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Abstract

The three-body K d interactions at low kaon-lab momenta (100-300 MeV/c)

are expressed in terms of two body interactions (KN and NN) by means of the

Impulse Approximation method, including multiple scattering terms. The KN

S-waves are derived from Ross-Humphrey’s solution I and II of scattering lengths.

The NN wave functions for the np and pp continuous states calculated from the

NN phase shifts obtained by Breit and co-workers (1962).

K d elastic, inelastic and charge-exchange cross-sections, both total

and differential, are calculated for Ross-Humphrey’s solution I and II.

A not very successful attempt has been made of calculating independently

the K d absorption cross-sections. To achieve this, the resonant group

structure method was used, combined with KN complex Yukawa potentials,

calculated from the Ross-Humphrey’s sets of scattering lengths by means of

a variational principle (Schwinger’s and Hulth&n’s). The limitations of this

method are discussed.

Coulomb effects and K~K° mass difference are taken into account.

However, no attempt was made of including in the calculations the virtual

charge-exchange processes in the multiple scattering terms, although a method

to achieve this is developed.

An analysis of the numerical results is made in the light of other

theoretical works on the same subject and the scant K~d experimental data.

The conclusion is reached that it is very likely that the calculated K~d
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charge-exchange cross-sections have the correct values, in spite of the

inadequacy of Ross-Humphrey’s parameters.

K+d elastic, inelastic and charge-exchange cross-sections are also

calculated in the same kaon-lab momenta range. The probability

conservation of total flux is checked.
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Chapter I

Introduction

As in the present work K~d and K+d scattering processes at low momenta

(below 300 MeV/c in the K laboratory system) are studied in terms of two-body

forces (KN and NN), it was thought convenient to discuss briefly in the first

place these simpler interactions and some general properties and conservation

laws of the elementary particles involved in them.

This chapter is devoted mainly to K”N interactions. The NN interactions

are treated in Chapter III. The analytical properties of the two nucleons

initial (deuteron) and final state wave functions are given there in so far as

they are needed for the calculation of the K~d elastic, inelastic, charge­

exchange and absorption cross-sections.

It is well-known that K~p interactions for K~-laboratory momenta below

300 MeV/c lead to the following reactions

K~ + p K~ + P (1.1)

-> K° + n (1.2)

• -> + +
7T (1.3)

-> z+ + IT (l.U)

-> E° + O
7T (1.5)

-> A + 0
TT (1.6)

-> A + + -
TT + IT (1.7)

All these channels are open to K p collisions covering almost of the

energy interval (0, «). Only the reaction (1.2) has a higher lower limit, 



since the rest mass, difference between the two particles systems K°n and K~p

is 5*7MeV.  But the threshold energies for Air, Ett and A(2tt) systems lie.

respectively at 180, 100 and 1|O MeV below the threshold energy for the KN

system.

The reactions from (1.1) to (1.7) are due to strong nuclear forces. The,

2ir production in reaction (1.7) is not very important and accordingly can be
• •

ignored. But the interactions in the other channels can not be discarded in

any quantitative analysis of the K~p collisions.

At first sight a complete description of the K~p system with six equally

important open channels seems to be a formidable task. But a drastic

simplification can be achieved when it is realised that in all these channels

only strong nuclear interactions come into play, so that the principle of

charge independence of nuclear forces is valid.

According to this principle and as an example, the' three n-mesons r+,

tt° and ?! are different charge states of the same particle - the ir-meson.

The rest masses of the it- mesons are nearly the same (% lUOMeV). ’ The

slight differences are related to the magnitudes of the electric charges.-

Therefore, if the electromagnetic interactions are not taken into account and
• •

the small differences in mass are neglected, it does not matter which of the

ir-mesons is considered in any strong interaction, unless its state of motion

is altered.

.The principle of charge independence together with the principle of 

charge conservation (of which equations (1.1) •*  (1.7). are examples) can be 
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formulated in the form of a new conservation principle, true for all strong

interactions, if the concept of isotopic spin is introduced.

In isotopic-spin terms, the'a-meson is a charge triplet with total

isotopic-spin quantum number 1=1 and Z-component projections = 1(tt+),

O(tt°), -1(tt~); and the nucleon is a charge doublet with I = 821(1

I? = ^(p), -VzCn).

Strange particles (K-mesons and the three hyXperons families A, E, E)

can also be described as charge multiplets.

(K+, K°) doublet i = Iz * -1/2-

A singlet 1=0; TZ =°

(Z+, E°, E") triplet 1=1; Zz = 1’ 0-1

(E°,=-) doublet I = Iz = ^2’ -y2

It is .now obvious that I is related with charge independence of the nuclear

forces (strong interactions) and with charge conservation. If to this

list of particles are added the charge-multiplets of the anti-particles, it

can be stated that - "the total isotopic-spin I (charge independence) and its

I„ component (charge conservation) are conserved in all strong interactions".

Evidently the principle of charge conservation is more general than the

Iz invariance, since the isotopic-spin concept has a meaning only for strong

interactions. Applying the I^-invariance to the K~p system, two possible

total isotopic-spin channels are obtained

Iz = 0, 1=0 = -^{|K-p>-|K°n>}

1=1 = |Kp>+|K°n>}
✓a
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The states with the same I and I7 for pion-hyperon systems are

iz = o, 1=0 0o = ^{|eV>-|e0"°>+K"+>}

1=1 = -^{|E+7r>-|E"A}
/2

= | Att°>

If represents the element of the transition matrix T, with, initial

state i and final state f, it is possible to write

TT. = Cfi(0)Tf[o) + Cf.CDTf^

where Tf^^ is the translation matrix element for total isotopic-spin I and

the C|^(I)Ts are coefficients derived from the isotopic-spin wave functions.

The following Table is easily established (Matthews and Salam, 1959)

TABLE I, 1

i f cf£(o) Cfi(l)

K“ + p K“ + p 1/2 1/2

-0K + n -1/2 1/2

£ • + ir” l/»£ -1/72

— +
E + TT 1/ifc 1/72

. 0
£ + TT -l/»^3 0

0
A + TT 0 1/72

The charge independence of nuclear forces makes it clear now that the possible

reactions for K~p system can be expressed in terms of a two-by-two (t^°^) and 
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a three-by-three (T^1^) transiction matrices. T^°^ describes the reactions

K + N -> K + N

. E + 7T

which occur through the isotopic-spin channel 1=0; and.T^ represents the

interactions

K + N -> K + N

• “► £ + IT

n + tt

taking place in the 1=1 channel. With the help of the T^^ matrices the

description of the K~”n system turns out to be very simple.

The I^-invariance leads in this case to only one isotopic-spin channel,

’ . I„ = -1, I = 1 -jC1 = |K"n>
Lt 1

The states with same I and IQ for pion-hyperon systems areZj
Iz = -1, 1 = 1^ = {|^°> - |2°7r=>}

= | Att">

and the C^(l) are given in the following table
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Without going into much detail, the general properties and characteristics

of the 9^ • are now stated in the next paragraphs.

Let

H = Ho + V

be the hamiltonian of the KN system where Ho represents the non-interacting K

and N and V denote the interaction energy. The solutions of the equation

Ho<$>. = E.$.
i ii

form a complete orthonormal set of functions.

In the (^-representation, the Heitler’s integral equation (see Dalitz 1962,

■ p.53) takes the form

where K is the reaction matrix and pm(Em)dEm is the number of states with

energies between Em and Em + dEm.

In matrix form (1.8) is

T + iirKpT = K

and, after obvious algebraic matrix operations

K-1 + iirp = T-1 (1.9)

or, multiplying (1.9) on the left by T and on the right by K

T + iirTpK = K )

then

T = K(1 + iirpK)"1 = (1 + iTrKp)-1K . (1.10)

Putting now

= (np) 5K(ttp )5

Tj = (irp) 2T(ttp ) 5
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(1.10) gives

Tj = Kx(l + iKj"1 = (1 + iK1)~1K1

The scattering matrix S is related with Ti in the following way

S = 1 + 2iS?i

= (1 + iKi)_1(l - iKj)

= (1 - iKi)(l + iKj-1

But it is possible to prove in very general terms that K (and consequently Kj)

is a hermitian matrix. In those circumstances S satisfies automatically the

unitarity condition, which means that the flux of probability is conserved

(Matthews and Salam, 1959):

SS+ = (1 + - iKx)(l - + iKj = 1

A further step in the knowledge of the properties of the K-matrix comes from

the time-reflection symmetry principle. According to this principle (which

holds for strong and electromagnetic interactions, but probably not for weak

forces (Christenson et al., 19o^)), the elements of the K-matrix are real (see

Dalitz, 19o2, p.55)*  Since the K-matrix is hermitian its elements are real and

symmetric. Therefore, the number of distinct elements of the second order

matrix K^°^ is 3 and of the third order matrix K is 6.

Now, by a convenient normalisation of the it is possible to write

(Dalitz, 19o2 p. 56)

up = k

for a two-particle channels system (meson-baryon), so that (1.9) reduces to

T-1 = K-1 + ik (1.11)
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Finally, if it is assumed that only S-waves are in operation in all 

channels at low energies, the K-matrix has constant elements. Therefore, only 

elements of K

can be exemplified then by considering the second order matrix T

Writing the the form

tsK

t u

constant Kk -matrix in

in this energy region - the 3 different elements of Kk plus the 6 distinct 

The main features of the Tk are independent of the matrix order. • They

9 independent parameters are necessary to describe quantitatively the KIT system 

and representing by k and q the two centre-of-mass momenta in channels

1(K,N) and 2(Et<) respectively, (1.11) leads to

T(o) -1 _ 1 u + iAk - t
A - t s + iAq

where A = su - t2

Then

1T 1 + i(sk + uq) - Akq (l.ll1)

The T-matrix element for elastic scattering in channel 1(KN) is

T(0) _ ______s + IAq ______
11 1 + l(sk + uq) - Akq

(1.12)
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If S° is the S-wave phase shift of the elastic scattering in the two-

particle channel 1=0, then

T(°) = _ e sm o
k

or .

k cot S° = |- (1.13)
o

Therefore Aq( = aQ + ibQ) is the complex scattering length. Equation (1.13)

represents ”formally” the zero-energy approximation of the well-known effective

range theory for one channel scattering

k cot. 6° = + ^Rok2 + . . . (1.1U)
A 2o

The word ’’formally” was stressed because in (1.1U) Aq is constant and in

(1.13) is energy-dependent through (1.12). However, if it is admitted that

•q in (1.12) has large values - and it does, because the threshold energy of

the Zk system is 100 MeV below the threshold energy of the KN system - the

variation of q with k is small when k is in the low energy region and

consequently Aq is nearly constant.

This discussion shows clearly why Aq is a complex quantity: no elastic

scattering can occur in channel 1 without some of the scattered beam being

absorbed, or, what is the same thing, without suffering transi tions into

channel 2.

In spite of being more difficult to handle a three-by-three matrix,

a zero-effective range formula

k cot 61 = 7 Ai — a^ + ibi
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can also be obtained for .the K p system in the isotopic spin channel

1=1 (Dalitz, 19o2; Matthews and Salam., 1959).

The possibility of describing the K"p interactions by a zero-effective

range theory was suggested by Jackson 9 Ratfenhall and Wyld in 1958. Some

refinements dealing with the Coulomb effect and the mass difference between

the K°n and K~p systems were introduced later. The principal developments

of this theory can be found in Dalitz and Ttiai\ (1959) 2nd Dalitz (19o2). The

last work has an extensive bibliography on this subject.



13

CHAPTER II

k""N Complex Potentials

L Introduction

The aim of this chapter is to translate the strong nuclear forces involved

in K M processes into terms of two phenomenological complex Yukawa potentials,

dealing with the interactions in isotopic-spin channels 1=0 and 1=1.

~(uT + iv-jje- */t>r ‘ (2.1)

The Yukawa shape is chosen in agreement with the short range nature of the

nuclear forces and the complex factor is assumed to deal with the A, I and m

production in KN interactions, interpreted as absorption as it is explained in

Chapter I.

In (2.1) Uj and v^. are constants for the same I, b is the reciprocal of

the potential range a(= 1/b) and r is the distance between the meson and the

nucleon.

The range of RN interactions is taken equal to the kaon Compton wave length

a = h/ix.c =0.k Fermi (2.2)

The reason for this is the following: the energy conservation principle is

violated if a virtual meson (rest mass m^., rest energy AE = m^c2) is emitted by

one nucleon at rest. But this violation does not matter if it occurs within the

limits imposed by the time-energy uncertainty principle AE.At^h. This implies

•chat the virtual meson cannot live longer than a period of time

t hjm^c2

In such conditions, the distance covered by the virtual particle during the

time At must be smaller than cAt h|m^c, where c is the velocity of light - the

maximum velocity. Therefore (2.2) is obtained.
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Relativistic effects (see Appendix A) are so small for K~-laboratory momenta

below 300 MeV/c (the largest momentum considered in this work) that they are

discarded here and in the following chapters*

No attempt is made at this stage to consider the mass differences of the

particles in the same charge multiplet (R or N), because the K~N phenomenological

potentials to be derived here are not used in the actual calculations of K~d

collisions.

Labelling K and N with indices l and 2 respectively, the isotopic-spin

dependence can be expressed by the potential

Z(r) ■= V CO •+ VCr) Pjz (2.3)

P12 is ^he isotopic-spin exchange operator, which, as it is well-known, is

related to Pauli’s spin operator 5, with components

, “ ( i 4p\ > = (z o) > Sz' C o -i)

by the equation

Representing now the isotopic-spin functions for R and N 'charge multiplets by

1 jl
The isotopic-spin functions for the KN system are



Those functions, when subjected to the operator 2 C d } • C^..) j 6^ve

y cd. f2-) i j-2 — ®
'iJz yi,lz

Ischia;] V Ci,z) = - 3 \) (.<2.)
Zo,o • /o/O

so that r\

Y. •= y , lz--'Llo,-£
/I Jl Zd- /Iz

C y ci,u -'/m (2’6)
/Oz0 ioiO

In K~d scattering processes, the meson-nucleon basic interactions are K~p and

K~n. The charge conservation principle implies selection rules on the possible

isotopic-spin states given in (2.5)*  Thus, the pair K p(l^ = 0) has just two

states Q(l>2) and Yo c/1*2) and the Pair K"n^Zz = only one Yi i1*2)*

The wave functions and Schrodinger equations in the meson-nucleon centre -of

mass system for K p and K n interactions are:
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for K~p processes1)

1

for K~n processes2)

equations k is the wave numbers and y is the reduced mass of theIn the above

K”N system:

In case

p = mm^|(m + mK) where m is the nucleon mass.

1) Schrodinger equation givest taking into account (2.3) and (2.6)

(,V!

Multiplying both members of this equation first by Yq Q(lt2) and secondly by

Y| o(lf2)t two partial differential equations are obtained:
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(_VL 4 k.\) U.oCf) - f- 4. VCfJ - VC* 1)] Uo Cl” J (2.7)

C V!+le9 al cr) -- [- 4 IM + VCrJj ui (v) (2 S)

In case 2) only one equation is obtained:

( O) = 4-7(1')] (LCv)

analogous to (2.8), except .for Coulomb interaction.

It is now obvious that the two nuclear potentials in equation (2.7) and (2.8)
/

must be identified with the Yukawa Wells (2.1): ’

1=0 VO) - VO) = - t"° + i £ /bi" (2.9)

 -br
1 = 1 U(V) 4 N(r)= -C U1 ■* 4 I (2.10)

i

The following sections of this chapter are devoted to the calculation of these

potentials from the K~p experimental data.

2. Ross and Humphrey^ sets of K~p scattering lengths

As it was explained in Chapter I, the K p interactions for K~-laboratory

momenta below 300 MeV/c are described, besides other elements, by two complex

scattering lengths Al(a a^ ♦ ibj), I =0, 1, where I is the label for the isotopic­

spin channels
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Following these ideas, Ross and Humphrey made a complete analysis of the

K p scattering data in this low energy region in terms of six parameters

(Ross, 1961):

1) The two complex scattering lengths Aq and related to the respective

6-wave complex phase shifts 6° and 61 by the zero-effective range formula

R eX SL - -- **I  -» L (2.U)
f

2) The ratio E of the A production to the A + E production in channel

I = 1 at rest;

3) The difference in phase angle <p between the matrix elements for Ett

production in channels 1=1 and 1 = 0.

Two possible solutions, I and II, were obtained by Ross and Humphrey for

these parameters (the A^ are measured in fermi):

(the numbers between brackets are the errors affecting the calculated parameters)
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The answer to the question of which set of possible solutions is in better

agreement with the experiment is left for later chapters.

A relation between the u^. + iv^ and the 6^ = (aj- + iBj) must be found now to

calculate the nuclear potentials (2.1).

The work carried out by Ross and Humphrey on the computation of the A^.,

takes into account the Coulomb effects and the mass difference between systems

K°n and K p in such a way that the 6^ in (2.11) do not include the electromagnetic

interactions. Therefore, the phase shifts 6^ are related to the asymptotic form

of the S-wave radial equations derived from (2.7) and (2.8) with the Coulomb

term missing.

In such conditions, a variational principle which, with the help of a trial

function relates the 6^ with the constants of the short range potentials (2.1)

gives the desired relationship.J In this chapter, Schwinger’s variational

principle is chosen.

3* Schwinger’s variational principle

In the following pages the generalization of this principle (Lippmann and

Schwinger, 1950) to complex potentials is carefully examined.

Let W(r) represent any one of the spherical symmetric complex potentials (2.1).

Then, the L-wave radial equation derived from Shrodinger equations (2.7) or (2.8)

without the Coulomb term is . •

= WCr)\i>L(.v) (2.12)
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where

^(r) is the regular solution of (2.12) at the origin.

(2.13)

Because the .

potentials (2.1) are such that rW(r) -> 0 when r 4»l( r) admits the

normalisation

(2.1U)
,1

‘(where 6^ = a^ + i0^>aL being constants from the same k) 

and its regularity at the origin implies the boundary condition

ripT (r) -> 0JU
r -> 0

(2.15)

The linear operator is associated with the Green’s function (Messiah, 

1962, p.818):

O .r') s jt(2.16)

(see Appendix C for the definition of J^(kr) and h^(kr)),t which satisfies the

equation

In (2.16) r< (r>) is the lesser (the greater) of r and r*.

With the help of (2.16) it is possible to transform (2.12) into an integral

equation

, Od + ay) wj (2.18)
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This expression of is obviously a solution of (2.12). To see that it is so,

one only needs to apply f^ to both members of (2.18), taking into account (2.17)

together with the equation

fLJL(kr) = 0 (2.19)

Then (2.12) is obtained.

Multiplying. (2.12) by jr(kr) and (2.19) by ipT(r) and subtracting the last

result from the former one gets

or

WO)

Integrating both members of (2.20) between 0 and <», and considering the boundary 

condition (2.15) as well as the asymptotic form (2.1U), an integral expression for 

phase shift 6r is obtained
Ju

/ ^4. J, -- - i,C*rjW(r)  (hcrjr*̂  (2.21)

with (2.21) it is now possible to show that the integral solution (2.16) of

4>^(r) leads also to the asymptotic form (2.1^).

In fact (2.16) gives
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■=- iLor> -
J /r

k ^(kr) i(k/) Wtr') (|>L(r') r'xch’1
t\ L JoJi

co

_ j Clerj £, (kr'jWtv'J & (>9 r1 (2.22)
Jl . Jr

where r + «, the second integral in (2.22) vanishes and considering (2.21) and

the asymptotic forms of snd h*(kr) t one gets

(kr) —> /«*(!«>'-  L^) ■>■ £lCk‘'~

Now, let the scalar product of two radial wave functions fj(r) and’f2(r) 

be defined by the integral

Introducing the linear operator g^» so that the equation

C**)  - 4- W <pL (2.23)

is exactly the-same as the integral equation (2.18), two important functionals

can be defined in very simple terms, using the notion of scalar product:

aW = (2.2U)

bM'5 - Wg*W)ip> (2.25)

It is clear that Afy] and B[jj/] are equal when ip = 113 (2.23) shows. In

this case they are related to the phase shift 6r by
li
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Z A1 k
Vfcth (2.2U) and (2.25) it is possible now

(2.26)

to build a third functional

t|>] jD

which is stationary for ip = that is, for any arbitrary variation dip of ip

in the vicinity of ip^, the corresponding variation 6T of T vanishes.

6T is given by

?A A2
<5T = -r—6A - —y<5B (2.27)Id n

where

6A = <dip, Wy_ >I*

and

6B = + 6B2

with

6BX = «5ip, W(1 - g*W)^>

<5B2 = <jp, W(1 - g*W)6ip>

The two variational terms in 6B are equal either for real or complex potentials.

This is the essential step in the demonstration of Schwinger’s, variational

principle, because, if 6Bi = 6B2, the stationarity of T[ip] for ip = ip^ is proved.

For this value of ip one gets

<5B[^L] = 26A0J

and, from (2.26) and (2.27) it follows that 6T|>l] = 0.
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To prove that <5Bi « 6B2, it is sufficient to show that

2h

+LlV^ip ltL(kr) jL Ckr) Wt v") S^Cr1) T'Vp' 4.
Jo

(00
+ it tier) I^CkrywCryJ^^'Jr'^r' (2.28)

J Jr
*tvo double integrals resultj when calculating <ip>Wg^W6ip>. The first is

I
(2.29) ■

of (2.29)The domain of integration is

(II.l)the squared region in Fig But

(2.29) can also be calculated by

integrating first with respect to r and

secondly with respect to £ In this case

one gets

Fig. II.1

y*.

o

tytrjWCr) iLCkr)r^,
^0 ' Jo 
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This integral is formally the same as the one that is obtained from <6^,Wg^Wtp>

in a development analogous to (2.28):
. oo

o J r

A similar proof holds for the equality between the.double integral obtained from

the second term in (2.28) and the first double integral in the equivalent

development of <6ip,Wg^Wip>. Then

6B J — 6B2

In this proof no restriction was made on the nature (real or complex) of the

nuclear potential W(r). Therefore, the extension of Schwinger’s variational

principle to complex potentials is achieved.

Equations (2.26) lead now to the variational formula

(2.30)

which can be transformed into a more suitable expression, if the real Green’s

function

(2.31)

is introduced. In fact, because
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one gets

This equation, combined with (2.2^) and (2.25) gives

6W - < ip, w (1. - i
7v

Therefore (2.30 can be written

(2.32)

kczrt IpL jlVCl- glWjlpl > (2133)
vpL> |a/Jl >a

This is the common form under which Schwinger’s variational principle is known.

Equation (2.33) has the advantage of remaining invariant for different 

normalizations of and for any alteration of this function in the region where

the short range potential W(r) is vanishingly small. Such properties, associated

with the stationary character of (2.33) for any trial function differing slightly

from within the potential range, make Schwinger’s formula very accurate.

U. The zero-energy S-wave approximation

As Table 114- shows, the data available for building the potentials (2.1)

are the complex scattering lengths A^ (I = 0,1) related \ £.0. the S-wave complex

phase shifts 61 by (2.11). A good S-wave trial function will solve, then, the

problem of finding an expression that relates the u^ + iv^ in (2.1) with the 61.

The Uj + iVj calculated in this way depend on k. But Table IlX shows also that

the scattering lengths are affected by large errors. Therefore, it is a reasonable 
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assumption to calculate the potentials (2.1) only for one value of k:k = 0.

This approximateion brings several simplifications to Schwinger’s variational

formula (2.33). Putting

-> o

where ip(r) is the S-wave trial function and considering that

the integrals in (2.33) give, when k ■*  0 and L - 0,

. -o

o <

(2.3U)

-» o
The calculation of tjH4 W\p> is more involved because it is a double

to —> o o

integral. Integration with respect to rf gives
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__ xp. k_ cky Ckr') £rij \b Qr'J y'^^pi —
H ' K/ Jo *Y ‘

— p ( <^f (. ^r'J W (r>) ([/ (_Y'j Y'*'  d-Y11
&r jr nr1

or, letting k tend to zero

• r Z
- ^,Ai I £ w (k J acr1)

L £
r'^r' 4 J^WO'J LL^>)drl

Therefore

Lth-t ZL t|> f W ^.p W lp =
k? -> o *.00 f r

I W 6rj w (hj - / wC^') by’1) y'^r' —
lo

- [ ~Vv Qr) n (fiY </-f. \ CY”) b(.CY') dY*
Jo y J Jy (2.36)

The double integrals in (2.36) are equal, as the technic, used before in

proving that 6B], = 6B2, shows. Then, dropping the index I in the phase shifts 61

and the scattering lengths A^, one has

| f W (Y1) LtOJ Y
______________ L Jo __________________J__________ (2.37)

I
<^O f V I 1 r<XD
W(r)ucr)^r WO'} «-(.?>) v‘jir1-tk/Cf] u\vjav
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5. The zero-energy S-wave trial function for a Yukawa well

Consider the dimensionless complex constant

z • > 1
b2

where u + iv represents either uq + ivQ or Uj + ivj in (2.1) and Id is the

reciprocal of the potential range (2.2). From (2.18) the integral form of

ij»o(r) for the Yukawa potentials (2.1) is

When r tends to zero, (2.38) gives, putting 0(r). = ^m^Q(r),
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A, defined by (2.1+0), is an integral form of the scattering length. The

same expression is also obtained from the definition kcot<SQ = 1/A. This relation

implies that <$o •*  kA when k ■*  0, so that the substitution of kA for in (2.20)

leads to (2.1+0).

