

1 Optimal time lags for linear cortical auditory attention detection: differences between speech and music listening

3 Adèle Simon^{1,2,*}, Jan Østergaard¹, Søren Bech^{1,2}, and Gérard Loquet^{3,4}

4 ¹Department of Electronic Systems, Aalborg University, Denmark

5 ²Bang & Olufsen, Struer, Denmark

6 ³Bionic Institute, Melbourne, Australia

7 ³Department of Clinical Medicine, Aalborg University, Denmark

8 *Corresponding author: amds@es.aau.dk

9 Abstract

10 In recent decades, there has been a lot of interest in detecting auditory attention from brain
11 signals. Cortical recordings have been demonstrated to be useful in determining which speaker
12 a person is listening to a mixed variety of sounds (the cocktail party effect). Linear regression,
13 often called the stimulus reconstruction method, shows that the envelope of the sounds heard can
14 be reconstructed from continuous electroencephalogram recordings (EEG). The target sound,
15 to which the listener is paying attention, can be reconstructed to a greater extent compared to
16 other sounds present in the sound scene, which can allow attention decoding. Reconstruction
17 can be obtained with EEG signals that are delayed compared to the audio signal, to consider
18 the time for neural processing. It can be used to identify latencies where the reconstruction is
19 optimal, which reflects a cortical process specific to the type of audio heard. However, most of
20 these studies used only speech signals and did not investigate other types of auditory stimuli,
21 such as music.

22 In the present study, we applied this stimulus reconstruction method to decode auditory at-
23 tention in a cocktail party scenario that includes both speech and music. Participants were
24 presented with a target sound (either speech or music) and a distractor sound (either speech
25 or music) while continuously recording their cortical response during the listening with a 64-
26 channels EEG system. From these recordings, we reconstructed the envelope of the stimuli,
27 both target and distractor, by using linear ridge regression decoding models at individual time
28 lags. Results showed different time lags for maximal reconstruction accuracies between music
29 and speech listening, suggesting separate underlying cortical processes. Results also suggest
30 that an attentional aspect can influence the reconstruction accuracy for middle/late time-lags.

31 1 Introduction

32 The world is composed of complex auditory scenes, where several sources of sounds coexist
33 simultaneously, such as noise, speech, or music, and a listener can actively attend to one of
34 the auditory streams. For instance, when sitting in a cafe, with people talking and background
35 music, one can choose to focus on a conversation or to follow the music (Cherry, 1953). Sepa-
36 rating and tracking individual sound streams from a complex sound scene is possible thanks to
37 selective auditory attention.

38 An effect of selective attention is reflected in the cortical signal of the listener. Several studies
 39 recorded continuous neural response of listener presented with two or more sounds, with elec-
 40 troencephalogram or magnetoencephalogram: results showed that the cortical response track
 41 the attended sound stream better than an ignored sound stream (Ding & Simon, 2012a, 2012b;
 42 O'sullivan et al., 2015; Schäfer et al., 2018). Using this effect and an approach called stimulus
 43 reconstruction method, it has been shown that auditory attention can be decoded from con-
 44 tinuous neural recording (O'sullivan et al., 2015). This approach uses linear filters, computed
 45 using least-squares optimization, to reconstruct the sound heard by the listener from the cortical
 46 recording (Alickovic et al., 2019). This stimulus reconstruction method have be shown to be
 47 sensitive to auditory attention for dichotic speech listening (Fuglsang, Dau, & Hjortkjær, 2017;
 48 Mirkovic et al., 2015; O'sullivan et al., 2015), and also during music listening (An et al., 2021;
 49 Cantisani, Essid, & Richard, 2019; Hausfeld et al., 2021).

50 When attempting to decode auditory attention with the stimulus reconstruction approach,
 51 most studies use multi-lag models to take into account cortical processing time (Di Liberto,
 52 O'Sullivan, & Lalor, 2015). In such a multi-lags model, the model is trained and evaluated on a
 53 combination of EEG recording at different time lags (e.g., 0 to 500 ms), relative to the stimulus.
 54 While using the multi-lags model can enhance the model prediction and the performance of an
 55 auditory attention decoder, it does not allow for investigating the reconstruction performance
 56 of individual time lags, which can give information on the temporal neural processing of the
 57 sound signal (Crosse et al., 2021). A single-lags model can be used, to gain insight into the
 58 reconstruction accuracy at each time lag. This can help to compare neural processes for different
 59 types of signals, or conditions (Alickovic et al., 2021; Hausfeld et al., 2018). This method can
 60 also be used to explore the effect of the attentional state of the listener on their cortical response:
 61 training such models to either reconstruct the target stimulus or the reconstructed stimulus can
 62 give information on the effect of attention (O'sullivan et al., 2015). Investigating the individual
 63 time-lags to find an optimal value that enhances stimulus reconstruction can help to gain insight
 64 into the cortical processes involved in speech and music listening. It can also provide useful
 65 information to design an auditory attention decoder, which could be fitted to either music or
 66 speech listening and enhance the performance of such an auditory attention decoder.

