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Abstract

The three-body K 4 interactions at low Kaon-lab momenta (100-300 MeV/c)
are expressed in terms of twc body interactioﬂs (KN and NN) by means of the
Impulse Approximation method, including multiple scattering terms. The KN
S-waves are derived from Ross-Humphrey's solution I and II of scattering lengths.
The NN wave functions for the np and pp continuous states calculated from the
NN phase shifts obtained by Breit and co-workers (1962).

K d elastic, inelastic and charge-exchange cross-sections, both total
and differential, are calculated for Ross-Humphrey's solution I and II,

A not very successful attempt has been made of calculating independently
the K d absorption cross-sections. To achieve this, the resonant group
structure method was uséd, combined with KN complex Yukawa potentials,
calculated from the Ross-Humphrey's sets of scattering lengths by means of
a variational principle (Schwinger's and Hulthdn's). The limitations of this
method are discussed.

Coulomb effects and K K° mass difference are taken into account.

However, no attempt was made of including in the calculations the virtual
charge-exchange processes in the multiple scattering terms, although a method
to achieve this is developed.

An analysis of the numerical results is made in the light of other
theoretical‘works on the same subject and the scant K d experimental data.

The conclusion is reached that it is very likely that the calculated K 4



charge-exchange cross-sections have the correct values, in spite of ﬁhe
'inadequacy of Ross-Humphrey's parameters.

K+d elastic, inelastic and charge-exchange cross-sections are elso
calculated in the same kaon-lab momenta range. The probability

conservation of total flux is checked.



Chapter I

Introduction

As in the present work K d and K+d scattering processes at low rmomenta
(below 300 MeV/c in the K laboratory system) are studied in terms of two-body
forces (KN and NN), it was thought convenient to discuss briefly in the first
place these simpler interactions and some general vroperties and conservation
laws of the elementary particles involved in them.

This chapter is devoted mainly to K N interactions. The NN interactions
are treated in Chapter III. The analytical properties of the two nucleons
initial (deuteron) and final state wave functions are given there in so far as
they are needed for the calculation of the K d elastic, inelastic, charge-
exchange and absorption cross-sections.

It is well-known that K_p interactions for K-—laboratory momenta below

300 MeV/e lead to the following reactions

K +p + K +p (1.1)
+ K% +n (1.2)
> et | (1.3)
U (1.4)
> Zo + 7° (1.5)
> A +1° (1.6)
= M e e (1.7)

All these channels are open'to K p collisions covering almost of the

energy interval (0, «). Only the reaction (1.2) has a higher lower limit,



since the rest mass. difference between the two particles systems %°n and K p
is v SeTMeV. But the threshold energies for Am, Im and A(27) systems lie.
respectively at 130,-100 and 40 MeV below the threshold energy for the KN
system,

The reactions from (1.1) to (1.7) are due to strong nuclear forces. Tre
21 production in reaction (1.7) is not very important and accordingly can be
iénored. But the interactions in the othér channels can not bé discarded in
any quantitative analysis of the K p collisions.

At first sight a complete description of the K p system with six equally
important open channels seems to be a formidable task, But a drastic
simplification can ée achieved when it is realised that in all these channels
only strong nuclear interactions come into play, so that the principle of
charge independence of nuclear forces is valid.

According to this principle and as an example, the three n—ﬁesons w+,
n° and m  are different charge states of the same particle - the w-meson.

The rest masses of thé_n-mesons are nearly the same (~ lhOMeV)." The
slight differences are related to the magnitudes of the electric charges.-
‘Therefore, if the electromagnetic interactions afe not taken into account and
the small differences in mass are neglected, it does not matter which of thé
T-mesons is considered in eny strong interaction, unless its state of motion
is altered.

The pfinciple of charge independence together with the principle of

charge conservafion (of which equations (1.1) - (1.7) are examples) can be



formulated in the form of a new conservation principle, true for all strong
interactions, if the concept of isotopic spin is introduced.

In isotopic-spin terms, the® —-meson is a charge triplet with total
isotopié—spin quantum number I = 1 and Z-component projections IZ = l(n+),
O(no), =1(w"); and the nucleon is a charge doublet with I = 14 enad
I, = %(p), -%(n).

Strange particleé (K-mesons and the three hyNperoms families A, I, =)

can also be describted as charge multiplets.

(K+, x°) doublet I = lj; I, = Yo, =Y
A singlet I = O3 IZ =0

(%, °, £7)  triplet I= 1; I, =1, 0-1

0,8 dowblet I =14; I, =Y, -

It is now obvious that I is related with-gharge independence of the nucleer
forces (strong interactions) and I, with charge conservation. If to this
list of particles are added the charge-multiplets of the anti-varticles, it
can be stated that - "the total isotopic-spin I (charge independence) and its
I, component (charge conservation) are conserved in &ll strong interactions".
Evidently the principle of charge conservation 1is more general than.the
I, invariance, since the isotopic-spin concept has a meaning only for strong

Z

interactions. Applying the I_-invariance to the K p system, two possible

o

total isotopic-spin channels are obtained

o _ 1 - =0

I, =0, I=0 9 -—/;{IK p>-|{K n>}
0 1 - -

I=1 ¢ =—{[Kp>+& >}



The states with the same I and I, for pion-hyperon systems are

1 + - 0_0 -+
I, =0, I =0 ¢ = :i{]z T >[I m >+ |ETn >}
i =1 il ¢1 = __]_'.{IZ"'_”>_[E—“+>}
/2
51 = |An°>

If Tfi represents the element of the transition matrix T, with initial

state i and final state f, it is possible to write

(o) (1)

Ty = GOy Opy (L)T¢5,

where ngl) 1s the transiction matrix element for total isotopic-spin I and
the C‘i(I)'s are coefficients derived from the isotopic-spin wave functions.

The following Table is easily established (Matthews and Salam, 1959)

TABLE I, 1
Al g Cg; (o) Cg; (1)
K~ +p K +p 1/2 1/2
K° +n -1/2 1/2
R 1//8 -1//3
£ 1/78 1/
* 4 -1/Y8 0
A+ ° 0 1/v2

Tre charge independence of nmuclear forces makes it clear now that the possible

reactions for K p system can be expressed in terms of a two-by-two (T(o)) and



(o)

," . 2 . . .
a three-by-three (T( )) transiction matrices. T describes the reactions

-—

E+N > K+ N
.=+ I + 7

(1)

which occur through the isotopic-spin channel I = 0; and T represents the
interactions
K+N » K+
> IZ+'n'
+~ n+w

(1)

taking place in the I = 1 channel. With the help of the T matrices the
description of the K n system turns out to be very simple.

The Iz—invariance leads in this case to only one isotopic-spin channel,

LI, =-1,I=1 ¢ =[Kn

for pion-hyperon systems are

[\

The states with same I and I

I, =-1, I=1y ={[£7n% - [%r=>}

¥, = ]An->

and the Cf&(l) are given in the following table

TABLE I, 2
i s cg; (1)
K +n K +'n 1
R 1/V/2.
£° =1/v/2 .
A. + T 1




Without going into much detail, the general properties and characteristiecs
of the T(ﬂ' are now stated in the next paragraphs.
Let
H=Ho +V
be the hamiltonian of the KN system where Ho represents the non-interacting X
and N and V denote the interaction energy. The solutions of the eguation

Hets =B 0

form a complete orthonormal set of funcpions.
In the ¢i—representation, the Heitler's integral equation (see Dalitz 1962,
- p.53) takes the form .
Te: + inZKE Pl E) T = Ky , (1.8)
where K is the reaction matrix and pm(Em)dEm is the number of states with
energies between Em and Em + dEm.
In matrix form (1.8) is
T + 1nKpT = K
and, after obvious algebraic matrix operations
Kl o+ imp = 77! (1.9)
or, multiplying (1.9) on the léft by T and on the right by K
T + inTpK = K 3
then

) -1 . =)
T = K(1 + inpK) = = (1 + inKp) IK . (1.20)

Putting now

(np ) 2K(mp)?

o

T,

(wp)%T(Trp)%



(1.10) gives
o e ] S )
Ty = K1 (1 + iK)) 0 = (1 + iX,)7 K,
The scattering matrix S is related with T; in the following way

S

1l + 21T

(L + ix)"H1 - ixy)

(1 - iK))(1 + ix,)”?

But it is possible to prove in very general terms that K (and consequently X;)
is a hermitian matrix. In those circumstances S satisfies automatically the
unitarity condition, which means that the flux of probability is conserved

(Matthews and Salam, 1959):
sst = (1 + iK))THL - iKy)(1 - iK))TH1 + ixy) =1

A further step in the knowledge of the pfoperties of the K-matrix comes from
the time-reflection symmetry principle. According to this principle (which
holds for strong and electromagnetic interactions, but probably not for weak
forces (Christenson et al., 196L4)), the elements of the K-matrix ere real (see
Dalitz, 1962, p.55). Since the K-métrix is ‘hermitian its elements are resl and
symmetric. Therefore, the number of distinct elements of the second order

(o)

matrix K is 3 and of the third order matrix K(l) is 6.

Now, by a convenient normalisation of the ;5 it is possible to write

(Dalitz, 1962 p. 56)

! =kt 4 ik (1.11)
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Finally, if it is assumed that only S-waves are in operation in a1l
channels at low energies, the X-matrix has constant elerments. Therefore, only

9 independent parameters are necessary to describe quantitatively the X systen

)

{ i
in this energy region - the 3 different elements of x'° plus the 6 distinct

(1)

elemaents of K "

(1)

The main features of the T are independent of the matrix order. They

(o)

can be exemplified then by considering the second order matrix T .

)

—matrix in the form

(o) _

¢
Writing the constant X'°

and representing by k and g the two centre-cf-mass momenta in channels

1(K,N) and 2(In) respectively, (1.11) leads to

= sl
-t s + 1AqQ
where A = su - t2
Then
|s + iaq t |
T(o) = 3 1 - ; 1
1 + i(sk + uq) - Akq (1.111)
t u + 1iAq

The T-matrix element for elastic scattering in channel 1(KN) is

0) s + lAq
1 1 + 1(sk + ug) - Akq

or, puttin

AO = w5 + ltq_i—:—zzat (1.12)
Al
(o) o
2117 m™



il

17 ° is the S-wave phase shift of the elastic scattering in the two-

particle channel I = O, then

. .0
T(O) _ els sin 8
X
or . -
k cot So = %— (1.13)
o

Therefore AO(= a + ibo) is the complex scattering length. Equation (1.13)

o
represents "formally" the zerc-energy approximation of the well-known erffective
range theory for one channel scattering

1,

o

k cot. 8° = + —J2lRok2 ... (1.1k)

The word "formally" was stressed because in (1.1k) A is constant and in
(1.13) is energy-dependent through (1.12). However, if it is admitted that
‘9 in (1.12) has large values - and it does, because the threshold energy of
the ITm system is 100 MeV below the threshold energy of the KN system - the
variation of g with k is small when k is in the low energy region end
consequently AO is nearly constant.

This discussion shows clearly why AO is a complex quantity: no elastic
scattering can occur in channel 1 without some of the scattered beam being
absorbed, or, what is the same thing, without suffering transi tions into

channel 2.

In spite of being more difficult to handle a three-by-three matrix,

.

a zero-effective range formula

k cot 6l =

»lw
s

» A1=a1+ib1
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cén also be obtained for the K p systenm in tﬁe isotopic spin channel
I =1 (Dalitz, 1962; Matthews and Salam, 1959).

The possibility of describing the K p interactions by a zero-effective
range theory was suggested by Jackson, Ratenhall and Wyld in 1958. Soze
refinements dealing with the Coulomb effect and the mass difference between
the B°n and X p systems were introduced later. The principal developrents
of this theory can be found in Dalitz and Tdam (1959) and Dalitz (1962). The

last work has an extensive bibliography on this subject.
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CHHAPTSR 1T

K N Comnlex Potentials

1. Introduction

The zim of this chapter is to translate the strong nuclear forces involved
in K N processes into terms of two phenomenological complex Yukawa potentials,

dcaling with the interactions in isotopic-spin channels I =0 and I = 1.
g B I

-b -

The Yukawa shape is chosen in agreement with the short range nature of ihe
nuclear forces and the complex factor is assured to deal with the A, L and «
production in KN interactions, interpreted as absorption as it is explained in
Chapter I.

In (2.1) u; and v, are constents for the same I, b is the reciprocal of

I
the potentizl range a(= 1/b) and r is the distance between the meson and the

nucleon.

The range of KN interactions 1s taken equal to the kaon Compton wave length

a =h/me = 0.4 Fermi (2.2)
The reason for this is the following: the energy conservation principle is
violated if a virtual meson (rest mass M rest energy AR = chz) is enitted by

~

one nucleon at rest. But this violation does not matter if it occurs within the

limits imposed by the time-energy uncertainty principle AE.At h. This 1mplies
nat the virtual meson cannot live longer than a veriod of time
t hIchz
In such conditions, the distance covered by the virtuel particle during the

<ima At must be smaller than cdt v ﬁ]ch, where ¢ 1is the veloeilty of light - the

maxinum veloeity. Therefore (2.2) is obtained.



1k

Relativistic effects (see Appendix A) are so small for K -laboratory momenta
below 300 MeV/c (the largest momentum considered in this work) that they are
discarded here and in the following chapters.

No attempt is made at this stage to consider the mass differences of the
particles in the same charge multiplet (K or N), because the KN phenoﬁénological
potentials to be derived here are not used in the actual calculations of K d
collisions.

Labelling K and N with indices 1 and 2 respectively, the isotopic-spin

dependence can be expressed by.the potential

!

Z(r) = UCr) + V(r) @1. (2.3)
P12 is the isotopic-spin exchange operator, which, as it is well-known, is

related to Pauli's spin operator &, with components
o 4 0 ¢ ' 4 O
= (), Bye (575,
y 1 o ) v (¢ o/ o -4
by the equation ' ' -

Pu = .é [ A+ 2¢4)2 (2,)] (2,4)

Representing now the isotopic-spin functions for R and N ‘charge multiplets by

\é'g:‘n) ’ 'm

The isotopic-spin functions for the KN system are

I

1,2, IT=4]2." 1y —filz,-illz,)
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y (4,:2.) Y (4 V (

d.fz Iz . i[z, i(_z

\/i(ﬂ l) 7 \ Lia im\/ () “ e z\,\

1lz2,- u di2 ,-4]2 /4)2,4]

/ _(A,«Z)= ](i) )

i[l 4.12 412,“.‘1’2

‘)/uz)-_[ “) V@) —Va@) \(zl

iz Aj2 /L2 ,~dl2 dla =42 A2, 4

. (2.5)"

Those functions, when subjected to the operator \-Z Ci) i C,z_)_‘i\ give

[Z(LJZCJ-)J)/(_LJ-) = (A-?_) ,1,=4,0,-4
A

L'Zu)"zc:z)]\/ u,z) = -3\) (i 2)

so that 1q ‘y (4 ) = YCI _2,) ',f_ O,—'i

{):2 yoac 4,2) =~ yogdi,z)

In K d scattering processes, the meson-nucleon basic interactions are K p and

(2.6)

K'n. The charge conservation principle implies selection rules on the possible
isotopic-spin states given in (2.5). Thus, the pair K"p(IZ = 0) has just two
states Y. (1,2) and Y (1,2) and the pair K n(I, = -1) only one Y ﬁl 2).
l,0°7? 0,0 4 1,=-172¢!
The wave functions and Schrodinger equations in the meson-nucleon centre-of-

mass system for K p and K'n interactions are:
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1) for K p processes -
| \pu,.z) = )/o‘CDi 2) U, (r) +>/(4,2.) w, (r)
(v? 4&1)«4)(4_:.) __,éé_[ + Z(r'_)‘lkf)(_i.?.))
2) for K n processes
Y (1,2) = y(d 2) U ()
(_V’+ k?) Y (4,2) = .ﬂg_; Z(r)$(4,2)

In the above equations k is the wave numbers and p is the reduced mass of the
KN system: u = mmKI(m + mK) where m is the nucleon mass.

In case 1) Schrodinger equation gives, taking into account (2.3) and (2.6),

(V2 +kY) P(d,2) = - ffl 2 y2) 4

LU(r-) - VCW)) (4,2)Uplr)+

0,0

'%E] \:U(n) +V(r)] )/i,(f'i) Uy (Ir') |

Multiplying both members of this equation first by Y, 0(1,2) and secondly by
»

Y, °(1,2),‘two partial differential equations are obtained:
. ;
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(THa R ugen < 2 (o8 L V) - 7em o tr) e
(Vi+k)u, (r) = fﬁfl[- %f + UC?)+VCY‘)] Uy Cv) (o8

In case 2) only one equation is obtained:
¥ _ 20 vV (v ucr
(v +k‘)u(w)_—£tLU(Y’)+VC)} )

analogous to (2.8), except .for Coulomb interaction.

It is now obvious that the two nuclear potentials in equation {2.7) and (2.8)

/
must be identified with the Yukawa Wells (2.1): :
2 ¢ | . - br
I=0 V() -V(r)=-(Uo+ive) 2 fbr (2.9)
T | ‘ : gy & O
L=4 Un) + V(rj=-(ly+t0s) [ oF (2.10)

The following sections of this chapter are devoted to the calculation of these

potentials from the K p experimental data.

2. Ross and Humphrey's sets of K p scattering lengths

As it was explained in Chapter I, the K p interactions for K -laboratory
momenta below 300 MeV/c are described, besides other elements, by two complex

scattering lengths AI(= ar + ibI), I =0, 1, where I is the label for the isotopic-

spin channels.
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Following these ideas, Ross and Humphrey made a complete analysis of the
K p scattering data in this low energy region in terms of six parameters
(Ross, 1961):
1) IThe two complex écattering lengths Ao and Al related to the respective

§-wave complex phase shifts §° and 6! by the zero-effective range formula
i I P B
R esT 0" = A[Ar  §7= &1 4 ¢f] (2.11)

2) The ratio I of the A production to the A + I production in channel

I =1 at rest;

3) The difference in phase angle ¢ between the matrix elements for In

production in channels I ='1 and I = 0.
Two possible solutions, I and II, were obtained by Ross and Humphrey for

these parameters (the A; are measured in fermi):

Table II. 1l.

Solution a, . b a, b, L é
—0°22 27l 0°02 ' .0+38 o:k0 96°
I , .
($1+1) (£0-3) ~ (£0-3) (*0-08) (*0°+03)
~0-59 0+96 1+20 0+56 - 0+39 -50°
II
(t0°L46) (*0-17)  (*0-06) (%0+15) (+0+02)

(the numbers between brackets are the errors affecting the calculated parameters)
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The answer to the question of which set of possible solutions is in better

agreement with the experiment is left for later chapters.

* ivI and the 8 & (uI + iBI) must be found now to

calculate the nuclear potentials (2.1).

A relation between the u

The work carried out by Ross and Humphrey on the computation of the Al
- takes into account the Coulomb effects and the mass difference between systems
%°n and K p in such a way that the GI in (2.11) do not include the electromagnetic
interactions. Therefore, the phase shifts GI are related to the asymptotic form
of the S=-wave radial equations derived from (2.7) and (2.8) with the Coulomb
term missing.

In such conditions, a variational principle which, with the help of a trial
function relates the 8° with the constants of the short range potentials (2.1)

gives the desired relationship.. In this chapter, Schwinger's variational

principle is chosen.

Bis Schwinger's variational principle

In the following pages the generalization of this principle (Lippmann and
Schwinger, 1950) to complex potentials is carefully examined.

Let W(r) represent any one of the spherical symmetric complex potentials (2.1).
Then, thé L-wave radial equation derived from Shrodinéer equations (2.7) or (2.8)

without the Coulomb term is .

| J(L‘h(-"f)_ = Wr), () (2.12)
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where

v dr

wL(r) is the regular solution of (2.12) at the origin. Because the .

op J L(L+4) 3 :
fLE é/‘ i ) k!~ — ry } (2.13)

potentials (2.1) are such that rW(r) + 0 when r + =, y)(r) admits the

normalisation

i 5.
Y r) — ——‘ /"’W'(-'Q”"'L_r +d2) (2.14)

.; = + .
(where GL a 1BL, a; eand B, belqg constants from the same k)
and its regularity at the origin implies the boundary condition

ry. (r) + 0
= (2.15)

r+0

The linear operator . is associated with the Green's function (Messiah,

1962, p.818):

c&‘_';(r,r') = - 94”“ ijkrs)LL (kr>) _ (2.16)
(see Appendix C for the definition of JL(kr) and hL(kr))m which satisfies the
equation .
+ S¢r-v) - |
Yyl = 2> "=
{L%L( 1) = . (2.17)

In (2.16)ur< (r>) is the lesser (the greater) of r and r'.

With the help of (2.16) it is possible to transform (2.12) into an integral

equation

\PLU') = jL(,kr) +/?JI (r,r')wWi(r) %“'}r'“’dr" (2.18')
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This expression of ¥, is obviously a solution of (2.12). To see that it is so,
one only needs to apply fL to both members of (2.18), taking into account (2.17)

together with the equation
£ §,(kr) =0 | (2.19)

Then (2.12) is obtained.

Multiplying (2.12) by §, (kr) and (2.19) by ¢ (r) and subtracting the last

result from the former one gets
J\_(kr) }LLYLL?') - Yl ]LL }Uer') W(r)jL(qu) lp(p)

or

-

g_r\_ J (r%)-rt}/l— ("'j ﬂ- ) ‘-l’L (220).

Integrating both members of (2.20) between 0 and =, and considering the boundary

condition (2.15) as well as the asymptotic form (2.14), an integral expression for

phase shift QL is obtained

o

a‘:‘y‘m (S, = _ ﬁ_)“_K jdf,(kr) Wi(r) t‘h(r)rr’zaﬁ" (2.21)
4 - tz =~ - .

with (2.21) it is now possible to show that the integral solution (2.16) of
u;L(r) leads also to the asymptotic form (2.14).

In fact (2.16) gives
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Yo Cr) = f(kr) -

Y’
Z,',L-;‘k I:L(kr) JJI'L(W') Wir') LP,_(Y") r'*clp!

%;tleJ Cler) | KL(H‘/W(W) kl/L(v')Y"zatr‘ (2.22)

where r + =, the second integral in (2.22) vanishes and considering (2.21) and

the asymptotic forms &f jL(kr} and h+(kr), one gets J‘
' . , L(kr- LE) (9.
(ky) Yy thr) —s pie(Rr-oLT)+ e 7 %2000 .

"JL/LW. (ky- L-L}+5L)

Now, let the scalar product of two radial wave functions f;(r) and f,(r)

be defined by the integral

<{, .4 ff(r)icr)r’votr’ ,

Introducing the linear operator gL, so that the equation

1 L
Gutr) = JCkr) + ' W "% (2.23)
is exactly the..same as the integral equation (2.18), two important functionals

can be defined in very simple terms, using the notion of scalar product:
Alv] = <«w,uj > | (2.24)
+ .
Blw]*= <y, (W = Wg W)y> (2.25)

" It is clear that A[y] and B[y] are equal when y = Yy 8S (2.23) shows. In

this case they are related to the phase shift 8, by
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2 L& '
= LoL .
ALY = BIWD = - 5 27, -
With (2.24) and (2.25) it is possible now to build a third functional

T[v] = ‘“‘2

which is stationary for y = ¥p,» that is, for any arbitrary variation 6y of y
in the vicinity of ¥, the corresponding variation 4T of T vanishes.

6T is given by

6T ='§;6A - =r6B ' | | . (2.27)
where

A = <dy, WYL>
and

B =.6B; + §B,
with

6B = <by, W(l - g W)y>

6B, = <y, W(1l - ng)6¢>

The two variational terms in 6B are equai either for real or complex potentials. °
This 15 the essential step in the demonstratlon of'Schw1nger s. var;atlonal
principle, because, if dB; = 6By, the stationarity of T[¢] for w ¢L is proved.
For this value of Yy one gets

sB[y,] = 26a[v]
and, from (2.26) and (2.27) it follows that 5T[¢L] = 0.
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To brove that 8§B] = 6B, it is sufficient to show that
+ +
<6w,Wngw; = <¢,WgLWG¢>

From

L

%*'LW 54’ nJ HL(kY') JOJ‘LUQI‘J) WCV')SLPU") Tfldy,l .

+ JL U“'.)Jl L+LCKV')W(’”')C_§LP("') 'ty (2.28)
r .

‘two double integrals result, when calculating <¢,Wg:W6w>. The first is

L Y

J Yomywer) LTL(!er)r’“oLY'.jj

0

)W) Yl raart g

The domain of integration of (2.29) is

T l /
_/}7 : the squared region in Fig (II.1l). But
4
//4 ‘ (2.29) can also be calculated by
¢ ; ;
///L integrating first with respect to r and
/ i . —
p _ secondly with respect to r'. In this case
r! one gets
Fig. II.1

! oD

. o : ' :
-JL(Rr') Wir') JLp(g:)r'%tr'.] W (r) Wir) h (ker) v2eoip
o rt
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This integral is formally the same as the one that is obtained from <6¢,Wgzw¢>
in a development analogous to (2.28):

§\p(r)W(r)jL(Mw)Y£'&(V‘.

(o]

| W) W) f:l(kr") e

JY

A similar proof holds for the equality between the double integral obtained from
the second term in (2.28) and the first double integral in the equivalent

develoPﬁent of <6¢,wg:ww>. Then
GBI = (SBZ

In this proof no restriction was made on the nature (real or corplex) of the
nuclear potential W(r). Therefore, the extension of Schwinger's variational
principle to complex potentials is achieved.

Equations (2.26) lead now to the variational formula

a-.‘JL _ £ _ B[‘pt_l. © (2.30)
Ada & 2pak o ATGL]

which can be transformed into a more suitable expression, if the real Green's

funetion

‘jtf-":"')*—'*&‘:fﬁcm")mckr’) .‘ .(2.31)'

is introduced. In fact, because
t+ ! -
by Ckr) = m (Rr)+ L], (kr)
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one gets

Gh ) = gy () = L ZER | 0r) e
This equation, combined with (2f2h) and (2.25) gives E
3LQT = <V, W(d-quwy> —i LER A4)
. g

Therefore (2.30 can be written

kel § oo B <Y W= uw)e> (2:33)
: l# 4:WL)WJL>2

This is the common form under which Schwinger's variational principle is known.
Equation (2.33) has the advantage of remaining invariant for different
normalizations of y;, and for any alteration of this function in the region where
the short range potential W(r) is vanishingly small. Such properties, associated
with the stationary character of (2.33) for any trial function differing slightly

from yp within the potential range, make Schwinger's formula very accurate,

L. The zero-energy S-wave approximation

As Table ILXY shows, the data available for building the potentials (2.1)

are the complex scattering lengths AI (I = 0,1) related » TO the S-wave complex
phase shifts GI by (2.11). A good S-wave trial function will solve, then, the
problem of finding an expression that relates the up + ivI in (2.1) with the GI.

The u; + ivy calculated in this way depend on k. But Table IT{ shows also that

the scattering lengths are affected by large errors. Therefore, it is a reasonable
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assumption to calculate the potentials (2.1) only for one value of k:k = O.

This approximateion brings several simplifications to Schwinger's variational

formula (2.33). Putting

Lom Y (r) = W) r
R 2

> 0
where y(r) is the S-wave trial function and considering that

[ (k) = Auetkn) (kv)= CoaChr)

the integrals in (2.33) give, vhen k + 0 and L = O,

| _hin (kr) wor) () iy

L«m < \V; WJro" = L;m‘

k.) h_.;o‘o RT‘
oD
= J w(r) Ucr) v dr (2.34)
| o Y
L«'m < y,w¢> = j wer) U(r) AY (2.35)
R—>o0 o

1 ;
The calculation of lir:’ <y,Wg Wy> is more involved because it is a double
L -

integral. Integration with respect to r' gives
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:_2,_&4_]_6_ ] Co—.f(krf)J M((Q)‘) W r') \l) (_r‘) Y“LO‘V'I
B 2 Ry kr‘

o

ifz 'QY' Jy- Ry!

or, letting k tend to zero
Y

- & {i- J Wir') uer')ridr’ 4 J.OW(Y') u(r')dr]
£+ LY Jo

v

Therefore

L&IWL £ 1¥ ) w 7_9 w LP.F'-=
R > o v

& = [ wcn)uw)atr ] Wir')ulr') plor —
#‘ Jo

(%]

2 (T werynar [Foryucoy ar
»

(2.36)

The double integrals in (2.36) are equal, as the technic, used before in

- proving that 6B; = 6By, shows. Then, dropping the index I in the phase shifts 6

and the scattering lengths AI’ one has

A:UM CK ﬂﬂ-cjo)—i:

R—>0

- e : | 2
\.. Jo W (v) LL(Y')Y&LY'-‘\J as (2%37)

QO

— -—

= Y )
lj Wer)uer) dr LWC"') wir)rigy! 4 :;-;-# J Werjulygedy

o ; o

I
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5. The zero-energy S-wave trial function for a Yukawa well

Consider the dimensionless complex constant
_ 2u,. T .
Z - hz(u +-1V);'E

where u + iv represents either u  +iv_or u; +iv, in (2.1) and b is the
reciprocal of the potential range (2.2). From (2.18) the integral form of

wo(r) for the Yukawa potentials (2.1) is

When r tends to zero; (2.38) gives, putting ¥(r) = kigwo(r),

Wr) =4 + ZTI’_. [Lr(ﬁ)(»r')rfo({"' +
. . Z,/. o
L zb ]ﬁ— “Yry oy (2.39)

8

when r + =, the second integral in (2.39) is vanishingly small and one gets
A
lP(r)"l"‘;
= ‘ r *> o

where

/L\=7_)p .ﬂ'bra{/(r))" AY (2.%0) .

