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ABSTRACT

Copper bioleaching is a green technology for the recovery of copper from chalcopyrite (CuFeS,) and chalcocite (Cu,S) ores.

Much remains to be learned about how mineral type and surface chemistry influence microbial community composition. Here,

we established a microbial consortium from a copper bioleaching column in Cyprus on chalcopyrite and then sub-cultured it to
chalcocite to investigate how the community composition shifts due to changes in mineral structure and the absence of mineral-
derived Fe. The solution chemistry was determined and microbial communities characterised by genome-resolved metagenom-
ics after 4 and 8 weeks of cultivation. Acidithiobacillus species and strains, a Rhodospirilales, Leptospirillum ferrodiazotrophum

and Thermoplasmatales archaea dominated all enrichments, and trends in abundance patterns were observed with mineralogy

and surface-attached versus planktonic conditions. Many bacteria had associated plasmids, some of which encoded metal re-

sistance pathways, sulphur metabolic capacities and CRISPR-Cas loci. CRISPR spacers on an Acidithiobacillus plasmid targeted

plasmid-borne conjugal transfer genes found in the same genus, likely belonging to another plasmid, evidence of intra-plasmid
competition. We conclude that the structure and composition of metal sulphide minerals select for distinct consortia and associ-
ated mobile elements, some of which have the potential to impact microbial activity during sulphide ore dissolution.

1 | Introduction

Copper (Cu) has been used by humans since prehistoric times,
and due to its malleability and high thermal and electrical
conductivity, it is widely used in electronics, infrastructure,
medical devices and renewable energy generation (Calvo and
Valero 2022; Vera et al. 2022; Roberto and Schippers 2022).
The vast majority of Cu in the Earth's crust occurs in sul-
phide minerals such as chalcocite (Cu,S), bornite (CuFeS,)
and chalcopyrite (CuFeS,), with chalcopyrite accounting for
70% of crustal Cu and the majority of extracted Cu (Cérdoba
et al. 2008). The global demand for copper has significantly
increased in recent decades; from 1991 to 2023, worldwide

extraction more than doubled from 9.3 million to 22 million
tons (Calvo et al. 2016; US Geological Survey 2024). Over time,
Cu grade qualities have decreased as the easier-to-extract
deposits have been sequentially exploited, thus causing the
associated costs of mining, processing, transportation and
extraction to rise. Therefore, industrial interest in bioleach-
ing technologies for copper extraction as well as recycling
(Baniasadi et al. 2021) has increased and today approximately
10%-20% of the world's copper production is extracted using
these methods (Johnson and Roberto 2023). Bioleaching
uses microorganisms to extract metals from ore, reducing
associated economic costs and environmental impacts com-
pared with traditional chemical leaching. Copper bioleaching
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involves applying dilute sulfuric acid over heaps or dumps
of Cu-bearing ores; iron- (Fe-) and sulphur- (S-)oxidising or-
ganisms mediate the bioleaching process, thus releasing cop-
per sulphate salts into solution. These solutions are recycled
back over the heaps along with the sulfuric acid for further
enrichment of the copper. The Cu from the dilute sulphate
solutions is then extracted, purified and enriched with the use
of an organic solvent and recovered as metal ingots by elec-
trolysis (electrowinning). Copper bioleaching is thought to
be less harmful to the environment than smelting, as it pro-
duces fewer wind-borne toxic elements and does not generate
SO,(g), which can form acid rain (Nikoli¢ et al. 2010; Vitkova
et al. 2011). However, the slower rate of chalcopyrite disso-
lution compared to other copper sulphides makes it difficult
to bioleach (Yevenes 2009; Miki et al. 2011; Medina Ferrer
et al. 2021). Therefore, improving methods to optimise the
bioleaching of chalcopyrite is of economic interest to the Cu-
mining industry and of environmental interest to the wider
society.

Acidophilic Fe- and S-oxidising organisms from various phy-
logenetic groups have been identified in Cu-bioleaching ex-
periments (Zeng et al. 2010; Keeling et al. 2005; Mikkelsen
et al. 2006; He et al. 2010; Chen et al. 2014). Bacteria from
the genera Leptospirillum, Acidithiobacillus and Sulfobacillus;
and Archaea from the genera Ferroplasma and Sulfolobus
are the most common organisms found in chalcopyrite heap
leaches and bioreactors (Zeng et al. 2010; Chen et al. 2014;
Bakhti et al. 2024). The molecular mechanisms for S and Fe
oxidation are distinct from each other, and some strains have
been demonstrated to use only Fe (e.g., Leptospirillum ferroo-
xidans) or S (e.g., Acidithiobacillus thiooxidans) as sole elec-
tron donors, while others can use both (e.g., Acidithiobacillus
ferrooxidans) (Rawlings 2005). The capacity for N, fixation
by Leptospirillum ferrodiazotrophum was predicted from a
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metagenome-derived genome (Tyson et al. 2004), and used to
guide its isolation (Tyson et al. 2005). Subsequently, the ability
to oxidise sulphur compounds was previously suggested; how-
ever, this has not been experimentally validated (Goltsman
et al. 2009).

