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Abstract—In this paper, we provide an analytical study of
single-carrier faster-than-Nyquist (FTN) signaling for integrated
sensing and communications (ISAC). Our derivations show that
FTN is advantageous for ISAC, and reveal new insights that
these advantages come from the fact that FTN signaling can
effectively avoid the spectral aliasing due to the mismatch
between the symbol rate and the bandwidth of the shaping pulse.
Specifically, the communication spectral efficiency advantages
of FTN signaling over time-invariant multipath channels are
analytically shown, where both upper- and lower-bounds on the
spectral efficiency are derived. We show that the gap between
these two bounds corresponds to the potential signal-to-noise
ratio (SNR) variation due to the presence of multipath delay
and spectral aliasing, which diminishes as the symbol rate grows
higher. Particularly, in the limiting case, this SNR variation
disappears while the degree of freedom (DoF) of the system attain
the maximum. Furthermore, the sensing advantages for FTN
signals are verified in terms of the expected normalized squared
ambiguity function. We show that FTN signals generally enjoy a
more robust ranging performance. More importantly, we prove
that FTN signaling can effectively avoid the undesired peaks in
the considered ambiguity function along the Doppler dimension,
thereby reducing the ambiguities in velocity estimation. All these
conclusions are explicitly verified by numerical results.

Index Terms—ISAC, FTN signaling, ambiguity function, spec-
tral efficiency

I. INTRODUCTION

Integrated sensing and communications (ISAC) is listed as
one of the six usage scenarios in the 6G recommendation [1].
It is expected to play a vital role for facilitating emerging
applications and services that require sensing capabilities, such
as autonomous vehicles [2] and extended reality [3]. The key
feature of ISAC is the accommodation of both communica-
tion and sensing functionalities using a single well-designed
signal [4]-[6], which requires the signal to be, on one hand,
robust against communication channel dynamics, and on the

S. Li and G. Caire are with the Faculty of Electrical Engineer-
ing and Computer Science, Technical University of Berlin, Germany (e-
mail:{shuangyang.li, caire} @tu-berlin.de).

F. Liu is with the National Mobile Communications Research Laboratory,
Southeast University, China (e-mail: f.liu@ieee.org).

Y. Xiong is with the School of Information and Electronic Engineering,
Beijing University of Posts and Telecommunications, China. (e-mail: yifengx-
iong@bupt.edu.cn).

W. Yuan is with the School of System Design and Intelligent Manufac-
turing, Southern University of Science and Technology, China. (e-mail:
yuanwj@sustech.edu.cn).

B. Bai is with the State Key Lab. of ISN, Xidian University, Xi’an 710071,
China. (e-mail: bmbai @mail.xidian.edu.cn).

C. Masouros is with the Department of Electrical and Electronic Engineering,
University College London, UK (email: c.masouros@ucl.ac.uk).

other hand, suitable for exploiting the sensing channel char-
acteristics. This particular requirement has motivated recent
studies on the physical layer waveform design for pursuing
favorable performance tradeoffs between communications and
sensing [7]-[9].

A fundamental difference between typical communication
signals and sensing signals is the fact that communication
signals need to modulate random information symbols, while
the sensing signal usually prefers a deterministic pattern that is
well-optimized for sensing parameter exploitation, e.g., chirp
signals [10]. This subtle difference leads to the recent studies
on the fundamental tradeoff between communications and
sensing in [11], where the authors quantitatively evaluated
the significance of the deterministic-random tradeoff (DRT)
in point-to-point ISAC over Gaussian channels. Although
the solution for achieving the optimal communication and
sensing tradeoff is derived in [11], the required DRT could
be hard to achieve in practice, especially in next-generation
wireless networks. This is because of the exceedingly high
data rate required in future wireless networks, which inevitably
pushes the ISAC transmission to a communication-centric
mode [5]. Therefore, an interesting and practically important
study is to characterize the sensing performance using random
communication signals, which is the motivation of this work.

The sensing performance under random communication
signals has been evaluated in several recent studies. In [12],
the sensing performance using orthogonal frequency-division
multiplexing (OFDM) communication signals has been stud-
ied. Particularly, an optimal probabilistic constellation shaping
approach was proposed to maximize the achievable informa-
tion rate under the power constraint, which is developed based
on a modified Blahut-Arimoto algorithm [13]. The optimality
of OFDM for achieving the lowest ranging sidelobe using
random communication signals with practical constellations
has been verified in [14]. Interestingly, [14] also reveals
that the sidelobes for ranging and Doppler sensing using
random communication signals have a close connection to the
kurtosis of the constellation alphabet from which the infor-
mation symbols are randomly taking values. In this context,
the Gaussian constellation was proved to be a special case,
whose sensing performance is independent of the choice of
the communication modulation format. Furthermore, “sub-
Gaussian” and “super-Gaussian” constellations are defined
according to the values of their kurtosis, whose optimal
ranging performances are proved to be achieved by OFDM
and single-carrier transmissions, respectively. The importance



of pulse shaping for sensing using random communication
signals is studied in [15], where the connections between the
shaping pulse and the data sequence on the expected squared
ambiguity function for typical Nyquist communication signals
were highlighted. Furthermore, the pulse design for sensing
using single-carrier communication signals was considered
in [16]. The pulse optimization issue is formulated subjected
to the constraints on the Nyquist no intersymbol interference
(ISI) condition, power constraint, and a reasonable out-of-
band emission, which is then solved by using successive
convex approximation (SCA) and alternating direction method
of multipliers (ADMM) approaches. The resultant designed
pulse yields a significant sensing performance improvement
compared with sensing using root-raised cosine (RRC) pulse
shaped communication signals. All the aforementioned works
were focused on Nyquist communication signals, while the
performance of sensing using non-Nyquist communication sig-
nals, to the best knowledge of the authors, remains unexplored.

Against the above background, we study the impact of non-
Nyquist signaling for ISAC under the framework of faster-
than-Nyquist (FTN) signaling in this paper. FTN signal is a
typical non-Nyquist (non-orthogonal) signal that was firstly
considered by Shannon in the landmark paper [17] and then
popularized by Mazo in [18], which intentionally introduces
controllable ISI at the transmitter side in order to improve
the communication efficiency [19]. From a practical point
of view, FTN signaling is an important bandwidth-efficient
waveform suitable to meet the stringent data rate requirements
of wireless networks. The application of FTN signaling in
satellite communications was considered in [20], where a
significant boost of spectral efficiency can be observed by
using a practical iterative detection and decoding scheme.
The suitability of FTN signaling in 5G network was studied
in [21], where the authors discussed the potential advantages
of single-carrier FTN signaling for uplink communications in
the presence of large antenna arrays. One of the reasons for
this suitability is the low peak-to-average power ratio (PAPR)
property of single-carrier FTN signaling, which was also
highlighted in [22]. The practical application of FTN signaling
in achieving high data rate was considered in [23], where
a practical detector capable of supporting FTN with high-
order quadrature-amplitude modulation (QAM) constellation
(up to 65536-QAM) was proposed. The proposed detector was
developed according to the ADMM approach and exhibited a
good tradeoff between the performance and complexity. The
hardware implementation of FIN signaling based on CMOS
and FPGA was reported in [24], which demonstrates the fact
that FTN signaling can be used to achieve higher bandwidth
efficiency with acceptable complexity overhead. A dedicated
chip designed for FTN signaling was reported in [25], which
achieves a twofold improvement in bandwidth usage with
similar performance as that of an OFDM system. From a
theoretical point of view, the application of ISAC using the
FTN signal is inherently interesting due to its unique spec-
tral properties. In the conventional Nyquist transmission, the
symbol rates are often mismatched with the bandwidth of the
practical Nyquist pulses, such as RRC pulses, since the perfect
sinc pulse is not realizable in practice [19]. Consequently, the