V)
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A, defined by (2.40), is an integral form of the scattering length. The
same expression is also obtained from the definition kcotGo = 1/A. This relation

implies that 60 + kA when k * O, so that the substitution of kA for 60 in (2.20)

leads to (2.Lk0).

The iteration of yY(r), using the integral equation(2.39) as the racurrence

relation, gives now the trial function.

The Born approximation for y is obviously given by choosing ¢(o) =1.

From
jrﬂ‘__br’ ), I gy A A - br. A -by

and < ’
[y ot

r

wl'\
N

one gets

Y = gL 4 4 ZT—;-',— (J. - ﬂ_zy) (2.51)

where

&2 y .
VR %%(l—ﬁ , ‘(2.42),
The Born approximation A(o)for A can now be obtained in two different ways:

either from the asymptotic form of (2.41) putting r + =, which gives

gl (2.hé_,)

A

o'l

or directly, calculating the integral (2.&0)_with p = w(o) = 1, giving the sapme .

result (2.43).



(1)

To obtain wcz)(r), Vv in (2.39) is set equal to ¥

y , .
TS = £-br(4_ Lbjdrl4
v ) |

=S
; ~br/ = byt _
+ z j £ 2 = & or! (2.44)

v y !

If it were possible to move the factor (1 = e_br) outside the first integral
in (2.44) and the factor (1 - Ebrylr outside the second integral in the same
equation, it is obvious that w(z)(r) would be proportional to (1 - Ebr)lr, as

e b 1 . . . :
it 1s w( ), so that a formally very simple trial function could be obtained.

Writing then . ; . i

- Yo _brt o by, (2byl s

L, r)= 1 2 (4-2 ) dr Lor)=]e 2-2 Ay
Jo Jy ri

the two functions I;(r) and I,(r) must be compared respectively with

| & [ _ b
]A(V‘)-:'.(d‘—o,—bv)jﬂ;brdl’"—_:'_{%.j(ff—-ﬂ "2

-b o 'I - b - b
chr): ‘.i-e VJ .Q—brdr”: (4_ﬁ y)g m

Y % by '

It is clear that

I,(r) = 25,(r) | (2.15)

The relation between I2(r) and J2(r) is not so simple as in (2.45), unless
an approximation is made. However one thing is evident: Io(r) 2 Jy(r) for
any r in the interval (0, «). Then the limits of

In(r)
Jz(r)

R(r) =
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when r = 0 and r * ® give an estimate of the ratio R(r) in this interval:

Q

Lim Rr) = j ﬁ_b{fi— 2 b) ofr‘ Lp?_z 067, 16)

Y =-> o

(see Appendix B for the evaluation of this integral) and

— |
Lim Rv) = L L2 (W

B

Y =00 Y'=>e0 j_; (r) .
~br
_lm A-2 0 _ 4 (2.47)
Y —==0 4. _ P.-bly‘br'
Therefore, making the approximation !
Ip(r) = Z7a(r) (2.48)

(2.46) shows that, fof small values of r, (2.48) is nearly correct. For large
values of r (2.48) in the light of (2.47) is a bad approximation. However the
error made in (2.48) is not so important if it is borne in mind: first, that
I2(r) or Ja(r) are vanishingly small when r + «; secondly (as it is remarked at
the end of §3 of this chapter), that the behaviour of the trial function in the
region where rW(r) + O does not affect the accuracy of Schwinger's variational
formula.

y
Therefore, using relations (2.45) and (2.48), ¢(2’(r) becomes

2 _br :
\p 2L % _%_ (4 -2 ) (2.49)

and the trial function is now given by

q} _ q)(o)_{_ q)(i)_l_ w(a)=
l*E—C'—f*i) ( 59 - (2.50)
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Putting r = «, (2.50 shows clearly that the scattering length is! up to the

first order approximation,

i
But the expression for the scattering length (2.51) can be obtained directly from

(1)

the definition of A. In fact putting in (2.40) ¢y = ¢ one gets
o=l
-br - br 0
Au’:z*{p_ (4-2 )dr= Z
Jo 2b

so that the result (2.51) is feached again.

It is now clear that using the approximation (2.48) for successive

iterations of Y one gets

—br-

S U, = L4 [%iDA‘LJ:l.%(i—e)

L=zo

.

and, therefore, a good zero-energy S-wave trial function for Yukawa potentials

ls

¥(r) =1 +—i—}(1 - &) .  (2.52)

Putting ¢(r) = E;El' and choosing another normalization for £2.52) (Schwinger's'

variational principle is invariant for different normalizations of y; see §3)
the following trial- function for u(r) is obtained (Bethe, '19L49):

ulr) =1 - —Saah + X (2.53)

The behaviour of (2.53) is analogous to that of the regular solution of the

S-wave radial equation (2.12) with k and L equal to zero and wo(r) od U%(r) -

—_—
r
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-br
o
Ff_gl%’i) % 2b _% Up(r) = O (2.54)

Wr) and uo(r) vanishes when r = O and both have the same asymptotic form

U (r) » (1L +3)
° A (2.55)

r &>

6. The zero-energy variational formula

From
-br
12 e
W B oaatiy =y
(r) o Zb =

(vy definition Z = 2u(u + iv)|[(nb)2 and W(r) = « (u + iv)Ebrlbr) it is clear that
the expression (2.37) for the scattering length A can be written

-IZ
A= ET?:—fé (2.56)
where =Q ¥ |
-b / -_b)"'
. z”’J wer) 2 &rjuér) £ oar!
4 . Y 1
o
-by
.2 Jucr) v
t)

at

Yi
-br
iy
j ]A_Cp) Z AY

o

Substitution of u(r) by the trial function (2.53) in I, (i = 1,2,3) leads now

to the expected relation between A and Z.

Putting S = bA and considering that the Ii expressed in terms of S are

given by (see Appendix B):
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one gets from (2.56)

3 5 '+ 8% 4+ Leg(y(3)s?
T4+ 3125 + (4id +2La<c;(q/3))59« +LJ3L3'~2,(.17)5%
Cs= bA) (2.57)'

L

or

'Z= S -+ SQ‘ -+ 023-’753 ) (2.58)
4+ 4.55 + 0.32845% 4+ 0.1645 53

The purpose of this chapter is achieved: the relationship between Z and A
is given by (2.57) or (2.58), the zero-energy variational formula.
| In (2.57) 2 depends on the product S = bA, rather than on B.and'ﬁ'separately.
This is in good agreement with the structure of the S-wave radial equation (2.54).

In fact, making the transformation p = b¥*in this equation and its asymptotic

form (2.55) one éets

P

diuotp) , z £ Uo(p).=0 (2.59)
and 5£Qf9 F .
L Ue(p) ~ (44 £-) (2.60)

P —> o0
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Both expressions show clearly the dependence of Z on S. Furthermore, (2.60)
means that for large values of p, uo(p) behaves likg a (corplex) straightllide.
Generally this straight line makes a non-zero angle with the p-axis. But for
a particular value of Z (the one for which S =o0) the asymptotic form of uo(p)
is parallel to the p-axis.

It is evident from (2.59) that this value of Z is independent of b.  The

same coneclusion is reached from the variational formula (2.57), putting S + «:

7 = log % 1og-§$ = 1.693 (2.61)

This shows the consistency of {2.57). In the next section, the value of Z for
S = », calculated directly from the differential equation (2.59) by numerical

integration is given, which is in very good agreement with (2.61).

T. Numerical results

The Ross~Humphrey's scattering lengths Ay = a; + ib; (I =0,1) listed in
Table II4 give by substitution in the variational formula (2.58) (with b.= 2.5
FermIl, according to (2.2)) the following values for the dimensionless constants

determining the Yukawa Wells (2.1):

I I L
TABLE II.2
I
Ross-Humphrey's + iy .
Solutions Xo * 1% X1+ 3%,
I 1.6%01 + 10.3456 0.3935 + i0.7836

II 1.9326 + 11.0853 ~1.1821 + i0.1679
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To check the accuracy of the variational formula (2.58), a numerical
integration of the regular solution uo(r) of equation (2.54) was carried out in
a Ferranti-Mercury computer with Z set equal to each one of Z1 (= X+ iYI)

given in this table. The results of the numerical integration are

TABLE II.3

Ross-Humphrey's

Solution i & + 1b Bay i lbl

(ORIGINAL C=0.22 + i2.74 ' 0.02 + i0.38
I )

( CALCULATED T - =0.30 + i2.66 0.00 + 10.38

(ORIGINAL -0.59 + i0.96 ' 1.20 + i0.56
II )

(CALCULATED -0.55 + 10.93 . ’ 1.20 + i0.57

Inspection of Table II.3 shows that the accuracy of the variational
formula (2.58) is good, so much so that the errors that affect the original
Ay (= ap + ibI) are larger by far than the errors arising from the calc;lated AI.
A numerical integ?ation of the differential equation (2.59) was also
effectuated to obtain the .Z-value that corresponds to A = =, As the asymptotic
form (2.60) of the regular solution at the origin of (2.59) shows, EE%%‘l must
vanish for p large. The determination by trial of the best value of Z which
satisfies this condition was worked out in a programme forthércury. The result

of the numerical calculation is 1.680, not very far from the variational’

evaluation 1.693 in (2.61).
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CHAPTER III

NN Interactions

1. Introduction

This Chapter is mainly concerned with the NN interactions related with the
calculation of the form factors which, as it will be seen later on, arise in the
application of the Impulse Approximation method to the inelastic or chafge—
exchange processes in K d collisions.,

In such processes the total spin quantum numbers (S = 1) of the deuteron is
conserved, because the K -meson is spinless, so that the np (inelastig) or the
nn (charge-exchange) resulting systems are always in a triplet continuous state.
If the wave functions of the initial (deuteron) and final states are renresented
respectively by ¢2(§) and ¢E(§) - here K is the NN centre-of-mass wave number
and y the spin Z-component - then, the form factor is given by

i | 1 » Lﬂ 73 . e
S0 47 [LgTd o R

3 We-a

(Ea - Eb) is the vectorial semi-difference between the initial

o

where h ={

K_d centre-of-mass wave number Ea and its value Eb in the final state; 8 is the
angle defined by Ea and Eb'

The problem of NN interactions is far from being solved. The lack of
a successful theory of mesonic fields has switched the research in this domain
to the attempt of building phenomenoclogical potentials, whose parameters are
calculated from the experimental data. Such potentials conserve purity and are

invariants under rotations of the coordinate system, reflexion of the axis and
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time reversal. Genefally speaking, they are a sun of.terms; each being the
product of a function of the distance between the two nucleons by a certain
kind of interaction (central, spin-spin, tensor, spin-orbit, etc.), which obeys
the foregding invariance laws (Eisenbud and Wigner, 1941; Gammel and Tgaier,
1960). Such potentials satisfy also the principle?tharge independence of nuclear
forces and reflect the exchange character manifested in them.

The first phenomenological potentials which are in a semi-quantitative
agreement (Noyes, 1961) with the experimental information, are due t; Gammel and

Thaler (1957, 1957a) and have the general form
V(R) = V.(R) + V,(R)S;p + V 4(R)L.5. (3.2)

where Sy, and .5 are respectively the tensor and spin-orbit operators.

The functions VC(R), VT(R) and VLS(R) are energyéindependent, have a hard
core and take the Yukawa shape for R > Ro; but Ro and the other constants
3_ depend on the spin and isotopic-spin states.

Although an interesting attempt, the Gammel-Thaler model remains unsatis-
factory from the point of view of giving results in close agreement with the
experimeﬂtal information covering a wide energy range. .And the difficulty of
introducing new terms in (3.2) derived from invariance arguments remains great
(Noyes, 1961).

To'cope with this situation Breit and Co-workers (Breit et al., 1960, 1952;
Hull et al., 1961, 1962) envisaged the theoretically rigorous analysis of real
phase shifts and coupling constants. Ltadls aiso a phenomenclogical approach,

but has the advantage of getting rid of a nuclear potehtial model and dealing
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directly with certain features of the NN systems, such as the triplet states
with same total angular momentum (J), but different orbital angular momenta (L),
the postulation of which remains yet the best explanation for well established
facts. This is the case, for instance, of the measured values of the magnetic
and quadrupole moments of the deuteron, which are very well interpreted if the
ground state of this two-particle design is considered a mixtufe of 35, and 3p;
| states (Sachs, 1953, 1953).

The previously cited papers give an account of different fits of the
experimental data obtained for pp and np sys£ems. In this work the best fits
found by Breit and collaborators (the YALM fit for pp interactiong and the

F
YALN3M fit for np interactions) are used in the calculation of the form factor

(3.1).

2. The Tensor force Sj)»

The definition of the tensor force S is

812 e 2[S(§.I-1) - §2 (3-3)

wvhere § is the total spin operator of the two nucleons and n the unit vector
(% = 1) of the straight line joining the two particles.

Obviously, S;, is a hermitian scalar operator, invariant under rotations of
the ordinary and spin space, and reflexions of the coordinate and time axes.

Then, if J (= L + §) represent the total angular momentum (L being the orbital

"momentum) of the system, qgne has

’:512.-72] =0 [312-3] =0 (3.4)
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Considering the comutation relation = 0, (3.3) also shows that

’-812,§zi =0 | (3.5)

The conservation laws (3.4) and (35) indicate that the total angular
momentum eigen functions form a convenient basis to establish the transformation
properties of Sj,. With the help of the Clebsch-Gordon coefficient, such
functions can be expressed in terms of the spherical harmonics YE(B,¢) and the

two-nucleon spin functions xg'in the following way:

ym =5 <Ll,5 m fIm> meé)('u '

LS 3 M > By Wy YL (e.9)~5s (3.6)
where the indices are subjected to the conditions
-L32m2?aL, -S 2y 38

m+u=M, |L-S/2IJRL+S, =JIMZJ (3.7)

Here J and M are respectively the quantum numbers of the total angular
momentum and its Z-component, thelpairs (L, m) and (S, u) representing the
similar quantities for the orbital momentum and total spin. If conditions (3.7)
are not fulfilled the C.G. coefficients vanish (Messiah, 1962, Appendix C).

The commutation relations (3.4) and (3.5) ensure that J, S and M are good
gquantum numbers, but no L-conservation exists because S); does not commute with L.
However; it is possible to add another good quantum number to the previous list.

M

The ordinary space parity of Y .

T
A

m

(which, by (3.6), is equal to the i

I parity,

L, . o . ' .
(<1)7) is conserved because Sj» is invariant under reflexions of the axes.

M

LS such functions are transforred

Therefore, when S operates on the Y

into linear combinations of themselves, with conservation of parity, J, S and M.
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The L's, however, in each term of the linear combination, must differ by an even
number of units, so that the parity remains the same.
. Now, the states with the same J are examined. In a singlet state (S = 0),

by (3.7), one always gets L = J and

M » o]
Y053 = Ylbjxo "
Fron §xg =0 it follows that
y ) . ;
S12¥;5; = O (3.8)

Thus, in a singlet state,the tensor force does not contribute to the NN

interactions.

In a triplet state (S = 1), if L 5 1, the only possible values of L,
by (3.7), are:

L=J-1, J, J+ 1 - _ - (3.9)

But if L = O, by the same condition, J is necessarily equal-tq 1. Therefore,
by (3.9) and parity conservation, SleglJ is either proportional to YElJ (I = g
or a linear combination of the Ygii,lJ (the coefficient of the linear
combinations are given in Rohrlich and Eisenstein, 1949, for instance).

Consider now a wave function, which satisfies the np Schrodinger equation,
developed as a series of the Y€SJ‘ If it belongs to the singlet spin state,
the tensof term vanishes by (3.8) and the radial equations derived from the
Schrodinger equation are uncoupled because the spin-spin or spin-orbit-ter;s in
the NN interactions do not mix states of different J and L.

But, if the wave function répresents a triplet spin state, then the .

operator S;, leads to three radial equations (Rohrlich and Eisenstein, 19h9j
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for each value of J (except when J = 0): one uncoupled equation giving the
radial function Ug(KR), with L = J, and a system of two coupled equations
defining the radial functions \ri"l(KR) and vi”(xn), with L = J-1 and L = J+1
(M is absent from the vw's because tﬂe differential equationg defining them are
independent of this index). For J =0, by (3.7), the system reduces to a single
differential equation with L = 1,

Assumlng that the radial dependence of the NN 1nteract10ns has a Yukawa
shape, the radial coupled equations are formally identical to equations (D.1)

and (D.2) of Appendix D. But, as it is explained in this appendix, it is

y ! i 4,3+4
possible to construct two linearly independent solutions ( V'3 ®R) , Vj (KR) )

j+i i . .
( KR) ) of the coupled equations which vanish at the

q-
and ( U3 Ry |
origin and are such that the V¥'s with the éame numerical index (1 or 2) have

equal phase shifts and obey the Wrouskian condition

F
{ + kjk} = 0 . (3.10)
i . 7 . '
where Kj and K;; are the coupling constants.
Therefore, sincelslz applied to YESJ leaves J, S, M and parity unchanged,
a very convenient set of basic functions to expand the np trip'let spin state wave

function is the following (Rohrlich and Eisenstein, 1949):

P-4 pfrd M U (3.11)
“\)%j = ‘_;: \/!J 43 - "',%' /JH.U
m3 5 M _ |
Jel : )
N\)'J-m-.{ 2,7-4d M 0}. M _
\'V‘J = %’ ya-A,H =¥ P Y‘Ju,ﬂ (3.13)



with the asymptotic behaviour

M4 aEt, 1-4 B LyM (5d1?] ,
0 5y Y P # Y ,
) . ¢l
Mm,d (o . 1 M . :
3T~ QF’/UM (@-] & 81) Y‘.li] , (3.12')
v ]fl ;
M, 344 i67" I M 2\ X
9 G —e"a }“"“ (®J*i* 81)8.%_“3 v %3 }'3“,13 (3.13')

Here p and GD; are given by
' : _ w
P:KR" @-J—P——i:j

As (3.11') and (3.13') show, the phase shifts dg_l and 6i+1 are respectively

associated with the mixing parameters Ké and K;. By definition K; is chosen

to be the smallest in modulus of the two K's, so that w?'J_l is predominantly a

M,J+1
»

L = J=1 stat a L = J+1 state (K2 = =1|K!).
ate an wJ a , (RS |ﬁ3

The orthonormality of the Ygls and the Wrouskian condition (3.10) imply

that the internal product of any two wg’L,-differing at least in one of the

indices, vanish, Therefore, the w:’L are orthogonal

3. The np continuous states

Consider a np system in the spin state (S,u), when the free-neutron wave

CRR y 1
4 15

falls upon the proton, it looses the central symmetry, because the interaction

depends on the tensor force term. Thus, as in the case of the w?'L and for the

M

same reasons, it is better to express the plane wave as a series of the YLSJ

This is achieved in the following way.
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Representing respectively by R and R the spherical angular coordinates

| of K and B, the plane wave e’ R is given by (Messiah, 1961, p.L97):

LKR e S m¥* A m_ A
e =q“é,%f_LlL(kR)yL(K)YL(M | (3.14)

If the Z-axis of the coordinate system is chosen along K, so that eK = 0 and

YL (0 ¢ )= (2L+l )& 60w1)
then, by the well-known expansion

™m A L*S
VT (R) xE=3 <L,S,mplIm> \/LS1 ' (3.15)
L Jz\L-s|

iR, M : - _
assumes the form, in any triplet spin state,

the plane wave € 15

e o J+1i 4
LK.R M _ LAY e
g X =(‘H)"ii£ A ) (k)T . (3.16)
4 I=o L=U-Mr JL /Li.l |
where
p 1 '
Qy =(atsd)2<l 4,0, f1Tp> (3.17)

The development (3.16) indicates that the np wave function belonging to

a triplet spin state can be expressed very easily as a series of the orthogonal
functions ng:

j a
b wFL (3.18)

A
Uflg('é) 2 (LI'F)% 7 Zl_.
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3 3
where the ‘“ﬁt. are constants, which can be expressed in terms of the ‘1}4L .

To obtain these relationships one only needs to express the condition that,
for large values of R, the spherical wave falling upon the scatterer (proton)
is the same in the plane wave (3.16) as well as in the total wave (3.18).

Doing this, one has

Ci ” 0—1).4,:--1 + K3 Cl?_u-,:'u : (3.19)
*‘1':"'{_ '1 de (k42
CF’ = a'}-tn (3.20)
cl . __Ct‘fp,l-i ~ K3 a}‘y,:ld
Jeidea A : (I»f"-ﬁ]g' (3.21)

The following relations (see Blatt and Weisskopf, 1952, for the C.G.

coefficients)

zl (a:}" L)2= l]*i) L.:]_lilij*i (3.22)
e S
: i 3 1 ey -
,%::-'.5 W pay Ep341=0° ' (3.23)

are very useful in subsequent calculations. Using them and (3.19), (3.20) and

(3.21) it is possible to prove that

i RV TR\ AR = S(f‘“‘z')l
3 ?%Lij['dp"('”] {(bu _S

3
" where

3
2

@)= @MY Yy (R) | (3ah

3 ’ 3
Therefore (2n) 2 is the normalisation constant of (3.18).
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L. The np bound state (deuteron)

As it was mentioned in the Introduction to this chapter, the bound state
~of the np system is a mixture of 381 and 3D1 states. The radial equations
deseribing the deuteron are analogous, therefore, to equations (D.1) and (D.2)

of Appendix D, if J is put equal to 1 and K is substituted by ia with

2 : et
x* - _ Eamy (Ed is the binding energy of the deuteron).
4.2
However, in the calculations copied out in this work, only the predominant
i3] deuteron-state is cbnsidered, so that the previous system of coupled

-equations reduces to a single differential equation. Its exact solution is

approximated by the usual "Hulthén" function:

4);-“1) - q)o(,q)x: (3.24)
where '

-xR -BR 2
e -~ e L o=fp (x+p) .25)
$, (R) = A ey J(3.25

N being the normalization factor.
Taking E; = -2.225 MeV and m, = 938.2 MeV the numerical value of a™(3.25) is
« = 0.2315 fermi' . © (3.26)
The coefficient B is calculated by means of a variational principle
(Thomas, 1937) described byléachs (1952). If the nuciear potential has the

Yukawa shape and the range of the np interactions is taken equal to 1.18 fermi ,

then B has the numerical value

1

B = 1.56L9 fermi™ (3.27)
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5. The form factor of K d inelastic collisions

By (3.18) and(3.18') the calculation of the form factor (3.1) reduces to

the following integrations

L i <t 3 w* kR
I'J: (4T)3 Z—-:-_lcrt_g[\y-]l =

for L=J-1,J,Jd + 1,

P, (R)dR (3.28)

Replacing in this expression ¢:(ﬁ) by the Hulthén function (3.24k), the spin

eigenfunctions x? appear explicitly in the integrand of (3.28). But the U}L

depend on the Yf(e,¢)x“ Therefore, due to the orthonormality

1 through the YL

J*
of the x:j,only the term

CLotoptaknyi(o, )] -
r

4 4 A y
s e L d o, ply pr(um) L) Pl 1) (3.29)

belonging to the expansion (3.6) of the YEI into the YLXI’ remains inside the

integrals (3.28).

J

L given by (3.17), such integrals are equal to
Lh.

Tj = f [K[J;] dP (R) dR (3.281)

where the ¢L, in agreement with the definitions (3.11), (3.12) and (3.13) of

Introducing in (3.29) the a

the w;L, are given by



Lg

3-1 WL it 4:r+5

1 =Jf° ;ZG-;LCJ“ [af*u P o0 FH (ma)]
1 gyt ] 03 P, (o
\\)] Ay i\——: C /U‘J ,J ] C )

.. 211 q 2344
‘{1'1: %0 %-— C}*i a/‘*“ Pi(me)mﬂ“v; é‘i('we)]

or, taking into account the expressions (3.19) to (3.23), relating the c- and a-
(1,2) |

coefficients to J and coupling constants Eﬁ

pylyi, 21+4 \ ;“-"P (Ls0) - ki \‘5" “‘P cwﬂ (3.30)
4+ (ki)

| ij} = (27 +4) U‘% ()3 (¢ 0) (3.31)

Pqﬁﬂ“ 21+ 4 i.\j“*“P (cto) 41} g4 ) (G e)x (3.32)
m—p P J-i q+4 :

By (3.18), (3.18"), (3.28) and (3.28'),the form factor (3.1) is obviously

equivalent to the integration of

S%'(e) = (.L cb (R)X et C\D (R) AR (3.33)

where
_ o0 T+1 -
SR -1t I L L \{)-j (3.34)
4o 3 lzo L=\3-4| )

No#/it is possible to make two kinds of approximations for the w;. As 1t
is shown in the next paragraph, the K; have a very small modulus for np
collisions at low energies. Therefore, powers of K! higher than the first can

J

be ignored in (3.30) and (3.32) so that, if the relations, derived from (3.10),
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: _ . ‘ .
S () (vgy 4 ey
N = [} — .
A5 O DT OAY T KR T L (kR 3-35
are used, the w? for L = J -1, J + 1 become in this approximation (see the

Uﬁ_l,ﬁ.)J+1

asymptotic forms of in (3.11*) and (3.13'"))

YLt = (a1ea) ™ P, (csto) e
R o2 1, (wve) (3.327)
J

A second approximation for the ¢§ consists -in the substitutions

_ ; = | Y -+ BL
AU A P L IR, T TLNERD

where (J, (p) and n,(p) being respectively the spherical Bessel and Neumann
ad A .

functions) ‘ .
L .
L L05r b el SN

Ujg(p) =e “[eeaoy|(p) + tnoy(d-eT)myip) (337

o . ~ZR. L+
the constant Z inside the dumping factor (1 - eZR) L+l

is put equal O.8Ifermi-1,
the reciprocal of the range of the NN interactions (1.18 fermi), so that the
(pU)'s and w's are the same when R > 1.18 fermi.. The exponent (2L+l) was chosen

in such a way that the UECO) behave for small values of p like uncoupled radial

wave functions arising from short range interactions

Uq(f’) ~ R (P”‘R) R - (3.38)
This is a reasonable assumption because the behaviour of the W's is affected 6n1y
in a region where the errors are negligible (Gourdin and Martin, 1959). :To‘finish

this paragraph, the following remark should be made on the form factor Si(s).
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According to definition (3.1), the incoherent scatterings due to different
spin-orientations look as if they are mixed in S3(8). However, this is not

the case. In fact, the physically significant quantity is not S3(8) itself,

but the square of its modulus integrated over the wave numbers (K) allowed by the
energy conservation principle. Considering the orthonormality of the spherical
harmonies as well as the properties of the aﬂL - and'CiL - coefficient§ (see
(3.19) to (3.23)) a straightforward proof (alfhough tedious) of the following

relation can be established:

i oy ATE - P A
-%l%mﬂj[\{)’;(ﬁ)] e "Xy o (RY IR dlK- flﬁ‘@’fd‘“ (3.17)

where dK represents the differential of the angular part of the spherical

coordinates related to K.

If the np wave function w;(ﬁ) is replaced by the plane wave (2ﬁ)_2elK'RxT,

the left hand-side of (3.1') reduces to
-3 (. tkR i h.R : — |2
(27) (‘Se Ce (R)AR| ol
J
This result shows that the factor 1/3, appearing in the definition (3.1) of

S3(0) has the correct value.

. h.R . )
The relation.(3.1') still holds if - the plane wave et is substituted by

R

. . : : ) 1h ’ .
a linear combination of terms having the form FY(K,R)e Y, where FY(K,R) are

analytic functions of |R| and |K|. This theorem will be helpful in the

calculation of multiple scattering effects in K d inelastic and charge-exchange

collisions.
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6. The YALM and YALN3M fits

The calculation of Kd inelastic and charge-exchange cross-sections for
K-momenta below 300 MeV/c (in the Kd Lab sygtem) needs the knowledge of the
first (S, Py D) NN phase parameters in the NN Lab system energy range (0O, 150 MeV).
The parameters used in this.work (see §1) are those belonging to.the YALM and
YALN3M fits obtained by Breit and co-workers.

Breit defines the phase shifts (eg_l, e§+1
coupled states differently from those which are given by the asymptotic form§
!-I,J"'l: 6{—1 J+1

and ¢J " GJ and K}.

) and mixing constant (pJ) of two

(3.11') and (3.13') of ¢;'J'1

However, he gives the relationship between his parameters and those

1

(6 , 6., €) used by Blatt and Biedenharn (1952), which are related to g~ »
a B J

J+ .
é ! and K}-by the equations

J
Sq 2 SJ'*i: %!S . K% = — Tos 6 y

I-1 .
> » 2|

5 =

Therefore, putting cl-4 ¥4l

—

- ' .
agy =067 -6y, 803=0977 %

one has (see Bréit et al, 1960)

gLty oy*t- 5ty 83 (3.39)
taw a0y = (c12¢)Taw a0y (3.40)
Py = (usg) Mu 4 07 (3.51)

and, by elimination of ¢ in (3.40 and (3.L41),
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+ Canta 65
1= p3
@%?; tom 4 83 - Lam a By

Cam 4 81+ Lam 4 B4 .
Thus, from the values of the corresponding O's.and F's, the 3's and K's can be

(3.42)

TZaﬁi?zxgj .0

J|

(3.43)

eveluated for the  YALM md YALN3M fits (Tables (III,1) and (III,2)) by means of

(3.39), (3.42) and (3.43).

