
1

Toward Practical Fluid Antenna Systems:
Co-Optimizing Hardware and Software for

Port Selection and Beamforming
Sai Xu, Member, IEEE, Kai-Kit Wong, Fellow, IEEE, Yanan Du, Member, IEEE, Hanjiang Hong, Member, IEEE,

Chan-Byoung Chae, Fellow, IEEE, Baiyang Liu, Senior Member, IEEE, and Kin-Fai Tong, Fellow, IEEE

Abstract—This paper proposes a hardware-software co-design
approach to efficiently optimize beamforming and port selection
in fluid antenna systems (FASs). To begin with, a fluid-antenna
(FA)-enabled downlink multi-cell multiple-input multiple-output
(MIMO) network is modeled, and a weighted sum-rate (WSR)
maximization problem is formulated. Second, a method that
integrates graph neural networks (GNNs) with random port
selection (RPS) is proposed to jointly optimize beamforming and
port selection, while also assessing the benefits and limitations
of random selection. Third, an instruction-driven deep learning
accelerator based on a field-programmable gate array (FPGA)
is developed to minimize inference latency. To further enhance
efficiency, a scheduling algorithm is introduced to reduce re-
dundant computations and minimize the idle time of computing
cores. Simulation results demonstrate that the proposed GNN-
RPS approach achieves competitive communication performance.
Furthermore, experimental evaluations indicate that the FPGA-
based accelerator maintains low latency while simultaneously
executing beamforming inference for multiple port selections.

Index Terms—FAS, GNN, FPGA, WSR.

I. INTRODUCTION

FLUID antenna systems (FASs) have emerged as a novel
concept for enhancing wireless communications [1]. A

fluid antenna (FA) is a fluidic, conductive, or dielectric struc-
ture that can dynamically adjust its shape and position, referred
to as a port, to modify key radio-frequency (RF) characteris-

The work of S. Xu, K. K. Wong and H. Hong is supported by the
Engineering and Physical Sciences Research Council (EPSRC) under Grant
EP/W026813/1.

This work of Y. Du is supported by the European Research Executive
Agency’s Horizon Europe MSCA 2022 Postdoctoral Fellowship CIRED under
Grant 101109336.

The work of H. Hong is supported by the Outstanding Doctoral Graduates
Development Scholarship of Shanghai Jiao Tong University.

The work of C.-B. Chae was in part supported by the Institute for Infor-
mation and Communication Technology Planning and Evaluation (IITP)/NRF
grant funded by the Ministry of Science and ICT (MSIT), South Korea, under
Grant RS-2024-00428780 and 2022R1A5A1027646.

The work of K. F. Tong and B. Liu was funded by the Hong Kong
Metropolitan University, Staff Research Startup Fund: FRSF/2024/03.

S. Xu, K. K. Wong and H. Hong are with the Department of Electronic
and Electrical Engineering, University College London, WC1E 7JE, London,
UK. K. K. Wong is also with Yonsei Frontier Lab, Yonsei University, Seoul,
South Korea (e-mail: {sai.xu, kai-kit.wong, hanjiang.hong}@ucl.ac.uk).

Y. Du is with the Department of Electronic and Electrical Engineering,
University of Sheffield, S1 4ET, UK (e-mail: yanan.du@sheffield.ac.uk).

C.-B. Chae is with the School of Integrated Technology, Yonsei University,
Seoul, 03722 South Korea (e-mail: cbchae@yonsei.ac.kr).

B. Liu and K. F. Tong are with the School of Science and Technol-
ogy, Hong Kong Metropolitan University, Hong Kong SAR, China (e-mail:
{byliu, ktong}@hkmu.edu.hk).

Corresponding author: Kai-Kit Wong.

tics through software control [2], [3]. Unlike fixed-position
antennas [4], [5], the flexibility of FA allows for adjustment
of dimensions and orientation of radiating elements, as well
as directional beamforming without requiring analog or digital
signal processing [1]. Originally proposed by Wong et al. in
[6], [7], FAS has since become a reality, with prototypes and
experimental results reported in [8], [9], [10]. Recently, Lu et
al. provided an electromagnetic perspective of FAS in [11].

Despite its potential, a fundamental challenge arises.

How can beamforming and port selection in FASs
be efficiently optimized in practice?

To tackle this challenge, recent studies have explored math-
ematical optimization [12], [13], [14], [15], [16] and learning-
based approaches [17] for beamforming and port selection in
FASs, as detailed in Section II-A. Although these optimization
algorithms achieve exceptional communication performance,
their high computational complexity limits their applicability
in real-time scenarios. Hence, it is necessary to seek a trade-
off between communication performance and computational
latency. Existing algorithmic studies often overlook hardware
implementation, which further limits execution efficiency.

Motivated by this, this paper develops a hardware-software
co-design framework for FAS. Specifically, an FA-enabled
downlink multi-cell multiple-input multiple-output (MIMO)
network is considered. Unlike existing methods, the proposed
approach integrates graph neural networks (GNNs) with ran-
dom port selection (RPS) to jointly optimize beamforming
and port selection. Furthermore, an instruction-driven deep
learning accelerator based on a field-programmable gate array
(FPGA) is designed, featuring an efficient scheduling algo-
rithm tailored to the proposed GNN-RPS approach. The main
contributions of this work are summarized as follows:

• A GNN-RPS approach is developed to jointly optimize
beamforming and port selection in FAS. The proposed
neural network employs a multi-GNN architecture with
centralized training and distributed deployment. Simula-
tion results show that the GNN-based scheme outper-
forms traditional methods such as minimum mean square
error (MMSE), zero-forcing (ZF), and maximum ratio
transmission (MRT), while also providing performance
insights into the use of RPS.

• An instruction-driven FPGA-based accelerator is de-
signed with a customized instruction set architecture
(ISA) and a specialized overlay micro-architecture, both

2

tailored to the proposed GNN-RPS optimization. The
accelerator incorporates both software and hardware op-
timizations to enhance parallelism and reduce compu-
tational latency. Additionally, it exhibits scalability and
flexibility, allowing future upgrades or reconfiguration as
the GNN algorithm evolves.

• An efficient scheduling algorithm is proposed to concur-
rently execute multiple beamforming inference tasks with
different port selections on the FPGA. To address the
memory-intensive nature of GNN inference and reduce
idle time of computing cores, the algorithm leverages
model parameter sharing, intermediate result reuse, and
computation reordering to minimize memory access and
eliminate redundant operations. Concurrent task execu-
tion maximizes core utilization and overall throughput.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work relevant to this research. Sec-
tion III then presents the system model and formulates the
optimization problem. Section IV introduces the GNN-RPS
approach. Section V details the design of the instruction-driven
FPGA-based accelerator. Section VI presents both simulation
and experimental results. Section VII concludes the paper.

II. RELATED WORK

This research spans three major areas: (1) beamforming
and port selection in FASs, (2) GNN-based beamforming
optimization, and (3) FPGA-based deep learning acceleration.
Related work in each of these areas is reviewed below.

