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Pavlovian biases are patterns of behavior that involve approaching stimuli associated with reward and
avoiding those associated with punishment (regardless of whether this is actually optimal behavior). They are
a ubiquitous feature of everyday decision making and are also believed to play an important role in the
symptoms of anxiety and depression. Although Pavlovian biases have classically been described as fixed and
automatic, some studies have indicated that their influence on behavior can actually vary over time and with
task demands. While these results hint that people may have some control over their Pavlovian biases, direct
behavioral evidence for this control is still lacking. In a preregistered, double-blind, sham-controlled study
(N = 800), we tested whether a week-long cognitive training intervention could reduce Pavlovian biases on
the orthogonalized go/no-go task, a well-established paradigm for isolating Pavlovian-instrumental conflict.
Participants were trained on either high-conflict or no-conflict conditions of the task across 5 days. Using
reinforcement learning models to dissociate components of decision making, we found that high-conflict
training led to a significant reduction in Pavlovian bias—particularly avoidance bias—at follow-up. This
result is incompatible with the view that Pavlovian biases are fixed and automatic, and instead implies much
greater flexibility in the way that they influence cognition than has previously been understood. The training
was kept deliberately simple (i.e., one stimulus per condition, with the correct responses kept constant over
sessions) so as to provide a minimal proof of concept of whether Pavlovian biases can be reduced through
training, but as a result, we did not observe transfer to other tasks or self-reported mood. Nonetheless, these
findings demonstrate that targeted cognitive training canmodulate Pavlovian biases, whichmay be beneficial
both in everyday life and especially in the context of affective disorders like anxiety and depression.
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Multiple systems govern how humans and other animals select
actions. The instrumental system learns the associations between
actions and outcomes, and can thereby select an appropriate response
that will maximize reward or minimize punishment (Dickinson &
Balleine, 2002). A second system is the Pavlovian system, which
learns the associations among different stimuli and promotes fixed
responses: The Pavlovian system invigorates action whenever rewards
are expected (often described as an approach bias) and inhibits action
when punishment is anticipated (avoidance bias; Dayan & Balleine,
2002; Dayan et al., 2006). While these Pavlovian biases are generally

advantageous, sometimes they conflict with the responses produced by
themore flexible instrumental system, such as when one needs to resist
approaching an immediate reward or take action (e.g., escape) in a
potentially dangerous environment (Boureau & Dayan, 2011; Guitart-
Masip et al., 2014). Consider, for example, the ambush predator that
starts its chase too early, allowing its prey to escape, or the proverbial
rabbit in the headlights that sees a car advancing toward it at speed, but
freezes instead of fleeing.

Early work on Pavlovian-instrumental interactions often charac-
terized Pavlovian biases as automatic and evolutionarily hardwired
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(Boureau & Dayan, 2011; Dayan et al., 2006; Guitart-Masip et al.,
2011, 2014). This conclusion was initially inspired by classical
conditioning results suggesting that Pavlovian responses are per-
sistent and difficult to overcome (e.g., “punished pecking” experi-
ments by Williams & Williams, 1969; see also Hershberger, 1986).
Computational and theoretical perspectives further highlighted that
dopamine plays a dual role in behavior as both a learning signal
(specifically associated with the reward prediction error in temporal-
difference models of learning; Schultz et al., 1997) and a potent
driver of motivation and action. In this framework (e.g., Boureau &
Dayan, 2011), when a cue is presented which predicts reward,
dopamine is released into the dorsal striatum, which promotes
approach toward and acquisition of the subsequent reward (via the
“go” pathway); conversely, when a punishment cue is presented, a
dip in dopamine causes inhibition of behavior (via the “no-go”
pathway), facilitating avoidance. Because both action and reward
predictions are implemented by the same neurochemical substrate,
the link between the two—resulting in the Pavlovian biases—was
thought to be fixed.
In the years since, however, emerging evidence has suggested that

the expression of Pavlovian biases may be more flexible than initially
thought. For example, the balance between Pavlovian and instru-
mental systems has been shown to vary as a function of task
parameters, such as whether outcomes are stochastic versus deter-
ministic (Dorfman & Gershman, 2019), and to correlate with neural
signals associated with top-down cognitive control (e.g., frontal theta;
Cavanagh et al., 2013; see also Gershman et al., 2021). These findings
suggest that, in specific contexts, people can overcome their Pavlovian
biases through cognitive control. Furthermore, reductions in Pavlovian
bias have been observed both within a single session (Dorfman &
Gershman, 2019) and across extended practice (Schurr et al., 2024),
suggesting that these biases are modifiable and can diminish with
experience. It remains unclear, however, whether people can learn to
strengthen their control over these biases through training, rather than
merely adapting incidentally to changes in task structure, stochasticity,
or repeated exposure. In particular, neither study included a control
condition that would allow one to isolate the specific effect of training
(i.e., improved engagement of top-down control). Our study addresses
this gap by including a randomized control condition, which enables a
direct causal test: By comparing high-conflict training with a control
group, we can attribute reductions in Pavlovian bias specifically to the
targeted training intervention, rather than to general task exposure or
repeated practice.
Previous attempts to train Pavlovian biases have so far been

