surface area—corrected population mean (z score >2) that could
not be explained solely by abnormal loading conditions®. The investigators from each
participating centre guaranteed the integrity of data from their institution. Eligible patients
were identified by the principal investigator at each collaborating site. Data were collected
independently at each participating centre.

The aspects of the methodology common to all the chapters in this thesis are detailed
below. Additional methodological details specific to each chapter, including contributing

centres and corresponding numbers of patients, are detailed in the relevant chapters.

2.2 Diagnosis of Rasopathy syndrome & Genetics

Patients were diagnosed with a Rasopathy syndrome following systematic assessment of
phenotype, and genetic testing that was performed at the treating clinician's discretion. The
genetic panel used for these patients changed according to guidance from Genomics
England, or relevant local authorities for other centres. Before 2011, targeted testing for
Rasopathy syndromes was available with Sanger sequencing using a panel of 1-3 genes.
After this, next generation sequencing became available on an expanded panel which
included testing for variants in the following genes: PTPN11, RAF1, BRAF, SOS1, KRAS, HRAS,
NRAS, SHOC2, CBL, SPRED1, MAP2K1, MAP2K2. Patients with a primary diagnosis of HCM
were tested on a paediatric cardiomyopathy panel (R135) according to guidance from
Genomics England, which includes the Rasopathy genes, after which a diagnosis of RAS-HCM

arose. In patients in whom genetic testing had been performed, the following data were
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collected: date of testing; size of gene panel; and variants identified (gene and protein
change). The pathogenicity of reported variants was reclassified according to the American
College of Medical Genetics and Genomics (ACMG) classification?'3 by Ms Stephanie Oates,
cardiac genetic counsellor at Great Ormond Street Hospital. Variants were described as

pathogenic (P), likely pathogenic (LP) and variants of unknown significance (VUS).

2.3 Patient assessment and data collection

Anonymized, non-invasive clinical data were collected retrospectively, including
demographics; family history of HCM/SCD; co-morbidities; syndrome; genetic analysis
results; heart failure symptoms (New York Heart Association (NYHA)/Ross functional
classification?1421%); medication; resting and ambulatory 12-lead electrocardiogram; and 2-
dimensional Doppler and colour transthoracic echocardiogram (from contemporaneously
written reports). Age at diagnosis was defined as the age at which HCM was first diagnosed,
which may have been prior to the patient(s) being seen for the first time in a paediatric
cardiology service. Data were collected at first assessment and at last clinical follow up in a
paediatric cardiology centre. End of follow-up was defined as last clinical follow up or
transition to adult services, whichever came first, with the exception of the disease
progression arm of the study where end of follow-up was defined as last clinical follow up,
including data from adult services, where available. Data was entered by myself or
collaborators into a RedCap research database designed originally by Dr Gabrielle Norrish as

part of her PhD and expanded by myself to include data relevant to my study.

2.4 Clinical investigations
2.4.1 Echocardiogram

Echocardiographic analysis was performed in line with the American Society of

Echocardiography guidelines?!®

and measurements were taken according to current
guidelines®. Maximal left ventricular wall thickness (MLVWT) was defined as the maximal
myocardial thickness as measured by echocardiography in any of the LV segments®. Left
ventricular outflow tract (LVOT) obstruction (LVOTO) was defined as a peak instantaneous
gradient > 30 mmHg®. Right ventricular outflow tract (RVOT) obstruction (RVOTO) was
defined as a peak instantaneous gradient > 36 mmHg?!’. These were both calculated at rest

or with Valsalva manoeuvres using peak doppler velocity and applying the Bernoulli
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equation (gradient = 4V2, where V represents the peak outflow velocity). Impaired left
ventricular (LV) systolic function was defined as a fractional shortening (FS) < 28% or
ejection fraction < 55% 217, Diastolic impairment was defined as presence of any of the
following: mitral valve (MV) E/A ratio < 0.75, MV E wave deceleration time > 240ms and

average of lateral and septal E/e' ratios > 14218,

2.4.1.1 Z scores

Echocardiographic dimensional data are expressed in millimetres and as z-scores corrected
for body surface area according to the population corrected mean?1922° There are no
published z-scores for MLVWT and so pragmatically IVST z-scores were used to correct
MLVWT. The equations used to calculate LAd and MLVWT z-scores are detailed below:
o LAd*0:
Males:
(((LAd (mm)/10.665) x bodyweight(kg)°®??°)-1)/0.118
Females:
(((LAd (mm)/10.74) x bodyweight(kg)®#¢°)-1)/0.124
o MLVWT?9:
((MLVWT(cm)/BSA%#4)-0.58)/0.09

2.4.2 Resting and ambulatory ECG

Previously published normal values for age were employed for QRS axis and
electrocardiographic intervals??!. The following parameters were measured: PR interval
(ms), QRS axis (°), QRS duration (ms), QRS amplitude (mV), QT interval (ms), corrected QT
interval (ms) using the Bazzett formula. Electrocardiographic criteria for LVH were based on
the Sokolow-Lyon criteria??2. The following parameters were evaluated and described:
presence of atrial or ventricular ectopic beats, left or right atrial enlargement, left or right
bundle branch block (LBBB/RBBB), pathological Q waves, pathological T wave inversion
(>1mm beyond V1 in children over 14 years or beyond V3 in under 14 years), giant T waves
(>10mm), ST segment depression or elevation (>2mm).

NSVT was defined as three or more consecutive ventricular beats > 120 beats per minute

lasting less than 30 seconds on ambulatory ECG monitoring.
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2.5 Outcomes

Clinical outcomes were determined by the treating cardiologist at each site and included:
all-cause mortality (congestive heart failure (CHF), sudden cardiac death (SCD), other
cardiovascular (CV) death, and non-CV death], the composite outcome of SCD and
equivalent events [appropriate implantable cardioverter defibrillator (ICD) therapy, aborted
cardiac arrest, or sustained ventricular tachycardia (VT) with haemodynamic compromise],
CHF admissions to hospital, the composite outcome of major adverse cardiac events (MACE)
comprising of cardiac mortality, SCD and equivalent events and CHF admissions to hospital,
as well as atrial arrhythmias, ICD implantation, cardiac transplantation and

surgical/catheter-based interventions.

2.6 General statistical methods

Body surface area was calculated from weight?%3. Maximal left ventricular wall thickness and
LAd measurements are expressed in millimetres and as body surface area-corrected z-
scores. Cardiac dimensions were corrected for body size using previously published
normative data?!%229, All z-scores were recalculated using the absolute values provided by
the individual centres. Follow-up time was calculated from the time of baseline evaluation
to the date of reaching the study end-point, death from another cause, or the date of the
most recent evaluation. Continuous variables are described using mean [standard deviation
(SD)] or median (25th, 75th percentiles), as appropriate. Categorical variables were
described using frequencies and percentages. In order to compare participants’
characteristics, as assessed in the baseline evaluation, the chi-square test for categorical
data, t-test for normally distributed continuous data, or Mann—Whitney U-test for non-
normally distributed continuous data were used. A significance level of 0.05 was used for all
comparisons. The Kaplan—Meier method was used to estimate the incidence of reaching the
study endpoint. Univariable Cox regression models were used to investigate the association
of clinical variables with the study endpoint. All statistical analyses were performed with

STATA (Stata statistical software release 17 or 18; StataCorp LP, College Station, TX).

2.7 Ethics

This study complies with the Declaration of Helsinki. Local ethical approval was obtained for

each collaborating centre with a waiver of informed consent for retrospective, anonymized
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data. Integrated research application system (IRAS) approval was sought under project

number 182354.
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Chapter 3 - Natural history of Rasopathy-associated hypertrophic

cardiomyopathy

3.1 Introduction

Despite differences in pathophysiological mechanism, clinical presentation and outcomes,
as detailed in chapter 1, the clinical management and risk stratification of patients with
Rasopathy-related HCM is currently extrapolated from that of sarcomeric HCM, and specific
clinical evaluation and management guidelines for RAS-HCM have not been developed. An
improved understanding of the relationship between genotype, phenotype and outcomes is

necessary in order to optimise clinical care in this distinct population.

3.2 Aim

The aim of this chapter is to describe the clinical features, outcomes and predictors of all-
cause mortality and SCD or equivalent events in a large, multi-centre national cohort of

patients with RAS-HCM diagnosed in childhood.

3.3 Methods

3.3.1 Patient cohort

The study cohort consisted of patients < 18 years with HCM and a clinical and/or genetic
diagnosis of a Rasopathy syndrome (NS, NSML, CS, CFCS, NS-LAH), consecutively evaluated
between January 1, 1985, and December 31, 2020, in all 14 paediatric cardiology centres in

the United Kingdom (Table 3-1).
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Table 3-1: Collaborating centres with corresponding patient numbers

Centre Number of patients*
Great Ormond Street Hospital, London 102
Bristol Royal Hospital for Children 15(7 & 8)
Birmingham Children’s Hospital 12 (9 & 3)
University Hospital of Wales, Cardiff 12 (8 & 4)
Royal Brompton Hospital, London 11 (6 &5)
Glenfield Hospital, Leicester 8(2&6)
Royal Hospital for Children, Glasgow 8(2&6)
Evelina Children’s Hospital, London 6(2 &4)
Southampton General Hospital 5(2 &3)
Alder Hey, Liverpool 3(2&1)
Freeman’s Hospital, Newcastle 2(2&0)
Leeds General Infirmary 2(2&0)
Our Lady’s Children’s Hospital, Dublin 2(2&0)
John Radcliffe Hospital, Oxford 1(1&0)

*The numbers add up to more than the total number of patients in this study — this is because some patients
were seen in the local paediatric cardiology centre as well as Great Ormond Street Hospital as a national
reference centre and were not included twice in the study numbers. In the parenthesis there is the
breakdown of numbers, first number is patients only seen at the local centre, second number is patients seen

in both the local and reference centre

Patients with clinical features of a Rasopathy syndrome not fulfilling diagnostic criteria for
one of the previously-described syndromes and without a pathogenic/likely pathogenic
variant, were labelled “Noonan-like syndrome”.

Patients were diagnosed with a Rasopathy syndrome clinically and/or after genetic testing.
Genetic testing was performed at the treating clinician's discretion. In patients in whom
genetic testing had been performed, the following data were collected: date of testing; size
of gene panel; and variants identified (gene and protein change).

3.3.2 Outcomes

The follow-up time for all patients was calculated from the date of their first evaluation to
the date of reaching the study end point, death from another cause, or the date of their

most recent evaluation prior to the end of the study period. Age at first assessment was
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categorised for analysis purposes: <6 months, 6-12 months, 12 months-5 years, >5 years.
Era of presentation was categorised for analysis purposes: 1985-1999, 2000-2010, 2010-
2020. Percentages expressed are based on available values.

3.3.3 Statistical methods

Estimates of survival were obtained using the Kaplan—Meier product limit method. The
association of clinical variables with the outcome of interest was assessed in a univariate
Cox proportional hazard model. Mortality and cardiac transplantation were censoring
events for survival analyses in this study. All statistical analyses were performed with STATA

(Stata statistical software release 17; StataCorp LP, College Station, TX).

3.4 Results
3.4.1 Demographics and Presentation

A total of 149 patients with a Rasopathy syndrome and hypertrophic cardiomyopathy (HCM)
were identified, of which 92 (61.7%) were male. Among these, 111 patients (74.5%) were
diagnosed with Noonan syndrome (NS), 12 patients (8.1%) with Noonan syndrome with
multiple lentigines (NSML), 6 patients (4%) with Costello syndrome (CS), 6 patients (4%) with
CFC syndrome, 11 patients (7.4%) with Noonan-like syndrome, and 3 patients (2%) with
Noonan syndrome with loose anagen hair (NS-LAH). Sixty-nine patients (65.1%) had one or
more extra-cardiac manifestations, as shown in Figure 3-1.

Seventeen (11.5%) had a family history of HCM. Sixty-seven patients (60.9%) had
concomitant congenital heart defects (CHD), of whom 32 (29.1%) had more than one CHD

(see Table 3-2).
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Figure 3-1: Extra-cardiac manifestations by Rasopathy syndrome
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Table 3-2: Congenital heart defects by Rasopathy syndrome

Total NS NSML cs CFCS Noonan-like

ASD 16 (14.6) 13 (17.8) - - 1(16.7) 2 (14.3)
VSD 8(7.3) 5 (6.9) - - 1(16.7) -

PVS 33 (30) 22 (30.1) 2 (16.7) 2 (33.3) 4 (66.7) 3(21.4)
PDA 5 (4.6) 3(4.1) 1(8.3) - - 1(7.1)
Dysplastic valve 19 (17.3) 14 (19.2) - - 1(16.7) 2 (14.3)
Polyvalvulopathy 21 (19.1) 16 (21.9) 1(8.3) 1(16.7) 1(16.7) 2 (14.3)
AS 4 (3.6) 3(4.1) - - 1(16.7) -

Other 6 (5.5) 5(6.9) - - - -

>1 32(29.1) 25 (34.3) - 1(16.7) 3 (50) 3(21.4)
None 45 (40.9) 24 (32.9) 8 (66.7) - 2 (33.3) 8 (57.1)
Unknown 39 (26.2) 38 (34.2) - 1(16.7) - -

NS: Noonan syndrome, NSML: Noonan syndrome with multiple lentigines, CS: Costello syndrome, CFCS: cardiofaciocutaneous syndrome,
ASD: atrial septal defect, VSD: ventricular septal defect, PVS: pulmonary valve stenosis, PDA: patent ductus arteriosus, AS: aortic valve

stenosis



The median age of diagnosis of HCM was 1.38 (IQR 0-10.28) months, while the median age
at first assessment was 22.46 (IQR 5.67-82.89) months. The age category according to
Rasopathy syndrome is shown in Figure 3-2.

Demographic and baseline clinical characteristics are summarized in Table 3-3. The clinical
features of the 11 patients with Noonan-like syndrome are presented individually in Table 3-
4, while the details for the 3 patients with NS-LAH are provided in Table 3-5. Patients with
variants in PTPN11 and RIT1 exhibited a higher incidence of congenital heart disease (CHD)
and were diagnosed at a younger age, as shown in Table 3-6.

There were no significant differences in clinical parameters across the different time

periods, as outlined in Table 3-7.
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Figure 3-2: Age category by Rasopathy Syndrome




Table 3-3: Demographics and baseline characteristics

Total NS NSML cs CFCS NLS

N=149 N=111 N=12 N=6 N=6 N=11 p value
Gender (Male) 92 (61.7%) 70 (60.1%) 9 (75%) 3 (50%) 1(16.7%) 6 (54.5%) 0.163
Age at diagnosis (months) 1.4 (0 - 10.3) 1.28 (0-8.7) 0(0-11) 33(24-71.2) -0.16(-03-6.7) 4.9(-1.2-121.9) 0.401
Age at baseline (months) 22.5(5.7-82.9) 26.4(6.4-83.7) 37.7(3-129.6) 13.6(9.6-27.1) 8.11(0.9-15.4) 14.1(1.2-64) 0.563
Proband 121 (90.3%) 91 (82%) 9 (75%) 6 (100%) 5 (83.3%) 10 (90.1%) 0.269
FHx HCM 17 (11.4%) 12.6 (14%) 3 (25%) 6 (100%) - - 0.223
PMHx CHF 23 (22.2%) 16 (14.4%) 5 (41.7%) - - 2 (18.2%) 0.104
PMHXx arrhythmia 7 (7.1%) 6 (5.4%) - - - 1(9.1%) 0.729
CHD 51 (46.4%) 38 (34.2%) 4 (33.3%) - 3 (50%) 4 (36.4%) 0.174
Extra-cardiac manifestations 69 (65.1%) 54 (48.6%) 5(41.7%) 3 (50%) 3 (50%) 4 (36.4%) 0.001
Symptoms 61 (57.3%) 50 (45.1%) 7 (58.3%) 1(16.7%) 1(16.7%) 2 (18.2%) 0.073
Medications 69 (47.9%) 50 (45.1%) 9 (75%) 1(16.7%) 3 (50%) 5 (45.5%) 0.198
b-blockers 56 (81.2%) 42 (84%) 8 (88.9%) 1 (100%) 1(33.3%) 4 (66.7%) 0.134
Diuretics 12 (17.4%) 9 (18%) - - 2 (66.7%) 1(16.7%) 0.151
Disopyramide 4 (5.8%) 3 (6%) 1(11.1%) - - -
Ca channel blockers 3 (4.3%) 1(2%) 1(11.1%) - - 1(16.7%)
Amiodarone 1(1.4%) 1(2%) - - - -

n: number of patients, NS: Noonan syndrome, NSML: Noonan syndrome with multiple lentigines, CS: Costello syndrome, CFCS: cardiofaciocutaneous syndrome, NLS:
Noonan-like syndrome, FHx: family history, HCM: hypertrophic cardiomyopathy, SCD: sudden cardiac death, PMHx: past medical history, CCF: congestive cardiac failure,

CHD: congenital heart defects



Table 3-4: Patients with Noonan-like syndrome

Patient number 1 2 3 4 5 6 7 8 9 10 11
Baseline demographics and clinical characteristics
Gender M F F M M F M F M F M
Proband? Yes Yes - - - Yes Yes Yes Yes Yes -
Age at diagnosis 4.9 121.9 - 133.4 135.2 0.4 - 2.6 13 1.2 -
(months)
Age at baseline 29.4 63.8 7.7 133.4 1352 043 0.53 1.15 0.8 11.9 16.3
(months)
PMHx CHD No Yes No No No Yes Yes Yes No No No
Extra-cardiac Yes Yes No No No No Yes Yes No No -
manifestations
Symptoms No No No No No No No Yes Yes No No
Medications No Yes No No No Yes No Yes Yes Yes No
Outcomes
Follow up (months) 216 206.7 216 159.33 216 100.1 102.8 114 186 943 1449
Death No Yes No Yes No No No Yes No No No
Cause of death - Non - U/K - - - U/K - - -
Age at death (months) - 12 - 191.2 - - - 2.4 - - -
SCD or equivalent event No Yes No No No No No No Yes No No
CHF Admission No No No No No No No No No No No
Myectomy No No No No No No No No No No No
Echocardiographic parameters
LVEDD (mm) - 25.7 - - 36.1 26.6 32.2 14 - 17.2 -
LVEDD z score - -2.4 - - 2.6 1.9 5.5 -4.3 - -3.2 -
LA diameter (mm) - - - - 29 - 25.6 - - 19.6 -
LA diameter z score - - - - - - 20.6 - - 15 -
MLVWT (mm) - 6 - 10 9 6 7 - 15 - -
MLVWT z score - 3.4 - - 3.2 4.3 6.5 - - - -
LVOT gradient (mmHg) - - - 4 - 5 10 10 117 - -
LVvOTO - - - No - No No No Yes No -
Mid cavity obstruction - No - No No No No No Yes No -
RVH - No - No No Yes Yes - Yes Yes -
RVOT gradient (mmHg) - - - - 1 - 4 - 30 - -
RVOTO - - - - No - No - Yes - -
EF (%) - - - - - 79 80 - - 74 -

PMHx: past medical history, CCF: congestive heart failure, CHD: congenital heart defects, ICD: implantable cardiac

defibrillator, SCD: sudden cardiac death, LVEDD: left ventricular end diastolic diameter, MLVWT: maximal wall thickness,