A. Beamforming and Port Selection in FASs

FAS-related optimization problems often take the form
of mixed-integer programs, when the ports are modeled as
discrete variables. To solve such problems, Chen et al. [12]
proposed an alternating optimization (AO) approach to max-
imize energy efficiency in near-field communication by itera-
tively optimizing beamforming and FA positioning. Following
similar principles, Zhou et al. [13] maximized downlink com-
munication performance using AO while ensuring sensing and
power constraints. Qin et al. [14] applied AO with a penalty
method and successive convex approximation to jointly opti-
mize FA positions and beamforming in multiple-input single-
output (MISO) downlink systems, aiming to minimize total
transmit power. In addition to AO algorithms, Zou et al. [15]
developed an iterative algorithm integrating sparse optimiza-
tion, convex approximation, and penalty methods to minimize
transmit power while satisfying sensing and communication
requirements. Efrem et al. [16] introduced joint convex relax-
ation with reduced exhaustive search to enhance fluid-MIMO
channel capacity by optimizing antenna port positions. Wang
et al. [17] introduced a deep reinforcement learning approach
to maximize sum-rate while meeting sensing constraints. Al-
though existing beamforming and port selection algorithms
effectively address the optimization problems within their
respective scenarios, they often suffer from high computational
complexity and overlook hardware execution efficiency. This
motivates the development of an efficient hardware-software
co-optimization method for beamforming and port selection to

reduce computational latency.

B. GNN-based Beamforming Optimization

A GNN is a well-known neural network architecture specif-
ically designed for graph-structured data, which learns the
relationships between graph elements by propagating and ag-
gregating information through the nodes and edges. Recently,
GNN-based optimization has gained attention for beamform-
ing design in wireless communication systems. Jiang et al. [18]
employed GNN to predict beamforming vectors from the
received pilots and user locations. Chen et al. [19] proposed
a multi-GNN architecture to maximize the weighted sum-
rate (WSR) for reconfigurable intelligent surface (RIS) as-
sisted cell-free MIMO networks. It is worth mentioing that in
multiuser communications, the rates or signal-to-interference-
plus-noise ratios (SINRs) of different users are commonly
aggregated through weighted summation, which enables the
system to flexibly reflect user priorities and achieve a balance
between overall throughput and fairness [20]. In [21], Jin et
al. proposed a model-driven deep learning method based on
GNNs for RIS-assisted downlink multiuser MISO systems
and achieved significant improvements in the WSR. Xu et
al. [22] investigated the GNN-based hybrid beamforming for
satellite-terrestrial communications. Moreover, Li et al. [23]
utilized GNNs for sum-rate maximization in multiuser MISO
networks, optimizing beamforming vectors under the data
rate requirements of users and the power constraints of the
base station (BS). After that, Mishra et al. [24] proposed a
GNN-based power allocation strategy, which leveraged the
geometric structure of partially connected cell-free massive
MIMO systems to maximize the minimum SINR. Li et al. [25]
explored complex edge graph attention networks to optimize
max-min fairness and handle power budget constraints. Xu et
al. [26] also devised a distributed auto-learning GNN, which
enabled efficient interference mitigation and beamforming in a
multi-cell cluster-free non-orthogonal multiple access system,
and reduced overhead while improving sum rate performance.
Despite the promising results of GNN-based beamforming in
various wireless systems, its application to joint beamforming
and port selection in FASs remains largely unexplored.

C. FPGA-based Deep Learning Acceleration

FPGA is commonly used to accelerate deep neural network
(DNN) inference, thanks to its reconfigurability, energy ef-
ficiency, and fast development cycles, making it particularly
well-suited for real-time and power-efficient applications [27].
Typically, two architectural paradigms are considered: a fully
pipelined architecture [28], [29] and a non-pipelined one [30],
[31], [32], [33]. The former handles layers in sequence to en-
hance resource utilization, whereas the latter approach utilizes
a universal compute unit for all the DNN layers. In terms of
the fully pipelined architecture, Wei et al. [28] proposed a
tile-grained pipeline architecture that can reduce latency and
improve performance for DNN inference by enabling pipelined
execution of multiple tiles within a single input image across
heterogeneous accelerators. Then Zhang et al. [29] introduced
a novel FPGA-based DNN accelerator design paradigm and

3

Cell 1 Cell 2

BS with FAs

UE

UE

UE
UE UE

BS with FAs

Fig. 1. An FA-enhanced downlink multi-cell MIMO network, where each
BS with FAs simultaneously transmits multiple data streams to its associated
users each equipped with a fixed-position antenna in a cell.

automation tool, enabling fast exploration and optimization of
accelerator architectures for various DNN networks. In terms
of the non-pipelined architecture, Genc et al. [30] introduced
an open-source DNN accelerator generator that designed effi-
cient application-specific integrated circuit accelerators while
accounting for system-level effects like resource contention
and operating system overheads. Yu et al. [31], [32] proposed
a domain-specific FPGA overlay processor to accelerate DNN
networks by providing software-like programmability. Based
on [31], [32], Tang et al. [33] applied the same methodology
to the acceleration of GNN. While existing FPGA-based deep
learning accelerators can support general DNN inference, they
do not fully incorporate the unique characteristics of our GNN-
based optimization algorithm, thereby limiting computational
efficiency and motivating our tailored hardware design.

In summary, existing research has considered beamforming
and port selection, GNN-based optimization, and FPGA ac-
celeration separately, but a hardware-software co-optimization
perspective is still missing. To fill this gap, we will focus on
a unified framework that co-optimizes hardware and software
for port selection and beamforming in practical FASs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Fig. 1 depicts an FA-enhanced downlink multi-cell MIMO
network where each BS with FAs simultaneously transmits
multiple data streams to its associated user equipments (UEs)
each with a fixed-position antenna in a cell. Specifically, the
network is composed of I cells, in which Ki UEs are served
in the i-th cell for i ∈ I = {1, 2, . . . , I}. In terms of
hardware configuration, each BS is equipped with N FAs,
each of which has an RF chain and L ports. As the RF chain
is switchable among different ports, the spatial degrees of
freedom (DoF) between BSs and UEs are higher than those
with traditional fixed-position antennas, allowing for flexible
configuration of channel conditions. Additionally, the FAs are
spaced far enough apart (typically ≥ λ/2) to ensure negligible
spatial correlation and mutual coupling, where λ denotes the
wavelength. For each FA, the ports are uniformly distributed
along a linear dimension of length Wλ.

In contrast to the negligible correlation between FAs, there
can be considerable spatial correlation among the ports within
a given FA. Assuming rich scattering, the spatial correlation

can be characterized by Jake’s model [34], expressed as

J(l,l′) = δ2J0

(
2πW |l − l′|
L− 1

)
, (1)

where J0(·) is the zero-order Bessel function of the first kind,
δ2 denotes the path loss of the channel. Through eigenvalue
decomposition, the spatial correlation matrix J, whose (l, l′)-th
element is denoted as J(l,l′), can be represented by

J = QΛQH , (2)

where Q ∈ CL×L contains the eigenvectors of J ∈ CL×L,
and Λ ∈ CL×L is a diagonal matrix of the corresponding
eigenvalues. Based on this, the channel vector from all the
ports of an FA to a UE can be written as

h̄ = QΛ
1
2 z, (3)

where z is an independent and identically distributed (i.i.d.)
complex Gaussian random vector, i.e., z ∼ CN (0, IL).

B. Problem Formulation

Let i ∈ I = {1, 2, . . . , I}, Ki = {1, 2, . . . ,Ki}, N =
{1, 2, . . . , N}, and L = {1, 2, . . . , L} denote the sets of cells,
UEs in the i-th cell, FAs at each BS, and ports of each FA,
respectively. Based on the spatial correlation model in (3),
the channel vector from the j-th BS to the k-th UE in the
i-th cell, denoted by hik,j ∈ CN×1, comprises N independent
entries, each having L correlated options. Thus, hik,j has a vast
number of possible combinations, with different combinations
corresponding to varying channel condition configurations. We
assume that all the involved channels experience flat fading
with fully available channel state information (CSI).