Table IIT.1 -

I =0, np Interactions, Y AL N 3 M fit

E(MeV) & | (x])? 52 63 (x3})2 53
5 2.0652 -0.0030
10 1.7956 -0.011k
‘15 1.630k -0.0221
25 1.k172 ~0.0k65 0.0108 0.66 | =0.0090
50 1.1137 -0.1063 0.0312 -0.0261
100 - 0.7856 0.01 ~0.2047 0.0689 0.50 -0.0561
150 0.5185 0.09 -0.283k 0.0972 0.46 -0.08038
Table III.2
I =1, pp Interactions, YALM fit
E(MeV) & | &2 | 8 B
25 0.0501 0.12 ~0.00k1
50 0.1150 -0.0050
100 | 0.2138 0.05 0.0009 ! =
150 0.2704 0.0k 0.0072
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Tebles (III.1l) and (III.2) show that the errors made in discarding the

1

J higher than the flrst in the coupled stetes with J = 1,2 do not

powers of K
exceed 127%. This is a reasonable approximation if one bears in mind that the
error made in using.the Hulthé&n function ¢O(R) for the deuteron, amounts to 20%
of the np system ground state (the deuteron spends 4% of its time in the D
state). But for J = 3 one gets (Ké) ~v 0.5; the previous approximation, then,

is no longer acceptable. However, due to the smallness of Ad3 (= 5% - §3)

it is possible in this case to obtain again

(g1 = ¢)\__¢ u" ol &(’C.c-d 6) 4 e j”_ (m 9)] O (3.41)

for the approximation of

(:J“i J:]-A I i’j-}l %41 (3.&5)
in Gp(R).
In fact, considering that AGJ is small, ﬁl’J+1 and v%’J—l are given by
G 144
K T+d PIVES 1
_l._?’_i T44 LU'J . ag:] Ei%a
2 ‘3 DAl
-4 e
% = Yy "AS] BRER
T

for R > 1.18 fermi (range of the NN interactions). Then, taking into account

‘the relations (3.35), (3.45) gives

| .
Ax (a1+1 { o iaU p (me).,- a““c)UJ (criod 081 (k3]
( ’ ) 5;] . . 51“ Trs l 1 +(‘,¢:jl(
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The last term in (3.46) for J=3 never exceeds 9% for NN Lab-energies below
150 MeV as the calculation of (K%)zéﬁa from Table (III,1) shows, Obviously
this term is valid only for R > 1.18 fermi. But it is reasonable to admit
that the modulus of its exact form for R < 1.18 shall not differ widely from
the modulus of the approximate expression in (3.46). - Therefore, here again
the approximation (3.4k4) for (3.45) holds well.

The pp phase shifts are calculated by Breit and collaborators in such a way
that the Coulomb phases must be added to them in order to obtain the actual
phases (Breit et al., 1962). Therefore, a further correction is needed when
the pp triplet phase shifts GE(p,p) are applied to np systems. The relationship
between the Gi(p,p) and the corresponding GE(n,p) phases used in this work is
the following (Jackson and Blatt, 1950):

L _
at(m,m - 'é:. .Sj(-,o,}o) (3.47)
a

where Co 1s the Coulomb penetration factor

(,- 2in - ) (3.48)
, et hy '
The parameter n, given by
me e? - (3.49)
m = '
2Hht K

E 2 K1K* (3.50)

or

£ - (9-110u kY (3.51)



. . 3 . =1
lf-ELab 1s reasured in MeV and K in fermi . Therefore,

_ 3.
n = 0.1581 E (2.52)

Table (III.3) gives the np phase shifts for P-waves:

Table III.3

E(MeV) 8q h 83
5 0.0391 . -0.022% 0.0552
25 0.1823 -0.1113
50 0.2232 -0.1802 0.1233
100 0.1657 -0.2661
150 0.0746 -0.3378 0.2815

For the actual computation of the Kd inelastic and charge-exchange cross-—
sections, the available values of §, P and D triplet phase shifts belonging to
'tﬁe NN Lab-energy interval (0, 150 MeV) were fitted by curves represented by
polynomials. Apart fronm 6? (the S-wave phase shift), however, for energies of
this interval below éS MeV, the polynomials were replaced by
L CLK'z'Lﬂ'

d =

o 1 (3.53)

The phase shifts given by (3.53) have the same behaviour for small values
of K as those which are obtained from uncoupled Schrodinger radial equations for
short range interactions. The relations (3.53) are the logical implications

of the assumptions (3.38) relative to the behaviour of the UE(KR) for small
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-

values of R. The law used for theS -wave phase shift when K tends to zero is:
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CHAPTER IV

Formulation of the X d Problem

The Elastic Scattering Amplitude

T Introduction

1(p]

The Schrodinger equation of the
K~d system referred to the three-body
centre-of-mass G (see Fig. (IV.1))

‘Z.En] is

iy, (F,8) = B (F,B). (4.1)

2 g 2 - oA e 7 -—
Heo B 77 - 22 07 4 Vo(R)+ Y (Fa £)1 V(7 &) (u.2)

3k T e R @ 4 2/ 2 <!
In the hamiltonian H, M represents the K -reduced mass with respect to G,

related to the meson and the nucleon masses mye and m N by

1 1 1 :
.; E%ll-TlK ) (h.3)

and Vy, V; and V, are two-body potentials. Vo(R) gives the interaction

- = B :
between the two nucleons; V(r + g) and V,(r - EJ represent respectively the
K p and the K n interactions. For the moment the isotopic spin dependence of
~ : c :

these forces is not specified.

The wave functions ¢a(§) and energies Wu of the scatterer (the np system)

satisfy the equation



°9

4 . = -
[_ _E__nﬂvg + Ve (R)] Cb«(ﬂ) = W Ct’.,.(g) (L.k)
and their normalisation is such that
x o S
§ §.) ¢ (RYdR = &, S es)
By definition (U4.4) represents the deuteron for a= 0,

In a K d collision, the initial and final states of the system are

bl

represented respectively by

@q—. ‘eﬂ“'?cfao(?:) ng "E”Q_‘(ﬁ)' (4.6)

where
2% . 2% =
_E_“&_,,wo=£_k_b+wq=l: (4.7)
Y S 2 p
Defining the kinetic energy operator by
K=-522 vy _ & vi (4.8)
2}4 . M
and putting
Hg = K + Vg, , - . (h.9)_

]

both ¢a and ¢b are solutions of

(E - Ho)opy ) =0 | (4.10)

Using the Schwinger-Lippmann (1950) formalism, the solution of
equation (4.1) can be written

W - @Q-* 4 (v“ )19' (4.11)

E-He a g

where € is the usual small positive quantity which insure§ the regutarity of

the operator (E - Hgp + ie)-1 and the existence of outgoing waves in the

a-channels.
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Considering now the transition operator T, defined by

T@;ﬂrf_vwg; LV o=V eV (4.12)

the transition matrix element from the initial state & to the final state b

is given by

Toos (Bo,v0)-(3,TE)  wav

Multiplying both sides of (4.11) on the left by V, using (4.12) and taking into

account that the result of these operations holds for any ¢a' one obtains

1 .
-— Y. —1||

The aim of this Chapter is to express the transition matrix elements (4.13)
(with T given by the integrel equations (L.14)) in terms of the two-body

interactions arising in the K d system.

A first step in this direction is to relate T with the transition

operators T, (i =1,2), defined by

= T.¢ (4.15)

A
ia,i i'a

where ¥ . is the K -outgoing wave arising from nucleon i, "cleaned" from the
]

waves sent by the other constituent of the deuteron. Therefore, Wa i satisfies
1

the equatien

(E-Ho = V.)¥Y, ;=0 (4.16)

»
and T, is given by

) e s ) U
T1 V N le = Hp + 1€72
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Putting
G =E - Hg + ic (4.18)
T and Ti can be written
-1 -
T=(1-VG)"V, T, =(1-V0)"l, (4.19)
_ i i i
Considering (4.19) and that
(L-v.6)" =1+ (1-v.6) v.c
i i £

a simple calculation gives (Schick, 1961)

1 - (v; +v,)6)v,; =
[(1 = v,6)(1 = V,6) = V,6V,6)70 =
[(2 - vy0) - TIGVZG]T}I =
(1 - V26)[1 - T6T6]T7 =
(1 + T26)(1 - T3G6T2G)T, -
so that, using again (4.19), the operator T admits the following development in
powers of T; and Tj:
T =T, + T, + T,GTy + T,GT; + T;GT,GT; + T,GT,GT, + . . . (4.20)
In the next paragraphs, the convergence of this series will be discussed

and approximation's methods given to calculate its terms.

2. The Impulse Approximation

This method will be used in the calculation of the matrix elements

v3T;%.)» 1 =1,2. Its fundamental assumption (Chew and Goldberger, 1952)

(¢
consists in neglecting Vo(R) in the operator G given by (L.18). This is

equivalent to considering the two nucleons as free particles during the

meson-nucleon collision's time. o
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But, due to the time-energy uncertainty relation, no external interaction
can reveal the binding forces between the constituents of the deuteron, if it
does not cover a period of time at least equal to h/|Ed| (Ed is the binding
energy of the deuteron). Therefore, if the K N collision“g~time is much
shorter than ﬁ/|Ed|, the fundamental assumption of the Impulse Approximation
holds good, because the subsequent evolution of the three-body system cannot be
altered very much.

Representing by v the velocity of the kaon in the K N centre-of-mass
referencial and considering that the range of K N interactions is O.4 fermi

(see (2.2) in Chapter II), the condition for the validity of the fundamental

assumption can be written under the form

]

=13 ‘
<< 1 e (4,21)"

10 Ed

hv

The simplifications brought by this hypothesis on the formulation of the

K d problem are now analysed.

Equation (4.10) reduces to

a— 1
(E, - K)xn =0 (4.10")
where
H2k2 HZKZ
a + 2 = E ()4-7')
2y mN n

K, being the wave number of the deuteron's internal motion.

The solutions of (4.10'), the X, s permit to define the approximate
transition operators t; (i =1,2) vy

i™n,1

V.Y = tixn _ (L.157')
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where the ¥ _ . satisfy the equations
‘ =

(En 25— Vi)“‘n,i =0, is= .1_,2 (k.16")

Corresponding to the exact equations (4.16).. The integral equations for the

ti are, then,

. 1
N = .+ V, e—r——— . 1
tl vl ylEn - K + 1st1 (b.177)

The fundamental hypothesis of the Impulse Approximation is completed by two new
assumptions, complementary of each other (Chew and Goldberger, 1952):
1) The incident kaon never interacts simultaneously with the two nucleons;
é) .The amplitude of the K -wave falling upon each pgcleon ingfgghtly

altered by the presence of the other constituent of the deuteron.

The set of coordinates (r,R) has
been used in the previous formalism,

However, to deal with the

assumption 1), it is more convenient

that the wave functions have for

coordinates (X,0) or (¥,V) (see

2]

Fig. (IV.2)), according to whether
Fig. IV.2 the kaon 1nteragts with nucleon
1l or 2.

The transformation of one set of coordinates into another implies also the
knowledge of the relationships between the corresponding wave numbers, In the
fbllowihg pages, the transformation laws for these quantities, neglecting the

relativistic effects (see Appendix A), are obtained.
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Suppose, then, that (Fig. (IV.2)) G is the three-body centre-of-mass and

ij represents the centre-of-mass of particles i and j. If ;o’ rij and ;i

are respectively the coordinates of G, Gij and the i-particle with respect to

an inertial frame of reference, one has

(2HLN X, mK};O = mK;'a + mN(;l + ;2) (h-22)
R =% - 5 | (4.23)
S A N e (4.24)

Multiplying both sides of (L.23) and (L.24) respectively by :g and /LL

(see (L.3)), i.e.,the reduced masses related with the motions defined by R .and

r, one obtains

miR <L (m, Ty - my VL) (4.23")
2 v M2 ,

U = AW B - MG oy (4,24
/ (amua + my) T (Aamaimk)

Now, if the wave numbers Ei' KG’ R and k, associated respectively with
the coordinates ;i’ To, R and T (so that m;r; = Bk;, etc) are introduced, one

gets by differentiation with respect to time of equatiomns (4.22), (L4.23') and

(h.24'),
K. = > ki | (k.25)
G C=1
_ i _
K= 2(Rky-ky) (4.26)
k Lmyk, me (&, J'_,) (4.27)
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as well as

_ I R
K%+ LR +RF = L ki (4.28)

Representing respectively by (p, Eu) and (a,Ev).the wave numbers

associated with the sets of coordinates (X,U) and (Y,V), two relations
analogous to (4.28) for these coordinates hold. Therefore, one gets
. K.R + k.r = EU'U +p.X = EV.V + qg.¥ (k.29)

Suppose now that particle 3 (kaon) interacts with particle 1 in such a
way that particle 2 does not participate in the collision (assumption 1).

In these circumstances, “the motion of the three-body system must be described

in terms of the coordinates (X,0) rather than in terms of (¥,R).

From Fig. (IV.2)

T .7 . R (4.30)
= Y Lo
X o
¥ - -R- -+ F -I? Y, = 7”/(?'1 + mK-@
v 4 M) 4 ?W‘.f-&mg
or
T = '{'2‘ _ me X

— : (4.31) ,
my +t Mg :
Multiplying both sides of (4.30) and (L.31) respectively by the reduced masses

-4 4 -d
- i 'J- ) = 4" 4
}“'31 - ( me e my ) ) /ui,(n] my }rr,.r*m,jfhﬂ'}
associated with X and U and applying the procedure used in the determination of

K and Xk as functions of the Ei’ the following relations between (E,Eu) and
(k,K) are obtained:
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D = 2 My + Mk E 4 mK lz- (L.32)
2(mpy+ mk) M+ MK
‘EU-:. -K—-—J——R - ! ()4.33)
2

Now, if Ei is 'the i-particle wave number in the interiial system before
the collision, after this event (supposing the kaon momentum transfer equal
to Fa) such wuantities become
kK, +a, Kk, EK3-a
Therefore, if K., Ka ahdlia are the initial values of KG' K and k respectively,

the final values of.the same variables are, by (L4.25), (4.26) and (kL.27)

Kg = & (4.34)
R, = R -1 ; (4.35)
k (L.36)

o
n
=1

3]

]
=

The relation (L.34) means that the motion of the three-body centre-of-mass

remains unchanged.

Finally, by (4.32) and (k.33), the initial (p_, Eau) and the final

- ~b - s ; ;
(pb, kb) values of the set (p, ku) are such that

b, = P,-8 (4.37)

ko= K | (L.38)
In (L.37) one has _

5,1 = Ip,l (4.39) -

vhen there is no excitation or break-up of the constituents of the deuteron.
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Now, if Ti in the matrix elements

‘TL:;J"‘ C‘-i’b:_ﬂ @a,) _ (4.40)

are substituted by the approximate transition operators ts, given .by (4.17'),

one gets

t;$=ti§ X, >< | §>
or, by (4.15'")

b =V T (i)? (4.k1)
| t; @a" V¢§]¢r,p><- v\ Qa
Indeed, the x  as well as the ¥, ;» given respectively by (4.10') and (4.16p)
]
form compiete sets of orthogonal functions and are supposed to be normalised

in such a way that

(Xyr, Xy ) . (Wi, Wei) = 80 (b.42).

The explicit expressions of X, and Y (i=1) are, then,

A e[(?-?*]‘?-?’) g

X, (F,R) = (4.43)
e (F1%) (am)?
and
(k.U
X0)= 4 Xje ~ bk
_ \}‘Jr.i(X,U) T (@m)3 \PT’.I’( ) : ( )
vhere wé E(X) has the asymptotic form
- Lp-X e{:}’x
\{JT,E(XJ - £ F + P.x(¢)7 (L.45)

This wave function represents the total wave in a meson-nucleon scattering
process. The indices written explicitly in wﬁ E(X) refer to the values of p
]

and E just before the collision.
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The index r in (4.43) and (4.4L4) stands for the set of variables (k,K)
or (5,?('“) and §- in (b4.k1l) should be interpreted as ‘(d-ﬁd'? or 5OLF AEU

Now, by (U4.6) and (L4.43), one has

<Xrl(§&>= 1 (E-E(E.th}ZRJCL'J%-F#)D(E)GM

@T)3 |
8 ~ i
(21)* S (R-Fe) g, (F) (1 16
vhere go (K) is the Fourier component |
-3 [ -iFWR R N
%¢ = (em) *j @(@)dﬂ (4.57)

of the NN internal motion wave function ¢a(R) for a = 0 (deuteron).

Therefore, (L4.4l) becomes

i i GRS 7 |
% =
ti b= (am) vi(x)quﬁfg) e g, (k)R e
and Tf);') gives considering (4.6) and (L4.LO),
n "B =
-LRLr B . u-V
ba —Cfﬁ ded?dfae CP’;( )Vd(x)HUFJgXJC g Ck’a
But, by (4.49) and (k.38), .
Re¥ = Py ¥ + Ku.U - KgR
so that T't(uzlx) can be written in the following way, if the relation

X=F+2 (4.30)

and (4L,47) are taken into account:



69

— (4) "o 2y k" v a
oe = jdx AR, € g (KL)V(X)LP sz) %O(Ka)
where, by (4.35) and (h-36){
R, = R+ 3, - K (h.9)

But 1') the two-body matrix element

fe-dPs-?vd@) %'(I.ERJ dx

is a slowly varying function of Ka (Chew, 1950). If assumption 1') is made,
then representing by <pb|t |§a> the value of the latter integral for Ka =0,
( )

reduces to

1 |
Tw= < Polba,o|Pa” 52(e) | ‘ (4.50)

where

SO PUCRPIUER PRCAPLARN

The function 34(9) is the'?orm factor" of the Impulse Approximation. It is

obvious that, by (4.L7), S'?'(_Q) is equal to

33(9) fc{) (R) 2 g .EG) gbo‘?)d"-’ (4.52)

(2)

Similarly, the matrix element T is given by

_c_ i
T « <qulte, 13 J@cwe"k@wdﬁ 501

where, in agreement with assumption 1'), ~£.ﬁ5 lTE o\ qa is the value

of the integral
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[ gtiv?y (y)%md

when € = 0.
a

3. The deuteron's recoil

Suppose that the K d scattering is elastic: the final state ¢, defined

b’ .
in (L4.6), is now given by
_ Ru? L = '
@b _ et s d)oui) (4.6")
where .
| ko) = = ke (4.53)
Due to the deuteron's recoil, the two-body wave numbers p and

a,b)

a(a b) are not equal to E( However, the relations between them are
]

a,b)’
easily derived from equations already established. Indeed, from (L.36) and

(4L.37) one gets

Py - Po = ky- ka (b.54)
and from (4.32) and (4.35) it follows that (putting Ka = 0, in agreement with

assumption 1')),

_ 4 [(RiaB R F X,
Pot P .al( ptRa) + m,f+mg(‘ b-ka)|  (hss)
where
. 40mrim) 4 9084 (k.56)

LMy + My
Therefore, squaring both sides of (4.54) and (4.55), adding the results of these

operations and taking into account (4.53), one has, if © represeants the
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scattering angle defined by vectors }'Ea and Eb’

2(Po+ pt)- '”?“ “‘”2% * U%* (5

J]Auce |

The coefficient (—M K /(.‘2 My tin K'J]l can be neglected in this expression

Rmﬁ+mx

because its value is ~ 0.04 (mN = 2rK) and y2 > 1. This means that the second
term in (4.55) can be discarded, so that Iibl = lﬁal = pa, i.e., the gcattering
in the K N systems is also elastic.

In these conditions, one gets

P& = pE - _"952 \;4 5 (d,‘l_ d)ﬂha%} (4.57)

or

PERNR B S o -\A Rars ma] (4.57")
P iy ¢e -

Finally, the relation between pi (or p.g) and kg for K™d elastic scattering

processes adopted in this work, will be

. 2 2 32
£ + =
bé = p& = L4 kg = (0.9478 k) (4.57")
. 24
with similar relations for qg q%. They can be interpreted in two different

3 . i Pf_. i+ ~~ = ]
ways: either as approximations of (4.57) \_ (d’ ‘-‘I)l (J' '{) > 0.2
or as the result of taking the average of the scattering angle 8 over all its
possible values. The latter interpretation is the best when the incoming

particle suffers multiple scattering.
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L. Multiple Scattering

Consider the' double scattering terms T2GT) and TiGT2 in the development
(4.20) for T. If the Impulse Approximation is applied to the calculation of

the transition matrix elements arising from them, one has

'le(& ‘L-? %b \tg_ Go t4 I@G d&;‘ltvlaotgl é.a)(l‘-58}

where, by (4L.T7'),

' EJ, -? .
| E SN -
Now, using the complete orthonormal set of functions Xp» Tﬁ;'l) admits the

collowing development

'—‘(3'“5 ‘E \ty [Xr ><2p | Go \Xw><1v'lt4\42c»

b& TIP‘

or, considering that Xpr is defined by equation-(4.10') for n = r'

'le ) S 4@b|tgtxv><7¢*‘\h@a7 : (uf.so)

- b, + (g
Substitution of T’d l $ Y by (h hB) in < Xy l-t'g\@ > gives for this

matrix element
LCPX+ Ry U)
(gm) 2 S-dx dUo(K e VAQ() \;‘) 3 (KQ)

or, introducing the assumption 1') of §2),

<Ay |ty § > = (-"-ﬂ{st‘ Eﬂ? )< Po\ao\P2 LRy 61)
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Also, by (4.15') one has

F‘?bltzlx; N <‘9b|V2‘l’r 2>

where, similarly to wr , defined in (b.hy),
L]

- - 1 - ik..¥ .
“br.z(y’v) =G Wa’K(Y)e v (k.62)
with
\l’-q’K(S’.) b elq.y + f- K(¢)_
y—)—m

Therefore, using the relation y =r —-g- (see Fig. (IV.2)), cne has

<o, lt, x> = JayaRe (e M, (F)y, ,(7,7) (1.63)

Now, by (4.29), it follows that

= _= s,z _z = .
ky.r = q.y +k,.v-K.R (L.29")
The kaon, however, strikes each time only one of the constituents of the

deuteron (Assumption 1)), so ‘that, in analogy with (k.38),
o= E (4.381)

.,

v v

and finally, considering assumption 1') together with (k.62), (4.29'), (4.38'")

and the definition of ga(ﬁ) given in (L4.47), one has

Sl KRG -
<¢bltzlxr> = nga(x_b)<qblt2,olq>

Therefore, (4.60) gives

X —_ P ®y o = = VAT Aca?
2:0) _ B ga(Kb)<qblt2,o|q>6(kuku)<p|t1,ojpa)go(xa)d’ca &
“ba (2m)3 ' E - E. +ie

(L.6k)

In (L.59), E, is expressed in terms of the initial values }_ca and Ka of

the wave numbers associated with the ccordinates r and R. But, introducing
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the reduced masses Mj; and M, (31) defined in (4.3'), E_can a2lso be related
»

to 5& and Ei, which are the initial values of the wave numbers associated with

coordinates X and U:

2=2 F2(3y2
g = BBa , E0q)? (k.3")
2u3) 2“2.'-(31)
Similarly, one gets for E_
2.2 2 2
Eg W %‘E‘ + D) (k.3"7)
g M3 ¥2 (31)

Thus, substituting K by l-cu in (4.64), using the relation

- ] '
k, = K- i o & (4.33)
. . . - _{2,1)
and integrating with respect to ku’ Tba' becomes
X, - - ", 7 - 2 -
pf2s1) =1 2u., [ (Rp)<@plty, ol <Blty,0lBz80(Re) Rk

b,a  (2m)3 g2 (4.65)

p? - (p, + ie)?
where £ has been redefined.

Equation (4.33) holds also for the initial values of the wave numbers

involved in it, i.e.,

k2= R -3k o C (4.33")

‘but the & ~-function in (4.64) imposes the condition Eu = EE’, so that

E = K =3k -k) (4.66)
a a
Similarly to (4.33) and (4.33') one gets for wave numbers kv and k;?_

k., ==K -3k, k. = - Eb - ;Eb

v
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and, from the same relations, by (4.38'),

K= K+ 2(k -k (4.66")
then, by elimination of K in (4.66) ana (L.66'),

Kb’ K + (k7 +Ry) (4.66™)
Therefore, introduc1ng again in (4.65) the wave functions ¢a(r'{) and ¢0(§)
by means of (L.4T),’ 1(;2. * gives

" -i(Bakp-Rig RR
rl—’b:: __AMs q)(e)ct](?i)e caqelt;o!qﬁplh oPr. AR AR
Cam)ige Pt = (pgtie)®

(4.67)

The calculation of T( 7 ) using the same approximation leads to

ba
E LY — - —
TUE ey 543 ) §,(R)e B RO Bt e 18> i a7

Yhe = (4“)3 4'-;-‘!- q.Q, = (ﬂa“ i t)z,
(L.671")

(1) g(2) f1p) (21)

The expressions for. ‘I‘.b : ba R Tba and Tba. show that they can be
interpreted as weighted means of the single and the double scattering terms
arising in the collision of a particle with two moving céntres, located '
simultaneously at -R/2 and R/2. The two-body scattering amplitudes at these

points are respectively proportional to the matrix elements.

-L(E—E'J-Tfl.t ((R- k1) .R\2
e <P'lty,lP? ’€<C‘i\t20|q>

and the "weiéht" is Ct));iﬁ) dPDLE) .
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In (4.67) and (4.67'), the main contributions to the integrals over
k came respectively from the values of p2 and g2 which are close to pz and qi.
Thus, if in a double scattering process, the kaon is scattered elastically
by the first nucleon, pi (or qg) is ‘given by (4.57"), so that the kaon-waves

transmitted to the second nucleon are predominantly those which have the

square of the wave number equal to

LA 9
pe= q* = -—_—.'i;di = Pa=9a (4.68)
The calculation of the T-terms in (h.20) is much simpler if it is
accepted the physically reasonable assumption that
2') "in any multiple scattering proces; all single scatterings are
elastic (without-break up of the deuteron) with the possible exception of the

last, which can be non-elastic".

Admitting this hypothesis a straightforward extension to scattering terms
of any order is open using the previous interpretation of the single and double
scatterings as "weighted means". For instance, the triplet transition matrix

element correspondlng to T)GT2GT) in the development (k.20) for T is equal to
-.-JRR
e Ak <3 1ty o \F>-
A 2 [ > 2,0
r —L ‘J‘J_ (‘PE 4,9\‘0 C‘l_Cci-tli)i C\

QGam)e’ tﬁaﬁl Kt —i(Ra-RY RI2

] ’ b ) e y
o A ané- . L ‘o‘ltlloh?a?' @mm)%“" d R (4.69)
I opa - (papit)® - .
Actually, if the calculation of T;GT,GT; is carried out by Impulse Approximation

and assumptions 1') and 2') are taken into account, the expression (4.69) will

be reached again. Therefore, in principle, all T-terms are known.
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Finally, supposing that the two moving centres much heavier than the
incoming particle, y tends to 1 (see (L.56)) and Ea(o? Ea), by (L.57") tends
to Ea’ so that all T-terms reduce to those which are obtained in the problem
dealing with one particle scattered by two fixed centres. (Drell and Verlet,

1955; Schick, 1961).

5. The off-energy shell Matrix Elements

The K N scattering for momenta considered in this work (see Chapter I)
is isotropic, V.herefore, the scattering amplitudes f3;(p',p) and f3,(q',q)
which are associated with the two-body matrix elements by the relations

'Y = - kY oy
. CPYP) 31w P VaslP2 (5.70)

sacquZiﬁ - K32 <6\' \T20197 (k.70")
2L W R
have no angular dependence.
Now, to calculate the multiple scattering terms, it is essential the
knowledge of the behaviour of f3; and f3; with respect to the values of p'
and q' for which the inequalities p' # p and q' # q hold. Such values are off

the energy shell or, in other words, do not respect the energy conservation

principle. They correspond to processes where virtual kaons are scattered by

the nucleons.

Drell and Verlet (1955) consider for S-scattering two extreme cases of

-

behaviour (i = 1,2):
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D L Cpay )=, Cpupd = 30 Cpapa)dy (Pasbe)s Ty CPosb) = oG,

1I) :(‘31'.(' Pa"o)zgSL(P'fPJ:J(_;L(P&;Fa):.O ";“”',P4P¢)Tfai(‘”t.\”)"°‘fp{ﬁ-

The first approximation leads to Bruckner's model (Bruckner, 1953). In
. - tkR: _
this case, the propagator € ;] R appears in the multiple scattering terms.

However, case II is more in agreement with the assumption 2') of Qi) and

for this reason will be adopted here.