Previous investigations on the microbial populations responsi-
ble for Cu-bioleaching from chalcopyrite-containing ore used
a mix of minerals (e.g., including pyrite) in the enrichment
(Zeng et al. 2010; Keeling et al. 2005; Mikkelsen et al. 2006;
He et al. 2010; Chen et al. 2014; Marhual et al. 2008; Zhou
et al. 2009; Yu et al. 2014). While a mix of minerals is typ-
ical in heap leaches, these experiments do not distinguish
between organisms that are using pyrite versus chalcopyrite,
thus confounding the analysis of microbial-mediated mecha-
nisms. Furthermore, few studies have been performed with
pure chalcopyrite, one of which was a monoculture of the Fe-
and S-oxidising bacterium, A. ferrooxidans (Zhao et al. 2013).
Compared with chalcopyrite oxidation, chalcocite oxidation
has been much less studied. Previous research demonstrated
that oxidation of chalcocite by Acidithiobacillus ferrooxidans
in sulfuric acid solutions at pH1.7 resulted in the oxidation
of the Cu™ in the chalcocite to Cu?*, and the subsequent for-
mation of digenite (Cu,S;) and covellite (CuS) (Nielsen and
Beck 1972).

Due to the presence or absence of iron in chalcopyrite and chal-
cocite, respectively, we hypothesised that these different mineral
substrates would select for distinct microbial communities. In
this study, we obtained a microbial consortium from a bioleach-
ing column in Cyprus and enriched for Fe- and S-oxidising or-
ganisms on chalcopyrite. We subsequently used this microbial
enrichment to inoculate two experiments with (1) chalcocite
and (2) chalcopyrite to investigate potential changes in the mi-
crobial communities (Figure 1). Microbial communities and
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FIGURE1 | Schematic of metagenomic experimental design. The diagram illustrates the experimental design of the project. (a) Microbial con-

sortium was sampled from the packed bioleaching column ‘SC3’ containing Phoukassa ore which has a natural mixture of chalcopyrite (red) and

chalcocite (blue) at the Skouriotissa Mine in Cyprus. (b) The microbial community was cultivated and sub-cultured in minimal acid medium with

chalcopyrite 10 times. (c) Microbial community was sub-cultured in minimal acid medium with chalcopyrite or chalcocite, and subsequently sub-

cultured on the same mineral five times prior to samples taken for DNA isolations. Metagenomes were sequenced from the supernatant at 4weeks

(green star), and from the supernatant (green star) and ore (blue star) separately at 8 weeks, totalling six metagenomes. Each metagenome consisted
of DNA pooled from three replicates. Abiotic controls for each treatment consisted of minimal acid medium containing chalcopyrite or chalcocite
(without the microbial inoculum) were sampled for chemical analysis at weeks 0, 4 and 6 to measure background abiotic dissolution processes.
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their growth were characterised using chemistry, microscopy
and metagenomics. We identify mobile elements with potential
roles in microbial activity (e.g., metal resistance) and bioleach-
ing capacity, define the importance of mineral type and report
differences between planktonic and mineral surface-attached
consortia during microbially mediated dissolution of copper ore
minerals.

2 | Materials and Methods
2.1 | Sample Collection and Enrichments

Microbial communities for the enrichment were sampled
from the ‘SC3’ bioleaching column at the active Cu mine at
Skouriotissa, Cyprus (35°5'28” N 32°53’5” E), which mines
the Phoukassa orebody (Figure 1la). Skouriotissa is one of
the oldest mines in Cyprus, operating since at least 2750BC
(Larnaca 1982). The deposit is a Cyprus-type volcanogenic mas-
sive sulphide (Constantinou and Govett 1972) similar to others
around the world mined for Cu. At Skouriotissa, bioleaching
optimization experiments to improve Cu extraction were per-
formed in columns with 2.8wt.% Cu ore as substrate. A slurry
of ore and microbes was sampled from leaching column ‘SC3’
operating at ambient temperature (16°C-26°C). The SC3 column
was packed with local Phoukassa ore, in which the Cu-bearing
minerals were chalcopyrite, chalcocite, bornite and Cu-bearing
pyrite (FeS,) (unpublished data).

After sampling from the SC3 bioleaching column at the
Skouriotissa mine in Cyprus, the SC3 Cu bioleaching consor-
tium was enriched in a minimal acid medium (MAM pH1.5)
using pure chalcopyrite as the only mineral and energy source
(Figure 1b). The microbial community was sub-cultured into
MAM pH 1.5 in two treatments: (1) with chalcocite as the min-
eral substrate and (2) with chalcopyrite to investigate the po-
tential effects of these substrates on the microbial community
(Figure 1c). Each treatment was accompanied by an abiotic con-
trol (three replicates), which included the minimal acid medium
containing chalcocite or chalcopyrite, respectively, excluding
the microbial community.