67 In the present study, we used stimulus reconstruction methods with single lags models to explore
 68 differences between cortical processing of music and cortical processing of speech. Subsequently,
 69 we compare target-trained and distractor-trained models, for both speech and music listening,
 70 to identify time lags affected by auditory attention.

71 2 Methods

72 2.1 Participants

73 For this study, 35 participants (14 female) were recruited, aged between 21- and 33-year-old
 74 (mean = 26,29). Participants did not report any hearing disorders or neurological disorders
 75 among the participants. Three of the participants were native English speakers, and all the
 76 others were fluent, with education or work experience in English. Written informed consent was
 77 obtained and participants were compensated for their participation in the study. Due to poor
 78 data quality, EEG recordings from two participants were excluded after recording.

79 2.2 Procedure and Stimuli

80 For each trial of one minute, the participant was exposed to two separate sound streams originating from separate loudspeakers, placed in front of her/him (+/- 30° azimuth). The direction of arrival of the target sound (left or right loudspeaker) was randomly selected for each trial
 81 The participant was instructed to pay attention to one of the sounds (target) while ignoring the
 82 other sound (distractor) the target may be either speech or music. During listening, the subject
 83 was instructed to keep their eyes fixed on a crosshair and to minimize blinks and movements.
 84 There were four categories of stimuli employed, split into two types (music and speech), with
 85 each type further subdivided into two genres.
 86

87

- Piano Music: 8 excerpts of mono instrumental pieces played on a piano
- Electronic music: 8 excerpts of polyphonic pieces of instrumental electronic music
- Speech female: 8 excerpts of an audiobook read by a woman in English
- Speech male: 8 excerpts of an audiobook read by a man in English

88 In the same trial, the target and the distractor could have been both music, both speech, or one
 89 of each type. Each excerpt was used as a target just once. distractors were selected to obtain
 90 a balanced number of trials across conditions (Music/Speech, Music/Music, Speech/Speech,
 91 Speech/Music). Participants completed 32 one-minute trials. For each participant the experimen-
 92 tment was conducted in a single session.

93 2.3 Data collection and pre-processing

94 A 64-channel g.HIamp-Research system was used to record continuous EEG data at 512 Hz
 95 (g.tec Medical engineering GmbH, Austria). The electrodes were placed on the scalp in accord-
 96 ance with the international 10-20 system. The impedance of each electrode was kept below
 97 5 kOhms.

98 After data collection, pre-processing of the data was carried out using EEGLAB v2021.1 (De-
 99 lorme & Makeig, 2004). The EEG data were referenced to the average of all scalp electrodes.
 100 The noise-contaminated EEG channels were visually evaluated and interpolated from neigh-
 101 bouring electrodes. Independent Component Analysis (ICA) was performed in EEGLAB, and
 102 the automatic identification plugin allowed the artefacts associated with eye blinks or eye move-
 103 ments to be removed (Pion-Tonachini, Kreutz-Delgado, & Makeig, 2019). The envelopes of the
 104 sound signal, both target and distractor, were extracted using a Hilbert transform. Both EEG
 105 data and audio envelopes were finally bandpass filtered between 1 and 8Hz and downsampled
 106 to a 64Hz sampling rate.

107 2.4 Stimulus reconstruction

108 We used a classic stimulus reconstruction approach to decode auditory attention from the EEG
 109 data (Alickovic et al., 2019; Crosse et al., 2021; O’sullivan et al., 2015). The EEG data is utilized
 110 to reconstruct an estimation of the input stimuli using a linear reconstruction 1. This model
 111 relates EEG-measured brain activity to the stimulus envelope as follows:

$$s'(t) = \sum_n \sum_{\tau} g(1, n) R(t, n) \quad (1)$$

116 where s' is the reconstructed envelope, $R(t, n)$ is the EEG response at time t for electrode n ,
 117 and g is the linear model, which is a function of electrode n .