The iteration of ip(r), using the integral equation(2.39) as the recurrence

relation, gives now the trial function.

The Bom approximation for ip is obviously given by choosing =1.

one gets

(p = d [I - 7^) (2M
b • J

where •

Z \ b i(o) • . .
The Bora approximation A for A can now be obtained in two different ways:

either from the asymptotic form of (2.1+1) putting r -*•  «, which gives

A(o) = | (2.1*3)  :

or directly, calculating the integral (2.1+0) with = 1, giving the same .

result (2.1+3).



31

(2) ( 1)
To obtain ip (r), ip in (2.39) is set equal to

I*If it were possible to move the factor (1 - e ) outside the first integral

br '*in (2.i*M  and the factor (1 - e )|r outside the second integral in the same

equation, it is obvious that i|/2\r) would be proportional to (1 - ebr)|r, as

it is i/1), so that a formally very simple trial function could be obtained.

Writing then
_ / - tnz M i-r f z -
-Lj (.r) - £- (.1 - £ ) Y

Jo J y y i

the two functions Ii(r) and l2(r) must be compared respectively with

It is clear that

(2.U5)

The relation between l2(r) and J2(r) is not so simple as in (2.^5), unless

an approximation is made. However one thing is evident: I2(r) * J2(r) for

any r in the interval (0, «). Then the limits of
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when r ■*  0 and r ■*  00 give an estimate of the ratio R(r) in this interval:

1 i h4 (-? ) —
Y -> o

> >Ql- a.

(see Appendix B for the evaluation of this integral) and

Uh4 /?OJ Louzi J-z^^ __

I- -by- izyn A. - & _- A.
Therefore, making the approximation '

Iz(r) “ ^Jz(r)

(2.»*7)

(2.U8)

(2.1*6)  shows that, for small values of r, (2.1*8)  is nearly correct. For large

values of r (2.1*8)  in the light of (2.1*7)  is a bad approximation. However the

error made in (2.1*8)  is not so important if it is borne in mind: first, that

l2(r) or J2(r) are vanishingly small when r ■*  »; secondly (as it is remarked at

the end of §3 of this chapter), that the behaviour of the trial function in the

region where rW(r) ■*  0 does not affect the accuracy of Schwinger’s variational

formula.

Therefore, using relations (2.^5) and (2.U8), '(r) becomes

1 r K-
and the trial function is now given by
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Putting r * o’, (2.50’ shows clearly that the scattering length is, up to the

first order approximation,

A = A(°) + A^ = Al + A (2.51)
□ 0

I

But the expression for the scattering length (2.51) can be obtained directly from

the definition of A. In fact putting in (2.^0) 1 one gets

zA I ^~b(l - 2?

Jo lb

so that the result (2.51) is reached again.

It is now clear that using the approximation (2.H8) for successive

iterations of one gets

L = o L -I r

and, therefore, a good zero-energy S-wave trial function for Yukawa potentials

is

4>(r) = 1 + Al - ebr) ' (2.52)
r

Putting i/>(r) = hLlL ’ and choosing another normalization for £2.52) (Schwinger’s*
r

variational principle is invariant for different normalizations of see S3)

the following trial • function for u(r) is obtained (Bethe,’19^9):

u(r) = (1 - ebr) + f (2.53)

The behaviour of (2.53) is analogous to that of the regular solution of the

S-wave radial equation (2.12) with k and L equal to zero and ip (r) = r7
* r
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- br
z b JL ~ o ■ (2.51*)-

d^r Y '
”U(r) and UQ(r) vanishes when r = 0 and both have the same asymptotic form

uo!r) * (1 * r>
(2.55)

r -> co

6. The zero-energy variational formula

From

(by definition Z = 2p(u + iv)|(hb)2 and W(r) = - (u + iv)e |br) it is clear that

the expression (2.37) for the scattering length A can be written

-1^
A - 2ifrr2 <2-5«>

Substitution of u(r) by the trial function (2.53) in K (i = 1,2,3) leads now

to the expected relation between A and Z.

Putting S = bA and considering that the K expressed in terms of S are

given by (see Appendix B):
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one gets from (2.56)

£> + s2' +
4. 4 3(aS 4 (.4/4 4 2, L<r^ (.4/3_)J 4 (. 3S./.2.'] j S3

C $ - (2.57)

or

2 =___________ S 4- Sa -V Q. A877S3____________
i+ 1.55 -v O.gXi’MS*  + 0. 46355*

(2.58)

The purpose of this chapter is achieved: the relationship between Z and A

is given by (2.57) or (2.58), the zero-energy variational formula.

In (2.57) Z depends on the product S = bA, rather than on b and A’separately.

This is in good agreement with the structure of the S-wave radial equation (2.5^).

In fact, making the transformation p = b^in this equation and its asymptotic

form (2.55) one gets

and

(f) Z -g f Un(!>) .= O
P

~ ( A 4 -X-')

(2.59)

(2.60)
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Both expressions show clearly the dependence of Z on S. Furthermore, (2.o0)

means that for large values of p, uq(p) behaves like a (complex) straight line.

Generally this straight line makes a non-zero angle with the p-axis. But for

a particular value of Z (the one for which S =oo) the asymptotic form of uq(p)

is parallel to the p-axis.

It is evident from (2.59) that this value of is independent of b,. The

same conclusion is reached from the variational formula (2.57)> putting S •*  ®:

(2.61)

calculated directly from the differential equation (2.59) by numericalS

integration is given, which is in very good agreement with (2.61).

This shows the consistency of .(2.57). In the next section, the value of Z for

4 32Z = log log = 1.6934
3

7* Numerical results

The Ross-Humphreyfs scattering lengths = a^. + ib^ (I = 0,1) listed in

Table Hi give by substitution in the variational formula (2.58) (with b.= 2.5

Fermi1, according to (2:.2)) the following values for the dimensionless constants

Zi = Xi + determining the Yukawa Wells (2.1):

TABLE II.2

Ross-Humphrey1s
Solutions

X + iYo o Xi + iYj

I 1.6701 + 1O.3H56 0.3935 + iO.7836

II 1.9326 + il.0853 1.1821 + iO.1679
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To check the accuracy of the variational formula (2.58), a numerical

integration of the regular solution uQ(r) of equation (2.51*)  was carried out in

a Ferranti-Mercury computer with Z set equal to each one of Z^. ( = + iY^)

given in this table. The results of the numerical integration are

TABLE II.3

Ross-Humphrey’s
Solution a^ + ibj

(ORIGINAL
I )

(CALCULATED

(ORIGINAL
II )

(CALCULATED

-0.22 + i2.7H

-0.30 + i2.66

-0.59 + iO.96

-0.55 + iO.93

0.02 + iO.38

0.00 + iO.38

1.20 + iO.56

1.20 + iO.57

Inspection of Table II.3 shows that the accuracy of the variational

formula (2.58) is good, so much so that the errors’ that affect the original

Aj (= a^ + ibj) are larger by far than the errors arising from the calculated A^.

A numerical integration of the differential equation (2.59) was also

effectuated to obtain the .Z-value that corresponds to A = «. As the asymptotic

form (2.60) of the regular solution at the origin of (2.59) shows, must
. ap

vanish for p large. The determination by trial of the best value of Z whi’ch

satisfies this condition was worked out in a programme for Mercury. The result

of the numerical calculation is 1.680, not very far from the variational

evaluation 1.693 in (2.61). .
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CHAPTER III

NN Interactions

1. Introduction

This Chapter is mainly concerned with the NN interactions related with the 

calculation of the form factors which, as it will be seen later on, arise in the

application of the Impulse Approximation method to the inelastic or charge­

exchange processes in K~d collisions.

In such processes the total spin quantum numbers (S = 1) of the deuteron is

conserved, because the K~-meson is spinless, so’that the np (inelastic) or the

nn (charge-exchange) resulting systems are always in a triplet continuous state.

If the wave functions of the initial (deuteron) and final states are represented 

respectively by <^(R) and 4>^(R) - here K is the NN centre-of-mass wave number
O K.

and u the spin Z-component - then, the form factor is given by

S L ji
3 “ 4. K

where h X - is the vectorial semi-difference between the

(3.1)

initial

K~d centre-of-mass wave number k and its value k, in the finala d state: 0 is the

angle defined by ka and k^.

The problem of NN interactions is far from being solved. The lack of

a successful theory of mesonic fields has switched the research in this domain 

to the attempt of building phenomenological potentials, whose parameters are

calculated from the experimental data. Such potentials conserve purity and are

invariants under rotations of the coordinate system, reflexion of the axis and 



39

time reversal. Generally speaking, they are a sun of terms', each being the

product of a function of the distance between the two nucleons by a certain

kind of interaction (central, spin-spin, tensor, spin-orbit, etc.), which obeys

the foregoing invariance laws (Eisenbud and Wigner, 19^1; Gammel and Thaler,

< \ • • . .I960). Such potentials satisfy also the principle^charge independence of nuclear

forces and reflect the exchange character manifested in them.

The first phenomenological potentials which are in a semi-quantitative

agreement (Noyes, 1961) with the experimental information,*  are due to Gammel and

Thaler (1957> 1957a) and have the general form

V(R) = V (R) + V (R)S12 + V (R)L.S, (J.2)
U 1 JLjO

where S^2 and L.S are respectively the tensor and spin-orbit operators.

The functions V (R), V (R) and V (R) are energy-independent, have a hard’
C 1 JLlb

core and take the Yukawa shape for R > R ; but R and the other constantso o

depend on the spin and isotopic-spin states.

Although an interesting attempt, the Gammel-Thaler model remains unsatis­

factory from the point of view of giving results in close agreement with the

experimental information covering a wide energy range. And the difficulty of

introducing new terms in (3.2) derived from invariance arguments remains great

(Noyes, 1961).

To cope with this situation Breit and Co-workers (Breit et al., i960, 1962;

Hull al., 1961, 1962) envisaged the theoretically rigorous analysis of real

phase shifts and coupling constants. It is also a phenomenological approach,

but has the advantage of getting rid of a nuclear potential model and dealing 
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directly with certain features of the NN systems, such as the triplet states

with same total angular momentum (J), but different orbital angular momenta (L)

the postulation of which remains yet the best explanation for well established

facts. This is the case, for instance, of the measured values of the magnetic

and quadrupole moments of the deuteron, which are very well interpreted if the

ground state of this two-particle design is considered a mixture of 3Si and 3D^

states (Sachs, 1953, 1953).

The previously cited papers give an account of different fits of the

experimental data obtained for and np systems. In this work the best fits

found by Breit and collaborators (the YALM fit for pp interactions and the
f

YALN3M fit for np interactions) are used in the calculation of the form factor

(3.1).

2. The Tensor force Si2

The definition of the tensor force S is

S12 = 2 s(§.n) - §2 (3.3)

where S is the total spin operator of the two nucleons and n the unit vector

(n2 =1) of the straight line joining the two particles.

Obviously, S12 is a hermitian scalar operator, invariant under rotations of 

the ordinary and spin space, and reflexi.ons of the coordinate and time axes.

Then, if J (= L + S) represent the total angular momentum (E being the. orbital

' momentum) of the system, qne has

S12.J2] = 0 S12,jJ = 0 (3.1;)
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Considering the comutation relation S,S2 =0, (3-3) also shows that

= 0Si2,S2 (3.5)

The conservation laws (3-^) and (35) indicate that the total angular 

momentum eigen functions form a convenient basis to establish the transformation

properties of Si2*  With the help of the Clebsch-Gordon coefficient, such

functions can be expressed in terms of the spherical harmonics and the

Atwo-nucleon spin functions X in the following way:s t

Vlsd " L>yuO)*!  (3.6)

where the indices are subjected to the conditions

- L * m < L, -S«u<S

m + p = M, |L - S| * J * L + S, -J < M * J (3.7)

Here J and M are respectively the quantum numbers of the total angular

momentum and its Z-component, the pairs (L, m) and (S, p) representing the

similar quantities for the orbital momentum and total spin. If conditions (3.7)

are not fulfilled the C.G. coefficients vanish (Messiah, 1962, Appendix C).

The commutation relations (3<M and (3.5) ensure that J, S and M are good

quantum numbers, but no L-conservation exists because S12 does not commute with L.

the previous list.

of the axes.

are transformed

to the Y^-parity
Ju

However, it is possible to add another good quantum number to

The ordinary space parity of Y^CT (which, by (3*6),  is equal

(-1)^) is conserved because S12 is invariant under reflexions

MTherefore, when S operates on the YTC , such functions
4 Lb J

into linear combinations of themselves, with conservation of parity, J, S and M.
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number of

the states with the„ Now

by (3.7) one always gets L = J and

Lo

(3.8)0

interactions

of L

(3.9)+ XL = J - 1

necessarily equal to 1 Therefore

is either proportional to

19^9» for instance)

the np Schrodinger equationConsider now a wave

to the singlet spin statedeveloped as a series of

the tensor term vanishes

uncoupled because the spin-spin or spin-orbit terms inSchrodinger equation are

the NN interactions do not mix states of different J and L

operator S12 leads to three radial equations (Rohrlich and Eisenstein, I9H9) 

JOJ

YM
JOJ

function, which satisfies

But, if the wave function represents a triplet spin state, then the 

In a triplet state (S = 1), if L > 1, the only possible values

units, so that the parity remains the same

Thus, in a singlet statefthe tensor force does not contribute to the NN

by (3.7)» are:

same J are examined. In a singlet state (S = 0)

The L’s, however, in each term of the linear combination, must differ by an even

But if L = 0, by the same condition, J is

• MBy (3.9) and parity conservation, S12YL1J
. . . Mor a linear combination of the YT._ , ,

i»x 1,1 j
combinations are given in Rohrlich and Eisenstein

LU (L ' J)

(the coefficient of the linear

the If it belongs
LioJ

by (3*8)  and the radial equations derived from the

From SX° = 0 it follows that
o



Ii3

for each value of J (except when J = 0): one uncoupled equation giving the

radial function v-^(KR), with L = J, and a system of two coupled equations

defining the radial functions v-J-1(KR) and V^+1(KR), with L = J-l and L = J+l
J d

(M is absent from the v’s because the differential equations defining them are

independent of this index). For J = 0, by (3.7), the system reduces to a single

differential equation with L = 1.

Assuming that the radial dependence of the NN interactions has a Yukawa

shape, the radial coupled equations are formally identical to equations (D.l)

and (D.2) of Appendix D. But, as it is explained in this appendix, it is

possible to construct two linearly independent solutions ( P Vj )

and ( (\fl) ) of the coupled equations which vanish at the

origin and are such that the ^’s with the same numerical index (1 or 2) have

equal phase shifts and obey the Wrouskian condition

1 4 ^3 ° (3.10)

where are the coupling constants.
M . •

Therefore, since Sj2 applied to YLSJ leaves J-, S, M and parity unchanged,

a very convenient set of basic functions to expand the np triplet spin state wave

function is the following (Rohrlich and Eisenstein, 19^9):

I J p /J-klJ
(3.11)

(3.12)

(3.13)



with the asymptotic behaviour

As (3.11f) and (3.13’) show, the phase shifts 6*?  1 and are respectively
J

associated with the mixing parameters K1 and K2. By
3 

to be the smallest in modulus of the two K’s, so that

definition K1 is chosen
y

M,J-1
j is predominantly a

T — T 1 4- 4. JL = J-l state and ip 9u a L = J+l state

The orthonormality of the Y and the Wrouskian condition (3.10) implyLib
ML..that the internal product of any two ip 9 , differing at least in one of the
y

indices, vanish. Therefore, the ip 9 are orthogonal

3. The np continuous states

Consider a np system in the spin state (S,y), when the free-neutron wave 

falls upon the proton, it looses the central symmetry, because the interaction

depends on the tensor force term. Thus, as in the case of the and for the

same reasons, it is better to express the plane wave as a series of the YM
LS <J.

This is achieved in the following way.



Representing respectively by R and ft the spherical angular coordinates
— ~ iR Rof K and R, the plane wave e * is given by (Messiah, 1961, p.^97):

e =.M-rv £ (3.1U)

If the Z-axis of the coordinate system is chosen along R, so that Q,. = 0 and

then, by the well-known expansion

x . rn a ..

Yl<R) * 5 "

the plane wave e $

1*5 , m
£ <L,S,7n,^|n/M>yL ‘ (3.15)

assumes the form, in any triplet spin state,

= <^)* (3.16)
3=0 1=13-1/ J / U1J

where

*r 4.
Cl^L= (2L4 l)4-Lzl, O, yU U/<> (3..17)

The development (3.16) indicates that the np wave function belonging to

a triplet spin state can be expressed very easily as a series of the orthogonal

functions

-- t3’18)
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J 3
where the are constantst which can be expressed in terms of the •

To obtain these relationships one only needs to express the condition that

for large values of R, the spherical wave falling upon the scatterer (proton)

is the same in the plane wave (3.16) as well as in the total wave (3.18).

Doing this, one has

r1 , -*•  Kj . (3.19)
4 4

■ (3.20)

The following relations (see Blatt and*  Weisskopf , 1952, for the C.G.

coefficients)

£ ( L?= 2,3 t 1, L = (3.22)

('3-23>

are very useful in subsequent calculations. Using them and (3.19), (3.20) and

(3.21) it is possible to prove that

i S(k-k')

where •

 3
4>“ (R) = (.n) * C«) ' (3.18')

J
Therefore (2tt)“2 £s the normalisation constant of (3.18).
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h. The np bound state (deuteron)

As it was mentioned in the Introduction to this chapter, the bound state

of the np system is a mixture of 3Sj and 3Di states. The radial equations

describing the deuteron are analogous, therefore, to equations (D.l) and (D.2)

of Appendix D, if J is put equal to 1 and K is substituted by ia with

x — Ej (E , is the binding energy of the deuteron).

V
However, in the calculations copied out in this work, only the predominant

q
Si deuteron-state is considered, so that the previous system of coupled

equations reduces to a single differential equation. Its exact solution is

approximated by the usual "Huithen" function:

where

(R) = /f
N being the normalization factor.

Taking = -2.225 MeV and m^ = 938.2 MeV the numerical value of am(3.25) is

a = 0.2315 fermi1 (3.26)

The coefficient B is calculated by means of a variational principle

(Thomas, 1937) described by Sachs (1952). If the nuclear potential has the

Yukawa shape and the range of the np interactions is taken equal to 1.18 fermi,

then B has the numerical value ’

B = 1.56^9 fermi"1 * . (3.27)

e~“*- id ~ P O 4 N (3.25)
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5. The form factor of K"d inelastic collisions

By (3.18) and (3.18’) the calculation of the form factor (3.1) reduces to

the following integrations

Il3 = CMT)i fc3ruj[^]’eiu-yo(R)dR. (3.28)

for L = J - 1, J, J + 1.

Replacing in this expression <£°(S) by the Hulthen function (3.2b), the spin

eigenfunctions xV appear explicitly in the integrand of (3.28). But the

depend on the Y^(O,(i))xV through the Y^. T. Therefore, due to the orthonormality
Li 1 LiLJ

of the XgjFonly term

< Lzi(o^npy°L(e>(l))xi =
* — 1 A v

= I /<>(.«) 2 (3.29)

belonging to the expansion (3.6) of the y!\ t into the Y*xV
LLU Li 1

remains inside the

integrals (3.28).

Introducing in (3.29) the aJT given by (3.17)> such integrals are equal to

Ij = J 6 "" (3.28’)

where the in agreement with the definitions (3.11) > (3.12) and (3.13) of
, UL .the ipT , are given by

d



or, taking into account the expressions (3.19) to (3.23)> relating the c- and a

(i ?)coefficients to J and coupling constants 9
i J

4 + (.k
□

p ty3 - Can + aj </}' C1^ ®)

(3.30)

(3.31)

SJ + l .C<»e) < «SJ tf^P ej\ (3.32)

By (3.18), (3.18’), (3.28) and (3.28’),the form factor (3.1) is obviously 

equivalent to the integration of

S3(e) = C[ dp.cKjy etl”'} 4>0CR)d^ (3.33)

where

i cxto L 21 6L -j
‘K 3 ]=O L-13-11

(3.3M

is shown in the next paragraph, the K1 have a very small modulus for np 

No|V it is possible to make two kinds of approximations for the As it

collisions at low energies. Therefore, powers of Kj_ higher than the first can
mJ

"be ignored in (3.30) and (3.32) so that, if the relations, derived from (3.10),
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1 . W)*  .. otf 1

•* .4. -> OiV1 ' i - <Xf? " i-.+ <V‘7 (3-35)

are used, the for L=J-1,J+1 become in this approximation' (see theJ
asymptotic forms of in (3.111) and (3.131))

P (3.30’)

• L
A second approximation for the ib consists -in the substitutions

<J

(3.32’)

— p U] , K] pOj'(3.36)

where (Jr(p) and nT(p) being respectively the snherical Bessel and Neumann

functions) , •

t L <5 i r C • r I / - X P . *1
U!jCf) = e 1(f) -t e )-nL<pJ (3-37)

the constant Z inside the dumping factor (1 - e ) is put equal 0.8 fermi~ ,

the reciprocal of the range of the NN interactions (1.18 fermi), so that the

(pU)’s and v-’s are the same when R > 1.18 fermi.. The exponent (2L+1) was chosen

in such a way that the U^Cp) behave for small values of p like uncoupled radial

wave functions arising from short range interactions

RL (3.38)

This is a reasonable assumption because the behaviour of the xMs is affected onlv

in a region where the errors are negligible (Gourdin and Martin, 1959). -To finish

this paragraph, the following remark should be made on the form factor Ss(0).
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According to definition (3.1), the incoherent scatterings due to different

spin-orientations look as if they are mixed in Sg(6)e However, this is not

the case. In fact, the physically significant quantity is not Ss(6) itself,

but the square of its modulus integrated over the wave numbers (-R) allowed by the

energy conservation principle. Considering the.orthonormality of the spherical

harmonics as well as the properties of the a^ - and - coefficients (see

(3.19) to (3.23)) a straightforward proof (although tedious) of the following

relation can be established: 

where d£ represents the differential of the angular part of the spherical

coordinates related to K.
u ~ —3 iK R u

If the np wave function i^(R) is replaced by the plane wave (2ir)"2e * Xi»

i h *Rcombination of terms having the form F (K,R)e Y“ , where F (K,R) are

analytic functions of |r| and |k|. This theorem will be helpful in the 

calculation of multiple scattering effects in K~d inelastic and charge-exchange 

collisions.

the left hand-side of (3.1f) reduces to

(of*  (|j e£ER e kJt d*

This result shows, that the factor 1/3, appearing in the definition (3.1) of

Sj(0) has the correct value.
ih RThe relation .(3.11J still holds,if-the plane wave e" is substituted by

a linear
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6. The YALM and YALN3M fits

The calculation of .Kd inelastic and charge-exchange cross-sections for

K-momenta below 300 MeV/c (in the Kd Lab system) needs the knowledge of the

first (S, P^ D) NN phase parameters in the NN Lab system energy range (0, 150 MeV).

The parameters used in this work (see §1) are those belonging to the YALM and

YALN3M fits obtained by Breit and co-workers.

Breit defines the phase shifts (O^"1, 6^+1) and mixing constant (p„) of two
J J

coupled states differently from those which are given by the asymptotic forms

(3.11’) and (3.13‘) of and 6^+1 and K*
J J J <J J •

However, he gives the relationship between his parameters and those 

(5 , 6 , e) used by Blatt and Biedenharn (1952), which are related to
cc p ’J

J+1 i ’
oT and Ki.- by the equationsu J

Therefore, putting P rl-d c5-U
= eY4- ~ ,

one has (see Breit et al. i960)

tcU4_ A j 4 S-]

4 S-J

and, by elimination of £ in (3.1*0  and (3.1*1),

(3.39)

(3.1*0)

(3.hl)
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(3.1*2)

(3.1*3)

Thus, from the values of the corresponding O’s and p's, the 3's and K's can be

evaluated for the’YALM aid YALN3M fits (Tables (111,1) and (111,2)) by means of-

(3.39), (3.1*2)  and (3.1*3).