unsuccessful. For example, Ereira et al. (2021) conducted four
experiments with variants of the orthogonal go/no-go task (Guitart-
Masip et al., 2011), looking at the effects of variables like gami-
fication and timing, but found no evidence of training effects (a fifth
study showed improvements on a “semantic” Pavlovian bias, which
is conceptually quite different from the motor biases on which the
literature is based). These findings suggest that direct training effects
are difficult to achieve, if indeed this is possible at all. Thus, the
question remains as to whether cognitive control over Pavlovian
biases, specifically in the motoric domain, can be learned.
It is important to note that the modulation of Pavlovian biases

being discussed here is not equivalent to extinction learning. In
extinction, the Pavlovian association is weakened or eliminated by
withholding the outcome. In contrast, in Pavlovian-instrumental
conflict tasks, the Pavlovian contingencies continue to be reinforced,

and the challenge lies in overcoming the prepotent behavioral bias
they induce. Thus, the question is not whether the association itself
can be unlearned, but whether its influence on behavior can be
suppressed.

In addition to its theoretical relevance, the ability to train control
over Pavlovian biases has important clinical implications. These
biases—particularly the Pavlovian avoidance bias—are enhanced in
patients with depression or anxiety and are thought to contribute to
the development and maintenance of symptoms (Mkrtchian et al.,
2017; Nord et al., 2018). For instance, a heightened avoidance bias
may lead individuals with social anxiety to withdraw in social
situations, which can result in more awkward or strained interactions
and reinforce negative expectations. In such cases, the expression of
a prepotent avoidance tendency prevents effective instrumental
engagement—contributing to a self-reinforcing cycle of anxiety and
social difficulty. This mirrors the structure of our task, where failure
to act in the face of conflict increases the likelihood of punishment.
Demonstrating that such biases can be overcome through training
suggests a potential route for intervention: By strengthening top-
down control over these prepotent tendencies, it may be possible to
mitigate symptoms rooted in Pavlovian-instrumental conflict. While
our study focused on a healthy population, it provides a foundational
proof of concept for targeted cognitive training in clinical contexts.

In the present study, a large-scale (N = 800), preregistered, double-
blind trial, we assessed Pavlovian biases using the orthogonal go/no-
go task (Guitart-Masip et al., 2011; see alsoGuitart-Masip et al., 2014).
In this task, the required response and valence of each trial are varied,
such that on half the trials there is Pavlovian-instrumental conflict,
requiring cognitive control over Pavlovian biases to respond correctly
(see Table 1). A consistent finding from this task is that, although
participants do gradually learn the contingencies up to a point,
accuracy for the two high-conflict trial types reaches a plateau, which
is below that of the no-conflict trial types and well below 100% (see,
e.g., Figure 2 of Guitart-Masip et al., 2012). After a baseline testing
session with the full task, participants doing the high-conflict training
practiced only the “hard,” control-demanding conflict trials once a day
for 5 days, while those in the control intervention practiced the “easy,”
no-control trials. Finally, both groups then repeated the full task at a
follow-up assessment session (using the same stimuli as at baseline
and that they had trained on). Our primary interest here was in testing
whether Pavlovian biases can in principle be controlled, so we sim-
plified the task so that there was just one stimulus to learn per trial type,
and we recruited a large sample of 800 participants, enabling us to

Table 1
The Four Trial Types of the Orthogonal Go/No-Go Task (Guitart-
Masip et al., 2011)

Action Reward Punishment

Go Go to win reward Go to avoid punishment

No-go No-go to win reward No-go to avoid punishment

Note. Across four different trial types, participants have to make either a
go or no-go response, for which they would either receive a reward for a
correct response (and a neutral outcome otherwise) or a punishment for an
incorrect response (and a neutral outcome otherwise). This produces two
“easy” trial types for which the Pavlovian and instrumental systems are
aligned (light gray) and two “hard” trial types for which they are in
conflict (dark gray).
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draw strong conclusions about the efficacy of the training. We
hypothesized that the group that practiced the control-demanding,
Pavlovian-instrumental conflict trials would show a greater improve-
ment in accuracy at the follow-up session than the control group. We
also included depression and anxiety self-report scales and secondary
tasks to assess transfer effects to other domains.

Method

Preregistration

This study was preregistered on the Open Science Framework
(https://osf.io/m3y8u/overview).