If k2 and k;, given by (4.68), are introduced in the denominator of

‘ iR.R
4 Uissa ( (P pade ek (k.71)
AT t—=>o J Pi" (Pa_‘(i)ﬁl

and integration with respect to the angular part of k is performed, then,

considering that the f3i’ according to the approximation II, vanish except

for p = pa, the integral (4.T1) is equivalent to

23t 5 L | RO (kR)Tsc(bipe) ok

. 4
1442 TR PO k2 - R
&
vhere C is the semi-circle of
Q Ra R radius p centred at point k_,
9 a
Fig. IV.3 as shown in Fig. (IV.3)

Therefore, (4.71) is equal to

24 L i (RR)T,, (p.pe) (4.72)
4442
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6. The K d Elastic Scattering Amplitude

From the previous. considerations it is by now clear that the expression. for
the elastic scattering amplitude, f£(6), in K 4 processes, calculated by Irpulse

Approximation, can be written in the form

-&( ©) = d? (R) %(9 R) clR ’ (4.73)

where

T\Ra> C(hLTh)

Obviously, in these relations, u is the reduced kaon-mass (k.3) and 6 the

%r(_e,ﬁ)-- 2

angle defined by Ea and k |). Considering the definition (kL.56)

b (I a
for vy, u can be expressed in terms of the two-body reduced masses u3; and

u32 (= uzy) (see (4.3')) . in the following way:

kﬂst=dﬁ3% (%.75)
Thus, by (4.50), (4.50'), (4.70), (4.70') and (4.75), the single scattering

terms in f(8,R) (corresponding to T) and T, in the T-development (L4.20)) are.

‘ -i(Ba-ks)Rl2  ((RaRe)-RI2 -
}L(Lié R)= g'Le }; +€ fza ) (4.76)

The double scattering, fcz)(e,R), is derived from (4.67) and (L.67') *
together with (4.68), (4.70), 4.70'), (4.75) and the expression (L4.72) for

the intégral (L.71). Putting
P(R) = L e (RR)|[R (h.72")

2
éne gets for f( )(G,R):_
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L) 243 _URerR).RIZ URe+Rp)-RI2 p
CouR)= e L€ ftan * ¢ fuhn Jfw® o
From (k.69) and in the same was as for fil)(e,ﬁ) and f(z)(a,ls.'), the

aclculation of triplet scattering gives

- i(Ra-Re)-RIZ (R, -Ts)-RIZ

S .
£(9|Q)=- —é-.d’Tdﬂ—)Eﬂ-e '\{'3!:_"39:.()'34 Sl '['“{'3

and so on, for the subsequent terms of higher multiplicity.

t...-H

v)(ﬁe)

Therefore, f(8,R) is given by the follbwing expression

(06,7 « {{h.7)
4 - () bbb

Aadd
Substitution of (4.78) in (L4.73) shows that the T-series (4.20) has been

(4.78)

f’(efe

reduced to a finite expression and, under this form, is a convergent series.

Vhen R + 0, f(6,R) tends to a limit different from zero, a result which is
physically acceptable. However, if assumption I is used instead of the
] . = ikR
approximation II, f(6,R) vanishes for R = O, because now P(R) = e /R.
Therefore, assumption I is a bad approximation in the region where the
scatterers are close to each other (Schick, 1961).

The elastic scattering amplitude f(8) will be now developed into a series

of partial waves, i.e.,

1¢8 = E{»:‘E; 3 (L 58)CH-4) h(cote) (5.79)

Lzo
Choosing the Hulth&n function (3.25) as the ground state wave function of
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the deuteron, the exponentials in f(8,R) are the only terms in f(6) depending
on the angular part of R. Representing respectively by ﬁa’ ?“o and R the

ikaR

angular spherical coordinates of Ea’ Eb and R, the plane waves e 3 and

-iky R . . . :
et }L‘.-{ admit the following expansions (see (3.14)):

o o0 L X
(Rg-RIZ Ly - VAT
e = YT LZ”E JL(k&Riﬂ)mz:_L\,ﬂ?kﬂ)yL(RJ

and ( {Ral =Ry = ka)

- IE
e

=y 2 (0)
L=o

L :
L m 7 . A
Jil(»e&mz)mz =_L\//Lc?q,) )/.L (R) -

Then, using the orthonormality relations for the spherical harmonics

g Yi”(é)\/l_,’”té) cd R = ’SLL'-SmmI (1.80)

one has

(Ra-ky) Rl2 = 22 : m 4 m

i “ky)e \ A

e S mf | Ckag) L\/Ltka)yL(Rb) (£.81)
L=o 2 oma-|

But, by the addition theorem for the spherical harmonics (Messiah, 1961,

Appendix B), the sum over m in (4.81) is equal to

L &

e m A

atad feeoy= ] Ytk \Tke) 5 (s
47 mM=-L

8 is the angle defined by the unit vectors ﬁa and }g‘b’ so that it is equal to

the scattering angle. Therefore, (4.81) becomes

o ‘

7 X . Rl ' 2

R e, (2L+A)JL(?aRli)pL<aﬂ9) (4.83)
L=o " |

n
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=
and the same development is obtained for e . o

1
\
J

Following the same steps it can be also proved that

tiRa+RY-RIZ © &, 1 ;
(e ald" ' ux LJ(ﬂLMJJﬁka(@)PUHG) (4.83")
L=o0
These relations, together with (4.73) and (4.78), lead to a new development

. of £(8) in terms of Pyfcos 8). Comparing the coefficients of such terms in

this series and in (L.79), one gets

e
- T "2 2
Pn:, ':-K’dc- = L'Tl-(%' “L(R)Jl (ha}?[-‘l)‘ 4)-,,(-2)\ RE’G‘(Q (4.84)

where ¢o(R) is the Hulthé&n function

~x R =
R X € - g ﬂm' iﬁiiifﬂ (3.25)
o(R) = R ) iﬂ(P .

y _
F\ (R) §S1+i31+CJJL1—‘r-d—i .Jaiﬁ-m P(_QJ i)
i ~Re? (44 12)1 25452 PUR)

Calculation of integrals (4.84) needs f3; and f3; expressed in terms

of the K N S-wave elastic scattering ampli-tude_s
T gu 8t '
o€ -4 ptAit gl (4.86)
d 2ip 2@1

(I (=0, 1) is the.lsbel for the meson-nucleon isotopic-spin channels).

Actually, the phase shifts GI are related to Ross-Humphrey's sets of scattering
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lengths A (see Table (II.1)) by the zero-effective range formula

. - .
p cet 3" = 4] A1 : (2.11)
Therefore, the elimination of &> between (2.11) and (h.86) gives
T i
( : (¥.86") .
/l-LpA"

Now, f3, can be identified with fl, because f3, is related with X' n
interactions (see Fig. (IV.2)) which occur through the isotopic-spin channel

I =1. Thus,

La _ Ay (4.87) -
J32T. /_l_-t;PAJ_ ;

The relations between f3; and f0 and f! is more involved, because in this

case the K p interactions take place through the channels I =0 and I =1

(Chapters I and II). It is found that

.- | ( An Ad \\ (L.871)
}31 4-£p,ﬂo+ 'L—ngﬂd)

7. Convergence of the Develoorment of f(68) into Partial Waves

The analysis of this problem is linked with the behaviour of integrals
(4.84%) with increasing values of L.
Making the transformation R = 2p/ka in those integrals and considering

that a << B (see (3.26) and (3.27)), it is clear that the leading term of

( 7]L- 4 ) is proportional to

“Hoip| ke,

F @PIR"‘ (P)e Ap (4.88)

vo
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The next theorem is easily proved: "when p2 < L; + 15, the spherical
Bessel functions jL}p) with L 2 L} + 2 are vanishingly small for all values
of p satisfying that inequality".

In fact, adopting the normalisation CLgu B TR E S and using the
differential equation (C.16) defining the lL(p) (see Appendix C), a straight-
forward calculation gives the following development

=0
jL(P) = f)LZ- Ciom IDUZ Clom® = —CL,n_
L=o PP 212 (Lan)+t](ned)  (B.89)

Cutting this series after the third term one has, for L = L) and p2 = L + 1-5,

. SR
oy (YT rEs) (g L4, Latig _]
\\LA( \I L‘*d_;) = (9'1—1{} i)n i q =+ SuLl-i-S)

where i

1__1;4_*_£_>i ~ 0.19

— -

EREYTIIRT) 4 b

Therefore, the representation of j,(p), for L 3 Ly, by the first term in
the development (L4.89) in the interval 0 2 p 2 ¥L, + 1-5 originates an error
never exceeding v 19%.

Now, from the recurrence relation

& 1 Y L >0
@+ > == Ll =7

;
ATl r

one has, putting L. = L + 1 and making the previous approximation for jrl(o)

and jL (p) in the interval 0 2 p R VL; + 15,
1+1

Jpa(p) =0

and the proof of the theorem is completed.



¥oting that, in IL(ka)’ the exponential becomes vanishingly small when

k.,

" e e l\-a 5 ’ N
p > -,T‘j, then, by the precedent theorenm, if VL; + 15 > To? the I (%_ ) Tor
¥ i iy iy S
L 2 L + 2 are practically equal to zero and the partial wave series I'or 1(€)

converges.

The region of interest in this work for the K -Lab.-momenta, p. ., is the

T
=20

one that lays below 300 MeV/c (Chapter I). The K -momentum in the X d

centre-of-mass systenm, 7k _, is related to p . by the equation (see (A.7))

_ 2y
a EEmN + mK) pLab

or
£, =] el -2 4.6
ka(feml) 0-Lo12 x 10 “DLab (Hev/c) (Lk.90)
Therefore to the extrenme value Py = 300 MeV/c corresmonds the wave number
k, = 1:2 fermi™!, so that the inequality (a = 02315 ferai=! by (3.26))

' k
L ~ .
VLl +.l'_5 2 F&*— 1.2
holds for L; = 1. So, according to the theorem stated above,
ng = 1 =20
for L 3 3.
Incidentally, the previous discussion shows the importance of the behaviour
of the FL(R) for small values of R (0 € R € 2) in the calculation of integrals

(4.84). Tnis is another argument in favour of assumption II rather than

assumption I of §5.

8. Validity of the Impulse Anproxiration

The square modulus of the coefficient n,; defined in the expression for
- .

the scattering amplitude (4.79), measures the intensity of the outgoing
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spherical L-wave, because, in the same expression, the intensity of tne.
incoming L-wave is taken equal to unity. Therefore, 1 - InLI2 is the
intensity lost by the scattered I-wave in all inccherent processes = absorption

(hyperon production) inelastic and charge-exchange scattering. The physical

meaning of the nL's outlined above imposes the mathematical conditions
1= |nf%230 _ (k.91)

for a.ny L.

In the following pages, it will be shown that, at -very low energies,
the nL's calculated by Impulse Approximation do not satisfy the inequalities
(4.91) and this method is no longer valid. The reason for this to happen is
the fal:lure of conditions for which the two complementary assumptions 1) and
2) (see §2 of this chapter) of the Impulse Approximation are acceptable.
Actually, if the kaon~wave length is large when compared with the mean
separation of the two nucleons, one cannot expect jus.t a slight .distortion, by
one constituent of the deuteron, of the kaon-wave falling upon the other.

For closer examination of the limits Sf.\(alidity of Impulse Approximation,
qonsider kaons moving with wave numbers k_equal to or lesser than 0-h fermi~l
(the K -Lab.-momentum cérresponding to this va.:l.ue is, by (L.90) Pp o, = 100 MeV/c).
The main contribution for the integrals (4.8L4) giving the nL's, arises in the
interval 0 2 R 2 2 (see §7). In this region and for those values of K,

P(R) = ika.’ so that it is possible to bring the FL(R) out of the integral sign
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and, instead of (L4.84), one has
o0

' ¥ 2
Ne-4  _ oy Fo(o)dm ] | (RaR[2)| b R)| RPAR  (h.92)
- = ¢ L L o
illka o
The Mean value theorem of the Integral Caleculus (Courant, 1948, Volume I,
P.127) provides now a method for the definition of the mean value FL of the
separation of the two nucleons in the deuteron for a K d L-state, Actually

one has

L]

am [ Jhcea12) |, e“R*04= [HURIS) sm)

because

| b, ()FR¥AR = 4

Yr

Introducing (4.93) in (4.92), the (nL,- 1) become

-4 ¢ F, (o) jf’(feaﬂl‘-’») y (4.9%)

2iRg
" thus, if the 71ﬂ/5 satisfy conditions (4.91), one gets
* 22 -
L[ FLo) -Fieo)] - 24 | Fulo) JL(kaRL\%)
or, putting F (0) = a (k) + ib (k. ),
(v}

. e - 2
jf(kdeL;a)ﬁLcn,,) s b;;&) +Jf(naeLra)aLcre¢)eo (4.95)

The parabola

(1

= R (kaRols) X% X, RRaRI2)G ) (x.06)
nj b Yk L
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has, for X = bL(ka) , the same value as the left-hand side of inequality
(L.95), which can be written
\,f z O . (4.95'")
« This condition means ':.hat the curve (4.96) cuts the X-axis in' two points

given by the "real roots" of equation- dj =0

5 C) (rral™ = ke E 4 gt Cka) i (RuRa)

(4.97)

2 |t (ke QL\Q)
Therefore, on one hand, one has
(rka)™* > 2\ (R JT(ReRlR) (4.98)

On the other, a negative “j means that X remains between the two roots
of "3 = 0., Supposing k small, x¢)  is very close to zero and
X+ [_k— ka_j (Ra RLli)] ‘Then, from "-6[ %420 , a second’

condition is obtained

(rRe)™* > bLlRa) |{ (kaRil2) (1.99)
For a Swave, j% ( ka-ﬁa.\i) = 4 ( ka Ro )-'i' » S0 that

(4L.98) and (4.99) become respectively

ke > 8¢ 120k (k.98")
-ﬂ'o.'b :
and
kg > MI DolRe) ) 3 (4.99")

RY
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In (L.99') it is used bL(ka) rather than |bL(ka)! because this coefficien.t
belongs to thé imaginary part of the scattering amplitude and so, it is an |
essentially positive quantity in so far it is related with the total cross-section.

The inequalities (4.98') and (4.99') show clearly that the wave number
ka cannot be less tha.n_ a celrtain limit (the greater of the two numbers
3rlao(ka)l/ RS and U4 boCRa) [R& ) | ir condition (4.91)
for L = 0, the onl%mportant ztl_very low energies, should not fail. chh- limit
can be vqryhlow, when Ro is large. In such case, the validity of the Impulse
Approximation should be discussed in éerms of its.fundamental hypothesi;
'expréssed by (4.21), rather than in tetms of assumptions 1) and 2).

This argument, how;ver, does not apply to the deutercn. Actually, as
it will be proved subsequently, the first FL at very low energies, though
they tend to increase with L, are independent of ka and their common value
is ~ 3+84 fermi. I'

The analysis of the integrals IL(ka)’ defined in (4.88) and the study of

the convergence of the series (4.89) show that, for k, 2 0+ fermi” °, and

L > 0, the approximation

. 'y (haR)L
JL(MMU T al(at4a)it

for the ,,sxlyherical Bessel functions is a good one to be used in the .calculation

2
, (RaR2)<L4tE (4.100)

of the ﬁI.' defined in (4.93); one has, therefore,
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= n =GR ’
or, considering that J R” e dR = ni \a
o

= &L L4 LL+4 LLl4d
R -_i“Pi“*F_),\ 40 [T S(21))
- (@-o‘)i (lq) *( B} z(\oh»PJ ]( )
But, B = Ta; thus
- L
Ry - AfH /e (an))
2"‘QV e
=22 \/1.58 CaL)! a‘er?rté (4.101)

Obviously, the expressions (4.101) are only valid for values of ka such that

the inequalities (4.100) with R = R are satisfied:

L
. e Lads '
ko P l2)" < LI (4.200")
Now, using Stirling's formula for (2L)! when L is big, it can be

proved that (Courant, 1958, Volume I, p.391)

K1%
Um, N153GUL 4
L= 2L 'e

vwhere e is the base of the natural logarithms. Therefore, the condition

(4.101') becomes with increasing L:

2 -\
ax e ~ 4.28
L ‘( Ra ) . Ra]

For k = Q<4 fermi_l, (4.101) is a good approximation for all values of L >0
' a

less than 9.
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For L = 0 and k_ 2 O+l fermi, the approximation
a

| :}o-(“;aﬂli)f’-— i -(E%.)’v

. of the spherical Bessel function of zero order is a convenient one. Therefore,

—

Ko 2= ﬁi = 3.34 fermi

This value is very close to the mean value of the deuteron's radius
(v 3-2 fermi). Such result proves that the previous discussion is well-founded
from the point of view of the physics of the deuteron.

It is also worth while to be noted the in.creasinlg of ﬁ'l’.. with L. This
means that for greater values of L than L = 0, the Impulse Approximation
improves and should lead to a correct result. This is to be expected,because
it is a well-established fact that the same thing happens with the Born
Approximation.

To cormplete the prese;lt discussion, just one remark more: it is the
violation of inequalities (4.91) that explains why Day, Snow and Sucher (1959)
found, in their work on K d scattering reactioné, ¢ total < o elastic (see,
in the next chapter, how these cross-sections are expressed in terms of the nL).
However, in this case, it is not the failure of a;ssumptions 1) and 2) the
reason for such violation, but the use of a pure Impulse Approximation, which,
in the notation used in this chapter, amounts to writing FL(R) = f31 + f37.
When, in the same paper, those authors introduce double and multiple scattering
corrections they found th;e correct result o total > o elastic.

Finally, the condition (4.21) for the validity .of the fundamental

assumption of the Impulse Approximation can be written when k& is expressed

in ferm;i._1 ’ '
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=2
-2—21212_ << ] " (h'elr)
a

If k, = Ok fermi™!, the left-hand side of (4.21') gives ~ 0+06 which is

& reasonable result. But the condition (4.91) for L = 0,
1 - |nol2 2 o,

starts failing for values of ka lower than 0-_}4 fermi“l. Therefore,. the region
of investigation for K d scattering in this-work will be the K -Lab.-momentum
interval 100 MeV/c'é'pLab 2 300 MeV/e. Evidently, it is n<;t possible to go
over the upper limit because the KN scattering for such momenta can no longer
be translated in terms of Ross-Humphrey's sets of scatlterilng lengths (chapter I).

Table IV shows the variation of the ng, with the ka and L for Ross-Humphrey's

solutions I and II. Note that everywhere the TIH are such that

In | ¢ 1

Table IV

P no " n2 n3
Lab . . .
MeV/c! R.Part | I.Part | R.Part | I.Part | R.Part | I.Part | R.Part | I.Part

100| 0-0656 |-0°0211 { 0°9252 [-0+0023 | 0+9954 [-0+0001 | 0°9996 |=0°00CO
1{200| 0°0k16 |-0°+0126 | 0+8042 |-0-0033 | 0+96Th [-0+0005 | 0-9937 |-0-0001

300 0+1541 |-0+0076 | 07350 |-0-0029 | 0<9317 (-0°+0007 | 0:9808 (-0+0002

100|-0+0962 | 0-5209 0:9212. 10°0786 | 0-9959 | 0+0039 | 0-9996 | 00003
I1{200|-0-2396 | 0-4568 | 07983 | 0+1462 | 0+9746 | 0-01L9 | 09961 | 0:0020

300|-0+1446 [ 0-2937 | 05969 | 0-1811 | 08966 [ 00381 | 0+9712 | 0-0095
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The 711'4 in this table have been corrected in such a way that the Coulormb
interaction is taken into account (see next chapter). They were obtained by

numerical calculation carried on the Mercury-Ferranti Computor belonging to

the University of London.
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CHAPTER V

" K°d Elastic, Total and Absorption Cross-Sections

1. The Resonant Group Structure Method

The decomposition of the K d elastic scattering amplitude, f£(8), into
partial waves as well as the introduction of the nL-coefficients {Chapter IV)
lead to a straightforward calculation of the K d elastic and total cross-sections.
But the determination of the absorption cross-sections, inecluding the whole of
the production of hyperons in K d collisions, requires a different approach to
the K d problem. However, such an objective can be achieved by means of the |
Resonant Group Structure Method (Wheeler, 1937) combined with an appropriate
description of the K N and np nuclear forces. As will be seen in the following
paragraphs, the inclusion of Absorption in K~ d scattering processes is ﬁrovided
by the imaginary parts of the K N complex potentials defined in Chapter II.

If 1, 2 and 3 represent respectively the particles p, n and K~ (Fig (IV.2)),
the two body nuclear interactions are conveniently described by central
potentials Vij(rij) having the following form:

; (1) (2) — '
V. (rij) = Vi; (rij) + vij (rij)Pij’ 147 (5.1)

Here r.. is the distance between particles i and j and Pij' defined in (2.4)
represents the charge-exchange operator for the same particles. Thus, Pij

operates only on the isotopic-spin part of the K d wave function.
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If i (or j) = 3 (one of the particles is the kaon) the potentials

. 1
i vij){rij) and Vij)(rij) must be identified respectively with the potentials

given by equations (2.9) and (2.10):

-by
(1) ‘
VE (ry) =4 {(uor v+ b0 & (2.9")
Ty
&)(7' -*VW Uo) + LCYA'VO)\ gy i (2.10")
e

But, when the two interacting particles are the nucleons 1 and 2, the

only nuclear force between them is, as it will be proved below

Viz(ry2) = g )(r1z) - ng)(nz) (5.1%)

Therefore, (5.1') must be identified with the-deuteron ground state
potential,

In spite of the K n reactions through the isotopic-spin Channel I = 0
being forbidden (see Chapter II), the operatgr Pij appears in all potentials (5.1).

. This is so because charge-exchange processes occur continuously between the two

nucleons, leaving the isotopic-spin channels I = 0 and I =1 open for particles
2 (n) and 3 (K ). |

Consider now the K d wave function.

If Y (A) and YI]II(B) represent the isotopic-spin functions of two
]

LI, |
groups of particles A and B, the isotopic-spin functions of the whole system

are (see (3. 6)):

“(A8) =] <IT 114337 Y (4)Y(8)
3,11 e I, 11014
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Putting A = (l,2)land B =(3), Y 1T (1,2) and Y (3) stand respectively for

%2

the np system and the kaon. By the principle of charge conservation, the only

A3 )

possible value for ]1 is -3. To this eigenvalue correspond three eigenfunctions:

A E% SRR V), «
\/__J:;_ yi-i(iﬂ) (3) (5.2}_

ﬂ,z

-\}% mzs) = V1 Yo (4D -
de \/ (,12) (_3} | © (5.3)
\Ciaad = Y02y (_33 (5.0

)
4"2.

But conservation of the total isotopic-spin quantum number in strong
interaction processes rules out the state (5.2) because the isotopic-spin part
of the deuteron wave function has I = 0 and, with this value for I, J . can
never be equal to %.

The resonant group structure method requires that the remaining
eigenfunctions (5.3) and (5.4) be anti-symmetrized with respect to particles 1
and 2 (the two nucleons) because the deuteron's total isotopic-spin is I = O.
However, as (5.3) is symmetric in 1 and 2, the K~d wave function, written in

the C.M. system of the three particles reduces to

ple )Y (F.R) W (F,R) = Y(¥,-R) (5.5)
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where

ple2,3) = Y a2 (5.47)
and the coordinates r and R are linked with the Ty by the following equations
(see Fig. (IV.a))

- R - R .
7R . EI' rig = |R| (5.6)

13 = ’ rp3 =

Obviously (5.5) must satisfy the Schrodinger equation
- 9 ' i
\‘K-— % 4 VmCT'.a)4Vf3 (Vs) 4_‘453(*23)]29\-[):
la.

=(E+E4)qu (5.7)

where K is the kinetic energy operator defined in chapter IV,

(4.8)

e, the electron charge, E;» the deuteron's binding energy and E, the kaon
energy in the c.m. of the K d system.
The following relations are easily obtained from the definition of
p(1,2,3):
p (1,2,3)P150(1,2,3) = =1

0 (1,2,3)P130(1,2,3)

1]
o

px(l,2,3)P23p(l,2,3) = 3’

. . x p )
so that, if both sides of (5.7) are multiplied by p (1,2,3) and the potentials

(2.9') and (2.10') are introduced, the K d wave equation becomes
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{ K - ‘_{7 A ( V‘itl)(r"-) la 0'43)] | |
13

b¥s

‘,(Uo*?»us) + LYo ‘”‘)J (br; iy )\\P (E:“:‘,‘W‘j (5.8)

Ng charge-exchange operator is needed for the Coulomb potential, because the
nuclear potential in (5.8) is symmetric with respe;t to coordinates r;3 and
ry3, and, therefore, it is immaterial to write either -e?/r;; or -e?/r,; in
this equation.

Consider now the wave functions ¢a(§) and energies W_of the np system,

defined .in Chapter IV. They satisfy the equations

- L v + V, (R)] . (R)= W, b, () (4.4)
and the normalisatlon conditions (L4.5). As the ea(ﬂ) form a complete

orthonormal set of functions, y(r,R) can be developed in the following way

P(PR) = L §.07) Pu(R)
Making now the approximation of supposing small the polarisation of the deuteron

due to the presence of the kaon (Buckingham and Massey, 1941) this series

reduces to its first term

Y (F.R) = J(OL?)dJ,(Fé) (5.9)
where ¢o(R) represents the ground state of the np system (deuteron) and

Wo = Eg. In the approximation (5.9) the K'd wave function is already

symmetrised with respect R, according to the condition (5.5), because the
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" deuteron is always in a , S + D state. Therefore, considering that r;, = |E|
(see (5.6)) and identifying the potential Vo(R) with {r.1'), the wave equation

(5.8) bvecomes, by (4.%), (4.8) and (5.9),

2

.SL__‘“

V: 92’ & %1 uo+3u‘)+icvo+sv.)‘\(§7 “ E'__'t )\§(_r)¢3 (R) =

.
"M

&5t

- B (™ ¢,R)

Mutiplying both sides of this equation by ¢¢(R), integrating over R and putting

| - bys _-bvy -\\2 |3
Fory = j(& 3 7™ @)\ dR -~ (5.10)
P j BY‘.,+ bYs; )\ ¢o \
L2\ |
F.r) = ( \ “{)O(R)\. R _ (5.11)
EJ - 2"" L: | ' ' (5.12)
iy L2 _ .

one gets, finally the resonant group structure approximation of the K™d wave

equation

(VEekE) HeP) < - 24 ile* F0r) s —:-J[Cuouu;)*i('v’.;«*shi} FO')\&O—') (5.13)

The index © has been suppressed in £(r).
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2. The K d potentials ¢(r) and y(r)

Consider the second term belonging to F(r) in (5.10):

T obr -
— _ e ‘a3 2 R :
Lm-jﬁﬁ; | R\ - (5.200)
Making the approximation of representing ¢o(R) by the Hulthan function (3.25)
~and putting
5 = K| - (5.1L).
and :
-2xp_ _~28p
Kp) = o= ) , (5.15) .
I(r) becomes
m
Tor) = 2000 (048 Mf)df)-@;“w X (5.16)
(R-o)2b Jo 13

where 6 is the polar angle of the spherical coordinates.related to p. But,

according to the definition (5.6) of ry3 one has

ro§ = r2 + p2 - 2rp cos 6,

so that'I(r) can be written as

- -bYy,

Tory = 22 EL“+E X(p)dple . oi&3 (5.17)
(a- cxﬂb Y«o .

The limits of the second integral in (5.17) for 8 = 0 and 8 = 7 are respectively

3)1'23=2‘-Dandr23=r+bifp<randb)r23=p—ra.ndr23=p+r

if p > r., Therefore, introducing the hyperbolic sinus function, I(r) gives

1) = ‘-i“‘_ﬂ-‘f“—*ﬁ’ Cr) (5.18)
¥ (p-)?
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where

dpcru%.".

Since the term in r)3 of F(r) is equal to I(r) one has

or (7 . A m ~bf
X(p) Mahbpdp o Aw2Z | X(pectf (5.19)

r

Bﬁﬁ(u”;“éj
F(r) -EQTE-:-;TQ¢(r) {5.20
Putting now
¢(r) = r¢(r) ' ~ (5.21)

and differentiating y(r) twice with respect to r, one gets from (5.19)

$her) - B*Y(r)=-6X(r) (5.22)

But the Laplacian of ¢(r) reduces to
4 g_( 296
AW =2, & (Y v

because ¢(r) is a spherically s%mmetric function. Thus, by (5.21) and (5.22),

ZL\.Cb =¥ ¢ - b XD (5.23)

Now, the Schrodinger equation (5.13) shows that the K 4 effective nuclear potential

is given by

_bmFr
VQH = _3 C ) (5.24)
where
Mo 4 Lo+ 3) +i (Yo 430)) T

b
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Therefore, comparing the modulus of the Hulthén function |¢g(2r)[2 with x(r)
(see (3.25) and (5.15)) and considering (5.20, (5.23) and (5.24), one has that

Veff(r) is a solution of

B Ve - b Voy =-UT) o m\? - (5.26)

This well-known partial differential equation represents a static and spinless
meson field. Such result shows that the resonant group structure approximation
" is eguivalent to the problem of obtaining the scattering of the K -meson by
a cloud of "nuclear charge". The product of the"kaon-charge" by the
density of the "cloud's charge"' is given by M|ég(2r)|? and the range of the
nuclear forces arising in this field is equal to 1/b, i.e., exactly the same as
the one that was found in the two-body interacti.ons K'p .and Kn.

Multiplying the term in r;; of F(r) (sée 5.10) by b and taking the limit
of the result when b + O one gets the potential F,(r) defined in (5.11).