spectrum of Nyquist communication signals usually suffers
from spectral aliasing due to the excess bandwidth required
for achieving orthogonality. On the contrary, this aliasing
can be effectively avoided by simply transmitting symbols
faster. As a result, FTN signaling is capable of exploiting the
degrees of freedom (DoFs) offered by the excess bandwidth
of the shaping pulse [26] for enhancing the communication
spectral efficiency. This improvement in spectral efficiency has
been witnessed in many scenarios, including but not limited
to additive white Gaussian noise (AWGN) channels [26],
Gaussian broadcast channels [27], and multiple-input multiple-
output (MIMO) channels [28], [29]. More importantly, it is
not clear in the literature how the spectral aliasing will affect
the sensing performance, since the typical radar waveform
does not need to modulate random information symbols and
therefore the spectral aliasing will not appear in general.

In this paper, we study the communication and sens-
ing performance of single-input single-output (SISO) single-
carrier FTN signaling, where the impact of spectral aliasing
is thoroughly considered. Specifically, we derive the spectral
efficiency of single-carrier FTN over time-invariant multipath
channels. Different from [30], which assumes that the chan-
nel state information (CSI) is known at the transmitter, we
consider the practical case where the CSI is available only at
the receiver and therefore, the optimal water-filling solution
is not applicable!. Furthermore, the sensing performance of
FTN signals is evaluated by considering the expected squared
ambiguity function that is a general performance metric inde-
pendent from the underlying sensing channel condition. The
major contributions of this paper are summarized as follows.

o We first evaluate the effective communication channel
matrix of FTN transmissions and verify that it is asymp-
totically Hermitian Toeplitz. Thanks to this property, we
are able to derive the communication spectral efficiency
based on the Szegd’s theorem, which relies on the
discrete-time Fourier transform (DTFT) of the Toeplitz
coefficients.

o We derive the upper- and lower-bounds on the Toeplitz
coefficients’ DTFTs, which explicitly take into account
the impact of spectral aliasing and multipath delay. Re-
lying on these bounds, we further derive the upper- and
lower-bounds on the spectral efficiency of FTN signal-
ing over time-invariant multipath channels. Our analysis
shows that the channel delay leads to potential signal-
to-noise ratio (SNR) variation for FTN signaling via the
spectral aliasing and this SNR variation reduces as the
symbol rate grows higher. Particularly, in the limiting
case, where the symbol rate is no smaller than the signal
bandwidth, both derived upper- and lower-bounds on the
spectral efficiency coincide with each other and the DoF
attains its maximum while the SNR variation disappears.

e We derive the expected squared ambiguity function of
single-carrier FTN signals with respect to the given
constellation alphabet. According to this result, the rang-

It should be noted that the capacity-optimal precoded FTN signal is
equivalent to a Nyquist signal shaped by a sinc pulse with a larger effective
bandwidth, as implied by [26].



ing performance is analyzed. Particularly, we define the
accumulated IST function for characterizing the impact of
transmit IST of FTN signaling in ranging, where its spe-
cial oscillating response with respect to different delays
is revealed. Furthermore, we show that this oscillating
behavior is explicitly caused by the spectral aliasing,
and verify that FTN signals have more robust ranging
performance in terms of the expected squared ambiguity
function.

o We further evaluate the Doppler sensing performance
of FTN signals and prove that the spectral aliasing
will introduce undesired peaks in the expected squared
ambiguity function along the Doppler dimension. As a
result, no such undesired peaks will appear in the case of
FTN transmissions with a sufficiently high symbol rate.

Notations: The letters A and E denote the constellation set,
the expectation operator, respectively; Var returns the variance
of the underlying distribution; (-)* and (-)¥ denote the trans-
pose and the Hermitian transpose for a matrix, respectively;
det (-) returns the determinant of a matrix; “{-}” returns the
real part of a complex number; &(-) denotes the Dirac delta
function; I (a;b) denotes the mutual information between a
and b; I, denotes the identity matrix of size M x M.

II. SYSTEM MODELS AND PRELIMINARIES

In this study, we focus on the single-carrier FTN signal-
ing using a real-valued shaping pulse p (¢) that is energy-
normalized and band-limited, whose bandwidth? is W. Let x
be the transmitted symbol vector of length N, i.e., occupying
N time slots. Assume that the n-th entry of x, i.e., x,, for
1 < n < N, equiprobably takes values from an energy-
normalized complex constellation A. Then, the transmitted
signal is written as [26], [31]

N
s(t) = VE.Y wap(t —nT), (1)
n=1

where T is the Nyquist symbol period, E is the average
symbol energy, and 0 < £ < 1 is the FTN compression factor.
When ¢ = 1, the above transmitted signal degrades to the
Nyquist signal.

Let us consider the signal transmission over the time-
invariant communication channel of the form

I
h(t,7) :Zhl§(T—Tl), (2)
=1

which contains L resolvable paths and each path has a re-
solvable delay 7, i.e., 7 # 7, VI,I’ € [1,L], and a fading
coefficient h;.

2The bandwidth in this paper is defined as the “two-sided” bandwidth,
covering the frequency interval from negative frequency to positive frequency.
The famous Nyquist no-ISI theorem considers the “one-sided” bandwidth,
which is half of the “two-sided” bandwidth considered in the paper. Hence,
it states that the symbol rate needs to be higher than twice of the bandwidth
for avoiding ISI.