Participants

In total, 800 adults participated in this study, recruited through
the online platform Prolific. All were fluent in English and reported
no history of psychiatric or neurological disorders. Participants
were informed that they would be doing a week of practice on
the task, but they were not told anything else about the nature of the
training or indeed the existence of active and sham versions of the
intervention.
After examining the data, we excluded 110 participants (a

schedule is provided in Table 2). The exclusion criteria were all
preregistered except one, which excluded participants who, during
the go/no-go task, responded with keys outside the response set
(“S” or “L” keys) on more than 15% of trials. This criterion led to the
exclusion of three participants; no other participants made nearly so
many wrong-key responses (the maximum among the other parti-
cipants was just 3%).
This left us with 690 participants whose data were included in the

final analysis, exceeding our preregistered minimum sample size of
676 (whichwas determined by a priori power analysis, using d= 0.25,
α = 5%, and power = 90%).
The study was approved by the University College London

Research Ethics Committee (6198/001).

Procedure

The study comprised three phases, which took place over 8 days,
as shown in Figure 1.

On the first day, participants completed a baseline testing session
in which they completed the orthogonal go/no-go task (Guitart-
Masip et al., 2011), the affective bias task (Daniel-Watanabe et al.,
2022), the risk taking task (Rutledge et al., 2016), and two mental
health questionnaires (the Beck Depression Inventory, Beck et al.,
1996, and the State–Trait Anxiety Inventory, Spielberger et al.,
1983). Then, they were randomly allocated to receive either the
high-conflict or no-conflict training—those in the high-conflict
group were given solely the control-demanding, Pavlovian conflict
trials of the go/no-go task to practice, while those in the no-conflict
group practiced just the no-conflict trials. Participants had to
complete five training sessions over 6 days (with a maximum of one
training session per day allowed); participants who had not com-
pleted all five sessions by the end of the training period were
excluded from the study. Finally, on the 8th day of the study,
participants completed a follow-up session containing the same
battery of assessments as at baseline.

These sessions were conducted entirely online, using the
experiment platform Gorilla (https://www.gorilla.sc), which also
performed the randomization to the high-conflict or no-conflict
training groups automatically.

Measures and Tasks

Orthogonal Go/No-Go Task (Guitart-Masip et al., 2011)

The full procedure for this task is set out in Figure 2A. A trial
consisted of three events, each displayed for 1,000 ms with a 250 ms
interstimulus interval: First, an initial fractal cue was shown in the
center of the screen; then, a circle target was displayed on one side of
the screen, to which participants chose whether or not to respond;
finally, the outcome of their response was displayed.

Each fractal was associated with both a required response (“go”
or “no-go”) and a valence (correct responses allowed participants
either to win points or avoid losing them). Combining these

Table 2
Schedule of Exclusions

Time point Reason N excluded N remaining

Baseline testing 800
Did not complete baseline session 11 789
GNG: Go to win reward accuracy <65% 9 780
GNG: Left/right accuracy <65% 1 779
Aff. bias: Accuracy on unambiguous trials <60% 29 750
Aff. bias: No response on >15% of trials 2 748
STAI: Failed attention check 2 746

Training Did not complete five training sessions 46 700
Follow-up testing Did not complete follow-up session 1 699

GNG: Go to win reward accuracy <65% 2 697
GNG: Wrong-key responses >15%a 3 694
Aff. bias: Accuracy on unambiguous trials <60% 1 693
Aff. bias: No response on >15% of trials 2 691
STAI: Failed attention check 1 690

Note. GNG = go/no-go task; Aff. bias = affective bias task; STAI = State–Trait Anxiety Inventory.
a This was not a preregistered criterion—see the Participants section for details.
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responses and valences orthogonally produced four unique trial types
(see Figure 2B), each represented by a different fractal: go to win
reward, go to avoid punishment, no-go to win reward, and no-go to
avoid punishment. Participants had to learn the correct responses
(and maximize their points) through trial and error. Note that the
outcomes were probabilistic, such that a correct response only led
to reward (or avoided punishment) 80% of the time. In addition, to
hold participants’ attention, the exact keypress for a “go” response

(“S” or “L”) had to match whichever side of the screen the target was
presented on.

After a number of practice rounds, during which the complexity
of the task was built up gradually, the main phase of the task
comprised 80 trials (20 per condition) presented in a random order.
The fractal allocation was randomized for each participant at the
start of the baseline session and then retained for the training and
follow-up sessions.

Figure 1
Timeline of the Study

Note. Participants completed the full battery of tasks at baseline and then were randomized to receive
either the high-conflict or no-conflict training. They completed five practice sessions over 6 days and
then repeated the full battery of tasks at follow-up. See the online article for the color version of this
figure.