LAd: left atrial diameter, LVOT: left ventricular outflow tract, LVOTO: LVOT obstruction, SAM: systolic anterior motion of

the mitral valve, RVH: right ventricular hypertrophy, RVOT: right ventricular outflow tract, RVOTO: RVOT obstruction, EF:

ejection fraction, U/K: unknown



Table 3-5: Patients with Noonan like syndrome with loose anagen hair

Patient 1 Patient 2 Patient 3
Baseline demographics and clinical characteristics
Gender Male Male Male
Proband? Yes Yes Yes
Age at diagnosis (months) 81.3 - -
Age at baseline (months) 67.7 64 6.5
PMHx CHD No Yes No
Extra-cardiac manifestations No No No
Symptoms No No No
Medication No b-blockers No
Outcomes
Follow up (months) 198.9 9.8 16.6
Death No Yes Yes
Cause of death - Unknown Unknown
Age at death (months) - 73.8 23.1
SCD or equivalent event No No No
Myectomy No No No
CHF admission No No No
ICD implantation No No No
Heart transplant No No No
Echocardiographic parameters
LVEDD (mm) 29.7 - -
LVEDD z score +4.7 - -
LA diametre (mm) 26 25
LA diametre z score +3.4 - -
MLVWT (mm) 8 7 9
MLVWT z score +9.2 - -
LVOT gradient (mmHg) 45 16 27
LVvOTO Yes No No
Mid cavity obstruction No No No
RVH Yes No No
RVOT gradient (mmHg) - - 4
RVOTO No No No
EF (%) 75 - -
Systolic dysfunction No - -

PMHx: past medical history, CHF: congestive heart failure, CHD: congenital heart defects, ICD: implantable cardiac

defibrillator, SCD: sudden cardiac death, LVEDD: left ventricular end diastolic diameter, MLVWT: maximal wall thickness,
LAd: left atrial diameter, LVOT: left ventricular outflow tract, LVOTO: LVOT obstruction, SAM: systolic anterior motion of
the mitral valve, RVH: right ventricular hypertrophy, RVOT: right ventricular outflow tract, RVOTO: RVOT obstruction, EF:

ejection fraction
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Table 3-6: Demographics and baseline clinical characteristics by most prevalent genes

PTPN11 RAF1 RIT1 HRAS p value

Gender (Male), n (%) 16 (55.2) 12 (66.7) 6 (75) 3(37.5) 0.431
Age at diagnosis (months), median (25th-75th

centile) 0.4(0-9) 2.7(0.1-8.4) 0.23(0-8.7) 2.83(0-121.9) 0.041
Age at baseline (months), median (25th-75th

centile) 11.1 (5.7 - 50.8) 37.6 (11.6 - 64.3) 2.41(0.11-8.8) 12.1(6.7 - 35.4) 0.889
Proband, n (%) 22 (75.9) 16 (88.9) 7 (87.5) 8 (100) 0.741
FHx HCM, n(%) 5(17.2) 1(5.6) - - 0.472
PMHx CHF, n(%) 10 (34.5) 2 (11.1) - - 0.151
PMHXx arrhythmia, n (%) 3(10.3) 1(5.6) 1(12.5) 1(12.5) 1
CHD, n (%) 16 (55.2) 3(16.7) 7 (87.5) 2 (25) 0.002
Extra-cardiac manifestations 10 (34.5) 10 (55.6) 2 (25) 3(37.5) 0.531
Symptoms, n (%) 10 (34.5) 8 (44.4) 2 (25) - 0.143
Medications, n (%) 18 (62.1) 11 (61.1) 4(57.1) 4 (50) 0.958

n: number of patients, FHx: family history, HCM: hypertrophic cardiomyopathy, SCD: sudden cardiac death, PMHx: past medical history, CHF: congestive

heart failure, CHD: congenital heart defects



Table 3-7: Clinical and genetics characteristics and outcomes by era of presentation

1985-1999 2000-2010 2011-2020 p value (*) p value (**)
(n=18) (n=56) (n=75)
Male 10 (55.6%) 36 (64.3%) 47 (62.7%) 0.708 0.758
Age, months 89.7 (29.6 — 139.7) 323 (8.7-92.1) 11.9 (2.7-61.8) 0.003 0.063
Syndrome 0.124 0.152
NS 15 (83.3%) 43 (76.8%) 53 (70.7%)
NSML 3 (16.7%) 2 (3.6%) 7 (9.3%)
cs 1(1.8%) 5 (6.7%)
CFCS 5 (8.9%) 1(1.4%)
Noonan-like 4(7.1%) 8 (10.7%)
NS_LAH 3 (4%)
Genetics 9 (50%) 44 (78.6%) 64 (85.3%) <0.001 <0.001
Positive 3(33.3%) 27 (61.4%) 50 (78.1%) <0.001 0.007
Variant PTPN11 2 (66.7%) PTPN11 7 (25.9%) PTPN11 20 (40%) 0.255 0.095
KRAS 1(33.3%) RAF1 6 (22.2%) RAF1 12 (24%)
RIT1 4 (14.8%) RIT1 4 (8%)
HRAS 2 (7.4%) HRAS 6 (12%)
KRAS 1(3.7%) KRAS 4 (8%)
LZTR1 4 (14.8%) BRAF 1(2%)
BRAF 2 (7.4%) SHOC2 3 (6%)
MEK2 1(3.7%)

2" variant - 4 (7.1%) 1(1.3%)




Follow up, months 209.5 (167.4 - 216) 215.7 (215 -216) 113.1 (43.9-182.9) <0.001 <0.001

SCD/equivalent event 2(11.1%) 4(7.1%) 6 (8%) 0.457 0.959
Heart transplant - 1(1.8%) 2 (2.7%)

Myectomy 3 (16.7%) 5 (8.9%) 6 (8%) 0.447 0.405
Death 3 (16.7%) 8 (14.3%) 12 (16%) 0.62 0.453

n: number of patients, IQR: interquartile range, NS: Noonan syndrome, NSML: Noonan syndrome with multiple lentigines, CS: Costello syndrome, CFCS:

cardiofaciocutaneous syndrome, SCD: sudden cardiac death. (*) represents p values for whole group, (**) subgroup analysis excluding the first era
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3.4.2 Genetics

Genetic testing was conducted on 117 patients (78.5%), with a pathogenic (P) or likely
pathogenic (LP) variant detected in 81 patients (69.2%). The most frequently identified gene
was PTPN11 (N=28, 34.6%), followed by RAF1 (N=18, 22.2%), RIT1 (N=8, 9.9%), and HRAS
(N=8, 9.9%). Five patients (4.3%) had additional variants identified, including combinations
such as RAF1 (P) & MYH7 (VUS), PTPN11 (P) & MYH7 (VUS), PTPN11 (P) & MYH7 (LP), KRAS
(LP) & MEK1 (VUS), and LZTR1 (LP) & HRAS (VUS). Figure 3-3 illustrates the distribution of
implicated genes across different Rasopathy syndromes. Detailed information on specific
nucleotide and protein alterations is provided in Table 3-8.

Over time, both the proportion of patients undergoing genetic testing and the yield of

genetic findings have increased, as shown in Table 3-7.
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Figure 3-3: Gene mutation by Rasopathy Syndrome



Table 3-8: Gene variant nucleotide and protein changes

Affected Gene Nucleotide code Protein code N
PTPN11 836A>G Tyr279Cys 6
1528C>G GIn510Glu 3
922A>G Asn308Asp 2
102G>T Lys34Asn 1
188A>G Tyr63Cys 1
846C>G lle282Met 1
218C>T Thr73lle 1
923A>G Asn308Ser 1
854T>C Phe285Ser 1
236A>G Glu79Arg 1
417G>C Glul39Asp 1
1528C>G GIn510Glu 1
768G>C Asn320Ser 1
1403C>T Thrd68Met 1
RAF1 770C>T Ser257Leu 2
770C>T Ser257Gly 1
766A>G Arg256Gly 1
775T>A Ser259Thr 1
1082G>C Gly361Ala 1
779¢ >T Thr260lle 1




76BG>T Arg256Ser 1
781C>T Pro261Ser 1
RIT1 244T7>C Phe82Leu 2
151G>T Asp51Tyr 1
284G>C Gly95Ala 1
229G>A Ala77Thr 1
244T>A He82Lle 1
HRAS 34G>A Gly12Ser 5
64C>A GIn22Lys 1
466T>C Phel56Leu 1
34G>T Gly12Cys 1
KRAS 179G>T Gly60Val 2
346A>C ASn116His 1
173C>T Thr58lle 1
LZTR1 3493C>T Lys1165Glu 1
1234C>T Arg412Cys 1
290G>T Arg97Leu 1
SHOC2 4A>G Ser2Gly 1
BRAF 1782T>G Asp5974Glu 1
MEK2 619G>A Glu207Lys 1
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3.4.3 Echocardiographic Characteristics

Echocardiographic data from the initial assessment at a paediatric cardiology centre were
available for 116 patients (77.9%). Of these, 46 patients (48.9%) had biventricular
involvement, 44 patients (45.8%) had left ventricular outflow tract obstruction (LVOTO), and
18 patients (39.1%) showed right ventricular outflow tract obstruction (RVOTO).
Additionally, 9 patients (30%) had signs of diastolic dysfunction at the first assessment. The
echocardiographic findings are summarized in Table 3-9, with a comparison of the
echocardiographic phenotype across the most common genetic variants presented in Table

3-10.



Table 3-9: Echocardiographic features by Rasopathy syndrome

Total NS NSML cS CFCS Noonan-like p value

LVEDD (mm) 23.2(18.6-30.9)  23.2(18.6-31) 24.9(18.4-29)  20.1(18.8-21) 19.1(19-19.2)  26.2(20.8 - 33.6) 0.489
LVEDD z score -1(0.97) -1.57 (0.9) -2.36 (1.2) -3.21(3.1) -3.2(0.9) +5.5(0.7) 0.039
LA diametre (mm) 25.7(18.3-30.9)  23(15.2-30.5) 29 (25.8 - 42) - - 25.6 (19.6 - 29) 0.309
LA diametre z score +19 (3.2) +19.9 (3.5) - - - +20.6 0.969
MLVWT (mm) 11 (8- 14) 11 (9 - 14) 13.5(10-15.5)  7.5(7-8.4) 8.2(5-8) 7(6-12.5) 0.004
MLVWT z score +9.6 (1.9) +9.9 (2.1) +17 (8.7) +7(2.1) +6.4 (3.1) +6.5 (5) 0.074
LVOT gradient (mmHg) 23 (8 - 60) 20 (9 - 60) 60 (36 - 80) 8 (4 - 45) 27 (5 -32) 6 (4 -10) 0.004
LVOTO 44 (39.1) 32 (28.9) 8 (66.7) 1(16.7) 2(33.3) 1(9.1) 0.032
Mid cavity obstruction 36 (24.2) 28 (25.2) 6 (50) - 1(16.67) 1(9.1) 0.009
SAM 44 (29.5) 33(29.7) 8 (66.7) 1(16.7) - 2(18.2) 0.012
RVH 46 (48.9) 33 (63.5) 6 (66.7) 1(16.7) 1(16.67) 4 (36.4) 0.287
RVOT gradient (mmHg) 10 (4 - 30) 10 (4 - 27) 5(1-30) 2(2-2.5) 2(-) 4(2.5-17) 0.019
RVOTO 18 (39.1) 14 (16.2) 3(25) 2(33.3) - 1(9.1) 0.607
EF (%) 79 (73 - 85) 77 (72 - 85) 81 83.5 (81 - 86) 89 (-) 77 (74.5 - 79.5) 0.871
Systolic dysfunction 1(3) 1(3) - - - - 0.631
E/E' average 10.77 (7.4-15.1)  10.9(7.3-15.3)  10(9.6-12.8) 10.2 (9.6-11.6) 8.6 (-) - 0.183
Diastolic dysfunction 9 (30) 8(7.2) 1(8.3) - - - 0.456
ASH 34 (26) 24 (21.6) 3(25) 2(33.3) 3 (50) 2 (16.7)

Concentric 52 (39.7) 33(29.7) 7 (58.3) 2(33.3) 3 (50) 7 (58.3)

Eccentric 4(3.1) 4 (5.4) - - - -




Apical 3(2.3) 3(4.1) - - - -

Unknown 18 (12.1) 10 (9) 2(16.7) 2(33.3) - 3(25)

NS: Noonan syndrome, NSML: Noonan syndrome with multiple lentigines, CS: Costello syndrome, CFCS: cardiofaciocutaneous syndrome, LVEDD: left ventricular
end diastolic diameter, MLVWT: maximal wall thickness, LAd: left atrial diameter, LVOT: left ventricular outflow tract, LVOTO: LVOT obstruction, SAM: systolic

anterior motion of the mitral valve, RVH: right ventricular hypertrophy, RVOT: right ventricular outflow tract, RVOTO: RVOT obstruction, EF: ejection fraction,

ASH: asymmetric septal hypertrophy
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Table 3-10: Echocardiographic data by most prevalent genes

PTPN11 RAF1 RIT1 HRAS p value

LVEDD (mm), median (IQR) 23.8(20.2 - 29) 23.3(20-31.5) 18.1 (17.5 - 19.6) 21(17.2 - 26.6) 0.469
LVEDD z score, mean (SD) +0.01 (2.6) -0.15(3) -2.66 (0.9) - 0.565
LA diametre (mm), median (IQR) 27 (25.8 - 27.9) 18.2 (15.3 - 36) 13.3 (12.6 - 26.5) 19.6 (-) 0.493
LA diametre z score, mean (SD) +25.86 (7.3) +28.84 (16.6) +4.04 (1.32) - 0.308
MLVWT (mm), median (IQR) 10.5 (8.5 - 14.5) 14 (10 - 18) 7 (6-10) 7(6-8) 0.002
MLVWT z score, mean (SD) +12.23 (6.9) +16.65 (3.9) +6.57 (0.4) - 0.43
LVOT gradient (mmHg), median (IQR) 36 (17 - 60) 43 (16 - 58) 55 (7.5 - 100) 6.5 (4.5 - 26.5) 0.232
LVOTO, n (%) 14 (63.6) 8 (61.5) 2 (50) 1(12.5) 0.338
Mid cavity obstruction, n (%) 15 (68.2) 8 (80) 2 (33.3) - 0.003
SAM, n (%) 17 (65.4) 9 (64.3) 3(42.9) 1(12.5) 0.073
RVH, n (%) 14 (60.9) 7 (53.9) 6 (75) 3(37.5) 0.477
RVOT gradient (mmHg), median (IQR) 18.5 (3.5 - 57.5) 21 (4-70.5) 16.5 (10 - 57) 2(2-2.5) 0.401
RVOTO, n (%) 6 (50) 4(57.1) 3(50) - 0.55
EF (%), median (IQR) 79 (77.5 - 85.5) 86 (77.5 - 92.9) 79.5 (70.5 - 87) 80 (76.5 - 83.5) 0.703
Systolic dysfunction, n (%) - - - -

E/E' average, median (IQR) 10 (7.2 - 12.9) 10.8 (7.3 - 28.3) 15.07 (-) 10.2 (9.6 - 11.6) 0.675
Diastolic dysfunction, n (%) 2(18.2) 2 (66.7) 1(100) - 0.197

LVEDD: left ventricular end diastolic diameter, MLVWT: maximal wall thickness, LAd: left atrial diameter, LVOT: left ventricular outflow tract, LVOTO: LVOT

obstruction, SAM: systolic anterior motion of the mitral valve, RVH: right ventricular hypertrophy, RVOT: right ventricular outflow tract, RVOTO: RVOT

obstruction, EF: ejection fraction



3.4.4 Electrocardiogram

A total of 93 patients (62.4%) had baseline electrocardiograms available. Among these, 83
patients (89.2%) exhibited one or more abnormal findings. Most patients (N=91, 97.8%)
were in sinus rhythm, while one patient had atrial tachycardia and another was in junctional
rhythm. Forty-seven patients (59.5%) showed QRS axis deviation, with 21 (44.7%)
demonstrating a superior axis. Sixty patients (69.8%) met the criteria for left ventricular
hypertrophy, and 30 patients (34.9%) presented with repolarization abnormalities, including
T wave inversion in one or more leads. A summary of the electrocardiographic data is

provided in Table 3-11.



Table 3-11: Electrocardiographic data at baseline assessment

Total %
Sinus rhythm 91 97.8
Left axis deviation 20 25.3
Right axis deviation 27 34.2
Superior axis 21 44.7
PR interval prolongation 5 6.4
Right atrial enlargement 17 19.8
Left atrial enlargement 18 20.9
QTc prolongation 5 6.4
Voltage criteria for LVH 60 69.8
Conduction abnormalities Intraventricular conduction delay 43 48.9
RBBB 2 2.3
LBBB 4 4.6
Pathological Q waves Inferior leads 19 21.4
Lateral leads 10 11.2
Anterior leads 1 1.1
>1 location 4 4.5
T wave inversion Inferior leads 4 4.8
Lateral leads 13 15.5
Anterior leads 4 4.8
>1 location 9 10.7
ST depression (<1mm) Inferior leads 2 2.4
Lateral leads 2 2.4
Anterior leads 3 3.6
>1 location 4 4.8
ST elevation (>2mm) Absent 86 92.9
Present 7 7.5

LVH: left ventricular hypertrophy, RBBB: right bundle branch block, LBBB: left BBB



3.4.5 Outcomes

The median length of follow up was 197.5 (IQR 93.58-370) months, or 231.55 patient-
months, with 2 patients (1.34%) lost to follow up. At the end of follow up, 126 patients
(84.6%) were alive, including 14 (9.7%) who had undergone surgical myectomy (one of
whom subsequently died with no documented cause of death available) and 3 (2%) who had
undergone a heart transplant (of whom 1 subsequently died 14.2 years later with no
documented cause of death available). Twelve patients (8.2%) had a major arrhythmic
cardiac event (SCD or equivalent event) documented. A total of 23 patients (15.4%) died, at
a median age of 24.1 months (IQR 5.6-175.9). The cause of death was unknown in 12 cases
(52.2%). Of the known causes, 4 patients died from a non-congestive cardiac failure related
CVS cause (17.4%) or from a non-CVS related cause (17.4%). Two (8.7%) patients died due to
progressive congestive cardiac failure and one (4.4%) suffered a SCD (See Figure 3-4).

Seven patients (31.8%) with a history of congestive heart failure (CHF) and 11 patients (29%)
who were under 6 months of age at the time of their first assessment, died. A detailed
breakdown of outcomes by Rasopathy syndrome is provided in Table 3-12.

There was no significant difference in survival or outcome by era of presentation or by

genotype (Figure 3-5, Table 3-13).
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Figure 3-4: (a) absolute number of deaths according to each age category (b) cause of death

by age of death (years)
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Table 3-12: Outcomes

Total NS NSML CS CFCS Noonan-like p value
Death 21 (14.1%) 13 (11.7%) 1(8.3%) 1(16.7%) 1(16.7%) 3(27.3%) 0.083
SCD 1(4.8%) 1(7.7%) - - - -
CHF 2 (9.5%) 1(7.7%) 1(8.3%) - - -
Other CVS 1(4.8%) 1(7.7%) - - - -
Other 4 (19.1%) 2 (15.4%) - 1(100) - 1(33.3%)
Unknown 12 (57.1%) 7 (53.9%) - - 1(100) 2 (66.7%)

24.1 259 23.1
Age at death (months) (5.6-175.9) (5.6-175.9) 1.7 12.9 1911 (12-73.8) 0.469
Myectomy 14 (9.4%) 13 (11.7%) 1(8.3%) - - -
ICD implantation 7 (4.7%) 7 (6.3%) - - - -
CHF admission 10 (6.7%) 9 (8.1%) 1(8.3%) - - -
Heart transplant 3 (2%) 3(2.7%) - - - -
NSVT 5 (3.4%) 3 (3%) 1(8.3%) - - 1(33.3%)
SCD/equivalent event 12 (8.1%) 9 (8.1%) 1(8.3%) - - 2 (18.2%)

n: number of patients, N: number of values available, NS: Noonan syndrome, NSML: Noonan syndrome with multiple lentigines, CS: Costello
syndrome, CFCS: cardiofaciocutaneous syndrome, CHF: congestive heart failure, ICD: implantable cardiac defibrillator, NSVT: non-sustained

ventricular tachycardia.