Thus, by (5.18) and (5.19),

Fo(r) = E%.s_it__"“ﬁ_) §o(r) | (5.18")
where
&-U‘) = L«'m _c?_(_':)— - 4 ij(p)dﬂ + [X(deef' (5.191")
v b>o b Y
Putting ) _ &
yo(r) = rgp(r), (5.211)

the differential equation for wo(r) is obtained from the corresponding equation
(5.22) for y(r), using again the previous method: dividing both sides of (5. 22)

by b and taking the llmt of the result when b + O, one gets
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Yolr) = - X(r) (5.22")

Therefore, by (5.18'), (5.21') and (5.22'), the Coulomb potential

Ve(r) = e Fo(r)  (5.27)

due to the proton is a solution of the Poisson equation

&'VC(r).-:-‘-f'?TT(O') (5.26")
where '
(-aar -2pr &
Yl(w)- e. "‘M&*f‘l’) ¢ =) (5.28)
T(p-o) Y2

is the electric charge density. Obviously one has

gq(r)aﬁ‘ﬁ = e . (5.29)
So, similarly to the interpretation of the K d nuclear potential, the

Coulomb potential Ve (r), as far as it is a solution of the Poisson equation

(5.26') represents a spherically shaped electric cloud, around the deuteron C.M.,

generated by the motion of the proton.

3. Connections between the Resonant Group Structure and the Irpulse

Approximation Methods

At this stage of the present work it is easy to prove that the effective

nuclear potential V , () , defined in (5.24), and the Impulse Approximation

eff

without multipie scattering corrections, applied to the K™d problem lead to the

same Born approximation.
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Representing by ija the Fourier transform of the function f(r), i.e.,

4], - [ 8 Te(5)ar (5.30) -
one can write
G ig.r
Verf(r) ~ Sq[\fefﬂqe _ (5.31)
andV
_ - BRI .
l¢o(2r) 2 a Sal_l“"’(zr)lz]a * (5.32)

The constants of proportionality in both'developmgnts are equal. But Veff(r)
and |¢g(2r)|? are linked by the partial differential equation (5.26). ' Therefore,
one has

(q? +b2)[Veff]a = th{-|¢0(2r)|2]a

or, putting K = 2r,

[VEN-S'E. = T e ‘ T(bo(‘?)ldﬁ, (?.33).

according to (5.30)

Now, if g is chosen equal to the K -momentum transfer in a K 4@ elastic
scattering process, i.e.,
. ©
Q@ = Zkgsin 3 (5.34)
wvhere k, and 6 are respectively the kaon wave number and the scattering angle in

the C.M. of the three-body system, the Born approximation for the K d elastic

scattering amplitude, fsgj, is given by, W being the K d reduced mass (see (4.3))



103

(3) | |
(e) = - %’#—t—i ‘VQH-XE‘

or, introducing in (5.33) the definition (5.25) for M,

Lol

R
\

(3) - g = C
8 = ‘Qua-o-au.)-&i(Vo-i-%V() R)\ AR (5.35)
% )= rrrra e ! |

The integral in (5.35) is not altered if -q is changed into +q. Therefore,

¢ the Fourier transform of |¢g(R)|? is equal to the form factor $3(8) defined in
(4.52) for a = 0. Actually, according to (4.50) and (k.50'), the elastic
scattering amplitude f(I)(B), obtained by Impulse Approximation without taking

into account the multiple scattering terms, is given by
~ 1
) : - = i
S’ (e) = "’3"75}‘; (" ?b\t’L,olPa\’ *“-\‘D‘t&.a\q“)) S e)

It will be seen now that the Born approximation for f(I)(e) leads to the resulj
obtained in (5.35). To achieve this, it is necessary to relate the transition
matrix elements appearing in f(I)(e) with the Fourier transforms of the complex
Yukawa potentials (2.1), giving the K'N interactions in the isotopic-spin

channels I = 0,1, i.e.,

= by ‘ .
- e e Y L gm(uUrei)
L (ug+ivp) By qu = L(ﬂ; 4;‘25)— (2.1')

where the EI are the K -momentum transfers occurring in the C.M.'s of the K p

or K n systems.
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The matrix elements $1—)b]t1 0|§a> and <§_b|1‘.2 0|§a> are related with K p
? »

and K n collisions (see Chapter IV). The K n interactions exist only in the _

K n isotopic-spin channel I = 1, but the K p interactions can occur with equal

probability in the isotopic-spin channels X =0 and I = 1. Therefore

. - Wo Ug 4ty
- éll't > ~ -_A—.ﬂ{uo4\ + : (5-36)
Pt b = 2 T * qia v

and

q I ~ _ Y7 '
284\ tg,0| Ge> 2 - 4. (5.37)
are the Born approximations for <§b|t1 0]5a> and <Zi‘t>|t2 0]&&7. (Compare
¥ ] ’
(5.36) and (5.37) with 4.87!) and (4.87) respectively).

Consider now the momentum transfer Eo. It is given by

a = 2p sin L | (5.38)

where p is the modulus c;f the wave numbers appearing in <f:b|t],0|5a> and 8
is the scattering angle in C.M. of the K p system. But, by (4.54),

pb - pa = kb - ka
or, squaring both sides of this equatioﬁ and be.cause the collision.is elastic

(so that p = |pa] = |pv|, k= |ka| = |kv|),
L . -20 2,te , ’
b = = e it > : |
Therefore, by (5.34) and (5.38),
q0 = q
Similarly one also has a) = q. Substituting,/:l:.}-xen, qp and q; by g intc..) (5.36) .

{
and (5.37) the Born approximation of f(I)(B) leads to the expression (5.33).
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Thus, for high energies of the kaon, .whe'an the multiple scattering is
unimportant and the Born approximation becomes valid, the two methods discussed
in this paragraph must Ia.gree very closely. However, for low energies, the
resonant group structure, in so far as it is formulated here, breaks down.

This point will be made clearer when the nature of the phase shifts derived

from equation (5.13) is discussed.

L, The plot of the K d potentials ¢(r)-and Bo(r)

The function ¢(r) is a short range potential. This property can be
proved either directly from the analytical expression (5.19) for ¢(r), or from
the condition that ¢(r) is a solution of the partial differential equation (5.23).
Actually, the density r_lx(r) vanishes exponentially (see (5.15)) when r + o
and the term b2¢(r) in (5.23) forbids the spread of the nuclear interaction
outside a sphere centred at the deuteron's C.M. The leading term of

sl . -2 - "
rox(r) is r e lmr’ where ba n 1 fermi™! (see (3.26)). Therefore, one has

5

¢(r) 21077 for r > 7+5 fermi, because e~ 75 4 5._10“1' and a (= 1/b) is equal

to O-4 fermi (see (2.2)).

To plot the function y(r) = ré(r) it is convenient to express the hyperbolic
function sin hbr in terms of the positive and negative exponentials, Doing

this, y(r) becomes, according to (5.19):

st Sbp  obr °; by
2Y(r)= = V’j)ﬁ(f?)e of.f) + e (]L(P) e dp So (p)e ctp
(o] r
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The last integral in (5.39) gives, using the formula (B.6) and the

definition (5.15) for x(e),

. -bp ;
e L = L—
:.(?) a:p 03 (4= +b)(Up+ o)

r e
L4 (sap] & b ] (5.40)

[
\
\
J

. [ i . .
The integral ! x(p)e bpdp can be easily expressed 1in terms of the
5 i

; r
exponential integral function

We—p y h
-Ei(—r) = L—E— dp _ (5.41)

In fact, by (5.15) and (5.41), one gets

Y;(P) ) b'DcLP = = ELE_ (qaah)y"x_ EL\"(”P*’MY'] 4

+1Ei_\-’\-_‘i—(°‘*ﬁ)*’b}vg | (5.42)

For values of r belonging to the interval 1 2 r ¢ +=«, -Ei(-r) is given

exactly to at least seven figures by the Hastings' approximation:

-Y" )
-~ Fil=r)] = %—.-'RU.') , R(r) =

3 Aoy
.‘io-&CL.Y -+ a;f +0-'5Y'-h Y. (5 h3)
bo + bir + byrig air3+ rH

where the coefficients of the rational function R(r) are numerical constants
conveniently tabulated (Hastings, 1957, page 190). But, vhen r lays in the
inverval O 2 r 2 1, (5.43) is no longer valid, so that the development of

-Ei(-r) into a power series must be used in this region. Leaving this new
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g b .
problem aside for the moment, the calculation of the integral S x(P)e fLiP
o

of (5.39) is now envisaged.

Consider the small positive constant A. By (5.15), one has
(¥ -p-b)
€ ot -
. )
ya)

(3l ok f (5.kk)

where, by (2.2), (3.26), and (3.27), the numerical values of the exponential

constants are:

hoa = b = <=1-57L0
48 = b = 3-7596
2(a+8) - b = 1-0928
{r -(Lka-b)p ¢
Therefore, the integral dp of (S5.44) has a positive exponential.

But it can be transformed into an integral with a negative exponential if

p goes into -p:

r

-T
~(Hot- b) p (o= b) P
—e——— = —C—- -
A =\ - . -
= (Yut-b)p ﬂ (¥ - b)p S (o=
XA P P a P J -v.P P

Putting (5.45 into (5.4%), using the identity

Y O

jiﬁgf ﬁJ_c_z:’\;"P_, Fi(-Ar)  Aso
a ¥ T
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for the other two integrals belonging to (5.4k4), taking the limit of the

obtained result when A + O and making use again of (B.6), one gets, finally,

"xtpy et [2coep)- b ]2
X w L
L e dP 0’? (b-l-lo:)(Hls-b)

[ B o) s B e s

where p means that only the principal part of the integral following it has
been taken. Such integral can be evaluated by means of the equation
=0 A r ___\P
Pj g_ﬁp,:_git-,u)J,Pj & 4f (5.47)
-r P -r P
where the second term on the right hand side is easily developed into a rapidly

converging series:

r — AL+
PS _Q_.)f; a ;. (J\-r) '
B R S Y TRV I T (5.47")

However, for large values of r, it is better to have (5.47) expanded into an

asymptotic series:

Pgoog:A{)a(f)s—e Z L!

-

The error committed in the evaiuation of the integral by taking the n first

terms in the series does not exceed the term of the order n+l,
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When r belongs to the interval 0 £ r 2 1, the function ¥(r) is obtained

by a Taylor's series expansion at the origin:

Yl = L 4 Wiorr™ " (5.48)

M=o N

From the analytical expression (5.39) for ¢(r) and from (5.L0), one has

| 12 bl2 |
Y(o)=0, Y@ =b b—a L(iti)) qu}«b) (5.49)

Putting
A1 = ka, Ay = Ug, A3 = 2(a+B)
50 that

Ay # Ay - 24g =0

and considering the exponential series, the x{r)-derivatives of different

orders at the origin are given by the following expressions

) td /lm'.\. },’1“_ g;h“
x(e)=o0 5 X (0) = (1) ! — 2 _wi (5.50)
&

Therefore, the y(r) derivatives at the origin of any order higher than the

first are given by the recurrence relation

(nea) 3 n) .
(oh = b WTo) - XC) (5.51)
obtained from the differential equation (5.22) for ¥(r). Obviously, by (5.k49),

(5.50) and (5.51), one has y"(0) = 0.
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The plot of Yo(r) = rpo(r) is achieved along the same lines. From (5.19')
and using the Hastings' approximation for the exponential integral, it is clear

that yo(r) admits the following development when r is in the interval 1 % T 2 +4w:

_,\|,.

Welr) = Lps” Vzu 7)- ﬂ
Lier B (= 4 B)

- ")"_QY' r E}jr
[R(av)-1) g - 2R (Az.‘f')'q—}\a (5.52)

where, as before, A}, A, and A3 are respectively the constants ba, 48 and 2(a+8).

o i

IT r belongs to the interval 0 2 r 21, a Taylor's series expension,
similar to the one obtained for y(r) can be used to plot Yg(r). The yy(r)

derivatives at the origin in this case are

(ni2) (n)

Y, (0) = \\J:(_o] =0 ,L\JL(o)= '4;)" \L)@)—-X(o) (5.51')

Fig. (V.1) shows the plots ofb(r' and .Q,L( & Ly)

5. K d phase shifts

Putting

A+i3=i}_‘..£‘i_(’_‘°_‘_‘ﬁzK_(uo+ivo)+3(uw”aﬁ (5.53)

2 (@“")“b"
N - _,ye _ o.0dus feemi™ (5.54)
) ’ﬁ‘h
| o
c Haflasp)  Cped_ o oaqd feemi (5.55)

(p-=)2 ' %2
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and introducing the expressions (5.20) and (5.18') for F(r) and Fg(r)
respectively, the Radial Schrodinger equations, derived from the K~d wave .
equation (5.13) by the partial waves method, are given by
\_0{1]?% L'U'*i)-;- (A-t-HB)d)(r‘)_..ﬁ,C'nb $O”ﬂx U‘) o
r
for L=0,1, . « « . = . (5.56)
The complex quantity (A + iB) is easily related Lol the dimensionless

coefficients

y

-_-_X1+LY1: %—,‘H—Lr—;(uI'*lV'l)J F: erﬂK .}I-:D;i

defined in §5 of Chapter II. Considering that w = by, y being defined here

as in (4.56), one has

A+id = (z.4 324).)’3’_?%%)

(zwf:«;z”xa.33“69“““7’“”{L (5.53')

Making now an obvious transformation, the potential $o(r) can be written

under the form (see (5.55)):

=] oD
. ; [ »
Lo _ L pxipydp+ [xprap .
@O(‘ ) C Y T Jr P jT‘
showing clearly the presence of the Coulomb term. Thus, when the regular
solution at the origin (x, (0) = 0) of equation (5.56) is integrated numerically

to obtain the complex phasé shift & L (== 4L BL) , there is a point rg

belonging to the r-axis beyond which ¢(r) and C i)o(.Y’J - tlir' are vanishingly
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small. For values of r larger than rp, the equation (5.56) becomes the
pure Coulomb radial equation (C.2), so that X, (r) can now be expressed as

a linear conmbination of'FT(k“r) and G, (k{) (see (C.3) and (C.4)), i.e.,

X (p) = (ﬁLJf i'bL){.Cri SL FL((’J 4 plnk 5LGL(FH (5.57)

vhere ar + ibL is a cc_amplex constant. | |

The equation (5.57) together with the one that is obtained from its first
derivative 1*1_([3‘): g?)-ﬁ' , both calculated at the point rg (or ‘Do'-”- R Yo K
determine the phase shfft GL. In the actual calc';ulations the value 1_9:» is
obtained by taking also into account the condition that it falls into the
range of validity of -t'he asymptotic forms (C.8) end (C.9) for FL(p) and GL(p)
respectively, i.e. ‘Do‘i 6 .

Now, if the functions RL(p) and GL(p), calculated at pg and defined by

FL(P) - RLLP)/OJM QL GLLF) = RLCM 91 (5,5.8)

RY = FY + &y TCa 0y = FLIGL  (5.59)

are considered, the elimination of a; + ib. between x; (po) and XI:(DO) gives

| I X (5.60)
ta.au_ (eL-k SL) -:.\. ‘l 5 - ' N
if the equation
2a1 =
B ™y

derived from the Wrouskian condition (C.11) for FL(p) and GL(p), is used.
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Writing
5 s L8y ~ 1
.Pde ‘= L\.X"]P=Pa )‘ole é\-xl'lql‘ x i P‘L]P:po

and expressing Tan(eL + GL) in terms of positive and negative exponentials,

one has

. . Lo (@
2i (8L +3:) ~~1(2 3 pet?

pae % _pie

therefore, the imaginary part 8. of & (= o + iBL) is given by

e

.L___ N L‘.,g PA 4 P v aPiPaCd(Ba-61) (5.61)
'Y _(1+P_Q -.?_P'J_P:_C&’f(e QJ)J
and its real part, o by
[ O o oL
X\ = \i_ fa B P“ - — Ol mu  (5.62)
L P;ece“ ,94669‘

where m is an integer.
The pure Coulomb phase shifts Zl. , defined in (C.13) end appearing
in FL(p) and GL(p), obviously are calculated by means of (C.1lk) and (C.15).

The important quantities in the calculation of different sorts of K d

cross—-sections can be defined by

216,
Y. e _ (5.63)

[ : . =
Although similar to the '|L# obtained by Impulse Approxinmation (see (1.79)

and (4.84)) the k’f.& should not be confused with them, as it will.-be seen

in the next paragraph.
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3y (5.63), it is clear that the indeterminacy, of the calculated «. (see

L
: Uyt
(5.62)) does not affect the cross-sections because on has always € ‘= 1.

However, the expression (5.61) giving the B  can lead to values physically

unacceptable. Actually the 317 A must satisfy the inequality

i - \pl*zo - (5.64)

analogous the ones obeyed by the ’TtL'zi (see (4.91)) and obtained by ma-king
the same considerations. Thus, one must have always —4% Ced(0y-6,)€0
in (5.61), so that the inequalities B, 2 0 and (§.6h) hold.

Equation (5.53') expresses A + iB in terms of Zo and Zy . In the
actual ca_lculatioxlms, the values for these dimensionless coefficients were
derived from Ross-Humphrey's scattering lengths Ay and A;, by means of the
Hulthén's variational formula (see Appendix E).

Table (V) gives the phase shifts 6L for Ross-Humphrey's Solutions I and II
and for the first four partial waves in the K -Lab momentum interval 100 to
300 MeV/c. From the inspection of this table, it is clear that 8 is always
positive i.e., the two sets of solutions are physically admissible in this
momentum range.

The numerical determination of the GL.was performed in the Mercur:f—Ferranti
Computer of the University of London. The INSTEP facilities of this computer

were used in the evaluation of x,{(r), solution of the differential equation
4

(5.56), as well as of yI:(r).

-~
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MeV/e

ap Bo a) B1 a2 B2 a3 B3

100| 0-1951 | 0+3986 | 0-0163 | 0-0180 | 0-0012 | 0-0012 | 0.0001 | 0-0001
I{ 200| 03367 | 0-4228 | 0-0651 | 0-0746 | 0-0129 | 0.0131 | 0.0027 | 0-0027

300| 0-3654 | 043813 | 01173 | 0.1335 | 0.0365 | 0-0384 | 0-0116 | 0.0116

100| 0-8572 | 0-3830 | 0.0362 | 0-0113 | 00024 | 0-0007 | 0-0003 | 0-0001
11{ 200| 0.8025 | 0.2156 | 0-1498 | 0-0436 | 00253 | 0-0067 | 0.0073 | 0.0013

300| 0.7183 | 0-1487 [ 0.2606 | 0.0636 | 0-0750 | 0-0169 | 0-0228 | 0-00L9

6. Limitations of the Rescnant Group Struéture Method. K d Absorption

Cross-Sections

Suppose the radial wave function xL(r) normalised in such a way that

X (0 @ i (kar-nlogkero LT 2% 08 (5.570)

Y - <2

From the differential equation (5.56) of which xL(r) is a solution and from the
regular spherical Coulomb function F,(r) together with its differential
equation (C.2), by a procedure similar to the one used in the derivation of

the integral formula (2.21), it is possible to obtain the following integral
expression for GL:
o)

5 . ( s
e b= - 1L (ariB)m - enkcfedin-4YFade (5.6
Q
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Tne integral is convergent because ¢(r) and Cp(r) - 1/r (see (5.19")) are
short range potentials.

The effective nuclear potential (A + iB)s(r) does not include the inelastic
and charge-exchange effects in K d scattering. Actually, if the pion-hyperon
production (absorption) is switched off in such collisions, the Ross-Humphrey's
scattering lengths Ag and A;, as well as the coefficients Zo and 24_ énd the
phase shifts GL’ become real quantities leédihg to pure elastic scattering
processes, Therefore, an energy-dependent term W(k )should be added to
(A + iB)¢(r), so that the inelastic and charge-exchange scattering be taken into
account formally. |

Consider now the two differential equations

[, 4 k& - LU, (avim)d 01 Wekar) - 20 CRadotr) Toas.56)
Yyi -
and
\- :’L _ ILU.JH{J L W(ka_ﬂ') _i____hﬁa_\ﬁl. =0 (5.67)
drz ~ Ty 3

where ')_(L(r) and FL(r) are the respective regular solutions at the origin and
normalised so that one has

Xi(r)=e /uw(haY’-nLr?ﬂl%Y'—L'T L X+ 0)  (5.660)

Y e o

Fulry = i Cke romlogaker - LT L 2, 400) (5670)

Y =0

Applying to equations (5.66) and (5.67) the method followed to obtain the

integral expression (5.65) onc gets
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C l;dau»(SLu Lo )= J V"“ i3) d(r)-2n ka[c_@o(r‘) Ur E_F dv (5.62)

The J.ntegral formulae (5.65) and (5.68) lead to the approximate result

GL = 'EL - EL' It is possible to write down an exact expression for the ¥ @
absorption cross-section if the functions }L(r) and I_r-‘ (r) (and the respective
phase shifts E and EL) are considered. In fact, the initial intensity (1) of
the kaon ingoing L-partial wave is redt.ced I&zl;’-\, times by the presence of
the corrective term W(ka,r) and l‘CL(UL: | times by the totel effective
potential (A + iB)¢(r) + W(ka,r). -

Thus, the exact K d absorption cross-section is equal to

TS E-l(sl. FARY
ol = Z_ (21—*1) e \ (4-1e \ ) (5.69)
K’" L=0O
No attempt was made to calculate the W(ka,r) potential in this work, although

a sketch of how it can be constructed is indicated in the next paragraph.
Here only the approximate formula (W(ka,r) =0, GL = SL = CL] H
. =0 9 EL, 2
Gao= L L (2L+1)(L-1€77) (5.69")
ket L=o

for %.n has been used in the plot of the X d absorption curves (Ross-Humphrey's
solutions I and II) shown in Fig. (V.2). This picture shows also the absorption
curves obtained by subtracting from the total incoherent scattering cross-section
(see its definition in §8 of this chapter) the inelastiec plus charge-exchange
cross-sections calculated in Chapter VII. As it was predicted in §3 of this

chapter, the discrepancies between the two methods tend to increase for lower

energies.
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7. Correction of the Coulomb Effects in Impulse Approximation

Two maln questions must be considered when treating the problem of the
Coulomb interaction between charged kaons and protons belonging to deuterons.
First, an electromagnetic model-.of the deuteron must be chosen such that it
takes into account the condition that the proton is not located at the C.M.
of the two nucleons but moves around the neutron, Secondly, the nuclear
para.;neters s cbtained by Impulse Approximation with the Coulomb interaction
switch off (see (4.84)) must be corrected.

Making the transformation R = 2r in the integral expressions (4.8L4) for

the n and defining the complex nuclear phase shifts 8, by the relation
23
L = e 16L,one has
4. l:CYI. S J J'uo - | 2
L - T
2L R
1o

where

ULer) = sawy Ror) L dotem| (5.72)

The meaning of the integral formula (5.70) is that the exact coefficient n,

(or the exact phase GL) are the Born approximations of the corresponding
quantities for the effective potentials UL(r). But it is well-known (Jost

and Kohn, 1952) that, at low energies, a linear combination of the successive
powers of a negative exponential function is an adequate form for a short range
Potential,capable of reproducing the phase ;hifts 6L. Thus, by means of

a variational principle ‘(Schwinger's or Hulthén's, for instance), it.is possible

for each value of k_ to determine a linear combination V(k,r) of the first n

powerg of the exponential function which leads in the usual way to the phase
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shifts GL for L =0, 1, . . . n-l. If this is so, the regular solution

YL(r) at the origin of the radial equation

[%* RY: _ LLL;:) - v(_te.r)l Yier) =2 | (5.72)

rat

can be normalised in such a manner that its asymptotic behaviour is expressed by

c'.SL B -
Vilr) — e piu(Rar - LT & o) (5.73)
From (5.72) and the radial L-wave equation of free motion (C.16) one has, by

the same procedure used in the extension of the integral expression (5.65),

e.'cstlw(g,;:_i SV(‘?N?') YL(f)jL(kav)_[kor)er
ke -

or’ by (SOTO).

JI.,V ChejY) \/l(r)jt(ka;.r)(h;.)ﬂ)air' "

o . .
] J, Vs 0 )} (Rar) (kav)¥ Ly o
Suppose now that the potential 2n ka C ¢q4(r), du;a to an electric cloud of
density n(r) (see (5.27) and (5.28)) is introduced in equation (5.72) as an
additive term to V(k,r), so that the Coulomb interaction between the particles
K~ and p is taken into account, The regular solution YL(r) at the origin of

the new radial L-wave equation, normalised in such a way that its asymptotic form

) .
. ‘ 5
(I;IL(_V') = e“”/w (Ra ¥ - hlo«}a_k‘r' .-LI.T.i +ZL4¢S_1}

V> oo,

is given by

leads to the corrected phase 6]:" (or nI"). Its integral form is equal to
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] ;5' 27 b \'Y . :
At o e'hindi=-d | Vi) s 2n e [€ o~ eI, Fgeahar (5.75)

where FL(ka.r) represents the regular spherical Coulomb function (C.3).
Considering hnow that ]nl is very small for the K -Lab., momentum range
covered in this work (by (4.90) and (5.54), Inl lays in the interval

00343 |n| ® 0-012 when 100 % \oLa‘o 2 300 MeV/c), one has approximately

=0

Jf \V(.k a¥) + 2n ke [C&EOCY) - i!Y]\?chJ FLlrax) olY" =

- j ﬁ Urlv) 2 2nka [Cd, (v)- ilr]]} Ff’(har) ALy (5.76)

The main contribution of Fz(k r) for the second integral in (5.76) comes from
the small values of r, because either U (r) or 2rka ECQOCI’) e :L“‘]

are short range potentials. Thus,one gets (Jackson and Blatt, 1950):

[(.ha.‘l‘)lLUQar)]a' . | A ~ 4 | (5.77)
Ritker) — CoL1aBy G

where Co? is the Coulomb penetration factor

_Cﬁ- an _
® F T %n (5.77")
and, by (5.75), (5.76) and (5.77),

g‘ 3 oo
’-'_!- & e‘ LL&.&S‘ —— % JIUL(r)-» 31‘-1‘%\5:- C") ilﬂ\j (R&PX?,{HI‘(S.TB)
2L &
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The numerical computation of the coefficients na given in Table (IV) was
cbtained from the integral expression (5.78) subjected to the following

simplification.l . The quantity An_L, defined by

%’ = 2N o f(_C. &u(f') -dlrljithw)(harfdv

%
(5.79)

1s the Born approximation of the difference between the n_-coefficients due to
the point charge potential and to the electric cloud interaction. The behaviour
of the jL(kar) at the origin (see (4.100)) shows that, for the same energy the

modulus of An, has its largest value when L = O. Therefore if |n.-d is

L
reasonably small the term & ReoM l_C-Q U‘)'ﬂ"] can be suppressed in (5.78)
except for an S-wave. In this case the integral (5.79) can be handled

analytically. Actually, by (5.19"), one has

anp = anb') + an§? | - (5.79")
where
ang' | a,ncgﬁCJ“"”a(.F“”)dYJ pxip (5.80)
L o ! Y
end
&3] 2, {*°.2 g |
Mo _2m L J Mckar)dvj X(p)p (5.81)
2l ° "

Using the definition (5.15) of x(p) and the condition a << B (see (3.26) and

(3.27)), Angl) is approximately equal to
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O
Amg an g | & i)y =
2. U Jo 7
. Q '
T L,?UJ. (h«)} (5.80")
Y™ A
From (B.6) and since (see Coufa.nt, Volume II, page 318)
4 P /&M F AlAj_'t k2 2

one has

ézl—édt.): s NC&C J(X({)J AP!P[&_ M(&ka)’)]d)’ -
o Jo

a

- ned e g [taat s UL 15 el L |
2R 2 (**49)'”?3 LB(ap)~ k2 (5.811)
For the extreme values 100 and 300 MeV/c of the K -Lab. momentum range covered
in this work M\o \9«‘; is respectively equal to -0+007 and =0-010, i.e.

in (5.78) is practically zero when L > 0.

the term 2nk Cogl{r) - 1/r

Incidentally, the construction of the potential V(k,r) leads to the
evaluation of the corrective term W(k,r), discussed in the last paragraph.

One obviously has

Ww(k,r) = =V(k,r) - (A + iB)¢(r).

8. K~d Elastic and Total Scattering Curves

The X @ differential elastic scattering cross-sections, O(G‘JIOL.R .
are plotted in Figs. (V.3) and (V.4) against the K d C.M. scattering angle 8

for p; . = 100; 200; 300 MeV/c and for Ross-Humphrey's solutions I and II.



194

(1S/qu)¥p/i13op

’ —
N

32

—
o

:_ A L .