Figure 2
Procedure for the Orthogonal Go/No-Go Task

Note. (A) Participants were shown an initial fractal cue, associated with a required response (go or no-go) and a
valence (reward or punishment). Participants made or omitted a response when the target appeared and then
received an outcome depending on their response and the fractal valence. (B) The four possible trial types
(combining the possible responses and valences orthogonally). This figure builds on Table 1, additionally showing
a possible allocation of the fractals to the four trial types. In the study, the fractal allocation was randomized for each
participant at baseline. Example fractal images are reproduced fromMathôt et al. (2015) under a Creative Commons
Attribution (Unported) License. Example face images are taken from the publicly available subset of the FACES
database (Ebner et al., 2010). See the online article for the color version of this figure.
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Pavlovian Bias Training

Participants were trained on a variant of the same orthogonal
go/no-go task described above, but with just a subset of conditions:
The high-conflict training group practiced just the trial types that
involved Pavlovian-instrumental conflict (“go to avoid punishment”
and “no-go to win reward”), while those in the no-conflict group
were trained on just the no-conflict trial types (“go to win reward”
and “no-go to avoid punishment”). The fractal allocation was the
same as at baseline and follow-up. Each training session comprised
48 trials (24 trials per condition, in a random order), and participants
were required to complete at least five training sessions in 6 days
(one session per day). We did not collect information on the time of
day participants completed the training sessions, but as participants
were randomized to the two conditions, this would not be expected
to vary systematically between the groups.

Secondary Outcomes

We included two further tasks to investigate whether the training,
if successful on the main task, would also transfer to other domains.
The visual affective bias task (Daniel-Watanabe et al., 2022) as-
sessed how participants’ perceptual judgments about the size of an
ambiguous stimulus (a medium-sized black disc) were affected by
receiving asymmetric rewards for choosing large versus small. The
risk taking task (Rutledge et al., 2016) measured participants’
tendency to gamble versus take a safe, certain outcome, as the
expected values of these options were varied. See the Supplemental
Material for further details.
We also administered two well-validated mental health ques-

tionnaires: the Beck Depression Inventory (Beck et al., 1996) and
the State–Trait Anxiety Inventory (Spielberger et al., 1983). Both
instruments have robust psychometric properties, including high
internal consistency and test–retest reliability, as reported in the
original validation studies. We removed one question from the Beck
Depression Inventory, which asks about thoughts of suicide, due to
the safeguarding risk. We also added a catch question (“Press the
very much so button”) at the end of the State–Trait Anxiety
Inventory to detect inattentive participants.

Preregistered Analyses

To test our primary hypothesis that the training would enhance
control over Pavlovian biases in the orthogonal go/no-go task, we
planned two related analyses, one model-agnostic and another that
involved computational modeling.

Model-Agnostic Analysis of the Orthogonal
Go/No-Go Task

For the model-agnostic analysis, we first calculated a measure of
Pavlovian bias for each participant in each session. This was defined
as the sum of the accuracies for the two Pavlovian-instrumental
conflict trial types (go to avoid punishment and no-go to win reward)
minus the sum of the two no-conflict trial types (go to win reward
and no-go to avoid punishment). We then computed a training
effect, which was the change in this measure between the baseline
and follow-up sessions. Finally, we tested (using an independent-
samples t test) our primary hypothesis that there would be a

difference in the change in this Pavlovian bias metric between the
high-conflict and no-conflict training groups.

We also preregistered a secondary hypothesis that participants in
both groups would exhibit Pavlovian biases at baseline. To test this,
we ran a 2 × 2 (Required Response × Valence) repeated measures
analysis of variance on the accuracy data from the baseline session,
followed by four planned paired-samples t tests comparing the go to
avoid punishment and no-go to win reward conditions with each of
the go to win reward and no-go to avoid punishment conditions.

Computational Modeling of the Orthogonal
Go/No-Go Task

In parallel, we also tested our primary hypothesis using compu-
tational modeling. Our models build on established reinforcement
learning frameworks that combine instrumental Q-learning (Rescorla
& Wagner, 1972; Sutton, 1988) with Pavlovian value influences
(Dayan et al., 2006). In particular, we use as a starting point the
winningmodel fromGuitart-Masip et al. (2012) and call this the base
model. In this model, each trial’s action value is computed from the
expected instrumental reward (the difference between the q values
for go and no-go), modulated by fixed biases reflecting approach and
avoidance tendencies. These biases multiply the Pavlovian value of
the present stimulus and so determine to what extent the Pavlovian
estimates can influence the action weights; they promote go re-
sponses when reward is anticipated (i.e., value is positive) and no-go
responses when punishment is expected (i.e., value is negative). In
addition, we also assume that participants have a general go bias,
which invigorates action regardless of the instrumental or Pavlovian
values on that trial. These factors are summarized in Equation 1
below, which shows how the action weight wðsÞ, the log odds of
making a go response, is calculated on each trial (where s indexes the
stimulus shown on that trial):

wðstÞ = qgoðstÞ − qnogoðstÞ + GoBiassubject

+ Pavbiassubject × valueðstÞ: (1)

Here, qgoðstÞ and qnogoðstÞ are the instrumentalQ values for the go
and no-go actions respectively; GoBiassubject reflects a general
tendency to make go responses; Pavbiassubject is the Pavlovian bias
parameter; and valueðstÞ is the Pavlovian value of stimulus st .