According to (2), the received signal for communication can
be written as

L N
’I“(t): \/Ezzhlxnp(t_ngT_Tl)"'_n(t)v (3)

=1 n=1

where n (t) is the AWGN process with one-sided power
spectral density (PSD) Ny. After the matched-filtering with
respect to p (t), we obtain a set of sufficient statistics of the
information symbol x given by

= | T (O (- meT)dr

L N
=Y WVEY wagln—mml+nm. 4
=1 n=1

Here, g [k, 7] denotes the ISI between symbols that are apart
in time by kT + 7, which is given by

g [k, 7] é/Oo p(t)p* (t+ kET + 7)dt

— 00

= [ )P e G2 (T AL
where H,, (f) is the Fourier transform of p (¢) and (5) holds
due to the Parseval’s Theorem?®. In (4), 7,, is the corresponding
colored noise term satisfying E [1,,7] = g [n — m, 0] Ny. Let
y be the received symbol vector of length N, whose m-th
element is given by ¥,,. According to (4), we have

L
y=VE.» hGx+n, (6)
=1

A T . .
where 1 = [n1, 12, ...,nn] " is the colored noise sample vector
and Gy is the effective channel matrix corresponding to the
[-th resolvable path given by

g [OaTl] g [1377] g [N - 1’ Tl]
G, = g [_.177_1] g [077—1] )
g []— 7.N7 Tl] g [07 Tl]

which is a real Toeplitz matrix. Furthermore, we have
E (nn™) = NoGo, where Gy is given by (7) assuming 7o =
0, which is a Hermitian Toeplitz matrix by definition. Notice
that (6) contains non-negligible ISI, and therefore an advanced
equalizer is usually required for FTN signaling. Typical FTN
equalizers include M-BCJR algorithms [32], [33], channel
shortening based equalizers [34], [35], and frequency-domain-
equalization (FDE) based equalizers [36]. These equalizers
have demonstrated good performance-complexity tradeoff in
practical FTN transmissions [37].

For the sensing functionality, the ambiguity function of the
transmitted signal s (¢) is defined as

AF,(t,v) 2 /

— 00

oo

s(t)s* (t—71)e72™E=T)qt,  (8)

In this paper, we assume that the shaping pulse p(t) is a Lebesgue
integrable function such that its Fourier transform is well-defined.



where 7 and v are delay and Doppler offsets, respectively*.
Alternatively, the ambiguity function can also be calculated
from the frequency domain. Let H,(f) be the Fourier trans-
form of s (t). Then, (8) can be equivalently written by

ax. ()= [ T HUDE (-0 TR )

It is known that the squared ambiguity function essentially
characterizes the sensitivity of the transmitted signal at differ-
ent delay and Doppler offsets when a matched-filtering based
sensing receiver is applied>. In fact, the ambiguity function
has a close relationship with the Cramér—Rao bound that is
the universal lower-bound for estimation problems. At low
SNRs, the Cramér—Rao bound primarily influenced by the
sidelobes of the ambiguity function, whereas at high SNRs, it
is governed by the curvature of the mainlobe [38]. Therefore,
in the framework of ISAC, we are interested in the average
squared ambiguity function with respect to each pair of 7
and v, ie., E [|AF, (7,v)|?], where the expectation is taken
over the random vector of modulation symbols x after the
square operation since AF (7,7) can have a complex value.
Further simplification on E [|AF, (r,v)|?] is possible by
considering (1) and this will be studied in Section IV.

A. Assumptions and Preliminaries

Before starting our analysis, it is important to first clearly
introduce the assumptions and some frequently used prelimi-
nary knowledge in this subsection. Throughout this paper, we
consider the following assumptions on the complex constella-
tion A.

Constellation Assumption (Unit-Power Rotational Sym-
metric Constellation): Let A be a rotational symmetric con-
stellation with unit-power. Then, we have

Ela;] =0, E[a}]=0, and E[la]?] =1, (10)

where a; € A is a possible constellation point.

It should be noted that the commonly adopted constellations
follow the above assumption generally, including the phase-
shift keying (PSK), and QAM constellations, except for BPSK
and 8-QAM. A useful concept for our study is the kurtosis of
the constellation, which is defined as follows.

Definition 1 (Constellation Kurtosis [14], [15]): For a
rotational symmetric constellation A with zero mean and unit
power, its kurtosis is defined as

E [|(IL — E [a7] ‘4]
{E[la; — Efas] ’I}

where a; € A is a possible constellation point. O

L

5 = E Uai|4] )

Ha (11)

41t should be noted that there is an alternative definition of the ambiguity
function, ie., AF, (r,v) & [0 s(t)s* (t—7)e 92™dt. The only
difference is that (8) has an additional phase term. In fact, both definitions are
widely considered and technically correct, where the additional phase term
in (8) can be seen as the result that the signal is firstly shifted in frequency
by v and then shifted in time by 7.

5To the best knowledge of authors, the sensing receiver design for FTN
signaling is still a new topic. Therefore, we consider the conventional matched-
filtering based sensing receiver in this paper.

As will be shown later, the kurtosis serves as an important
metric for evaluating the sensing performance under random
communication signals.

We now introduce the concept of folded-spectrum that is
widely used in the literature of FTN signaling. The definition
of folded-spectrum is given as follows.

Definition 2 (Folded-Spectrum [26], [39]): Given the sym-
bol rate 1/£T and the underlying signaling pulse spectrum

|H, (f) %, the folded-spectrum is a strictly band-limited fre-
quency function defined as
0 2
2 A n
|Hio (/)] fn;w H, (f— §T> : (12)
for f € {—Q%T, Q%T} and zero otherwise. O

Furthermore, it is convenient to define the twisted folded-
spectrum as follows.

Definition 3 (Twisted Folded-Spectrum [40]): Given the
symbol rate 1/£7" and the underlying signaling pulse spectrum
|H, ( P, the twisted folded-spectrum is a strictly band-
limited frequency function defined as

2

Nt n
o (OF 25,0 - Y |, (1= 7). a9
nZ0
for f € {—25%, 25%] and zero otherwise. %

The physical insight of the above definitions is important. In
fact, both the folded-spectrum and the twisted folded-spectrum
are two extreme cases considering the spectral aliasing® due
to the mismatch of the symbol rate the and bandwidth of
p(t). Recall that the bandwidth of p (¢) is W. The spectral
aliasing happens when W > 5%’ and in this case the folded
spectrum is the limiting case when the overlapped spectrum
add up constructively. On the other hand, the twisted folded-
spectrum indicates the case where the overlapped spectrum add
up destructively. One interesting observation is that when £ is
sufficiently small such that W < %T, there will be no spectral
aliasing and we have |He, (f))? = |Huo (f))° = |H, NP
We define the particular value of & = = as the saturation
threshold, which indicates the maximum compression factor
for the system to avoid the spectral aliasing. More importantly,
it was shown in [26] that this saturation threshold is the
maximum compression factor leading to the full exploitation
of the system DoF. Note that for any 7'-orthogonal pulse
p(t), its bandwidth must satisfy that W > %, where the
equality only achieves when p(t) is a sinc pulse. Therefore,
the effective DoF of FTN signaling is always larger than that
of the Nyquist signaling under non-sinc shaping pulses. We
show the plots of the folded-spectrum and twisted folded-
spectrum in Fig. 1(a) and Fig. 1(b), where a RRC function
with a roll-off factor S = 0.3 is considered. Letting T' = 1,
we have W = 1.3 according to the definition of the RRC
function, which yields the saturation threshold &, =~ 0.769.

6In fact, Nyquist signaling with sinc pulse can also avoid the spectral
aliasing. However, since the sinc pulse is not realizable in practice, FTN
signaling is therefore practically the only way for achieving no spectral
aliasing [26].
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(b) Twisted folded-spectrum with £y = 0.769.

Fig. 1. Illustrations of both folded-spectrum and twisted folded-spectrum with the saturation threshold £o = 0.769.