0

plab = 200 MeV [c

. plab'=300 MeV/c

30 - 60

plab = 100 MeV/c

CRE DI |- - 1

SOLUTION I

8 80 120 150

ceT



7A 94

(4S/qu)wp/13-op

| I I
o |
i | =
S manadi 24 SOLUTION TT
J Il : ——— Imp. App. | -
Wl |1 ' i
|
|
|

plab =100 MeV/c

9cT



127

They were calculated by means of the formula

1) [ “Z”S")}PCMQ)

(5.82)

det = peorl's feoneg

where the 4| are the pure Coulomb phase shifts given by (C.14) and (C.15)
and the GI" are the nuclear phase shifts calculated by Impulse Approximation
(see Table (IV)) and given by (5.78)«

The numerical computation of 6{%[_ I AJL  vas carried out by

separating f(6) into two additive terms
f(e) = fc(e) + fﬁ(e) (5.82")
where

. . 2 3
p 5 eb(_-nb'gw—i-b-’-}{o)
7Le)= : (5.83)
_ E*R&M%%

represents the pure Coulomb part of the elastic scattering and (see (5.78))

:LLR:. L=o

{(8)—' . Z—(“”)e Uﬂ“‘) PL(C"W) (5.8k)
‘N
is the term dependipg on the nuclear interaction.
In order to have a better assessment of the spproximation involved in the
application of the resonant group structure method, Fig. (V:4) also shows the
K d differential cross-sections obtained by substituting the n! in (5.84) for
the Yy, defined in (5.63). . As in the case of the absorption curves, these graphs
show that the approximation W(k,r) = 0 is poor for low energies.
Fig. (V.5) represents the K d total elgstic scattering ( Qg ) and total

( Qqgr ) cross-sections curves plotted versus PLab in the interval 100 to
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300 MeV/ec and calculated by Impulse Approximation for Ross-Humphrey's

solution I and II.

G.G.L was calculated by means of the integral

T, .
- 6de
el = &1 l sgu('a}\ L (5.85)

where 8 represents a cut-off equal to 35° in the C.M. scattering angle; ¢this

value seems to be reasonable, if the accuracy of the experiments is considered.

Furthermore, the approximation

el U -ndeo)
2R ul \:,(CLB)L(G)) = R“‘*'lﬁ (5.86)

was made in the evaluation of the interference between the Coulomb and the

nuclear terms of the scattering amplitude.
Finally, GTOT was calculated by adding G-e.L to the total

incoherent scattering cross-section Qﬁnt ) -, defined by

- T o(2L+ 1) (4~ 1')7'§\9') (5.87)

Mg

e
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CHAPTER VI

K"d Inelastic and Charpe Exchange Scattering

l. Introduction

The study of the K d ;mn-elastic processes
K +d =+ K +p+n - (6.1)
K +d ~ K +n+n : (6.2)
by Impulse Approximation is the main purpose of this chapter.
In such collisions, part of the energy of the incon;ing kaon is absorbed
by tl.le NN system during its transition from the initial state (deuteron) to the
final state (two free nucleons). Therefore, one has, using the notation of

Chapter IV,

[Ebl < lic'al (6.3)
instead of the equality (4.53). But the condition
py = 5,1 = Ip,l =, (6.k)

as well as the kinematic relations (4.54) and (4.55) still hold, because,
according to the fundamental hypothesis a.ndlas'sumption 1) of Irpulse Approximation
(see §2 of Chapter 1v), the K™N system is conceived as being isolated from the
other nucleon during thelmomentum transfer., Thus, if both sides of equations

(4.54) and (4.55) are squared, the results of these operations added and condition

(6.4) is taken into account with Py = Py replaced by p'a = p'b, one gets

\e*s e ) (Ru-Ra) "

;_‘('i-?;___q l-‘!=£
P& Pa d My + My

4 (_E“I’a_f* LMy (Ief;~ k?:) \ (6.5)
LMy +my ™ -
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Introducing now the scattering angle 6 defined by the directions of
vector Ea and Kb' the term (1—-1b - Ea)z gives

K - 2 =12 2 _ =
(ke = k) kg + k5 - 2Kk cos 8

- 28 2 _ 2y _ _ _
hkasnl ki (kb ka) 2ka(kb ka)cose (6.6)
Substituting 6 by m — 6 in (6.6) one has also

(E‘o + Ea)Z = hkgéoszg + (k.g = kg) + 2ka(kb ‘- ka)cose (6.6")

oL
so that (6.5) becomes, if the coefficient ( g Y (= 0-04) is
N AM a4 MK

neglected (see (4.56) for the definition of Y),

A B R R W AN CLT) A W Sl o
PE = pd = ka ti - &(“da)(. 6 )

F}
N
. r-1 ke e e\J, | (6.7)

or

a — -

(2 ¥ 2 2 1)L 2 2\
Pb: ~ RZ i*j‘ {i""ji“i (& +4) 2,(;%_}?&) (6.7")
24 RE A(14¢Y '
if the term in cos® is suppressed.

Vhen k, =k_, the relations (6.7) and (6.7') reduce respectively, as
they should, to the expressions (4.57') and (4.57"), obtained previously
for K d elastic collisions.

The values of p! = p! adopted in this chapter are derived from (6.7!').

D

This approximation seems reasonable because the relative error of pt')2= p;z,
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made by using (6.7') instead of (6.7), does not exceed the same error (0-2)
for K d elastic collisions (kb = ka) and drops to 0-16 and O when k, becomes

equal to O-Ska and O respectively.

Introducing now the, wave number K of tﬁe NN system and constant a?
MW :
(= - —nzﬂ- s Wp = -Ed) (see respectively §1 and 54 of chapter III), the

energy conservation principle equation (4.7) can be expressed by

ke oxr _ ey L kY (6.8)
U My Lp my )

where u is the K~ reduced mass, defined in (4.3). The alternative form

of (6.8)
R ymte k : (6.8")
a_u(&--;.}m = EJ.H(J"J.)K 2
is obtained if the coefficient y (= 0-2) is used (see 4.56)).

The equation (6.8') shows that K has a maximum, X _ ,vhen k_ =0, i.e.,

K> 4 (ki - U(p-aet] (6.9)
(g -4)

and that k is always lower than k if the deuteron, after the collision with

the kaon, goes into a NN continuous state..

2. The K d inelastic trensition matrix elements (Q.D, Téa)

The initial and final state wave functions used in the calculations of

these elements are respectively equal to (see (4.6)) -

.é e,-zéé.? G (R), %b“e"‘ﬁ“?cﬁ% (R) (6.10)

(78
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where ¢9(R) is the Hulthén function defined in (3.25) and ¢K(§) is the wave

function of the np continuous state K, given in (3.34). Considering the

approximations (3.30'), (3.32'), (3.36) and (3.37), ¢»(R) can be expressed
. 5 “

in the form

3 oo ji';_ *
(7). 1 ] (aw) 2 Z 2341)) t' s 1 (KR L(ane, ) (6.11)
YR 1= b= 13-4

where - is the angle between X and R.

The evaluation of (Qb,T(Da) by Impulse Approximation requires the
introduction of a model describing the X d inelastic processes. The model
adopted here consists in supposing that the kaon is scattered elastically in
all single processes contributing to the multiple scattering terms appearing
in the development (L.20) for T, with the exception of the last K N collisioen,
which is inelastic (see also §9 of this chapter on the same subject).

Such a model does not contradict the assumption 2') made in §4 of Chapier
IV.  According to this hypothesis, the matrix element (@.D,Tcta) is equal to
the "weighted mean" of the sum of all multiple scattering terms arising in the

= | ) : R
expansion of <kbi'l‘|ka>, when T is replaced by its development (L.20), i.e.,

(g?t, ) v ZPQ) = Sq;z (R) dPo(Q) < Rp\T|Re> AR (6.12)

WVhen the K d collisions are elastic, the sum of the scattering terms

belonging to this expansion of <}'<'_b]T]Ea> is equal to (see (4.74) and (4.78))




13k

1 . . s
where f(_ )(G,R) and f(z)(e,ﬁ) are given respectively by (4.76) and (L4.77)
and £y, (i = 1,2) are the isotropic K N scattering amplitudes defined in
(4.87') ana (4.87).

However, when the K d scattering process is inelastie, (6.13) is no longer

valid, unless f(l)_(e,ﬁ) and f(z)(e,'ﬁ) are redefined in the following way:

() - § 'L(.EC.“I_QB)-,‘_Z.‘,'Q f:-(.E’.*.-'_Eb)-ﬁIi "
(9|R)=J‘€ :%'34 + c ;3, } (G6.1L)
and e
) D e -L(ha-flquRlQ L(Rg#hb K!Q
1 ¢ R) = 3'¢64\e 30 43 @ :J’ird’ai. } P(R) (6.15)

Tne scattering a.mpJ._lti.xdes fa; (i = 1,2) are calculated at P, (= J—_:—j: ke ).
This value of the K—_N wave number corresponds to K d elastic collisions. The
féi (i = 1.2) in (6.14) and (6.15) are equal to the £ (i = 1,2) with 13
replaced by pe'z. given by (6.7'). This allows for the K @ inelastic collisions.

From (6.13), (6.14) and (6.15) it is n(I:w cJ:ear that, ‘in agre:emerit with
the model for K 4 inelastic collisiohs introduced above, the K N scattering
contributing to the K d multiple scattering terms maintains the elasticity of
the K 4 processes.with the exception of the last K N collision, which. breaks
up the deuteron into‘two free nucleons. ‘ |

Finally, the relations (6.13), (6.14) and (6.15) show also that (¢b,T¢a)
is proportional to the integral over all values of R of the product of
¢"-;—<'-(§)¢0(R) by a linear combination of plane waves multiplied by i:.unctions of’
IKI and Iﬁl . Therefore, according to the remark made at the end of §h of

Chapter III, ¢K(§) is an ap.propriate function to represent the final state of

the np system.
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3. Selection Rules for the expansion coefficients of (¢b,T¢a).

Obviously, the matrix element
(éb,Tég) depends on k_ and kb
(by (6.8') X can be expressed in

terms of these wave numbers)

and qn the angles necessary to

fix the vectors k_, Eb and K with
: a

respect to a coordinate system of

reference. Choosing the XZ-plane

as defined by ka and k‘b’ with ke.

Fig. VI.1 |

along the Z-axis, only the three

angles 9, 6, and Sy (see Flg. (VI 1)) are needed to achieve this purpose.

- {Re-Rln ‘Re\‘“ﬂ- -
Replacing now the plane waves and : in (6.14)

and (6.15) by the respective expansions into spherical waves (see Fig. (VI.1l) for

the angles), i.e.

(kyRlz =0 g :
e Ty aLag)it (kgRla)ﬂL(C&-ﬁi O.o) , (6:26)
L=o Ji b
L‘E‘-EI ol []
i ACTUNL "o Cecrl2) Fitos o) gan
= o
and ,writing

o -i i
4)%&’):(3.11) Lé otL,.(KR) pu (¢ 6,0)  (6217)

where (see (6.11)5
L+ -
X, (KR) = 2_ (21+\)U (_KR) (6.11%)
3 Jai-a| |



136
it is clear, considering:(6.12) and (6.13), that (¢ T ) admits the development

(42 b)l—“¢0)' —@-—— w Z. C\-L‘L"J-LL'["

s
Hnr.z 1) (p-=) LLL (6.18)

vhere the factors CLL'L" and ILL'L" are equal to

1[-?.71

‘ L4t
L4l L4L4 pL(CHk'bR) p;_' (“"gﬂ)ﬂl." (&t 8xca).

Chu =C2) - (&) (.9.;,41)(9.1.'»,1)!

 Liug, dog dgg  (6.29)

and

— o0 a * ‘(Ke "“‘f*@f' )
Lo =i Fw(ha.hhﬂjl(kbmi)v]umﬂmaqu" JE =)ok (6.20)

with F,, ,(k k ,R) defined as follows
. )L“-'j”
.'. -1 3
FLu(RacRp,R) J' ' -

T4

(=4)

a
-~

T+ 42 ﬂ'{la 2(34 + (:LJ“J-LL&;Q‘J P(Q)
= { 24> )JJ(EHTJR PE‘Q)

| +¢2

(6.21)

In order to evaluate the integral im (6.19), it is necessary to have
LY d in terms of the angles' 6_ and ¢_ (see
PL(cosekbR) and PL(COSGKB) expressed in R R

Fig. (VI.1)). This is easily achieved using the addition theorem for Legendre

functions, i.e.,

{)L'CO—J 9,%9) =. PCW@R)/) (¢ss @) .+

4122 CL-m)! p(waﬁ)Vm(Wg) cHmPR  (6.22)

=1 (.L+m)f
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and

pl/((—éﬂe PLUCCO'JQ ﬂ)/)b" (Co'j 9[() +

Ke) =

\ (Lwmn)t P70 o o (6.23)
a;”w ) P (6 o) (o401 )erm" Qe 9.

The developments (6.22) and (6.23), when considered inside the integrals

defining the C A » lead .to products of factors having the following

LL'L"*
forms:

1) Performing the integration with respect to ¢K' some of the factors belong
to the type (by (6.22) end (6.23) one has m,mn" 3 1):

lC.Mmdpﬁ Cot g ” (Pn- d?x) R=4 . (6:24)
{-m":{-m S

the other products, where ei1éher cos¢R or cos(d:R - ¢K) appear as a factor,
vanish when integrated over ¢R. These results constitute the first seiection
rule in the expansion of (¢L,T¢ )e

2) Integrating now with respect to eR, two new typés of factors are obtair_xed.

(putting ¢ = cos end representing by p any positive integer):

) |
L/L‘E) fo(5) Pu(g) ol =0, if Lev'st" apat (6.25)
J:plm('ﬁ) hicx) /)L"@)dﬁ 0,if Lel'+1"= 2.1 (6.25")

The second selection rule consists in relations (6.25) and (6.25'), which are

based on the parity properties of the Legendre polynomials and functions:
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Therefore, defining the coefficients 8y md.%,L., by means of

G+ Lt + 17 = 2pt)

L
Grpw = 1) p*(";_ui) (2 L'HJJ_JPL(-Z) ﬁﬂ (?)/)u: Q.)dé,‘ (6.26)

Ol C-.t)p.f (L) (U )m)] (Y | ﬂ CHLN f? (5)@”(&)‘1&7 (6.27)
L (L+m)!t (Lrm)! 4t

and considering (6.20), (6.26) and (6.27) as well as the selections rules

obtained above, one has the following expansions for the CLL'L"St

CLIL! L = g_ﬂ {Gg“_,L" {)LCM Q)VL‘ (C{’-‘I '9 K) % -

Drin (L, L")

] n .
a7y 11018) L (@dbk) Coame | (6.20

-+ UL” {].

.M =}
where min(L,L") represents the smallest of the integers L and ",

id L3 - - . t m .
Finally, introducing the coefficlents ALL" and ALI."’ given by the

developments
Lu'l Z_ Gy ILL'L" (6-2_9)
=2 - (Lauyg , : ‘
and _ min .
m
A Lur < Z‘ a” LuLY ‘LI.L’ LY
V=2p,s, Ll (6.30)

where p_. represents the lowest positive integer such that 2p . = (L +1") >
] min .
and I' means that L' increases by steps of two units, one gets, by (6.18),

(6.28), (6.29) and (6.30), the following expansion for (¢b,T¢a):
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2 (§,Td,) =4 F‘iﬂ"‘—*ﬁl\l A\)()(wa)ﬂ(wek)*
)2

T"k-?- an (P . ¢ J"
* Z Z_’:nm(_o-.l)Am m(wa)f)(we )cmmde] (6.31)
.J-\ ma )\ 'J .

L, The behaviour of ILL'L" with increasing values of the indices

Consider the definition (6.é0) of ILL'L"' The main contribution for the
integral giving this coefficient comes from the values of 'R belonging to t}':e
interval 0 2 R < 1/a (or, introducing the new varisble p = kaR/2,_ from the
values of p satisfying tl;le condition 0 ¢ p < ka/2a). This is so beca.usle,the
leading exponential e_mR in (6.20) (by (3.26) and (3.27) one has a << B) is :
vanishingly small when R > 1/a (or p > ka/2§)- C

However, it was proved in §7 of Chapter IV that the spherical Bessel function

‘ ju (iQ aR{2) = J.L' (P) is practically equal to zero for all values of p
belonging to the interval O 2 p < /L[ + 1+5 if L' » LY + 1+5. Therefore, if
cne has ° . .

LY+ 15 > (g._&)z | ' (6.32)
all the ILL'L" with L' 2 L% + 2 are vanishingly small,

By means of the inequality (6.32) and the equation (4.90) relating ka.
to py o, s it is now possible to calculate L' for the extremes of the range
covered in this work by the K -Lab. momentum: 100 MeV/c 2 Pr b 2 300 MeV/e.

~When p; . = 100 MeV/c one has k_/2a = 0-86 so that LY = 1 and the I ipns
with L' 2 3 have very small modulus. But, if Prap = 300 MeV, one gets

k /2a = 2.6 and by (6.32) LY cannot be less than 5.
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However, in this instance the conclusion is not that the ILL'L"S become
vanishingly small only when L' is greater than or equal to 7. Actually, the
ILL'L"’S depend on the wave numbers k_b and K which are related to ka by the
energy conservation pr-inc;iple (6.8'). Therefore, if k, is close to k,, one has
K = 0 and, reciprocally, when K is riearly equal to its maximum value, Kma.x (see
(6.9)), kb is close to zero. But, by (6.11") the.-factor o( ‘tu (.KR) in
(6.20) for small values of p = KR behaves like thé functions Ux:‘f CK R)

(] = Lf-d, L ) L+ 4 ) i.e., o hLu (K RJ ~ (.K‘Q) \!’_ (See (3.38));

and, similarly, the behaviour of the spherical Bessel function :h_(_hbg 15—)

in (6.20), for small values of the argument (i.e., kb)’ is given by

JL(. Rb R {'?') e ( pb'Q [2 ) 4 « Thus, one always has a small factor

= (KR).L" or (kbR/Q)L - in_the integrand of the I;}L,L,}s, so that these quantities
can be.neglectea for Prab ™ 300 MeV/c (and, a fortiori, for Pan < 300 MeV/c)

wvhen one of the indices L, L' or L" exceeds 2, as the actual numerical calgulation
of the integral (6.20) clearly shows,

In such conditions the sum over L' in the series (6.29) and (6.30) can be
stopped at L' = 2 and the sums over i and j in the development (6.31) at i =_-j = 2.

Finally, due to the orthogonality relations of the Legendre polynomials

and functions, i.e., : '
il ' ' Lom om [
_ _ gy - 2CLem)!
j ‘ FL(E) P‘_u (E ) dE = lj:-—l SLLH ,LPL\’E) L (Z) E (i—*—__l.-u)LL-—m)\.gw
(6.33)

the developments (6.29) for the Apn coefficients reduce to one term only, if

L or L" is equal to zero. Thus, the A u with L,L" ¢ 2 are exactly given by
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Ago = agoologo

Ao1 = apg11lo11 Ao = a110l110

Ag2 = ap22Ip22 A2q = 82201220

The following approximations were used for the remaining Ap n and %,,

with L,L" 2 2.

A1y = ajg1l10; + 312_11121 A1 = a2111211
A2 * a13213)12 Azz = 8021202
ALy = alo1lio1 + &1211121 Ay = &%111211'_'
.Aiz = 3%121113 | | A;laz_ . 8:11021202

2 2
Az = 33921202

. e i |
The approximations for Aj; and Ail are very good because aj;] = ajy) = O.

5. K d inelastic cross-sections

The study of the dependence of the ILL,L,’.S on the indices, carried out in

the last paragraph, leads to the complete knowledge of the'coefi‘icients Aij

and A?j in the development (6.31) for the transition matrix element (QD,Téa).
can now be easily

The K d inelastic differential cross-section do_?n ! d S
expressed in terms of the same coefficients and the scattering angle by means:

of the integral (Messiah, 1962, p.836)

in r_' -2' K
Z(T?L— - C. J%\?%’T @bvl é‘*)\ ah (6.34)

‘ where R represents the element of volume in the np wave number space, i.e.,
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AR = K¥dK /MMBKO('?L( 0{4’“ (6.35)
and Co 1is the Coulomb penetration factor defined in (5.77') and introduced here
as a correction to allow the inclusion of the electromagnetic interaction between
the negative kaon and the proton (see Landau and Lifshitz, 1958, p.439).
The integration in (6.35) is to be performed over all directions of K and
over the values of the K-modulus belonging to the interval ,-0, Kmax:]’ where
max

£ is given by equation (6.9). Taerefore, according to the orthogonality

relations (6.33) for Legendre polynomials and functions and writing

T wr
B“.,i_ﬁk-’ Zoi_‘41$kbk )Q A;JOL (6.36)
and -
B?U ” 1 Z_ (JAm)!- (kgb;c A‘ Q—\"" )0“(
T kg Jam @jen)(-m)l Y y (6.37)

(by (6.31) one always has in (6.37) 1 2p ¢ min(i,i')) , One gets the following
expansion for p{G}n f oA N 5 O (ob,Tdﬁa-) is_repla.ced in (6.34) by its

development (6.31), .

A, . B «pcmﬁw (er10) Py (ws0) +
AR T TR (e Ziaj) o 4

N m, P ote) Py (ot 9)] (6.38)
bl.- 1‘?’”-1

In the actual numer:.cal calculations, the summations over the indices i,i' and j

in (6.36), (6.3T7) and (6.38) are stopped at i =i' = j =2, as explained in §k,
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By integrating (6.38) over d?, and using again the orthogonality relations

(6.33), the total K d inelastic cross-section is .given in this approximation by

o CY HxBeap) (B,, 4 ABuy 4 4
G-‘n ——@—:—;-)‘E— (OO"" 38104 + 5]3.13..

i I u )
- % Sy4 + _%,- 13 A .’:: 13_._,‘\ (6.39)

6. K_d charge-exchange scattering

The calculation of the cross-section for charge-exchange processes, given
" by equat.iOn (6.2), follows similar lines to those pursued for the treatment of
the K™ d inelastic scattering.in the previous paragraphs.

rI'-he'K-d charge-exchange matrix element yill be represented in the subsequent
pages by (¢é,T1¢&), where di& isl the initial state wave function defined in (6.10),

but t::,é, i.e., the wave function for the K d final state is now equal to

a)l ” ‘g‘;k?“"F Cbs“((é) - Cbx(‘é-) (6.40)
b~ ’ Va, .

Obviously, ¢K(R) in (6.40) is the np continuous state wave function given by
(6.11) and (6.11"). In fact, as the total ordinary spin of the X d system is
a constant of the motion, the final nn state arising from the charge-exchanges
between the negative kaon and the proton, is in a NN tfiplet state. Therefore,

'3'; must be anti-symmetric with respect to R, so that the nn systenm obeys Pauli's

prineiple.
As in the case of the evaluation of the inelastic transition matrix elements,

it is also necessary to consider a model for the K~ a charge-exchenge col;isions.
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.

It will be supposed that,the kaon is scattefe_d elastically in all single
processes contributing to the multipie scattering terms belonging to i'.he
T-expansion (L.20), except for the last K p collision, where the charge-exchange
process takes place, (In §9 of this chapter a more complete model for this
process is used). .

The formula equivalent to (6.12) is now

. (@lb A éa) = Fech - ¥u® b, (R) < ky, | T Ra> AR

Vi
(6.41)

— . . 1
where <kb]T1]Ea> is given by (6.13), if the functions of f( )(e,ﬁ) and

f(z)(e,ﬁ) are redefined in the following way:
w - - it(kR,-ky ). RI2
= i :
JL (6.R)= ye 34

. = (6.42)
= 24 ! r(rR
J(CQ,Q)_ |+¢-2.e fudn PR
' (6.43)

The scattering amplitudes 535 (i =1,2) in (6.43) as well as in the denominator

of (6.13) are equal to those defined in (4.87') end (4.87) respectively and

calculated at p (= \, L4d? o ), i.e., the K N wave number corresponding to
a °Ld'1‘ -

K d elastic collisions. But ;{’31 in (6.42) and (6.1&3.) represents now the

charge-exchange amplitude of the system formed by the proton (particle 1)

' : J
and the negative kaon (particle 3). Thus, 3(31 can be expressed in terms
of £0 and fl, i.e., the'Klp scattering amplitudes corresponding respectively to
the isotopic-spin channels I = 0 and I =1 defined in (4.86'). One has,

therefore,
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_ ;&— AL - Ao \
B T A NT-cpay C T-cpiAe !/ (6.41)

where pz is given by (6.7'").
i(k —ED).ﬁ/z and e-i(Eaﬂ?b).ﬁ/z

The terms proportional to e ‘'a which appeai'
in (6.14) and (6.15) are missing in (6.42) and (6.43) because, according to the
model adopted here for the charge-exchange scattering, they would lead td K n
charge-exchange processes which are forbidden by the conservation of t};e total
isotopic spin of the system formed by the negative kaon (particle 3) and the
neutron (particle 1) (see Chapters I and II).

It is relatively simple at this stage to obtain the ("P.L,T" ¢a)-expansion
equiva.l_ent to that of (d:.D,Tcpa) given in (6.31). Actually, if the functions

FLL.(ka,lLb,R) in the integrals (6.20) giving tk.le ILL'L"S are replaced by the

expressions (with {‘3 i defined now as in (6.44)!)
L o2 4

f’fﬂ e QQ)
(2B, . Plr)  (s)

in agreement with (6.13), (6.42) and (6.43) one gets, considering (6.41), the

' L L+
Fu.»' (Re Ry R) = (-4) a, ‘Es; )

following development

_ah @*bjf"a%_\[«a@*m\ ZALJP(we)ﬂ(ﬁae)

L(B-=) Lico)=1i



146

The summation over j(= L") starts at j = 1 and increases by steps of two units
‘each time, because only the Legendre polynomials PL,,(cos K) with odd L" appear
= -\ X
in the development of the factor [ dPK (R) - ‘bk (,-9)-& belonging to
the integrand of (6.41) (see (6.11')). Such variaticn of j is indicated in
D ;
)

(6.46) vy ‘Sj Y

=}

Finally, assuming the same approximation for the K d charge-exchange

cross-sections (differential and total) as the one made in the calculation of

the K d inelastic cross—sections (the indices i and j are never greater than 2),

one has
dézg.e. 20!{30*4@){2_ 3¢ UP ( oA 9) (me)
A W(B-=¥ L¢,i= |
- 4 -
L Bt cms)f’ cwe)l
,L (,f; 4 . (6.]4"')
and |

. » ‘ |
g e.'=‘ C_i SO‘(EEZ;E) \_ Boo + ‘%B“ -+ -&'.. B.ﬂ,ﬂ, +

+ % i-D’ﬁhu 4"% Biz}-

(6.48)
where B.., and B1 ;v are equal to the following integrals
By = 4 jKE?K Aug Ay AK
. 3Ra (6.36")
and
{ Kma.«

Bii = '?L S ke Kg ALYy de (631
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T Correction of the mass difference A between the K'n end tae K p systems

The expressions of the K d inelastic and charge-exchange cross-sections
obtained in the previous paragraphs are based on the assumption that the |
particles belonging to the same d;nublet, either (R9”) of (pn), have equal
masses., But this assumption is only approximately true, so that the K d
cross-sections at low kaon momenta depend on A.

Let m, (i =1, 2, 3, 4) be respectively the masses of the p, n, K and KO

particles; then A (in MeV) is equal to (see, for instance, Dalitz, 1962, p.73)

A = {(my +my) - {m +m)|C® = 5,7 MeV (6.49)

and the C.M, total energies of the K p and K'n systems are given by (see (A.11))

: 3
Ex‘p “Vmged o kipret « \mict +hipact (g5

and

o 3 2.1 :
£ :\/‘mac‘f +h poC* + \[?n’;‘c“rh bo C* (6.51)
KK o'n ' "
Here P, denotes as before the C.M, K p wave number and P, is the same variable

for the K%n system,
When the K p state goes into the Kon sta1‘:e one has Eﬁon = El(-p and

(6.50) and (6.51) lead to the approximate relation for low energies:

\a"‘ Poﬂ s d% A = \/% A = O-.301+Wmi-d (6.52)

G —

where n {= mm,/(my + mz)] is the K p reduced mass.
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The effect of & on the K N S-wave scattering amplitudes fI (I = O; 1) _
defined in (4.86) is to mix the sca.tteriﬁg lengths A; (I =0, 1) for eac;:h Kp

isotopic~spin channel in the following way (Dalitz, 1962, p.79):

£0 = Aol - ipohy) (6.53)
D(p,)
and
g1 = Al - ipgho) ‘ (6.54)
D(p,)
where
" D(p) =1- %(pa + po)(Ag + A1) - D DohoA (6.55)

and +i ].pol must replace pg when p_ < A. In the limit pg = D,» (6.53) and
(6.54) reduce to the former values of f0 and f! given in (L4.86).
Thus, the relations (4.87') and (4.87) for f3; and f35, as well as

(6.44) for f3, must be substituted respectively by

{ . %(A.:&A;)- iPvoAL- r (6.56)
3 D('pa)
% __Ad (4 -upoh,) | (6.57)
32 DCPa)
~and
}t . Lt cho (6.58)

¥ adow)
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In the integrals (6.36') and (6.37') for K d charge-exchange processes,
the values of Kmax nust also be corrected.Tg do this, the energy conservatiqn
principle equation (6.8) (or (6.8')) is considere:i again. . The left-hand.side'
of this equation is the sum of the two terms:‘ -a.) the rest plus -the C.i.

kinetic energies of the K d system; and b) the energy of the deuteron's

internal motion. Thus, one has in the notation of this paragraph

E 2 Bt il . i
o =Vmicy s 55k3 c4‘-+\/(m +my et 4 kg CR e £ g(6.59)
a 3 477
But the right-hand side of (6.8) for K d charge-exchange processes is equal to
the sum of c;) the rest plus ‘the kinetic energies of the K%n system plus

d) the nn internal motion, i.e.