Taking into account the narrowband transmission during a
given time slot, the received signal at the k-th UE in the i-th
cell is given by

yik = hik,iwikxik +
∑
r∈Ki
r 6=k

hik,iwirxir

︸ ︷︷ ︸
Intra-cell interference

+

∑
j∈I,r∈Kj

j 6=i

hik,jwjrxjr

︸ ︷︷ ︸
Inter-cell interference

+nik, (4)

where wjr ∈ CN×1 denotes beamforming vector for the r-
th data stream at the j-th BS. Consequently, the achievable
communication rate at the k-th UE in the i-th cell is given by

Rik = log2

(
1 +

|hHik,iwik|2∑
(j,r) 6=(i,k) |hik,jwjr|2 + σ2

)
. (5)

The objective of this paper is to maximize the WSR subject to
the transmit power constraint in the considered FA-enhanced
downlink multi-cell MIMO network. The optimization prob-
lem is formulated as

(P1) max
wik∈W(s)

∑
(i,k)

ωikRik,

4

s.t. C1 : Tr

(∑
k∈Ki

wikwHik

)
≤ P, i ∈ I,

C2 : s ∈ S,

where W(s) and S denote the collections of wik and all the
combinations for port selection, respectively, s is a possible
port selection, P is the power budget at each BS, and ωik is
the weighting factor assigned to the k-th user in the i-th cell.

IV. BEAMFORMING AND PORT SELECTION

The optimization problem (P1) requires joint design of
beamforming and port selection, resulting in a mixed-integer
non-convex formulation that is computationally prohibitive. To
overcome this challenge, in this section, we present a GNN-
RPS approach to optimize beamforming and port selection
for the considered system, including GNN-based beamforming
optimization and port selection schemes.

A. GNN-Based Beamforming Optimization

For a given port selection, the non-convex problem (P1) can
be simplified to

(P2) max
wik∈W

∑
(i,k)

ωikRik,

s.t. C1 : Tr

(∑
k∈Ki

wikwHik

)
≤ P, i ∈ I,

where W is the collection of wik for a given port selection.
Nevertheless, the optimization problem (P2) still remains chal-
lenging to solve directly due to its objective function, which
consists of a weighted sum of logarithmic terms. In addition
to high-complexity AO algorithms, such as [35], [36], the
GNN-based optimization method can be employed to obtain a
high-quality beamforming solution. As illustrated in Fig. 2, the
proposed method involves: extracting input features from the
considered network, designing the GNN architecture, defining
the output, and performing model training and inference.

1) Input and Output
The neural network takes as input a graph G = (V, E),

where V and E represent the sets of nodes and edges, respec-
tively. Upon analyzing the considered network, it is observed
that the channels from each BS to its associated UEs are
mutually dependent. Therefore, the CSI of these channels is
modeled as node features within a fully connected (FC) graph.
In accordance with the number of cells, the node feature matrix
Xin is constructed by concatenating I sub-matrices Xin

i with
Xin = [Xin

1 , . . . ,X
in
i , . . . ,X

in
I], where Xin

i is given by

Xin
i =


Re{hi1,i} Im{hi1,i}

...
...

Re{hiki,i} Im{hiki,i}
...

...
Re{hiKi,i} Im{hiKi,i}

 . (6)

Cell 1

Cell 2

X
in

1

X
in

2

M
L

P

G
N

N
 L

ay
er

G
N

N
 L

ay
er

F
C

n
o

rm
al

iz
at

io
n

M
L

P

G
N

N
 L

ay
er

G
N

N
 L

ay
er

F
C

n
o

rm
al

iz
at

io
n

X
out

1

X
out

2

Loss functionSGD

Feature matrix

Feature matrix

Considered

network

GNN 1

GNN 2

Fig. 2. An illustration of graph representation and neural network architecture.

The neural network’s final output is the beamforming matrix
Xout = [Xout

1 , . . . ,Xout
i , . . . ,X

out
I], where Xout

i is given by

Xout
i =


Re{wi1,i} Im{wi1,i}

...
...

Re{wiki,i} Im{wiki,i}
...

...
Re{wiKi,i} Im{wiKi,i}

 . (7)

2) Neural Network Architecture
The overall architecture integrates multiple homogeneous

GNNs, where each GNN is responsible for a specific cell and
receives as input the CSI from that cell’s BS to its associ-
ated UEs. This multi-GNN structure is ideal for distributed
deployment, allowing each GNN to operate locally at its corre-
sponding BS, which can significantly reduce inference latency
by avoiding centralized processing. Since all the GNNs are
homogeneous—sharing the same architecture and operational
rules, differing only in model parameters—we proceed to
describe the structure and operation of a single GNN.

A single GNN consists of a multi-layer perceptron (MLP)
as the input layer, followed by two identical successive GNN
layers, and ending with a FC layer for the output. The initial
MLP layer takes in 2N input neurons (N being the number of
FAs in a cell), corresponding to the number of columns in the
node feature sub-matrix. The output of the FC layer aligns with
the dimensionality of the beamforming sub-matrix, resulting
in 2N output neurons. Between the initial MLP and final FC
layers lie two GNN layers, serving as the core of the neural
network, which extract and propagate essential graph features
through aggregation and combination mechanisms.

3) Operational Rule of GNN Layers
After the input data Xin

i passes through the initial MLP
layer, the resulting output X(1)

i is fed into the first GNN
layer. The GNN layer contains two MLP sub-layers coupled
with aggregation and combination operations. The operational
procedure is implemented as follows:

¬ For any given row k ∈ K of the feature matrix X(1)
i , the

remaining rows are passed through the first MLP in the
GNN layer, which is mathematically is given by

x(2)i,k′ = MLP1
(

x(1)
i,k′

)
, k′ ∈ K \ k. (8)

where x(1)i,k′ denotes the k′-th row vector of X(1)
i and x(2)i,k′

5

represents the corresponding output.
­ Element-wise max-pooling along columns is performed

to the matrix formed by concatenating all x(2)i,k′ vectors,
which is given by

xmax
i,k′ = MaxPool

(
x(2)i,k′

)
, k′ ∈ K \ k. (9)

Through ¬ and ­, the aggregation is performed.
® Subsequently, x(1)i,k and xmax

i,k′ are concatenated along the
row direction, which is given by

x(3)
i,k = [x(1)

i,k , x
max
i,k′], k ∈ K and k′ ∈ K \ k. (10)

¯ The feature representation x(3)i,k is processed through the
second MLP sub-layer to generate the output of GNN
layer x(4)i,k , which is mathematically is given by

x(4)
i,k = MLP2

(
x(3)i,k
)
, k ∈ K. (11)

Through ® and ¯, the combination is performed and the
output feature matrix X(4)

i is obtained with x(4)
i,k .)

The operations of the second GNN layer are omitted here to
avoid redundancy, as they mirror those of the first GNN layer.

Generally, the aggregation and combination operations crit-
ically determine GNN’s scalability. In the dual GNN layers,
a composite aggregation function (MLP + max-pooling) is
used to extract and propagate neighborhood features, capturing
UE’s interactions. The combination function concatenates fea-
tures followed by MLP transformation. Through such a design,
the model learns UE’s interaction patterns for interference
suppression. Notably, the architecture generalizes to varying
UE counts by concatenating all channels into a unified input
tensor, ensuring configuration-independent operation.

4) Centralized Training and Distributed Deployment
For the FA-enabled downlink MIMO multi-cell scenario,

the neural network consists of I parallel GNNs, where each
GNN is dedicated to a specific BS. The training process is
conducted centrally to optimize model parameters, after which
each trained GNN module is independently deployed to its
respective BS for distributed inference operations.