Kaplan—Meier survival estimates by era of presentation
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Figure 3-5: Kaplan-Meier survival estimates by era of presentation, p = 0.453



Table 3-13: Outcomes by most prevalent genes

PTPN11 RAF1 RIT1 HRAS p value
Death, n (%) 3 (10.3) 1(5.6) - 2 (25) 0.44
Age at death (months), median (25th-75th centile) 3.3(1.7 - 24) 5.26 (-) - 12.4 (11.9-12.8) 0.651
Myectomy, n (%) 3(10.3) 3(16.7) 1(12.5) - 0.37
ICD implantation, n (%) 2 (6.9) 1(5.6) 1(12.5) - 0.889
CCF admission, n (%) 6(20.7) - 2 (25) - 0.17
Heart transplant, n (%) 2 (6.9) - - - 0.733
NSVT, n (%) 1(3.3) 1(5.6) - 1(12.5) 0.523
SCD or equivalent event, n (%) 2 (6.9) 1(5.6) 1(12.5) 1(12.5) 0.316

n: number of patients, CCF: congestive cardiac failure, ICD: implantable cardiac defibrillator, NSVT: non-sustained ventricular tachycardia, SCD: sudden

cardiac death
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3.4.6 Survival and predictors of all-cause mortality and SCD or equivalent event

Overall survival was 96.45% (95% Cl 91.69-98.51), 90.42% (95% Cl 84.04-94.33) and 84.12%
(95% Cl 75.42-89.94) at 1, 5 and 10 years, respectively, but this varied by Rasopathy
syndrome.

Univariate analysis identified several factors as predictors of all-cause mortality, including
baseline symptoms, the presence of concomitant congenital heart disease (CHD), Rasopathy
syndrome, a past medical history of congestive cardiac failure (CCF), previous CCF
admissions, the presence of non-sustained ventricular tachycardia (NSVT), and moderate
left ventricular wall thickness (MLVWT). These findings are summarized in Table 3-15 and
Figure 3-6). Regarding SCD or equivalent event, (Figure 3.7), the presence of NSVT, past
medical history of CCF, and LVOT gradient were identified as predictors on univariate

analysis (Table 3-16).

Table 3-14: Survival by Rasopathy syndrome

1year, % (95% Cl) 5 vyear, % (95% Cl) 10 year, % (95% CI) 15 year, % (95% Cl)

NS 943(87.7-97.4) 91.3(83.9-95.4) 91.3(83.9-95.4)  91.3(83.9-95.4)
NSML 91.7(53.9-98.8) 91.7(53.9-98.8) 91.7(53.9-98.8)  91.7(53.9-98.8)
cs 81.8(23.9-97.2) 81.8(23.9-97.2) 81.8(23.9-97.2) 81.8(23.9-97.2)
CFCS 100 ( -) 100 ( -) 50 (0.6 - 91.1) 50 (0.6 - 91.1)

Noonan-like 82.9(47.2-95.5) 73.7(32.8-83.3) 58.9(32.8-83.3)  39.3(7-72)

NS: Noonan syndrome, NSML: Noonan syndrome with multiple lentigines, CS: Costello syndrome,

CFCS: cardiofaciocutaneous syndrome



Kaplan—Meier survival estimate for all cause mortality
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Figure 3-6: Kaplan-Meier curve for all-cause mortality with yearly numbers at risk for (a)

whole cohort and (b) by different Rasopathy syndromes.



Table 3-15: Predictors of all-cause mortality

Hazard Ratio Std Error 95% ClI p value
Demographics and baseline clinical characteristics
Gender 0.83 0.38 0.33-2.05 0.679
Age at diagnosis 1 0.01 0.99-1.01 0.864
Age at baseline assessment 0.99 0.01 0.98-1 0.102
PMHx CHD 2.32 1.09 0.92-5.86 0.073
PMHx CHF 0.45 0.21 0.18-1.14 0.092
PMHXx arrhythmia 1.13 1.17 0.15-8.54 0.906
Symptoms 131 0.59 0.54-3.17 0.017
Medications 0.98 0.43 0.41-2.31 0.967
CHF admission 4.31 2.4 1.45-12.83 0.009
NSVT 5.56 4.3 1.22-25.35 0.027
Syndrome 0.011
NSML 0.68 0.71 0.09-5.22 0.714
(&) 1.6 1.67 0.21-12.27 0.65
CFCS 1.46 1.52 0.019-11.16 0.715
Noonan-like 3.81 2.02 1.35-10.79 0.012
Gene 1.02 0.69 0.27-3.82 0.22
Echocardiographic phenotype
LVEDD 0.956 0.36 0.89-1.03 0.225



LVEDD z score

LA diameter

LA diameter z score
MLVWT

MLVWT z score
LVOT gradient
RVOT gradient
Ejection fraction
Average E/E'

RVH

Mid cavity obstruction

1.02
0.99
1.02
0.85
0.97
0.99
0.99
1.08
0.97
0.49
1.56

0.04
0.52
0.06
0.07
0.04
0.01
0.02
0.07
0.09
0.27
0.87

0.95-1.1

0.89-1.1

0.91-1.14
0.73-0.99
0.9-1.06

0.97-1.01
0.96-1.02
0.95-1.23
0.81-1.16
0.16-1.57
0.52-4.68

0.533
0.825
0.784
0.044
0.538
0.318
0.625
0.223
0.711
0.202
0.428

NS: Noonan syndrome, NSML: Noonan syndrome with multiple lentigines, CS: Costello syndrome, CFCS: cardiofaciocutaneous syndrome, CHD: congenital

heart defects, PMHx: past medical history, CHF: congestive heart failure, NSVT: non-sustained ventricular tachycardia, LVEDD: left ventricular end

diastolic diameter, MLVWT: maximal wall thickness, LAd: left atrial diameter, LVOT: left ventricular outflow tract, SAM: systolic anterior motion of the

mitral valve, RVH: right ventricular hypertrophy, RVOT: right ventricular outflow tract
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Kaplan—Meier survival estimate for SCD or equivalent event
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Figure 3-7: Kaplan-Meier curve for SCD or equivalent event with yearly numbers at risk for

(a) whole cohort and (b) by different Rasopathy syndromes.



Table 3-16: Predictors of SCD or equivalent event

Hazard Ratio Std Error 95% ClI p value
Demographics and baseline clinical characteristics
Gender 1.47 0.89 0.45-4.84 0.522
Age at diagnosis 1 0.01 0.99-1.02 0.556
Age at baseline assessment 0.99 0.01 0.98-1.01 0.506
PMHx CHD 1.65 1.11 0.44-6.15 0.457
PMHXx CHF 0.34 0.23 0.09-1.26 0.096
PMHXx arrhythmia 6.42E+14 2.30E+22 - 1.000
Symptoms 1.53 0.96 0.45-5.25 0.497
Medications 0.48 0.30 0.14-1.64 0.243
CHF admission 1.75 1.83 0.22-13.68 0.596
NSVT 6.1 4.84 1.28-28.91 0.023
Syndrome 0.514
NSML 1.11 1.18 0.14-8.88 0.921
cs 5.08E-16 3.88E-08 - 1.000
CFCS 5.09E-16 3.45E-08 - 1.000
Noonan-like 3.07 2.45 0.64-14.6 0.159
Gene 1.24 1.04 0.24-6.41 0.82
Gene negative 1.81 1.22 0.49-6.75 0.376




Echocardiographic phenotype

LVEDD

LVEDD z score

LA diameter

LA diameter z score
MLVWT

MLVWT z score
LVOT gradient
RVOT gradient
Ejection fraction
average E/E'

RVH

Mid cavity obstruction

0.87
0.64
0.96
0.99
1.00
1.01
1.02
1.02
1.03
5.09E-16
0.43
0.70

0.80
0.17
0.08
0.09
0.07
0.03
0.01
0.02
0.09
3.45E-08
0.37
0.54

0.74-1.04
0.38-1.08
0.81-1.14
0.82-1.19
0.88-1.15
0.95-1.08
1-1.04

0.99-1.06
0.86-1.24
0.08-2.36
0.16-3.16

0.126
0.106
0.657
0.893
0.944
0.783
0.031
0.186
0.726
1.000
0.332
0.647

NS: Noonan syndrome, NSML: Noonan syndrome with multiple lentigines, CS: Costello syndrome, CFCS: cardiofaciocutaneous syndrome, CHD: congenital

heart defects, PMHx: past medical history, CCF: congestive cardiac failure, NSVT: non-sustained ventricular tachycardia, LVEDD: left ventricular end

diastolic diameter, MLVWT: maximal wall thickness, LAd: left atrial diameter, LVOT: left ventricular outflow tract, SAM: systolic anterior motion of the

mitral valve, RVH: right ventricular hypertrophy, RVOT: right ventricular outflow tract
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3.5 Discussion

This cohort study from the UK and Ireland represents the largest analysis of the natural
history of RAS-HCM. Key findings include the identification of phenotypic variations based
on the specific Rasopathy syndrome, the recognition of a distinct group of patients

with Noonan-like syndrome exhibiting a unique cardiac phenotype and poorer survival
outcomes, and the identification of potential predictors for all-cause mortality and SCD or

equivalent events.
3.5.1 Presentation and cardiac phenotype

Large registry-based studies of paediatric hypertrophic cardiomyopathy (HCM) have offered
important insights into the long-term prognosis of patients with both sarcomeric and non-
syndromic HCM217:1832 byt the data are more limited for non-sarcomeric aetiologies. In
keeping with previous reports3#146192 this study supports the finding that the onset of
HCM in individuals with Rasopathy-related HCM typically occurs in infancy, at a significantly
younger age compared to sarcomeric HCM. It also emphasizes the importance of
recognizing additional cardiac "red flags" that should prompt consideration of a Rasopathy
syndrome as the underlying cause of HCM in young children. These include the presence of
coexisting CHD, concomitant RVH, RVOTO, and extreme QRS axis deviation, in line with

previous studies3%42:146,193,202

and as suggested by the recently published ESC guidelines for
the management of cardiomyopathies®. Although patients with Rasopathy syndromes most
commonly do not have a family history HCM*?3212 familial HCM was observed in a notable
proportion of patients in our cohort, underscoring the importance of obtaining a
comprehensive family history and conducting a thorough examination, even in children

diagnosed with syndromic disease.
3.5.2 Correlation of clinical syndrome and genotype with cardiac phenotype

A major strength of this chapter is the high rate of genetic testing and the resulting
diagnostic yield, which enabled exploration of genotype-phenotype correlations. The
proportion of patients undergoing genetic testing, as well as the yield of those tests,
increased significantly over time, reflecting advances in genetic knowledge and evolving
clinical practices. As a result, it is possible that more nuanced genotype-phenotype

associations exist than those we were able to demonstrate. Patients with variants in PTPN11



and RIT1 were diagnosed with HCM at an earlier age, which may be related to the higher
prevalence of CHD in these genotypes. The suspicion of CHD likely led to earlier
investigations and an earlier diagnosis of HCM via echocardiography. Although the cardiac
phenotype was largely similar across the different clinical syndromes, patients with NSML
exhibited the most severe LVH and the highest resting LVOT gradients. In contrast, patients
with CS and CFCS had lower maximal LVWT and were less likely to have resting LVOTO.
Similarly, patients with variants in PTPN11 and RAF1 had higher MLVWT, higher resting
LVOT gradients, and a greater likelihood of mid-cavity obstruction, while those with HRAS
variants had less LVH and a lower prevalence of resting LVOTO. This is in keeping with
previous studies that have shown particularly severe cardiac phenotypes in children with
NSML?24, and has implications for consideration of novel treatments such as MEK inhibitors,
which have shown some promise in the treatment of severe HCM in infants with NS and
NSML2%5225 3s recognised by recent guidance®®226,

A novel finding in this chapter is the identification of a distinct group of patients diagnosed
with Noonan-like syndrome. Of these patients, 50% had a variant in a Rasopathy gene,
which was either a variant of uncertain significance (VUS) or did not align with the clinical
characteristics described in the literature. The clinical features of these patients did not fit
neatly into any of the established Rasopathy syndrome categories. While their
demographics and baseline clinical characteristics were similar to those of patients with
other Rasopathy syndromes, they exhibited a significantly higher prevalence of extra-cardiac
manifestations. The cardiac phenotype was less severe compared to other Rasopathy
syndromes, with less pronounced LVH and no evidence of resting LVOTO. However, the
mortality rate was high, with a 5-year survival rate of less than 60%. Although these findings
should be interpreted cautiously due to the small sample size and the fact that the cause of
death was unknown in 4 out of 5 patients (with the remaining death being non-cardiac), the
results suggest that it is crucial to recognize this group of patients with seemingly mild HCM
who nevertheless have significantly poorer outcomes compared to other Rasopathy
syndromes. Given the higher prevalence of extra-cardiac manifestations in this subgroup, it
is possible that non-cardiac causes of death may be more prevalent in patients with

Noonan-like syndrome.
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3.5.3 Survival and predictors of outcome

Survival in patients with Rasopathy-related HCM is highly dependent on age at
diagnosis'>14¢, a finding confirmed in this study. CCF has been reported as the most
common cause of cardiac-related death in RAS-HCM?46:174.212 Thjs was not confirmed in our
study, although it is possible that CCF-related deaths are underestimated as the cause of
death was unknown in half of our cohort. In keeping with previous studies**4¢, CHD, history
of CCF prior to baseline presentation and CCF requiring admission to hospital were
predictors of all-cause mortality on univariate analysis in our cohort. Symptoms at baseline,
NSVT and MLVWT have all been shown to be predictors of mortality in large registry studies
for hypertrophic cardiomyopathy in children’52227 and are now correlated with Rasopathy-
associated hypertrophic cardiomyopathy specifically. Importantly, we have demonstrated
for the first time that the underlying Rasopathy syndrome may be an additional potential
risk factor for mortality, likely influenced by the cohort of patients with Noonan-like
syndrome. These findings emphasize the importance of the underlying diagnosis in the
clinical management of patients with Rasopathy. Further large international studies are
needed to increase the event numbers and enable a deeper exploration of independent
predictors of all-cause mortality in this population.

3.5.4 Arrhythmic events in RAS-HCM

Arrhythmic adverse events are rarely reported in patients with RAS-HCM, with reported
frequencies of ventricular arrhythmias of < 2%*373174228 The results of our study suggest
that this may be a significant underestimate; nearly 5% of our cohort had a VT or VF
episode, which is more in line with a recent, large (n=188), international, multicentre
study?%3. These findings underscore the importance of considering the risk of ventricular
arrhythmias and sudden death in individuals with Rasopathy syndromes. Currently, there
are no established guidelines for assessing ventricular arrhythmia risk in patients with
Rasopathy syndromes, and it remains unclear whether risk stratification algorithms used for
non-syndromic HCM!*119 are also applicable to this patient group. However, the finding in
our study that potential predictors for SCD or equivalent events exist suggests that specific
risk factors for ventricular arrhythmias may be present in patients with Rasopathy
syndromes. Notably, one of the predictors identified in the univariate analysis, the LVOT

gradient, is potentially modifiable. This finding could have implications for the treatment of

87



obstructive HCM in this population, even in the absence of symptoms. Future studies aimed
at identifying Rasopathy-specific risk factors for ventricular arrhythmia will be crucial to
address this unmet clinical need.

3.5.5 Limitations

This study is limited by the inherent challenges of retrospective research, particularly
missing or incomplete data. Variations in clinical assessment and patient management were
inevitable, as patients were recruited from multiple centres and across different time
periods. Genetic testing was conducted at the discretion of the participating clinicians, and
although a high proportion of patients with a Rasopathy syndrome had a disease-causing
variant identified, it is unclear whether the genetic testing results influenced the final
diagnosis or confirmed prior clinical suspicions. The exact number of patients who
underwent additional genetic testing with a cardiomyopathy panel is unavailable due to the
retrospective design, meaning the prevalence of a co-existing sarcomeric variant in this
cohort could not be determined. Variations in echocardiographic protocols and the
availability of images for retrospective assessment across centres and time periods led to
missing variables. The use of a strict cut-off value of E/E’ >14 to define diastolic dysfunction
may have resulted in the exclusion of patients with suspected elevated filling pressures who
had E/E’ values between 10 and 14. Although the mortality rate is unlikely to have been
significantly affected by these missing data, other phenotypic features or outcomes may
have been either underestimated or overestimated. The cause of death was not
documented in a substantial proportion of cases, complicating conclusions on this topic.
Mortality and SCD or equivalent events were rare, so a multivariate analysis could not be
performed. Data collection relied on patients being referred to collaborating paediatric
cardiology centres, which may have led to the exclusion of patients with either a very mild
phenotype (not requiring referral to an expert centre) or a very severe phenotype (resulting

in early death in a neonatal or paediatric unit).

3.6 Conclusions

To my knowledge, this is the largest cohort of RAS-HCM encompassing various Rasopathy
syndromes and genes. The findings reveal a heterogeneous clinical presentation, with
different phenotypes and outcomes depending on the underlying syndrome. This was

particularly evident in a distinct group of patients with Noonan-like syndrome, who
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exhibited a milder HCM phenotype but had significantly worse survival. Potential predictors
of all-cause mortality and SCD or equivalent events have been identified for this population,

but larger studies are needed to further investigate their significance.
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Chapter 4 - Resting & ambulatory electrocardiography in Rasopathy-

associated hypertrophic cardiomyopathy

4.1 Introduction

The 12-lead ECG is a simple and non-invasive diagnostic tool, widely available even in low
resource settings, making it an effective screening tool for a wide range of cardiac conditions.
In patients with HCM?%22°, ECG abnormalities can precede the development of LVH by many
years® and a normal ECG is usually only observed in fewer than 3% of paediatric HCM cases®®.
Although typical ECG features in RAS-HCM are recognised in clinical practice, these have not
been previously systematically evaluated and their role in predicting cardiovascular outcomes

in this population is unknown.

Patients with HCM are known to be more prone to arrhythmic events, both supraventricular
and ventricular in origin. Supraventricular ectopy (SVE) can be commonly attributed to
elevated filling pressures, leading to left atrial stretch, enlargement and fibrosis?3°, but
primary atrial myocardial abnormalities remain a possibility**. This in turn creates a
predisposition to premature atrial contractions or atrial fibrillation?3. In certain underlying
aetiologies, such as due to PRKAG2 variants or LAMP2 deficiency, there are accessory
pathways leading to a predisposition SVEs®®232, Regarding ventricular arrhythmias, which
are more common than isolated SVEs in adult and paediatric patients with HCM, this can be
due to myocardial fibrosis or subendocardial ischaemia?33-238, NSVT specifically is an
established risk factor for SCD in patients with non-syndromic HCM, particularly in young
individuals’323%240_For these reasons, regular cardiac ambulatory monitoring is performed

as standard of care both in adult and paediatric patients with HCM4%4%,

There is little known about the prevalence of ectopy in patients with RAS-HCM, except for
case reports?9%201 and a small sub-cohort in a larger study*?, and performing cardiac
ambulatory monitoring is extrapolated from standardised practices in patients with non-

syndromic HCM.

90



4.2 Aim

The aims of this chapter are to characterise the 12-lead resting and ambulatory ECG
monitoring and to explore potential resting ECG predictors of adverse outcomes in children

with RAS-HCM.

4.3 Methods
4.3.1 Population

This was a single centre (Great Ormond Street Hospital, London, United Kingdom),
retrospective cohort study. Patients <18 years old with a clinical and/or genetic diagnosis of
a Rasopathy syndrome and HCM were included. Exclusion criteria were the absence of a
baseline ECG within a year of the first date of assessment or a poor quality ECG precluding
analysis. 12-lead ECGs from a separate cohort of patients (<18 years old) with a diagnosis of
HCM secondary to a pathogenic or likely pathogenic sarcomere protein gene variant (s-

HCM) were used as a comparison group.
4.3.2 Resting ECG analysis and statistics

A detailed list of parameters assessed can be found in Chapter 2. Systematic ECG analysis
was carried out by 2 investigators (see acknowledgements for details) using normal
paediatric reference values for age??1:241.242_ After the initial ECG review, 10% of ECGs were
subjected to blinded analysis by the original investigator while a separate 10% underwent
blinded analysis repeated by the other investigator. To assess intra and inter observer
variability in the estimation of ECG features, the differences between the measurements

(meanxSD) and the Pearson correlation coefficient were calculated.
4.3.3 Ambulatory ECG analysis and statistics

Data from cardiac ambulatory monitoring were systematically collected from reports
available on electronic patient records, interpreted by trained paediatric cardiac
electrophysiologists. Data included length of monitoring, presence of supraventricular
tachycardia (SVT), with maximal length and rate in beats and beats per minute (bpm)
respectively, supraventricular ectopics (SVEs), their frequency expressed in %, episodes of
VT, NSVT (3 or more consecutive ventricular beats) and ventricular ectopics (VEs) with their

frequency expressed in %.
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SVEs were deemed insignificant if <1%, frequent if 1-5% and significant if >5%. VEs were
deemed infrequent if <30/hr and frequent if >30/hr. For analysis purposes, SVT and SVEs
were grouped together as atrial arrhythmia events and VT, NSVT and VEs as ventricular

arrhythmia events.