The other key subject-level parameters in the base model are the
outcome sensitivity, which acts as a multiplier on the outcome
received on each trial (following Guitart-Masip et al., 2012, we
assume that participants may value rewards and punishments dif-
ferently), and the learning rate, which acts as a multiplier on the
prediction error observed on each trial.

We subsequently considered three extensions to this model: one
with separate Pavlovian approach and avoidance biases (“Base +
2PavBias”), which applied when the Pavlovian value of the
stimulus was rewarding or punishing, respectively; another with
distinct learning rates for reward and punishment outcomes
(“Base + 2LR”); and a third with both approach/avoidance
Pavlovian biases and reward/punishment learning rates (“Base +
2PavBias + 2LR”).

The full model specifications for all four models, including parameter
definitions, formal equations, parameter recovery, and model com-
parison results, are provided in the Supplemental Material (p. 2), where
there is also further discussion of the relationship between these models
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and previous work. All model code and data are also publicly available
on the Open Science Framework (https://osf.io/7msvw/overview).
For the baseline session, we fitted the models to the entire sample

of participants all together, and then for the follow-up session, we
fitted the models to the high-conflict and no-conflict groups sepa-
rately (thus assuming that the two groups were identical before the
intervention but might differ afterward).
All models were fitted using Markov Chain Monte Carlo in Stan

(Stan Development Team, 2023). Sampling was run for four chains,
each with 2,000 iterations. Subsequent to fitting, we carried out
diagnostics (visual inspection of the chains; divergences or treedepth
warnings; Estimated Bayesian Fraction of Missing Information <
0.3, effective sample size > 400, split-Rhat < 1.01; Betancourt,
2018). Besides a negligible number of divergences (<1% for all
models), there were no issues. We also inspected the posterior
predictions for the winning model and observed a good overall fit to
the data (Supplemental Figure S12).
We compared these models using the Widely Applicable

Information Criterion (Watanabe, 2010), which provides an esti-
mate of out-of-sample predictive accuracy, then examined the
posterior parameter values from the winning model. As with the
model-agnostic approach described above, our preregistered anal-
ysis used an independent-samples t test to assess whether the mean
change in the Pavlovian bias term differed between the high-conflict
and no-conflict training groups. Further exploratory analyses are
reported in the Supplemental Material.

Affective Bias Task

Our preregistered analysis for this task involved assessing (using
an independent-samples t test) whether the two training groups
differed in their change in affective bias between baseline and
follow-up.

Risk Taking Task

Our preregistered analysis for this task involved assessing, using a
3 × 2 × 2 analysis of variance (Framing × Time Point × Training
Group), whether there was an interaction between time point and
group on gambling choices.

Materials, Data, and Code Availability

All study materials are publicly available at https://app.gorilla.sc/
openmaterials/669092. All primary data and analysis scripts are
publicly available at https://osf.io/7msvw/overview.

Results

As expected, both groups exhibited significant Pavlovian biases
at baseline, action-by-valence interaction: F(1, 689)= 709, p< .001,
η2p = 0.51 (see Figure 3A, left panel). Accuracy was worse when
participants had to go to avoid punishment compared with go to win
reward, t(689) = 18.4, p < .001, d = 0.70, and likewise when
participants had to no-go to win reward compared with no-go to
avoid punishment, t(689) = 23.9, p < .001, d = 0.91 (both tests
remained significant using a Bonferroni correction of α = .025). We
also found significant action and valence biases: Participants found
it easier to learn go than no-go responses (M = 0.76, SD = 0.17 vs.

M = 0.40, SD = 0.25), F(1, 689) = 1,680, p < .001, η2p = 0.71, and
they were better at avoiding punishment than winning reward
(M = 0.61, SD = 0.15 vs. M = 0.55, SD = 0.36), F(1, 689) = 97.3,
p < .001, η2p = 0.12.

Our second planned analysis looked at the model-agnostic
measure of Pavlovian bias. At follow-up, we saw a substantial
difference between the training groups in the change in their
Pavlovian biases, t(688) = 11.9, p < .001, d = 0.91. Specifically, the
high-conflict training led to a large reduction in Pavlovian bias,
t(344) = 9.90, p < .001, d = 0.53, while this bias in fact became
stronger following the no-conflict training, t(344) = 6.86, p < .001,
d = 0.37 (both post hoc tests again remained significant after
Bonferroni correction). These results are plotted in Figure 3B, and
descriptive statistics are given in Table 3.