Table III.l ■

1=0, np. Interactions, Y A L N 3 M fit

E(MeV) <51 (k})2 ,2 4 (K|)2 O
1

LU
 -T

5 2.0652 -0.0030

10 1.7956 -0.0111* •
•

15 1.6301* -0.0221 1

25 1.1*172 0.00 -0.01+65 0.0108 0.66 . -0.0090

50 1.1137 -0.1063 0.0312 -0.0261

100 O.7856 0.01 -0.201*7 0.0689 0.50 -0.0561

150 0.5185 0.09 -0.2831* 0.0972 0.1*6 -0.0308

tcuyt A Si ZCbw 6.

4 tftn'3'A 63

Table III.2

1 = 1, pp Interactions, YALM fit

E(MeV) «2 (4)2 K
J

25 0.0501 0.12 -0.001*1

50 0.1150 -0.0050

100 0.2138 0.05 0.0009

15© 0.2701* 0.01* 0.0072
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Tables (III.1) and (III.2) show that the errors made in discarding the

powers of kJ. higher than the first in the coupled states with J = 1,2 do not

exceed 12%. This is a reasonable approximation if one bears in mind that the

error made in using the Hui then function for the deuteron, amounts to 20%

of the np system ground state (the deuteron spends of its time in the D

state). But for J = 3 one gets (K3) 0.5; the previous approximation, then

is no longer acceptable. However, due to the smallness of £63. (= 63 - 6.3)

it is possible in this case to obtain again

for the approximation of

.in ^(R).
4-

741

3

In fact, considering that
A r • n cJ » 1

Aot is small, v ’
J J

suV1 3

U3-i _ aS-j ^1'*3 Tsr1

(3.^5)

, 2.J-1and v- ’ are given by

for R > 1.18 fermi (range of the NN interactions). Then, taking into account

the relations (3.35), (3.^5) gives

v (213+1) (- ol.1 P,,^\
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The last term in (3*̂6)  for J=3 never exceeds 9# for NN Lab-energies below

150 MeV as the calculation of (k|)2A63 from Table (III..1) shows. Obviously

this term is valid only for R > .1.18 fermi. But it is reasonable to admit

that the modulus of its exact form for R < 1.18 shall not differ widely from

the modulus of the approximate expression in (3.^6). ’ Therefore, here again

the approximation (3>M*)  for (3.^5) holds well.

The pp phase shifts are calculated by Breit and collaborators in such a way

be added to them in order to obtain the actualthat the Coulomb phases must

phases (Breit et al., 19o2)

the following (Jackson and Blatt, 1950):

Therefore, a further correction is needed when

the pp triplet phase shifts <5^(p,p) are applied to np systems. The relationship

between the 6^(p,p) and the corresponding 6^(n,p) phases used in this work is

C a
(3.^7)

where Cq is the Coulomb penetration factor

2. -
C 0 - . (3.1*8)

The parameter n, given by . •

7L _ ynt ea (3.1*9)

(e is the proton charge), is expressed in terms of the NN Lab-energy, ETob, by

or

(3.50)

(3.51)
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if Et , is measured in MeV and K in fermi~\ Therefore,• Lao ’

i
n = 0.1581 E2 ,

Lab

Table (III.3) gives the np phase shifts for P-waves:

(3.52)

Table III.3

E(MeV) 61
0 4 .

5 0.0391 -0.022U 0.0552

25 0.1823 -0.1113

50 0.2232 -0.1802 0.1233

100 0.1657 -0.2661

150 0.0716 -0.3378 0.2815

For the actual computation of the Kd inelastic and charge-exchange cross­

sections, the available values of P and D triplet phase shifts belonging to

the NN Lab-energy interval (0, 150 MeV) were fitted by curves represented by

polynomials. Apart from 6° (the S-vave phase shift), however, for energies of

this interval below 25 MeV, the polynomials were replaced by

= A2L+1 (3.53)

The phase shifts given by (3.53) have the same behaviour for small values

.of K as those which are obtained from uncoupled Schrodinger radial equations for

short range interactions. The relations (3.53) are the logical implications

of the assumptions (3.38) relative to the behaviour of the U^(KR) for small 
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values of R. The law used for theS -wave phase shift when K tends to zero is:

6° ■> 7T

K -> 0
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CHAPTER IV

Formulation of the K~d Problem

The Elastic Scattering Amplitude

Fig. IV.1

where

The Schrodinger equation of the

K~d system referred to the three-body

centre-of-mass G (see Fig. (IV.1))

is

hyd(?,R) = KY (?,R). (U.i)a a

Hc-i 4 Y0CR) •*  V4(r4|)+ Va(f-£) (U.2)

In the hamiltonian p represents the K~-reduced mass with respect to G, 

related to the meson and the nucleon masses m^ and m by

1 _ 1,1
P " 2mN “K (U.3)

and V0> Vx and V2 are two-body potentials. Vq(R) gives the interaction

between the two nucleons; V2(r + —) and V2(r - —) represent respectively the

K"p and the K~n interactions. For the moment the isotopic spin dependence of 

these forces is not specified.

The wave functions <f>a(R) 8X1(1 energies of the scatterer (the np system) 

satisfy the equation
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a vocs)]^c«) -- n.i,)

and their normalisation is such that

j &<■*)  'r (1,-5)
By definition (h.H) represents the deuteron for a= 0.

In a K~d collision, the initial and final states of the system are

represented respectively by

K- . ‘k-

where

ifki * w = = t
3,^ • ° X/U

Defining the kinetic energy operator by

(U.6)

(O)

and putting

Hq = K + Vq,

both 4> and <!>, are solutions ofa b

(E - Ho)^a>b) =

(U.S)

(U.9)

(U.10)

Using the Schwinger-Lippmann (1950) formalism, the solution of

equation (h.l) can be Written

V = 3> ■*  --------it11-11’
±a Ta, 6 Ho 4 it **

where e is the usual small positive quantity which insures the regularity of
' * »

the operator (E - Hq + ie)-"1 and the existence of outgoing waves in the

a-channels



6o

Considering now the transition operator T, defined by

T = v -y*.  > V = + vx (u.i2)

the transition matrix element from the initial state _a to the final state b

is given by

30 (U-13)
Multiplying both sides of (U.ll) on the left by V, using (h.12) and taking into

account that the result of these operations holds for any # t one obtainsa

T = V + V------T (H.1U)E - Hq + ic

The aim of this Chapter is to express the transition matrix elements (k.13)

(with T given by the integral equations (U.1U)) in terms of the two-body

interactions arising in the K”d system.

A first step in this direction is to relate T with the transition

operators (i = 1,2), defined by

V.Y . = T.4>1 a,i 1 a (U.15)

where Y .is thea,i

waves sent by the

K~-outgoing wave arising from nucleon i., ’’cleaned” from the

other constituent of the deuteron. Therefore, Y . satisfiesa,1

th© ©Quatien

(e - Ho - v.)y . = o (H.16)
1 t*  11

and T^ is given by

T = V. + V.-—i—r—T.
ii i 1E - Ho + ic i
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Putting

G = E - Ho + is (H.18)

T and can be written

T = (1 - VG)-1V, T£ = (1 - V.G)”1^ (U.19)

Considering (U.19) and that

(1 - ViG)“1 = 1 + (1 - V.G)-1V.G,

a simple calculation gives (Schick, 1961)

[1 - (Vj + V2)g]vx =

[(1 - VjG)(l - V2G) - V1GV2g]"1 =

[(1 - V2G) - =

(1 - V2G)[1 - TiGT2g]t7X =

(1 + T2G)(1 - T1GT2G)T! •

so that, using again (^.19), the operator T admits the following development in

powers of T; and T2:

T = Tx + T2 + TiGT2 + T2GTj + TjG^GTj + T2GTjGT2 + . . . (h.20)

In the next paragraphs, the convergence of this series will be discussed

and approximation’s methods given to calculate its terms.

2. The Impulse Approximation

This method will be used in the calculation of the matrix elements

(#, ,T.4> ), i = 1,2. Its fundamental assumption (Chew and Goldberger, 1952)d i a ~

consists in neglecting V0(R) in the operator G given by (U.18). This is

equivalent to considering the two nucleons as free particles during the

meson-nucleon collision’s time.
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But, due to the time-energy uncertainty relation, no external interaction

can reveal the binding forces between the constituents of the deuteron, if it

does not cover a period of time at least equal to h/|Ed| (Ed is the binding

energy of the deuteron). Therefore, if the K~N collisiontime is much

shorter than h/|Ed| , the fundamental assumption of the Impulse Approximation

holds good, because the subsequent evolution of the three-body system cannot be 

altered very much.

Representing by v the velocity of the kaon in the K~N centre-of-mass

referenda! and considering that the range of K N interactions is 0.4 fermi

(see (2.2) in Chapter II), the condition for the validity of the fundamental

assumption can be written under the fora

12—El « 1 (U.21)
hv

The simplifications brought by this hypothesis on the formulation of the

K d problem are now analysed.

Equation (4.10) reduces to

where

(En-K)Xn =0

H2K2
----- - = Enu n

h2k2a
2p

(U.10')

(H.T’)

K being the wave number of the deuteron’s internal motion.a

The solutions of (4.10’), the permit to define the approximate

transition operators t. (i 8 1,2) by

Vn.i’hX,, (k.15’) 
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(E - K - Vjip . = 0n 1 n.i i = 1.2 (11.16')

Corresponding to the exact

(*uir )V.

The fundamental hypothesis the Impulse Approximation is completed by two newof

assumprtions , complementary each other (Chew and Goldberger, 1952):of

1) The incident kabn never interacts simultaneously with the two nucleons;

2) The amplitude of the

altered by the presence of the

K~-wave falling upon each nucleon is^sxightly

other constituent of the deuteron.

where the satisfy the equations

t^ are, then

t.
i

equations (4.16).• The integral equations .for the

-____1____ t
iE - K + ie in

Fig. IV.2 .

The transformation of one set of

The set of coordinates (r,R) has

been used in the previous formalism..

However, to deal with the
t

assumption 1), it is more convenient

that the wave functions have for

coordinates (X,D) or (Y,V) (see

Fig. (IV.2)), according to whether

the kaon interacts with nucleon

1 or 2.

coordinates into another implies also the

knowledge of the relationships between the corresponding wave numbers. In the

following pages, the transformation laws for these quantities, neglecting the

relativistic effects (see Appendix A), are obtained.



6U

Suppose, then, that (Fig. (IV.2)) G is the three-body centre-of-mass and

Gj.j represents the centre-of-mass of particles i and j. If rQ, r^j and r^ 

are respectively the coordinates of G, G. . and the i-particle with respect to

an inertial frame of reference, one has

(21^ + + n^CFj + P2) (1*.22)

R = r2 - (^.23)

r = r3 - r12 = r3 - ri g (U.^H)

Multiplying both sides of (U.23) and (h.2H) respectively by and

(see (U.3))j i.e.^the reduced masses related with the motions defined by Hand

r, one obtains

R - W-A'n) (U.23*)
2, " 2/ X

11 r - & W . )nK+ w. 2y')
' CAtn/f + vn*)  Cazn/f + wx)

Now, if the wave numbers k^, RG, R and E, associated respectively with

the coordinates r^, r0, R and r (so that n^Fj = hklt etc) are introduced, one

gets by differentiation with respect to time of equations (U.22), (^.23') and

(^.24’),

Kr = 1 Ei ^-25)
k ’ lIsJL

£ = <,‘-26>

■ ■ It . WK (•£, jE.) (U.27)
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as well as

_ _ 3
K- ro 4 K.K a k.r * £

G L «4.
(U.28)

Representing respectively by (pt k^) and (q,Ey) the wave numbers 

associated with the sets of coordinates (X,U) and (Y,?), two relations 

analogous to (U• 28) for these coordinates hold. Thereforet one gets

• K.R + k.r = ku.U + p.X = ky.V + q.Y ‘ (U.29)

Suppose now that particle 3 (kaori) interacts with particle 1 in such a

way that particle 2 does not participate in the collision (assumption*  1).

In these circumstancesf‘the motion of the three-body system must be described

in terms of the coordinates (X>U) rather than in terms of (rtR).

From Fig. (IV.2)

X - r -+ 2 (»*.3O)
a

U = 4 - r Y -
1 } 31 +

or

U = R  --------- - X (U.31)
-t W

Multiplying both sides of (.30) and (H.31) respectively by the reduced masses 

associated with X and U and applying the procedure used in the determination of

K and k as functions of the kp the following relations between (ptk^) and

(k,K) are obtained;
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b . + y^K K (U>32)

2(7n/f+7r>g) +

fc _ K - -1"R (4.33)
u

Now, if kj. is’the i-particle wave number in the intertial system before 

the collision, after this event (supposing the kaon momentum transfer equal 

to ha) such wuantities become

k'i + a, k2> k3 - a

Therefore, if K^, K& and k& are the initial values of and k respectively

the final values of.the same variables are, by (4.25), (4.26) and (4.27)

K*  = K* (U.3M

= Ka - & ' (4.35)

k^ = ka - cF (4.36)

The relation (4.34) means that the motion of the three-body centre-of-mass

remains unchanged.

Finally, by (4.32) and (4.33), the initial (p&, Ka^) and the final

(pb> k^) values of the set (p, i^) are such that

when there is no excitation or break-up of the constituents of the deuteron.

• p, - p - aPb a (^.37)

-b ,-ak = ku u (U.38)

In (4.37) one has •

• lpbl = lpal (^.39)'
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Now, if IL in the matrix elements

. (*.*>»

are, substituted by the approximate transition operators t^, given-by (^.17*),

one gets
t;$ = ti Sl*r><XI<jV

XG V
or, by (.15 ’)

t£ ik= s i
Indeed, the x as well as the ., given respectively by (H.10’) and (U.16p)r r ,i

form complete sets of orthogonal functions and are supposed to be normalised

in such a way that

The explicit expressions of x andr r 11 (i=l) are, then,

(U.h2)

and

( Y )where ib- <- Arp,k

4 ( K-/? + !?< r)
e

U (x,u) =
1 r,-l

J_ X - Cx)
(-£703 I

has the asymptotic form

(U.U3)

(U.hU)

(U.l»5)

This wave

process’. The

function represents the total wave in a meson-nucleon scattering
. • • • (y) —indices written explicitly in ip- A refer to the values of pp,x

and just before the collision.
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The index r in (h.h3) and stands for the set of variables (k,K)

or (p.ky) and $ in (H.hl) should be interpreted as

Now, by (^.6) and (^.h3)» one has

- i (R)^
'(Air)3j 

- fa) (U.U6)

where (K) is the Fourier component

/ - /7Tq £K) = (sir) 4 j e <pjR) clR (llJi7)

of the NN internal motion wave function <p (R) for a = 0 (deuteron).a

Therefore, (U.hl) b.ecomes

t<$a« e‘^'qeCiZ)^ ('..‘•8)

and gives considering (H.6) and (h.liO),

3 ~ I*  fob y • l/
= 4ltv )'5 e ifijfi) V41*)  e $<>

But, by (^.^9) and (H.38), 

= -pb.x ■+ ku-fr - Kf#

so that T.p) can be written in the following way, if the relation
ba

X = r + f (H.30)

and (4.1i7) aro taken into account^
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where, by (U.35) and (U.36),'

= W Ea>

But lf) the two-body matrix element

(U.U9)

is a slowly varying function of K (Chew, 1950). If assumption 1’) is made,a

then representing by <p^|t^

t/ 1 reduces to
ba

T“J = SH®) ('•■so)
where •

S*(9)  = 1 A-K)] $0 (h.51)

The function S5(,0) is the'torm factor" of the Impulse Approximation. It is
1

obvious that, by (U.4?), is equal to

Q|pa> the value of the latter integral for K& = 0,

S*  (0) = J

(2)Similarly, the matrix element T^a is given by

(H.52)

r-n Ga) - f /*  _
^-50’)

where, in agreement with assumption l’)> Va^ue 

of the integral
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when K = 0.a

3. The deuteron’s recoil ,

Suppose that the K~d scattering is elastic: the final state $ t defined

in (U.6), is now given by

<£b = e‘'^r4>oC'’) (U.S')

where

|£b| = = ko.
(4.53)

Due to the deuteron’s recoil, the two-body wave numbers p,
k a,

are no‘t equal to b)*  However, the relations between them are

easily derived from equations already established. Indeed, from (^.36) and

(4•37) one gets

b)

H - pa - (M4)

and from (4.32) and (4.35) it follows that (putting K =0, in agreement witha

assumption 1’)), 

where

(4.55)

v = frx)  ^.^0 3-7 (4.56)
0 2 Tyiff + W <

Therefore, squaring both sides of (^.5^) and (^.55), adding the results of these 

operations and taking into account (4.53), one has, if 8 represents the 
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scattering angle defined by vectors k& and k^,

Ft)-
4WX / J

The coefficient C w /o^ can be neglected in this expression

because its value is *v  0.0H (m^ = 2mK) and y2 > 1. This means that the second

term in (U.55) can be discarded, so that |p, | = [p | = pa, i.e., the scatteringd a
in the K~N systems is also elastic.

In these conditions, one gets

■Iff = P “ = — 1'1 * (.(j-* - (ll’57)
„r L .

I

- (ot = J±1 U - £iLL Ort ej (Mr)
r * i <r*+  i J •

Finally, the relation between p2 (or p2) and k2 for K d elastic scatteringa  a

processes adopted in this work, will be

K ’ - . (0.1171 ka}*
(U.57")

with similar relations for q2a

ways: either as approximations

q2. They can be interpreted in two different
of (U.57) I A 3

or as the result of taking the average of the scattering angle 0 over all its

possible values. The latter interpretation is the best when the incoming

particle suffers multiple scattering
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Multiple Scattering

Consider the’ double scattering terms T2GT1 and T1GT2 in the development

(^•20) for T. If the Impulse Approximation is applied to the calculation of

the transition matrix elements arising from them, one has'

ba =
where, by (U.7'),

iblta Got, |<L>

Go = (-- (4.59)
2,/^ . -771/C.

(21) .
Now, using the complete orthonormal set of functions xr> admits the

collowing development 

is defined by equation • (^ .10 ’) for n = r’or, considering that xrt

r-p <4,1;
1 U =

Substitution of

$ frit# ( Xr > < \t 4 \ . (h‘.60)

Y - tv +
.by (h.48) in 1 gives for this

matrix element

or, introducing the assumption 1’) of §2),

<^1^1 &> = c-2-1'!1 8(
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Also, by (4.15’) one has

<%|t2|x > = <%|v2* >
M X M X j •* 9

where, similarly to ip? j defined in (4.44),

*r,2<y’^ = ^/?)elkv’V (h-62)

with
- iqy

K(y) - eiq’y + f- -($)±
QA q.,K y

Therefore, using the relation y = r - — (see Fig. (IV.2)), one has

<%lt2lxr> = (**-63)

Now, by (4.29), it follows that

= qb.y + k°.v - K^R (1».29’)

The kaon, however, strikes each time only one of the constituents of the 

deuteron (Assumption 1)), so that, in analogy with (4.38),

kb = k- (H.38.’)
V V

and finally, considering assumption 1’) together with (4.62), (4.29'), (4.38*)  

(4.64)

and K of
a

ml2*1) - ■ 1. ,

ba “ j

2,0

and the definition of g^(K) given in (4.4?), one has

^b^V =72^2e°(Rb)<%|t

Therefore, (4.60) gives
fg^Kb)<q'b|t^0|q>6(k-k^)<5|t

E - E + ien r

In (4.59), is expressed in terms of the initial values k^

the wave numbers associated with the coordinates r and R. But, introducing
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associated withwhich are the

coordinates x U:and

K2(k*)2
(U.3")+

Similarly, one gets

(4.3"’)E

(U.6U), using the relationThus, substituting in

K - $k (4.33)

becomes

2P

(U.65)h

where e redefined.has been

Equation (4.33) holds also for the initial values of the wave numbers

-1

En

ku

for Er

T' ’b,a

2"2.(31)

p2 - (p + i£)2Ct

Kby ku

=
2U31

the reduced masses P31 and P2 defined in (4.3*)>  E^ can also be related

initial values of the wave numbers. “ rato p and ka u

H2p2
2P31

involved in it. i.e.

H2(ku)2

2lW

and integrating with respect to k^, T^a

f x
ga(Kb)<qb|t2>o|q><p|t1>o|p>go(ga)dICadk

ka = Ku a (H.33')

but the f-function in (4.6H) imposes the condition ku = k*»  so that

K = K - £(k - k. )
a a

.66)

Similarly to (4.33) and (4.33’) one gets for wave numbers k^ and k°

kT - - K - S , k° = - iC^ -



and, from the same relations, by (U.38'),

4Ck -kO ■>
•A"

then, by elimination of K in (h.66) and (4.66r),

7H

(U.66’)

K|,’ Ka+ K - {CM k(J
(H.66”)

Therefore, introducing again in (h.65) the wave functions $O(R) and $0(E)
(2 1)

by means of (b.li7),'T' ’ givesba

r“,t’ _ 
a C.A1\)3

(U.6j)
(12)

The calculation of .T^a using the same approximation leads to

z yU3A f <b (*)  e v^'o jk dR.
J To

(i».67’)

The expressions for. T^1) t£2\ T^1^^ and show that they can be
ba ’ ba * ba ba J

interpreted as weighted means of the single and the double scattering terms 

arising in the collision of a particle with two moving centres, located 

simultaneously at -R/2 and R/2. The two-body scattering amplitudes at these 

points are respectively proportional to the matrix elements .

-c (■£ - _
e <?'in,0iP7

i ( J? - k■ KI

and the ’’weight” is
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In (^.67) and (U.67’), the main contributions to the integrals over

k came respectively from the values of p2 and q2 which are close to p2 and q2 .“st a
Thus, if in a double scattering process, the kaon is scattered elastically

by the first nucleon, p2 (or q2) is given by (^•57,,)» so that the kaon-waves

transmitted to the second nucleon are predominantly those which have the

square of the wave number equal to

= ?*  = (U.68)
0

The calculation of the T-terms in (H.20) is much simpler if it is

accepted the physically reasonable assumption that

2’) ”in any multiple scattering process all single scatterings are

elastic (without break up of the deuteron) with the possible exception of the 

last, which can be non-elastic .

Admitting this hypothesis a straightforward extension to scattering terms

of any order is open using the previous interpretation of the single and double

scatterings as ’’weighted means”. For instance, the triplet transition matrix

element corresponding to TiGT2GTi m the

J
1 n lB'.-r

j y*  -
Actually, if the calculation of TiGT2GTi

and assumptions 1’) and 2’) are taken in*

be reached again. Therefore, in princi]

development (4.20; for T is equal to

C|a' -

• (H.69)

is carried out by Impulse Approximation

bo account, the expression (hM69) will

lie, all T-terms are known.
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Finally, supposing that the two moving centres much heavier than the

incoming particle, y tends to 1 (see (lj.56)) and p (or q ), by (U.57") tends

to k , so that all T-terms reduce to those which are obtained in the problema.

dealing with one particle scattered by two fixed centres. (Drell and Verlet,

1955; Schick, 1961).

5. The off-energy shell Matrix Elements

The K N scattering for momenta considered in this work (see Chapter I)

is isotropic*  “Therefore, the scattering amplitudes f3i(p’,p) and f32(<l,>q)

which are associated with the two-body matrix elements by the relations

Cp'< p ) = - 4 (U.70)

and

ksCV'T)*  - —V (‘‘•fO’)

have no angular dependence.

Now, to calculate the multiple scattering terms, it is essential the

knowledge of the behaviour of f3i and f32 with respect to the values of p’

and q’ for which the inequalities pf / p and q’ / q hold. Such values are off

the energy shell or, in other words, do not respect the energy conservation

principle. They correspond to processes where virtual kaons are scattered by

the nucleons.

Drell and Verlet (1955) consider for S-scattering two extreme cases of

behaviour (i = 1,2):
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11 U < fa f ) ’ f3i<P' - £ i<■ V. P *)  • £ C K > W ‘ £; (PQo)-

id Vp*, p) = JS1(P'‘/khp^UmMwi-

The first approximation leads to Bruckner’s model (Bruckner, 1953). In

this case, the propagator & I appears in the multiple scattering terms.

However, case II is more in agreement with the assumption 2’) of and.

for this reason will be adopted here.