As shown in figures, both the folded-spectrum and the twisted
folded-spectrum align with the spectrum of the shaping pulse
when € < &y. On the other hand, the folded-spectrum becomes
the spectrum of the sinc pulse for & = 1, while the twisted
folded-spectrum for & = 1 shows a degraded energy due to
the destructive spectrum superposition.

In addition to the above discussions, it is also useful to
discuss the so-called “Dirichlet kernel” of the form

N .
Z pl2manéT _ jjma(N+1)ET sin (mzNET)

sin (rz€T) (14)

n=1
The Dirichlet kernel is commonly studied in the field
of Fourier analysis. Particularly, it can be shown that
25:1 e?2mentT g a periodic signal of = with a period of g%
This property will be applied in the following discussions.

B. Conditions for Fair Comparison

The aim of this paper is to fairly evaluate the communication
and sensing performance of FTN signals in comparison to the
Nyquist counterpart. To this end, we consider the following
conditions to ensure a fair comparison.

o We consider both FTN and Nyquist signals have roughly
the same PSD [26], [40]. This is ensured by setting
E, = PET, where P is the transmit power same for both
FTN and Nyquist signals. In other words, the average
symbol energy in FTN transmission is smaller than that
of the Nyquist transmission, because more symbols are
“squeezed” into the transmission duration for the FTN
case, resulting in a more compact spectrum.

o« We consider the normalized constrained capacity, i.e.,
maximum achievable spectral efficiency, without water-
filling for evaluating the communication performance,
which inherently assumes Gaussian constellations and
infinite codeword length. The meaning “constrained ca-
pacity” in our study refers to the constraints on the
symbol rate, i.e., FTN rate or Nyquist rate [26].

« We consider the expected normalized squared ambiguity
function for evaluating the sensing performance. To make

the problem mathematically trackable, a common approx-
imation adopted in the literature is the following [14],
[41]

E [|A]—"S (1,v) |2} _E [|AF, (1,v) 7] 15)

[AF, (0,0 2]~ E[IAF, (0,0) ]

This simplifies the problem and allows us to focus on
the analysis of E [|AF, (7, v) |?]. The motivation of this
approximation is that [AF_ (0,0)|? is roughly the sum
symbol energy of the information symbols that stays
invariant when N is sufficiently large due to the law of
large numbers.

o We assume that both FTN signals and Nyquist signals
occupy roughly the same time and frequency resources
for transmission. In other words, we require that FTN
signal contains roughly 1/£ more symbols compared to
the Nyquist counterpart. This corresponds to the fact that
both FTN and Nyquist signals are modulated by vectors
of information symbols with different lengths but the
same sum symbol energy.

III. COMMUNICATION PERFORMANCE ANALYSIS

To evaluate the communication performance, we study the
normalized constrained capacity without water-filling in the
following. Assume that the entries in x are i.i.d. circularly
symmetric Gaussian variables with unit energy. The maximum
achievable spectral efficiency of the considered FTN transmis-
sion is given by

L1
2~ I(y:
R = Nerw (¥ %)
1 E L L
:mlogQ det (IN + FS l_g - l/g_l hlhT/GlG?G()l)

bits per second per Hz, (16)

where the positive-definiteness of Gy in the asymptotic
regime’ is verified in [39]. In fact, the underlying matrices

It was shown in [39] that Gg is a full rank matrix for any strictly
bandlimited or time-limited p ().



involved in (16) have special properties that enables the effi-
cient calculation of the spectral efficiency via Fourier analysis,
which will be discussed in the following.

A. Properties of ISI Matrices
Let us first focus on Dy £ hyh}, GG, VI,I' € [1,L]. In
the asymptotic regime, i.e., N — oo, the (n,m)-th entry of
D, is given by
(o]
Dy y [n,m] = hihy, Z gli—mn,7)gli —m,m].

1=—00

A7)
From (17), one may easily verify that Dy [n,m] =
Dy n+1,m+1], Vn,m. Therefore, D; ;s is a Toeplitz
matrix in the asymptotic regime, whose Toeplitz coefficients
are given by

dl l’ Z hlhl/ m, Tl] [ —n,n/], (18)
for —oo < n < oo. Furthermore, according to (18), it can be
shown that d; ;v [n] # df;, [-n], for | # I'. Therefore, Dy is
not a Hermitian Toephtz matrix for [ #£ [’

Even though D; ;; may not be Hermitian in general, we can
show that T & Dy + Dy is asymptotically Hermitian
Toeplitz, for I # I’, by noticing that Dy ; = D}fl,. More
specifically, notice that the summation of Toeplitz matrices is
also a Toeplitz matrix. Therefore, the Toeplitz coefficients of
Ty~ are given by

tl,l’ [n] :dl,l’ [TL] + dl/’l [n] ,
Z hzh?g [m7 Tl] g [m -n, Tl’]

m=—0oo

+ Z hl’hzkg [mlle’]g [m/ - 71,7'[] )

m/=—o00

19)

for —oo < n < oco. Furthermore, it is not hard to verify that
ti [n] =7, [-n], and therefore T ;s is Hermitian.

We have shown that both D;;, and T,;;; are Hermitian
Toeplitz matrices in the asymptotic regime. Notice that

L i—1
ZZhlhl,GGl,—ZD”—kZZT”, (20)
1=110=1 =1 j=1

which is also a Hermitian Toephtz matrix asymptotically.
Note that G ! js also a Hermitian Toeplitz matrix asymp-
totically [27]. Hence, the matrix involved in the determinant
in (16) is Hermitian Toeplitz asymptotically. As a result, the
Szego’s Theorem can be applied for calculating (16). This is
studied in the following subsection.

B. Spectral Efficiency Calculation based on Fourier Analysis

To calculate the spectral efficiency, we first state the Szegd’s
Theorem as follows.

Lemma 1 (The Szegd’s Theorem [42], [43]): Let V denote
a size N x N Hermitian Toeplitz matrix V, i.e.,

Vo U1 UN -1
V-1 Vo UN -2
V= . ) . ) (15)
Vi-N UV2-N - Vo

whose eigenvalues are given by {\g, A1,... Ay_1}. Then, for
an arbitrary continuous function f.(-), we have

1 N1 1
dm > e =5 )

where V (w) is the corresponding DTFT of the Toeplitz
coefficients {...,v_o,v_1,v0,v1,02,...} with w = 27 f€T,
and it is given by

fc(

(w))dw,  (16)

Vi(w) = Zk:_oo vge I, (17)
O
To apply the Szegd’s Theorem to (16), we need to calculate

the DTFTs of the Toeplitz coefficients of Gg, D;;, and T /.

According to [27], [40], the DTFTs of the Toeplitz coefficients

of Gy and T; are calculated as

Go (27 fET) = Z gn, o] exp (—j2mnéTf),  (18)
Diy (27 f€T) =|h? Z Z [m, ) g[m = n, 7]
exp (—j2mnéT'f), (19)
and
Ty (2 fET)
-y (mh; S glmmlglm—n,m]
Fhohi S g[mﬁw]g[m’—n,n]) exp (~j2mneT ),
T (20)

respectively. Note that G, D, ;, and T ;» are Hermitian matri-
ces. Therefore, Go (27 f¢T'), Dy (2n fET'), and T; (27 fET)
are of real values [42]. Further simplifications to (18), (19),
and (20) are possible by considering (5) and the results are
summarized in the following lemma.