118 The model g can be estimated by minimizing the mean squared error between the original and
 119 the reconstructed envelopes, which can be solved analytically using ridge regularization methods
 120 (Wong et al., 2018):

$$g = (R^T R + I\lambda)^{-1} R^T S \quad (2)$$

121 where I is the identity matrix, S is the stimulus envelope, and λ is the regularization parameter
 122 used to prevent overfitting (Alickovic et al., 2019; Wong et al., 2018). The regularization factor
 123 was set to 10^5 . This value was chosen by calculating several models with different values of
 124 this regularization parameter. The value that produced the highest reconstruction accuracy
 125 (measured by the Pearson's correlation coefficient between the original and the reconstructed
 126 envelope) was used for the analysis.

127 We calculated the Pearson's r , or correlation coefficient, between the original target envelope
 128 and the reconstructed one (r_{target}) to assess reconstruction accuracy. To obtain r_{target} , a "Target
 129 model" was trained by using EEG signals and the original envelope of the target. To assess
 130 the processes that are encountered by the distractor stimulus, a "Distractor model" was also
 131 trained, with EEG signals and the envelope of the distractor. The obtained reconstructed
 132 distractor is then compared to the original distractor to obtain the reconstruction accuracy of
 133 the distractor, $r_{distractor}$.

134 2.5 Single-lag model

135 To explore variation across time lags, several models have been trained on each individual
 136 time lag. The models were trained using the original envelope of the sound stimulus and the
 137 corresponding EEG data from the specific time lags. For example, to compute a model g_{30} for a
 138 time lag of approximately 30 ms, which corresponds to a time lag of 2 samples at the sampling
 139 rate of 64 Hz (see Figure 1), we used original envelope S and time-lags EEG R as follows:

$$S = \begin{bmatrix} s(0) \\ s(1) \\ s(2) \\ \vdots \\ s(t) \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} r_1(2) & \cdots & r_{64}(2) \\ r_1(3) & \cdots & r_{64}(3) \\ \vdots & \ddots & \vdots \\ r_1(T) & \cdots & r_{64}(T) \\ r_1(T+1) & \cdots & r_{64}(T+1) \\ r_1(T+2) & \cdots & r_{64}(T+2) \end{bmatrix}$$

140 We computed models to cover time lags ranging from 0 ms to 500 ms, at a sample rate of
 141 64 Hz. That corresponds to thirty-three individual single-lag models, separated by an interval
 142 of 15.625 ms.

143 All models were trained in a leave-one-out approach, which means that each trial was tested on
 144 a model created by averaging the parameters of the models trained on every other trial.

145 Four categories of single lags models were trained:

146 • Models optimized for music as a Target, where only trials where the target of attention
 147 was music are used for training and testing, and by using the Target envelope for training

- 148 • Models optimized for speech as a Target, where only trials where the target of attention
149 was speech are used for training and testing, and by using the Target envelope for training
- 150 • Models optimized for music as a distractor, where only trials where the distractor was
151 music are used for training and testing, and by using the distractor envelope for training
- 152 • Models optimized for speech as a distractor, where only trials where the distractor was
153 speech are used for training and testing, and by using the distractor envelope for training

154 3 Results

155 3.1 Differences between speech and music listening

156 Figure 2 shows the reconstruction accuracy across different time lags for both trials where
157 the target of attention was music stimulus (music listening) and trials where the target of
158 attention was speech stimulus. Shaded areas correspond to the 95% confidence interval for the
159 reconstruction accuracies. The reconstruction accuracies for speech were obtained similarly, but
160 by testing all speech-target trials on models trained on speech-target trials. In Figure 2, there
161 is a clear difference between reconstruction accuracies for speech and music. For all time lags,
162 the reconstruction accuracy for speech is significantly higher than the reconstruction accuracies
163 for music (permutation test speech vs. music, $p < 0.05$ for each time lag).

164 The second thing that stands out in Figure 2 is the pattern in variation of the reconstruction
165 accuracies. For both speech and music, we can observe two peaks of increased reconstruction
166 accuracy across the different time lags: a first peak at an early time lag and a second, larger