If k2 and k2, given by (^.68), are introduced in the denominator ofa

4 ( ^3i > Fa^ £ .elk (U.71)

J CV-aAitf
and integration with respect to the angular part of k is performed, then, 

considering that the f3£, according to the approximation II, vanish except

for p = pa, the integral (^.71) is equivalent to

2^ 1 lim ( K

14^ ' TJ? f’”°J W--*a

where C is.the semi-circle of

■ ------------P kcu k radius p centred at noint k 4
*---------------K a’

Fig. IV.3 as shown in Fig. (IV.3)

Therefore, (h.71) is equal to

(U.72)
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6. The K d Elastic Scattering Amplitude

From the previous, considerations it is by now clear that the expression. for

the elastic scattering amplitude, f(0), in K~d processes, calculated by Impulse

Approximation, can be written in the form

■jf 0) = f \ (M3)

where Ji i

(MMJ H il h
Obviously, in these relations, u is the reduced kaon-mass (U.3) and 6 the

angle defined by ka and k^ ( |kal = Considering the definition (U.56)

for y, P can be expressed in terms of the two-body reduced masses u31 and

P32 ( = P31) (see (i+.3’)).in the following way:

f =j (M5)
* •

Thus, by (b.50), (^.50’), (U.70), (4.70’) and (^.75), the single scattering

terms in

The

together 

the integral (U.71). Putting

- L yUK C & £ ) I R , (M2’)

(2)
fine gets for fk '(0,R):

0,R) (corresponding to Tj and T2 m the T-development (4.20)) are.

,w r -i.C6a-lt.yZHi -I
hi 4 e Si J (‘■•T6) . :

(2)
double scattering, f (9,R), is derived from (^.67) and (U.67’) ’

with (b.68), (U.70), 70’), 75) and the expression (it.72) for
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aclculation of triplet scattering gives

6”C39

Ce.R)

fsa fsi "*  6 hiha

- LL^a-(■(ka-'kt>)j£,A
“ K iKs) J 3 4 "t K « K < J 3 2>

From (I4.69) and in the same was as for fk '(0,S) and f^ '(6,R), the 

and so on, for the subsequent terms of higher multiplicity.

Therefore, f(6,R) is given by the following expression

I U ) - v f ,
i ( ©>«) + { C©>*)

< - raw?*)
(1|.78)

Substitution of (I4.78) in (1+.73) shows that the T-series (b.20) has been 

reduced to a finite expression and, under this form, is a convergent series.

When R -> 0, f(0,K) tends to a limit different from zero, a result which is

physically acceptable. However, if assumption I is used instead of the

approximation II, f(0,R) vanishes for R = 0, because now P(R) = e ‘ /R.

Therefore, assumption I is a bad approximation in the region where the

scatterers are close to each other (Schick, 1961).

The elastic scattering amplitude f(0) will be now developed into a series

of partial waves, i.e.,

W - Kir (..79)

Choosing the Hulth&n function (3.25) as the ground state wave function of 
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the deuteron, the exponentials in f(0,R) are the only terms in f(0) depending 

on the angular part of R. Representing respectively by £ , and ft thea o
angular spherical
~ikh? >4. 4.U

e admit the

- - - ikaRcoordinates of k^, k^ and R, the plane waves p * ~

following expansions (see (3-1^)):

and

L=o JL 7zi = -L1 L I

and C IM =

-tfef
& - MTV

L=o JL >n = -l /L / L

Tnen, using the orthonormality relations for the spherical harmonics

J YiTt'O= (ii.8o)
one has

j eL fL(* ‘ 1) L
But, by the addition theorem .for the spherical harmonics (Messiah, 1961,

Appendix B), the sum over m in (U.81) is equal to

P^ e) - Z_ ; (h 8?)
0 is the angle defined by the unit vectors and k^, so that it is equal to

the scattering angle. Therefore, *(^.81)  becomes

e = o Z_ (U.83)
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r - it n
and the same development is obtained for \ • ca* . \

« ,

Following the same steps it can be also proved that

f xi-Cfcc + te, ,.L. At '0, x(e c*  R C2l4l)JL()?a^|s)rL(c^6>) (14.83’)

These relations, together with (h.73) and (^.?8), lead to a new development

. of f(9) in terms of Pl(cos 6). Comparing the coefficients of such terms in

this series and in (^.79)» one gets

x mu Fl(/?) (14.8M

Jo.
where <j>o(R) is the Hui then function

i

= A e, A « <3.25)

and

Fl (. R. ) - 4 4 4 ^31-^32 ( »4.8 5)

1 PVi?)
Calculation of integrals (U.8I4) needs fsi and f^2 expressed in terms

of the K~N 5-wave elastic scattering amplitudes

(I1.86)

related to Ross-Humphrey’s sets of scattering

meson-nucleon isotopic-spin channels).

I ,
4 2, L p ?

(l (=0, 1) is the. label for the :

Actually, the phase shifts 61 are
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lengths (see Table (ll.l)) by the zero-effective range formula

CxrC •= <Lj (2.11)

Therefore, the elimination of 6^ between (2.11) and (U.86) gives

(.T_ • (U.86r) •

J <L - t p Ar
Now, f32 can be identified with f1, because f32 is related with K~n

interactions (see Fig. (IV.2)) which occur through the isotopic-spin channel

1=1. Thus, :

I = _ - (U.8?) • 1

J 4 - A i

The relations between faj and f° and f1 is more involved, because in this

case the K p interactions take place through the channels 1=0 and 1=1

(Chapters I and II). It is found that

___— 4. —\ (It.87’)

7. Convergence of the Development of f(9) into Partial Waves

L
d3i

The analysis of this problem is linked with the behaviour of integrals

(U.8H) with increasing values of L.

Making the transformation R = 2p/k in those integrals and consideringa ,

that a << B (see (3.26) and (3.27)), it is clear that the leading term of

( 1 ) is proportional to
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The next theorem is easily proved: "when P2 < Li + 1*5,  the spherical

Bessel functions L(p) with L £ Li + 2 are vanishingly small for all values
J Id

of p satisfying that inequality".

In fact, adopting the normalisation CT = 7^7- "vyti and using the

differential equation (C.16) defining the At(p) (see Appendix C), a straight-

forward calculation gives the following development

i ,  nL y r b C - 'JlV) “ P L=o L>Z1 “ ’ (^.89)

Cutting this series after the third term one has, for L = Lj and p2 = L + 1*5

j C \l l4 *7/)  = + . f 4. _ 1 ' '1
J Lb 4 J Ca 1^4)11 I q j

where 1
1 L j 4 4,<T. > 1 _ A ~ o-H

H ' 8 Cup8') 4 lb
Therefore, the representation of jr(p), for L Lj, by the first term in

the development (^.89) in the interval 0 p /Lj + 1*5  originates an error

never exceeding 19%.

Now, from the recurrence relation

I (Z>) - i,cp) , L 0Ji-i JUi p JL

one

and

has, putting L = Lj +1 and making the previous approximation for j, ^(p)

JP (p) ‘in the interval 0 p /Lj + 1*5,  

and the proof of the theorem is completed.
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Noting that, in I (k ), the exponential becomes vanishingly small whenLa
ko _ r- —- - -.... xo _ . .

p > y^-, then, by the precedent theorem, if /Lj + 1*  5 > the if(kn) for

L £ Li + 2 are practically equal to zero and the partial wave series for f(6)

converges.

The region of interest in this work for the K -Lab.-momenta, nx . , is theLao

one that lays below 300 MeV/c (Chapter I). The. K -momentum in the K d

centre-of-mass system, Ska, is related tQ P^a^0 by the equation (see (A.7))

Hk = 7-T-----f----- r p_ ,a (2mN t ^Lao
or

k rb = 0*h012  x 10~2.dt , x ’ (H.90)a( ferm ) ~Lab(Mev/c) .

Therefore to the extreme value pr , = 300 MeV/c corresponds the wave numberLao
ka = 1*2  fermi"1, so that the inequality (a = 0*2315  fermi”1 by (3.2o))

/Li +”1^5 >. - 1<

holds for Li =1. So, according to the theorem stated above,

nL - 1 = 0

for L 5 3.

Incidentally, the previous discussion shows the importance of the behaviour

of the Ft(R) for small values of R (0 ? R ? 2) in the calculation of integrals
L

(i|.8H). This is another argument in favour of assumption II rather than

assumption I of §5.

8.Validity of the impulse Approximation

The square modulus of the coefficient nr j defined in the expression for

the scattering amplitude (^.79), measures the intensity of the outgoing 
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spherical L-wave, because, in the same expression, the intensity of the.

incoming L-wave is taken equal to unity. Therefore, 1 - |n |2 is the
L •

intensity lost by the scattered L-wave in all incoherent processes - absorption
• *

(hyperon production) inelastic and charge-exchange scattering. The physical

meaning of the n’s outlined above imposes the mathematical conditionsL

1 - |nT|2 a o (^.91)Jj

for any L.

In the following pages, it will be shown that, at very low energies,

the calculated by Impulse Approximation do not satisfy the inequalities

(U.91) and this method is no longer valid. The reason for this to happen is

the failure of conditions for which the two complementary assumptions 1) and

2) (see §2 of this chapter) of the Impulse Approximation are acceptable.

Actually, if the kaon-wave length is large when compared with the mean

separation of the two nucleons, one cannot expect just a slight distortion, by

one constituent of the deuteron, of the kaon-wave falling upon the other.

For closer examination of the limits of validity of Impulse Approximation,

consider kaons moving with’ wave numbers k equal to or lesser than 0*h  fermi”1a

(the K -Lab.-momentum corresponding to this value is, by (^.90) Pr o, = 100 MeV/c)., jbao

The main contribution for the integrals (U.8*+)  giving the nT’s, arises in the

interval 0 R 2 (see ST). In this region and for those values of k&,

P(R) - ik , so that it is possible to bring the F_(R) out of the integral signa u
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and, instead of (U.8U), one has
oo

7[i.- i >. (‘>•92)
JU f k a "

The Mean value theorem of the Integral Calculus (Courant, 19^8, Volume I

p.127) provides now a method for the definition of th.e mean value RT of the
1/

separation of the two nucleons in the deuteron for a K~d L-state. Actually

one has

ATT (U.93)
o

because

o

Introducing (U.93) in (^.92), the (n^.- 1) become

(b.9M

satisfy conditions (U.91)> one gets

or, putting FL(0) = aL(k&) + ibL(ka),

bl(fea) (U.95)

i
L

st‘R3-dR.-

thus, if the

The parabola 
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has, for X = bT(k ) , the same value as the left-hand, side of inequalitya

(^•95), which can be written

L[ < O . (*U95 ’)

. This condition means that the curve (U.96) cuts the X-axis in'two points

given by the ’’real roots” of equation * 0 • .

/> . .. — ---------— (4.97)

ajtlMJ®)
Therefore, on one hand, one has

& t 1 j (b.98)

On the other, a negative means that X remains between the two roots

of =0. Supposing ka small, is very close to zero and

~ 2.• Then, from £ O , a second'

condition is obtained

A Ck<> ^tl^) (U.99)

For a wave, , so that

(h.98) and (U.99) become respectively

and

8 1 a0 CfecJl (U.98*)

CL qjr boC&) (^.99')
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In (h.99’) it is used bT(k ) rather than |b_ (k )l because this coefficient

belongs to the imaginary part of the scattering amplitude and so, it is an

essentially positive quantity in so far it is related with the total cross-section.

The inequalities (U.98* ) and (h.99’) show clearly that the wave number

k cannot be less than a certain limit (the greater of the two numbers

o' 311(1 J’ to , if condition (U.91)
(/vJL

for L = 0, the only I important et.very low energies, should not fail. Such limit

can be very low, when Rq is large. In such case, the validity of the Impulse

Approximation should be discussed in terms of its fundamental hypothesis

’expressed by (U.21), rather than in tetms of assumptions 1) and 2).

This argument, however, does not apply to the deuteron. Actually, as

it will be proved subsequently, the first R^ at very low energies, though

they tend to increase with L, are independent of k and their common valuea

is 3*8U  fermi.
i.

The analysis of the integrals IT(k ), defined in (^.88) and the study ofJu a
the convergence of the series (^.89) show that, for k 3 0*U  fermi l, and

a

L > 0, the approximation

Z?6"- > (4.100)

2L(AL-u)1.1
for the spherical Bessel functions is a good one to be used in the calculation

of the , defined in (^.93); one has, therefore,

m
u
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or, considering that f°R” = n!l<T‘
Jo ' '

ral iL<J

xp ) <« + p J

But, g = 7a; thus

Rl C*L)!  • ...
2<x V

- x.2. \/d. 6" 3 C2. L) ! jarmi (U.101)

Obviously, the expressions (H.101) are only valid for values of k such thata

the inequalities (1+.100) with R = RT are satisfied:L

L+1.6' (U.100’)

Now, using Stirling’s formula for (2L)I when L is big, it can be

proved that (Courant, 1958, Volume I, p.391) 

where £ is the base of the natural logarithms. Therefore, the condition

(U.1011) becomes with increasing L:

For k = 0*U  fermi”1, .101) is a good approximation for all values of L > 0 

less than 9
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For L = 0 and k 0*̂  fermi, the approximationa

jo *1*0  1 -

of the spherical Bessel function of zero order is a convenient one. Therefore,

/?o ~ - 3. 8 M j-erznC .

This value is very close to the mean value of the deuteron's radius

(% 3*2  fermi). Such result proves that the previous discussion is well-founded

from the point of view of the physics of the deuteron.

It is also worth while to be noted the increasing of with L. This

means that for greater values of L than L = 0, the Impulse Approximation

improves and should lead to a correct result. This is to be expected,because

it is a well-established fact that the same thing happens with the Bom

Approximation.

To complete the present discussion, just one remark more: it is the

violation of inequalities (U.91) that explains why Day, Snow and Sucher (1959)

found, in their work on K"d scattering reactions, a total < a elastic (see,

in the next chapter, how these cross-sections are expressed in terms of the r^).

However, in this case, it is not the failure of assumptions 1) and 2) the

reason for such violation, but the use of a pure Impulse Approximation, which,

in the notation used in this chapter, amounts to writing Fj-JR) = ^31 + ^32*

When, in the same paper, those authors introduce double and multiple scattering

corrections they found the correct result a total > a elastic.

Finally, the condition (4.21) for the validity of the fundamental

assumption of the Impulse Approximation can be written when k& is expressed

in fermi"1
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a

If = 0*l|  fermi \ the left-hand side of (4.21') gives 0*06  which is

a reasonable result. But the condition (H.91) for L = 0,

1 - hoi2 * 0,

starts failing for values of k lower than fermi* 1. Therefore, the region

of investigation for K d scattering in this work will be the K*-Lab.-momentum

interval 100 MeV/c’p^^ * 300 MeV/c. Evidently, it is not possible to go

over the upper limit because the RN scattering for such momenta can no longer

be translated in terms of Ross-Humphrey’s sets of scattering lengths (chapter I).

Table IV shows the variation of the with the k& and L for Ross-Humphrey’s

solutions I and II. Note that everywhere the are such that

|nLl < 1

Table IV

PLab

MeV/c

no ni +12
1

na• 1

R.Part I.Part R.Part I.Part R.Part I.Part R.Part I.Part

100 0’0656 -0’0211 0’9252 -0-0023 0’9951* -0-0001 0’9996 -0*0000

I {200 0’01+16 -0’0126 0’801+2 -0*0033 Q’9671* -0’0005 0-9937 -0*0001

300 0’151+1 -0’0076 0-7350 -0*0029 0’9317. -0*0007 0’9808 -0*0002

100 -0’0962 0’5209 0*9212 0’0786 0-9959 0*0039 0’9996 0*0003

II{200 -0’2396 0’1+568 0’7983 0’11+62 0’97^6 0’011+9 0’9961 •' 0’0020
•

300 —0-11+1+6 0*2937 0’5969 0’1811 0’8966 0’0381 0’9712 O«OO95



91

The Th' >4 in this table have been corrected in such a way that the Coulomb

interaction is taken into account (see next chapter). They were obtained by

numerical calculation carried on the Mercury-Ferranti Computor belonging to

the University of London.
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K~d Elastic, Total and Absorption Cross-Sections

CHAPTER V

1* The Resonant Group Structure Method

The decomposition of the K~d elastic scattering amplitude, f(9), into

partial waves as well as the introduction of the q -coefficients (Chapter IV)jj

lead to a straightforward calculation of the K~d elastic and total cross-sections.

But the. determination of the absorption cross-sections, including the whole of

the production of hyperons in K~d collisions, requires a different approach to

the K d problem. However, such an objective can be achieved by means of the

Resonant Group Structure Method (Wheeler, 1937) combined with an appropriate 

description of the K"N and np nuclear forces. As will be seen in the following

paragraphs, the inclusion of absorption in K~d scattering processes is provided

by the imaginary parts of the K*N  complex potentials defined in Chapter II.

If 1, 2 and 3 represent respectively the particles p, n and K~ (Fig (IV.2)), 

the two body nuclear interactions are conveniently described by central

potentials V. . (r. .) having the following form:

i / j (5.1)

operates only on the isotopic-spin part of the K"d wave function.

Here r. . is the distance between particles i and j and P. ., defined in (2.U)
i J J

represents the charge-exchange operator for the same particles. Thus, P. .
^•J

. . - r . .
JI
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If i (or j) = 3 (one of the particles is the kaon) the potentials

' must be identified respectively with the potentials

given by equations (2.9) and (2.10):

J
 ^y*  .

[(Ui-Uo) ICV1 - Voj\ e_ 1 (2.10’)

J J -2- U J bY*u<

But, when the two interacting particles are the nucleons 1 and 2, the

only nuclear force between them is, as it will be proved below

v12(r12) = v12^(r12) " vlP(ri2) (5.1’)

Therefore, (5.1’) must be identified with the deuteron ground state

potential.

In spite of the K"n reactions through the isotopic-spin Channel 1=0

being forbidden (see Chapter II), the operator P. . appears in all potentials (5.1).
J

This is so because charge-exchange processes occur continuously between the two

nucleons, leaving the isotopic-spin channels 1=0 and 1=1 open for particles

2 (n) and 3 (K-).

Consider now the K~d wave function.

If Yt t (A) and Ytjti(b) represent the isotopic-spin functions of two
l,lz l»lz

groups of particles A and B, the isotopic-spin functions of the whole system

are (see (3.6)):
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Putting A = (1,2) and B = (3), YT T (1,2) and YTI Tl(3) stand respectively for
1,1 Z 1 ’^Z

the np system and the kaon. By the principle of charge conservation, the only

possible value for 3^ is -2. To this eigenvalue correspond three eigenfunctions:

.1

/Cl

But conservation of the total isotopic-spin quantum number in strong

interaction processes rules out the state (5*2)  because the isotopic-spin part

of the deuteron wave function has 1 = 0 and, with this value for I, 3 can

never be equal to %.

The resonant group structure method requires that the remaining

eigenfunctions (5.3) and (5.M be anti-symmetrized with respect to particles 1

and 2 (the two nucleons) because the deuteron’s total isotopic-spin is I =0.

However, as (5.3) is symmetric in 1 and 2, the K~d wave function, written in

the C.M. system of the three particles reduces to
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where

(5.H’)

m8 l5l (5.6)r2 3 =
R
2 ’

- R
r" 2

_z
p(i,a,3) = yj

*

and the coordinates r and R are linked with the r. . by the following equations

(see Fig. (iV.a))

Obviously (5.5) must satisfy the Schrodinger equation

[ K - 4 Vxa O.a ) 4 V13 (/„) 4 ¥„(*«)  =

= ( E 4 E-a) f> (p (5.7)

where K is the kinetic energy operator defined in chapter IV,

K - - - £ yi > (4.8)

e_, the electron charge, E^, the deuteron’s binding energy and E, the kaon

energy in the c.m. of the K~d system.

The following relations are easily obtained from the definition of

p(l,2,3):

PX(1,2,3)P12p(1,2,3) = -1

pX(l,2,3)Pi3P(l,2,3) = 2

pX(l,2,3)P23P(1.2,3) = i ,

X
so that, if both sides of (5*7)  are multiplied by p (1,2,3) and the potentials

(2.9’) and (2.10’) are introduced, the K~d wave equation becomes
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I K - - C V.M - ' •

* G *” Is Y" 1

- 4 [cu.*»u t)-uc<-. »»«)]•(&.JI (M)
No charge-exchange operator is needed for the Coulomb potential, because the

nuclear potential in (5.8) is symmetric with respect to coordinates r13 and

r2 3> therefore, it is immaterial to write either -e2/r13 or -e2/r23 in

this equation.

Consider now the wave functions $a(E) and energies of the np system,

defined.in Chapter IV. They satisfy the equations

[_ -V V0(.R)]<VMs (!».M
and the normalisation conditions (^.5). As the (r>a(^) form a complete

orthonormal set of functions, ip(r,R) can be developed in the following way

Making now the approximation of supposing small the polarisation of the deuteron

due to the presence of the kaon (Buckingham and Massey, 1<A1) this series

reduces to its first term

£(.?) 4„c«) (5.9)

where <j)0(R) represents the ground state of the np system (deuteron) and

Wo = E^. In the approximation (5.9) the K~d wave function is already

symmetrised with respect R, according to the condition (5.5), because the 



97

deuteron is always in a , S + D state. Therefore, considering that ri2 = |S|

(see (5.6)) and identifying the potential Vq(R) with (r.l’), the wave equation

(5.8) becomes, by (^.H), (^.8) and (5.9),

£ h a0 + 5U4) + i Cvo + 5V>)V^-\
I r r,z ql

Multiplying both sides of this equation by » integrating over R and putting

(5.10)

( 1 L - J*-
F Cr) - 1 I q>o^)l (5.11)

J • a3

(5-12)

one gets, finally the resonant group structure approximation of the K~d wave

equation 

( '> j-cr) - _ F0Cr) 4 ■L[Cu0+3UA)4i(./0+3V^FCr)^C5;) (5.13)

The index o has been suppressed in f(r).
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2. The K d potentials <fr(r) and %p(r)

Consider the second term belonging to F(r) in (5.10):

(5.10f)

• and putting

p = R|2 (5.1M.

and

(5.15) ,x(p) =

l(r) becomes

(e~2XP- e~28p)2
P

-

J bfj.
Making the approximation of representing <$>q(R) by the Hulth&n function (3.25) 

1 e e (5.16)
(, (i - CM b Jo Jo 43

where 6 is the polar angle of the spherical coordinates .related to p. But,

according to the definition (5.6) of r23 one has

r2 3 = r2 + p2 - 2rp cos 0,

so that l(r) can be written as

1 (r) - x<*I*(- ot't^-. y, 4i (5.17)

The limits of the second integral in (5.17) for 6=0 and 0 = tt are respectively

a) T23 = r - p and ?23 = r + p if P < r and b) T23 = P - r and r23 = p + r

if p > r. Therefore, introducing the hyperbolic sinus function, I(r) gives

(5.18)
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where

:bt
(5.19)

Since the term

(5.20

Putting now

ip(r) = r$(r) (5.21)

e

P(r) _ )
BZ(B - a)2

X (p) 4- iL X|
o v

in rj3 of F(r) is equal to l(r) one has

and differentiating ip(r) twice with respect to £, one gets from (5.19)

But the Laplacian of <#>(r) reduces to

A (J) W /_ d f ddA
r*  aA dr J

(5.22)

because <|)(r) is a spherically summetric function. Thus, by (5.21) and (5.22),

A<^ = 4 - k {5*23)

Now, the Schrodinger equation (5.13) shows that the K d effective nuclear potential 

is given by

where

v - i M F O')
3

PA s _ q [CWo * 3 Kj) + i Oo -+3Zi

(5.2b)

(5.25)
b
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Therefore, comparing the modulus of the Hulthen function |<J>o(2r)p with x(**)

(see (3.25) and (5.15)) and considering (5.20, (5.23) and (5.2U), one has that• •

Veff(r) is a solution of

. (5.26)

This well-known partial differential equation represents a static and spinless

meson field. Such result shows that the resonant group structure approximation

is equivalent to the problem of obtaining the scattering of the K~-meson by

a cloud of ’’nuclear charge”. The product of the”kaon-charge” by the

density of the ’’cloud’s charge” is given by Mp0(2r)p and the range of the

nuclear forces arising in this field is equal to 1/b, i.e., exactly the same as

the one that was found in the two-body interactions K p and K n.

Multiplying the term in ri3 of F(r) (see 5.10) by b and taking the limit

of the result when b -> 0 one gets the potential Fo(r) defined in (5.11).