In an exploratory analysis, we also used analysis of covariance to
control for baseline differences in Pavlovian bias. In agreement with
our preregistered analysis, we found there was a significant effect of
training condition, F(1, 687) = 210, p < .001, η2p = 0.23. Separately,
we also verified that the high-conflict group showed a significantly
greater improvement in overall accuracy, t(688) = 2.29, p = .022,
d = 0.17.

Performance During the Training Phase

Turning to performance during the training phase itself, we
observed a significant difference between groups (see Figure 4 and
Supplemental Table S1). While both training groups improved their
accuracy over the course of training, there was a significant
interaction between training group and time point, F(4, 2752) =
63.0, p< .001, η2p = 0.08, with the high-conflict group improving by
a greater amount. Indeed, the average improvement in accuracy
from the first to the fifth training sessions for the high-conflict
training group was 0.16 (SD= 0.18), while for the no-conflict group,
it was 0.05 (SD = 0.09), t(491) = 9.91, p < .001, d = 0.76.

Detailed analysis of the sequential differences between training
sessions is provided in the Supplemental Material (p. 11).

Computational Modeling

The best performing model had separate Pavlovian approach and
avoidance biases and separate reward and punishment learning rates
(see the Supplemental Material for full details of the model com-
parison). The Pavlovian avoidance parameter reflects the degree
to which participants tended to withhold action in the presence
of stimuli that had a Pavlovian association with punishment.
Reductions in this parameter therefore indicate a diminished influ-
ence of the Pavlovian system on behavior. Examining the posterior
estimates from this model (Figure 5), we found a significant dif-
ference between the high-conflict and no-conflict training groups in
their change in avoidance bias, t(688) = 36.1, p < .001, d = 2.75, but
not approach bias, t(688) = 0.35, p = .73. Specifically, the high-
conflict training reduced the strength of participants’ avoidance bias
almost to zero on average (from 1.49 at baseline to 0.09 at follow-up:
mean change= –1.40, SD= 0.55), t(344)= 46.8, p < .001, d = 2.52,
whereas those in the no-conflict group showed a much smaller
reduction (mean change = –0.24, SD = 0.21), t(344) = 21.2, p <
.001, d = 1.14, again remaining significant after Bonferroni cor-
rection. It is worth noting that, by modeling the approach and
avoidance biases separately, we have been able to reveal a much
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larger change in (avoidance) bias than had been indicated by our
model-agnostic analysis above.
As before, we also ran an exploratory analysis with analysis of

covariance to control for any differences in baseline Pavlovian
biases, and again this led to the same conclusions: a significant
training effect on avoidance bias, F(1, 687) = 1,310, p < .001, η2p =
0.66, but not approach bias, F(1, 687) = 0.60, p = .4.
Of note, we also observed a significant decrease between groups

in their change in go bias, t(688) = 11.4, p < .001, d = 0.87. While

both groups demonstrated significantly reduced go biases after
training, the reduction was substantially greater in the active training
group versus the sham group, t(344) = 22.1, p < .001, d = 1.19 and
t(344) = 8.51, p < .001, d = 0.46, respectively, a reduction fromM =
1.29, SD= 0.43 toM= 0.54, SD= 0.59 for the active group, compared
withM= 1.28, SD= 0.44 toM= 1.03, SD= 0.46 for the sham group.
This may partially account for the absence of an effect on the approach
bias parameter (since both parameters promote go responses), a point
we return to in the discussion (note that these post hoc t tests remained
significant after correction for multiple comparisons).

To assess the validity of these model-based inferences, we con-
ducted a parameter recovery analysis by fitting the model to simulated
data generated using the observed parameter values. This analysis tests
whether the model can recover the original parameter estimates, which
is essential for interpreting individual- and group-level differences in
behavior. For the go bias parameter, both Pavlovian bias parameters
and the punishment learning rate parameters could all be recovered
reliably (r > 0.8). In contrast, reward learning rate, reward sensitivity,
and punishment sensitivity parameters showed poorer recovery.
Correlation analyses (see the Supplemental Material) suggested that
this was not due to collinearity, implying that poor recovery of these

Table 3
Model-Agnostic Pavlovian Bias Measure in Each Condition

Training condition Time point

Pavlovian bias

M (SD)

High-conflict Baseline 0.40 (0.39)
Follow-up 0.12 (0.48)

No-conflict Baseline 0.40 (0.40)
Follow-up 0.58 (0.38)

Figure 3
Control Over Pavlovian Biases Significantly Enhanced by High-Conflict Training