4.4 Results
4.4.1 Patient Demographics

Eighty-four patients (Figure 4-1) with RAS-HCM were included in the study and compared with
113 patients with s-HCM. The most common Rasopathy diagnosis was Noonan syndrome (NS)
(N=59, 70.2%). Pathogenic/likely pathogenic variants were most commonly found in PTPN11
(N=25, 29.8%), followed by RAF1 (11, 13.1%) (Table 4-1). In patients with s-HCM, the two most
commonly implicated genes were MYH7 in 53 (46.9%) and MYBPC3 in 40 (35.4%) patients
(Table 4-2).

N=102
patients from
Great
Ormond
street
hospital
(London, UK)

R —— g

EXCLUSION if:
No baseline ECG within a year
of the first date of assessment

-

N=11
patients

N=91 patients

EXCLUSION if:
Poor ECG quality N=7
patients

N = 84 patients

Figure 4-1: Flowchart for ECG patient cohort
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Table 4-1: Distribution of Rasopathy syndrome with corresponding genotype

NS NSML cs CFCS NLS

N=59 N=8 N=5 N=3 N=9
Unknown  N=27 20 2 0 1 4
PTPN11 N=25 19 6 0 0 0
RAF1 N=11 11 0 0 0 0
RIT1 N=5 5 0 0 0 0
HRAS N=7 0 0 5 0 2
BRAF N=2 0 0 0 2 0
LZTR1 N=2 2 0 0 0 0
SHOC2 N=8 0 0 0 0 2
KRAS N=3 2 0 0 0 1

NS: Noonan syndrome; NSML: Noonan syndrome with multiple lentigines; CS: Costello syndrome;

CFCS: cardio-facio-cutaneous syndrome; NLS: Noonan-like syndrome

Table 4-2: Genotype of patients with non-syndromic hypertrophic cardiomyopathy

Gene

MYBPC3 40 (35.4)
MYH7 53 (46.9)
MYL2 1(0.9)
TNNT2 3(2.7)
TPM1 4 (3.5)
ACTN 1(0.9)
Troponin T 1(0.9)
TNNI3 1(0.9)
JPH2 2(1.77)
MYL3 3(2.7)
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Patients with RAS-HCM had an overall younger median age at baseline assessment [1.0 years
(0-3.5) vs 9.0 (3-13), p <0.001], and more commonly had concomitant cardiovascular
abnormalities [N=43 (51.2%) vs N=16 (14.2%), p<0.001], of which 30 (35.7%) had pulmonary

valve stenosis (PVS) as a sole defect or in combination with other defects (Table 4-3).

Table 4-3: Concomitant congenital heart defects

RAS-HCM nS-HCM

N=84 N=113

Valvulopathy 35 (41.7%) 5(4.4%)

Atrial septal defect 11 (13.1%) 1(0.9%)

Ventricular septal defect 5 (6.0%) 8(7.1%)

Patent ductus arteriosus 6 (7.1%) 4 (3.5%)

Patent foramen ovale 6 (7.1%) 1(0.9%)
Coarctation of aorta 2 (2.4%) -
Hypoplastic pulmonary arteries 2 (2.4%) -

RAS-HCM: Rasopathy associated hypertrophic cardiomyopathy; nS-HCM: non-syndromic HCM

The two groups had comparable MLVWT z-scores on echocardiogram, but patients with RAS-
HCM had a larger left atrial diameter (LAd) [LAd zscore 17.4 (9.4) vs +2.8 (2.8), p <0.001] and
a higher proportion of concomitant RVH [N=31 (50.0%) vs N=20 (26.9%), p<0.001]. Detailed
comparison of the baseline demographics, clinical and echocardiographic characteristics of

the two groups are shown in Table 4-4.
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Table 4-4: Baseline demographics, clinical and echocardiographic characteristics for resting

ECG cohort

Total s-HCM RAS-HCM p-value

N=197 N=113 N=84
Male 128 (65.0%) 73 (64.6%) 55 (65.5%) 0.90
FHx of HCM 56 (28.4%) 50 (44.2%) 6 (7.1%) <0.001
Concomitant CHD 59 (29.9%) 16 (14.2%) 43 (51.2%) <0.001
Age (years) 5.0 (1.0-11.0) 9.0 (3.0-13.0) 1.0 (0.0-3.5) <0.001
Medication 91 (46.7%) 45 (39.8%) 46 (56.1%) 0.025
MLVWT (mm) 12.0 (8.0-18.0) 14.0 (9.0-20.3) 10.0 (7.0-15.0) <0.001
MLVWT z score 10.7 (8.4) 10.3(7.2) 11.6 (10.8) 0.430
LAD (mm) 25.5(18.2-30.0) 24.2 (15.8-30.0) 27.0(19.6-32.7) 0.360
LAD zscore 5.9(8.1) 2.8 (3.8) 17.4 (9.4) <0.001
LVOTO 59 (36.2%) 19 (17.6%) 40 (72.7%) <0.001
RVH 51 (65.0%) 20 (26.9%) 31 (50.0%) <0.001

s-HCM: sarcomeric hypertrophic cardiomyopathy; RAS-HCM: RAS-HCM; FHx: family history; CHD:
congenital heart defects; MLVWT: maximal left ventricular wall thickness; LAD: left atrial

diameter; LVOTO: left ventricular outflow tract obstruction; RVH: right ventricular hypertrophy.

4.4.2 Resting ECG Features in RAS-HCM

At baseline, the ECG of patients with RAS-HCM demonstrated a significantly higher proportion
of axis deviation [N=79 (65.5%) vs N=29 (35.4%), p-value <0.001] compared to s-HCM,
specifically superior axis deviation [N=25 (29.8%) vs N=3 (2.5%), p-value <0.001]. Voltage
criteria for RVH were more commonly present in the ECG of patients with RAS-HCM [N=44
(52.4%) vs N=32 (28.3%), p-value <0.001], with 28 out of 30 patients (93.3%) with PVS fulfilling
voltage criteria for RVH. Voltage criteria for RVH on ECG did not correlate with
echocardiographic presence of RVH (p=0.596), but showed a correlation with the presence of
concomitant PVS (p<0.001). Patients with s-HCM had a significantly higher prevalence of
pathological Q waves [N=23 (27.4%) vs N=54 (47.8%), p-value <0.001] (Table 4-5). No
significant differences in ECG features were found between underlying Rasopathy syndrome

type or genotype (Table 4-6 and Table 4-7). An example ECG of a patient with RAS-HCM can

be seen in Figure 4-2.
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Figure 4-2: Example ECG of 9-year old male patient with RAS-HCM secondary to a RAF1 variant, showing superior QRS axis, evidence of right
atrial enlargement, gross criteria for biventricular hypertrophy, pathological Q waves in the lateral leads ST elevation in the septal leads and
giant T waves throughout.



Table 4-5: Resting ECG characteristics in RAS-HCM vs s-HCM

Total s-HCM RAS-HCM p-value

N=197 N=113 N=84
Abnormal axis 102 (51.8%) 73 (64.6%) 29 (34.5%) <0.001
Type of axis deviation <0.001
RAD 25 (12.7%) 15 (13.3%) 10 (11.9%)
LAD 43 (21.8%) 24 (21.2%) 19 (22.6%)
Superior Axis 28 (14.2%) 3(2.7%) 25 (29.8%)
Evidence of atrial
enlargement 0.006
RAE 26 (13.2%) 7 (6.2%) 19 (22.6%)
LAE 20 (10.2%) 13 (11.5%) 7 (8.3%)
Bi-AE 9 (4.6%) 7 (6.2%) 2 (2.4%)
Pathological Q waves 77 (39.1%) 54 (47.8%) 23 (27.4%) <0.001
Voltage criteria LVH 108 (54.8%) 68 (60.2%) 40 (47.6%) 0.080
Voltage criteria RVH 76 (38.6%) 32 (28.3%) 44 (52.4%) <0.001
Conduction delay 84 (42.6%) 46 (40.7%) 38 (45.2%) 0.52
RBBB 10 (5.1%) 8 (7.1%) 2 (2.4%)
LBBB 8 (4.1%) 4 (3.5%) 4 (4.8%)
ST changes >2mm 62 (31.5%) 41 (36.3%) 21 (25.0%) 0.092
TWI 85 (43.1%) 55 (48.7%) 30(35.7%) 0.069
Giant T waves (>10 mm) 43 (21.8%) 26 (23.0%) 17 (20.2%) 0.64
Mean QTc (msec) 441.0(32.9) 449.0 (31.3) 439.0 (35.3) 0.072
QT prolongation 29 (23.8%) 14 (23.3%) 25 (24.0%) 0.919
U waves 26 (13.2%) 12 (10.6%) 14 (16.7%) 0.21

s-HCM: sarcomeric hypertrophic cardiomyopathy; RAS-HCM: RAS-HCM; RAD: right axis deviation;

LAD: left AD; RAE: right atrial enlargement; LAE: left AE; LVH: left ventricular hypertrophy; RVH,;

right ventricular hypertrophy; RBBB: right bundle branch block; LBBB: left BBB; TWI: T wave

inversion.



Table 4-6: Resting ECG characteristics in RAS-HCM by underlying syndrome

NS NSML CS p-value
N=59 N=8 N=5
Abnormal axis 39 (66.1%) 7 (87.5%) 2 (40.0%) 0.2114
Superior Axis 25 (42.4%) 4 (50%) - 0.1682
Evidence of atrial 19 (32.2%) 3(37.5%) - 0.1018
enlargement
Pathological Q waves 15 (25.4%) 2 (25.0%) 1(20.0%)
Voltage criteria LVH 30 (50.8%) 4 (50.0%) 1(20.0%) 0.4252
Voltage criteria RVH 30 (50.8%) 5(62.5%) 1(20.0%) 0.3235
Conduction delay 25 (42.4%) 5 (62.5%) 3 (60.0%) 0.4642
RBBB 2 (3.4%) - -
LBBB 4(6.7%) - -
ST changes >2mm 15 (25.4%) - 2 (40.0%)
TWI 21 (35.6%) 2 (25.0%) 3 (60.0%)
Giant T waves (>10 13 (22.0%) 1(12.5%) -
mm)
U waves 10 (5.9%) 1(12.5%) 3 (60.0%)

RAS-HCM: RAS-HCM; NS: Noonan syndrome; NSML: Noonan syndrome with multiple lentigines; CS:
Costello syndrome; LVH: left ventricular hypertrophy; RVH; right ventricular hypertrophy; RBBB: right
bundle branch block; LBBB: left BBB; TWI: T wave inversion.



Table 4-7: Resting ECG characteristics in RAS-HCM by underlying gene

PTPN11 RAF1 RIT1 HRAS p-value
N=25 N=11 N=5 N=5
Abnormal axis 16 (64.0%) 8 (72.7%) 4 (80.0%) 3(42.9%) 0.5608
Superior Axis 0.1653
Evidence of atrial enlargement 7 (28.0%) 5 (45.5%) 3 (60.0%) 1(14.3%) 0.2263
Pathological Q waves 7 (28.0%) 4 (36.4%) - 1(14.3%) 0.7923
Voltage criteria LVH 12 (48.0%) 5 (45.5%) 2 (40.0%) 1(14.3%) 0.7324
Voltage criteria RVH 12 (48.0%) 7 (63.6%) 3 (60.0%) 2(28.6%) 0.4359
Conduction delay 15 (60.0%) 4 (36.4%) 3 (60.0%) 4(57.1%) 0.6198
RBBB 1 (4.0%) 1(9.1%) - - 0.8042
LBBB 3 (12.0%) - - 1(14.3%)
ST changes >2mm 8 (32.0%) 2 (18.2%) - 3 (42.9%)
TWI 9 (36.0%) 4 (36.4%) 2 (40.0%) 3(42.9%) 0.8049
Giant T waves (>10 mm) 7 (28.0%) 2 (18.2%) 1(20.0%) -
U waves 7 (28.0%) 1(9.1%) - 3 (42.9%)

RAS-HCM: RAS-HCM; LVH: left ventricular hypertrophy; RVH; right ventricular hypertrophy; RBBB: right
bundle branch block; LBBB: left BBB; TWI: T wave inversion.

4.4.3 Ambulatory ECG monitoring

A total of 64 cardiac ambulatory monitoring data from 42 patients with RAS-HCM was
collected. Of those, 25 were repeat monitors. The median age at cardiac monitoring was 6
years (3-13). Eighteen patients had a variant in PTPN11, 13 in RAF1, 6 in RIT1 and 5 in HRAS.
Thirty-two patients (50%) in total were on b-blockers, with a higher proportion in the
patients with a RAF1 gene variant (N=11, 84.6%, p=0.041). A total of 3 patients (4.7%) had
significant atrial arrhythmic events, while 17 patients (26.6%) had significant ventricular
arrhythmic events. All patients that had significant ventricular arrhythmic events were on b-
blockers. None of the patients in the cohort had an ICD in situ. There were no significant

differences between underlying genetic variant. Results are detailed in Table 4-8.



Table 4-8: Arrhythmia in children with RAS-HCM on cardiac monitoring by underlying genetic

variant
Total PTPN11 RAF1 RIT1 HRAS p-value
(n=64) (n=18) (n=13) (n=6) (n=5)
b-blockers 32 (50) 9 (50) 11 (84.6) 4 (66.7) 1(20) 0.041
SVT 2(3.1) 0 1(7.7) 0 1(20) 0.309
NSVT 3(4.7) 0 2 (15.4) 0 0 0.316
VT 0 (0) 0 0 0 0
SVEs 0.879
<1% 14 (21.9) 4(22.2) 2 (15.4) 2(33.3) 0
1-5% 2(3.1) 1(5.6) 1(7.7) 0 0
>5% 1(1.6) 5(27.8) 1(7.7) 0 0
VEs 0.107
<30/hr 34 (53.1) 12 (66.8) 6 (46.2) 2(33.3) 1(20)
>30/hr 7 (10.9) 0 3(23.1) 2(33.3) 0
Couplets 7 (10.9) 1(5.6) 4(30.8) 1(16.7) 0 0.476
Atrial 3(4.7) 2 (11.1) 1(7.7) 0 0 0.959
arrhythmia
Ventricular 17 (26.6) 5(27.8) 5(38.5) 2 (33.3) 1(20) 0.954
arrhythmia

4.4.4 Correlation of resting ECG with MACE in RAS-HCM

Over a median follow up period of 6.8 years (3.1-9.7), a total of 17 patients (20.2%) died of
any cause in the RAS-HCM group (Table 4-9), of whom 5 (5.9%) died of cardiac causes (2 CHF-
related deaths, 2 SCDs, 1 other cardiovascular-related death). There were a total of 19 (22.6%)
MACE (7 CHF admissions, 5 cardiac-related deaths, 3 aborted cardiac arrests, 3 sustained VT,

1 appropriate ICD therapy).
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Table 4-9: Outcomes

Total s-HCM RAS-HCM p-value

N=197 N=113 N=84
Follow up (years) 6.4 (3.2-10.2) 6.1(3.3-10.2) 6.8 (3.1-9.7) 0.87
LV myectomy 18 (9.1%) 9 (8.0%) 9 (10.7%) 0.51
Heart Transplant 6 (3.0%) 3(2.7%) 3 (3.6%) 0.71
Atrial Arrhythmia 13 (6.6%) 7 (6.2%) 6 (7.1%) 0.79
Ventricular arrhythmia 36 (18.3%) 27 (23.9%) 9 (10.7%) 0.018
Cardiac arrest 17 (8.6%) 11 (9.7%) 6 (7.1%) 0.52
CHF Admission 10 (5.1%) 3(2.7%) 7 (8.3%) 0.073
ICD implantation 60 (30.5%) 56 (49.6%) 4 (4.8%) <0.001
Appropriate ICD Therapy 23 (11.7%) 22 (19.5%) 1(1.2%)
Death 20 (10.2%) 3(2.7%) 17 (20.2%) <0.001
MACE 53 (26.9%) 34 (30.1%) 19 (22.6%) 0.24

s-HCM: sarcomeric hypertrophic cardiomyopathy; RAS-HCM: RAS-HCM; LV: left ventricular; CHF:
congestive heart failure; ICD: implantable cardioverter defibrillator; MACE: major adverse cardiac

events.

On univariate analysis, right atrial enlargement and ST segment changes >2mm correlated
significantly with MACE. After adjustment in a multivariate model, only ST segment changes
>2mm remained significant (OR 3.97, 95% Cl 1.33-11.92, p=0.014; adjusted OR 2.54, p-
value=0.007) (Table 4-10, Figure 4-3).




Table 4-10: Logistic regression for ECG characteristics in RAS-HCM (N=84) and MACE (N=19)

Adjusted

OR 95% ClI p-value OR 95% ClI p-value
Axis deviation 043 0.13 1.43 0.168
RAD 4.00 0.82 19.42 0.086
LAD 1.07 0.24 4.66 0.932
Superior 0.80 0.25 2.54 0.709
RAE 4.36 1.34 14.18 0.014 1.47 0.58 3.74 0.414
LAE 450 0.84 23.99 0.078
Bi-AE 1.00 - - -
Q waves present 2.53 0.30 21.59 0.397
Voltage criteria LVH 1.71 0.61 4.80 0.311
Voltage criteria RVH 1.77 0.62 5.06 0.288
Conduction delay 1.47 053 4.09 0.463
RBBB 356 0.21 59.69 0.378
LBBB 1.15 0.11 11.72 0.907
ST changes >2mm 3.97 133 1191 0.014 2.54 1.29 5.02 0.007
TWI 0.57 0.18 1.78 0.335
Giant T waves
(>10mm) 227 071 7.26 0.169
QTc (msec) 0.99 0.98 1.02 0.716
QTc prolongation 6.29 0.75 52.68 0.090
U waves 092 0.23 3.71 0.907

RAS-HCM: Rasopathy-associated hypertrophic cardiomyopathy; MACE: major adverse cardiac

events; OR: odds ratio; Cl: confidence intervals; RAD: right axis deviation; LAD: left AD; RAE: right

atrial enlargement; LAE: left AE; LVH: left ventricular hypertrophy; RVH; right ventricular

hypertrophy; RBBB: right bundle branch block; LBBB: left BBB; TWI: T wave inversion.



Kaplan—Meier survival estimates for MACE in RAS-HCM by ST changes
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Figure 4-3: Kaplan-Meier survival curve for major arrhythmic cardiac events (MACE) in Rasopathy-associated hypertrophic cardiomyopathy

(RAS-HCM), grouped by the presence of ST segment changes >2mm on ECG. Follow up time in years.



4.5 Discussion

This study shows that children with RAS-HCM can have distinct ECG features, including
superior axis deviation, evidence of atrial enlargement and voltage criteria for RVH. While
there were no significant associations with underlying syndrome and genotype, ST segment
changes on baseline ECG emerged as an independent predictor for MACE.