Thus, by (5.18) and (5.19),

F0(r) = g (g) (5.18’)
(B - ct)z

where

(k(.r) - Li/n ^2. - 4 pl((>)dP’+ (5.19')
1 . b-* 0 b Jo Jr

Putting ’ ’ <

<Po(r) = r?0(r)> (5.21’)

the differential equation for ^(r) is obtained from.the corresponding equation

(5.22) for 4>(r) , using again the previous method: dividing both sides of (5.22)

by b and taking the limit of the result when b ■*  0, one gets
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O) ■= - (5.22’)

Therefore, by (5.18’), (5.21’) and (5.22’), the Coulomb potential

(5.27)

(5.26’)

(5.28)

(5.29)

So, similarly to the interpretation of the K~d nuclear potential, the

Coulomb potential (r), as far as it is a solution of the Poisson equation

(5.26 ’) represents a spherically shaped, electric cloud, around the deuteron C.M.

generated by the motion of the proton.

3* Connections between the Resonant Group Structure and the Impulse

Approximation Methods

At this stage of the present work it is easy to prove that the effective

nuclear potential V > defined in (5.2^), and the Impulse Approximation

without multiple .scattering corrections, applied to the K~d problem lead to the 

due to the proton is a solution of the Poisson equation

where

is the electric charge density. Obviously one has

e. ±
&Y -ipy

y> a.

same Born approximation
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Representing by [fj - the Fourier transform of the function f(r), i.e.,

Cf]q'= Je-1*̂ rf(r)dr

one can write

and *•

-f e
JQ

<j>0(2r) 2 *v  S— | ?>0(2r) |2 -

(5.30) •

(5.31)

(5.32)

The constants of proportionality in both developments are equal. But Veff(r)

and | <J>o(2r) |2 are linked by the partial differential equation (5.2o). ' Therefore,

one has

(q2 4- b2) Veff - 4ttM | $0(2r) [2 -

or, putting R = 2r,

f (5.33).. 1 J
according to (5*30)

Now, if q is chosen equal, to the K~-momentum transfer in a K~d elastic 

. 6

q = 2kasm - 

scattering process, i.e

(5.3M

where k^and 0 are respectively the kaon wave number and the scattering angle in

the C.M‘. of the three-body system, the Born approximation for the K~d elastic

scattering amplitude, fR], is given by, p being the K d reduced mass (see (U.3))
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or, introducing in (5-33) the definition (5.25) for M,

The integral in (5*35)  is not altered if -q is changed into +q. Therefore,

i the Fourier transform of |<f>o(R)|2 is equal to the form factor Si(0) defined in

(^•52) for a = 0. Actually, according to (^-50) and (^.50f), the elastic

scattering amplitude obtained by Impulse Approximation without taking

into account the multiple scattering terms, is given by

It will be seen now that the Born approximation for f^\e) leads to the result

obtained in (5.35). To achieve this, it is necessary to relate the transition

matrix elements appearing in f^\e) with the Fourier transforms of the complex

Yukawa potentials (2.1), giving the K~N interactions in the isotopic-spin

channels I = 0,1, i.e.,

( Ut i i )
-it*)

(2.1’)

where the q^ are the K~-momentum transfers occurring in the C.M.’s of the K~p

or K n systems.
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The matrix elements <pb|t1 olpa> and <Qb I ^2 Q|qa> are related with K~p

and K n collisions (see Chapter IV). The K~n interactions exist only in the

K n isotopic-spin channel 1=1, but the K~p interactions can occur with equal

probability in the isotopic-spin channels 1=0 and 1 = 1. Therefore

and

2 _ M7T ( U o 4 i Vo

x b < A tA
0-4 -HVj \

+ J (5.36)

(5.37)

(Compare|pa> and <qb|t2 Q|qa>.are the Born approximations for <pb|t1 Q

(5.36) and (5.37) with Q+.87’) and (U.87) respectively).

Consider now the momentum transfer qq. It is given by

q0 = 2p sin (5.38)

where p is the modulus of the wave numbers appearing in <pb 11 olpa> and

is the scattering angle in C.M. of the K p system. But, by (^.5^),

pb - pa = kb - ka

or, squaring both sides of this equation and because the collision is elastic

(so that p = |pa| = |pb| , ka= |ka| = |kb|),

Therefore, by (5 • 3^) and (5*38),

QO = Q

Similarly one also has qi = q. Substituting^tjien, q0 and qj by q into (5.36)

and (5.37) the Bom approximation of f^\o) leads to the expression (5.33).



105

Thus, for high energies of the kaon, when the multiple scattering is

unimportant and the Born approximation becomes valid, the two methods discussed

in this paragraph must agree very closely. However, for low energies, the

resonant group structure, in so far as it is formulated here, breaks down.

This point will be made clearer when the nature of the phase shifts derived

from equation (5.13) is discussed.

The plot of the K~d potentials <j>(r)-and 2o(r)

The function <J>(r) is a short range potential. This property can be

proved either directly from the analytical expression (5.19) for $(r), or from

the condition that <j>(r) is a solution of the partial differential equation (5.23).

Actually, the density r"\(r) vanishes exponentially (see (5.15)) when r -> <»

and the term b2<f>(r) in (5.23) forbids the spread of the nuclear interaction

outside a sphere centred at the deuteron’s C.M. The leading term of

r \(r) is r~2e~4ar, where Ucc 1 fermi"1 (see (3.26)). Therefore, one has

<$>(r) < 10 5 for r > 7*5  fermi, because e 7 5 a 5.10 U and a (= 1/b) is equal

to 0*U  fermi (see (2.2)).

To plot the function ip(r) = r<j>(r) it is convenient to express the hyperbolic

function sin hbr in terms of the positive and negative exponentials. Doing

this, ip(r) becomes, according to (5.19):

Jo- Jr
• (5.39)
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The last integral in (5-39) gives, using the formula (B.6) and the 

definition (5-15) for x(p),

\X(.p)e ap = Lm L_________ Lr------------ 2---------(5.i*o)
‘ a (4 * + b) ( 4/3+ b)

Jo 1

The integral I x(p)e”^Pdp can be easily expressed in terms of the •
J r

exponential integral function

-E.(-r) = [ dp (5.U1)
1 Jr P

In fact, by (5.15) and (5.^1) > one gets

(5.1*2)

For values of r belonging to the interval 1 < r < +«, -E^(-r) is given

exactly to at least seven figures by the Hastings’ approximation: •

 y A 1/

e_.R(r) R ~LfZSlL (5.1*3)
r 1 bo + bjr 4. bx

where the coefficients of the rational function R(r) are numerical constants 

conveniently tabulated (Hastings, 1957> page 190). But, when r lays in the

inverval 0 < r < 1, (5.^3) is no longer valid, so that the. development of

-E^(-r) into a power series must be used in this region. Leaving this new
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problem aside for the moment

Of (5.39) is now envisaged.

the calculation of the integral
o

Consider the small positive constant A. By (5.15), one has

m , ir-cu»-b)P*(f)e^/>- V*/'  * -

JA I J/j '
/- [xc<x4|l)-b]o

.1 £_ .dp (5-Ui*)4 p r
where, by (2.2), (3-26), and (3.27), the numerical values of the exponential

constants are:

4a - b = -1-5740

. 4b - b = 3-7596

2(a+B) - b = 1-0928

Therefore the integral
rr -(4a-b)p

—~ dp of (5.4^) has a positive exponential.

But it can be transformed into an integral with a negative exponential if

P goes into -p: 

Putting (5.1*5 into (5.M), using the identity

(5.1*5)

A > o
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for the other two integrals belonging to (5-M), taking the limit of the

obtained result when A ■*  0 and making use again of (B.6) , one gets, finally,

o

r°-Cb-M)p
-p I -p * f 4

- r

C b -« &) (q p - b)

EM- C^/3" - 2 (5.U6)

where means that only the principal part of the integral following it has 

been taken. Such integral can be evaluated by means of the equation

P ( -0^/> ■= - 4 Pj % (5.1*7)

J- r f> ' P
where the second term on the right hand side is easily developed into a rapidly

converging series:

oo 1
« F W________

L = O (iLH)(i L 4 1)1, (5.1*7 ’)

However, for large values of r, it is better to have (5.1*7)  expanded into an

asymptotic series:

The error committed in the evaluation of the integral by taking the n first 

terms in the series does not exceed the term of the order n+1.
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When r belongs to the interval 0 r 1, the function <P(r) is obtained

by a Taylor’s series expansion at the origin:

oo

kVC^)- E x uAoK*  • ' • ■ (5.U8)3 71 = o hj 1
From the analytical expression (5.39) for ip(r) and from (5-^0), one has

vy Co, o , vv'co) - b

Putting

Xj = Ua, A2 = ^B, X3 = 2(a+B)

so that

Xi + X2 - 2Xa = 0

and considering the exponential series, the x(r)-derivatives of different

orders at the origin are given by the following expressions

XC°)=o X^o) « C--0 -A ( Q)
n + i

Therefore, the i//(r) derivatives at the origin of any order higher than the

first are given by the recurrence relation

■ (5.51)

obtained from the differential equation (5-22) for i>(r). Obviously, by (5.^9)

(5.50) and (5.51), one has ^”(0) = 0.
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The plot of ^o(r) = r<?o(r) is achieved along the same lines. From (5.19’)

and using the Hastings’ approximation for the exponential integral, it is clear

that ipg(r) admits the following development when r is in the interval 1 3 ** 3 +<»:

= Afci -V \"£C-Atr)-al e^,r +
U*p(c*4ji)  L J

(5.52)

where, as before, Xlt X2 311(1 ^3 are respectively the constants iia, and 2(a+B).

If r belongs to the interval 0 * r 1, a Taylor’s series expension,

similar to the one obtained for ip(r) can be used to plot ipo(r). Tne t>o(r)

derivatives at the origin in this case are

) i^'Co) = Lrt Ay |\poCo)=-X(°) (5.51*)
4.

Fig. (V.l) shows the plots of <{>(r) and

5. K d phase shifts

Putting

A+• i B .1/1. PCoi 'll Vo04iV0) -*  3
■ft4 (,p-'*) 4b:t 1

yi JL^- AgA - O. 0 1 MS

r t/o<AC«4/j) • Cl£ea_ o. o&LM
" C^yF '

(5.53)

(5.51*)

(5.55)
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and introducing the expressions (5.20) and (5.1S1) for F(r) and Fg(r)

respectively, the Radial Schrodinger equations, derived from the K”d wave .

equation (5.13) by the partial waves method, are given by

a

«r* * JL
for L = 0, 1, . . . . « (5.56)

The complex quantity (A

coefficients

- *1*  cYi

+ iB) is easily related tQl: the dimensionless

(14 4 i V-1

defined in §5 of Chapter II. Considering that p = py» Y being defined here

as in (^.56), one has

A * i 3 x Q z o 4 B 2 4 ), V P) _1 C?—)9-

- Czo + 3Z1) X o. J-Wni (5.53’)

Making now an obvious transformation, the potential £o(r) can be written

under the form (see (5.55)): .

(/) s-i-- | (5.19")
' c r r Jr . Jr

showing clearly the presence of the Coulomb term. Thus, when the regular

solution at the origin (xT (°) = °) ofl equation (5.56) is integrated numerically

to obtain the complex phas6 shift S C2, » there is a point rg

belonging to the r-axis beyond which <{>(r) and C are vanishingly- 
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small. For values of r larger than ro, the equation’(5-56) becomes the

pure Coulomb radial equation (C.2), so that XT(r) can now be expressed as

a linear combination of' FT (kr) and GT (kr) (see (C.3) and (C.U)), i.e.,

•+ (5.57)

where a^ + ib^ is a complex constant. *

The equation (5-57) together with the one that is obtained from its first

’, both calculated at the point Tq (or ^o- ),

determine the phase shift 6_ . In the actual calculations the value is

obtained by taking also.into account the condition that it falls into the

range of validity of the asymptotic forms (C.8) and (C.9) for Fr(p) and Gr(p)
Li Li

respectively, i.e. } ^3 6 .

Now, if the functions R (p) and 0T(p), calculated at pq and defined by
L JLi

derivative

(5-58)

- F^

are considered, the elimination of a^

9^ Pl| &L (5.59)

+ ibL between xl(pq) Md x£(po) gives

(5.60)

if the equation 

derived from the Wrouskian condition (C.ll) for F^(p) and G^(p), is used.

Xl
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Writing
/34eLei= L^i]p = po )

and expressing Tan(0 + 6 ) in terms of positive and negative exponentials,
Li L

one has

therefore, the imaginary part BT of 6r (= aT + iBT ) is given by
Jj J_i Ju Li

(i. _ i u r p?4 z c 0x~gj-
' H 31 f? - j

and its real part, cl. , by 

where m is an integer.

The pure Coulomb phase shifts , defined in (0.13) and appearing

in Fr (p) and G (p), obviously are calculated by means of (C.1U) and (C.15)«
Li Li

The important quantities in the calculation of different sorts of K d 

cross-sections can be defined by

Yt: = e215L (5.63)
Lj

Although similar to the obtained by Impulse Approximation (see (k.79)

and (U*8U))  the A should not be confuted with them, as it will-be seen 

in the next paragraph.
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Sy (5.63), it is clear that the indeterminacy, of the calculated (see

(5*62))  does not affect the cross-sections because on has always .

However, the expression (5*61)  giving the Br can lead to values physically

unacceptable. Actually the ^l/must satisfy the inequality

(5.6M '

»

analogous the ones obeyed by the (see (b.91)) and obtained by making

the same considerations. Thus, one must have always — L £0

in (5.61), so that the inequalities B 0 and (5.6U) hold.

Equation (5.53’) expresses A + iB in terms of Z 0 and Z4 e In the

actual calculations, the values for these dimensionless, coefficients were

derived from Ross-Humphrey’s scattering lengths Aq and Aj, by means of the

Huithen’s variational formula (see Appendix E).

Table (V) gives the phase shifts 6 for Ross-Humphrey’s Solutions I and II

and for the first four partial waves in the K~-Lab momentum interval 100 to

300 MeV/c. From the inspection of this table, it is clear that is always

positive i.e., the two sets of solutions are physically admissible in this

momentum range.

The numerical determination of the <ST .was performed in the Mercury-Ferranti

Computer of the University of London. The INSTEP facilities of this computer

were used in the evaluation of Xr(r)> solution of the differential equation

(5.56), as well as of yT’(r).
Li
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TABLE V

P Lab
MeV/c

6° 61 62 63

a0 Bo *1 Bi a2 62 a3 83

100 0-1951 0-3986 0-0163 0-0180 0 -0012 0-0012 0 -0001 0-0001

l{ 200 0-3367 0-1+228 0.0651 0-071+6 0-0129 0-0131 0-0027 0-0027

300 0-365!+ 0-3813 0*1173 0-1335 0-0365 0-0381+ 0-0116 0-0116

100 0-8572 O-383O 0-0362 0-0113 0-0021+ 0-0007 0-0003 0-0001

II{ 200 0-8025 0-2156 0-11+98 0-01+36 0-0253 0-0067 O-OO73 0-0013

300 0-7183 0-11+87 0-2606 0-0636 0-0750 0-0169 0-0228 0-001+9

1. U (./>{5e65)

* Jo

6. Limitations of the Resonant Group Structure Method. K d Absorption

Cross-Sections

Suppose the radial wave function X-(r) normalised in such a way that
Li

. V

2L(r) yu+x, ■+ (5.57’)
Y> _ > o©

From the differential equation (5.56) of which XL(r) is a solution and from the

regular spherical Coulomb function FT(r) together with its differential

equation (C.2), by a procedure similar to the one used in the derivation of

the integral formula (2.21), it is possible to obtain the following integral

expression for <5 :
Li
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The integral is convergent because <p(r) and Cjjo(r) - 1/r (see (5.19")) are

short range potentials.

The effective nuclear potential (A + iB)<>(r) does not include the inelastic

and charge-exchange effects in K~d scattering. Actually, if the pion-hyperon

production (absorption) is switched off in such collisions, the Ross-Humphrey’s

scattering lengths Aq and A}, as well as the coefficients and 24 and the

phase shifts 6 , become real quantities leading to pure elastic scattering

processes. Therefore, an’energy-de pen de nt term W(k^f)should be added to

(A + iB)0(r), so that the inelastic and charge-exchange scattering be taken into

account formally.

Consider now the two differential equations

f CL . LOXl ( p, + -t WOUi'O -
t * a rx J

and

f d* x (5.67)
L ' ■»

where Xr (r) and. F_(r) are the respective regular solutions at the origin and.L L

normalised so that one has

XL(,y ) _ e^L (ka? - TL - LIL 4- X L+ St) (5.66’)

Y*  —<> o©

Fl O)  yLu* - L 11 4 (5.67*)

Applying to equations (5.66) and (5.6?) the method followed to obtain the

integral expression (5.65) one gets
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t.u l — _ ( <& _ __
e i3) <S>^)-2nfe£1[c^0-Ury1l^dv'’ 0~.b2j

The integral formulae (5.65) and (5.68) lead to the approximate result

<5jj « -6^ *" It is possible to write down an exact expression for the K~d

absorption cross-section if the functions xT(r) and F (r) (and the respectiveJj L
phase shifts 8 and £T ) are considered. In fact, the initial intensity (1) of

JU L

the kaon ingoing L-partial wave is reduced I £ times by the presence of

the corrective term W(k ,r) and IC I times by the total effective

potential (A + iB)$(r) + W(k ,r).a

Thus, the exact K~d absorption cross-section is equal to

rr* IT V ( 9 J * j 1 I I / i I■= X,21 Ui+i) e LU<i- e \) (5.69)
L=- O I < I >

No attempt was made to calculate the W(k ,r) potential in this work, althougha

a sketch of how it can be constructed is indicated in the next paragraph.

Here only the approximate formula (W(k ,r) - 0, 6^ - 3^ - 5^) :

^=1 (5'S9'’

for a has been used in the plot of the K~d absorption curves (Ross-Humphrey’sao

solutions I and II) shown in Fig. (V.2). This picture shows also the absorption

curves obtained by subtracting from the total incoherent scattering cross-section

(see its definition in §8 of this chapter) the inelastic plus charge-exchange

cross-sections cal culatpd in Chapter VII. As it .was predicted in §3 of this

chapter, the discrepancies between the two methods tend to increase for lower

energies•
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----------------- cr inc - {o~ in + re.c.1
-----------------  R. G. S.

FIG. V. 2
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7* Correction of the Coulomb Effects in Impulse Approximation

Two main questions must be considered when treating the problem of the

Coulomb interaction between charged kaons and protons belonging to deuterons.

First, an electromagnetic model .of the deuteron must be chosen such that it

takes into account the condition that the proton is not located at the C.M.

of the two nucleons but moves around the neutron. Secondly, the nuclear

parameters r^, obtained by Impulse Approximation with the Coulomb interaction

switch off (see (U.8U)) must be corrected.

Making the transformation R = 2r in the integral expressions (^.8^) for

nuclear phase shifts 6r by the relationL
_ 2i6r ,

nL - e h,one has

» V . q
hr1 - e' ULCr) (5

where

UL<>) = - 8»T y FtCr) I <^ocar)f (5.T1)

the rv and defining the complex

The meaning of the integral formula (5.70) is that the exact coefficient

(or the exact phase 6T ) are the Born approximations of the corresponding

quantities for the effective potentials UT(r). But it is well-known (Jost
Ju

and Kohn, 1952) that, at low energies, a linear combination of the successive

powers of a negative exponential function is an adequate form for a short range

potential, capable of reproducing the phase shifts 6^. Thus, by means of

a variational principle ’(Schwinger’s or HulthSn’s, for instance), it.is possible

for each value of k to determine a linear combination V(k,r) of the first na
powers of the exponential function which leads in the usual way to the phase 
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shifts (S^ for L = 0, 1, . . . n-1. If this is so, the regular solution

Y^(r) at the origin of the radial equation

YlP*)  " 0 (5.72)

can be normalised in such a manner that its asymptotic behaviour is expressed by

yL(r) e '/iuCkof - (5.73)

From (5.72) and the radial L-wave equation of free motion (C.16) one has, by

the same procedure used in the extension of the integral expression .(5.65),

p •' I •
C* AA*

or, by (5.70),

Jo *
= (”vtW (5-7i)

4» * •

Suppose now that the potential 2n ka C 4>o(r), due to an electric cloud of

density n(r) (see (5.27) and (5.28)) is introduced in equation (5.72) as an

additive term to V(k,r)> so that the Coulomb interaction between the particles

K and p is taken into account. The regular solution YT(r) at. the origin ofii

the new radial L-wave equation, normalised in such a way that its asymptotic form

is given by . V1 ' .
\l tr) e L * ^l4- J

• Y_»oo.

leads to the corrected phase 6£ (or n^) • Its integral form is equal to



122

j^l k^o

where FT (k r) represents the regular spherical Coulomb function (C.3).1j a

Considering how that |n| is very small for the K~-Lab. momentum range

covered in this work (by (^4.90) and (5.5M, |n| lays in the interval

0-03V*  |n| > 0*012  when 100 * y> * 300 MeV/c), one has approximately
uao

J \V (,*«.»*)  * in jC^0O) -4(r

“ ] \ A 2LH^Ct d-Y (5.76)

The main contribution of F^(k r) for the second integral in (5.76) comes from

the small values of r, because, either U^(r) or ikka

are short range potentials. Thus;one gets (Jackson and Blatt, 1950):

~ c* “•) ~ c°
where Co^ is the Coulomb penetration factor

and, by (5.75), (5.76) and (5.77),

•d.
e41li

(5.77)

(5.77’)

211" 4 . - s' '’Leu 5l - UL(r) -V
XL kt Jok
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The numerical computation of the coefficients n given in Table (IV) was
L»

obtained from the integral expression (5*78)  subjected to the following

simplification. ■ The quantity Air., defined by

(5.79)

is the Born approximation of the difference between the nT-coefficients due to

the point charge potential and to the electric cloud interaction. The behaviour 

of the jjk r) at the origin (see (^.100)) shows that, for the same energy the

modulus of AnL has its largest value when L = 0. Therefore if is

reasonably small the term 2j can be suppressed in (5-78)

except for an S-wave. In this case the integral (5*79)  can be handled

analytically. Actually, by (5.19”), one has

An0 = An$1} + AnJ2) ■ (5-79')

where

= a m c*  c I 7 X(f> cL /> (5.8o)it *o ’ Jy
and

,42j_£ - _ C j p) d p (5.81)

Using the definition (5.15) of x(p) and the condition a << 6 (see (3.26) and

(3.27)), Ano^ is approximately equal to
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"" 4« jo r

. . 4 <Mi
From (B.6) and since (see Courant, Volume II, page 318)

(5.80’)

one has

M Co C I x(pj /[I- c^i -
a_l jo

-.. X Ci U  e IW £L^-_ .1^
I AfcJ- 2^1*4  U) +f?2 (5.81’)

For the extreme values 100 and 300 MeV/c of the K~-Lab. momentum range covered 

in this work \ SL L is respectively equal to -0*007  and -0*010,  i.e.

. the term 2nk C<J>o(r) - 1/ra in (5*78)  is practically zero when L > 0.

Incidentally, the construction of the potential V(k,r) leads to the 

evaluation of the corrective term W(k,r), discussed in the last paragraph.

One obviously has

W(k,r) = -V(k,r) - (A + iB)$(r).

8. K~d Elastic and Total Scattering Curves

The K~d differential elastic scattering cross-sections, (A

are plotted in Figs. (V.3) and (V.U) against the K d C.M. scattering angle 0

f°r pLab = 100; 200; 300 MeV/c and for Ross-Humphrey’s solutions I and II.
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They were calculated by means of the formula

ft' - im-. ft-)-
(5.82)

where the are the pure Coulomb phase shifts given by (C.1U) and (C.15)

and the 6£ are the nuclear phase shifts calculated by Impulse Approximation

(see Table (IV)) and given by (5.78) *

. The numerical computation of | was carried out by

separating f(9) into two additive terms

f(e) = f (e) + fje) (5.82')C r<

where

. 4 •
t IC- n ■*

u x

represents the pure Coulomb part of the elastic scattering and (see (5-78))

24 . [)
-(e)--L- LCai-ije C^L-^ KLO*ie>)  (5.8M

Ji-<*  KCt L — O
is the term depending on the nuclear interaction.

In order to have a better assessment of the approximation involved in the

application of the resonant group structure method, Fig. (VA) also shows the

K d differential cross-sections obtained by substituting the nJ in (5.8^) for

the yT defined, in (5.63). . As in the case of the absorption curves, these graphs

show that the approximation W(k,r) - 0 is poor for low' energies.

Fig. (V.5) represents- the K d total elastic scattering ( ) and total

( ) cross-sections curves plotted versus P^ in 'the interval 100 to
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FIG. V. 5
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300 MeV/c and calculated by Impulse Approximation for Ross-Humphrey’s

solution I and II.

was calculated by means of the integral

de
(5.85)

where Oq represents a cut-off equal to 35° in the C.M. scattering angle; this 

value seems to be reasonable, if the accuracy of the experiments is considered.