Lemma 2 (DTFTs of Toeplitz Coefficients): In the case
where |H, (f))? is symmetric, i.e. |H, (NP = |H, 5
the DTFTs of Toeplitz coefficients for Go, Dy, and T}/, are
given by

[e) 2
Go (2 f€T) = ng ) ‘ p(f‘gT) @
D RS n\|? jorzpn
U(Qﬂ'ffT)—(fT)Q > |H, f—?T I T
oo 2
> |Hy (f—g) e PTET(22)
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H o —]27r£—T'rl 23
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respectively.
Proof: The proofs are given in Appendix A. ]

Notice from Lemma 2 that the channel delay has direct
effect on Dy s (2w f€T) and T} (27 fET'), which essentially
characterizes the eigenvalue distribution of D;; and T; ;. In
fact, these DTFTs have a close connection with the folded-
spectrum and twisted folded-spectrum defined in Section II-A,
which is summarized in the following corollary.

Corollary 1 (DTFTs, Folded-Spectrum, and Twisted Folded-
Spectrum): The DTFT Gq (27 f€T') given in (21) satisfies

Go (2mf€T) = fiTleo I (24)

TET 2ET . Furthermore, the DTFT D;; (2n f¢T)

given in (22) satisfies
|Pu?
(€1)?

forfe[ L

||
(€1)?

5| Hro ()| Higo (f)° < Dy (21 fET) <

(25)

1
for f € { 2T %T

in (23) satisfies
2R {hlh* j2m f(m— T,/)}

} Finally, the DTFT T} ;s (2n f(T') given

Hi, ()| H
T |Hto (f)|"Hig (f)
wWRIh h* e]Qﬂ'f(n )
<Tyv (2nfET) < {h }LHE(fNQHhB(f%
(€1)?
(26)
where
a [ Hio (f) 2, if R {Whjel?m/(n=m)} > 0,
HLB (.f) - { ‘Hfo (f) |27 if R {hlhzk/ejZﬂ'f(n—Tl/)} < O,
27
and
a ‘Hfo (f)|2, if%{hlhrleﬂwf(nfn/)} >0,
Huygp (f) = { \Hyo (f) 2, if R {hlh;ej%rf(n—ru)} <0,
(28)
respectively.
Proof Notice that Dl 1 (27 fET)

2
@y, X B [H (7= ) E |, (- ¢
Therefore, the proof of Corollary 1 is straightforward by
comparing (12) and (13) to (21), (22), and (23), and
considering the Cauchy—Schwarz inequality [40]. |
With the above derivations, we are ready to calculate the
spectral efficiency in (16) as shown in the following theorem.
Theorem 1 (Spectral Efficiency of FTN Signaling over
Time-Invariant Multipath Channels): The spectral efficiency

0, (f - "5\-

of FTN signaling over multipath channels under the system
model in (6) is given by (29) as shown at the top of this
page, where P = E,/£T is the average transmit power and
T (27 f€T) is given in (30). Furthermore, it can be upper- and
lower-bounded by

26T P
10g2 (1 + FOCI)UB (f)) df, 3D
and

R = */ log, ( + N£¢LB (f)) df, (32)
2£T
respectively, where ®yp (f) and ®rp (f) are given in (33)
and (34) at the top of this page, respectively. More importantly,
the derived two bounds coincide with each other when the
symbol rate is higher than the bandwidth of the shaping pulse,
i.e., = > W. In this case, we have

o T
- L %1 14+ — hﬂ“f” \H, ()] | d
w1 Z |, (1) | df.

(33)

Proof: The proofs are given in Appendix B. |

As shown in Theorem 1, the spectral efficiency of FTN
signaling not only relates to the channel condition, but also

(f)|*,depends on the connections between the spectrum of the

shaping pulse and the symbol rate, i.e., the impact of spectral
aliasing. Some interesting observations are summarized as
follows.

« We notice that the symbol rate potentially increase the
DoF, i.e., the pre-log factor (integral range), of the system,
while the channel delay affects only the effective SNR per
frequency component for the transmission. Specifically,
the effective SNR is determined by both the channel
condition and the spectral aliasing with respect to the
channel delay, where the impact of the latter is captured
by the derived upper- and lower-bounds. Particularly, the
upper- and lower-bounds correspond to the constructive
and destructive superposition among spectrum compo-
nents, which are achievable under particular channel
delay and shaping pulse. In other words, the channel
delay can introduce SNR variations for FTN signaling
through spectral aliasing.

e There is a non-trivial tradeoff between the DoF and the
potential SNR variation from spectral aliasing. Particu-
larly, the potential SNR variation attains its maximum
when ¢ = 1, i.e., the Nyquist case®, while the DoF is

maximized when ¢ < ﬁ Slmllar tradeoff on SNR
vs. DoF has also been reported in [40] under a different
transmission scenario.

o In the limiting case, where the DoF is maximized, i.e.,
&< ﬁ the potential SNR variation due to the spectral
aliasing disappears. This observation aligns with the
findings in [26].

8In fact, our analysis also holds for slower-than-Nyquist signaling with
& > 1. However, such a signaling is rarely considered in practice and therefore
we will not focus on the related discussion.
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« Note that our above analysis is derived based on the prop-
erties of folded-spectrum and twisted folded-spectrum,
which is not limited to only RRC pulses. In fact, our
analysis can also extend to non-RRC pulses straight-
forwardly as long as both folded-spectrum and twisted
folded-spectrum are well-defined.

o It should be highlighted that our analysis is derived
based on the time-invariant channel model, which may
only hold for transmissions with a finite block length.
In this context, the derived results can be viewed as a
good approximation to the actual achievable rate given a
sufficiently long block length, according to the asymptotic
equivalence between the Toeplitz matrix and circulant
matrix [44], [45]. Furthermore, this approximation be-
comes exact when a cyclic prefix (CP) longer than the
channel delay spread is adopted in the system, such that
the effective channel matrix becomes circulant.

C. Numerical Results of Communication Performance

We present the numerical results of the derived spectral
efficiency in this subsection. Under the assumption of i.i.d.
circular symmetry Gaussian symbols, we define the SNR as
P/Ny for evaluating the performance under the same PSD.
The spectral efficiency performance for both FTN and Nyquist
signals is illustrated in Fig. 2, where a RRC shaping pulse with
roll-off factor § = 0.3 and T" = 1 is applied. In the simulation,
a fixed channel with L = 3 paths is considered, where the
fading coefficients are given by h; = 1/ VL, for1 <1< L,
and the delays are given by 0, 0.27, and 0.57, respectively. As
observed, the actual spectral efficiency is accurately bounded
by the derived upper- and lower-bounds for both FTN and
Nyquist transmissions. Furthermore, we notice that the bounds
coincide with each other for the FTN signaling with £ = 0.75,
which is expected as &y ~ 0.769 for § = 0.3. This indicates
the system has the maximized DoF and no SNR gain from the
spectral aliasing.