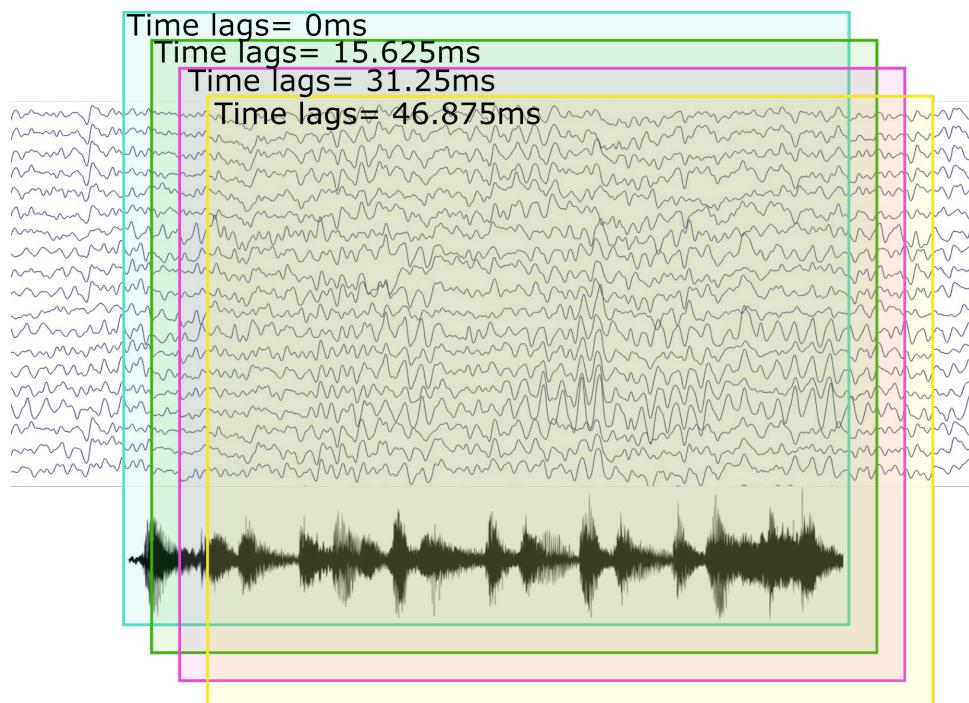


Figure 1 — Schematic of the EEG data selection used for each single lag model. Each model is trained based on the 1 minute of audio data, and 1 minute of EEG data delayed compared to the audio data.

peak at a later time lag. The first peak is located at a time lag comprised of between 30 and 50 ms, and the timing of this first peak is similar for both speech and music. However, the timing of the second peak varies between speech and music: ≈ 170 ms for speech and ≈ 265 ms for music. This difference in time lags between speech and music could indicate time process differences for speech and music sounds. Optimized reconstructions for speech corroborates results previously obtained in other studies: O'sullivan et al. (2015) describe a two peaks pattern, with increased reconstruction accuracy and increased decoding accuracy for the interval of 170-250 ms; Alickovic et al. (2021) show an increase of reconstruction accuracy when using late EEG response ; Mirkovic et al. (2015) found increased decoding accuracy for time lags between 130 to 220 ms; Wöstmann, Fiedler, and Obleser (2017)'s results showed an increase of cross-correlation between the envelope of the sound signal and M/EEG data at 80 ms, followed by a second peak of increased correlation. For music, the current results can be compared with results obtained by Hausfeld et al. (2018), where an early peak was also observed at -10 to 30 ms. Hausfeld et al. (2018) also observed a second peak of increased reconstruction accuracies at late latencies. However, they found this peak happening for time lags comprise between 460 and 500 ms, which is later than what we observe in the current study.

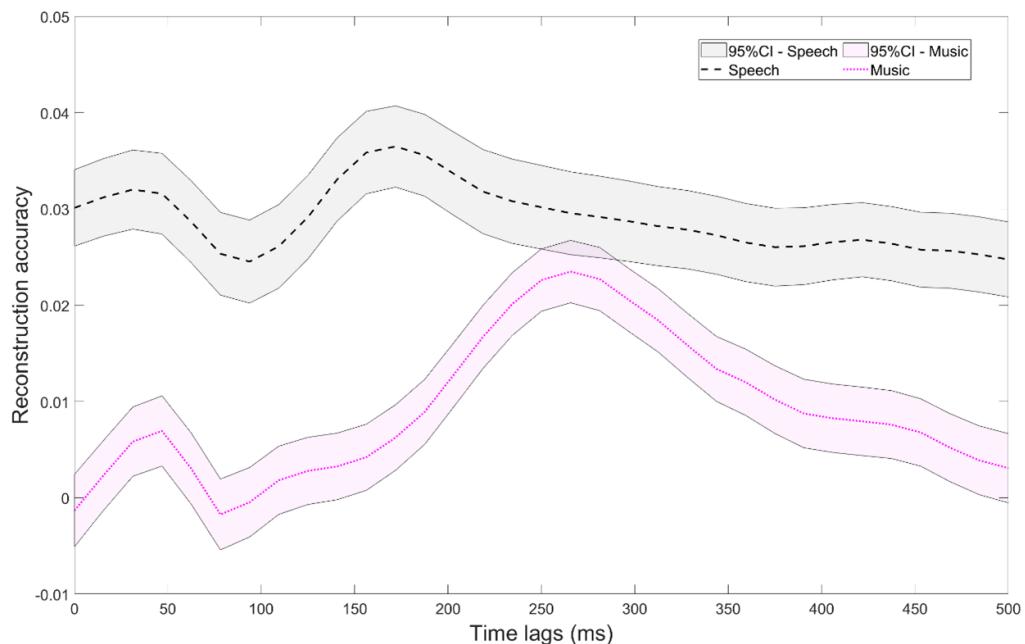


Figure 2 — Reconstruction Accuracy across all time lags for trials where the target audio is Speech and trials where the target audio is Music.