During model training, the integrated multi-GNN architec-
ture undergoes centralized optimization, allowing full access to
global CSI. The neural network’s weight and bias parameters
are adjusted through unsupervised learning, with parameter
updates guided by a loss function defined as

L = −
∑
t∈T

∑
i∈I,k∈Ki

ωikR
(t)
ik

T
,

where R
(t)
ik is the achievable communication rate at the k-

th UE in the i-th cell for the t-th channel sample, and T
denotes the cardinality of the training set T , representing the
total number of available samples for model optimization.
The formulated objective function in (P2) exhibits an inverse
relationship with the loss function. Through iterative stochastic
gradient descent (SGD) optimization, minimization of the loss
function corresponds to asymptotic maximization of the objec-
tive function. The multi-GNN architecture, leveraging global
CSI availability, effectively learns to characterize both inter-

Algorithm 1 Implementation of A Single GNN

1: Input: Xin
i for i ∈ I

2: Output: Xout
i for i ∈ I

3: X(1)
i ← MLPin (Xin

i

)
4: for k = 1 to Ki do
5: for k′ = 1 to Ki do
6: if k′ 6= k then
7: x(2)i,k′ ← MLP1

(
x(1)i,k′

)
8: xmax

i,k′ ← MaxPool
(

x(2)i,k′
)
, k′ ∈ K \ k.

9: x(3)i,k ← [x(1)i,k , x
max
i,k′]

10: x(4)i,k ← MLP2
(

x(3)
i,k

)
11: for k = 1 to Ki do
12: for k′ = 1 to Ki do
13: if k′ 6= k then
14: x(5)i,k′ ← MLP3

(
x(4)i,k′

)
.

15: xmax
i,k′ ← MaxPool

(
x(5)i,k′

)
, k′ ∈ K \ k

16: x(6)i,k ← [x(4)i,k , x
max
i,k′]

17: x(7)i,k ← MLP4
(

x(6)
i,k

)
18: X(8)

i ← FC
(

X(7)
i

)
19: Xout

i ←
√
PLayerNorm

(
X(8)
i

)
and intra-cell interference patterns. The offline nature of this
training phase alleviates practical computational constraints.

During model inference for beamforming, the multi-GNN
architecture operates in a fully distributed manner. The global
GNN model is partitioned into multiple independent GNN
instances, with each BS equipped with its dedicated GNN
accelerator or processor. Each BS computes its beamform-
ing vectors using only local CSI and its assigned GNN
module, without requiring information from other BSs or
centralized coordination. This design allows for scalable and
parallel computation across the network, significantly reducing
communication overhead. The beamforming vectors obtained
from these distributed inferences are then used to calculate
the WSR, demonstrating the achievable system performance
through solely local computations at each BS.

5) Computational Complexity
The implementation details of the adopted GNN instance are

illustrated in Algorithm 1. The inference latency of the multi-
GNN model critically impacts the real-time performance of
FA-assisted multi-cell MIMO downlink network, necessitating
rigorous computational complexity analysis of its forward
pass. By virtue of architectural homogeneity across all con-
stituent GNNs, the computational analysis of any single GNN
module sufficiently characterizes the entire ensemble without
loss of generality. Taking the i-th GNN module as an example
for illustration, the input processing stage employs an MLP
layer. The resulting computational complexity for this compo-
nent is O(2KiNL1 + KiL1L2), where L1 indicates the di-
mensionality of the hidden representation and L2 specifies the
output dimension. Each processing unit in the MLP incorpo-
rates a nonlinear activation function. The architecture employs

6

Memory Read

Double Buffer

Computing Cores

weight

Buffer

intermediate result or outputMemory Write

Post Processing

max-pooling

concatenate

MADD

DDR

Instruction Control Unit

input bias

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

model

instruction

compiler

Host CPU

bin

ReLU

Fig. 3. An illustration of customized ISA.

two GNN layers, each containing two MLP layers along with
their respective activation functions. Taking the aggregation
and combination operations into account, the combined com-
putational complexity for these layers is approximately given
by O

(
2Ki

[
(Ki−1)Ki(L3L4 +L4L5)+Ki(L6L7 +L7L8)

])
,

where L3, L4, and L5 indicate the neuron counts in the
input, hidden, and output layers of the first MLP, while L6,
L7, and L8 correspond to those in the second MLP. The
output layer of each GNN is realized through an FC layer,
contributing a computational complexity of O(2KiL8N). The
overall computational complexity is essentially the summation
of the complexities from these constituent parts.

B. RPS

As previously formulated, the optimization problem (P1)
can be decomposed into two subproblems: beamforming op-
timization and port selection. The preceding subsection has
presented the GNN-based solution for the beamforming opti-
mization. This subsection presents the integration of RPS and
GNN-based beamforming.

In the RPS strategy, a single port is randomly selected from
each FA’s available port set. The resulting combination of
randomly chosen set of ports is subsequently employed for
GNN-based beamforming optimization. In order to optimize
performance, this random selection process is repeated across
multiple independent trials, with each trial’s outcome being
evaluated to ultimately identify the highest-performing port
selection. In the simulation section (see Section VI for details),
it can be observed that the WSR distribution with varying num-
bers of selections demonstrates that RPS, when independent
trials are conducted tens of times, can achieve a suboptimal
performance very close to the optimal solution.

V. INSTRUCTION-DRIVEN FPGA-BASED ACCELERATION

To minimize the inference latency, in this section, we design
a specialized FPGA-based accelerator featuring a domain-
specific ISA and an optimized overlay micro-architecture. In
addition, an efficient scheduling algorithm is also developed
to speed up concurrent GNN inference tasks across multiple
port selections on the FPGA platform.

A. Customized ISA

To reduce latency, improve energy efficiency, and enhance
control flexibility, the FPGA-based GNN accelerator adopts
a complex instruction set computer (CISC)-style ISA, which
supports three types of instructions.

• Memory Access: This instruction type manages data
movement between off-chip and on-chip memory, with
read and write operations determined by the memory-type
field of the instruction, and the corresponding memory
addresses explicitly specified.

• Matrix Processing: This instruction type drives
multiple systolic arrays (SAs) to efficiently execute ma-
trix multiplication, which is a fundamental operation in
GNN inference. By optimizing data flow and enabling
parallel processing, it accelerates large-scale matrix mul-
tiplications on hardware.

• Post Processing: This instruction type handles op-
erations beyond matrix multiplication, including matrix
addition (MADD), activation functions, max-pooling,
concatenation, and normalization, in order to prepare the
output for subsequent computation or storage.

B. Micro-architecture

Based on the aforesaid ISA, an overlay micro-architecture
is designed, see Fig. 3, consisting of four key units: control,
memory read/write, matrix processing, and post processing.

1) Control Unit
The control unit is responsible for fetching and prefetching

instructions from off-chip memory, decoding the instruction
types, and dispatching them to the corresponding functional
units, including memory read, matrix processing, post pro-
cessing, and memory write, to coordinate the overall execution
process. To manage both host interaction and on-chip execu-
tion efficiently, the control module is architecturally divided
into external and internal control logic. The external control
is responsible for handling host-side commands, configuration,
and global execution control, such as triggering the accelerator
and managing data transfers through interfaces like PCIe or
AXI. In contrast, the internal control logic operates within the

7

Tiled WeightLOAD

COMPUTE

Input BIAS

MM

Tiled Weight Tiled Weight

MM MM MM

Tiled Weight Tiled Weight

POST

MM

POST

CLOCK

Tiled WeightLOAD

COMPUTE

Input BIAS

MM

Tiled Weight Tiled Weight Tiled Weight Tiled Weight Tiled

POSTPOST

MM MM MM MM

Multiple Port Selections

Single Port Selection

Tiled Weight

Fig. 4. An illustration of hardware micro-architecture.

accelerator cores, decoding custom instructions, coordinating
the operation of memory, matrix processing, and post pro-
cessing units, and managing data dependencies. This separa-
tion improves design modularity, simplifies system integration
across different platforms, and enables flexible adaptation to
diverse GNN workloads by decoupling high-level control from
low-level execution management.