—©— ¢ = 1, achievable rate

= © =¢ =1, upper-bound

[ |*©@ ¢ =1, lower-bound
—#A— ¢ - 0.75, achievable rate

L™ A = ¢ =0.75, achievable rate
£ =0.75, achievable rate

Spectral Efficiency (bits/s/Hz)

10 12
P/N, (dB)

I I I I
0 2 4 6 8

Fig. 2. Numerical results of the spectral efficiency with £ = 1 and £ = 0.75,
where the dashed and dot lines are the upper and lower bounds. Here, the
RRC pulse with 5 = 0.3 and 7" = 1 is considered.
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Fig. 3. Numerical results of the ergodic spectral efficiency with £ = 1 and
& = 0.85, where the dashed and dot lines are the upper and lower bounds.
Here, the RRC pulse with 8 = 0.3 and 7" = 1 is considered, and the channel
has L = 3 paths with a uniform power delay profile and the maximum delay
iS Tmax = 27T



We illustrate the ergodic communication performance in
Fig. 3 with 8 = 0.3 and T = 1. Specifically, we consider the
average spectral efficiency with 100000 Monte Carlo trials,
where the channel has L = 3 paths, the fading coefficients
are generated randomly following a uniform power delay
profile, and the channel delays are uniformly distributed within
[0, Tmax] satisfying Timax = 27'. From the figure, we observe
the same conclusions from the previous figure, where the SNR
gain decreases with a higher symbol rate, while the DoF
gain increases. This verifies the performance advantages of
FTN signaling over Nyquist signaling in general time-invariant
multipath fading channels. In addition, since the achievable
rate of OFDM equals to that of single-carrier signaling under
Gaussian constellations and optimal detection, it is expected
that the considered single-carrier FTN signaling outperforms
OFDM in terms of communication performance as well.

IV. SENSING PERFORMANCE ANALYSIS

In this section, we study the sensing performance of FTN
signaling by focusing on the ambiguity function. By substitut-
ing (1) into (8), we obtain

AF g (1,v)
N N 0
=F, Z Z o / p(t —n&T)
n=1ln'=1 -

p*(t—n'eT — 1) e 72T qt

N N
=B, Y > wpa e T AT, (0 —n) €T — 7,0)
n=1n’'=1

(30)

where AF), (7,v) is the ambiguity function of p(¢) with
respect to the delay and Doppler offsets 7 and v, respectively.
Furthermore, by taking the square norm of (30) and applying
the expectation with respect to x, we have

E [|AF, (r,0)]]

N N N N
. ’ . ’
=E§ § § § § E [l,nx:/mzl,k,]efj2ﬂ'n u§T€j27rk vET

n=ln/=1k=1k'=1
AF, (" =n)ET — 1,v) AF, (K = k) €T — 7,v) . (31)
According to (10), it can be shown that
4, n:n/:k:k/a
_ / _ /
E[mnx;,xzxk/}: 17 n—nyk—k,n#ka (32)

1, n=kn' =k ,n#n,
0, else,

where 114 is the kurtosis defined in (11). By substituting (32)
into (31), we obtain

E [|Afs (r, y)ﬂ

:EEN/MlA]:p (=7, V)|2
N N ) )
+E§Z Z e*]?ﬂnl/fTejzﬂ'kaT‘Afp (_7_7 I/)|2

n=1 k=1
k#n

=EIN (jua = 2) |AF, (—7,v)|”

N N
+ E?Z 67j27”w§TZ €j27rku£T|AJ—_-p (_7_7 I/)|2
k=1

N
D AF, (L= m) T — mv).

n=1

(33)

It can be noticed from (33) that E‘DAJ:S (r,v)*| is the
squared mean plus the variance of the ambiguity function
AF; (1,v) with respect to the transmitted symbols, i.e.,

E[IAF, (0] = [E[AF, (r,v)]]* + Var [AF, (r,v)],
(34

where

N
E[JAF, ()] = B> e 24T AF, (<r,v)  (35)

n=1

and

Var [AF, (7,v)] =E2N (4 — 2) |AF, (-, u)|2

N N
+E2Y Y JAF, (L= m) T —7,w)|%,
m=1 =1

(36)

respectively. This is known as the “Iceberg Theorem” in [15],
where the expected squared ambiguity function may be
metaphorically explained as an iceberg in the sea, containing
the iceberg part corresponding to the squared mean and the
sea level part corresponding the variance.

A. Performance Analysis of Ranging

We first analyze the ranging performance of FTN signals
based on the results in (33). By letting v = 0, (33) is reduced
to

E[JAF, (7,0)]
=EIN?|AF, (=7, 0)" + EIN (ua — 2) |AF, (—7,0)]°

N N
+E2Y N AF, (- m) €T — 7,0)%.

m=1 (=1

(37

Clearly from (37), under given average symbol energy E,
we notice that the symbol rate only affects the ranging



performance through the accumulation of ISI in time. Let us
define the accumulated ISI function by

£ ) MF

m=1 [=1

—m) €T — 7,0)%. (38)

Further simplification on (38) can be derived by expanding
the ambiguity function, which is summarized in the following
lemma.

Lemma 3 (Accumulated ISI function): The accumulated ISI
function defined in (38) can be further simplified as (39),
which is given at the bottom of this page.

Proof: The derivations are given in Appendix C. (I

From Lemma 3, we notice that the accumulated ISI function
has a certain response due to the function of A(Af,N,¢)
given in (40), which is a squared Dirichlet kernel, introducing
the oscillation in its values. Specifically, this function has
peaky responses when A f is integer multiple of giT Note that
the frequency domain integration in (39) involves the spectrum
of the shaping pulse. This indicates that the the accumulated
ISI function will have different behaviors depending on the
bandwidth of the shaping pulse and the symbol rates, and the
fundamental reason for this difference is precisely the effect of
spectral aliasing. Some key observations of the accumulated
ISI function are as follows.

o Under Nyquist signaling and shaping pulses with non-
zero roll-off, the spectral aliasing appears since £ =1 >
&o. As a result, several peaks in A(Af,N,&) will be
potentially included in the frequency domain integration
in (39). Therefore, the accumulated ISI function X (7)
will suffer from fluctuations due to the oscillated values
of A(Af,N,¢&).

o With a sufficiently high symbol rate, i.e., £ < &g, there is
no spectral aliasing, and therefore the frequency domain
integration in (39) can only include the positive peak at
Af = 0. As a result, the accumulated IST function X (7)
experiences less fluctuation.

We plot the absolute value of X (7) with different £ in Fig. 4,
where we consider N = 100, 7' = 1, and a RRC pulse with
B = 0.3. In this case, £, ~ 0.769, and therefore we can see
that X (7) with £ = 0.75 has a less fluctuated response and
a generally higher absolute value compared to the Nyquist
counterpart. It should be noted that this high absolute value
does not directly lead to a higher sidelobe in the ambiguity
function, after normalization in (15).