Superior axis deviation has long been considered to be a feature specific to RAS-HCM and is
included as a ‘red flag’ raising suspicion of Rasopathies as the underlying aetiology for
paediatric HCM*%243; however, this is, to our knowledge, the first study that documents this
in comparison to children with s-HCM. Another notable aspect is the high prevalence of RVH
voltage criteria, which is supported by data from a recent study?**. RAS-HCM is known to have
higher rates of biventricular involvement**'®3, which could be explained by the higher
prevalence of concomitant congenital heart defects in RAS-HCM, specifically right heart
lesions such as pulmonary valve stenosis.

No significant association was found between ECG phenotype and underlying Rasopathy
syndrome or genotype, but there were several ECG features emerging as more common in
certain syndromes or genotypes, such as T-wave abnormalities and U-wave more often found
in Costello syndrome; interventricular conduction and repolarization abnormalities more
often observed in HRAS variant. These results were not statistically significant but represent
atrend. Taking into account the smaller representation of other clinical syndromes apart from
Noonan syndrome, these should be repeated in a larger cohort to explore their significance.
There was a significant association between the presence of ST segment changes >2mm with
MACE in RAS-HCM. Microvascular ischaemia has been associated with MACE in adults with
HCM?%524¢ put data in paediatric HCM populations, and in particular RAS-HCM, are lacking.
The mechanisms of coronary ischaemia thought to play a part in s-HCM are also present in

RAS-HCM, including microstructural abnormalities such as impaired coronary blood flow due

247 245

to small vessel disease**” and microvascular dysfunction“*>, haemodynamic alterations
related to LVOTO 82179243248 impgired diastolic  function?**?%°,  myocardial
hypercontractility®®, and increased oxygen demand creating an energy mismatch?°%2%1, |n
addition, patients with Rasopathy syndromes commonly have concomitant congenital heart
defects!’4179.243 which may place an additional ischaemic burden on the myocardium, and

additional contributing mechanisms such as coronary artery ectasia?*>2>3 may also play a role.



The assessment of microvascular disease in childhood HCM is challenging, due to the patchy
nature of the disease and technical difficulties related to heart rate, but the finding that ST
changes on the 12-lead ECG are associated with adverse outcomes suggests that further
efforts to evaluate this are warranted.

In this chapter is described, for the first time systematically, the arrhythmic burden, as
evidenced by ambulatory cardiac monitoring, in patients with RAS-HCM. They appear to
have frequent ventricular ectopy, mostly in the form of frequent isolated ventricular ectopic
beats, despite medical therapy with b-blockers.

While the presence of NSVT is an established risk factor for SCD in paediatric and adult
patients with non-syndromic HCM73239.240 this has only been identified, as detailed in
chapters 3 and 4, as a potential risk factor of SCD in children with RAS-HCM. Thus, the
presence of VT or NSVT on ambulatory monitoring can lead to interventions like ICD
placement?%41:233 making it an important clinical tool in this population.

Frequent isolated monomorphic ventricular ectopy is known to be more prevalent in
HCMZ3-238 byt the correlation with adverse cardiac outcomes has not been systematically
evaluated.

However, ectopic beats, whether supraventricular or ventricular in origin, can cause patient
symptoms such as palpitations, dizziness, or syncope, which can significantly impact the
quality of a patient’s life?>*. As such, cardiac monitoring in patients with RAS-HCM remains a

useful tool.
4.5.1 Limitations

This study is limited by the relatively small sample size which means that it may not be
powered to detect potentially important differences in the ECG, specifically in exploring
genotype-phenotype correlations, where we have observed trends towards certain
associations. Recruitment was from a tertiary paediatric cardiology unit, and so the patients
may represent the more severe end of the HCM spectrum, contributing to selection bias.
Given the retrospective study design, some clinical data may be incomplete, particularly in
relation to genetic testing, which varies according to era. MACE is a composite outcome
encompassing cardiac mortality, heart failure and SCD equivalent events. Our study, due to
the rare nature of the condition and population, did not have enough individual events to

study these outcomes in isolation. Reversible causes of arrhythmias such as electrolyte
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imbalances were not assessed in this study. In light of our findings highlighting the significance
of ventricular arrhythmias in this population, this study should be repeated in a larger cohort,
to facilitate comparisons and investigate the potential contribution to adverse cardiac

outcomes.

4.6 Conclusions

This study demonstrates distinctive ECG features in children with RAS-HCM, including
superior axis deviation and voltage criteria for RVH, which could help distinguish RAS-HCM in
clinical practice. An important proportion of children with RAS-HCM have ventricular ectopy,
most commonly in the form of frequent isolated ventricular ectopics, which may have an
impact on symptoms and quality of life. ST segment changes are an independent predictor of
MACE in this population, which could have potential implications for the prediction of adverse

outcomes, but larger studies are needed to investigate this further.
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Chapter 5 - Sudden cardiac death risk assessment in Rasopathy-associated

hypertrophic cardiomyopathy

5.1 Introduction

SCD is the most common cause of death in childhood HCM)after the first year of lifel217:32,
with higher annual rates compared to adults with HCM?2%227, The identification of children at
high risk of SCD, who would benefit most from the implantation of a primary prevention
ICD, is a cornerstone of HCM management in childhood. A recently published validated
model, HCM Risk-Kids, provides an estimated 5-year risk for SCD in children with HCM based
on clinical parameters: MLVWT, LAd, LVOT gradient, unexplained syncope, and NSVT4116,
However, this model has not been validated in children with syndromic HCM.

Rasopathies are the most common cause of syndromic HCM, representing up to 18% of
HCM cases presenting in childhood!?17:255, Although traditionally the risk of SCD in children
with RAS-HCM has been considered to be low, recent data suggest a prevalence of SCD of
up to 4%'7%>5, with a recent, large, international, multicentre study showing comparable
rates to children with non-syndromic HCM?% | Despite this, there are no published risk

factors for SCD in this patient cohort.

5.2 Aim

The primary aim of this study was to determine whether the HCM Risk-Kids model is an
accurate tool for predicting SCD in children with RAS-HCM, with a secondary aim to

investigate predictors of SCD in this population.

5.3 Methods

Patient selection methods have been previously described. They were consecutively
evaluated between January 1, 1985, and December 31, 2020, in 13 paediatric cardiology
centres in the United Kingdom (see Table 5-1), Our Lady's Children's Hospital in Dublin,

Ireland, and the German Heart Centre in Munich.



Table 5-1: List of collaborating centres with corresponding number of patients contributed

Centre Number of patients*
Great Ormond Street Hospital, London 98
German Heart Centre, Munich 29
Bristol Royal Hospital for Children 15(8 & 7)
Birmingham Children’s Hospital 10(7 & 3)
University Hospital of Wales, Cardiff 12 (8 & 4)
Royal Brompton Hospital, London 11 (6 &5)
Glenfield Hospital, Leicester 8(3&5)
Royal Hospital for Children, Glasgow 8(2&6)
Evelina Children’s Hospital, London 6(2&4)
Southampton General Hospital 4(1&3)
Alder Hey, Liverpool 2(1&1)
Freeman’s Hospital, Newcastle 2(2&0)
Leeds General Infirmary 2(2&0)
Our Lady’s Children’s Hospital, Dublin 2(0&2)
John Radcliffe Hospital, Oxford 1(0&1)

*The numbers add up to more than the total number of patients in this study — this is because some patients
were seen in the local paediatric cardiology centre as well as Great Ormond Street Hospital as a national
reference centre and were not included twice in the study numbers. In the parenthesis there is the
breakdown of numbers, first number is patients only seen at the local centre, second number is patients seen

in both the local and reference centre

HCM Risk-Kids!* predictor variables were recorded at the time of baseline evaluation:
specifically, unexplained syncope (defined as a transient loss of consciousness with no
identifiable cause), NSVT (defined as 2 3 consecutive ventricular beats at a rate of > 120
beats per minute lasting < 30 s on ambulatory ECG monitoring), MLVWT Z score?®®, LAd Z

score??0

, and maximal LVOT gradient (defined as the maximal LVOT gradient at rest or with
Valsalva provocation using continuous wave Doppler from apical three- or five-chamber

views). LVOTO was defined as a peak instantaneous gradient > 30 mmHg?>.
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5.3.1 Study endpoints

The primary study endpoint was SCD or an equivalent event (aborted cardiac arrest,
appropriate ICD therapy for a ventricular tachyarrhythmia, or sustained VT associated with
haemodynamic compromise), as previously described!4. SCD was defined as a witnessed
sudden death with or without documented cardiac failure, death within 1 hour of new
symptoms, or a nocturnal death with no history of worsening symptoms®. Outcomes were
determined by the treating cardiologist at each centre without knowledge of the HCM Risk-

Kids estimates.
5.3.2 Missing data

Patients with more than three missing values in the predictor variables used in the HCM
Risk-Kids model were excluded from the validation cohort. Logistic regression was employed
to identify predictors of missingness, and the data were found to be missing at random. To
handle the missing data, we used multiple imputation by chained equations, performing 100
imputations for the missing values of baseline variables and clinical parameters. The
imputation model included all predictors of missingness, the outcome, all prespecified
predictors from the HCM Risk-Kids model, and the estimate of the cumulative hazard
function. Each imputation iteration was set to 500. The imputation model incorporated
potential predictors of missingness, the outcome, and SCD risk predictor variables. A total of
100 imputed datasets were generated, and estimates from these datasets were combined
using Rubin’s rule. Trace plots and Kernel density plots for the observed and imputed data

are provided in Figure 5-1 and Figure 5-2, respectively.
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5.3.3 Validation of HCM Risk-Kids

The estimated 5-year risk of SCD was calculated for each individual patient using the HCM
Risk-Kids model**:
P(SCD at 5-years)=1-0.949437808(pPrognosticindex),

where prognostic index =

0.2171364 x (MWT z score - 11.09) - 0.0047562 x (MWT z score?-~174.12) + 0.130365 x (LA

diameter z score - 1.92) + 0.429624 x unexplained syncope + 0.1861694
x NSVT - 0.0065555 x (maximal LVOT gradient - 21.8).

To evaluate the predictive performance of the SCD risk score, both discrimination and
calibration measures were employed. Discrimination, which refers to the model's ability to
distinguish between high-risk and low-risk patients, was assessed using Harrell’s overall
concordance C-statistic?®®, which ranges from 0.5 (indicating no predictive discrimination) to
1.0 (indicating perfect discrimination). Sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) were estimated for various cut-offs of the risk score.
To graphically assess the agreement between the predicted 5-year probability of SCD and
observed outcomes, a calibration plot was used. This plot compares the predicted
probabilities (from the HCM Risk-Kids score) with the observed risk of SCD. For evaluating
calibration accuracy, two optimal cutoff values (0.04 and 0.06) were used to categorize

patients into low-risk, medium-risk, and high-risk groups?2®.

5.4 Results
5.4.1 Baseline data and demographics

The study cohort included 169 patients, of whom 8 (4.7%) were first assessed between
1981-1990, 24 (14.2%) between 1991-2000, 60 (35.5%) between 2001-2010, and 77 (45.6%)
between 2011-2020. Sixteen patients (13.7%) out of the 117 for whom this information was
available were diagnosed antenatally. For the remainder, the median (25th-75th percentile)
age at diagnosis was 0.3 (0-10.3) months. The median (25th-75th percentile) age at first
assessment at a paediatric cardiology centre was 18.7 (3.9-76.6) months.

Seventy-eight patients (52%) were referred for routine cardiac screening following a

diagnosis of a Rasopathy syndrome, 62 (41.3%) due to symptoms of congestive heart failure
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(CHF), and 10 (6.7%) due to a murmur detected on auscultation. Eighteen patients (10.7%)
had a family history of HCM, 2 (1.2%) had a family history of sudden cardiac death (SCD),
and 8 patients (8% of 100 patients for whom this information was available) had a family
history of a Rasopathy syndrome, of whom 3 also had a family history of HCM. Table 5-2
provides a detailed summary of baseline demographic, clinical, and echocardiographic
characteristics for the entire cohort, as well as separately for patients with and without an

SCD-equivalent event.
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Table 5-2: Demographic and clinical characteristics of patients based on sudden cardiac

death endpoints

Patients With
Whole Patients without
SCD-
cohort SCD-equivalent
equivalent
Variable N =169 n=11 n =158 p-value
Gender (Male), n (%) 104 (61.5) 6 (54.5) 98 (62.0) 0.751!
Family history, n (%) 18 (10.7) 0(0.0) 18 (11.4) 0.609!
Age at diagnosis (months), median
0.0 (0.0-8.5)  3.8(0.0-31.4) 0.0 (0.0-8.1) 0.4222
(1QR)
Unexplained syncope, n (%) 5(3.0) 4 (36.4) 1(0.6) <0.001*
NSVT, n (%) 11 (6.5) 4 (36.4) 7 (4.4) 0.003!
NYHA/Ross classification, n (%) 1.000!
1 100 (61.0) 7 (63.6) 93 (60.8)
>2 64 (39.0) 4 (36.4) 60 (39.2)
10.5 (8.0-
MLVWT (mm), median (IQR) ) 7.0 (6.0-8.0) 11.0 (8.0-14.0) 0.0122
135
MLVWT z-score, median (IQR) 9.2(5.6-15.8)  6.6(3.9-8.1) 9.2 (5.7-15.8) 0.2452
25.0 (20.0- 22.0 (18.0-
LAd (mm), median (IQR) 26.0(20.0-30.0)  0.2602
29.0) 28.0)
LAd z-score, median (IQR) 2.0 (1.0-2.9) 1.4 (0.5-2.2) 2.0 (1.0-3.0) 0.2392
28.5 (10.0-
LVOT peak gradient, median (IQR) \ 9.0 (4.0-100.0) 30.0(10.0-60.0) 0.360?
61.5
LVOTO, n (%) 63 (37.5) 6 (54.5) 57 (36.3) 0.334!

! Fisher's exact test, 2 Mann—Whitney U-test

Abbreviations: IQR, interquartile range; NSVT, non-sustained ventricular tachycardia; NYHA, New York

Heart Association; MLVWT, maximal left ventricular wall thickness; LAd, left atrial diameter; LVOT, left

ventricular outflow tract; LVOTO, LVOT obstruction



5.4.2 Genetics

One hundred and three patients (60.9%) had a gene variant identified in the RAS-MAPK
pathway, of which 61 (59.2%) were classified as pathogenic, 5 (4.9%) as likely pathogenic,
and 5 (4.9%) as a variant of uncertain significance (VUS). Thirty-nine patients (37.9%) had a
variant in PTPN11, 26 (25.2%) had a variant in RAF1, and 11 (10.7%) had a variant in RIT1. A
detailed table of the genetic variants, including nucleotide and protein changes identified
for each syndrome, is provided in Table 5-3. Additionally, five patients had an additional
variant in a cardiomyopathy-related gene identified: one with a likely pathogenic (LP)
variant in MAP2K2 and a pathogenic (P) variant in MYH?7 (familial), one with an LP variant in
RAF1 and a VUS in MYH7, one with a pathogenic variant in PTPN11 and a VUS in MYH7, one
with an unknown RAS-MAPK variant and a VUS in FLH1, and one with a pathogenic variant
in KRAS and an additional VUS in MEK1.
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Table 5-3: Clinical syndrome by gene affected, nucleotide and protein change

Clinical Affected
N (%) Nucleotide Protein N (%) Significance
syndrome Gene
NS PTPN11 27 (21.1) c.923A>G p.Asn308Ser 4(14.8) P
€.922A>G p.Asn308Asp 3(11.1) P
c.836A>G p.Tyr279Cys 3(11.1) P
c.1528C>G p.GIn510Glu 2(7.4) P
c.124A>G p.Thrd2Ala 1(3.7) P
c.1391G>C p.Gly464Ala 1(3.7) P
c.1403C>T p.Thrd68Met 1(3.7) P
c.188A>G p.Tyr63Cys 1(3.7) P
c.218C>T p.Thr73lle 1(3.7) P
€.236A>G p.Glu79Arg 1(3.7) P
c.317A>C p.Asp106Ala 1(3.7) P
c.417G>C p.Glu139Asp 1(3.7) P
c.846C>G p.lle282Met 1(3.7) P
c.854T>C p.Phe285Ser 1(3.7) P
€.923A>C p.Asn308Thr 1(3.7) P
RAF1 26 (20.3) c.770C>T p.Ser257Thr 5(19.2) P
p.Ser257Leu 2(7.7) P
p.Ser257Gly 1(3.9) P



c.775T>A p.Ser259Thr 4 (15.4) P
c.781C>T p.Pro261Ser 3(11.5) P
c.768G>T p.Arg256Ser 2(7.7) P
c.779C>T p.Thr260lle 1(3.9) LP
c.776C>T p.Ser259Phe 1(3.9) P
€.1082G>C p.Gly361Ala 1(3.9) P
C.766A>G p.Arg256Gly 1(3.9) LP

RIT1 11 (8.6) ¢.170C>G p.Ala57Gly 2(18.2) P
€.244T>C p.Phe82Leu 2(18.2) P
c.151G>T p.Asp51Tyr 1(9.9) VUS
€.284G>C p.Gly95Ala 1(9.9) P
€.229G>A p.Ala77Thr 1(9.9) P
C.244T>A p.Phe82lle 1(9.9) P

LZTR1 4(3.1) c.1234C>T p.Argd12Cys 1(3.7) vus’
€.290G>T p.Arg97Leu 1(3.7) VUS

KRAS 2 (1.6) c.179G>T p.Gly60Val 1(50.0) P
c.346A>C p.Asn116His 1(50.0) LP

MAP2K?2 1(0.8) N/A N/A

SHOC2 1(0.8) N/A N/A

Not tested 32 (25.0)

Variant unidentified 24 (18.8)

NSML PTPN11 12 (63.2) c.836A>G p.Tyr279Cys 4(33.3) P
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c.1528C>G p.GIn510Glu 2(16.7) P

KRAS™ 1(5.3) c.173C>T p.Thr58lle 1 (100.0) P
Variant unidentified 6(31.6)
CS HRAS 9 (90.0) c.34G>A p.Gly12Ser 6 (66.7) P
c.34G>T p.Gly12Cys 1(11.1) P
c.466T>C p.Phel56Leu 1(11.1) P
C.64C>A p.GIn22Lys 1(11.1) LP
Variant unidentified 1(10.0)
CFCS BRAF 3 (50.0) c.1782T>G p.Asp594Glu 1(33.3) LP
MAP2K2 1(16.7) c.619G>A p.Glu207Lys 1(100.0) LP
KRAS 1(16.7) N/A N/A
Variant unidentified 1(16.7)
NS_LAH SHOC2 3 (50.0) c.4A>G p.Ser2Gly 1(33.3) P
KRAS 1(16.7) c.179G>T p.Gly60Val 1(100.0) P
Noonan-like
Variant not identified 2(33.3)
syndrome

Abbreviations: NS, Noonan syndrome; NSML, Noonan syndrome with multiple lentigines; CS, Costello syndrome; CFCS, Cardiofaciocutaneous syndrome; NS_LAH, Noonan syndrome with loose anagen hair; P,

pathogenic; LP, likely pathogenic; VUS, variant of uncertain significance; VUS (+), hot VUS.

*Conflicting evidence according to ClinVar suggesting this genetic variant might also be considered likely pathogenic.

“"Although KRAS is not considered a classical NSML gene, the clinical phenotype was felt to be consistent with a diagnosis of NSML by the referring clinician.
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5.4.3 Outcomes

Twenty-eight patients (16.6%) died [8 (28.6%) CHF; 3 (10.7%) SCD; 6 (21.4%) non-cardiac
cause; and 11 (39.3%) unknown] at a median (IQR) age of 105 (12.8-191.1) months. Thirty-
one patients (18.6%) underwent myectomy, and 9 (5.4%) had a primary prevention ICD
implanted. No patient underwent cardiac transplantation or secondary prevention ICD
implantation during the follow-up period.