2) Memory Read/Write Units
The memory read/write units manage data transfers between

off-chip memory (e.g., DRAM) and on-chip buffers (e.g.,
BRAM or SRAM), serving as a bridge between external data
and internal compute modules. Tiled inputs and model pa-
rameters are transferred from off-chip memory to the on-chip
local buffers via AXI-stream to ensure efficient data access.
To achieve parallelism between data loading and computation,
a ping-pong buffering mechanism is adopted. Two alternating
buffers allow one buffer to load data while the other feeds
the compute units, enabling concurrent data movement and
computation. This approach ensures continuous streaming of
inputs and outputs, beneficial in GNN inference.

3) Matrix Processing Unit
In the GNN, each layer relies on FC operations, which are

inherently dependent on large-scale matrix multiplications. To
efficiently execute these computations, the FPGA-based GNN
accelerator employs multiple SAs as its core computation unit.
An SA is a specialized hardware architecture consisting of
a grid of processing elements (PEs). Each PE is responsible
for computing partial products, accumulating intermediate
results, and rhythmically passing data to adjacent elements.
This synchronized, pulse-like data flow enables highly parallel
processing, making SAs particularly well-suited for workloads
that involve intensive and repetitive matrix operations.

4) Post Processing Unit
The post processing unit includes operations such as

MADD, activation function, max-pooling, concatenation, nor-
malization, and other related functions. Once data passes
through this module, the output is managed according to its
purpose: intermediate results are stored in a dedicated buffer
and subsequently fed back into the computing cores, while
final results are written back to external memory. This de-

Algorithm 2 Code Refactoring for A Single GNN

1: Input: Xin
i (s1), Xin

i (s2) for i ∈ I, where s1, s2 ∈ S
2: Output: Xout

i for i ∈ I
3: Xin

i ← concatenate
(
Xin
i (s1); Xin

i (s2)
)

4: X(1)
i ← MLPin (Xin

i

)
5: X(2)

i ← MLP1
(

X(1)
i

)
6: for k = 1 to Ki do
7: xmax

i,k′(s1)← MaxPool
(

x(2)
i,k′(s1)

)
, k′ ∈ K \ k.

8: x(3)i,k (s1)← [x(1)
i,k (s1), xmax

i,k′(s1)]

9: xmax
i,k′(s2)← MaxPool

(
x(2)
i,k′(s2)

)
, k′ ∈ K \ k.

10: x(3)i,k (s2)← [x(1)
i,k (s2), xmax

i,k′(s2)]

11: X(3)
i ← concatenate

(
X(3)
i (s1); X(3)

i (s2)
)

12: X(4)
i ← MLP2

(
X(3)
i

)
13: X(5)

i ← MLP3
(

X(4)
i

)
14: for k = 1 to Ki do
15: xmax

i,k′(s1)← MaxPool
(

x(5)
i,k′(s1)

)
, k′ ∈ K \ k.

16: x(6)i,k (s1)← [x(4)
i,k (s1), xmax

i,k′(s1)]

17: xmax
i,k′(s2)← MaxPool

(
x(5)
i,k′(s2)

)
, k′ ∈ K \ k.

18: x(6)i,k (s2)← [x(4)
i,k (s2), xmax

i,k′(s2)]

19: X(6)
i ← concatenate

(
X(6)
i (s1); X(6)

i (s2)
)

20: X(7)
i ← MLP4

(
X(6)
i

)
21: X(8)

i ← FC
(

X(7)
i

)
22: Xout

i ←
√
PLayerNorm

(
X(8)
i

)
sign fundamentally improves dataflow efficiency by reducing
reliance on external memory, enabled by a clear separation
between intermediate and final outputs. By minimizing inter-
mediate data transfers between on-chip and off-chip memory,
it significantly lowers latency and reduces the energy overhead
caused by excessive data movement.

C. Task Scheduling Algorithm

According to the roofline model in [37], the primary fac-
tors limiting inference latency in FPGA-based accelerators

8

are computational throughput and the bandwidth constraints
between on-chip and off-chip memory. Given the substantial
number of weight and bias parameters in the considered
GNN, the inference latency of the FPGA-based accelerator is
predominantly determined by the I/O bandwidth for accessing
off-chip memory. This makes the system memory-bound rather
than computation-bound. This issue is particularly critical to
the performance of the proposed FPGA-based accelerator,
as the substantial memory demands of GNNs often lead
to data access becoming the dominant bottleneck, thereby
overshadowing the computational workload.

In addition to frequently used optimization techniques such
as quantization, loop tiling and double buffering, efficient task
scheduling plays a crucial role in improving computational
efficiency by enabling the concurrent inference of multiple
GNN tasks. As shown in Fig. 4, GNN is a memory-intensive
task and the computing cores often remain idle, waiting for
data from off-chip memory. In the considered communication
scenario, each FA port selection corresponds to a separate
GNN inference required to compute the beamforming solution.
As the number of port selections increases, performing these
inference tasks sequentially leads to a linear growth in latency.
For different port selections, the corresponding GNN inference
tasks can share the same model and identical parameters. This
enables concurrent parallel inference of these GNN tasks,
which in turn maximizes overall throughput and resource
utilization. This is because off-chip memory accesses are sig-
nificantly reduced through parameter sharing, and redundant
computations are eliminated. More importantly, the computing
cores are prevented from stalling due to data transfer latency.

As shown in Algorithm 2, the computation flow of multiple
GNN inference tasks on the FPGA-based accelerator is illus-
trated using two tasks as an example. First, the GNN model
parameters, channel data for multiple port selections, and the
instruction stream are transferred from off-chip memory to
on-chip buffers. Second, the channel data is concatenated on-
chip. Third, these inputs are processed by the first MLP layer
of the GNN, where matrix multiplication and post processing
are performed. The results are stored in an intermediate buffer.
Fourth, the intermediate results are used by the two GNN
layers. Through code restructuring and reuse of intermediate
computations, compared with Algorithm 1, this stage achieves
higher efficiency. Finally, the outputs from the GNN layers
are passed through an FC layer and a normalization layer
to generate the final inference results, which are then written
back to off-chip DDR memory. Throughout the entire process,
all computations are carried out on-chip, effectively avoiding
repeated off-chip memory access and reducing overall latency.

VI. EVALUATION

This section provides a comprehensive evaluation of the
communication and computational performance of the pro-
posed hardware, software co-design, developed for beamform-
ing and port selection in the FA-enhanced multi-cell MIMO
network. The communication performance of the GNN-RPS
approach is first examined through numerical simulations.
Subsequently, the computational performance of the designed

TABLE I
SIMULATION PARAMETERS.

Notation Description Value
I Number of cells 2
K Number of UEs per cell 4
r Positions of all the UEs [20 m, 30 m]
d0 Reference distance 1 m
N Number of FAs at each BS 4
L Number of ports at each FA 6
Wλ Length of each FA 0.5λ
P Transmit power at each BS 0 dBm

σ2 Noise variance at UEs −90 dBm
ωik Weighting factor 1

FPGA-based GNN accelerator, which incorporates an efficient
scheduling algorithm, is evaluated through experiments.