Ep= Vmdcd o+ 42 ki c® + VOmemg)ich+ F2R5CT 4+ %{"

(6.59')
The equality of E and Eb gives approximately -
T L2 = K 4 K | P
Ry =+ _}ﬁ Eot "= K, 4 e B j';r“?. a (6.60)

or, considering that the K d and K N reduced masses y and u are related by the

equation y = yu (see (4.50) for the definition of y),

Rl - u(fra)xts e 4 U(p-a)K e pdb (s0n
Thus Kmax is now gilven by
2 2 )
K VQ U syt &4 ] (6.61)

U(g4) %-4)
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These corrections (both for K d inelastic and charge-exchange processes)

are incorporated in the numerical calculations of the coefficients (Aij‘ A?j)

= ) defined in the previous paragraphs. Such calculations as

end (Bj;i» Byjs

ire
well as the evaluation of the differential and total cross-sections for these
K d collisions have been carried out in the Mercury-Ferranti Computer belonging

to the London University. The obtained results shown in Figs (VI.2) to

(VI.5) are discussed in the next paragraph.

8. Analysis of the results and conclusions

When the present work was started, it_ was the author's intention to
establish which solution belonging to the Ross-Humphrey's sets is physicaily
acceptable in the light ofk the experimental data on K d processes at low
energies,

Unhappily, this programme cannot be carried out to the end, because of
two main objections: first, the available K d experimental data is very |
scant; secondly, quite recently it has been shown that none of the sets of
scattering lengths found by Ross and Humphrey explain some features of the

K p interactions.
The first objection is illustrated by one fact that the three experimental

points Io:f."oe_.L + oL K~d total cross-section (the experimental difficulties in
separating the elastic from the inelastic processes lead to consider them
together) given by Alvarez (1959) in his report on K ~meson in deuterium, are

still the only available in the interval O to 300 MeV/e of K -Lab. momentum

(see Table (VI.1)).
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Table VI.1l

%1 * %, K d experimental cross-sections

el
PLap 125 * 25 175 = 25 210 t. i3
(MeV/c) .
o1 + o . 145 2 35 55 * 15 99 t 15
(mb)

These points are plotted in Fig. (VI.5) and seem to favour Ross-Humphrey's

solution I rather than solution II.

Another piece of experimental information can be put into terms of the
general behaviour of the K d differential cross-sections: Deshl et al. (1960)
showed that most of the K collisions in deuterium through Lab. angles greater
than 45° (% 54° in C.M. scattering angle) are inelastic.- Comparing the
graphs of Fig. (VI.2) for K d inelastic processes with those of Fig. (V.3) ané
" (V.4) for elastic scattering, the general trend observed by Dahl et.al. is in
better agreement (at least in the range 200 to 300 MeV/c of the K Lab momentun)
with Ross-Humphrey's solution II, ihaﬁ with solution I.

Finally, the fractional absorption rates Rz(u+), Rx(ﬂ-) end RA(W-) for

L,

the processes (Y stands for the hyperons I and A):
K +d~+m7+Y+XN

has been calculaﬁéd for Ross-Humphrey's solution I and II at different values
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of K -Lab. momentum in the interval (0, 300 MeV/c) by Chand and Dalitz (1962)
and Chand (1963); the two solutions give approximately the same rates, so that
no clear distinction can be drawn between them, It is interesting to note
that the fitting of solution I at 300 HeV)c with experimental data is very good.
At rest, however, fﬁe discrepancies between the calculated and the éxperimentai
avsorption rates increase and are of the same order of magnitude for both
Ross-Humphrey's sets of solutions.

The second objeétion, i.e., the inability of both Ross-lumphrey's
solutions 1in reproducing some features of the K p interactions, is based on
the following considerations:
a) Argument of Akiba and Capps (1962). To account for the interference
of the K p S-waves amplitudes with the 395-MeV/c P%E resonance, Tripp et al.
(1962) were led to adnit a negative phase differeénce ¢ = ¢g - ¢; between the
matrix elements for fm producticn in the I =0, 1 K p isotopic-spin channels.

Akiba and Capps.argue that since no vioclent fluctuation of the zr/.f
ratio is observed between 175 lMeV/c and 400 MeV/c, ¢ must be also negative
below the former K p Lab, momentum. In these conditions, solution I is not
acceptable and solution II is possible,'because'they have respectively positive
and negative phase differences (see Table (II.1l)).
b) &he iarge difference in the (£ )/(£ ") ratic observed when :stonped

negative kaons are absorbed in hydrogen (~ 2) end in deuterium (1) lead Schult

and Capps (1961, 1942) to assume that the <K1.'|T(°)Izn> transition matrix
elements (see (1.11')) depend on the ,m energy. ‘This hypothesis reqﬁires

a negative ¢ and a ag-< -1+3 fermi (ag is the real part of the I = 0Kp
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scattering length). Therefore, according to this assumption, solution II
is also ruled out.

At the same time, Schult and Capps, although such an assumntion was not
necessary, explained this rapid energy dependence of <KN|T(0)|£N> in terms of
a S-wave ym resonance of the Dolitz-Tuan type (Dalitz and Tuan, 1959) in the
K p isotopic-spin channel I = O at an energy 0-20 MeV below the K p threshold.
Later on (1962), the same authors identified the assumed resonance with the
Yo*-resonance found experimentaly by Alston et al. (Capps and Schult, 1962).
Tne Yg¥ can be interpreted as a K-p bound state and this permitted Dalitz (1961)
to derive its mass Er and width ' in terms of the Ag. (= gg + i?o) scattering
length. Dalitz used a linear approximation of the Breit and Hignef formula
to the denominator of the I =0 K p sc;ttering-amplitude. The result.is)

written in a system of units in which I = ¢ .= 1,

Er = 7‘*’1: + My - Cep “o)-la P""'LBOKF“"‘U(&@)

where u is the X reduced mass.

‘c)  Solution II is also inconsistent with the data for XJp interactions
(Lavers et al., 1961). This happens bécause the large positive value of the
real part of A; (= a; + ib;). The discrepancy is reduced if a; is smell and
positive. |

The contradictions between theory and experiment stated above lead to the
conclusion that both Ross-Humphrey's sets of-solutions are possibly inedequate.

In fact, quite recently, a systematic x2-search, similar to that carried
éut by Ross and Humphrey, was performed by Kim (1965) in an experimental sample

ten times as large as that used by those authors in their analysis,
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Kim's solution II has a very poor fit to the experimental results, so that
it can be ruled out. However, solution I (see %hble (VI.2) where the syzmbols
have the same meaning as in Table (II.1l)) agrees quite well (see Kim, 1965 and
Burhop et al, 1965) with the K p experimental data for K -Lab. momenta belowl
300 MeV/e. Furthermore, Table (VI.2) shows that the requisites formulated

in a), b) and c¢) are satisfied by this solution.

Table VI.2

Kim's Solution I

.'ao bo a3 bl [ o}
(fermi) (fermi)
-1-67h 0.722 -0+003 0-688 0.318 ~53.8°
(£0-038) (t0-040) (£0-058) (20-033) (¢0-021)

Finally Kim's solution I not only agrees .with Sakitt's solution I
(Sakitt, 1964) but also is a good approximation to the mass and. possibly,

to the width of the Yo* resonance. Actually, the relations (6.62) applied to

this solution lead to
E, = 1-410 ¢ 10 MeV, ' = 37°0 t 32 VeV
which should be compared with the experimental results (see Kin, 1965)

E, = 1405 MeV, 3 I = 50 MeV or 35 ¢ 5 MeV.

In the light of the previous discussion of the inadequacy of the Ross-

Humphrey's sets of solutions, the practical value of the present work is a lot
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lessened, unless the calculations are repeated with Kim's solution I.

However, from a theoretical point of view, something has been achieved if the

results obtained by the author (heading A of Table.(VI.3)) are comparea with
those worked out by Chand (1963) for the K d problenm, using also the Ross~
Humphrey's scattering le.ngths (heading C of the same Table).

The main differences between the two sets of values A and C, for each K d
cross-section occur below the K -Lab. momentum of 200 MeV/c and in the
"K -Lab. momentum range 100 to 300 MeV/c for the o cross-sections of solution I.
The explanation of these discrepancies lies in the different approaches to the
K d problem employed by Chand and the author.

In his work Chand uses the boundary condition model introduced by Jackson
et al. (1958) for the discussion of ¥ scatteriné and developed by Dalitz and
Tuan in many of their papers on the K p intefactions. This method (Chand and
Dalitz, 1962) insures time-reversal invariance and probability conservation
of the total flux in all possible channels, i.e., the unitarity of the scattering
matrix.

When the model is applied to tize K d problem (Chand, 1963), the general
properties satisfied by the boundary conditions lead to a scattering amplitude -
with single and multiple scattering terms.  The propagator of these terms has
the form eikaR/R and include virtua.l. charge-éxc.:ha.nge processes arising fron
the K%n states. . Ht;wever the two scatterers (the nucleons) are treated as
fixed centres.

In Chand's pap.er,. the difference between Tiot calculated either as

+ f s
a sum (cel + Uin + cc_e <Gab)’ or by means of the optical theorem, never exc_eeds



Table (VI.3)

K d cross-sections, expressed in mb

PLab el b %n. Oc.e. %tot
(ieV/c) A c A c A c A C A c
Func ] s |
inc in c.@ _
100 150-8 | 1h1-6 | 2768 2483 6-8 246 5¢2 | 131 439.4 | L4056
1{ 200 39-2 | L5-4 Ol +7 82-3 | 18.0 | 26+9 76 | 8.9 1597 { 163-5
300 1h-1 19-L4 50+5 L3.1 164 | 29.2 he3 | 5.3 85.2 970
100 27h+6 | 211.L 21h.2 240.9 16.9 | 25.4 5¢3 | 1345 510.9 | h91.6
11{ 200 778 82.6 65-1 The6 58.1 | 61.2 8.5 9.5 209:5 | 227:9
300 29.6 39-5 265 3.6 578 | 64.2 h.s 5.2 1183 | 143.9

" 0ot



2mb in the K -Lab. momentum range (100, 300 MeV/c). This is apparently
a nice check of the probability conservation of the total flux.

However, Chand calculat;s all the non-elastic cross-sections, both
differential and total, using the closure approximation. This method
introduces an infinite number of nucleon-nucleon (or nucleon-~hyperon) states
in addition to those required by the energy conservation principle. The
contribution of these additional states to the fractional cross-sections

Oins On. 204 0., c2n be important at low energies, although the sum

(oI + 0 + 0

would not be affected, because the changes thus introduced
in c.e ab =

cancel one another. But the ratios of 6., o and o_. to this sum are
in’ “.c.e ab

certainly altered. .
A cancellation of this kind (see Table (VI.3)) seems to occur, for

K -Lab. momenta below 200 MeV/c, betveen the %in and the_oc e calculated by

C, if the values for the same cross-sections obtained by A are accepted as

correct, In fact, the differences between the corresponding values of CI

in A and C are relatively small compared with those for %0 and and

g
c.e

a whole argument can be developed in support of the correctness of the Uc e as

given in A.

It takes the following form: the graphs of Figs. (VI.3) and (VI.L) show
that; in spite of the wide différences between the two sets of Ros;—Huhphrey's
scattering lengths, dGC-e/dn and 0, o BT quite similar for solutions I and II,
i.e., the K d charge-exchange processes are poorly sensitive to different-sets

of Dalitz scattering lengths. This observation is confirmed by the Tormer

calculations made by Day et al. (1960) who founq respectively, for an old set
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of Dalitz solutions (a+), (a7), (b+) and (b~) the following values. of

O, o, 2t aK-Lab. momentum of 200 MeV/c: 841, 6+4, 55, 59 mb. These values
are not only close to each other but also agree well with the corresponding A -
and C cross-sections in Table (VI.3). Therefore, one is allowed to consider

the result o = hob at XK -Lab. momentun of 136 HeV/c obtained by Day et al.

(1959), vwhich favours the determination of 0, o made by A. In this peper
and for the same X -Lab momentum, 'Da:} et al, state also that the closure
approximation overestimates _in gbout 50% the value of cc o."

Therefore, 1t seems reasonable to expect that the K d charge-exchange
cross-sections calculated in this work are more or less correct. It is
interesting to note that doc' _/d.nhas a very neat peak a%. a C.M. scattering
angle of about 80°. (~ 670 in the Lab. systen).

The smallness of doc.e/dn for 6 = 0 (see Fig. YI.3) confirms the
orthogonality of the NN initial and final states wave functions used in this

calculation. In fact, the transition matrix element (6.41) for K d charge-

exchange interactions is nearly proportional to
. L : =
[1dr Q) - bz R)] B (R) AR

foz: the forward scattering, if multiple sca@:tering terms are neglected.

Tne present'wor.'k does not include the virtual cha.rge—.exc‘ne.nge processes
considered by Chand. However, contrary to Chand's work, tht.e two nucleons are
supposed to be moving scattering centres, thus ﬁlowing for the deuteron's recoil.

It is not possible here to have a check of the probability conservation o7

the total flux, similar to the one used in Chand's paper, because the independent
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calculation of o_. in Chapter V is not sufficiently accurate. However,

ab
an indirect proof of this property is obtained in the next chapter. Actually,
L J . 5 5 ' N
the treatment of the K d interactions given there is analogous to the previous
- oy I . + . .
chapters for K 4 collisions. Since the K d interactions are free from

absorption processes in the kacn-Lab momentum range (100, 300 MeV/c) under

inspection, the relation g. _=o0. + o0 should hold in this case.
inc in c.e :

9. Sunplement to Chanter VI: K d virtual charpge-exchanre scattering

It is shown in §1 of Chapter V that only the two isotopic-spin wave
functions (5.2) and (5.3) can represent the K d system, because they are the
only ones, among the eight possible eigenstates of three particles belonging
to charge doublets, which have J = 1/2 and J‘z = -1/2. Using an obvious

notation, such functions can be written in the form

' 6.6
o= Ay himam mapayie g

Pi=-Ya mng,F%\/% (Pang +myp,)K(6.64)

The channel p; is a virtual state of the K d system, because not only both

states, np and nn, are mixed in it, but also the NN functions belonging to

py have I = 1, in contrast with the deuteron's isotppic-spin I=0,
Consider now the exact expansion (4.20) of the tre.nsition. oper'ator T

if the virtual state p, is to be included in K d collisions, the propégators

.of the kaon-waves, derived from the Green's operator Go, must have pi'ojectiOns

on both isotopic-spin channels p, and py-
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However, in order to obtain a finite expression for T, calculated from
(4.20) by Impulse Approximation (see Chapter IV), it is Better to replace:

Py and P, by the orthonormal functions:

| '-'%;if(f’o*f’l) ; Ai’%’g (Po- 1) (6.65)
and make the assumption that a kaon-wave in one of these isotopie-spin channels
does not interfere with the corresponding wave in the other. The plausib;ili'ty
of this hypothesis is discussed below.

Hence, using the operators t. (i =1, 2) and G,, defined respectively in
(4.17') and (L4.59), the terms of the T-expansion (L.20) for K d elastic

collisions are gi.Ven approximately by (see §§2 and L of Chapter IV)
M1
V' = <PobltL\afo7

Z S <Pobltalrap> <Arr{Cola><A4 L, 100>

JoY‘S

r"‘: %:_ SQPoEltL\Y/\l></\[r\G UAJ><A A\t&\r’f\‘i;.
<A r‘\éva\/ﬂ'/\j>-</\j,d'\t“aPo>

. . (6.66)

where a and b stend respectively for the initial (c)a) end final (¢b)
K d-states and the other indices (r, s, r', s') for the normalised solutions
CXes Xos Xp1 and x_, of equation (k.10').  According to the assumption made

above no off-diagonal elements of the form
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los

<A{r [telriap> , be 9,1',{}4‘;"_ (6.67)
appear in (6.066)
Supposing that the KW-waves are mainly S-waves and introducing again
the hypothesis II (see §5 of Chapter IV) on the behaviour of the off-energy
shell Kj-matrix elements, the T-terms Ty, T2, T121, €tc., become

- o _ick.-R Ta 7
T»L.—_<P0P\td,o\\°f’°'7j\ﬁbot‘z)\%e 2 S
L

T -y R §* __.Z"_ <Po‘{\tg,oHAV</\§\0\t4.o.\V’/”°7
24 -Hﬂ#af_i*d’&) J=0 - ,
-l ko). RI2

'j'\dPo(Q)\%E’( 6{529% AR (6.66")
d

1“\"113":1- L{F"TL '_\EL Z < ()o\ottbo\\af\j){/\jﬁ ltg,o‘ﬁAJ>'

VUTRY 4 g2)) J=o _ o - i(Ru-kb).Zla_

e Ajp\uolp o [ldot)T e PRR) AR

where u is the kaon reduced mass in the K N C.M. referentizl and P(R) is thne

propagator i sin(kR)/R.

To be consistent with the existence of the mixed np and nn states of
Aj (_ } = 0, 5) , 1t 1s necessary now to allow fozl"i-c.'\f and MM cha.rgcle—exchams_;e
interactions. This 1s simply achieved by us.ing Eil po'i:entials of the fype

defined in (2.3), i.e.,
vir) = Ve s v T e, (66

where r; represents the distance between the kaon (particle 3) and the i-nucleon

and P_. 1s the charge-exchange operator between the same particles.

x4 - 5
- o speclal

form
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needs to be assumed for the NN potentials because it does noi appear expliciily
in the Impulse Approximation formalism.
As it is explained in §1 of Chapter II the potentials (6.58) are subjected

to the conditions

Ve v swe) w1, 2) (6.69)

v s vy sur) =, 2) (6.70)

where W, and VW, stand respectively for the interactions through the X
isotopic-spin channels I =0 and I =1. It is also indicated there that the
effect of P?i on the Xi-wave functions (2.5), which will be represented here

by 0,"%2(5-,3), can be summarised as follows:

aud?a = ylz=d,0 -4, l%,;d’f,*‘bﬂ (6.72)
The lexpressions (6.66') for the T-terms show that one has to calculate
three distinct types of KN-matrix elements: <« Po bl Tiol P f’o >z s
< Popltuop Aj> ma <Ajp | TLolpAj>
To do this, one has to have p, and Aj written as linear combinations of

¢:I[Z(i.3). For i=l one gets:

Po=4(d%+ d3)ra- 5 & b 672

- 2 44 o B) domy s B2 ve L e ld? Ng = (6.73)
(:'i)J ﬁXd)A P.‘Z v

1
o

m\“-
r""'l
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Consider now the evaluation of < {Jo }a ! t‘{,o l V P o7 for
instance. If ¥§(r;), \b?(rl) and ly'l‘l(rl) represent respectively the Xif total

waves through the channels ¢g, ¢E and ¢'1'1 one has, by (6.68) -+ (6.72),

T'A,o\‘PPok.\ (P95 + b3V g)- E—’ LWL~

hence

<?op\t1,o\kﬂ?a> .—.’% < pyWoys > 4{44\0'\%1‘?%‘—* 4

it !
4 l ¢ \0\ WLQJ d >
o
(6.74)
But < P l Wj \P A= =< V\Wa&u > , because I remains unchanged in
0 - . - % 5
V, and t,bll and the interactions involved in K N collisions are strong. Thus,

if the K N scattering amplitudes fI (I =0,1). are -introduced, one gets

_.____ < Lo Plt;.a!iapa —%(J[OHJHJ (6.75)

Using the same procedure, one also has

5 5 = BTi%s feea Bty o
- f‘#hadf’a Pils,ol V’Ajy T3 14 3§ “fﬁﬂ J)}(“?G)'
and

4 (g0 (4 _]5_ £yc

The similar matrix elements, obtained from (6.75), (6.78) and (6.77) by
inserting t, o instead of t, ,, or by interchanging po and Aj , have the
] »

same values. Therefore, summing up all T-terms (6.66'), one gets the K &
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-elastic scattering amplitude f£(8) in the form (4.73), where f(6,R) is now

given by
_ w 4 @) (s _
3[(9,@)_,3( (6.R) };_O{J. (,e.e)jj(a'e) (6.78)
with '
. ) _ o l '
:} (9,2)? -%;(a( +3f°) et 6,
) ) ' ; 2
(8,R) « TR T 1% af's cup) B 49y
and .
L [0 o
‘}.@‘ze.?a)-_ erity + Tageld* 4 - € 2 W) g usog
.Y

Lo () et e'e @] e

Here 6; and 6, are respectively equal to (ka - kb)R/z and (ka + kb)|R|2.
As stated above, the off-diagonal terms (6.67) are not included in
f(0,R). However, this approximation is reasonable, because the expressions

for such terms, calculated at point R = 0, i.e.

— ‘ (v} = ¥ :
W Ap ity - L4~} +
- < Lo |PAjI> = ) (6.67")
gk JP I j Y & J
show that they are much smaller than the diagonal elements (6.76).
Virtual charge-exchange terms can ,also be introduced in K-d inelastic and
chargel~-exchange scattering. In the calculations of these processes, the

potentials (6.68) allow mow the use of a more complete np triplet wave function

than the one employed in §2 of this chapter - ¢K(§). Such a function can be

written in the form
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Yz (R) = &, 4’,,@@ + e;;’cf:%k) ' . (6.80)

f
where

cb GQ,\ = 4 [qp (R) 4+ (-41) cl) (-R) } (6.81)

and

£q = _1”_3[ \04)12 _Cytmy \o_ﬂ (6.611)

for I .= 0, 1.
Consider first the K d inelastic collisions. These processes can take .
place in two gifferenf; isotopic spin channels, py and p;.
The transition matrix element (¢°,T¢a) dealing ;rith the K d inelastic

scattering in channel pg can be written in the form

CP \ S‘b )(bom)cp Eg,tT PO:—a{E ,- (6.82)
< Po‘eb\r‘q -ECa F0> being given by

16)

- 2B 2 DR \T \Rg fo> = -f(e RJ*Z T(en*’)j't@ R) (6.83)
Ukt
where f{3)g}1&s the same value as in (6.79), but i‘(l)(e R) and f{z)(e ,R) are
equal to
J.‘”Le. )= —%—’— (U[o* JI)CM QA
Q@) 3 7 J i
}J(e,g) . Phe) [P as @3-19).

g(1+4) (6.84)
(4ot 4P )
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-

Here, . (I = 0, 1) represents fl(I = 0, 1) with p, replaced by ps given

by (6.7').

The transition matrix element (¢1,T¢a)'for K d collisions in channel

Py 18 equal to

o T W R\ (R > dR
CINENE Sd);fzm bo (@) < fkeT [kefo ' (6.85)
where <p1ih]T|Eapo> has a form similar to that of <p0Eb|T|E&po> in (6.83), but

with ftl)(ﬂ,ﬁ) and f(z)(e,R) given now by

r (L) - m
-j‘ ‘(_gpﬁ) =y _ _g_d'{g_ CJL‘JO)M e,
and (a) 33,3& S il =
(OR) = - R ({-P-ciP Pl ,
| BV3(i+¢") ¢ ) o

PR cay)

where ?(I) (I = 0, 1) has/the same meaning as before. The expressions

(6.85) are derived from the two-body matrix elements

IR < tio o>=-i tfe
'74_1%;.1 Prpltiolpf qﬁ({( ) e

-2 < papltiol pAj > < 33_@\;’-}”- GBS L ‘)}
Therefore, according to the structure of p, (see (6.64)), one-third of the
cross-section calculated from the matrix element (¢1,T¢a) measures the amount of
K @ inelastic scattering in channel p, and two-thirds of the same cross-section
is related to the K d charge-exchange scattering.
With respect to the formylation of the present theory see a quite recent

paper by N.M. Queen (1965).
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CHAPTER VII : .

+ :
K d Interactions _

+ :
1 K N systems il

The differences between K'N and K N interactions are striking: XN
collisions at low energies never lead to the copious proliferation of Zn's and
An's as happen; with the K p scattering (see equations (1.3) to (1.7) of
Chapter I). Such a behaviour of the K+-mesons, however, is completely
explained in terms of the ge-neral conservation laws of strangeness and of
baryon number. |

As it is well-known (see, for instance, Dalitz, 1962, p.2), the strangeness
s of any particle belonging to an isotopic-spin-multiplet is twice the deviation
of the multiplet's average centre of cha.rge.from the corresponding centre of
a) the mucleon doublet, in the case of the baryons and b) the pion .triplet,
in the case of the mesons.

This definition assigns & strangeness +1 to the (xk°) doublet, whereas
the A-, ¥~ and =- multipleté have ;‘espectively s equal to -1, -1, -2.
Therefore, no K+N strong interaction, leading to Av, zm or EZm production, is
possible. Nor is the production of An's ‘and Inr's, either. Although K and

E have s = 1, the conservation law of the baryon number B is violated in these

i + ' -
reaction channels. In fact B 1s equal to +1 for the K N system, but Am and

Zr have B = -1.

' : oy . .
Hence, at low energies the K N interactions are free from absorptive

processes and should be posdible to describe them in terms of two sets of the
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zero-effective range real parameters (aI, rI), related with the §-wave ‘phase

shifts dI by the equation

p cot s = + -’}‘2- z'Ip2 | (7.1)

where p represents as usual the kaon-wave number in the K+N C.M. referential and
I is the isotopic-spin.
g
The I,- invariance (see Chapter I) applied to the K+p system leads to the

only possible total isotopic-spin channel.

I,=1, I=1 41 = |K + p> (7.2)
This channel is associated with the reaction

K" +p+K +p

and the parameters (a;, rj). However, in the case of the K+n system, the

same invariance shows that two total isotopic-spin channels are available:

Ip=0, I=0, ¢ =}2'( K*n> ~|K°p>) " (1.3)
I=1, ¢ ='I%(|K+n> +€°p>) (7.4)

Obviously, ¢g is related vith the reaction
K" +n+K° +p
and the set (ao, ro), while ¢ represents. the‘ interaction
K+ +.n » K+ + n . ) .
deseribed also b.y (a;, r1)e
The numerical values of a, and r; are thomug}-ﬂy determined, In fact, the
best S-wave zero—e.ffe_ctive range x2-fit (Goldhwber et al., 1962) to the

experimental data on K_+p. scattering in the kaon-Lab. momentum interval

140-642 MeV/c gives
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a, = = 0:29 *0:015 fermi, p; = 05 t 0+15 fermi (7.5)

i ‘Tue same authors use also the zero range formula (I = 1)

cot 6T = % g (7.6)

the best x2-fit oi.‘ (7.6) to the K+p experimental data in the Lab momentum range
140-350 MeV/c is now

a = = 0'3.* 0«01 fermi (7.7)
The K 'n potential in channel I = O seems to be very small and attractive, in
contrast with the K+p repulsive potential. The corresponding S-wave scattelring
length is not so well determined as aj. -Roddberg and Thaler (1960) give the
following value

a, = 0-680 * 0°068 fermi k7.8)

Since the inaccuracy in the determination of a 1is large, the resullt (7.7)

for a, will be used in this work as well as the zero-range approximation (7.8)

in the T =0 and I = 1 channels.

+ .
2. K d cross-sections

The formalism of Impulse Approximation developed in the previous chapters
can be used here with minor alterations, if the K+-Lab. momentum range is the
same as in the K d problem: 100-300 MeV/c. Obviously, for higher momenta,
relativistic effects should be considered, as well as higher phases in the N

wave functions.

+ . . .
a) K d elastic and incoherent scattering

The scattering amplitudes for f3; (p',p) and f35 (q',q) defined respectively

in (4.70) and (4.70') are now given by the relations.
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a]

f31 = l - iPal (7-9)
and
- 1 8 a '
T3z = 2(1 - ipab & 1l - ipal) (7.9')

instead of the expressions (4.87') and (4.87).

Introducing (7.9) and (7.9') in (4.85) the np = parameters for K'd collisions
are calculated in the same way as for K d scattering.

The correction of Coulomb effects is also brought into the nL's using
the method developed in §7 of Chapter V. ‘However, there is a slight
difference: the quantity n appearing in the Coulomb penetration factor (5.77T)
and in Ang (see (5.79)) has a positive value, becauge the Coulomb interaction
is now -repulsive.

The expressions (5.82), (5.85) and (5.87) are used again in the calculation

+ g
of the K d doel/dﬂ, o, end o, , respectively,

+._ . ] .
b) K d inelastic scattering

. m n ) i
The coefficients (Aij’ Aij) end Bi,i" Bi,i') given by equations (6.29),
(6.30), (6.36) and (6.37) are calculated in this case with the new expressions
(7.9) and (7.9') for fa4 (I =1,2), as well as for fai (see §2 of Chapter VI).
Thé Coulomb penetration factor in the expression (6.34) for dain/djlis calculated

considering n positive.

c) K+d charge-exchange scattering ; .

The alterations pointed out in b) must also be introduced in the evaluation
of the K+d charge-exchange cross-sections, However, a further correction is

necessary in this case. Actually, the NN final state for these processes
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consists in two protons (see (7.3)); instead of two neutrons. Hence, the
triplet phase shifts of the pp system (see §6 of Chapter III) are used in the
approximate radial funcfioas U?(KR) (seé (3.37)) for two nucleons. Also, each
U‘]J'.'(KR) should be multiplied by the Coulomb penetration factor Co defined in
(3.48). The introduction of Co here is based on the similar correcticn

expressed by formula (5.77).

d)  The A-correction

Finally, the mass difference between the K+p and K°n systems, A, is l;andlc;d
in the same way as for the K p and K n sets of particles (see §7 of Chapter vI).
Only a slight ;alteration is needed in the energy comservation principlel .
equation (6.6): A must be replaced by

A' = (m(Ko) - n(k") + m(p) - m(n)‘lC2 ® 22 MeV (1.20)°

. . + . .
because the NN final state for K d charge-exchange scattering 1s forrmed by two

protons instead of two neutrons as in the corresponding K d process.