Furthermore, the approximation 

was made in the evaluation of the interference between the Coulomb and the

nuclear terms of the scattering amplitude.

Finally, 0"was calculated by adding ^eL to the total

incoherent scattering cross-section } • > defined by

in c
L CZL^I) Ci - lYA1)
L= o

(5.87)
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CHAPTER VI

K d Inelastic and Charge Exchange Scattering t •

1. Introduction

The study of the K d non-elastic processes

K + d •* K +p+n (6.1)

K+d->-K+n+n (6.2)

by Impulse Approximation is the main purpose of this chapter.

In such collisions, part of the energy of the incoming kaon is absorbed

by the NN system during its transition from the initial state (deuteron) to the

final state (two free nucleons). Therefore, one has, using the notation of

Chapter IV,

|kbl < |kj (6.3)

instead of the equality (^.53). But the condition

Pb = |pbl = |pal = Pa- (6.M

as well as the kinematic relations (^.5^) and (^.55) still hold, because,

according to the fundamental hypothesis and assumption 1) of Impulse Approximation

(see §2 of Chapter IV), the K"N system is conceived as being isolated from the

other nucleon during the momentum transfer. Thus, if both sides of equations

(1*.5M  and (^.55) are squared, the results of these operations added and condition

(6.H) is taken into account with po = p, replaced by p’ = p’ > one getsa d a o

= ‘•'K4« L HP.(—

. ( let -
X TMy + Mx'

(6.5)
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Introducing now the scattering angle 0 defined by the directions of

vector ka and k^, the term (k^ - k^)2 gives

. (kb - ka)2 = + ka “ 2kbkaCOS 0 = . ’

= Uk^in2^ + (k2 - k2) - " ka)cos0 • (6.6)

Substituting 0 by tt - 0 in (6.6) one has also

(K + k )2 = Uk^cos2^ + (k2 - k2) + 2k (k, - k )cos0 (6.61)
o a a 2 0 a a o a

so that (6.5) becomes, if*  the coefficient (------------------A (= 0*04)  is

neglected (see (H.56) for the definition of y),

'l = fc*  1 + fl - 1 (V-h a I *1

' _ fA- 01 el , (6.7)

J4-k1

ft - pi 11- J
if the -term in cos0 is suppressed.

(6.7’)

the relations (6.7) and (6.7’) reduce respectively, as 

they should, to the expressions (^.57’) and (U.5711) > obtained previously 

for K d elastic collisions.

The values of p’ = p1 adopted in this chapter are derived from (6.7’).d a
This approximation seems reasonable because the relative error of P-^2~ Pa2>
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made by using (6.7T) instead of (6.7), does not exceed the same error (0*2)

becomes

system and constant

§h of chapter III), the

(1*.7) canequation be expressed by

h4 (6.8)

(M). The alternative formin

of (6.8)

(6.8’)

is used (see U.56)).is obtained if the coefficient y ( = 0*2)

k*

a2

where y is the K reduced mass, defined

The equation (6.8’) shows that K has a maximum, K^^_,vhen

& _

k, =0, i.e.,o ’ ’

for K d elastic collisions (k^ = k^) and drops to 0*16  and 0 when k^

equal to 0*5k  and 0 respectively.a

Introducing now the. wave number K of the NN
/ mNWo
=-----h2"12* * = ~^d^ (see respectively §1 and

energy conservation principle

(«•»>
HQ -1)

and that k is always lower than k if the deuteron, after the collision withb a

the kaon, goes into a NN continuous state..

2. The K~d inelastic transition matrix elements (❖ , T$ )
d a

The initial and final state wave functions used in the calculations of

these elements are respectively equal to (see (b.6))

(6.10)
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where <}>o(R) is the Hulthen function defined in (3.25) and <^(R) is the wave

function of the np continuous state K, given in (3.34). Considering the

approximations (3.30'), (3.32'), (3.36) and (3.37), MR) can be expressed
A.

in the form

3 °° 1 l L [/<bci?) -- 1 GlTii3 L b (6-u)
* 3 J □xo L-GWI

where 0^R is the angle between K and R.

The evaluation of (^,T* a) by Impulse Approximation requires the

introduction of a model describing the K~d inelastic processes. The model

adopted here consists in supposing that the kaon is scattered elastically in

all single processes contributing to the multiple scattering terms appearing

in the development (4.20) for T, with the exception of the last K~N collision, 

which is inelastic (see also §9 of this chapter on the same subject).

Such a model does not contradict the assumption 2') made in §4 of Chapter

IV. According to this hypothesis, the matrix element (<L ,T0 ) is equal tod a

the "weighted mean" of the sum of all multiple scattering terms arising in the

expansion of <kb|T|ka>, when T is replaced by its development (4.20), i.e.,

(. £(, >'T 4a) = (6.12)

When the K-d collisions are elastic, the sum of the scattering terms

belonging to this expansion of <k^|T|ka> is equal to (see (^.7^) and (U.78))

(C» _ / (a.) — .
Zb 4 C0^J_..(6.13)' 
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where f^1\o>R) and f^2\o,H) are given respectively by (b.7o) and (^•TT)
f

and. f3£ (i = 1,2) are the isotropic K N scattering amplitudes defined in

(U.871) and (>4.87).

However, when the K d scattering process is inelastic, (6.13) is no longer

valid, unless f^1\o,R) and f^2\o,R) are redefined in the following way:

t? —
CG> = ft

and

e (' + e 1J3A + 7^

C2.) , r - i(fe4.+ ktj'£la
Ce,«) = C *

The scattering amplitudes fQ. (i = 1,2) are calculated at p ( =Ji a

This value of the K~N wave number corresponds to K d elastic collisions. Tne 

fl. (i = 1.2) in (6.1U) and (6.15) are equal to the f(i = 1,2) with pji a

replaced by pf given by (6.7’). This allows for the K~d inelastic collisions.a

From (6.13), (6-.1U) and (6.15) it is now clear that, in agreement with 

the model for K~d inelastic collisions introduced above, the’ K N scattering 

contributing to the K~d multiple scattering terms maintains the elasticity of

the K d processes with the exception of the last K N collision, which breaks 

up the deuteron into two free nucleons.

Finally, the relations (6.13), (6.1U) and (6.15) show also that (<?b>T4>a)

is proportional to the integral over all values of R of the product of

<{’*]£(  R)$°(R) by a linear combination of plane waves multiplied by functions of*

|k| and | R| . Therefore, according to the remark made at the end of §H of

Chapter III, <j)„(R) is an appropriate function to represent the final state of

the np system. ‘
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3. Selection Rules for the expansion coefficients of (^>^0^).

Obviously, the matrix element

($^>T$a) depends on and k^

(by (6.8’) K can be expressed in

terms of these wave numbers)

and qn the angles necessary to

fix the vectors k^, k^ and Z with

respect to a coordinate system of

reference. Choosing the XZ-plane

as defined by k& and k^, with k&

along the Z-axis, only the three

angles 0, 6 and <f> (see Fig. (VT.l)) are needed to achieve ^this purpose.

Replacing now the plane waves and & ; in (6.14)

and (6.15) by the respective expansions into spherical waves (see Fig. (VI. 1) for 

the angles), i.e.

+ r , (6.16).
L=o vI b

PL,(I^ e„) (6.17)
L' = o v

and (wri ting

- - ‘ L1' 0= L i rL. Cm (6.H-;
I - O '

where (see (6.11))

(X. O*)  = 4 f- 1) CKl^) (6.11*)
L 3 3 = IL-H



it is clear, considering*  (6.12) and (6.13). that (❖, ,T$ ) admits the developmentb a

-^cK'^)-- 1 -1 L L' L"

■ (6.18)

where the factors CTTfTll and ITTfrIf are equal to
L1L1 Li 1/Jj Li

t4l' UL'H" n 0
CLdL"=^'1) - CAL-njCaL'+i) I PL(cHkk>e)l[l(.c^l0fi')l/Lll (ch 0Kff\

4 6 i O

(6.19)
and * 

-llL'L1' =1 PlL< (*«a.kv,l2)j L(,e(>'2 '^)^(6.20)

Jp d v

(6.21)

with F t(k ,k, ,R) defined as follows■LiLi a D q
ri L + L'r i

Ful1'*. »(,.«) =p-|4C~lj

In order to evaluate the integral in (6.19), it is necessary to have

P^(cosOk^R) and P^(cosO^p) expressed in terms of the angles’6R and (j>p (see

Fig. (VI.l)). This is easily achieved using the addition theorem for Legendre 

functions, i.e.,

/’((ch efetP) = PLC^ef,)PL Coj e) -f

w’i
(6.22)
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and

771 "cl CL."+YMh)l
nhe developments (6.22) and (6.23), when considered inside the integrals

defining the CTT lTtl, >4 , lead.to products of factors having the followingLL 1L
forms:

1) Performing the integration with respect to some of the factors belong

to the type (by (6.22) and (6.23) one has m,m” > 1):

|-ft Of hi
I O) W C<rt H7 fl * A . (6;2h)
Jo ' O f ryi

the other products, where either cos<j>R or cos($R - *R) appear as a factor,

vanish when integrated over <j>R. These results constitute the first selection

rule in the expansion of (K>T<I>a)* ’ •

2) Integrating now with respect to 6R, two new types of factors are obtained.

(putting g = cos6^ and representing by p any positive integer):
K

Cjj) = ° >‘f <6.S5>

I ~ o, ij-1-1 L'-ti i (6-25.)
J-l

The second selection rule consists in relations (6.25) and (6.25*),  which are

based on the parity properties of the Legendre polynomials and functions:
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Therefore, defining the coefficients a^,^ and a[jJ'L" me.ans of

(L + L*  + L" = 2p’.j

au,t., . <6-26>

^ /) /I *
a" . <6-27)

L L " . a+»r)!cz.r+»ij< -J<
and considering (6.20),. (6.26) and (6.27) as well as the selections rules

obtained above, one has the following expansions for the Cj^f^ns:

Cl'Ulh = [aLUL„ -*  •

21 *?■/,.,  G C<^G) h* \ (6.28)
jMx-1 UUU L 4

where min(L,L”) represents the smallest of the integers L and L •

Finally, introducing the coefficients A^n and A^jt, given by the

developments

• . £' (6.29)

= CL + L"Jand =o 1 .
A7?,, = 11 G.\uli> -J- I U L"

L'=a-^CL+L") <6-3O) .

where Pm-n represents the lowest positive integer such that 2pm£Q - (L + L ) 0

and E’ means that L*  increases by steps of two units, one gets, by (6.18), . .

(6.28), (6.29) and (6.30), the following expansion for (C>b,T<?a):
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where i = L, j = L”.

The behaviour of I , „ with increasing values of the indices
. - ______________LtJL L_______________________________________________________

Consider the definition (6.20) of ITTfT,t. The main contribution for the

integral giving this coefficient comes from the values of R belonging to the

interval 0 R < 1/a (or, introducing the new variable p = k R/2, from the

values of p satisfying the condition 0 < p < k /2a). This is so because, thea
— oRleading exponential e~ in (6.20) (by (3.26) and (3.27) one has a « B) is

vanishingly small when R > 1/a (or p > k /2a). , ,a

However, it was proved in ST of Chapter IV that the spherical Bessel function

IS) - J j CP-) Practically equal to zero for all values of p

belonging to the interval 0 % p < /tj + 1*5  if L’ £ L\ + 1*5•  Therefore, if

one has ’

L'j+l’J*̂) (6.32)

all the I , „ with L*  i L'i + 2 are vanishingly small.

By means of the inequality (6.32) and the equation (H.90) relating k&

to PLak> it is now possible to calculate L\ for the extremes of the range

covered in this work by the K~-Lab. momentum: 100 MeV/c * pLab * 300 MeV/c.

When pLab = 100 MeV/c one has k&/2a = 0-86 so that = 1 and the

with L’ £ 3 have very small modulus. But, if PLa^ = ‘300 MeV, one gets

k&/2a « 2*6  and by (6.32) L1! cannot be less than 5*
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However, in this instance the conclusion is not that the ITT fT lfs becomeLb L

vanishingly small only when L’ is greater than or equal to 7. Actually, the

^LL*L ,,S ^ePenc^ on wave numbers and K which are related to ka by the

energy conservation principle (6.8f). Therefore, if k^ is close to k^, one has

K = 0 and, reciprocally, when K is nearly equal to its maximum value, K (seemax ,
(6.9)), k& is close to zero. But, by (6.11") the-factor °C C) in

(6.20) for small values of p = KR behaves like the functions 3
(J. L"-4, L", I'M) i.e., I*' ’)'1' (See(3.38»;

and, similarly, the behaviour of the spherical Bessel function

in (6.20), for small values of the argument (i.e., k^), is given by

J L C k t fa $ K Thus, one always has a small factor

L” L- (KR) or (k^R/2) - in the integrand of the s0 that these quantities

can be. neglected for PLab = 300 MeV/c (and, a fortiori, for p^^ < 300 MeV/c)

when one of the indices L, L’ or L" exceeds 2, as the actual numerical calculation 

of the integral (6.20) clearly shows.

In such conditions the sum over L’ in the series (6.29) and (6.30) can be

stopped at L1 =2 and the sums over i and j in the development (6.31) at i = j =2.
• t

Finally, due to the orthogonality relations of the Legendre polynomials 

ul-hjcl-w)'
(6.33)

and functions

the developments (6.29) for the A^tt coefficients reduce to one term only, if

L or L" is equal to zero. Thus, the A^,, with L,L” < 2 are exactly given by
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A00 = s-OOO^OOO

AO1 = aO 11*011  A10 = a-UO^UO

a02 r a-022^022 A20 = a220I220

The following approximations • • inwere used for the remaining A^^lt and A_^„

with L,L" < 2:

A11 s a-lOl^lOl + a-ui1^!

a12 ~ a112I112

A11 ~ a101^101 + a-Ll1!^!

’ 1 1

a12 “ a-l^1!!?

A21 ~ a211I2U

A22 ~ a202X202

A1 1 T • •
a21 “ a2UI211

1 1 '

a22 " a202I202

2 2A22 ~ a202^202

The approximations for Ajj and Ajj are very good because a^j = a^i = 0.

5. K d inelastic cross-sections

The study of the dependence of the ILL,Ll’ts on the indices, carried out in

the last paragraph, leads to the complete knowledge of the coefficients A..

and A“. in the development (6.31) for the transition matrix element (<fr ,T<> ).
X J O t*

The K d inelastic differential cross-section I can now be easily

expressed in terms of the same coefficients and the scattering angle by means1

of .the integral (Messiah, 19^2, p.836)

‘ where dK represents the element of volume in the np wave number space, i.e.,
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(6.35)

and Co is the Coulomb penetration factor defined in (5•77’) and introduced here

as a correction to allow the inclusion of the electromagnetic interaction between

the negative kaon and the proton (see Landau and Lifshitz, 1958, p.^39).

The integration in (6.35) is to be performed over all directions of K and

over the values of the K-modulus belonging to the interval 0, K , wheremax

^max iS e^ven ky equation (6.9). Therefore, according to the orthogonality

relations (6.33) for Legendre polynomials and functions and writing

and

J° J (6.37)

(by (6.31) one always has in (6.37) 1 * m £ min(i,i’)) ) One gets the following

expansion for / (A s/L , if ($, ,T$ ) is replaced in (6.3M by its

development (6.31),

(6.38)

• in (6.36), (6.37) and (6.38) are stopped at i = i ’ = j = 2, as explained in §h.

In the actual numerical calculations, the summations over the indices i,i*  and j 

in
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By integrating (6.38) over dQ, and using again the orthogonality relations

(6.33), the total K d inelastic cross-section is given in this approximation by

<rin = Ci (8.0 4 4 8m . i _

(6.39) •
Q O V J

6. K d charge-exchange scattering

The calculation of the cross-section for charge-exchange processes, given 

by equation (6.2), follows similar lines to those pursued for the treatment of

the K d inelastic scattering in the previous paragraphs.

The'K~d charge-exchange matrix element will be represented in the subsequent

pages by ($J, T1^ ). where $ is the initial state wave function defined in (6.10),

but i.e., the wave function for the K~d final state is now equal to

d>‘, <t>-KW -
va

(6.1*0)

Obviously, <MR) in (6.U0) is the npK.
continuous state wave function given by

(6.11) and (6.11’). In fact, as the total ordinary spin of the K-d system is 

a constant of the motion, the final nn state arising from the charge-exchanges

between the negative kaon and the proton, is in a NN triplet state. Therefore,

must be anti-symmetric with respect to R, so that the nn system obeys Pauli’s

principle.

As in the case of the evaluation of the inelastic transition matrix elements,

it is also necessary to consider a model for the K~d charge-exchange collisions.



It will be supposed that.the kaon is scattered elastically in all single

processes contributing to the multiple scattering terms belonging to the

T-expansion (U.20), except for the last K p collision, where the charge-exchange

process takes place. §9 of this chapter a more complete model for this

process is used).

The formula equivalent to (6.12) is now

d>0 c«) IT'l »»><*«

where ck^J T^k > is given by (6.13), if the functions of f^\e,R) and

(2)
f (0,R) are redefined in the following way:

’raj - - ).I
(6’h2)

e p I rw
"3A viz,

(6.1+3)

The scattering amplitudes (i = 1,2) in (6.1+3) as well as in the denominator

of (6.13) are equal to those defined in (U.8?') and (4.87) respectively and 

calculated at p ( =*a

K d elastic collisions

i.e., the K~N wave number corresponding to

in (6.1*2)  and (6.^3) represents now the 

charge-exchange amplitude of the system formed by the proton (particle 1)

and the negative kaon (particle 3)*  Thus, 4 can expressed in terms

of f° and f1, i.e., the K~p scattering amplitudes corresponding respectively to 

the isotopic—spin channels 1 = 0 and 1 = 1 defined in (H.861)* One has,

therefore,
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f = 1 f_A_ . Ao \
*J31 X <1- (6.1*1+)

where p*  is given by (6.7').a
mu 4. 4. i(k ).R/2 „ -i(k +£ ).R/2 , . ,The terms proportional to e a d and e a d wmch appear

in (6.11*)  and (6.15) are missing in (6.1*2)  and (6.1*3)  because, according to the

model adopted here for the charge-exchange scattering, they would lead to K n

charge-exchange processes which are forbidden by the conservation of the total

isotopic spin of the system formed by the negative kaon (particle 3) and the 

neutron (particle 1) (see Chapters I and II).

It is relatively simple at this stage to obtain the )-expansiond a

equivalent to that of ($ ,Tj> ) given in (6.31). Actually, if the functionsd a
FLL'(ka,kb’R) in the inte6rals (6.20) giving the ILLiL„s are replaced by the

expressions (with | defined now as in (6.1+1+) J)

i - CflpM<6-U5)
in agreement with (6.13), (6.1*2)  and (6.1*3)  one gets, considering (6.1*1),  the

following development
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The summation over j( = L”) starts at j = .1 and increases by steps of two units

each time, because only the Legendre polynomials PT„(cos v) with odd Ln appear
L K.

in the development of the factor w - 4 i-ej'y belonging to

the integrand of (6.^1) (see (6.111)). Such variation of j is indicated in

Finally, assuming the same approximation for the K~d charge-exchange

cross-sections (differential and total) as the one made in the calculation of

the K. d inelastic cross-sections (the indices i and j are never greater than 2),

one has x n ■
ci(rc.e. _ -t

L o<e)]

and

<rc e .= cl [ a.o * | 6„ 4 1 Bla +

4 — 8 H + —r
3 J ■ (6.M)

where and are equal to the following integrals

*
Bti/ « _L

• (6.36’)

and

• (6.3r)
3Mo



7• Correction of the mass difference A between the K°n and the K p systems

The expressions of the K d inelastic and charge-exchange cross-sections

obtained in the previous paragraphs are based on the assumption that the . f

particles belonging to the same doublet, either (K°K~) of (pn), have equal

masses. But this assumption is only approximately true, so that the K d

cross-sections at low kaon momenta depend on A.

Let ek (i =.1, 2, 3, M be respectively the masses of the p, n, K and K°

particles; then A (in MeV) is equal to (see, for instance, Daliti, 1962, p.73)

A = (m2 + imj- (mi + m2) C2 = 5.7 MeV (6.^9)

and the C.M. total energies of the K~p and K°n systems are given by (see (A.11))

£ s -4 (6.50)

and

7 + r C* (6.51)

Here p denotes as before the C.M. K p wave number and p is the same variablea 0

for the K°n system.

When the K p state goes into the K°n state one has = an<^

(6.50) and (6.51) lead to the approximate relation for low energies:

K - J . \/ A « 0-301 (6.52)

where p = mim2/(mi + m2) is the K p reduced mass.
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The effect of A on the K N S-wave scattering amplitudes f^ (I = 0, 1)

defined in (4.86) is to mix the scattering lengths (1=0, 1) for each K~p

isotopic-spin channel in the following way (Dalitz, 1962, p.79):

f° = A°(1 " ip0A*) (6.53)

D(p )C*
and

f1 = Al^ " ipOAo) (6.54)

D(P )d

where

D(p ) = 1 - i(p + p0)(Aq + Aj - p poAqAj (6.55)
cl c_ cl d

and +i|po| must replace p0 when pa < >$. In the limit Pq = p&, (6.53) and

(6.54) reduce to the former values of f° and f1 given in (4.86).

Thus, the relations (4.87*)  and (4.87) for ^31 f32> as well as

(6.44) for f$i must be substituted respectively by

and

1 DCM

Ai U ->!><, 0)
]>Oa)

^-/>o
31 ’ a])C|>y

(6.56)

(6.57)

(6.58)
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In the integrals (6.36’) and (6.37’) for K*"d  charge-exchange processes,

the values of ^-max nust also be corrected.^- do this, the energy conservation

principle equation (6.8) (or (6.8’)) is considered again. The left-hand side

of this equation is the sum of the two terms: a) the rest plus -the C.M.

kinetic energies of the K d system; and b) the energy of the deuteron’s

internal motion. Thus, one has in the notation of this paragraph

But the right-hand side of (6.8) for K~d charge-exchange processes is equal to

the sum of c) the rest plus -the kinetic energies of the K°nn system plus

d) the nn internal motion, i.e.

VwJ c" 4 kf C» + + + t'K1

(6.59’)

The equality of Ea and gives approximately *

kJ Eot ■=■ A (6,6o)

or, considering that the K~d and K~N reduced masses p and p are related by the 

equation y = yy (see (^.50) for the definition of y),

hi kt4

Thus is nov given by

(6.60’)

(6.61)
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These corrections (both for K d inelastic and charge-exchange processes)

are incorporated in the numerical calculations of the coefficients (A... A?.)

and i) defined in the previous paragraphs. Such calculations as

well as the evaluation of the differential and total cross-sections for these

K d collisions have been carried out in the Mercury-Ferranti Computer belonging

to the London University. The obtained results shown in Figs (VI.2) to

(VI.5) are discussed in the next paragraph.

6. Analysis of the results and conclusions

When the present work was started, it was the author’s intention to

establish which solution belonging to the Ross-Humphrey’s sets is physically

acceptable in the light of the experimental data on K d processes at low

energies.

Unhappily, this programme cannot be carried out to the end, because of

two main objections: first, the available K~d experimental data is very

scant; secondly, quite recently it has been shown that none of the sets of

scattering lengths found by Ross and Humphrey explain some features of the

K p interactions.

The first objection is illustrated by one fact that the three experimental

points of’a , + o. K~d total cross-section (the experimental difficulties inel m
separating the elastic from the inelastic processes lead to consider them

together) given by Alvarez (1959) in his report on K~-meson in deuterium, are

still the only available in the interval 0 to 300 MeV/c of K -Lab. momentum

(see Table (VI.l)).
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Table VI; 1

ael + K~d experimental cross-sections

pLab

(MeV/c)
125 * 25 175

•
* 25 210 *.13

a + a.el in

(mb)

. 1U5 * 35 55 * 15

•

99 * 15

These points are plotted in Fig. (VI.5) and seem to favour Ross-Humphrey's

solution I rather than solution II.

Another piece of experimental information can be put into terms of the

general behaviour of the K~d differential cross-sections: Dahl et al. (i960)

showed that most of the K collisions in deuterium through Lab. angles greater

than ^5° (^ 5^° in C.M. scattering angle) are inelastic. Comparing the

graphs of Fig. (VI.2) for K~d inelastic processes with those of Fig. (V.3) and 

(V.U) for elastic scattering, the general trend observed by Dahl et al. is in

better agreement (at least in the range 200 to 300 MeV/c’ of the K*  Lab momentum)

with Ross-Humphrey's solution II, than with solution I.