183 3.2 Effect of attention

184 To explore if the attentional processes influence the temporal pattern of reconstruction accuracy,
 185 we compared reconstruction accuracy obtained with models trained to reconstruct the target
 186 of attention and models trained to reconstruct the distractor stimulus.

187 To that mean, separate models have been trained to either reconstruct envelopes of the target
 188 sound or to reconstruct envelopes of the distractor sound. Target models are trained in a
 189 leave-one-out approach, by using trials where the target is of the same time as the trial under

190 test (either music or speech). The distractor models are trained with a similar approach, but
 191 by using trials where the distractor was the same type as the distractor of the trial under
 192 test. Comparing the reconstructions accuracy of these two models can give information about
 193 the effect of attention on cortical auditory processes: increased reconstruction accuracy at a
 194 given time lag observable for the target model but not for the distractor model can indicate an
 195 attentional effect.

196 **3.3 Music listening scenario**

197 Figure 3 shows the reconstruction accuracies for both target models and distractor models for
 198 music listening. The two peak patterns can be seen for both models, with both peaks happening
 199 at similar time lags for both the Target model and the distractor model. Permutation tests,
 200 based on 100,000 permutations, were run to compare the reconstruction accuracy between mod-
 201 els for each time lag. Significant differences were found for time lags between 260 and 285 ms,
 202 and also 320 and 380 ms, where the Target model results in higher reconstruction accuracies
 203 than the distractor model. The maximum of reconstruction accuracies with a difference between
 204 the performance of the Target model compared to the distractor model, which suggests that a
 205 music-specific process around 265 ms time lags may be affected by attentional processes.

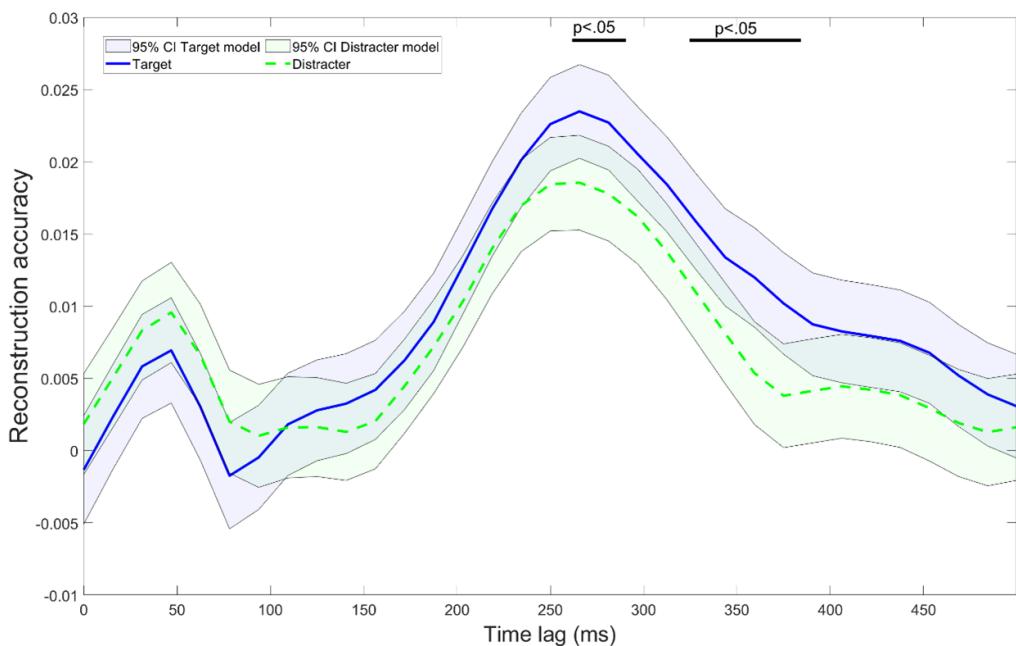


Figure 3 — Reconstruction accuracy across all time-lags, obtained with Target model, with music as a target and Decoder model, with music as a distractor