Comparing the ranging performance with Nyquist signals,

Fig. 4. Comparison of the accumulated ISI function X (7) with & = 1 and
& =0.75, where N = 100, T' = 1, and a RRC shaping pulse with § = 0.3
is applied.

by X (7). This is potentially important for ranging with a
large delay, e.g., remote sensing applications, because the
corresponding sidelobe values are generally small. More de-
tailed comparison of the ranging performance will be given
in Section IV-C. Furthermore, it should be mentioned that
the ranging resolution can be improved by a larger signal
bandwidth, which can be achieved by considering a larger roll-
off factor 3 or a smaller orthogonal period 7. From a practical
perspective, a smaller " is more appealing for FTN signaling,
because it does not require a very smaller £ to avoid the ISI,
such that the detection complexity remains manageable.

B. Performance Analysis of Doppler Sensing

We now turn our attention to Doppler sensing using FTN
signals. By letting 7 = 0, (33) is reduced to

E[JAF. (0.0)] =

N N
E2ZN (pa—2)|AF, (0,0)P+E2 > > " |AF, (1

m=1[=1

+ E2 Z e—]27mu§TZej27rku§T|A]_-p( )|2

k=1

m) T, v)[*

(41)

From (41), we define the Doppler-shifted accumulated ISI
function by

N N
FTN signals generally lead to a less fluctuated expected )= Z Z |AF, (1 —m) €T, v)|%, (42)
squared ambiguity function along the delay axis, as evidenced m=1 =1
/ / fl | |H (f2)|2 32 - f2)TA(fl f27N75)df1df27 (39)
where
AAS,N,€) 2 sin?(tNAfET) 40)

sin?(rAfET)
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Fig. 5. Comparison of the periodic Doppler variation function Y (v) with
£ =1and £ = 0.75, where N = 100, T" = 1, and a RRC shaping pulse
with 8 = 0.3 is applied.

Similar to the derivation of Lemma 3, (42) can be further
expanded as

/ / Hy (fi =v)H, (f2 —v)
p (f1)H, (f2)A(f1 — f2, N,§)d frdfe,  (43)

where A(Af, N, &) is given in (40). Similar to the accumulated
ISI function in (38), the Doppler-shifted accumulated ISI
function has fluctuating response with respect to different
v, due to the oscillation from (40), which can be mitigated
with a smaller £. Furthermore, we shall also define the
periodic Doppler variation function, which corresponds to
IE [AF, (0,v)]]?, given by
N ) N
Y(V) éznzl e—]27rnu§T Zkzl eJZWkuleA]_—p (0, V)|2
sin? (v NET) %
 sin? (7veT) w
where (44) holds due to (14). We observe from (44) that the
periodic Doppler variation function also includes a squared
Dirichlet kernel and consequently it potentially has several
peaks at integer multiples of the period =. We plot the
periodic Doppler variation function with N =100, T =1
and different ¢ in Fig. 5, where a RRC pulse with 5 = 0.3
is considered. We observe that in the Nyquist case, undesired
peaks appear at integer times of the period g, as expected.
Notice again that {, =~ 0.769 for 5 = 0.3. Therefore, we
observe that no undesired peaks appear for £ = 0.75, because
there is no spectral aliasing.
From the above discussions, we are able to summarize the
characteristics of Doppler sensing with different symbol rates
as follows.

|AF, (0, (44)

o The spectral aliasing appears when Nyquist signaling is
considered with shaping pulses having non-zero roll-off
factors. In this case, the Doppler slice will not only have
undesired peaks but also suffer from fluctuation due to the
property of the Doppler-shifted accumulated ISI function.

o With a sufficiently high symbol rate, i.e., £ < &g, there
is no spectral aliasing, and therefore no undesired peaks
appear in the ambiguity function. Furthermore, its value

Delay slice (dB)

delay (s)

Fig. 6. Comparison of the expected normalized squared ambiguity function
along the delay dimension with £ = 1 and £ = 0.75, where 7' = 1 and
B =0.3.

is more stable compared to the fluctuated response for
the Nyquist counterpart.

C. Numerical Results of the Ambiguity Function

We provide the numerical results in this subsection to
verify the correctness of the derivation in the previous two
subsections. Without loss of generality, we consider the QPSK
constellation with unit kurtosis and set 7' = 1. The shaping
pulse is the RRC pulse with roll-off factor 5. The length
of the transmitted symbol vector for Nyquist transmission is
N =100, and the length for the FTN transmission is adjusted
according to the compression factor. In the results below, we

. . |AF, (1,0)]? E[|AF,(r,v)|?]
will depict both E [\A]—'S(O,O)P] and E[[A7,007]

denoted as “actual” and “approx”, respectively. The value of

which are

E [%} is derived by using Monte Carlo simulations
over 10000 trials.

We plot the expected normalized squared ambiguity func-
tion along the delay dimension, i.e., the delay slice, in Fig. 6,
where £ = 1 and £ = 0.75 are considered, and the FTN signal
contains 100/0.75 a2 133 symbols. From the figure we observe
that the considered approximation in (15) indeed yields a close
match to the actual parameter of interest. Furthermore, we
can see that both FTN and Nyquist signals share very similar
behaviors overall, despite that the Nyquist signal yields more
fluctuated response at larger delays. This is expected from our
previous analysis, as the result of the spectral aliasing.

We plot the expected normalized squared ambiguity func-
tion along the Doppler dimension, i.e., the Doppler slice, in
Fig. 7, where the same parameters as in the previous figure are
considered. Similarly, we also observe a close match between
the approximation and the actual value. More importantly,
we observe clearly undesired peaks appeared for the Nyquist
transmissions, while no such peaks occurred in the FTN case
with £ = 0.75. This observation verifies the advantages of FTN
signals for sensing comparing to the Nyquist counterpart.

We evaluate the Doppler slice with different compression
factors in Fig 8, where 7' = 1 and 5 = 0.5 are considered.
From the figure, we observe that cases with ¢ = 1 and £ = 0.8
suffer from the undesired peaks that appear at giT On the



)‘ —S—¢ =1, actual
| —£—¢=0.75, actual
& =1, appro
}‘ ;. — & —¢=0.75, appro

o
S

Doppler slice (dB)
: 8

A
S

50}

-60

Doppler (Hz)

Fig. 7. Comparison of the expected normalized squared ambiguity function
along the Doppler dimension with £ = 1 and £ = 0.75, where 7" = 1 and
B =0.3.
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Fig. 8. Comparison of the expected normalized squared ambiguity function
along the Doppler dimension with 7" = 1 and S = 0.5, where £ = 1,
£ =0.8, and £ = 0.6 are considered.

other hand, no undesired peaks appear for the £ = 0.6 since
E<é = % in the considered case. These observations imply
that the strength of the undesired peaks reduces with a higher
symbol rate until the saturation threshold &; is achieved.