Note. Both plots show the individual data points, theM ± SE (diamonds and horizontal lines), and the overall distribution. (A)
Groups were closely matched at baseline and showed clear signs of Pavlovian bias (impaired accuracy at go to avoid punishment
and no-go to win reward trials). Following training, the high-conflict (but not no-conflict) group showed a significant
improvement in accuracy. (B) The high-conflict training, but not the no-conflict training, led to a significant decrease in the
model-agnostic measure of Pavlovian bias. SE = standard error. See the online article for the color version of this figure.
*** p < .001.
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parameters is unlikely to have distorted estimation of the reliably
recovered ones. To further validate ourfindings, we reran the primary
analysis using the simpler Base model (which does not have the
poorly recovering parameters) and obtained identical results (see
Supplemental Figure S15). These checks confirm that the training
effect on Pavlovian bias is robust and not dependent on model
complexity or parameterization.
Finally, we investigated a possiblemechanistic account of this change

in Pavlovian bias, based on the model proposed in Dorfman and
Gershman (2019). In that article, the authors proposed an algorithm in
which the balance between Pavlovian and instrumental controllers is
updated dynamically, based on their relative predictive power, through a
process of Bayesianmodel averaging. After simulating new participants
with their model (details are provided in the SupplementalMaterial), we
found that it provides a qualitatively goodmatch to our empirical results,
reproducing an improvement following training that is specific to the
conflict training condition only. This suggests that an adaptive process,
which updates the weight given to the Pavlovian and instrumental
controllers based on their ongoing predictive accuracy, could underlie
the training effects that we observed here (Figure 6).

Transfer Effects

We did not observe transfer to the other cognitive tasks or self-
reported mood: The change in affective bias between time points did

not differ between groups, t(688) = 0.11, p = .91, nor was there an
interaction between time point and group for the risk taking task,
F(1, 688) = 0.03, p = .87; depression, F(1, 688) = 0.67, p = .41;
state anxiety, F(1, 688) = 1.25, p = .26; or trait anxiety, F(1, 688) =
0.56, p = .46. Other analyses of these tasks are reported in the
Supplemental Material.

Discussion

In this double-blind study, we examined whether control over
Pavlovian biases can be learned. Over five sessions, participants in
the high-conflict group practiced the control-demanding, Pavlovian-
instrumental conflict trials of the orthogonal go/no-go task.
Converging evidence from both model-agnostic and computational
modeling analyses revealed that these participants were able to
substantially reduce their Pavlovian biases (compared with parti-
cipants in the no-conflict group); indeed, the avoidance bias was
almost entirely eliminated, according to the results of the modeling.
This clearly demonstrates that people can learn to control their
Pavlovian biases through training.

The existing literature has historically regarded Pavlovian biases
as being highly persistent and resistant to change. Our results here
suggest that, while such biases are indeed strong, they can never-
theless be overcome through training. The inclusion of a sham
training condition was essential for showing that the training effect

Figure 4
Performance on the Pavlovian Bias Training, Split by Trial Type

Note. Average accuracy in both groups improved over the course of training, but the improvement was greater in the high-conflict compared
with the no-conflict group. Plots show individual data points and distributions (color) and M ± SE (black). SE = standard error. See the online
article for the color version of this figure.
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resulted specifically from practicing the high-conflict trials andwas not
simply a continuation of the asymptotic performance improvement
seen at baseline. The earlier work of Cavanagh et al. (2013) suggests a
possible mechanism for this effect: They found that accuracy on the
go/no-go task covaried with frontal theta measured via electroen-
cephalography, a neural signature of top-down control; similarly,
Guitart-Masip et al. (2012) found using functional magnetic resonance
imaging that activity in the inferior frontal gyrus is associated with
successful performance and speculated that this region may help to
regulate the balance between the Pavlovian and instrumental systems.
Conceivably, then, in our study the training may have taught parti-
cipants how and when to engage these control signals in order to
mitigate Pavlovian bias and maximize performance on the task.
Training could have affected control in at least two ways: It could

have increased participants’ general ability to monitor for Pavlovian-
instrumental conflict and deploy cognitive control as and when needed
(termed “reactive control” by Braver, 2012), or it could have led to
narrower learning, in the sense that participants may simply have
learnedwhich stimuli predicted the need to exert greater control later in
the trial (“proactive control”). In the present study, we are not able to
discriminate between these two possibilities, although we might
speculate that reactive control requires more extensive training spe-
cifically aimed at transferring learning to novel situations and stimuli.
A third possibility is that the training may not have impacted control at
all and instead led to an improvement in performance through some
other process, such as habit learning (Everitt & Robbins, 2005).
An important question is why the present study produced a clear

training effect, while earlier attempts—such as Ereira et al. (2021)—
did not. Both studies build on the original orthogonal go/no-go task
(Guitart-Masip et al., 2011) but differ in several critical respects.
Ereira et al. conducted four experiments with motor variants of the