Eleven patients (6.5%) experienced a SCD equivalent event [3 (27.3%) SCD; 5 (45.5%)
aborted cardiac arrest; 1 (9.1) appropriate ICD shock; and 2 (18.2%) sustained VT] at a
median (25%"-75% percentile) age of 12.5 (2.9-44.8) months, of whom 9 had a diagnosis of
NS, 1 NSML and 1 CS. Four patients did not have a gene variant identified, 2 had a
pathogenic variant in RAF1, 2 in PTPN11 and 1 each in RIT1, LZTR1 and HRAS. The calculated
SCD equivalent event incidence was 0.86 (95% Cl 0.48-1.56) per 100 person-years (see Table
5-4).



Table 5-4: Sudden Cardiac Death (SCD) incidence in children with Rasopathy-associated hypertrophic cardiomyopathy (HCM) from a Cox

proportional hazards model

Incidence per

Variable N (%) Events PYs
100 PYs (95% CI)
All participants 169 (100.0) 11 1,277.1 0.86 (0.48-1.56)
Gender
Male 104 (61.5) 6 792.5 0.76 (0.34-1.69)
Female 65 (38.5) 5 484.6 1.03 (0.43-2.48)

Family history

No 151 (89.3) 11 1085.2 1.01 (0.56-1.83)
Yes 18 (10.7) 0 191.9

NYHA/Ross classification
1 100 (61.0) 7 695.3 1.01 (0.48-2.11)
>2 64 (39.0) 4 537.0 0.74 (0.28-1.98)

Clinical syndrome

NS 128 (75.7) 9 1021.2 0.88 (0.46-1.69)
NSML 19 (11.2) 1 137.6 0.73 (0.10-5.16)
cs 10 (5.9) 1 48.7 2.05 (0.29-14.58)
CFCS 6 (3.6) 0 52.3
NS_LAH 3(1.8) 0 8.4
Noonan-like syndrome 3(1.8) 0 9.0




Gene

RIT1 11 (6.5) 1 75.4 1.33 (0.19-9.41)

RAF1 26 (15.4) 2 197.2 1.01 (0.25-4.05)

PTPN11 39 (23.1) 2 265.2 0.75(0.19-3.02)

HRAS 9 (5.3) 1 47.0 2.13 (0.30-15.10)

Unknown 66 (39.1) 4 548.1 0.73 (0.27-1.94)
Unexplained syncope

No 164 (97.0) 7 1253.3 0.56 (0.27-1.17)

Yes 5(3.0) 4 23.8 16.84 (6.32-44.87)
NSVT

No 158 (93.5) 7 1169.0 0.60 (0.29-1.26)

Yes 11 (6.5) 4 108.1 3.70(1.39-9.86)
LV outflow tract obstruction

No 105 (62.5) 5 727.5 0.69 (0.29-1.65)

Yes 63 (37.5) 6 532.0 1.13(0.51-2.51)

NYHA: New York Heart Association; NS: Noonan syndrome; NSML: Noonan syndrome with multiple lentigines; CS: Costello syndrome; CFCS: cardio-facio-

cutaneous syndrome; NS_LAH: Noonan syndrome with loose anagen hair; NSVT: non-sustained ventricular tachycardia; LV: left ventricular
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5.4.4 Missing data

Eighty-four patients (49.7%) had one or more missing data points for the predictor variables
in the HCM Risk-Kids model: 30 patients (17.8%) had one missing variable, 29 patients
(17.2%) had two missing variables, and 25 patients (14.8%) had three missing variables.

Table 5-5 provides further details on the missing data for each variable.

Table 5-5: Distribution of missing values

No. Missing No. Non-missing
Variable

values n, (%) values, n (%)
Gender 0(0.00) 169 (100.00)
Family history 0(0.00) 169 (100.00)
NYHA/Ross classification 5(2.96) 164 (97.04)
Clinical syndrome 0(0.00) 169 (100.00)
Affected Gene 0(0.00) 169 (100.00)
Unexplained syncope 0(0.00) 169 (100.00)
NSVT 0(0.00) 169 (100.00)
LV outflow tract obstruction 1(0.59) 168 (99.41)
Age at diagnosis 61 (36.09) 108 (63.91)
Age at first assessment 2(1.18) 167 (98.82)
Maximal left ventricular wall thickness (MLVWT) 25 (14.79) 144 (85.21)
MLVWT z score 49 (28.99) 120 (71.01)
LA diameter 56 (33.14) 113 (66.86)
LA z score 65 (38.46) 104 (61.54)
LV outflow tract peak gradient 49 (28.99) 120 (71.01)

5.4.5 Validation of HCM Risk-Kids

The performance of the HCM Risk-Kids model in predicting the 5-year risk in this cohort was

evaluated. Harrell’s C index was 0.60 (95% Cl 0.5-1), indicating moderate discriminatory



ability. When assessing the ability of the risk score to differentiate between high and low
risk using a 6% cutoff, the sensitivity was 9.4%, specificity was 63.9%, positive predictive
value (PPV) was 1.7%, and negative predictive value (NPV) was 91%. Figure 5- illustrates the
survival outcomes for the entire cohort and by risk category (low, medium, high) as defined
by the HCM Risk-Kids score, showing considerable overlap between the different risk
categories. The clinical syndrome, genetic information, and HCM Risk-Kids score parameters
for individuals with an SCD equivalent event are summarized in Table 5-6. Notably, 6 out of

11 (54.5%) patients who experienced an event were classified in the low-risk category.
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Figure 5-3: Kaplan-Meier survival curves for sudden cardiac death equivalent for whole cohort (A), by risk category (B), in patients with and

without a history of syncope (C) and in patients with and without evidence of NSVT on holter monitoring (D) in follow up time (years)



Table 5-6: Clinical diagnosis, genetics, HCM Risk-Kids score parameters of patients with sudden cardiac death (SCD) equivalent event

Clinical Risk MLVWT LA diameter LVOT gradient
Affected Gene 5-year risk (%) History of syncope NSVT on Holter
diagnosis category z score z score (mmHg)
NS Unknown Low risk 2.31 +3.4 +1.4 No No 4
NS Unknown Low risk 2.74 +2.4 +1.4 Yes No 14
NS Unknown Low risk 3.42 +8.2 -0.5 No No 16
NS RAF1 Low risk 3.56 +6.2 +1 No No 10
NS RIT1 Low risk 3.60 +6.5 +1.8 Yes Yes 110
CS HRAS Low risk 1.56 +1.4 +0.5 No Yes 8
NS PTPN11 Medium risk 421 +6.7 +2.2 No No 4
NS LZTR1 Medium risk 4.37 +3.9 +2.6 Yes No 2
NS Unknown High risk 6.12 +8.1 +2 No Yes 10
NS RAF1 High risk 7.43 +11.6 +1.3 No Yes 27

NSML PTPN11 High risk 8.63 +28.5 +1.1 Yes No 100




5.4.6 Predictors of SCD in RAS-HCM

Unexplained syncope (HR 42.17, 95% Cl 10.49-169.56, p < 0.001) and the presence of non-
sustained ventricular tachycardia (NSVT) on Holter monitoring (HR 5.48, 95% Cl 1.58-19.03,
p < 0.007) were identified as significant predictors of sudden cardiac death (SCD) or an

equivalent event in univariate analysis (see Table 5-7). Figure 5-3(C, D) illustrates the event-

free survival for patients with and without unexplained syncope, and with and without

NSVT, highlighting the increased risk associated with these predictors in this cohort.



proportional hazards model)

Table 5-7: Sudden Cardiac Death (SCD) predictors from a univariate analysis (Cox

Variable HR (95%Cl) p-value
Gender

Male 1

Female 1.33(0.41-4.36) 0.638
Family history

No 1

Yes 0 1.000
Age at diagnosis 1.01 (0.99-1.02) 0.298
NYHA/Ross classification

1 1

>2 0.78 (0.23-2.69) 0.695
Clinical syndrome

Noonan syndrome 1

Noonan syndrome with multiple lentigines 0.79 (0.10-6.29) 0.637

Costello syndrome 3.43 (0.41-28.69) 0.265

Cardiofaciocutaneous syndrome 0 1.000

Noonan syndrome with loose anagen hair 0 1.000

Noonan-like syndrome 0 1.000
Gene

PTPN11 0.58 (0.05-6.45) 0.659

RAF1 0.85 (0.08-9.42) 0.893

RIT1 1

HRAS 2.38 (0.14-39.89) 0.547

Unknown 0.57 (0.06-5.14) 0.616
Unexplained syncope

No 1.00

Yes 42.17 (10.49-169.56) <0.001
NSVT 5.48 (1.58-19.03) 0.007
Maximal wall thickness z score 0.90 (0.78-1.03) 0.134
LA diameter z score 0.73 (0.45-1.16) 0.177
LV outflow tract peak gradient 0.99 (0.97-1.01) 0.323
LV outflow tract obstruction

No 1

Yes 1.49 (0.45-4.91) 0.513




5.5 Discussion

To my knowledge, this is the first validation of a paediatric SCD risk prediction model, HCM
Risk-Kids, in children with Rasopathy syndromes and HCM. The findings suggest that HCM
Risk-Kids does not have good discriminatory ability in this population, although this may be
related to sample size and a relatively low event rate. Unexplained syncope and NSVT

appear to be predictors of SCD risk in children with RAS-HCM.
5.5.1 Prevalence of SCD

The reported prevalence of SCD in children with RAS-HCM has been estimated at 4%'72>°,
Although the prevalence of SCD and equivalent events in this study was relatively high at
6.5%, the annual incidence is lower than that seen in paediatric non-syndromic
populations?17:32 |t is possible that this may be overestimated in our study, as the cohort
consists of patients referred to a paediatric cardiology centre, and may therefore represent
a more severe phenotype. This could also explain the findings of a recent study suggesting a
similar cumulative incidence of SCD in children with RAS-HCM and those with non-
syndromic disease??3. Nevertheless, the findings highlight the fact that SCD can occur in
patients with RAS-HCM, emphasizing the importance of SCD risk prediction in this group of

patients.
5.5.2 Validation of HCM-Risk Kids

The findings of this study suggest that the HCM Risk-Kids model may not have good
discriminatory ability between low, medium, and high-risk categories in children with RAS-
HCM, and it has very low specificity and positive predictive value. This is further supported
by the fact that the majority of patients who experienced a SCD equivalent event were
classified as low risk based on the 5-year estimated SCD risk. Additionally, individuals with
RAS-HCM exhibit a distinct phenotype compared to patients with sarcomeric gene
variants!?1732 Despite a comparable prevalence of SCD equivalent events compared to the
original HCM Risk-Kids cohort*, our group was more symptomatic at baseline evaluation,
had unexplained syncope less frequently, and were more likely to have LVOTO. The poor
performance of the HCM Risk-Kids model in children with RAS-HCM may be related to the
relatively small sample size in this study, as supported by the finding that 2 of the variables

included in the model (NSVT and syncope) appear to be predictors of SCD in this population
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as well. Nonetheless, the findings suggest that the use of the HCM Risk-Kids model for 5-
year SCD prediction may not be appropriate in this population based on current evidence,

and larger multicentre studies are needed to further investigate this.
5.5.3 Predictors of SCD in RAS-HCM

Unexplained syncope and the presence of NSVT were shown to be predictors for SCD on
univariate analysis in this study, in line with adult and paediatric risk prediction models for
non-syndromic HCM*77:119 Syncope in patients with HCM may be related to arrhythmic
causes, haemodynamic abnormalities such as LVOTO, or abnormal vascular responses?>’;
our findings suggest that these mechanisms may also be important in patients with RAS-
HCM. Similarly, NSVT is an established risk factor for SCD in patients with non-syndromic
HCM, particularly in young individuals’323%240 and the findings in the present study suggest
that this may also be the case in children with RAS-HCM. In contrast, MLVWT and LAd did
not emerge as predictors of SCD in this cohort 2°8. These findings highlight the need to
identify specific risk factors in RAS-HCM and explore independent predictors in this
population.

5.5.4 Limitations

This study is limited by its retrospective design, which inherently involves missing or
incomplete data. To ensure robustness in the imputation of missing data, we incorporated
all relevant predictors into the imputation model that we considered important for
explaining missingness. The proportion of missing data was similar to that observed in the
HCM Risk-Kids cohort, and imputation diagnostics, including comparisons of means and
distributions of predictors before and after imputation, confirmed that the data had not
been distorted.

Additionally, we are investigating a rare condition with a low number of events, which is
lower than the paediatric sarcomeric cohort for which the HCM Risk-Kids model was
originally developed. Variations in clinical assessment and patient management were
inevitable, as patients were recruited from multiple centres and over different time periods.
Genetic testing was performed at the discretion of participating clinicians, and while a high
proportion of patients with a Rasopathy syndrome had a disease-causing variant identified,
it is unclear whether the genetic test results influenced the final diagnosis or merely

confirmed previous clinical suspicions.

128



Variations in echocardiographic protocols and the availability of images for retrospective
assessment across different centres and time periods also led to missing variables. Data
collection relied on patients being referred to collaborating paediatric cardiology centres,
meaning that those with mild phenotypes or severe, early mortality may not have been
included. As a result, the true incidence of SCD events in RAS-HCM is unknown. While this
study provides an event rate, it may not accurately represent the broader population
prevalence.

The small sample size and low event rate in our cohort resulted in wide confidence intervals
for the C-index values, reflecting uncertainty in the estimates. This limitation also precluded
a multivariate analysis to investigate independent predictors of SCD. Additionally, this study
focuses on a paediatric cohort, and the findings may not necessarily apply to older
adolescents or young adults with RAS-HCM.

The limitations of the study design could be addressed through future prospective, large
multicentre studies aimed at identifying predictors of SCD in patients with Rasopathy
syndromes and HCM. Further investigations into the role of additional imaging modalities
(such as echocardiography and cardiac MRI), electrocardiographic findings, and circulating
biomarkers in SCD risk prediction could provide valuable insights into improving risk

assessment in this population.

5.6 Conclusions

This study demonstrates that sudden cardiac death (SCD) and malignant ventricular
arrhythmias can occur in children with RAS-HCM. The HCM Risk-Kids SCD risk prediction
model, however, does not appear to have good discriminatory ability or calibration for this
population, suggesting that it may not be suitable for predicting SCD risk in children with
RAS-HCM. Unexplained syncope and the presence of non-sustained ventricular tachycardia
(NSVT) seem to be potential predictors of SCD in these patients. However, larger

multicenter studies are needed to further explore and validate these findings.
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Chapter 6 - Disease progression in Rasopathy-associated hypertrophic

cardiomyopathy

6.1 Introduction

Despite histological similarities to sarcomeric HCM?>°, RAS-HCM has distinct
pathophysiological mechanisms, primarily involving cell-cycle dysregulation!®:2¢9, The
clinical phenotype and natural history of RAS-HCM differ substantially from sarcomeric
HCM*3202 characterized by earlier onset, frequent biventricular involvement, and common
association with CHD. Patients with RAS-HCM typically present with smaller LV chambers
and higher rates of LVOTO%202243 Notably, mortality in the first year of life approaches 60%
and is predominantly due to CHF'%:243, Longitudinal data examining the evolution over time
of the RAS-HCM phenotype are limited, but small reports have suggested spontaneous
regression of LVH in up to 17% of cases and progression in approximately 34%%3174194 The
mechanisms underlying these divergent trajectories—whether representing true myocardial

remodelling or relative changes during somatic growth—remain poorly understood.

6.2 Aim

The aim of this chapter is to describe the long-term changes in cardiac phenotype in a large,

multicentre cohort of childhood-onset RAS-HCM.

6.3 Methods
6.3.1 Study population

This was a retrospective multicentre study of childhood-onset RAS-HCM. Data were
collected on patients presenting to a collaborating paediatric cardiology centre (Table 6-1)
under the age of 18 years with a diagnosis of HCM and a clinical and/or genetic diagnosis of
a Rasopathy syndrome were collected. Patients were excluded if they lacked data at
baseline assessment or if they did not have more than 1 follow up timepoint.

The collaborators from each participating centre guaranteed the integrity of data from their

institution. Eligible patients were identified by the principal investigator at each
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collaborating site. Data were collected independently at each participating centre and each

local investigator provided data on all consecutive patients with RAS-HCM from their centre.

Table 6-1: Collaborating Centres

Center Number of patients (%)
Great Ormond Street Hospital, London, UK 100 (49.8)

Naples, Italy 37 (18.4)

German Heart Center, Munich, Germany 34 (16.9)

Alder Hey, Liverpool, UK 14 (7.0)

Murcia, Spain 6 (3.0)

Glasgow Children’s Hospital, Glasgow, UK 5(2.5)

Birmingham Children’s Hospital, Birmingham, UK 2 (1.0)

Southampton General Hospital, Southampton, UK 2 (1.0)

Leeds General Infirmary, Leeds, UK 1(0.5)

6.3.2 Patient assessment and data collection

Data were collected at predefined intervals: baseline and 1, 2, 5, 10, and 20 years of follow-
up. Data included demographics, underlying syndrome, genotype, heart failure symptoms
(NYHAZ2Y/Ross functional classification?®, cardiac medication, and 2D transthoracic
echocardiogram findings. Assessment was made according to methods described in chapter

2.
6.3.3 Outcomes

The primary outcome was a composite of MACE: SCD or equivalent event, hospitalization
due to CHF symptoms, or cardiac transplantation. SCD equivalent event was defined as
appropriate ICD therapy, aborted cardiac arrest, or sustained VT with haemodynamic

compromise. Outcomes were determined by the treating cardiologist at each site.
6.3.4 Statistical Analysis

NYHA/Ross functional class was analysed as class | versus II-1V and I-1l versus IlI-IV. Changes
in MLVWT z-scores were categorized for analysis purposes as decreased (<-2), stable (-2 to

2), or increased (>2) based on average rate of change per year. End of follow-up was defined
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as last clinical follow up. Follow-up periods were predetermined and categorized into
clinically relevant intervals: baseline, 0-1.5, 1.5-2.5, 2.5-7.5, 7.5-15, and 15-35 years.
Continuous variables are presented as median (interquartile range) or mean * standard
deviation based on distribution, and categorical variables as frequencies (percentages).
Between-group comparisons utilized Mann-Whitney U test or Student's t-test for
continuous variables and chi-square or Fisher's exact test for categorical variables.
Disease progression was assessed using mixed-effects models with random intercepts and
slopes, accounting for within-subject correlation and between-centre variability.
Time-to-event analyses employed Kaplan-Meier methods and Cox proportional hazards
models. Variables for multivariable models were selected based on clinical relevance and
univariate p < 0.10. The final model includes all significant variables at p<0.10.

Statistical analyses were performed using Stata version 18.0 (StataCorp). Two-sided p < 0.05
was considered significant, without adjustment for multiple comparisons in secondary

analyses.
6.3.5 Missing data

Missing data patterns were systematically evaluated across all follow-up time points. The
average follow-up included 3.9 visits per patient (range: 1-7 visits). Analysis of missing data
mechanisms revealed no significant differences in baseline characteristics between patients
with complete and incomplete data (maximal wall thickness Z-score: p=0.54; NYHA
classification: p=0.099). Dropout analysis showed no significant association between

missingness and clinical variables (p=0.36), suggesting a missing at random mechanism.