D. Numerical Results of the Doppler Sensing Performance

Due to the space limitation, we only present the Doppler
sensing performance in this subsection. We consider the
Doppler sensing of two targets with strong and weak reflectiv-
ity strengths, where the strong target has normalized Doppler
0.5 Hz while the weak target has normalized Doppler —0.4
Hz. We assume that the weak target has 15% of the reflectivity
strength compared to the strong target, such that its response
may be masked by the sidelobe of the strong target after
matched filtering-based estimation. We consider the Doppler
sensing performance of both Nyquist signal and FTN signal
with £ = 0.6, where T' =1, 8 = 0.5, and QPSK constellation
are applied. From the figure, we observe that the Nyquist
signal fails to provide a reliable sensing performance in terms
of the mean squared error (MSE), while FTN signal shows
a good sensing performance that improves with an increased
SNR. This observation aligns with our expectation and verifies

MSE

Nyquist, £ =1 \

0 8 6 4 =2 0 2 4 6 8 10
P /N, (dB)

Fig. 9. Comparison of Doppler sensing performance with 7" = 1 and
B = 0.5, where both Nyquist signal and FTN signal with £ = 0.6 are
considered, and the QPSK constellation is applied. Here, one strong target
and one weak target (15% of the reflectivity strength) are considered with
normalized Doppler at 0.5 Hz and —0.4 Hz.

the advantages of FTN signaling for sensing. In addition,
it was shown in [14] that OFDM exhibits worse Doppler
sensing performance than single-carrier signaling. Therefore, it
is expected that the considered FTN signaling will outperform
OFDM for Doppler sensing as well. However, it should be
highlighted that the simulation considers the adoption of the
RRC pulse, which is not optimized for improving the sensing
performance. With well-optimized pulses, it may be possible
that the undesired peak in the expected normalized squared
ambiguity function of Nyquist signaling is reduced, such that
the Doppler sensing performance of Nyquist signaling can be
improved.

V. POTENTIAL EXTENSIONS AND FUTURE WORKS

We have shown the advantages of single-carrier FTN sig-
naling for both communications and sensing. In this section,
we aim to provide high-level discussions on the extension of
these results to other transmission schemes.

A. Extension to Multi-carrier FTN Signaling

The multi-carrier FTN signaling transmits symbols faster
in both the time and frequency domains [46]. The ISAC
performance analysis for multi-carrier FTN signaling is an
interesting extension of the previous discussions. Note that
the multi-carrier FTN signaling is a two-dimensional (2D)
waveform and there is no signal that has strictly limited
durations in both time and frequency. Therefore, it is important
to adopt a reasonable method to measure time and bandwidth
occupied for the transmission, such that the potential aliasing
in both time and frequency can be well-defined. Then, one
shall apply the derivations in this paper for evaluating the
ISAC performance by considering the impact of the aliasing.
Although we cannot provide the details on this discussion
in this paper, it is expected that the total DoF of the multi-
carrier FTN signaling is determined by the product of the time
and bandwidth occupied according to the Shannon’s 2WT
theorem. Furthermore, its expected squared ambiguity function



may have undesired peaks due to the potential aliasing in both
time and frequency.

B. Extension to MIMO Transmissions

MIMO transmission serves as an important enabling tech-
nology for high-throughput transmissions in future wireless
networks. The application of FTN signaling in MIMO trans-
missions can therefore further improve the achievable rate
of MIMO transmissions. While the achievable rates of FTN-
MIMO over AWGN channels have been studied in [28],
[29], its performance over fading channels is still under-
explored. The analysis of communication performance in this
paper can be potentially extended to the MIMO case with
“on-grid” angles-of-departure (AoDs) and angles-of-arrival
(AoAs), where the interference from different antenna pairs
can be effectively eliminated by beamforming. In this case,
the FTN-MIMO transmission may be equivariant to the system
model in (6) with different distributions on the fading coeffi-
cients. Therefore, the method adopted in this paper may also
be applicable. On the other hand, the sensing performance for
FTN-MIMO may be studied by deriving the three-dimensional
(3D) ambiguity function with respect to the delay, Doppler,
and angle. Since typical FTN transmission only increases the
symbol rate in the time and frequency domain, the expected
squared ambiguity function may exhibit similar performance
in delay and Doppler dimensions. However, the angular sens-
ing performance for FTN-MIMO transmissions still requires
further study.

C. Extension to Multi-User Transmissions

Most studies of FTN signaling in multiple access trans-
missions assume only one resolvable path [40], [47], and
the impact of multipath transmission remains under-explored.
The communication analysis of this paper can be extended
to the uplink multiple access transmission by considering
the application of successive interference cancellation (SIC)
detection. Specifically, the SIC detection treats the interfer-
ence from undecoded users as noise and refines the channel
observations by excluding the contribution from the decoded
users. Therefore, the communication achievable rate can be
analyzed is a layer-by-layer manner similar to [40], where the
effective input-output relation for each layer is equivalent to
the system model in (6) that can be analyzed following the
derivations in this paper.

VI. CONCLUSIONS

In this paper, the application of single-carrier FTN signaling
for ISAC is studied. According to our analysis, the following
key advantages are identified: 1) single-carrier FTN signaling
can effectively avoid the spectral aliasing and increase the DoF
of the signal transmission; 2) single-carrier FTN signaling can
mitigate the fluctuation of the ambiguity function sidelobe in
the delay dimension; 3) single-carrier FTN signaling can avoid
the undesired peaks of the ambiguity function in the Doppler
dimension. We conclude that these findings come from the
fact that FTN signaling can effectively avoid the spectral

aliasing due to the mismatch between the symbol rate and
shaping pulse’s bandwidth. In addition to these findings, we
also acknowledge the practical drawbacks on FTN signaling
for ISAC, including the high implementation complexity and
lack of good channel codes. These important practical issues
require further studies.
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PROOF OF LEMMA 2

By substituting (5) into (18), we have [40]
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where (45) holds due to the Poisson summation formula.
Similar to the above derivation, by considering (5), we obtain
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Thus, in the case where |H,, (f )|? is symmetric, (22) can be
obtained by letting [ = I’. Finally, by noticing that
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=2R{D 2 fET)}, (47)

we can obtain T;p (2rf€T) as shown in (23) by similar
derivations given in (46). |
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According to Lemma 1, we have

1 ™
Ty <

L 1'-1

L
J(ZDI,Z (w)+
=1
S

>3 7w ))dw

~cr [ log2<1+E ZDH (2nfET) +

€T
L 1I'-1

> Tvw(2nfET))G

I'=110"=1

o (2mfET) )df. (48)

Then, by substituting (21), (22), and (23) into (48), and
considering the normalization, we arrive at (29). Further-
more, by substituting (26) into (29), we can obtain (31)
and (32). Finally, (35) holds according to the connections
among signal spectrum, folded-spectrum, ang the twisted
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folded-spectrum and the fact that | Y hjed?™/7| = Y |2+
=1 =1
L U'-1 )
2 Z Z §R{hl,hik//e_'jgﬂ'f(‘f'l/—Tl//)}' [}
r=1r=1
APPENDIX C

PROOF OF LEMMA 3
Note that (38) can be rewritten as
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Furthermore, for a given A f, we have
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Plugging (50) and (51) back into (49) results in (39) after some
mathematical manipulations. |
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