A. Simulation and GNN Configuration

The simulation parameters for the FA-enhanced downlink
multi-cell MIMO network are summarized in Table I. Specif-
ically, the network consists of I = 2 cells, each serving an
equal number of UEs, with K = 4 UEs per cell. Each BS is
equipped with N = 4 FAs, each comprising L = 6 ports. The
available ports in each FA are assumed to be evenly distributed
along a line segment of length Wλ = 0.5λ. The positions r of
all UEs from each BS are randomly generated within the range
of 20-30 m. Let dx and d0 denote the transmission distance
and the reference distance, respectively. The path loss is then
given by δ = δ0 − 25 log10

(
dx
d0

)
dB, where δ0 = −30 dB

represents the path loss at the reference distance. The transmit
power is set to P = 3 dBm, and the noise variance at each UE
is set to σ2 = −90 dBm. The weighting factors are defined as
ωm = 1. Some parameters can be varied within a range when
used as the x-axis in the simulations.

In the adopted multi-GNN architecture, all GNN instances
share an identical structural design. Each GNN comprises one
initial MLP, two GNN layers, and one FC layer, with the
detailed hyperparameter settings presented in Table II. ReLU
activation functions are applied to all FC layers throughout the
network, except for the final output layer. The model is trained
using the Adam optimizer, initialized with a learning rate of
0.001. A learning rate scheduling strategy is employed, where
the rate is decayed by a factor of 0.995 every 100 training
steps. Each training epoch consists of 10, 000 randomly gener-
ated samples, which are divided into batches of 200, resulting
in 50 updates per epoch. The test set contains 2, 000 samples.
Training terminates either when a predefined number of epochs
is reached or when convergence criteria are met.

B. Communication Performance

The achievable communication performance of the proposed
GNN-RPS approach is evaluated through simulations and
compared with several benchmark methods. The details of all
considered schemes are outlined below.

• GNN-RandomMax: This is the proposed GNN-RPS in
which RPS is evaluated over 20 independent trials, with
the best-performing configuration retained.

• GNN-RandomSingle: This is the proposed GNN-RPS
in which RPS is executed once with a one-time trial,

9

TABLE II
GNN SETUP.

MLP GNN layer GNN layer
FCFC FC MLP MLP MLP MLP

FC FC FC FC FC FC FC FC
2N × 1024 1024× 512 512× 512 512× 512 1024× 512 512× 512 512× 512 512× 512 1024× 512 512× 512 512× 2N

0 50 100 150 200

0

10

20

30

40

50
(a) (b)

C1 C2 C3

0

10

20

30

40

50

Fig. 5. Training and inference performance of the multi-GNN method under
different parameter settings (I,K, P): C1 = (2, 2, 0), C2 = (2, 2, 3), and
C3 = (4, 2, 0).

resulting in a fixed antenna configuration equivalent.
• GNN-Exhaustive: This is the proposed GNN-RPS but

up to 500 independent trials are conducted, depending
on availability, to approximate an exhaustive search for a
performance upper bound.

• MMSE-Exhaustive: The conventional MMSE-based
approach is combined with 500 independent port selec-
tions, serving as a non-learning benchmark.

• MRT-Exhaustive: The MRT-based scheme is com-
bined with 500 independent port selections.

• ZF-Exhaustive: The ZF-based transmission method
is integrated with 500 independent port selections.

In Fig. 5, we illustrate the training and inference perfor-
mance of the multi-GNN method under different parameter
settings (I,K, P): C1 = (2, 2, 0), C2 = (2, 2, 3), and
C3 = (4, 2, 0). The results indicate that the GNN converges
rapidly, typically stabilizing within 30 iterations, with only
a slight improvement observed thereafter. To evaluate the
model’s generalization capability, the training and inference
results are compared. The close agreement between these
results demonstrates the robustness and consistent performance
of the model across various channel conditions.

Fig. 6 presents the WSR distribution under different num-
bers of RPS trials. As observed from the figure, the maxi-
mum achievable WSR generally increases with the number
of sampling trials, indicating that more extensive exploration
tends to yield better performance. However, the performance
gain becomes marginal when the number of samples increases

from 500 to 2000, suggesting diminishing returns. Notably,
even with as few as 20 trials, the WSR reaches approximately
70% of the value achieved with 2000 trials. This implies that
a relatively small number of samples can still provide a near-
optimal solution with significantly reduced computational cost.
Therefore, a clear trade-off exists between performance and
computational complexity in the port selection process.

In Fig. 7, we investigate the relationship between the
WSR and transmit power. The results indicate that higher
power significantly improves performance. Also, the GNN-
based methods outperform traditional MMSE, ZF, MRT ap-
proaches, benefiting from the multi-GNN’s ability to capture
inter-cell and inter-user dependencies and manage interfer-
ence. Among them, GNN-RandomMax performs better than
GNN-RandomSingle but is inferior to GNN-Exhaustive
due to fewer port selection samples available. More precisely,
GNN-RandomMax reduces about 50% of the performance gap
between GNN-RandomSingle and GNN-Exhaustive.
Given that GNN-RandomMax requires only 20 trials, com-
pared with 500 trials for GNN-Exhaustive, this result
shows that GNN-RandomMax can deliver satisfactory per-
formance with significantly lower computational complexity.
Furthermore, the advantage of FAs in offering additional DoF
through port selection is validated.

In Fig. 8, the results are provided to illustrate the relation-
ship between the WSR and the number of BSs under two
cases: (a) constant transmit power per BS, and (b) fixed total
transmit power for all the BSs. These two cases are considered
to isolate the impact of increasing the number of BSs from
the potential linear increase in total transmit power. It is
observed that the WSR improves with the number of BSs in
both cases, primarily due to the increased spatial DoF enabled
by additional BSs. Moreover, this result further verifies the
relative performance of different schemes.

Fig. 9 depicts the relationship between the WSR and the
number of UEs. For the GNN-based schemes, the WSR
initially increases and then decreases as the number of UEs
increases, where N = 8 is set. The initial gain is attributed
to the additional spatial DoF by having more UEs, while the
performance decline results from increased intra- and inter-
cell interference. This trend indicates that GNN models can
effectively manage interference in low-UE-density scenarios,
but their capability diminishes as the UE density increases. In
contrast, traditional schemes exhibit a continuous performance
degradation as the number of UEs increases but their WSR
remains much lower than that of the GNN-based methods. This
highlights the limited capability of conventional techniques
like MMSE, ZF, and MRT in effectively handling interference.

Finally, Fig. 10 investigates the impact of the total number

10

0 500 1000 1500 2000

15

20

25

30

35
(2000 times)

0 100 200 300 400 500

15

20

25

30

35
(500 times)

0 10 20 30 40 50

18

20

22

24

26

28

30

32
(50 times)

0 5 10 15 20

20

21

22

23

24

25
(20 times)

Fig. 6. WSR distribution with varying numbers of RPSs.

-9 -6 -3 0 3 6 9
10

15

20

25

30

35

40

GNN-RandomMax

GNN-RandomSingle

GNN-Exhaustive

MMSE-Exhaustive

ZF-Exhaustive

MRT-Exhaustive

Fig. 7. The relationship between the WSR and the transmit power.

of ports on the WSR, where the number of UEs per cell is
K = 2 and each BS has N = 2 FAs. An exhaustive search is
performed to obtain the performance upper bound. We see that
the WSR increases consistently with the total number of ports.
A clear performance gain is observed at the beginning, but the
growth becomes slower with further increases in the number
of ports. This result indicates that the spatial DoFs by port
selection effectively enhance the communication performance
but the marginal gains diminish noticeably with more and more
ports. This indirectly confirms that a relatively small number
of port selections can still yield a near-optimal solution. On
the other hand, the GNN method underperforms compared to
ZF and MMSE in the case of L = 4, which can be attributed
to the insufficient generalization of the trained GNN model.