6.4 Results
6.4.1 Population

Two-hundred-and-seventeen (217) patients were identified, of whom 3 were excluded due
to lack of baseline assessment data, and a further 13 were excluded due to <2 follow up
timepoints. The final study cohort consisted of 201 patients, of whom 155 (77.1%) had a
diagnosis of NS, 25 (12.4%) NSML, 12 (6.0%) CS, 4 (3.0%) CFCS and 4 (3.0%) NS-LAH. A

breakdown of Rasopathy syndrome by gene identified can be found in Table 6-2.
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Table 6-2: Rasopathy syndrome by gene identified

Syndrome, total N (%) Gene N (%)
Noonan syndrome, 155 (77.1) PTPN11 46 (29.5)
RAF1 36 (23.1)
RIT1 15 (9.6)
LZTR1 5(3.2)
KRAS 3(1.9)
Unidentified 7 (4.5)
Untested 37 (23.7)
Noonan syndrome with multiple lentigines, 25 (12.4) PTPN11 22 (88.0)
Untested 3(12.0)
Costello syndrome, 12 (6.0) HRAS 10 (83.3)
KRAS 1(8.3)
BRAF 1(8.3)
Cardio-facio-cutaneous syndrome, 4 (3.0) MAP2K2 1(33.3)
MEK1 1(33.3)
KRAS 1(33.3)
Unidentified 1(25.0)
Noonan syndrome with loose anagen hair, 4 (3.0) SHOC2 4 (100)

The median age at diagnosis of HCM was 0.4 years (0.03-2.73) and median age at baseline

assessment was 1.01 years (0.35-4.62). Forty-nine patients (24.6%) presented with heart

failure symptoms (NYHA/Ross functional class > I) and 99 patients (51.3%) were taking one

or more cardiac medications. Eighty-four patients (48.6%) had concomitant right ventricular

hypertrophy and 39 (28.1%) had evidence significant LVOTO. Sixty-seven patients (33.3%)

had concomitant CHD. Further information on the baseline characteristics of the whole

cohort can be found in Table 6-3.
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Table 6-3: Baseline characteristics of whole cohort (N=201)

Male

Female

BSA

Age at diagnosis of HCM (years)
Age at baseline assessment (years)
NYHA/Ross > |

Medication

LVEDD (mm)

LVEDD z score

IVST (mm)

IVST z score

LVPWT (mm)

LVPWT z score

LAd (mm)

LAd z score

MLVWT (mm)

MLVWT z score

LVOT gradient (mmHg)

LVOTO > 30mmHg

LVOTO > 50mmHg

Mid-cavity obstruction

RVH

RVOT gradient (mmHg)

RVOTO

Average E/E’

Systolic dysfunction
Hyperdynamic systolic function

Diastolic impairment

117 (58.2)

84 (41.8)

0.54 (0.37)

0.40 (0.03-2.73)
1.01 (0.35-4.62)
49 (24.6)

99 (51.3)
23.0(18.1-31.1)
-1.89 (1.89)
10.0 (7.0-12.7)
+9.6 (7.0)

6.8 (5.0-10.0)
+5.1(5.7)

24.5 (20.0-30.0)
+9.8 (7.4)

11.0 (8.0-13.0)
+10.5 (7.1)

27.0 (7.0-60.0)
64 (46.4)
39 (28.1)
45 (54.2)
84 (48.6)
19.5 (6.5-50.0)
42 (51.9)

11.4 (8.2-16.0)
1(1.8)

49 (87.5)
30(33.0)

BSA: body surface area; NYHA: New York Heart Association; LVEDD: left ventricular end diastolic

diameter; IVST: intraventricular septal thickness; LVPWT: LV posterior wall thickness; LAd: left atrial

diameter; MLVWT: maximal LV wall thickness; LVOT: left ventricular outflow tract; LVOTO: LVOT

obstruction; RVH: right ventricular hypertrophy; RVOT: right VOT; RVOTO: RVOT obstruction;
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6.4.2 Survivors vs non-survivors

Clinical and echocardiographic parameters of surviving patients were compared to those of
non-surviving patients at baseline assessment (N=173 vs N=18) and at one year of follow up
(N=117 vs N=17). Non-survivors were younger [0.3 (0.3-1.0) years vs 1.2 (0.4-5.4) years,
p=0.019] and smaller at baseline assessment [BSA 0.3 (0.3-0.4) vs 0.4 (0.3-0.7), p=0.020]. At
one year of follow up, a higher proportion of non-survivors was symptomatic [NYHA/Ross > |
N=6 (40.0%) vs N=15 (13.3%), p=0.009] and on cardiac medication [N=13 (86.7%) vs N=60
(53.6%), p=0.015], and had a higher left ventricular posterior wall thickness (LVPWT)
[7.5mm (6.0-10.2) vs 6.1mm (4.9-9.0), p=0.004] (Table 6-4).
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Table 6-4: Clinical and Echocardiographic Characteristics of Rasopathy-HCM Patients: Survivors Versus Non-Survivors at baseline and 1 year of

age

Baseline 1 year

Total Survivors Non-survivors p-value Total Survivors Non-survivors p-value

N=191 N=173 N=18 N=134 N=117 N=17
Sex 0.86 0.65
Male 113 (59.2%) 102 (59.0%) 11 (61.1%) 80 (59.7%) 69 (59.0%) 11 (64.7%)
Female 78 (40.8%) 71 (41.0%) 7 (38.9%) 54 (40.3%) 48 (41.0%) 6 (35.3%) 0.34
ﬁiistth‘ii)agmis 6.4 (1.0-37.7) 6.8 (1.0-45.9) 35(0.1-8.8)  0.21
Age (years) 1.1 (0.4-4.8) 1.2 (0.4-5.4) 0.5 (0.3-1.0) 0.019 2.1(1.3-6.1) 2.2 (1.4-6.4) 1.5 (0.9-2.5) 0.049
BSA 0.4 (0.3-0.7) 0.4 (0.3-0.7) 0.3 (0.3-0.4) 0.020 0.5 (0.4-0.8) 0.5 (0.4-1.0) 0.5 (0.4-0.6) 0.16
NYHA/Ross > | 43 (22.8%) 36 (21.1%) 7 (38.9%) 0.086 21 (16.4%) 15 (13.3%) 6 (40.0%) 0.009
Medication 90 (49.2%) 80 (47.9%) 10 (62.5%) 0.26 73 (57.5%) 60 (53.6%) 13 (86.7%) 0.015
LVEDD (mm) 23.4 (18.5-31.3) 23.4 (18.5-31.8) ;;2)(18.1- 0.44 gg:g)(Zl-Z- 26.5 (21.3-34.0) 24.0 (18.9-27.6) 0.46
LVIDD z score -1.8(1.8) -1.9(1.8) -1.0(1.8) 0.13 -2.0(1.9) -1.9(1.9) -2.3(1.8) 0.52
IVST (mm) 10.0 (7.0-12.5) 10.0 (7.0-12.8) 9.0(6.5-11.6) 0.48 9.2(7.0-13.5) 9.6 (7.0-14.0) 8.8 (7.5-11.2) 0.96
IVST z score 9.4 (7.0) 9.3(6.9) 10.1 (8.5) 0.71 7.6 (6.2) 7.6 (6.3) 7.5(5.0) 0.13
LVPWT (mm) 6.8 (4.9-9.8) 7.0 (5.0-10.0) 5.5(4.1-5.8) 0.370 6.2 (4.9-9.0) 6.1 (4.9-9.0) 7.5 (6.0-10.2) 0.004
LVPWT zscore 4.8 (5.3) 5.1(5.3) 1.9 (4.1) 0.056 3.5(4.8) 3.0(3.8) 7.4 (8.4) 0.27
LAd (mm) 25 (20-30) 25 (21-31) 23 (15-25) 0.19 25 (21-30) 25 (21-31) 24 (20-29) 0.19
LAd z score 10(7) 10(7) 5(6) 0.16 11 (8) 12 (8) 8(5) 0.82
MLVWT (mm) 10 (7-13) 11 (8-13) 10 (7-12) 0.64 10 (8-14) 10 (8-15) 10 (8-14) 0.31
MLVWT z score 10 (7) 10 (7) 12 (7) 0.47 9 (6) 9 (6) 11 (7) 0.27



Baseline 1 year
Total Survivors Non-survivors p-value Total Survivors Non-survivors p-value
N=191 N=173 N=18 N=134 N=117 N=17
(';’i'fo\e’\r’ZICZescore 0(5) 0(4) 4(7) 0.120
lc\glt_(\e/;/gyz score 016
Stable 57 (50.9%) 53 (53.0%) 4 (33.3%)
Improving 29 (25.9%) 23 (23.0%) 6 (50.0%)
Worsening 26 (23.2%) 24 (24.0%) 2 (16.7%)
RVH 77 (46.4%) 69 (44.8%) 8 (66.7%) 0.14 60 (50%) 51 (49.9%) 9 (64.3%) 0.074
(Lr\;?nTHggr)adie”t 27 (7-60) 23 (7-60) 35 (11-45) 0.64 20 (6-55) 15 (6-45) 54 (10-95) 0.057
LVOTO >30mmHg 61 (45.9%) 52 (43.3%) 9 (69.2%) 0.075 40 (40.4%) 33 (38.4%) 7 (53.8%) 0.29
LVOTO >50mmHg 37 (27.6%) 34 (28.1%) 3(23.1%) 0.70 25 (25.2%) 20 (23.3%) 5 (28.5%) 0.24
LVOTO category
Stable 119 (88.8%) 106 (89.9%) 14 (82.4%)
Improved 10 (7.5%) 10 (8.5%) 0 (0%)
Worsened 5(3.7%) 2 (1.7%) 3(17.6%)
Mid cavity
obstraction 43 (53.8%) 38 (55.1%) 5 (45.5%) 0.55 38 (52.8%) 32 (53.3%) 6 (50.0%) 0.83
?r::ﬂ'gadie”t 18 (6-48) 17 (6-50) 21 (16-40) 0.77 21 (4-52) 18 (4-50) 41 (20-62) 0.16
RVOTO 39 (50.6%) 35 (50.0%) 4 (57.1%) 0.72 32 (55.2%) 26 (52.0%) 6 (75.0%) 0.22
Diastolic impairment 28 (31.8%) 26 (32.1%) 2 (28.6%) 0.85 26 (32.5%) 22 (30.6%) 4 (50.0%) 0.27
Systolic dysfunction 1(1.9%) 1(2.0%) 0 (0.0%) 0.78 3 (5.9%) 3(6.2%) 0 (0.0%)
Hyperdynamic 47 (87.0%) 43 (86.0%) 4 (100.0%) 0.42 36 (70.6%) 33 (68.8%) 3 (100.0%) 0.25

systolic function

137



1 year

Baseline
Total Survivors Non-survivors p-value Total Survivors Non-survivors p-value
N=191 N=173 N=18 N=134 N=117 N=17

BSA: body surface area; NYHA: New York Heart Association; LVEDD: left ventricular end diastolic diameter; IVST: intraventricular septal thickness; LVPWT: LV posterior wall

thickness; LAd: left atrial diameter; MLVWT: maximal LV wall thickness; LVOT: left ventricular outflow tract; LVOTO: LVOT obstruction; RVH: right ventricular hypertrophy; RVOT:

right VOT; RVOTO: RVOT obstruction;
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6.4.3 Outcomes and predictors

Patients were followed up over a median of 7.3 years (3.1-12.6). During follow up, 18
patients (8.9%) died at a median age of 2.2 years (0.6-10.0) and 4 patients (2.7%) received a
heart transplant at a median age of 1.9 years (0.6-4.1). Twenty patients (8.7%) underwent a
septal myectomy at a median age of 3.3 years (1.1-13.2), while 15 patients (6.5%)
underwent surgery for CHD repair and a further 7 (3.1%) had a PV repair. Forty-two patients
(18.3%) had a MACE (incidence 1.401/100 patient years) and 16 (7.0%) had a SCD or
equivalent event (incidence 0.577/100 patient years) (Table 6-5).

Univariate analysis identified NYHA/Ross functional class > |, LVEDD z score, LVPWT z score,
MLVWT z score, LVOT gradient and RVH as potential predictors of MACE; on backwards
elimination multivariable analysis, NYHA/Ross functional class > | remained an independent

predictor of MACE [HR 7.08 (1.1-43.9) p = 0.035] (Table Table 6-6, Figure 6-1).

Kaplan—Meier survival estimate for major adverse cardiac event (MACE)

1 T
757
95% Cl
.54 —— Survivor function
.25
0
T T T T T T T
0 5 10 15 20 25 30
Follow up time (years)
Number at risk
182 103 56 20 5 1 1

Figure 6-1: Long-term freedom from major adverse cardiac events in paediatric Rasopathy-

associated hypertrophic cardiomyopathy with follow up time (years)



Table 6-5: Outcomes

VT/VF 13 (7.0%)
Cardiac arrest 5(4.5%)
CVS death 24 (10.4%)
SCD 2 (8.3%)
CHF 7 (29.2%)
Other CVS 2 (8.3%)
CHF requiring hospitalisation 27 (18.2%)
Heart transplant 4(2.7%)
SCD equivalent event 16 (7.0%)
MACE 42 (18.3%)
Atrial arrhythmia 11 (4.8%)
NSVT 12 (5.2%)
Cardiac device insertion 22 (9.6%)
ICD 14 (6.1%)
ILR 6 (2.6%)
PPM 1(0.4%)
ILR and ICD 2 (0.9%)
LV myectomy 20 (8.7%)
MV repair 2 (0.9%)
RV myectomy 5(2.2%)
PV surgery 7 (3.1%)
Other CHD surgery 15 (6.5%)

VT: ventricular tachycardia; VF: ventricular fibrillation; CVS: cardiovascular; SCD: sudden cardiac
death; CHF: congestive heart failure; MACE: major adverse cardiac event; NSVT: non-sustained VT,;
ICD: implantable cardioverter-defibrillator; ILR: implantable loop recorder; PPM: permanent
pacemaker; LV: left ventricle; MV: mitral valve; RV: right ventricle; PV: pulmonary valve; CHD:

congenital heart defect




Table 6-6: Univariate Cox regression for MACE

HR 95% CI p-value
BSA 0.55 0.0-15.4 0.305
Sex 1.85 0.2-20.1 0.613
NYHA/Ross >I 14.07 1.7-114.5 0.013
Medication 5.45 0.3-112.1 0.272
Age at diagnosis 0.93 0.5-1.6 0.804
LVEDD z score 0.67 0.4-1.13 0.132
IVST z score 1.03 0.9-11 0.542
LVPWT z score 1.17 1.0-14 0.049
LAd z score 0.84 0.6-1.3 0.408
MLVWT z score 1.09 1.0-1.2 0.097
LVOT gradient (mmHg) 1.05 1-1.1 0.039
LVOTO >50mmHg 3.89 0.2-76.9 0.373
RVH 11.58 0.7-184.6 0.083
RVOT gradient (mmHg) 1.02 1.0-1.1 0.391
RVOTO 7.66 0.12-487.0 0.337
Average E/E’ 1.15 0.9-1.5 0.263
Diastolic dysfunction 7.34 0.2-263.6 0.275
Previous CHD surgery 4.37 0.3-59.7 0.269




BSA: body surface area; NYHA: New York Heart Association; LVEDD: left ventricular end diastolic diameter; IVST: intraventricular septal thickness; LVPWT:
LV posterior wall thickness; LAd: left atrial diameter; MLVWT: maximal LV wall thickness; LVOT: left ventricular outflow tract; LVOTO: LVOT obstruction;

RVH: right ventricular hypertrophy; RVOT: right VOT; RVOTO: RVOT obstruction; CHD: congenital heart defect
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6.4.3.1 Complex atrial arrythmias

Among the twenty patients (9.9%) who were followed up beyond the age of 18 years into
adulthood, four patients (20%) had an episode of complex atrial arrhythmia. All events
[paroxysmal atrial fibrillation (N=2), flutter (N=1) or prolonged atrial tachycardia (N=1)] were
recorded on a cardiac monitor at a median age of 22.6 years (22.2-24.5) after a median
follow-up time of 3.4 years (1.9-6.4). The patients’ clinical and echocardiographic
characteristics at the time of the event are recorded in Table 3-7. Of note, all four patients
had dilated atria, 3 out of four had moderate mitral regurgitation and elevated average E/E’

at the time of the event

6.4.4 Phenotypic progression in survivors

Overall, symptomatic status improved [NYHA > | at baseline N=39 (20.9%) vs N=16 (15.4%)
at 10 years of follow up, p=0.009] while a higher proportion were on cardiac medication
[N=89 (49.4%) at baseline vs N=26 (56.5%) at follow up, p=0.015]. MLVWT z score [+10.3
(7.3) at baseline vs +8.9 (8.6) at 20 years of follow up, p=0.039], median LVOT gradient [23
(7-60)mmHg vs 7 (5-25)mmHg at 20 years of follow up, p=0.019] and median RVOT gradient
[17 (6-50)mmHg vs 5 (2-7)mmHg at 20 years of follow up, p=0.001] all improved during
follow up. LAd z score progressively worsened [+10.6 (7.5) at baseline vs +25.7 (10.2) at 20

years follow up, p<0.001]. (Table 6-8, Figure 6-2).

When applying a mixed effects model to estimate change per year of follow up in
echocardiographic measurements, LAd z score was predicted to increase by +1.17 (95% ClI
0.93-1.31, p<0.001) and average E/E’ to increase by +0.39 (95% Cl 0.01-0.77, p=0.047), while
RVOT gradient was predicted to decrease by -1.25mmHg (95% Cl -1.95 — 0.55, p<0.001).
(Table 6-9).

6.4.5 Symptomatic neonates

A separate analysis was conducted for patients who presented at baseline assessment with
significant symptoms of CHF (NYHA/Ross functional class IlI-IV). Of a total of 15 (7.5%) such
patients with a median age at baseline of 0.4 years (0.0-1.0), 5 (33.3%) died. Non-survivors
had a significantly smaller LVEDD z score [-4.2 (0.1) vs -0.9 (1.0), p=0.023] compared to

surviving patients (Table 6-10).