206 **3.4 Speech listening scenario**

207 Figure 4 shows the reconstruction accuracies for both target and distractor models for speech
 208 listening. Overall, reconstructions accuracies were obtained with the distractor models com-
 209 pared to the target model, for all time lags. Permutation tests, based on 100,000 permutations
 210 were run to compare the target model versus the distractor model, and indicate significant

211 differences ($p < .05$) for all time lags, except between 355 and 410 ms. Despite the difference
 212 between the target and distractor models, the variation of the reconstruction accuracies across
 213 shows different trends for the models. For both models, the first peak of increased reconstruc-
 214 tion accuracies can be observed between 30 and 50 ms. However, while a second peak with
 215 maximal reconstruction accuracies arises at around 170 ms for the target model, there is no
 216 such increase for the distractor model. For the distractor model, an increase in reconstruction
 217 accuracy is observable at late time lags (350 to 450 ms) Taken together, it suggests that during
 218 speech listening, attentional processes affect the reconstruction accuracies level. The absence
 219 of a peak of maximal reconstruction when using the decoder model could indicate an increased
 220 attentional effect around a time lag of 170 ms, as suggested by O'sullivan et al. (2015).

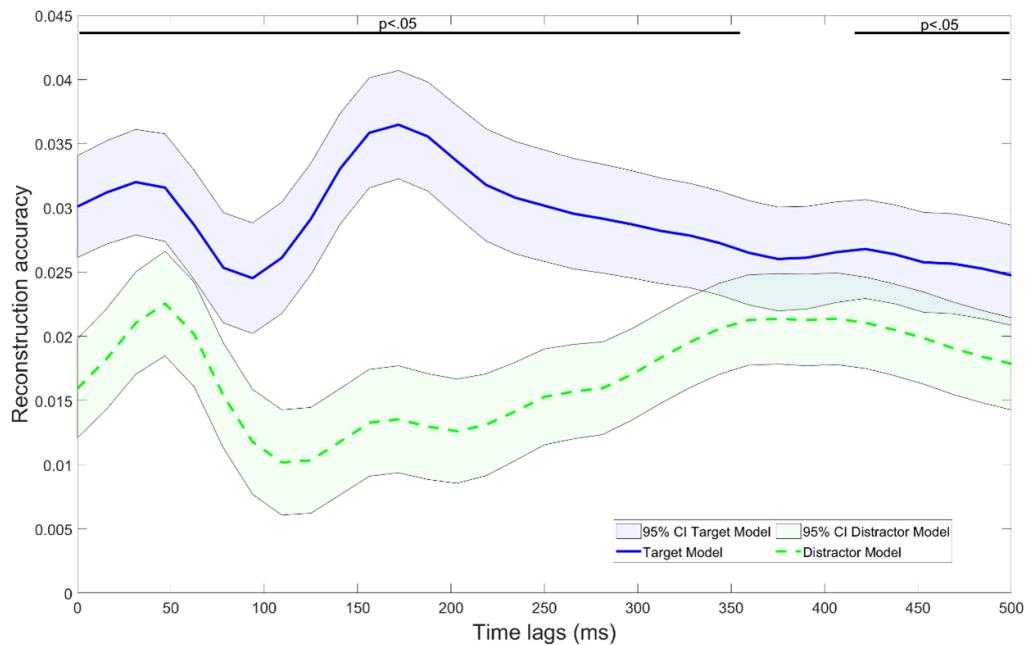


Figure 4 — Reconstruction accuracy across all time-lags, obtained with Target model, with speech as a target and Decoder model, with speech as a distractor.

221 4 Discussion

222 In this study, we used linear regression to reconstruct sound heard from EEG data. By using
 223 single-lag models we explore the effect of time lags applied to EEG data to reconstruction
 224 accuracy. We compare models trained on speech and on music to highlight temporal differences
 225 in the cortical process for speech listening and music listening.

226 Overall, the reconstruction accuracy is higher for speech listening compared to music listening,
 227 for all time lags. This result was expected as performance differences for reconstruction accuracy
 228 have previously been observed between speech and music (Simon et al., 2022 - Submitted; Zuk
 229 et al., 2021).

230 For both Speech and music listening, a two-peak pattern can be observed: an early first peak of
 231 increased reconstruction accuracies for time lags around 30 to 50 ms, and a later second peak
 232 of maximal reconstruction accuracy, where the timing differs between speech and music. This

233 two-peak pattern has previously been observed for Speech listening (O’sullivan et al., 2015) or
 234 Music listening (Hausfeld et al., 2018).