3. Conclusions

Fig. (VII.1) to (VII.3) show the results of the numerical calculations of

o o, and o , 85 well as the respective differential cross-sections for

el’ in c.e
+ 3
K d collisions in kaon-lab. momentum range 100-300 MeV/c.

The contribution coming from C.M, scattering angles less than 35° have been

neglected in the calculation of Oy *

The K+—differentia.1 charge-exchange cross-sections (Fig. (VII.2)) show

sharp pesks around ch. = 850, similar to those found for K d doc = /dQ. - This
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indicates that they are due mainly to the properties of the NN wave functions,
Such a behaviour is maintained with increasing kaon-energies. ‘The calculations

: + B . -
made by Ferreira (1959) for K d differential charge-exchange cross-sections at
+ [
aK -Lab energy of 100 MeV show again a peak around the same C.M. scattering

angle. Since these calculations are carried out by Impulse Approximation
combined with a closure approximation to sum over the pp final states, this
result .supports the choice made in this Wwork for the pp wave functions.
i . 1 . = g. + . Thi

Fig (VII.3) leads to the conclusiong that °1nc .cln oc.e. This

: g A B E +
relation 1s a good test of the probability conservation of total flux in X d
collisions and indirectly, in K~ d scattering. The gap between the two curves,

. .+

%ne amd %n ¥ %.e

equal to 08 fermi (see (3.37)), is adjusted, by increasing its value, as

s 18 likely to be narrowed, if the damping parameter Z, set

discussed by Gourdin and Martin (1949).
To the author's knowledge no experimental data on K'd collisions is
: . . .
available in the 100-300 MeV/c interval of K -Lab momentum. It is not possible,

therefore, to check the present calculations with the experiment.

. . . + .
Table VII summarizes the numerical results of the K 4@ cross-sections.

Table VII

+ . .
K 4 cross-sections (in mb)

p -
Lab Oel %in Oc.e. atot_oel+uinc
_(MeV/c)
100 39.91 0.Th 0.56 35.76
200 12.90 L.26 2.49 20:00
300 5.87 591 2.95 14.94
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Appendix A

The Order of Mapnitude of the Relativistic Effects in K N Interactions

A convenient criterion to.estimate the relativistie deviation from classical
laws in K N interactions is the knowledge of the order of magnitudé of the
relativistic corrections for the centre-of-massl momentum and energy of the K X
system, calculated at 300 MeV/c, the larges-t. K ~laboratory momentum considered
in this work. The reason for choosing such a criterion is that the kinematics
as well as the dynamics of the K N problem is not appregiably changed, if the
relativistic corrections are small.

Consider a negative kaon witl'; mass equal to m, moving freely with

velocity v in an inertial system of reference (the Lab. system). Its

relativistic momentum ¥ and energy E, are given by

—P.‘-mxff ' N L% ' (A.1)

s o2 )
\—(1""&2« V'{.——%i

where ¢ is the velocity of light.

From (A.l) two new expressions are easily derived: one is a scealar,
7= 2,2 2.y
b= pref +mye (1.2)

and the other, the veotorial equation

P- —%}," v ' (A.3)

Consider now a nucleon with mass equal to m, at rest in the same inertial

sys'tem. It has a zero momentum and a rest ‘energy

E, = mc2
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From (A.3), the centre-of-mass velocity ¥ of the KN system is

- c2p
- o}
U E1+E2 <A )

because the total energy and momentum of this system is the sum of the partial

energies and momenta of the two particles. V is also equal to the centre-of-mass

velocity of the nucleon with negative sign. Thus, the centre-of-mass monen tun

E of this particle is given by
\/ 1- %

But the total centre-of-mass momentum for the whole K N system vanishes, so

(A.5)

. that the kaon centre-of-mass momentum is equal to -E.
Eliminating V between ('A.Ih) and (A.5) one has
192._ L P’-cﬁ
(EyaEa)t e

or, from (A.2) and the equation E, = mC?,

b p?
T PN e

' (A.6)
(A.6) gives the relation between the two K -momenta p (in the Lad system)

and P (in the C.M. system).

Developing now the square root in (A.6) into powers of C~2 one gets

e R A 1C AR

so that

s P R
- Wik \a M 2 )
(L m ) = 'an (%&)




182

is the approximate expression for P up to the second power of c-l.

Remembering that the classical expression equivalent to (A.6) is

’ ,
('l _ i (A.8)
T4 - Mo

™

wnere Pcl represents the classical centre-of-mass K--momentum, (A.7) gives

o Wy 4

<
Vis+ = (KLY

Mme
The second term in the expansion of (A.9) into powers of C~2 is the

(A.9)

relativistic correction AP for Pcl:

iy W A\ '
ap _-Emﬂm‘(_%) (A.10)

Considering now the relativistic K N energy in the C.M. system one has

E = \/;n.z;( Cq + pi Cﬂ' % \/PHQC” + pzct (A.11)

Developing both square roots in E into powers of C~2 and introducing the
reduced mass p (1/p = l/mK + 1/m) of X, (A.11) can be written under the form
2
Eamectemets L B4t - 3y Ly
. Py N AL Tmme INTC
Expressing P in terms of El by means of (A.9), developed into powers of

G~2 up to the second order, E gives
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The first term in this development represents the K N rest energy and,
consequently, it is a constant which can be ignored. Therefore the relativistic

correction for the K N energy in the C.M. system is given by

mmng

AE . _ 4 P4 4 i\ A.12)
B mm)(E) :
Considering now that m = 2mK and m. = 500 MeV, from (A.8), (A.10) and

(A.12) one has for p = 300 MeV/c

1 Pi
c
P, = 200 HeV/e, . o 60 MeV
AP = <200 x 0:04 = 8 MeV/c
AE = <60 x 0:11 = 6.6 MeV

The relativistic corrections AP and AE amount respectively to 4% and 117 of
the classical centre-of-mass momentum and en-ergy of the K Il system, for the
largest K -Laboratory momentum considered in this work (300 MeV/e).

AP is quite small and therefore is negligible. At first sight however AE

seems to be a larger effect. But if it is considered that

2 ~ P2 +

P2« P2) + 2P 4P,
so that the relativistic correction for P-(’-:l is 2A£]Pcl (= 8%) of Pf:l’ the ratio
2uAE|Pc'1 (= 114) is in good agreement with the L% for AE] Pcl' It is then
reasonable to ignore the relativistic effects for K -laboratory momenta below

300 MeV/c.
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Avvendix B

The integrals of zero-energy variational formula for K N potentials

This Appendix is devoted to the calculation of the integrals appearing in
Schwinger's variational formula of Chapter II.

The trial fUnctioq i; represented in the same notation as the one used in
that Chapter:

-br

u(r) = 1-e T+ (3.1)
A
i) Calculation of the integral
- e oF {r =br!
u(r) = er u(r') 3 dr' (B.2)
‘o 0 '
] -ar
Integrating fe r dr by parts one has
-ar e-ar l =ar
fe r dr = =l r-:ze (B.3)
So that
r@
¢ *ar = a1 (3.4)
‘0
(e + ]
e Tr ar = o2 - (3.5)
Yo
The following integral (See Courant 1947, Volume II, 1.2k0):
00
et " 8
= dr = log-; if g > a > 0, (B.6)

o

is also necessary for the present computations.
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To calculate (B.2) one starts with the integral

r
. =hy! T _hpt
[(l-ebr +-i—)ebrdr'
‘o
using the integration by parts formula (B.3) its value is quickly obtained
%%(1 oDT 4 gm2bry 1

=—(1 - e-br(br) - e-br)
DA

(3.7)

Introducing this result in (B.2) and putting @ = br and S = bA, this

integral gives
. -p =3 -5 P _ ~P 2R -3 =P 5@ |
4 (4 st 4d-a b e s -ep- )y

(8.8)

(B.8) can now be reduced to a linear combination of integrals belonging to the

forms (B.4), (B.5) or (B.6): |

A'Soz (eP 5(1 28 *e)o[P 32-

L Jdo

§1 \mJ_P(e‘P "J%(J eﬁ Q)O!P-S (‘L‘rjq _46

°0-p-

i P -2 :
s (1_-2ep+e )dp = %.‘-
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Therefore, one gets for (B.2)

JI

o 7
-br '
J u(r)% ar f‘u(r')e-‘Dr ar' =
o o

_ 1 32 .1 L 1.7
ii) Calculation of the integral
[~ _ e-—br
} u?(r) S ar (3.10)
o

Substitution of (B.1l) in this integral gives, putting again p = br and S = bA,

-

1 -p -2p 2 -p 1l o =-p
- =13 + & - - + - =
ll 2e e 5(1 e " )p azp e "dp

1 1
= e e )
log Y.
Then
i =-br ;
2( 18 @ Lo1.1
u (r)r dr = log 3 + 5 + 52 (B.11)
<0
iii) Calculation of the integral
u(r)e "Tar (8.12)
1o
The result is )
Ll (P - e s 82000 = 2L h (3.13)
T (e -e 3 p sty .

[o}
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Annendix C

Spherical Coulomb and Free Particle Wave Functions

In this appendix some properties of the spherical Coulomb and free particle
wave functions are derived from the Radial Schrodinger equations of which such

functions are the integrals. The purpose in doing this is to establish by

very simple methods expressions that represent these functions in a form suitable

for numerical computation., . :
[ ]

Consider the radial Schrodinger equation for a Coulomb L-wave function w

-

d'zuL + |2 L(L+1) 2u «a
dr2 T2 B2 T

O

where o is the product of the electric charges Ze and Z'e of the system under

: . s o . . ] + 2
inspection. Then a is positive for a repulsive potential {(a = e? in K d system)
and negative for an attractive potential (a = —e2 in K 4 system).

Putting

n = %—3_’; (c.1)

and making the transformation p = kr, the radial L-wave Schrodinger equation gives

a2u | |
dpi. e 1o L(‘I;;ll) _ s_nJ w = 0 (c.2)

This second order differential equation has a regular singularity at the origin.
It is a differential equation of the Fuchsian type and as such it has two

linearly independent solutions around the origin: ore regular, proportional
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L+1 . ] - '
to p for small p, the other, irregular, proportional to p o for small p.

As it is well known (see for instance Albert Messiah, 1961, Volume I, Appendix B)
by a convenient linear combination and normalization of these solutions two
standard integrals of (C.2), the spherical Coulomb functions FL(p) and G, (p)

are defined, with the following asymptotic forms . ‘ '

F.(p) ~ sin(p - n log 2p ~ by ZL) (c.3)
-Jpr'.hm d .
GL(p) ~ cos(p - n log 2 = =L + Z_) (c.)
. p + = e - : 5
where
Z, = arg (L +1 +.in)

is the pure Coulomb phase shift.

(C.3) corresponds to the regular solution of (C.2) at the origin and (C.k)
to the irregular solution at the same point.

The knowledgé of these asymptotic forms is not sufficient to solve a real
nuclear scattering problem, Such problem generally leads to the numerical
calculation of the regular solution of equation (C.2) with a short range
potential added to the coefficient of u . Then, if a numerical integration is
carried out up to a point pg in the_region where the nuclear potential becomes
vanishingly small, the solution of the radial equation beyond py is a linear
combination of FL(p) and GL(p). To determine accurately the coefficients of
this linear combination it is necessary to have a better approximation of the

asymptotic behaviour of FL(p) and GL(p) for smaller values of p than those for

which (C.3) and (C.4) become valid. ‘
. . . 1 0 50
Considering that (G.3) and (C.4) are linear combinations of e* and et
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with © = p ~ n log 2p, such approximation can be derived from the asymptotic

behaviour of the Tunction VL defined by w = eleV

L Meking this trensformation

in (C.2) and putting m = L + 3 one obtains the differential equation satisfied

by VL:
ci2vL . 5 avy, a2 - (in + )2
32 + 2i(1 - ;} - v

e 2 , = O (c.5)

This equation has an irregular singular point at infinity. It is possible,
then, to translate the asymptotic behaviour of Vi by means of an asymptotic

series. Therefore, writing

v -8
V= LG
§=o0
one obtains
vy N s vy = .
— o ™ -5 - -2 -5
a = —p ECSSD . 302 p ICSS(8+l)p

and substituting these expressions in (C.5) end putting equal to zero the

coefficients of the successive powers of 1/p one gets the recurrence relations

for the Cs:
. 2 . . 1y2 - . -
2i(§ + 1)cs+1 + ‘—m (in + § + ’)_]Cs_ . 0 (c.5)
Putting Co = 1, (C.6) leads now to the asymptotic series for VL (see

Whittaker and Watson, 1950, page 3k2):

VL= 4_ - }—?“-mt_ (Jn‘i)i][m"- Lik+%)2]...[ml_cen+$'if]
a St (2¢p)®

S
m=L+4 (c.T)

(1]
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Writing now

Vp, = © +i§;

where C. = Real |V.| and §, = I |V | and using the normalisation constant
L L i ~L m L

T
et! I’f’.- zz)i‘or u, one has, putting OL =p -n log 2p - Irg- + Z,

= - l— +
w _CLCOS OL SLs:m OJ + 1C sm OL S cos eL

so that the improved asymptotic forms of F.L(p) and GL(p) are

FL(p) 'b CL sin GL + SL cos OL (c.8)
p - @
G (p) ~ C cos @ SL sin 0 (c.9)

p-)-m

A very importé.nt property of FL(p) and GL(p) is the Wronskian relation.

Considering that these functions are both solutions of (C.2) one has, putting

L(L+l) _ 2n

glp) =1 - ~ ~

]
o

+ g(p)F,

I
O

. — * )G

Multiplying the first equation by GL and the second by FL and subtracting

the results one ge'ts
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2 2 n
GLE_EE - F‘L_d °L = ¢ (c.10)
dp? dp?

But the first derivative of the function

f(s) 3 o oLe) _ §d%
dp dp
g af :
is equal to (C.10)., Then s 0 or

f(p) = const for any value of p
Therefore the constint can be calculated from the analytical expressiors (C.3)

and (C.k4) of 'FL(p) and GL(p) for large values of p:

. dFs
= L =
FL(p) sin @ = cos @
N dGy, - _ s
GL(p) cos QL sin @
do '
because — = ] when p =+ e, Then
= 2 in2 =
(p) cos?6_ + sin®e 1
or
daFy, aér, _
GL_dB' I 1l _( C.11)

(C.11) is the Wronskian condition.
The evaluation of the pure Coulomb phase shifts ZL is derived fron the

Weierstrass's definition of the gamma function (see Courant, 1948, Volume II,

page 233):

a-zi'-?— "25
= _-zZz€ %LLU- + -zg') _
Fﬁz) , (c.12)

where y is the Euler's constant (y = 0-5772 ., . .)
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But Zo = arg I'(1 + in) or

Z°=-mg‘}0.+inﬂﬁl : (&}ﬁ‘

and the arguments of the factors in (C.12) are

arg (l + 1n) = Tan=ln B arg [eY(1+in)-l = ny
- ,1..n

L.y o -1_n -(ztig)] _ n

arg (l + r + 1'5-) = Tan l—+-&- ’ arg [e E+ E:I = ..-Z

Therefore, from (C.12) and (C.13) one gets

= T n_ -11
Z, - ny + 621(3 tan~! > (C.1%)

The calculation of the Z, for L > O is now worked out by means of a

L
recurrence relation based on the gamma function property TI'(Z+l) = ZI(Z).

Then, from

arg I'(L +1 + in)

N
i

]

one has

(c.15)

The precedent considerations make the study of the spherical functions for
a free particle very easy. In fact such functions are special cases of
spherical Coulomb functions for which n -+ O.

Therefore, putting n = 0 in (C.2) one obtains the differential equations

for the spherical free-particle wave functions:

dzuL # 4
—% - [J i ___,.._L%jl)J]uL =0 (c.16)
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The regular and irregular solutions at the origin for this equation are
respectively the spherical Bessel function j'L(p) multiplied by p and the
sperical Neumann function nL(p) multiplied by p.

The a.symptoticlforms of jL(p) and nL(p) are obtained directly from (C.3)

and (C.4) putting n = O (then ZL = 0 from (C.1k) and (C.15)):

yple) ;- sin(p = 1)  (c.17)
p *

nL(p) " pl cos(p = I%) (c.18)
- p ‘= oo

If n vanishes in the asymptotic expansion (C.T), the series now terminates

and (C.8) and (C.9) represent in this special case the exact p-jL(p) and

-

pny (p): |
. . 1 0 m T
3,(p) > {c, sin(p - 13) + 8 cos(p - I3)] . (c.19)
- 1 T, . g m
np(p) ol {CL cos(p - LLT) = SL sin(p = 1’5” | (c.20)
where Cp, and | are, for the first four values of L:
Co = 1 So = 0
e ‘ = 1
c; =1 81 >
- _ 3
Ca 1 Fz _52 g
15 1
= ] = = - -
C3 oZ 83 p 3

The spherical Bessel and Neumann functions, defined by (C.19) and (C.20), can

be also expressed in terms of Bessel functions of half-an-integer exponent:
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J.a(f’)"-"\/% ]l&p) (c.21)
L(P) “)\rr:‘(u“)(?) | | fe22)

Many authors use for definition of n (f)) the relation n (p) (.1) \/ ﬂ' ] U-(_‘f})‘
- (bt

In this work, however, (C.22) is used in agreement with Albert Messiah (1961,
Appendix B). The same author is followed in the definition of the spherical

e . ) (A . i)
Hankel functions of first kind (h£ )(f)) and of second kind (hl\. ’(f)):

n ) = n(p) 1 if
r (P) = nylp) 2 if (p) (c.23)

To finish this brief account on spherical functions, the Wronskian.relation for

L}

J.L(f) and nLQ"} is obtained from (C.11):

U (ciab)
dp dp p2 ¥ i
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Appendix D

The Vanishing Solutions at the Oripgin of Two Coupled Radial Egquations

Consider the system of two second order differential equations

\-.'d'ii 4 K Qgg‘—]- “+ VLR)] U= UR)W (p.1)

K% (:rwé?;_) & wuz)]w, U (R)dD.2)

R. d_ﬁ)ﬂ.

or, introducing the linear operators

I-1)1
AL 4 kE é_'él; + V(R)]

s (J+)E+2) |, W(R
B2 Y‘dki - 28
II.A/\)—='\JW ‘ (D.1')
lBw=V0 (D.2")

) I »
U(R), V(R) and W(R) are short range (Yukawa) nuclear potentials( ):

- ' -8R : n
= a@uyefr, V= bue iR, W=cayetfe
System I can be solved by elimination., ~Multiplying both sides of (D.1')
- =4
and (D.2') respectively by QU : and A U~ one has

BUu Ay = UV (p.1")
AUl gw =uw (D.2")

% Actually V(R) and W(R) are linear combinations of Yukawa potentials; but
the purpose of this Appendix, which is very general, is not altered if they
assume the precedent forms. .
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Equations (D.l")‘and {D.2") are fourth order linear differential equations,

which can be brought under explicit form. Equation (D.1"), for instance,

gives - .
y y-
. C‘[u‘d"" — Z Pl‘. (p). . _d__._—ﬁ-—.- — 0 ;
d'Rq t=1 Q" dRCU-I-) . ' (D.3)'

where the pi(R), i =1,2,3,4, are regular functions of R not only for R 2 0

but in the whole of the comﬁlex plane:
k) (RY= 2 +Rﬂ'(e)
F;(,IQ) "\_(j .{)J -4 Lj+i}(j+i-)] Qﬂ (E) .

P (R) = 2(3-4)1 + R g3(f)
by (R) =-2F-4)7 + (HTT+1) (T +2) +R 4, (®)

The gi(R) represent regular functions of R such that gi(O) #0,1=1,2,3,k,

The explicit form (D.3) of (D.1") shows that this equation has a regular
singularity at the origin and so it is a linear differential equation of the
Fuchsian Type (Goursat, 1924, Vol. II, p. 476). Its four linearly independent
solutions around the singularity can be obtained as power series developments
at this point. The leading terms for very small values of R of these series
are equal to Rci, i=1,2,3,4, where the o; are the roots of the indicial
equation of the differential equation (D.3):

o(o-1)(0-2)(0-3) + p3(0)o(o-1)(0-2) + p(0)a(o-1) + p3(0)o + p,(0) =
. " (D.h)

According to the expressions given for the pi(R), the roots of this

algebraic equation are
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GL=143;03=7, 03=-7 ,0y=-(1-4)
Therefore, only the solutions with 0= J + 3 ) J lead to physica.ll'y
meaningful results-because only such solutions vanish at the origin,
Now, the roots of the indicial equation differ from each other by an
integer. In such condifions the two solutions of (D.1") with 0= J + 3 ; J

can be written in the following way

U,L = RU-PB }i (_R)

U, = R { (R cm.&gk

where the fi(R), i-= 1,2, are regular functions of R, such .that £:(0) #0
and C is a constant (not arbitrary). The fi(R) are generally given as power
series of R. The radius of convergence of such séries, centered at the
singularity is equal to the minimum of the pi(R)-radii of convergence;
therefore f)(R) and f,(R) are valid for all values of R, because the pi(R) are
regular functions in the whole of the complex plane.

Ttlme férégoing consideration;s can be repeated for equation (p.2"). 1In
this case the coefficients p;(0) and p,(0) of the indicial equation remain'

unchanged, but p3(0) and py(0) are now

F3('O) =2(3+4)(T+2)

Palo) =-2(v+)(¥+2) + (F+1)3(I+4)(T+2)

Therefore, the roots of (D.3) are

0'4-_-_ 74.9,) 0":_-.-.':[-4-4)0'3:-(]—[,), 0y =-(7 i)
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Here again only two of the four linearly independent solutions vanish

at the origin (0 =342 ,7+1) and their general form is
— J+2
Wy =R L ).
S J+4 -

where, as before, f3(R) and f,(R) are regular functions of R.
However, it is not necessary to consider the solutions of (D.2") to solve
the system I. It is sufficient to evaluate the solutions W¥{(R) and V(R)

of (D.1") and, from equation (D.l') written under the form

w = U A

to derive the corresponding W) and wp:

N wi = Uﬁi A vy ) (D.5)
Ut-)"_ = U‘iA Vz (D.6)

The couple (vlwli is a solution of system I. In faect, multiplying (D.5)

by U one gets
U w, = A gy .

which is equation (D.1'); and multiplying (D.5) by B, one has, according to
(D.1") | | .
Awy=BUATL= U Uy
The same proof can be carried out for solution (v,,w;).

It is also clear tha:t wy {or wy) de.fined 'by. (D.5) (or (D.6)) is a solution

of (D.2"). Actually, the multiplication of w) by AuiB gives, considering

(D.1") and (D.2'), . : .
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AUB W= AUTRUTALY =
=AUtV U =AUy =
= U Ww, '
The precedent considérations lead to the effective const;uction of two
linearly independent solutions (v;,w;) and (v,,w,) of system I, which vanish

at the origin. A simple substitution in the equations of system I shows that

J -any linear combination of these solutions

v = ajvy + avy
W= aw) + 85w,
is again a solution of system I, vanishing at the origin. But no more than
two linearly independent solutions with this property can exist.
Solutions (vi,w;) and (v,,ws) of system I are linked by a generalised

Wronskian condition. From (D.1') and (D.2') it is obvious that
UV,AVL - U AU = U(U,w, -~ hu)

W, BW, - W, BW; =U (w0 -wil)

or, adding the two equations
VyAv) = v)Avy + wpBw) - w3Bwy =0
Considering now the definition of the linear operators A and B, this

expression reduces to

d?ER) = 0 + f(R) = const,
ar

where

dv dva, dw aw
ER) = vegph = Vigg- * Vegg- - Vit
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But Vm(O) = Wm(O) =0, m = 1,2; therefore the integration constant vanishes

and the Wrouskian condition is obtained

av dv dw, aw |
Vza" % WEE el ~wpf = o (D.7)

Condition (D.7) can be expressed in terms of the phase shifts of the
solutions of system I. For an R sufficiently large the potentials U, V  ana
W vanish and v endw ,m=1, 2, become linear combinations of spherical
Bessel and Neumenn functions multiplied by XR. Putting @f' KR - ‘a%
and using a convenient normalization, the asymptotic behaviour of these

solutions is given by the following expressions (m = 1,2):

31
m o, 1-4
Um = € /d"'“(@'.l i 'gw )
(35t . 'ZI-ri

("]"I 5 J+d

where O ™ and m are the phase shifts and the K‘n are coupling constants
I
or mixing parameters.. Introducing these functions in (D.T) for large values

of R, the new relation is obtained

3'+i 5‘14-4)

£(§ 31 ‘) Tk O
e 5 537) - i-mm(2 (57*157f3_0(n.8)

It is now clear that it is possible to seek linear combinations of (vy,w;)

and (v,,w,) (these solations are linearly independent!), such that the new

phase shifts obey the conditions

‘-7‘—1.‘-144 cl =L 741 T2
o4 =~04-dj;5._@"=dg,= 2 4 (D.9)
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i <2
Here 53 and O7 represent the common value of these quantities. For such

linear combinations (D.8) reduces to

1+ K_é ki =0 (.10)
yl k% ' .y N cd
where 1y and J are the new mixing constants, corresponding to (O 1

Tl
@ respectively.
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Appendix E

Hulthén's K I Potentials

The dimensionless constants Z, and Z; were calculated numerically for
Ross-Humphrey's sets of solutions in Chapter II by means of Schwinger's
variational formula for zero energy. However, in order to achieve greater
accuracy, 1t is convenie:;t to make Zy and Z] energy-dependent, by adjusting
these quantities for each value of p, i.e., the K =wave number in the K'N C.M.,
(p is related to Plap? the. K -Lab. momentum, by equations (L4.57") and (%.90)).

Hulthén's variational principle (see, for instance, Burhop, 1961) gives
the means to perform such programme, if suitable trial functions UI(r) ' :

(I (= O;l) is the K_I;I isotopic-spin quantum number) are used for the S+ waves
of the K N system.

Choosing UI(r) equal to
UI(r) - sin pr + (tan &+ c e-br)(l - e-br)cos pr (E.1)

where tan GI is linked with the K p scattering length AI by the relation

tan 6T = D A (2.11)

and C is a constant to be determined by the condition

aj ; :._012' R 5 by ]
& =0 (W)= | UtAUrdr ) AfE\ T, +P4218 07 [ (z.2)
The integrals appearing in Hulthén's variational formula can be integrated
analytically. Furthermore, the boundary conditions

UI(O) = 0; UI(I') + sin pr + tan GI cos pr

r e



are satisfied and the limit of UI(r)/p when p + 0, i.e.

P"O P (E-3)

umﬂU‘l(V'HP]:T’-& (A -l-C,?.-bF i-ébr C i &
p_mL 1

is equel to (except for a normalisation constant and'the additive term

-br(l - -br)) the trial function (2.53) used in the application of

cle
Schwinger's variational principle to the same problem.
Elimination of C between the two conditions translating Hplthan's

variational principle

aJ

J'=0’ —_— = 0 » (E.h)

aC
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leads to an algebraic equation of second degree in ZI' which can be written under

the form

LE(A + Btan 6I

The coefficients appearing in (E.5) depend on p and Z; as follows
- 4 =R-
(4 =D

Z1 & 2
A.—._ﬁlﬁ(i 44*)

B:Z'_r-[;cu:i 4 )_.-/f

C -2 Taid(

2
) _ zﬂu,?q R LL,;({ (4 + ya®)® \-#-“fm-

HUAR NG vy

+ Dtan26Y) = (C + Ftan ¢%)2 (E.S)

Z (b +udy® _ .
E o gl ot

v}

3

Wdt)(2ry u«2)l 12 Uru4r 9 vaz Los9dt
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F=Zy[legd L L (9 +ustft 7
1[ ¢ @ lLﬂ-:lt(q+u4'-)(jb4q4z)l-

% 6 - .

iy =
6 Y44t 9 4 use

is obviously the one that tends-to

The physically acceptable solution of Zr

the value obtained by means of Schwinger's variational formula (see Table (II.2))

when p goes to zero.

Table (E) shows the variation of Zo and Z1 with the K -Lab. momentum for

Ross-Humphrey's solutions I and II. The values of Zo and Z, corresponding
to O MeV/c are those given in Table (II.2); the values belonging to the other

monenta are calculated by means of (E.5)

Table (E)

PLab Z, =x * iyo ' Z) =% + i}l
MeV/c -

0 1+6701 + 10°3456 0+3935 + i0°7836
100 1+7045 + i0+33L9 0-4084 + i0-81k1
: 200 1-8243 + 103329 0-45kk + 30+9003
300 1-9802 . i0+32k6 0°5306 + i1°0379
0 '1-9336 + 11°0853 11821 + 101679
100 2:0293 + i1+0019 1-2170 + 101695
H 200 - éll9h1 + 10-9k25 143210 + i0°1776
300 . 2.3840 + 10.8507 1.4739 #» 10,1879
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