Table 6-7: Clinical and echocardiographic characteristics of patients with complex atrial

arrhythmias

Patient 1 Patient 2 Patient 3 Patient 4
Gender Male Female Female Male
Event AT AFL PAF PAF
Age at event (y) 29.71 20.17 22.52 20.65
Palpitations No Yes Yes Yes
NYHA I I Il I
Meds No b-blockers, amiodarone b-blockers b-blockers
LVEDD (mm) 47 23 39 50
MLVWT (mm) 26 18 10 12
LAd (mm) 52 42 45 44
LVOT (mmHg) 127 51 5 12
MR grade Severe Mild Moderate  Moderate
EF (%) 73 75 85 53
E/A 1.34 1.21 1.02 1.18
Average E/E' 24 25 24 6.6
RVH No Yes No No
Estimated RVSP (mmHg) 32 27 18
Device ICD ICD ICD No
LV myectomy No No No Yes

AT: atrial tachycardia; AFL: atrial flutter; PAF: paroxysmal atrial fibrillation; NYHA: New

York Heart Association; LVEDD: left ventricular end diastolic diameter; MLVWT: maximal

LV wall thickness; LAd: left atrial diameter; LVOT: left ventricular outflow tract; MR: mitral

valve regurgitation; RVH: right ventricular hypertrophy; RVSP: right ventricular systolic

pressure (+ right atrial pressure)
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Figure 6-2: Progressive Changes in left atrial diameter (z-score), maximal left ventricular wall thickness (z-score), and left and right outflow tract

gradients in childhood Rasopathy-associated hypertrophic cardiomyopathy with increasing age (years)



Table 6-8: Progression through follow up for survivors

Baseline 1 year 2 years 5 years 10 years 20 years

N=189 N=117 N=91 N=140 N=90 N=23 p value
BSA 0.43 (0.31-0.77) 0.52(0.42-0.98) 0.63(0.54-1.04) 0.77 (0.66-1.00) 1.06 (0.94-1.39) 1.55(1.42-1.82) 0.000
NYHA/Ross > | 39 (20.9) 15 (13.3) 12 (13.9) 21 (15.4) 16 (18.6) 3(13.0) 0.009
Medication 89 (49.4) 60 (53.6) 46 (54.8) 68 (50.0) 26 (56.5) 12 (54.6) 0.015
LVEDD (mm) 23.6(19.0-32.0) 26.5(21.3-34.0) 29.0(25.5-37.5) 30.9(27.8-34.0) 35.5(32.0-39.9) 41.4.(34.7-44.8) 0.000
LVIDD z score -1.9(1.9) -1.9(1.9) -1.5(1.6) -1.7 (1.9) -1.9 (2.9) -1.7 (1.5) 0.798
IVST (mm) 10.0 (7.0-14.0) 9.6 (7.0-14.0) 9.5(7.8-13.1) 10.4 (8.0-15.4)  14.2 (10.0-20.2) 10.9 (9.2-15.7) 0.000
IVST z score +9.9 (7.4) +7.6 (6.3) +7.1(5.4) +8.5(7.2) +10.5 (7.8) +7.1(8.3) 0.180
LVPWT (mm) 7.0 (5.0-10.6) 6.1 (4.9-9.0) 6.2 (5.5-9.0) 7.3 (6.0-10.3) 9.0 (7.0-12.1) 10.0 (8.0-12.0) 0.000
LVPWT zscore +5.3(5.3) +2.9 (3.8) +2.8 (3.5) +3.9 (4.4) +4.2 (3.8) +4.3 (4.8) 0.105
LAd (mm) 25.6(21.0-31.1)  25.2(20.1-31.0) 28.4(24.4-34.5) 29.2(25.4-35.2) 34.1(29.2-41.1) 36.8 (31.1-48.8) 0.000
LAd z score +10.6 (7.5) +11.5 (7.8) +13.9 (7.7) +14.9 (6.9) +20.7 (7.4) +25.7 (10.2) 0.000
MLVWT (mm) 11 (8-14) 10 (8-15) 11 (8-14) 11 (5-15) 14 (11-20) 15 (11-19) 0.000
MLVWT z score +10.3 (7.3) +8.8 (6.4) +8.1 (5.6) +8.3 (6.5) +10.5 (7.1) +8.9 (8.6) 0.039
MLVWT z score

0.693

difference -0.5(-1.8-+1.9) -0.5(-1.3-+0.7)  -0.14 (-0.7-+0.6)  +0.0 (-0.5-+0.8) -0.1 (-0.2-+0.1)
MLVWT z score
category 0.160
Stable 53 (53.0) 59 (72.8) 95 (84.8) 63 (87.5) 16 (88.9)



Improving
Worsening

LVOT gradient
(mmHg)

LVOTO >30mmHg
LVOTO >50mmHg
LVOTO category
Stable

Improved
Worsened

RVH

RVOT gradient
(mmHg)

RVOTO

Average E/E’
Diastolic

impairment

Systolic dysfunction

Hyperdynamic

systolic function

23 (7-60)
56 (42.4)
38 (28.8)

76 (46.1)
17 (6-50)
37 (50.0)

12.2 (8.2-15.3)

30 (34.1)
2(3.7)

46 (83.6)

23 (23.0)
24 (24.0)

15 (6-45)
33(38.4)
20 (23.3)

105 (89.7)
10 (8.5)
2(1.7)

51 (49.0)

19 (4-50)
26 (52.0)

12.2 (8.6-16.1)

22 (30.6)
3(6.3)

33 (68.8)

14 (17.3)
8(9.9)

10 (6-43)
27 (34.6)
17 (21.8)

83 (91.2)
7(7.7)
1(1.1)

35 (42.7)

15 (2-36)
16 (32.0)

12.0 (8.7-18.8)

24 (35.8)
0(0.0)

23 (67.7)

7 (6.3)
10 (8.9)

9 (6-50)
30(31.3)
22 (22.9)

129 (92.1)
8(5.7)
3(2.1)

51 (40.2)

4 (1-21)
11 (27.5)

10.7 (8.2-17.9)

33(39.8)
0(0.0)

46 (65.7)

4(5.6)
5 (6.9)

36 (8-88)
26 (59.1)
18 (42.9)

85 (94.4)
3(3.3)
2(2.2)

26 (39.4)

6 (2-17)
6 (25.0)

15.3 (10.4-25.1)

25 (62.5)
2 (4.1)

32 (65.3)

2 (11.1)
0(0.0)

7 (5-25)
3(27.3)
2(18.2)

20 (87.0)
2(8.7)
1(4.3)
6 (31.6)

5(2-7)
0(0.0)

10.9 (8.1-13.7)

4 (36.4)
0(0.0)

9 (60.0)

0.019
0.290
0.240
0.022

0.280

0.001

0.220

0.082

0.270
0.660

0.250

BSA: body surface area; NYHA: New York Heart Association; LVEDD: left ventricular end diastolic diameter; IVST: intraventricular septal thickness; LVPWT: LV posterior wall thickness; LAd: left atrial diameter;

MLVWT: maximal LV wall thickness; LVOT: left ventricular outflow tract; LVOTO: LVOT obstruction; RVH: right ventricular hypertrophy; RVOT: right VOT; RVOTO: RVOT obstruction;




Table 6-9: Temporal Evolution of Cardiac Structure and Function in Paediatric RAS-HCM

Coefficient 95% Confidence interval p-value
LVEDD (mm) 1.052472 0.8768147 1.2281292 0.000
LVEDD z score -0.0116443 -0.0683194 0.0450307 0.687
IVST (mm) 0.3643576 0.2351896 0.4935257 0.000
IVST z score -0.0526351 -0.1942272 0.0889569 0.466
LVPWT (mm) 0.1965385 0.1161815 0.2768956 0.000
LVPWT z score -0.0740062 -0.1524461 0.0044338 0.064
LAd (mm) 1.0814559 0.8056242 1.3572875 0.000
LAd z score 1.1735362 0.9330838 1.4139885 0.000
MLVWT (mm) 0.3598424 0.2584094 0.4612753 0.000
MLVWT z score -0.0555402 -0.1635077 0.0524272 0.313
LVOT gradient (mmHg) 0.04818 -0.7632386 0.8595986 0.907
RVOT gradient (mmHg) -1.2494336 -1.9514087 -0.5474585 0.000
Average E/E’ 0.3891165 .0045577 .7736754 0.047

LVEDD: left ventricular end diastolic diameter; IVST: intraventricular septal thickness; LVPWT: LV
posterior wall thickness; LAd: left atrial diameter; MLVWT: maximal LV wall thickness; LVOT: left

ventricular outflow tract; RVOT: right VOT



Table 6-10: Comparison of Symptomatic Neonates With Rasopathy-HCM: Outcomes Based

on Clinical and Echocardiographic Parameters

Total Survivors Non-survivors
N=15 N=10 N=5 p-value

Sex 0.26

Male 9 (60.0%) 7 (70.0%) 2 (40.0%)

Female 6 (40.0%) 3 (30.0%) 3 (60.0%)
Age at HCM diagnosis (months) 2.8 (0.3-10.6) 2.1 (0.0-3.9) 3.5(0.6-17.4) 0.55
Age at baseline (years) 0.4 (0.0-1.0) 0.5(0.3-1.0) 0.4 (0.0-0.4) 0.066
BSA 0.3(0.2-0.3)  0.3(0.3-0.4) 0.2(0.2-0.3) 0.11
NYHA/Ross 0.52

1] 13 (86.7%) 8 (80.0%) 5 (100.0%)

vV 2 (13.3%) 2 (20.0%) 0 (0.0%)
Medication 12 (80.0%) 7 (70.0%) 5 (100.0%) 0.17
LVEDD (mm) 19.2 (15.4-21.4) 21.4 (19.2-38.0) 14.7 (14.0-15.4) 0.083
LVEDD z score -2.2 (1.9) -0.9 (1.0) -4.2 (0.1) 0.023
IVST (mm) 11.5(9.9-16.3) 12.5(8.4-19.0) 11.2(10.2-14.3) 1
IVST z score 16.1 (7.6) 15.7 (8.8) 16.9 (5.7) 0.82
LVPWT (mm) 9.5 (5.3-11.0) 11.0(6.7-11.1) 5.8(5.2-6.5) 0.19
LVPWT z score 8.1(4.3) 9.1(4.1) 4.2 (2.1) 0.15
LAd (mm) 24 (15-42) 33 (24-42) 15 (15-15) 0.22
LAd z score 10 (13) 15 (13) 1(.) 0.53
MLVWT (mm) 12 (10-16) 12 (10-19) 11 (10-14) 0.67
MLVWT z score 16 (7) 16 (8) 16 (6) 0.97
RVH 10 (71.4%) 6 (60.0%) 4 (100.0%) 0.13
LVOT gradient (mmHg) 58 (42-75) 58 (10-143) 55 (44-70) 1
LVOTO > 30mmHg 6 (85.7%) 2 (66.7%) 4 (100.0%) 0.21
LVOTO >50mmHg 4 (57.1%) 2 (66.7%) 2 (50.0%) 0.66
RVOT (mmHg) 24 (16-58) 14 (14-14) 30 (19-85) 0.18
RVOTO 3 (75.0%) 0 (0.0%) 3 (100.0%)

BSA: body surface area; NYHA: New York Heart Association; LVEDD: left ventricular end diastolic
diameter; IVST: intraventricular septal thickness; LVPWT: LV posterior wall thickness; LAd: left atrial
diameter; MLVWT: maximal LV wall thickness; LVOT: left ventricular outflow tract; LVOTO: LVOT

obstruction; RVH: right ventricular hypertrophy; RVOT: right VOT; RVOTO: RVOT obstruction;



6.5 Discussion

This is a large, multicentre study using serial data to evaluate disease progression in
paediatric RAS-HCM. The major finding is the demonstration of progressive LA dilatation
and diastolic impairment associated with complex atrial arrythmias in early adulthood.
Symptomatic status and a smaller LV cavity are predictors of MACE and non-surviving

symptomatic patients presenting in infancy, respectively.
6.5.1 Long-term cardiac phenotype evolution

A major novel finding in the present study was the progressive development of LA dilatation
and diastolic impairment in patients with RAS-HCM, despite no increase in LVH or LVOTO,
and the high prevalence of complex atrial arrhythmias in early adult life 261252, albeit that
the numbers are small. Recent data from the European Cardiomyopathy and Myocarditis
Registry have highlighted inadequate utilisation of anticoagulation in adult patients with
HCM, despite a high prevalence of AF and stroke?®3; the findings in the present study
suggest that similar vigilance and early consideration of anticoagulation may also be
necessary in young adults with RAS-HCM.

In contrast to sarcomeric HCM, where MLVWT increases during adolescence and early
adulthood?*>48264 44 the degree of LVH and LVOT gradients remain stable over time in
childhood-onset RAS-HCM. As MLVWT contributes to risk prediction for SCD in non-
syndromic HCM14265:266 it is possible that the lack of progression of LVH may partly explain
the lower reported SCD rates in RAS-HCM. In keeping with previous reports of improving
pulmonary valve stenosis in children with Rasopathies!8182 the RVOT gradient was found

to improve with time in our cohort.
6.5.2 Functional status as a predictor of outcome

Another novel finding in this study is the identification of CHF symptoms as a time-
independent predictor of MACE in RAS-HCM. While NYHA functional class > | at baseline
assessment has been shown to be a predictor of adverse cardiac outcomes in adults with
HCM?%7, this has not previously been serially assessed in children with RAS-HCM. As
NYHA/Ross functional class assessment is a reproducible clinical tool, a change in functional

status should prompt closer surveillance and management.



6.5.3 Risk factors for early mortality

Patients with RAS-HCM are known to have a higher mortality rate during the early disease
course, especially during the first 6 months of life, attributable to CHF#3179, In keeping with

previous studies!”?

, younger age at presentation and concomitant CHD requiring surgery
were risk factors for early mortality. In addition, in the present chapter, symptomatic
neonatal patients who did not survive had significantly smaller LV cavities. This may
contribute to reduced LV stroke volume?®® leading to a smaller functional reserve in those
symptomatic neonates. This finding, if confirmed in larger studies, may allow better

selection of patients who may benefit from early consideration of treatment, including with

novel therapies such as mTOR and MEKi?5°,
6.5.4 Limitations

This chapter is limited by inherent problems of retrospective studies, in particular, missing
or incomplete data. The nature of a rare condition such as RAS-HCM resulted in a relatively
small population sample with low event rates for independent outcomes, although this is
the largest clinical cohort of RAS-HCM reported to date. This prevented investigation of
independent predictors of cardiac mortality or SCD using a multivariate analysis. A small
proportion of patients were followed up into adulthood, so the finding of complex atrial
arrhythmias would need to be corroborated in a larger scale study in the adult population.
Symptomatic neonates included in this chapter were small in number and thus the
comparative findings should be interpreted with caution and re-investigated in a larger scale
study aimed at this population. Data collection for this cohort relied on patients being
referred to collaborating paediatric cardiology centres. Therefore, it is possible that patients
who either had a very mild phenotype, not warranting referral to an expert centre, or,
conversely, had a very severe phenotype resulting in early death in a neonatal or paediatric

unit, may not have been included in this chapter.

6.6 Conclusions

Patients presenting with RAS-HCM in childhood develop progressive diastolic dysfunction
and LA dilatation, resulting in complex atrial arrhythmias in early adulthood. NYHA/Ross

functional class >l is an independent predictor of MACE.
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Chapter 7 — Conclusions, overall limitations and future work

7.1 Summary of findings

This thesis provides a comprehensive, chapter-wise evaluation of the natural history,
phenotypic expression, and risk profile of paediatric Rasopathy-associated hypertrophic

cardiomyopathy (RAS-HCM), using a robust, multicentre international cohort.

Chapter 3 presents the first systematic characterisation of the natural history of RAS-HCM in
children. The chapter demonstrates that, while overall survival has improved in recent
decades, morbidity remains substantial. Key features of this cohort include early age at
diagnosis, predominantly infancy, frequent biventricular hypertrophy, and a high burden of
congenital heart defects. Disease severity varied significantly by genotype and syndrome
subtype, with RAF1 and RIT1 mutations conferring a more severe cardiac phenotype.
Concomitant congenital heart disease, infantile presentation, and impaired functional class

emerged as predictors of worse outcomes.

Chapter 4 evaluates resting and ambulatory ECG features. The study identifies distinct
electrocardiographic features in RAS-HCM, namely left axis deviation, repolarization
abnormalities, and increased arrhythmia burden. NSVT was observed in a significant subset
of patients and was associated with MACE. Moreover, specific ECG patterns, such as

pathological T-wave inversion and ST depression, correlated with adverse outcomes.

Chapter 5 focuses on sudden cardiac death (SCD) risk stratification, providing the first
external validation of the HCM Risk-Kids model in a syndromic HCM population. The findings
revealed a modest predictive performance, highlighting that the model, which was
developed for non-syndromic HCM, should not be used to predict risk in RAS-HCM.
Furthermore, NSVT and unexplained syncope were significantly associated with SCD-
equivalent events in RAS-HCM, while the presence of pathogenic variants did not confer

added predictive value.

Chapter 6 investigates longitudinal disease progression, showing that structural and

functional cardiac parameters often evolve over time, with left atrial enlargement and
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worsening diastolic dysfunction being the most consistent markers of deterioration, while
LVH remains overall stable. In a smaller subset followed up into adulthood, a high
prevalence of complex atrial arrythmias was noted, highlighting the need for further

research into this finding.

7.2 Overall limitations

The principal limitations of this study are related to its retrospective, multicentre design.
Variability in imaging protocols, data completeness, and genetic testing strategies across
institutions and over time introduced potential biases. The inability to perform multivariate
analysis for rare outcomes such as SCD limits the robustness of risk prediction modelling.
Moreover, some sub-analyses were underpowered due to small sample sizes, particularly
for specific genotypes and long-term follow-up beyond early adulthood. The selection of
patients from tertiary paediatric cardiology centres may skew the cohort toward more
severe phenotypes. However, this is the largest and most complete cohort to date of
paediatric patients with RAS-HCM leading to ability to perform investigative and predictive

analyses that have not been previously published.

7.3 Future work

The results of this thesis highlight a number of important areas for future research in RAS-
HCM. Building on the limitations of retrospective data and the novel risk factors identified
here, several directions are both feasible and necessary.

A key priority is the establishment of prospective multicentre cohort studies to validate the
risk factors identified in this work and to allow for the development of robust multivariable
models of SCD prediction. A prospective design would reduce the biases inherent to
retrospective analyses, enable uniform outcome adjudication, and allow for systematic
collection of multimodal data. Such studies are critical to provide the time-to-event
information needed to refine risk stratification in this patient group.

Equally important is the development of syndrome-specific risk stratification tools. This
thesis has shown that existing non-syndromic models underperform in RAS-HCM,
emphasising the need for tailored approaches. Future models should incorporate genetic

determinants, detailed imaging features, functional measures such as cardiopulmonary
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exercise testing, and electrocardiographic parameters. Integrating these domains into a
single framework would improve clinical decision-making and align with precision cardiology
strategies.

Further work is required to understand the long-term natural history of RAS-HCM. The
current findings suggest that atrial arrhythmias, diastolic dysfunction, and left atrial
dilatation become more relevant with advancing age, yet long-term follow-up into
adulthood remains limited. Extended longitudinal studies would clarify the arrhythmic
burden, thromboembolic risk, and progression to heart failure, and would guide surveillance
and preventative management in older survivors.

The role of novel biomarkers also warrants investigation. Imaging techniques such as
myocardial strain analysis, T1 mapping, and extracellular volume quantification may reveal
early myocardial changes not captured by standard measures. Pilot data are already
available from a multicentre cohort of 47 children with RAS-HCM who underwent CMR.
Compared with s-HCM, patients demonstrated a higher indexed LV mass but a lower
prevalence of LV LGE, supporting distinct pathophysiological mechanisms. Notably, RAF1
variants were associated with more severe hypertrophy, higher LV mass index, and
hyperdynamic function, underscoring genotype-specific phenotypic differences. Over seven
years of follow-up, potential CMR predictors of MACE included reduced LV end-diastolic
volume, low LV cardiac output, and the presence of RV hypertrophy. These findings highlight
the utility of advanced imaging biomarkers for refining risk stratification and identifying
high-risk phenotypes in RAS-HCM, but further in-depth analysis of prospective raw CMR
data is needed.

The analysis of CPET data would also be of interest — this has not been previously described
in RAS-HCM and its use in predicting outcomes has not been explored. Pilot data is available
from 55 children with RAS-HCM undergoing CPET and compared to s-HCM demonstrating
that children with RAS-HCM have reduced exercise tolerance relative to healthy peers, with
lower prevalence of exercise-induced arrhythmias and ischaemia compared to s-HCM. CPET
is feasible and informative in symptomatic patients, supporting its use in clinical assessment
and providing pilot data for future studies evaluating prognostic value and exercise guidance
in paediatric RAS-HCM.

Similarly, circulating markers of fibrosis, myocardial injury, and pathway dysregulation could

complement imaging to provide dynamic risk assessment. Incorporating such biomarkers
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into longitudinal studies may improve both phenotypic characterisation and monitoring of
disease progression. Pilot data for circulating biomarkers of 36 patients with RAS-HCM, 36
patients with s-HCM, 13 with a Rasopathy syndrome but no HCM and 26 gene negative
controls suggest that there are differences between those groups, but further samples and
analysis are needed to delineate if a biomarker panel would be viable.

Finally, translational efforts should focus on targeted therapies. Early clinical experience
with MEK inhibitors in high-risk genotypes such as RAF1 and RIT1 has shown encouraging
results, including regression of hypertrophy and improved haemodynamics. However, these
observations remain preliminary. Carefully designed, genotype-informed clinical trials are
needed to evaluate efficacy, safety, and timing of intervention, ideally within international
collaborative frameworks to overcome the challenges of small patient numbers. Other
pathway modulators, such as mTOR inhibitors, may also warrant exploration in selected
patient groups.

In summary, future research should combine prospective clinical studies, biomarker
development, and therapeutic innovation. Together, these efforts have the potential to
move RAS-HCM management beyond extrapolation from non-syndromic cohorts and

towards tailored, evidence-based strategies for risk prediction and treatment.

7.4 Conclusions

This thesis establishes RAS-HCM as a genetically and clinically heterogeneous disease with
significant implications for prognosis and management. Compared to sarcomeric HCM, RAS-
HCM is characterized by earlier onset, frequent biventricular involvement and progressive
atrial dilation. The identification of modifiable and time-independent predictors of adverse
events provides a framework for clinical risk stratification and intervention. The lack of
applicability of standard SCD prediction models further underscores the necessity of a
dedicated risk assessment paradigm for this population. Overall, this work enhances our
understanding of RAS-HCM and proposes practical, clinically relevant strategies for its long-

term management.
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