235 Results suggest that the maximized reconstruction accuracies are obtained using different time
 236 lags for speech listening and music listening. For Speech, optimized reconstruction is obtained
 237 by applying a time lag of approximately 170 ms to the EEG data, relative to the audio signal.
 238 This is coherent with previous findings on optimal time lag for speech reconstruction or auditory
 239 attention decoding (Fuglsang, Dau, & Hjortkjær, 2017; Mirkovic et al., 2015; O’sullivan et al.,
 240 2015).

241 For music listening, the peak of optimized reconstruction is obtained for a time lag of approxi-
 242 mately 265 ms. This optimal timing differs from previous results, where maximized reconstruc-
 243 tion accuracies were found for music either at short time lags (Hausfeld et al., 2021), or longer
 244 time lags (Hausfeld et al., 2021; Hausfeld et al., 2018).

245 The early peak could suggest an early auditory process, which is coincident with both speech
 246 and music listening. The timing differences at middle/late timelags between speech and music
 247 listening suggest different cortical processes in place for speech listening and music listening.

248 A second question explored in the present study was to investigate the effect of selective au-
 249 ditory attention on reconstruction accuracies. To that mean, decoder models were trained
 250 to reconstruct the distractor stimulus, which was ignored by the participant. Comparing the
 251 reconstruction accuracies across time lags between the outputs of the target models and the
 252 distractor model can provide insight about the effect of attention.

253 For music, small but significant differences in reconstruction accuracies were found for time lags
 254 between 260 and 285 ms, and also 320 and 380ms. This difference is aligned with the peak
 255 of maximized reconstruction accuracies, which suggests that the process that creates this peak
 256 of maximal reconstruction might be affected by attention. On the other hand, the first peak
 257 of maximized reconstruction is similar for both target and distractor models. Taking together,
 258 these findings could suggest two separate cortical processes of music, an early one, not affected
 259 by selective auditory attention, and a late process, influenced by attentional processes.

260 For speech, the findings should be interpreted with more caution as a significant difference is
 261 observed for the Target and distractor model, across all time lags. These differences might be
 262 influenced by the difficulty of the task: when attending to a target sound is more challenging,
 263 an increased effort may be necessary to ignore the distractor, and the cortical tracking of
 264 the distractor might be reduced. Trials used for the speech decoder model correspond to trials
 265 where the listener had to attend to either speech signal or music signal in presence of distracting
 266 speech. However, attending to music in presence of speech is not a common task for human
 267 beings, compared for example to listening to speech in presence of music. This task might
 268 have been more challenging for the participants, which could influence the results observed in
 269 Figure 3.

270 Despite this offset between models, the shape of the peaks is worth considering. For both target
 271 and distractor models, an early peak of increased reconstruction accuracy is present for time
 272 lags of 30 to 50 ms. This suggests that the underlining cortical process is activated for stimuli
 273 that are inside or outside the focus of attention of the listener. For the target model, a second
 274 peak is observed at middle time lags (\approx 170 ms), while for the distractor model this peak is
 275 almost nonexistent. It could indicate that the underlining cortical process that results in this
 276 peak is activated only for attended speech. It corroborates the idea developed in (O’sullivan
 277 et al., 2015), which suggested an important attentional effect between 170 and 250 ms.

278 5 Conclusion

279 The present study explored the temporal aspect of cortical auditory processes and the effect
 280 of auditory attention by using a stimulus reconstruction approach. The results highlight two
 281 phases of auditory processes: an early process, which is concomitant for both speech and music
 282 listening and a second process, happening later for music listening than for speech listening.
 283 While the first process does not seem to be affected by attentional processes, the second might
 284 be enhanced by sounds that are actively attended by the listener. More research should be
 285 conducted to replicate, confirm, and elaborate on the current findings. Further analysis, such
 286 as using a forward model (Alickovic et al., 2019), could provide additional information on
 287 the cortical processes in places during listening in complex auditory sound scenes and explore
 288 more the similarities and differences between speech and music listening. Overall, this study
 289 highlights differences in optimal time-lags for cortical stimulus reconstruction between speech
 290 listening and music listening. This suggests temporal differences in cortical processing of speech
 291 and music. These differences could be used to fine-tune an auditory attention decoder that
 292 would be specifically tuned for music or speech.

293 References

294 Alickovic, E., Lunner, T., Gustafsson, F., & Ljung, L. (2019). A tutorial on auditory attention identifi-
 295 cation methods. *Frontiers in neuroscience*, 153.

296 Alickovic, E., Ng, E. H. N., Fiedler, L., Santurette, S., Innes-Brown, H., & Graversen, C. (2021). Effects
 297 of hearing aid noise reduction on early and late cortical representations of competing talkers in
 298 noise. *Frontiers in Neuroscience*, 15.