Finally, the fractional .absorption rates R^(tt )

the processes (Y stands for the hyperons E and A):

Rj/tf ) and R^(tt ) for

K~ + d->7r+Y+N

has been calculated for Ross-Humphrey's solution I and II at different values 
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of K -Lab*  momentum in the interval (0, 300 MeV/c) by Chand and Dalitz (19o2)

and Chand (1963); the two solutions give approximately the same rates, so that

no clear distinction can be drawn between them. It is interesting to note

that the fitting of solution I at 300 MeV/c with experimental data is very good.

At rest, however, the discrepancies between the calculated and the experimental 

absorption rates increase and are of the same order of magnitude for both

Ross-Humphrey’s sets of solutions.

The second objection, i.e., the inability of both Ross-Humphrey’s

solutions in reproducing some features of the K p interactions, is based on 

the following considerations:

a) Argument of Akiba and Capps (1962). To account for the interference

of the K~p S-waves amnlitudes with the 395-MeV/c D3, resonance, Trinp et al.
• /2

(1962) were led to admit a negative phase difference <j> = - 44 between the 

matrix elements for £tt production in the 1=0,1 K”p isotopic-spin channels.

Akiba and Capps argue that since no violent fluctuation of the £ / Z 

ratio is observed between 175 MeV/c and ^00 MeV/c, <t> must be also negative

below the former K"p Lab. momentum. In these conditions, solution I is not

acceptable and solution II is possible, because they have respectively positive

and negative phase differences (see Table (II.l)).

b) The large difference in the (.£ tt+)/() ratio observed when’stopped
* •

negative kaons are absorbed in hydrogen (/v 2) and in deuterium (1) lead Schult

and Capps (1961, 1962) to assume that the <KH|T^^|£tt> transition matrix

elements (see (1.11’)) depend on the energy. This hypothesis requires

a negative <$> and a ao < -1*3  fermi (a0 is the real part of the 1 = 0 K~p 
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scattering length). Therefore, according to this assumption, solution II

is also ruled out.

At the same time, Schult and Capps, although such an assumption was not

necessary, explained this rapid energy dependence of <KH|° |£tt> in terms of

a S-wave resonance of the Dolitz-Tuan type (Dalitz and Tuan, 1959) in the

K p isotopic-spin channel I = 0 at an energy 0-20 MeV below the K~p threshold.

Later on (1962), the same authors identified the assumed resonance with the

Yo*-resonance  found experimentaly by Alston et al. (Capps and Schult, 19o2).

The Yq* can be interpreted as a K~p bound state and this permitted Dalitz (19&1)

to derive its mass and width T in terms of the Aq. ( = ag + ibg) scattering

length. Dalitz used a linear approximation of the Breit and Wigner formula

to the denominator of the 1=0 K~p scattering amplitude. The result is

written in a system of units in which H = c ■= 1,

tr -- m* -> mJ - CaA^)'1,

where p is the K reduced mass.

c) Solution II is also inconsistent with the data for K^p interactions

(Lauers et al., 1961). This happens because the large positive value of*  the

real part of Aj (= aj + ibi). The discrepancy is reduced if aj is small and

positive.

The contradictions between theory and experiment stated above lead to the

conclusion that both Ross-Humphrey’s sets of solutions are possibly inadequate.

In fact, quite recently, a systematic x2~search, similar to that carried

out by Ross and Humphrey, was performed by Kim (1965) in an experimental samole

ten times as large as that used by those authors in their analysis.
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Kim’s solution II has a very poor fit to the experimental results, so that

it can be ruled out. However, solution I (see Table (VI.2) where the symbols

have the same meaning as in Table (ll.l)) agrees quite well (see Kim, 1965 and

Burhop et al. 19&5) with the K~p experimental data for K~-Lab. momenta below

300 MeV/c. Furthermore, Table (VI.2) shows that the requisites formulated

in a), b) and c) are satisfied by this solution.

Table VI ,2

Kim's Solution I

• a0 b0
(fermi)

ai bi
(fermi)

£

-1-671* 0-722 -0*003 0-688 0.318 -53-8°

(*0-038) (*0-01+0) (*0-058) (*O-O33) (*0-021)

Finally Kim's solution I not only agrees with Sakitt’s solution I

(Sakitt, 196 M but "also is a good approximation to the mass and. possibly,.
1

to the width of the Yq* resonance. Actually, the relations (6.62) applied to

this solution lead to

Er = 1-iilO * 1-0 MeV, T = 37-0 <3-2 MeV

which should be compared with the experimental results (see Kim, 1965)

Er = 11+05 MeV, F = 50 MeV or 35 * 5 MeV.

In the light of the previous discussion of the inadequacy of the Ross-

Humphrey’s sets of solutions, the practical value of the present work is a lot 
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lessened, unless the calculations are repeated with Kin’s solution I.

However, from a theoretical point of view, something has been achieved if the
• •

results obtained by the author (heading A of Table.(VI.3)) are compared with

those worked out by Chand (19o3) for the K d problem, using also the Ross-

Humphrey’s scattering lengths (heading C of the same Table).

The main differences between the two sets of values A and C, for each K~d

cross-section occur below the K -Lab. momentum of 200 MeV/c and in the

K -Lab. momentum range 100 to 300 MeV/c for the a. cross-sections of solution I.in
The explanation of these discrepancies lies in the different approaches to the

K d problem employed by Chand and the author.

In his work Chand uses the boundary condition model introduced by Jackson

et al. (1958) for the discussion of KN scattering and developed by Dalitz and

Tuan in many of their papers on the K~p interactions. This method (Chand and

Dalitz, 1962) insures time-reversal invariance and probability conservation

of the total flux in all possible channels, i.e., the unitarity of the scattering

matrix.

When the model is applied to the K d problem (Chand, 1963), the general

properties satisfied by the boundary conditions lead to a scattering amplitude ‘

with single and multiple scattering terms. The propagator of these terns has
ik Rthe form e a /R and include virtual charge-exchange processes arising from

the K°nn states. However the two scatterers (the nucleons) are treated as 

fixed centres.

In Chand’s paper, the difference between o •, calculated either asLO b

a sum (a^ + + % e +aab^’ or means optical theorem, never exceeds



Table (VI.3)

K d cross-sections, expressed in mb

PLab °el aab a.in. a c.e atot

(MeV/c)
A c r A -i

a. -(a- +a )inc in c.e. _
c A

I
c A c A c

100 150-8 lbl-6 ' 276-8 2b8-3 6-8 2-6 5-2 13-1 b39-b bO5-6

l{ 200 39-2 l»5-b 9b-7 82-3 18-0 26-9 7-6 8-9 159-7 163-5

300 lb-1 19-b 50-5 b3-l 16-b 29-2 b-3 ■ 5-3 85-2 97-0

100 27b-6 211 • b 21b-2 2b0«9 16-9 25-b 5-3 13-5 510-9 b91-6

II{ 200 77-8 82-6 65-1 7b-6 58-1 . 61-2 8-5 9-5 209-5 227-9

300 29-6 ' 39-5 26-5 3b-6 57-8 6b-2 b-5 5-2 ’ 118-3 lb3-9

C\
o
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2mb in the K -Lab. momentum range (100, 300 MeV/c). This is apparently

a nice check of the probability conservation of the total flux.

However, Chand calculates all the non-elastic cross-sections, both

differential and total, using the closure approximation. This method 

introduces an infinite number of nucleon-nucleon (or nucleon-hyperon) states

in addition to those required by the energy conservation principle. The

contribution of these additional states to the fractional cross-sections

ac e and a can be important at low energies, although the sum

O£n + ac e + aa^ would not be affected, because the changes thus introduced

cancel one another. But the ratios of a«- , a and o to this sum arem’ c.e ab
certainly altered. .

A cancellation of this kind (see Table (VI.3)) seems to occur, for

K -Lab. momenta below 200 MeV/c, between the a- and the a calculated by

C, if the values for. the same cross-sections obtained by A are accepted as

correct. In fact, the differences between the corresponding values of a■ ao

in A and C are relatively small compared with those for and and

a whole argument can be developed in support of the correctness of the as

given in A.

It takes the following form: the graphs of Figs. (VI.3) and (VI.H) show

that, in spite of the wide differences between the two sets- of Ross-Humphrey’s 

scattering lengths, doc e/dQ 311(1 ac e are Quite similar for solutions I and II,

i.e., the K~d charge-exchange processes are poorly sensitive to different sets

of Dalitz scattering lengths. This observation is confirmed by the former

calculations made by Day et al. (i960) who found respectively, for an old set 
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of Dalitz solutions (a+), (a ), (b+) and (b~) the following values of

at aK-Lab. momentum of 200 MeV/c: 8*1,  6*1,  5*5,  5*9  mb. These values

are not only close to each other but also agree well with the corresponding A •

and C cross-sections in Table (VI.3). Therefore, one is allowed to consider

the result <* c e - hmb at K -Lab. momentum of 136 McV/c obtained by Day et al.

(1959), which favours the determination of a^ e made by A. In this paper

and for the same K -Lab momentum, ‘Day et al. state also that the closure

approximation overestimates in about 50$ the value of ac.e.
Therefore, it seems reasonable to expect that the K~d charge-exchange

cross-sections calculated in this work are more or less correct. It is

interesting to n’ote that da^ /dAhas a very neat peak at a C.M. scattering

angle of about 80°. ('v 67° in the Lab. system).

The smallness of da /d-Q for 0=0 (see Fig. VI.3) confirms thec.e
orthogonality of the NN initial and final states wave functions used in this

calculation. In fact, the transition matrix element (6.hl) for K d charge­

exchange interactions is nearly proportional to

for the forward scattering, if multiple scattering terms are neglected.
« •

The present work does not include the virtual charge-exchange processes

considered by Chand. However, contrary to Chand’s work, the two nucleons are

supposed to be moving scattering, centres, thus allowing for the deuteron’s recoil.

It is not possible here to have a check of the probability conservation of

the total flux, similar to the one used in Chand’s paper, because the indenendent 
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calculation of a in Chapter V is not sufficiently accurate. However,

an indirect proof of this property is obtained in the next chapter. Actually,

the treatment of the K+d interactions given there is analogous to the previous

chapters for K d collisions. Since the K+d interactions are free from

absorption processes in the kaon-Lab momentum range (100, 300 MeV/c) under

inspection, the relation a. = a. + a should hold in this case.inc in c.e

9. Supplement to Chanter VI: K d virtual charge-exchange scattering

It is shown in §1 of Chapter V that only the two isotopic-spin wave

functions (5.2) and (5*3)  can represent the K d system, because they are the

only ones, among the eight possible eigenstates of three particles belonging

to charge doublets, which have J = 1/2 and = -1/2. Using an obvious

notation, such functions can be written in the form

/°« ’ h**.- (6'63)

Pl - - \/2u |T(6.6M

The channel pj is a virtual state of the K d system, because not only both

states, np and nn, are mixed in it, but also the NN functions belonging to

Pi have I = 1, in contrast with the deuteron’s isotopic-spin 1=0.

Consider now the exact expansion (^.20) of the transition operator T:

if the virtual state p2 is to be included in K~d collisions, the propagators

of the kaon-waves, derived from the Green's operator Go, must have projections

on both isotopic-spin channels pQ and p *
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However, in order to obtain a finite expression for T, calculated from

(l|.2O) by Impulse Approximation (see Chapter IV), it is better to replace*

Po and Pj by the orthonormal functions:

(.fo- ) (6.65) '

and make the assumption that a kaon-wave in one of these isotopic-spin channels

does not interfere with the corresponding wave in the other. The plausibility

of this hypothesis is discussed below.

Hence, using the operators t^ (i =1, 2) and Go, defined respectively in

(l+.l?') and (^.59) > the terms of the T-expansion (U.20) for K~d elastic

collisions are given approximately by (see §§2 and 4 of Chapter IV)

X 21 S < po A, A( Ap< am p0>
jiO r,s ' d d J J

^21 5 M ti(/Aj> <Ai rl&op Aj><AjJ
- j-o

. < Aj r‘ Aj > 14 Aj ?0>
• • - . (6.66)

where a and b stand respectively for the initial (0 ) and final (b )a b
K d-states and the other indices (r, s, r’, s’) for the normalised solutions

Xc» X^i and Xot equation (I4.IO’). According to the assumntion made
x o x S * •

above no off-diagonal elements of the form
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<A | f |t:\r‘Ay> , 0.1 (6.g7)

appear in (6.66)

Supposing that the KN-waves are mainly S-waves and introducing .again

the hypothesis II (see §5 of Chapter IV) on the behaviour of the off-energy

shell KN-matrix elements, the T-terms T}, T2j, T121, etc., become

% = < j\4>o t«>l4
1

'~T _ ,L < ^\^\^ai0\y}fo> ■

' M7T t d-SJ J = O _
I . l 1^ -,C£<Ul?6.)fel£

. I (.c)\ £ Pee; (6.66’)

, - i t I < f» ? Vt-M. U Aj > < A j <j jta, „ K Aj > •
'-z-iirl\3 Ci + <J -° -i’c>?c.-tee.).

. < A j |3 b o I |O j \ 2 f? .

where p is the kaon reduced mass in the K N C.M. referential and ?(R) is the 

propagator i sin(kR)/R.

To be consistent with the existence of the mixed np and nn states of

C * O t d ) 9 it is necessary now to allow for’Of and MN charge-exchange

interactions. This is simply achieved by using KN potentials of the type 

defined in (2.3), i.e.,

V(r ) = V(1)(r ) + V(2)(r )P ’ (i = 1, 2) (6,68)
1 A X O x

where r. represents the distance between the kaon (particle 3) and the i-nucleon

and P . is the charge-exchange operator between the same particles. No snecial 

form
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needs to be assumed for the NN potentials because it does not appear explicitly

in the Impulse Approximation formalism.

As it is explained in §1 of Chapter II the potentials (6.68) are subjected

to the conditions

- v(2)(r.) = W0(r_.) (i = 1, 2) (6.69)

V(1)(r.) + V(2)(r.) = W^r.) (i = 1, 2) (6.70)

where and Wj stand respectively for the interactions through the KN

isotopic-spin channels 1=0 and 1=1. It is also indicated there that the

effect of Pq- on the KN-wave functions (2.5), which will be represented here

by <|^Z(i,3), can be summarised as follows:

(6.71) ■

The expressions (6.66!) for the T-terms show that one has to calculate

three distinct types of KK-matrix elements: < o p | t j. i0 ] o > ,

< and

To do this, one has to have pQ and written as linear combinations of

<f>|z(i.3). For i=l one gets:

. fo ^47 P ,6-721

Aj = ^[14 C-lpfiHo’V - («.T3)

- 4 L1-4W h .P °'iX
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Consider now the evaluation of < q p | O > for

instance. If ip8(ri)> ^(rj) and ^(rj) represent respectively the KLT total

waves through the channels £q , and one has, by (6.68) ■*  (6.72),

t't’Mo ■» Ml)- t? >
1 1 • X.

hence

41 z y\vM?>
(6.7M

But < , because I remains unchanged in

ipj and and the interactions involved in K N collisions are strong. Thus,

if the K~N scattering amplitudes f1 (I = 0,1). are introduced, one gets

Using the same procedure, one also has

(6.75)

- I? 1^1,01 |°A^> - 3<fi'c‘1^(jl'f)j(6.76)-

and

Aj>= ^^°+^_(rl)^'^e\6.77)

The similar matrix elements, obtained from (6.75)> (6.76) and (6.77) by

inserting t2 Q instead of t} 0, or by interchanging pQ and A\ , have the

s ame value s. Therefore, summing up all T-terms (6.66’), one gets the K~d 
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elastic scattering amplitude f( 0) in the form (^.73), where f(0,R) is now

given by

* £ojj (®«*)  (6.?8)

with

J (e,«) = 1 (J OiBi t

j %, *- * a'- D]% (M9)
and 

Here Gj and ©2 are respectively equal to (k& - k^)R/2 and (k& + k^)|R|2.

As stated above, the off-diagonal terms (6.67) are not included in 

f(O,R). However, this approximation is reasonable, because the expressions 

for such terms, calculated at point R = 0, i.e.

“ < Aj H IP Aj' * - X-/°J , pj'HTI r» (6.67’)

show that they are much smaller than the diagonal elements (6.76).

Virtual charge-exchange terms can .also be introduced in K~d inelastic and

chargel-exchange scattering. In the calculations of these processes^ the

potentials (6.68) allow now the use of a more complete np triplet wave function
* i

than the one employed in §2 of this chapter - ^(R). Such a function can be

written in the form
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'Vu W ‘ S' fy?) + W (6.80)

where

4> . 1 4 C-x/c^C-*)]  (6.81)

for I

Consider first the K~d inelastic collisions. These processes can take .

place in two different isotopic spin channels, p0 and p1#

The transition matrix element (4>^,T0 ) dealing with the K~d inelastico a

scattering in channel p0 can be written in the form

and

< fo'iet yv i>c> being given by

-r r(.3.) W -
- < PoK CT Po> + £ (6.83).

U771*  ' v J = o J J

where fl the same value as in (6.79)» but and fj2\e,R) are

equal to

p'ce A) - 4- QiHi
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Here, (I = 0, 1) represents r’-d = o, i) with p replaced by pr given
a a

by (6.7*)•

The transition matrix element (4>2.T4> ) for K~d collisions in channelb’ a
pj is equal to

fAV’’ (6.85)

where <p | T|kap0> has a form similar to that of <pok^ | T|k&po> in (6.83), but

with and f^2\o,R) given now by

i ce.«)=.
J . If!

8 V30 ♦<)•■)'•

where (I = 0, 1) has'the same meaning as before. The expressions

(6.85) are derived from the two-body matrix elements

Therefore, according to the structure of pj (see (6.6M)> one-third of the

cross-section calculated from the matrix element (<M ,T<5> ) measures the amount ofd a

K~d inelastic scattering in channel p1 and two-thirds of the same cross-section

is related to the K~d charge-exchange scattering.

With respect to the formulation of the present theory see a quite recent

paper by N.M. Queen (1965)*
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CHAPTER VII

K*d  Interactions

1 K*N  systems . •

The differences between K+N and K~N interactions are striking: ' K+N

collisions at low energies never lead to the copious proliferation of fir’s and

Air’s as happens with the K~p scattering (see equations (1.3) to (1.7) of

Chapter l). Such a behaviour of the K+-mesons, however, is completely

explained in terms of the general conservation laws of strangeness and of

baryon number.

As it is well-known (see, for instance, Dalitz, 1962, p.2), the strangeness

s of any particle belonging to an isotopic-spin multiplet is twice the deviation

of the multiplet’s average centre of charge from the corresponding centre of

a) the mucleon doublet, in the case of the baryons and b) the pion triplet,

in the case of the mesons.

This definition assigns a strangeness +1 to the (K+K°) doublet, whereas

the A-, jr- and E- multiplets have respectively £ equal to' -1, -1, -2.

Therefore, no K+N strong interaction, leading to Air, or Hit production, is

possible. Nor is the production of Air’s and In’s, either. Although A and

£ have s = 1, the conservation law of the baryon number £ is violated in these

reaction channels. In fact B is equal to +1 for the K N system, but Air and

£/r have B = -1.

Hence, at low energies the K+N interactions are-free from absorptive

processes and should be possible to describe them in terms of two sets of the 
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zero-effective range real parameters (a^., r^.), related with the $-wave phase

shifts 6^ by the equation t

p cot 61 = i + - TTp2 '(7.1)
tij- <_ -L

where p represents as usual the kaon-wave number in the K+N C.M. referential and

I is the isotopic-spin.
/

The I2- invariance (see Chapter I) applied to the K+p system leads to the

only possible total isotopic-spin channel

I2 = 1 , 1=1 *}  = |K + p> (7.2)

This channel is associated with the reaction

K+ + p K+ + p

and the parameters (aj, rj) • However, in .the case of the K+n system, the

same invariance shows that two total isotopic-spin channels are available:

I2 = 0 , 1=0, <{>° = i( K+n> -|K°p>) ■ (7.3)

1=1, 4>° = i(|K+n> +|K°p>) (7.14)
/2

Obviously, <j>° is related with the reaction

K+ + n * K° + p

and the set (aQ, r^), while (j>° represents, the interaction

K+ +, n -*  K+ + n

described also by (alt rj).

The numerical values of aj and rx are thoroughly determined. In fact, the

best S-wave zero-effective range x2-fit (Goldhuber et al., 1962) to the

experimental data on K+p. scattering in the kaon-Lab. momentum interval

1^0-6^42 MeV/c gives
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a = - 0*29  * 0*015  fermi, pj = 0*5  ± 0*15  fermi (7*5)

rTtie same authors use also the zero range formula (I = 1)

cot 61 = A » (7.6)
aI

the best x2-fit of (7^6) to the K+p experimental data in the Lab momentum range

1^0-350 MeV/c is now •

ax = - 0-3 * 0-01 fermi (7.7)

The K+n potential in channel 1 = 0 seems to be very small and attractive, in

contrast with the K+p repulsive potential. The corresponding S-wave scattering

length is not so well determined as ai. • Ro^dberg and Thaler (i960) give the

following value

ao = 0-080 * 0’068 fermi (7.8)

Since the inaccuracy in the determination of a° is large, the result (7.7)

for a^will be used in this work as well as the zero-range approximation (7.8)

in the 1=0 and 1=1 channels.

2. K+d cross-sections

The formalism of Impulse Approximation developed in the previous chapters

can be used here with minor alterations, if the K+-Lab. momentum range is the

same as in the K~d problem: 100-300 MeV/c. Obviously, for higher momenta,

relativistic effects should be considered, as well as. higher phases in the NN

wave functions.

a) K*d  elastic and incoherent scattering

The scattering amplitudes for f31 (p’,p) 8X1(1 f32 (q’»q) defined respectively

in (U.70) and (4.70’) are now given by the relations
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f3> ’ <t-9>

and

♦ i .“‘pa,) (7-9’)

instead of the expressions (U.871) and (h.87).

Introducing (7.9) and (7.9*)  in (U.85) the nT- parameters for K+d collisions

are calculated in the same way as for K~d scattering.

The correction of Coulomb effects is also brought into the q^’s using

the method developed in §7 of Chapter V. 'However, there is a slight

difference: the quantity n. appearing in the Coulomb penetration factor (5.77)

and in AnL (see (5-79)) has a positive value, because the Coulomb interaction

is now'repulsive.

The expressions (5.82), (5.85) and (5.87) are used again in the calculation

of the K+d da^/dA, crel and c> respectively.

b) Kd  inelastic scattering*

The coefficients (A.., A1?.) and B. .B? .f) given by equations (6.29),
ij ij 1,1 1,1

(6.30), (6.36) and (6.37) are calculated in this case with the new expressions

(7.9) and (7.9’) for fq. (I = 1,2), as well as for f’. (see §2 of Chapter VI).

The Coulomb penetration factor in the expression (6.3*0  for dcn^/dA is calculated

considering n positive.

c) Kd  charge-exchange scattering*

The alterations pointed out in b) must also be introduced in the evaluation

of the K+d charge-exchange cross-sections. However, a further correction is

necessary in this case. Actually, the NN final state for these processes
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consists in two protons (see (7»3))» instead'of two neutrons. Hence^ the

triplet phase shifts of the pp system (see §6 of Chapter III), are used in the

approximate radial functions U^(KR) (see (3.37)).for two nucleons. Also, each

should be multiplied by the Coulomb penetration factor Co defined in

(3.^8). The introduction of Co here is based on the similar correction 

l^(KR)
u

expressed by formula (5*77)*

d) The A-correction

Finally, the mass difference between the K+p and K°n systems, A, is handled

in the same way as for the K~p and K~n sets of particles (see §7 of Chapter VI).

Only a slight alteration is needed in the energy conservation principle

equation (6.6): A must be replaced by

A’ = m(K°) - m(K+) + m(p) - m(n) C2 = 2«2 MeV (7.10)' '

because the NN final state for K+d charge-exchange scattering is formed by two

protons instead of two neutrons as in the corresponding K~d process.

3* Conclusions

Fig. (VII.l) to (VII.3) show the results of the numerical calculations of

a , a. and a , as well as the respective differential cross-sections fore± m c .e •
K+d collisions in kaon-lab. momentum range 100-300 MeV/c.

The contribution coming from C.M. scattering angles less than 35° have been

neglected in the calculation of a

The K+-differential charge-exchange cross-sections (Fig. (VII.2)) show

sharp peaks around = 85°> similar to those found for K d da /dQ. ■ This
CM c • e •
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FIG. VII. 3
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indicates that they are due mainly to the properties of the NN wave functions.