C. Computational Performance

This subsection presents the computational performance
evaluation of the designed instruction-driven FPGA-based

1 2 3 4
0

10

20

30

40

50

60
(a)

GNN-RandomMax

GNN-RandomSingle

GNN-Exhaustive

1 2 3 4
0

10

20

30

40

50

60
(b)

MMSE-Exhaustive

ZF-Exhaustive

MRT-Exhaustive

Fig. 8. The relationship between the WSR and the number of BSs under
two cases: (a) constant transmit power per BS; (b) fixed total transmit power
shared among all BSs.

accelerator with a customized ISA and a specialized micro-
architecture. The experiments are conducted on a Xilinx
Virtex-7 XC7V690T FFG1761-3 FPGA platform and the
design is synthesized using Xilinx Vitis HLS version 2022.2.
The FPGA-based GNN accelerator employs a 8-bit fixed-point
data representation, which offers greater resource efficiency
and lower power consumption compared to floating-point
arithmetic, with only negligible loss in accuracy. Moreover,
this format also improves memory interface efficiency by
shortening the delay in accessing off-chip memory.

In the experiments, the FPGA-based accelerator utilizes
64 bits of off-chip memory bandwidth, while the remaining
bandwidth is reserved for wireless communication and signal
processing modules. When the port selection is limited to
a single option, the inference latency ranges from 392, 636
to 610, 442 clock cycles, corresponding to 3.926 to 6.104

11

2 3 4 5 6 7 8
0

10

20

30

40

50

60
GNN-RandomMax

GNN-RandomSingle

GNN-Exhaustive

MMSE-Exhaustive

ZF-Exhaustive

MRT-Exhaustive

Fig. 9. The relationship between the WSR and the number of UEs.

4 8 12 16 20 24 28 32 36 40

19

20

21

22

23

24

25

26

GNN-Exhaustive

MMSE-Exhaustive

ZF-Exhaustive

MRT-Exhaustive

Fig. 10. The relationship between the WSR and the total number of ports.

milliseconds, under a target clock period of 10 nanosecond. On
the other hand, Table III reports the FPGA resource utilization
estimated by the HLS tool. It should be noted that part of the
resources is intentionally reserved for signal processing tasks
and potential future development.

With fewer than four port selections, the inference latency
increases only marginally. For example, when there are four
port selections, the inference latency ranges from 399, 418
to 622, 246 clock cycles, corresponding to 3.994 to 6.222
milliseconds under a target clock period of 10 nanosecond. It
can be observed that the inference latency for four concurrent
tasks is close to that of a single task. This is primarily due to
the efficient reuse of neural network parameters already loaded
into on-chip memory, as well as the full utilization of the
computing cores. More specifically, since the GNN workload
is memory-bound, the compute latency is significantly lower
than the memory access latency. Only when the number of
concurrent tasks reaches four does the compute latency be-
come comparable to the memory access latency. On the other

TABLE III
UTILIZATION ESTIMATES.

Name BRAM 18K DSP FF LUT URAM
Total 1853 128 18198 299028 0

Available 2940 3600 866400 433200 0
Utilization (%) 63 3 21 69 0

hand, the slight increase in inference latency from single-task
to four-task execution mainly results from the small increase in
the amount of input data to the model. However, as the number
of port selections further increases, the inference latency rises
significantly. This is mainly because the workload shifts from
being memory-bound to compute-bound, as more intensive
computations are required to handle multiple inference tasks.
Additionally, the increased number of selected ports leads to a
larger volume of intermediate data, potentially exceeding the
capacity of on-chip storage.

These results demonstrate the effectiveness of the proposed
task scheduling algorithm for the FPGA-based accelerator,
achieving up to an approximately 4× reduction in latency
with only a modest increase in memory overhead. It is worth
noting that although the current inference latencies exceed
typical channel coherence time, they represent baseline per-
formance on FPGAs used primarily for prototyping. Future
advancements in model compression, sparse computation, and
dedicated application-specific integrated circuit (ASIC) imple-
mentations are expected to further reduce inference latency,
thereby enhancing the practicality of the proposed approach.

VII. CONCLUSIONS

This paper proposed a hardware-software co-design ap-
proach for the joint optimization of beamforming and port
selection in FASs. Using FA-enhanced downlink multi-cell
MIMO networks as an example, simulation results demon-
strated that the proposed GNN-RPS algorithm significantly
outperforms traditional schemes including MMSE, ZF, and
MRT. In addition, experimental results confirmed that the
instruction-driven FPGA-based accelerator achieves low infer-
ence latency, ranging from 3.926 to 6.104 milliseconds, under
a 10 nanosecond clock period with 8-bit fixed-point arithmetic
for single-port selection. Thanks to the proposed task schedul-
ing algorithm, the accelerator can efficiently process up to four
port selections in parallel with only a marginal increase in
latency. These findings highlighted the effectiveness and effi-
ciency of the proposed hardware-software co-design approach
for real-time intelligent beamforming in FASs.

REFERENCES

[1] W. K. New et al., “A tutorial on fluid antenna system for 6G networks:
Encompassing communication theory, optimization methods and hard-
ware designs,” IEEE Commun. Surv. Tuts., vol. 24, no. 4, pp. 2325–2377,
Aug. 2025.

[2] K.-K. Wong, K.-F. Tong, Y. Zhang, and Z. Zheng, “Fluid antenna system
for 6G: When Bruce Lee inspires wireless communications,” Elect. Lett.,
vol. 56, no. 24, pp. 1288–1290, Nov. 2020.

[3] K.-K. Wong, K.-F. Tong, Y. Shen, Y. Chen, and Y. Zhang, “Bruce Lee-
inspired fluid antenna system: Six research topics and the potentials for
6G,” Frontiers Commun. Netw., vol. 3, Mar. 2022, Art. no. 853416.

[4] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,”
IEEE Commun. Mag., vol. 42, no. 10, pp. 68–73, Oct. 2004.

12

[5] A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection,”
IEEE Microwave Mag., vol. 5, no. 1, pp. 46–56, Mar. 2004.

[6] K. K. Wong, A. Shojaeifard, K. F. Tong, and Y. Zhang, “Performance
limits of fluid antenna systems,” IEEE Commun. Lett., vol. 24, no. 11,
pp. 2469–2472, Nov. 2020.

[7] K. K. Wong, A. Shojaeifard, K. F. Tong, and Y. Zhang, “Fluid antenna
systems,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1950–1962,
Mar. 2021.

[8] Y. Shen et al., “Design and implementation of mmWave surface wave
enabled fluid antennas and experimental results for fluid antenna multiple
access,” arXiv preprint, arXiv:2405.09663, May 2024.

[9] J. Zhang et al., “A novel pixel-based reconfigurable antenna applied in
fluid antenna systems with high switching speed,” IEEE Open J. Antennas
& Propag., vol. 6, no. 1, pp. 212–228, Feb. 2025.

[10] B. Liu, K.-F. Tong, K. K. Wong, C.-B. Chae, and H. Wong, “Pro-
grammable meta-fluid antenna for spatial multiplexing in fast fluctuating
radio channels,” Optics Express, vol. 33, no. 13, pp. 28898–28915, 2025.