299 An, W. W., Shinn-Cunningham, B., Gamper, H., Emmanouilidou, D., Johnston, D., Jalobeanu, M.,
 300 Cutrell, E., Wilson, A., Chiang, K.-J., & Tashev, I. (2021). Decoding music attention from
 301 “eeg headphones”: A user-friendly auditory brain-computer interface. *ICASSP 2021-2021 IEEE
 302 International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 985–989.

303 Cantisani, G., Essid, S., & Richard, G. (2019). Eeg-based decoding of auditory attention to a target
 304 instrument in polyphonic music. *2019 IEEE Workshop on Applications of Signal Processing to
 305 Audio and Acoustics (WASPAA)*, 80–84.

306 Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. *The
 307 Journal of the acoustical society of America*, 25(5), 975–979.

308 Crosse, M. J., Zuk, N. J., Di Liberto, G. M., Nidiffer, A. R., Molholm, S., & Lalor, E. C. (2021). Linear
 309 modeling of neurophysiological responses to speech and other continuous stimuli: Methodological
 310 considerations for applied research. *Frontiers in Neuroscience*, 15.

311 Delorme, A., & Makeig, S. (2004). Eeglab: An open source toolbox for analysis of single-trial eeg dynamics
 312 including independent component analysis. *Journal of neuroscience methods*, 134(1), 9–21.

313 Di Liberto, G. M., O’Sullivan, J. A., & Lalor, E. C. (2015). Low-frequency cortical entrainment to speech
 314 reflects phoneme-level processing. *Current Biology*, 25(19), 2457–2465.

315 Ding, N., & Simon, J. Z. (2012a). Emergence of neural encoding of auditory objects while listening to
 316 competing speakers. *Proceedings of the National Academy of Sciences*, 109(29), 11854–11859.

317 Ding, N., & Simon, J. Z. (2012b). Neural coding of continuous speech in auditory cortex during monaural
 318 and dichotic listening. *Journal of neurophysiology*, 107(1), 78–89.

319 Fuglsang, S. A., Dau, T., & Hjortkjær, J. (2017). Noise-robust cortical tracking of attended speech in
 320 real-world acoustic scenes. *Neuroimage*, 156, 435–444.

321 Hausfeld, L., Disbergen, N. R., Valente, G., Zatorre, R. J., & Formisano, E. (2021). Modulating cortical
 322 instrument representations during auditory stream segregation and integration with polyphonic
 323 music. *Frontiers in neuroscience*, 15.

324 Hausfeld, L., Riecke, L., Valente, G., & Formisano, E. (2018). Cortical tracking of multiple streams
 325 outside the focus of attention in naturalistic auditory scenes. *NeuroImage*, 181, 617–626.

326 Mirkovic, B., Debener, S., Jaeger, M., & De Vos, M. (2015). Decoding the attended speech stream with
 327 multi-channel eeg: Implications for online, daily-life applications. *Journal of neural engineering*,
 328 12(4), 046007.

329 O'sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-Cunningham, B. G., Slaney,
 330 M., Shamma, S. A., & Lalor, E. C. (2015). Attentional selection in a cocktail party environment
 331 can be decoded from single-trial eeg. *Cerebral cortex*, 25(7), 1697–1706.

332 Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). Iclabel: An automated electroencephalo-
 333 graphic independent component classifier, dataset, and website. *NeuroImage*, 198, 181–197.

334 Schäfer, P. J., Corona-Strauss, F. I., Hannemann, R., Hillyard, S. A., & Strauss, D. J. (2018). Testing the
 335 limits of the stimulus reconstruction approach: Auditory attention decoding in a four-speaker
 336 free field environment. *Trends in Hearing*, 22, 2331216518816600.

337 Simon, A., Loquet, G., Østergaard, J., & Bech, S. (2022 - Submitted). Auditory attention decoding from
 338 eeg during music listening. *Frontiers in neurosciences*.

339 Wong, D. D., Fuglsang, S. A., Hjortkjær, J., Ceolini, E., Slaney, M., & De Cheveigne, A. (2018). A
 340 comparison of regularization methods in forward and backward models for auditory attention
 341 decoding. *Frontiers in neuroscience*, 12, 531.

342 Wöstmann, M., Fiedler, L., & Obleser, J. (2017). Tracking the signal, cracking the code: Speech and
 343 speech comprehension in non-invasive human electrophysiology. *Language, Cognition and Neu-
 344 roscience*, 32(7), 855–869.

345 Zuk, N. J., Murphy, J. W., Reilly, R. B., & Lalor, E. C. (2021). Envelope reconstruction of speech
 346 and music highlights stronger tracking of speech at low frequencies. *PLoS computational biology*,
 347 17(9), e1009358.