Such a behaviour is maintained with increasing kaon-energies. The calculations

made by Ferreira (1959) for K+d differential charge-exchange cross-sections at

K+ * *
a -Lab energy of 100 MeV show again a peak around the same C.M. scattering

angle. Since these calculations are carried out by Impulse Approximation

combined with a closure approximation to sum over the pp final states, this

result-supports the choice made in this tfork for the pp wave functions.

Fig (VII.3) leads to the conclusiong that a- - ,a*  + a • This

relation is a good test of the probability conservation of total flux in K+d

collisions and indirectly, in K d scattering. The gap between the two curves,

□£nc and a^n + ac e > likely to be narrowed, if the damping parameter Z, set

equal to 0*8  fermi (see (3.37)), is adjusted, by increasing its value, as

discussed by Gourdin and Martin (19^9).

To the author’s knowledge no experimental data on K+d collisions is

available in the 100-300 MeV/c interval of K+-Lab momentum. It is not possible.

therefore, to check the present calculations .with the experiment.

Table VII summarizes the numerical results of the K+d cross-sections.

Table VII

K*d  cross-sections (in mb)

PLab

_(MeV/c)
°el ain °c.e. atot=c7el+ainc

100 39-91 o*?u 0-56 35*76

200 12-90 It.26 2-1*9 20*00

300 5-87 5-91 2-95 lb-91*
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Appendix A

The Order of Magnitude of the Relativistic Effects in K~N Interactions

A convenient criterion to estimate the relativistic deviation from classical

laws in K N interactions is the knowledge of the order of magnitude of the

relativistic corrections for the centre-of-mass momentum and energy of the K~N

system, calculated at 300 MeV/c, the largest K"-laboratory momentum considered

in this work. The reason for choosing such a criterion is that the kinematics

as well as the dynamics of the K N problem is not appreciably changed, if the

relativistic corrections are small.

Consider a negative kaon with mass equal to m^, moving freely with

velocity v in an inertial system of reference (the Lab. system). Its

relativistic momentum J and energy E^ are given by

where c is the velocity of light.

(A.l)

From (A.l) two new expressions are easily derived: one is a scalar,

Er« (A.2) .

and the other, the vectorial equation

' "cT (a.3)

Consider now a nucleon with mass equal to m,. at rest in the same inertial

system. It has a zero momentum and a rest 'energy

E2 = mC2
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From (A.3), the centre-of-mass velocity V of the K~N system is

v =
E1+E2 (A.M

because the total energy and momentum of this system is the sum of the partial

energies and momenta of the two particles. V is also equal to the centre-of-mass

velocity of the nucleon with negative sign. . Thus., the centre-of-mass momentum

•P of this particle is given by

-mV

'/T7Ti
(A.5)

But the total centre-of-mass momentum for the whole K N system vanishes, so

. that the kaon centre-of-mass momentum is equal to -P.

Eliminating V between (A.4) and (A.5) one has

Ct I 4 £aJx _ ^s.cXi

or, from (A.2) and the equation E2 = mC2,

K (A.6)

(A.6) gives the relation between the two K~-momenta p (in the Lab system)

and P (in the C.M. system).

Developing now the square root in (A.6) into powers of C"2 one gets

VO)3* J i C&t— • 1 •.
so that

■ pi' d---------------- J----------------------- (A.7
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is the approximate expression for £ up to the second power of C"1.

Remembering that the classical expression equivalent to (A.6) is

f . i (A.8)
cL " <L + 

where Pc^ represents the classical centre-of-mass K^-momentum, (A.7) gives

L.: • 1 ’ ■

The second term in the expansion of (A.9) into powers of CT2 is the

relativistic correction £P for P n :— c±

A P - _ I f bt f (a.io)
Z yn th k k C J

Considering now the relativistic K~N energy in the C.M. system one has

£ \Jyn*c Q+ Pc*  4 4 (A.11)

Developing both square roots in E into powers of C“2 and introducing the

reduced mass p (1/p = 1/m^ + 1/m) of K~t (A.11) can be written under the form

Expressing P in terms of P^ by means of (A.9) > developed into powers of

G“2 up to the second order, E gives .

E = L A'[i. 1(1,5^X49*  ]
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The first term in this development represents the K~N rest energy and,

consequently, it is a constant which can be ignored. Therefore the relativistic

correction for the K N energy in the C.M. system is given by

Considering now that m = 2111^ and m^ = 500 MeV, from (A.8), (A.10) and

(A. 12) one has for p = 300 MeV/c
p2

P , = 200 MeV/c, i — = 60 MeV
cl ’ • 2 y

AP - -200 x O-Oh = 8 MeV/c

AE = -60 x 0.11 = 6-6 MeV

The relativistic corrections and AE amount respectively to and 11$ of

the classical centre-of-mass momentum and energy of the system, for the

largest K -Laboratory momentum considered in this work (300 MeV/c).

A P is quite small and therefore is negligible. At first sight however AE

seems to be a larger effect. But if it is considered that

p2 ~ P2 + 2P AP
cl cl —’

so that the relativistic correction for P2 is 2aP|P , (= 8$) of P2n , the ratiocl —' cl cl
2yAE|P ’ (= 11$) is in good agreement with the for AP_| P . It is then

reasonable to ignore the relativistic effects for K -laboratory momenta below

300 MeV/c.
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Appendix B

The integrals of zero-energy variational formula for K N potentials

This Appendix is devoted to the calculation of the integrals appearing in

Schwinger’s variational formula of Chapter II’.

The trial function is represented in the same notation as the one used in

that Chapter:

. u(r) = 1 - e’br + £ (3.1)

i) Calculation of the integral

f°° -u-hr , ,
u(r) — dr u(r’) dDr dr’ (B.2)

r
o ' o

• r —arIntegrating je r dr by parts one has

[e“arr dr = - ^ r - <B.3)
J a a

So that
r

e"ardr = a"1 (B.U)

'o

e"arr dr = a"2 (3.5)

o

The following integral (See Courant 19^7 > Volume II, p.2^0):

r -ar -gr
•2-------—-----  dr = log - if B > a > 0, (b.6) 'r a ■

'o
is also necessary for the present computations.
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To calculate (B.2) one starts with the integral

fr
-hr’ . r\ -br’ .(1 - e + — )e dr’

0

using the integration by parts formula (B.3) its value is quickly obtained

1 1/, _ -br -2brx 1 -br,, \ -br^- 3<1 - 2e + e ) + — (1 - e (br) - e )
D d oA (3.7)

Introducing this result in (B.2) and putting p = br and S = bA, this 

integral gives

(B.8)

(B.8) can now be reduced to a linear combination of integrals belonging to the

forms (B.4), (B.5) or (B.6):-

A j°J (_ee*$U- ae‘P* Ti

S‘ fl Cep- -1)

£‘ pf i - z € + e*̂/ ’ -

$'5 re'p(j - &?P - e /> -
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Therefore, one gets for (B.2)

rf
u(r’ )e dr’

o

1T. 32 X1 , h 1.1b L1 S 21 S 1 6 3 (B.9)

ii) Calculation of the integral

*° -br
u2(r) ~ drr

'o

(B.10)

Substitution of (B.l) in this integral gives, putting again p = br and S = bA,

Then

-i 11 u. 1 -u 1
= 1OS 3 + S + p

-br
u2(r)— dr

o

1 1lOg — + V +K 3 S $2

iii) Calculation of the integral

r
u(r)e-trdr

o

The result is

T -p , , ,1 / —p —2p e__ >, _ 1/1 lx- (e - e +-g-p)dp - ^2 +r

(B.ll)

(B.12)

(B.13)
o
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Armen dix C

Spherical Coulomb and Free Particle Wave Functions

In this appendix some properties of the spherical Coulomb and free particle 

wave functions are derived from the Radial Schrodinger equations of which such 

very simple methods expressions that represent these functions in a form suitable 

for numerical computation

Consider the radial Schrodinger equation for a Coulomb L-wave function u^:

k2 - 0

dr2

and negative for an attractive potential (a = -e2 in K~d system)

Putting

(C.l)

the radial L-wave Schrodinger equation givesand making the transformation p = kr

(C.2)01 -

This second order differential equation has a regular singularity at the origin

It is a differential equation of the Fuchsian type and as such it has two 

d2UL

linearly independent solutions around the origin: one regular, proportional 

functions are the integrals. The purpose in doing this is to establish by 

where a is the product of the electric charges Ze and Z’e of the system under

inspection. Then a is positive for a repulsive potential (a = e2 in K+d system) 

L(L+1)

P2.

L(L+1) 2p a

r2 ~ h2 r

2n

P

n = h2k
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to p 1 for small p, the other, irregular, proportional to p for small p.

As it is well known (see for instance Albert Messiah, 1961, Volume I, Appendix B)

by a convenient linear combination and normalization of these solutions two

standard integrals of (C.2), the spherical Coulomb functions F (p) and GT(p)

are defined, with the following asymptotic forms • •

FT (p) “V sin(p - n log 2p - + Z ) (C.3)
d LiP /-*  co

GT (p) -V cos(p - n log 2p - + Z )' (C.U) .
P -*■  OO 2 ,

where
• i

ZT = arg T(L + 1 +.in)Li

is the pure Coulomb phase shift.

(C.3) corresponds to the regular solution of (C.2) at the origin and (C.U)

to the irregular solution at the same point.

The knowledge of these asymptotic forms is not sufficient to solve a real

nuclear scattering problem. Such problem generally leads to the numerical

calculation of the regular solution of equation (C.2) with a short range

potential added to the coefficient of u^. Then, if a numerical integration is

carried out up to a point pq in the region where the nuclear potential becomes

vanishingly small, the solution of the radial equation beyond pQ is a linear

combination of FT(p) and GT(p). To determine accurately the coefficients of

this linear combination it is necessary to have a better approximation of the

asymptotic behaviour of F^(p) and G^(p) for smaller values of p than those for

which (C.3) and (C.4) become valid.
• q .q

Considering that (G.3) and (C.U) are linear combinations of e1 and e1 
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with 0 = p - n log 2p, such approximation can be derived from the asymptotic

behaviour of the function V defined by u_ = e10V . Making this transformation
L li L

in (C.2) and putting m = L + g one obtains the differential equation satisfied

by VL:

d2VL

dp2 P7
_ m2 - (in t ?)2V = 0

p ‘ dp L U (C.5)

This equation has an irregular singular point at infinity. It is possible,

then, to translate the asymptotic behaviour of by means of an asymptotic

series. Thereforewriting' 

one obtains

dVT - d2VT , -
— . = p- IcsS(4+l)p-

and substituting these expressions in (C.5) and putting equal to zero the

coefficients of the successive powers of 1/p one gets the recurrence relations

for the C$:

2i(S <• 1)C£+1 6m2-(in + S+ ?)2C 0 (C.6)

Putting CQ = 1, (C.6) leads now to the asymptotic series for (see

Whittaker and Watson, 1950 > page 3^2):

\i 4 - F [w*- + I/]’*'  Cm4-if]v 1----------------------

™ = L * 4 (C-T)
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Writing now

VL. = CL +

constant

(C.8)

(C.9)

p -> 00

A very important property of F (p) and GT(p) is the Wronskian relation.’Li Li

Considering that these functions are both solutions of (C.2) one has, putting

/ x  i L(L+1) 2ng(p) -1—-— - — ,

d2FL
“ +8<P)FL =0

d2 G
. -—7 + g(p)GT = 0

dp2 L

Multiplying the first equation by G^ and the second by F^ and subtracting

the results one gets

and using the normalisation

7T

or

so that the improved asymptotic forms and

L

P +

VL VL

GL(p) are

GT(p)Li

Of F (p)
Li

sin 0TLi

COS 0Li

CTsin 0TLi L

an d Q = Im

+ STcos 0TLi Li

CT COS 0
Lj l

CT sin 0TLi Li

e x 2

C_ cos 0T - Sr sin 0TLi Li Li Li

where CT = Real
Jb

e b Ve L

for tL. one has, putting 0T = p - nLi Li
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(C.10)0g££l . Fa2cL
L as2 L dp2

But the first derivative of the function

f(p) =■ q dFL(p) _ F dGr,
dp ^dp

is equal to (C.10). Then ~ = 0 o? ’dp
f(p) = const for any value of p

Therefore the constant can be calculated from the analytical expressions (C. 3)

and (C.M of F_(p) and GT(p) for large values of p:Li Li

Fl(p) = sin 0T __ E = cos 0TL ap L

gl(p) = cos 0T = - sin 0T
. L dp L

■u do , .because — = 1 when pdp Then

f(p) ■■= cos20_ + sin20T = 1Ju Li

or

c dFL
GL“3p - f£2l = i (c.n)

Li ap

(C.ll) is the Wronskian condition.

Weierstrass’s definition

page 233): 
2

where y is the Euler’s constant (y = 0*5772  •

The evaluation of the pure Coulomb phase shifts Z_ is derived from the

of the gamma function (see Courarit, 19^8» Volume II 
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But Zo = arg T(1 + in) or

Zo = - arg in)

and the arguments of the factors in (C.12) are

arg (1 + in) = Tan-1n 9

arg (1 + 7 + i4) = Tan-1 -r—j:
6 s 1+5

arg evCi+in)

arg
r. zl -nrie"^1^

ny

n

(C.13)

Therefore, from (C.12) and (C.13) one gets

co
z = - ny + y (£ - tan-1 4) (C.1U)

6=1 * 9

The calculation of the Z^ for L > 0 is now worked out by means of a

recurrence relation based on the gamma function property r(Z+l) = Zf(Z).

Then, from

ZT = arg F(L + 1 + in)

one has

ZL = ZL-1 * Ti“-‘ T <C.15 >

The precedent considerations make the study of the spherical functions for

a free particle very easy. In fact such functions are special cases of

spherical Coulomb functions for which n -> 0.

Therefore, putting n = 0 in (C.2) one obtains the differential equations

for the spherical free-particle wave functions:

^4-W)k=o'. teas)
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The regular and irregular solutions at the origin for this equation are

respectively the spherical Bessel function J^(p) multiplied by p and the

sperical Neumann function nT(p) multiplied by p.

The asymptotic forms of J^(p) and n^(p) are obtained directly from (C.3)

and (C.h) putting n = 0 (then Z_ = 0 from (C.1U) and (C.15)):
Ju

•jL(p) % L sin(p - l|) (C.17)

p -> 00

nT(p) ^7 cos(p - l£) (C.18)
bp d

P oo

If n vanishes in the asymptotic expansion (C.7), the series now terminates

and (C.8) and (C.9) represent in this special case the exact pjr(p) and

pnL(p):

31 (p) =” {CT sin(p - L~) + S cos(p I/£)} - (C.19)
M b P Li d Li d

nL(p) = 7 {CL cos(p - - SL sin(p ~ (c.2o)

where CT and T are, for the first four values of L:Li Li

Co = i So = o

Cl » 1 Si - I

c2 - 1 - x, S2 - |

r - i 15 C - 6 15Cq = 1 - —T 03 - — - —rJ pZ P P5

The spherical Bessel and Neumann functions, defined by (C.19) and (C.20), can 

be also expressed in terms of Bessel functions of half-an-integer exponent:
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Many authors use for definition of n^(p) the relation n^

• (C.22)
, .Lil.----- -

(p) = c-xj i

In this work, however, (C.22) is used in agreement with Albert Messiah (1961,

(C.23)n.

is obtained from (C.ll)

Hankel functions of first kind (h^ (f)) and of second kind (h^ '(?)):

Appendix B). The same author is followed in the definition of the spherical

To finish this brief account on spherical functions, the Wronskian .relation for

d?L _ ; • <^1, =. £
dp 11 dp p2

(C.2U)
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Appendix D

The Vanishing Solutions at the Origin of Two Coupled Radial Equations

Consider the system of two second order differential equations

[-4*  4. k*.  XlrjH -t VC«)1 W - (D.i)

* Actually V(R) and W(R) are linear combinations of Yukawa potentials; but
the purpose of this Appendix, which is very general, is not altered if they'
assume the precedent forms.

L A*' JI
[ 4—4 K*- -e W (,R)]ws UG?)(ID.2)

or, introducing the linear operators

i A AX - V L*> (D.l’)

1 L 0 ur = Utf (D<2«)
* ( * )U(R), V(R) and W(R) are short range (Yukawa) nuclear potentials^

U = e'7<?, V= bw.ije13//?, W--

System I can be solved by elimination. Multiplying both sides of(D.l’) 

and (D.2f) respectively by 0 U and A U one has

6 irAA a> = u (D.l")

(D.2")A U 1 (3 W - U
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Equations (D.l”) and (D.2”) are fourth order linear differential equations

which can be brought

gives

(0.3)'

are regular functions of R not only for R ~>, 0i =where

but in the whole of the complex plane:

the pi(R)

under explicit form. Equation (D.l"), for instance

* j CE . A__

|>LC*)  s a + /e ' •

y3 o?) = ih-qi j- «
UM (,f?) ,-2(1-1)] * + i? <^C«)

The g^(R) represent regular functions of R such that g^fO) 0, i = 1,2,3,^.

The explicit form (D.3) of (D.l”) shows that this equation has a regular 

singularity at the origin and so it is a linear differential equation of the

Fuchsian Type (Goursat, 192b, Vol. II, p. 4?6). Its four linearly independent

solutions around the singularity can be obtained as power series developments

at this point. The leading terms for very small values of R of these series

ai . iare equal to R , 1 = 1,2,33, where the are the roots of the indicial

equation of the differential equation (D.3):

a(a-l)(a-2)(a-3) + pi(0).a(a-l)(a-2) + P2(0)a(a-l) + P3(0)a + pi+fO) = 0
. . ' (D.M

According to the expressions given for the p^(R), the roots of this

algebraic equation are
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Therefore, only the solutions with 0"» 7J -t 3 > lead to physically

meaningful results-because only such solutions vanish at the origin.

Now, the-roots of the indicial equation differ from each other by an

integer. In such conditions the two solutions of (D.l”) with (T= U -f 3 f J

can be written in the following way

= R1 { W + &

where the f^(R), i = 1,2, are regular functions of R, such that f^(0) 0

and C is a constant (not arbitrary). The f^(R) are generally given as power

series of R. The radius of convergence of such series, centered at the

singularity is equal to the minimum of the p^(R)-radii of convergence;

therefore fi(R) and f2(R) are valid for all values of R, because the p^(R) are

regular functions in the whole of the complex plane.

The foregoing considerations can be repeated for equation (D.2’?). In

this case the coefficients pj(O) and P2(0) of the indicial equation remain

unchanged, but pgfO) and pijQ) are now

|93(p) +

Therefore, the roots of (D.3) are

j+e, <r3»-G-i)z <rH = -U-> 1)
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Here again only two of the four linearly independent solutions vanish

at the origin ( * 1 ) and their general form is

£ + + dL f?

where, as before, fgCR) and f^(R) are regular functions of R.

However, it is not necessary to consider the solutions of (D.2n) to solve

the system I. it is sufficient to evaluate the solutions ^f(R) and V^(R)

of (D.ln) and, from equation (D.l’) written under the form

U? - ■

to derive the corresponding Wj and w2:

U?A a U 1 A (D.5)

(D.6)

The couple (vjwj) is a solution of system I. In fact, multiplying (D.5)

by VJ one gets

U ~ A 4T4 ,

which is equation (D.l1); and multiplying (D.5) by B, one has, according to

(D.l”)
6 uy4 = 8 V A = V

The same proof can be‘carried out for solution (v2,w2).

It is also clear that wx (or w2) defined by (D.5) (or (D.6)) is a solution

of (D.2"). Actually, the multiplication of by A U’4 B gives, considering 

(D.l") and (D.2’),
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A U“tB 1^1 - U"1 -

-A U-1 U 0-A - AiTA -

U VO |

The precedent considerations lead to the effective construction of two

linearly independent solutions (v^wj) and(v2,w2) of system I, which vanish

at the origin. A simple substitution in the equations of system I shows that

any linear combination of these solutions

v = ajVj + a2v2

w = alwl + a2w2

is again a solution of system I, vanishing at the origin. But no more than

two linearly independent solutions with this property can exist.

Solutions (vj,wi) and (v2,w2) of system I are linked by a generalised

Wronskian condition. From (D.lf) and (D.2’) it is obvious that

- ITi a 17^ = U " (J. UG)

B W, - ur, ur •= u ( ^171 - W, vj

or, adding the two equations

v2Avi - VpAv2 + w2Bwi - wjBw2 = 0

Considering now the definition of the linear operators A and B, this

expression reduces to

■■ = 0 -> f(R) = const,an

where
, . dV] dVn dW] dw9

f(Rj = V2 J- - Vl-gjp + w2-£P -
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But vm(0) = vm(0) = 0, m = 1,2; therefore the integration constant vanishes

and the Wrouskian condition is obtained

dvi dv2 . dwi dw2 _ _ /_ rr\* “2~ - •■aS2 " 0 (D-7)

Condition (D.7) can be expressed in terms of the phase shifts of the

solutions of system I. For an R sufficiently large the potentials I/, V and

W vanish and v and w , m = 1, .2, become linear combinations of spherical
mm’’’

Bessel and Neumann functions multiplied by KR. Putting K ft —

and using a convenient normalization, the asymptotic behaviour of these

solutions is given by the following expressions (m = 1,2):

«...

where O and W are the phase shifts and the K& are coupling constants

or mixing parameters. . Introducing these functions in (D.7) for large values

of R, the new relation is obtained

e Jum. - o A o 0>(D.8)

It is now clear that it is possible to seek linear combinations of (v^w^)

and(v2,w2) (these solutions are linearly independent!), such that the new

phase shifts obey the conditions

r7-l.r7 + l cl rJ41 C2
(d.9)
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Here and O ] represent the common value of these quantities. For such

linear combinations (D.8) reduces to

<L 4 tf*  K*  ■=. O (D.io)

1/ LZ X , , , - C1
where and r J are the new mixing constants, corresponding to o j

° 3 respectively.
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Appendix E

Hulthen’s K"N Potentials

The dimensionless constants Zq and Zj were calculated numerically for

Ross-Humphrey’s sets of solutions in Chapter II by means of Schwinger’s

variational formula for zero energy. However, in order to achieve greater

accuracy, it is convenient to make Zo and Z energy-dependent, by adjusting

these quantities for each value of p, i.e., the K -wave number in the K"N C.M.,

(p is related to p , the K -Lab. momentum, by equations (h.57M) and (U.90)).Lao

Hulthen’s variational principle (see, for instance, Burhop, 19&1) gives

the means to perform such programme, if suitable trial functions U^(r)

(I (= 0,1) is the K N isotopic-spin quantum number) are used for the waves

of the K’N system. • '

Choosing U^(r) equal to

Uj(r) - sin pr + (tan 6 + C e” )(1 - e )cos ^pr (E.l)

where tan 6^ is linked with the K~p scattering length by the relation

tan = p A^ (2.11)

and C is a constant to be determined by the condition

The integrals appearing in Hulthen’s variational formula can be integrated

analytically. Furthermore, the boundary conditions

U^(0) - 0; Uj(r) •*  sin pr + tan cos pr 

I* -> co
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are satisfied and the limit of U^(r)/p when p -> 0, i.e.

(E.3)

is equal to (except for a normalisation constant and the additive term

CJe ^r(l - e ^r)) the trial function (2.53) used in the application of

Schwinger’s variational principle to the same problem.

Elimination of C between the two conditions translating Hplthdn’s

variational principle

J = 0 , 37 = 0 (E.M

leads to an algebraic equation of second degree in Z^9 which can be written under

the form '

1*E(A  + Btan 61 + Dtan26X) = (C + Ftan <5X)2 (E.5)

The coefficients appearing in (E.5) depend on p and Z^ as follows



204

<T 8 i Q (4 4 44*}  J

_ 1 4 _ G ' .

G 4 ■+ 44s- -t U41
a

The physically acceptable solution of Z^ is obviously the one that tends to
«

the value obtained by means of Schwinger’s variational formula (see Table (II.2))
a

when p goes to zero.

Table (E) shows the variation of Zq and Z^ with the K~-Lab. momentum for

Ross-Humphrey’s solutions I and II. The values of Zq and Z^ corresponding

to 0 MeV/c are those given in Table (II.2); the values belonging to the other

momenta are. calculated by means of (E.5)

Table (E)

pLab

MeV/c
Z = x + iy0 0^0 Z1 = X1. + iyi

0

100
I

200

300

1*6701  .+ 10*3^56

1*7045  + iO’33^9

1*8243  + iO* 3329

1*9802  + iO*3246

0*3935  + iO*7836

0*4084  + iO*8141

0*4544  + i0*9003

0*5306  + il*0379

0

100
II

200

300

1*9336  + il*O853

2*0293  + il*0019

2*1941  + io*9425

2-3840 + iO.8507

1*1821  + io*1679

1*2170  + iO*1695

1*3210  + iO*1776

1-4739 * iO .1879
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