[11] W.-J. Lu et al., “Fluid antennas: Reshaping intrinsic properties for
flexible radiation characteristics in intelligent wireless networks,” IEEE
Commun. Mag., vol. 63, no. 5, pp. 40–45, May 2025.

[12] Y. Chen et al., “Joint beamforming and antenna design for near-field
fluid antenna system,” IEEE Wireless Commun. Lett., vol. 14, no. 2, pp.
415–419, Feb. 2025.

[13] L. Zhou et al., “Fluid antenna-assisted ISAC systems,” IEEE Wireless
Commun. Lett., vol. 13, no. 12, pp. 3533–3537, Dec. 2024.

[14] H. Qin et al., “Antenna positioning and beamforming design for fluid
antenna-assisted multi-user downlink communications,” IEEE Wireless
Commun. Lett., vol. 13, no. 4, pp. 1073–1077, Apr. 2024

[15] J. Zou et al., “Shifting the ISAC trade-off with fluid antenna systems,”
IEEE Wireless Commun. Lett., Vol. 13, No. 12, pp. 3479–3483, Dec.
2024.

[16] C. N. Efrem and I. Krikidis, “Transmit and receive antenna port
selection for channel capacity maximization in fluid-MIMO systems,”
IEEE Wireless Commun. Lett., vol. 13, no. 11, pp. 3202–3206, Nov. 2024

[17] C. Wang et al., “Fluid antenna system liberating multiuser MIMO for
ISAC via deep reinforcement learning,” IEEE Trans. Wireless Commun.,
vol. 23, no. 9, pp. 10879–10894, Sept. 2024.

[18] T. Jiang, H. V. Cheng, and W. Yu, “Learning to reflect and to beamform
for intelligent reflecting surface with implicit channel estimation,” IEEE
J. Sel. Areas Commun., vol. 39, no. 7, pp. 1931–1945, Jul. 2021.

[19] C. Chen et al., “A distributed machine learning-based approach for IRS-
enhanced cell-free MIMO networks,” IEEE Trans. Wireless Commun.,
vol. 23, no. 5, pp. 5287–5298, May 2024.

[20] Y. Yang, S. Dang, M. Wen and M. Guizani, “Millimeter wave MIMO-
OFDM with index modulation: A pareto paradigm on spectral-energy
efficiency trade-off,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp.
6371–6386, Oct. 2021.

[21] W. Jin et al., “Low-complexity joint beamforming for RIS-assisted
MU-MISO systems based on model-driven deep learning,” IEEE Trans.
Wireless Commun., vol. 23, no. 7, pp. 6968–6982, Jul. 2024.

[22] S. Xu, G. Chen, Y. Ma and R. Tafazolli, “Distributed hybrid beamform-
ing for downlink multi-user space-MIMO communications,” IEEE Trans.
Veh. Tech., doi:10.1109/TVT.2025.3572224, 2025.

[23] Y. Li et al., “GNN-based beamforming for sum-rate maximization in
MU-MISO networks,” IEEE Trans. Wireless Commun., vol. 23, no. 8,
pp. 9251–9264, Aug. 2024.

[24] S. Mishra, L. Salaun, H. Yang and C. S. Chen, “Graph neural network
aided power control in partially connected cell-free massive MIMO,”
IEEE Trans. Wireless Commun., vol. 23, no. 9, pp. 12412–12423, Sept.
2024.

[25] Y. Li et al., “GNN-enabled max-min fair beamforming,” IEEE Trans.
Veh. Tech., vol. 73, no. 8, pp. 12184–12188, Aug. 2024.

[26] X. Xu, Y. Liu, Q. Chen, X. Mu and Z. Ding, “Distributed auto-learning
GNN for multi-cell cluster-free NOMA communications,” IEEE J. Sel.
Areas Commun., vol. 41, no. 4, pp. 1243–1258, Apr. 2023.

[27] S. Xu, Y. Du, G. Chen, and R. Tafazolli, “GSM: A GNN-based space-
MIMO framework for direct-to-cell communications,” arXiv preprint,
arXiv:2412.07555, 2024.

[28] X. Wei et al., “TGPA: Tile-grained pipeline architecture for low latency
CNN inference,” in Proc. Int. Conf. Comput. Aided Design (ICCAD), 5-8
Nov. 2018, San Diego, CA, USA.

[29] X. Zhang et al., “DNNExplorer: A framework for modeling and ex-
ploring a novel paradigm of FPGA-based DNN accelerator,” in Proc. Int.
Conf. Comput. Aided Design (ICCAD), 2-5 Nov. 2020, San Diego, CA,
USA.

[30] H. Genc et al., “Gemmini: Enabling systematic deep learning architec-
ture evaluation via full-stack integration,” in Proc. Design Autom. Conf.
(DAC), 5-9 Dec. 2021, San Francisco, CA, USA.

[31] Y. Yu, C. Wu, T. Zhao, K. Wang and L. He, “OPU: An FPGA-based
overlay processor for convolutional neural networks,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 28, no. 1, pp. 35–47, Jan. 2020.

[32] Y. Yu, T. Zhao, K. Wang, and L. He, “Light-OPU: An FPGA-based
overlay processor for lightweight convolutional neural networks,” in Proc.
Int. Symp. Field-Programmable Gate Arrays (FPGA), pp. 122–132, 23-25
Feb. 2020, Seaside, CA, USA.

[33] E. Tang et al., “Graph-OPU: A highly flexible FPGA-based overlay pro-
cessor for graph neural networks,” ACM Trans. Reconfigurable Technol.
Syst., vol. 17, no. 4, pp. 1–33, Nov. 2024.

[34] W. K. New, K.-K. Wong, H. Xu, K.-F. Tong and C.-B. Chae,
“An information-theoretic characterization of MIMO-FAS: Optimization,
diversity-multiplexing tradeoff and q-outage capacity,” IEEE Trans. Wire-
less Commun., vol. 23, no. 6, pp. 5541–5556, Jun. 2024.

[35] S. Xu et al., “Intelligent reflecting surface enabled integrated sensing,
communication and computation,” IEEE Trans. Wireless Commun., vol.
23, no. 3, pp. 2212–2225, Mar. 2024.

[36] Y. Du, S. Xu, G. Zhang, B. Wu and J. Zhang, “Intelligent reflecting sur-
face backscatter downlink multi-user communications with radar sensing,”
IEEE Trans. Veh. Technol., vol. 74, no. 5, pp. 8351–8356, May 2025.

[37] C. Zhang et al., “Optimizing FPGA-based accelerator design for deep
convolutional neural networks,” in Proc. Int. Symp. Field-Programmable
Gate Arrays (FPGA), pp. 161–170, 22-24 Feb. 2015, Monterey, CA, USA.

arXiv:2405.09663
doi: 10.1109/TVT.2025.3572224
arXiv:2412.07555

	Introduction
	Related Work
	Beamforming and Port Selection in FASs
	GNN-based Beamforming Optimization
	FPGA-based Deep Learning Acceleration

	System Model and Problem Formulation
	System Model
	Problem Formulation

	Beamforming and Port Selection
	GNN-Based Beamforming Optimization
	Input and Output
	Neural Network Architecture
	Operational Rule of GNN Layers
	Centralized Training and Distributed Deployment
	Computational Complexity

	RPS

	Instruction-Driven FPGA-based Acceleration
	Customized ISA
	Micro-architecture
	Control Unit
	Memory Read/Write Units
	Matrix Processing Unit
	Post Processing Unit

	Task Scheduling Algorithm

	Evaluation
	Simulation and GNN Configuration
	Communication Performance
	Computational Performance

	Conclusions
	References