task and found no training effects; in a fifth experiment, they re-
ported a reduced “semantic” bias—based on choices between words
implying approach or avoidance—but this did not replicate in a
nongamified version of their task. Their task also varied stimuli
across sessions, which may have disrupted consistent learning. In
contrast, our study followed the original task design but held all
stimulus–response mappings constant, while the training phase
focused solely on the conflict conditions, isolating the effect of
repeated high-conflict exposure. Crucially, our findings go beyond
methodological refinement: We provide the first causal demon-
stration that behavioral expressions of Pavlovian bias—particularly
avoidance—can be deliberately suppressed through targeted train-
ing. This supports the view that cognitive control over these biases is
not only possible but also trainable. Although constraining the
training (e.g., one stimulus per condition, fixed mappings) likely
limited the transfer to other contexts, it enabled a clean test of
whether bias reduction could occur at all. Future studies can now
build on this foundation to explore whether richer training regimes
support generalization.

The present study also constitutes a successful proof of principle
for cognitive bias modification, which may have wider applications.
Patients with depression or anxiety (Mkrtchian et al., 2017; Nord et
al., 2018) have been shown to have enhanced Pavlovian biases,
possibly as a result of deficits in cognitive control (Robinson et al.,
2013), and this is thought to contribute to symptoms through the
maintenance of avoidance behavior. Our results open the possibility
that cognitive bias training could eventually be used to treat some
symptoms of depression and anxiety. This is a particularly exciting
and significant avenue for future research because, as we have
demonstrated here, such training is low-cost and can be deployed at
scale through online platforms. We note that although in the present

Figure 5
Subjects’ Pavlovian Bias Values, According to the Winning Model (Base Plus Two
Pavlovian Biases Plus Two Learning Rates)

Note. The plot shows each participant’s mean bias and theM ± SE in each condition. SE = standard
error. See the online article for the color version of this figure.

COGNITIVE TRAINING REDUCES PAVLOVIAN BIASES 9



study we did not see any effects on depression or anxiety, we had
specifically recruited participants with no history of psychiatric
illness, so it is likely there was already a floor to improvement in
symptom scores; nevertheless, we will need to examine how these
results extend to patient groups in future research. Additionally, the
current design focused on immediate training effects, so further
work is required to assess whether reductions in Pavlovian bias are
sustained over time.
One further limitation of this study is that, as a control condition, we

included only a sham training condition and not a passive control (i.e.,
one with no training at all, which would indicate the simple effect of
passage of time on the go/no-go task). It is conceivable that people
may improve over time even without training and that we observed a
difference between the high-conflict and no-conflict groups not
because the high-conflict trainingwas effective but conversely because
the no-conflict training interfered with this improvement. While we
cannot definitively refute this explanation here, we suggest that the
very fact that Pavlovian biases have until now been widely considered
to be extremely resistant to modification indicates that improvement
simply due to the passage of time is unlikely.
Finally, it is notable that the high-conflict training led to a large

reduction in avoidance bias but no change in approach bias. This

may be because avoidance is more amenable to change. However, it
may also be driven by floor effects, as the approach bias parameters
were already around zero at baseline (the effect of training was then
to shrink the variance in these estimates, rather than shift themean). It
is also possible that some of the variance in approach-related re-
sponding was absorbed by the go bias parameter, thereby obscuring
potential training effects on the approach bias itself. In any case, our
sensitivity analysis using the base model (which includes a single,
combined Pavlovian bias term) produced qualitatively identical
results. This provides reassurance that the training effect on
Pavlovian bias is robust and not dependent on parametrization or
model structure.

Conclusions

In sum, this study provides causal evidence that Pavlovian bias—
particularly avoidance bias—can be selectively reduced through
targeted, repeated training on control-demanding trials. While
previous work has shown that such biases can change with context
or decline over time, we show that they can be actively suppressed
through focused training. Crucially, our sham-controlled, ran-
domized design allows us to rule out general explanations for the

Figure 6
Simulated Accuracy and Pavlovian Bias From the Adaptive Model of Pavlovian Instrumental Control (Dorfman
& Gershman, 2019)

Note. (A) Simulated accuracy data across the two reward conditions. (B) Simulatedmodel-agnostic Pavlovian biasmetric. Comparing
with the empirical data (Figure 3) indicates that this model provides a qualitatively good fit and somay help to explain themechanism by
which the training had its effect. Note that the model does not at present handle punishment outcomes, and so we simulated just the two
reward conditions. See the online article for the color version of this figure.
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improvement, such as increased task familiarity, and suggests
instead that it was the repeated practice of employing cognitive
control that was important. These findings establish that Pavlovian
biases are not fixed and instead are amenable to training, which
provides a foundation for future research aimed at generalizing such
training to new stimuli, wider environments, and clinical popula-
tions where Pavlovian biases contribute to maladaptive behavior.
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