Approximately 0.5 g of slurry material from the SC3 bioleach-
ing column was used to inoculate enrichments with mini-
mal acid medium (MAM). Per litre, MAM contained: 0.4g
(NH,,SO,, 0.4g KH,PO,, 0.4g MgSO,-7H,0, 1 mL, trace el-
ements including W and Se (Atlas 2004), 0.25g unsterilized
research grade chalcopyrite (Sagewood Ltd.), and pH was ad-
justed to 1.5 with H,SO,. The minerals were not sterilised be-
cause doing so would affect the integrity and oxidation states;
furthermore potential contamination of acidophiles from the
surface of these minerals is unlikely, and no microbes were
visualised on any of the abiotic controls. Research grade (i.e.,
pure mineral without impurities) chalcopyrite and chalcocite
were ground to a maximum particle size of 50 um and were
characterised with X-ray diffraction analysis (Phillips PW
1710 diffractometer using Cu-Ka radiation and PANalytical
X'Pert PRO diffractometer using Co-Ka radiation). The pu-
rity of the minerals was confirmed by only peaks for chal-
copyrite and chalcocite being present on the respective XRD
spectra. Before the experiment, the microbial enrichment was

incubated at 28°C without agitation and sub-cultured 10 times
with a 5% inoculum every 2months in MAM with 0.25g un-
sterilized research grade chalcopyrite (Figure 1b). The enrich-
ment was then split and sub-cultured with three replicates and
three controls for each condition: MAM with 0.25g unsteril-
ized research grade chalcopyrite (Sagewood Ltd.), and MAM
with 0.25 g unsterilized research grade chalcocite (Alfa Aesar)
(Figure 1c). The control consisted of the MAM and chalcopy-
rite or chalcocite without the microbial consortia inoculum
(microbes were not visualised on any of the abiotic controls).

2.2 | Chemical Analyses

One mL samples from the 12 enrichments (two experimental
conditions consisting of three replicates and three abiotic con-
trols each) were collected at weeks 0, 4 and 8. Samples were
centrifuged to remove cells and minerals, filtered (0.22um;
Millipore), and stored at —20°C until analysis. Total soluble Cu,
Fe and S concentrations were determined by inductively coupled
plasma optical emission spectroscopy (ICP-OES). Procedural
blanks were run at the beginning and end of each analysis and
at regular intermediate stages. The oxidation state of the soluble
iron was determined using the colorimetric o-Phenanthroline
method (Saywell and Cunningham 1937).

2.3 | Scanning Electron Microscopy

The SC3 consortium growing on chalcopyrite was imaged
using a JEOL JSM-6480LV high-performance, variable pres-
sure analytical scanning electron microscope (SEM) operat-
ing in low-vacuum mode using 7-11kV accelerating voltage
and a spot size of 29 nm. Prior to examination, samples were
mounted on 12.5mm pin stubs with sticky carbon discs,
freeze-dried in liquid nitrogen using a MODULO 4k in-
strument for 30min, and gold coated using a Polaron E5000
instrument.

2.4 | DNA Extraction and Sequencing

Biotic enrichments with experimental conditions of 0.25g chal-
copyrite or chalcocite were sampled at 4weeks (liquid phase)
and 8weeks (liquid phase and mineral-attached), leading to a
total of six samples for sequencing (Figure 1c). The supernatant
and attached microbial communities at 8 weeks were sampled
separately to compare the planktonic microbial community (‘su-
pernatant’) and the community attached to the mineral surface
(‘attached’). The supernatant was sampled using a pipette, tak-
ing care not to disturb the mineral and leaving about 1 mL of
liquid remaining. The community on the mineral surface was
sampled by washing with MAM. Samples were centrifuged
to pellet cells. DNA was extracted from cell pellets using the
MOBio PowerSoil DNA Isolation Kit (Qiagen, Germany), stored
at —20°C and shipped on dry ice to RTL Genomics (Lubbock,
TX, USA). Libraries were prepared at RTL Genomics (Lubbock,
TX) with the KAPA HyperPrep Library Kit (KAPA Biosystems,
Wilmington, MA), and samples were pooled equimolar ac-
cording to the manufacturer's instructions. Libraries were se-
quenced on an Illumina HiSeq 2500 (Illumina, San Diego CA),
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producing 250bp paired-end reads. Raw reads are available on
NCBI PRINA 1170356, and related information is available in
Table S1.

2.5 | Metagenomic Assembly, Annotation
and Binning

Raw read processing consisted of: removing Illumina adapters
and contaminants with BBTools (Bushnell 2014), trimming
reads with Sickle v1.33 (Joshi et al. 2011) and assessing qual-
ity before and after with FASTQC v0.11.5 (Andrews 2010),
all with default parameters. Reads were assembled with
IDBA-UD vl1.1.1 (IDBA-UD 2022) with the following pa-
rameters ‘-mink 40-maxk 100-step 20’ and only assem-
bled scaffolds of >1000bp in length were used in further
analysis. Sequencing coverage of each scaffold >1000bp
long was calculated by mapping raw reads against the as-
sembly using Bowtie2 with default parameters (Langmead
and Salzberg 2012). Prodigal v2.6.3 (Hyatt et al. 2010) was
used with the ‘metagenomic’ setting to predict open read-
ing frames (ORFs). ORF annotations were predicted with
similarity searches using USEARCH ‘-ublast’ (Edgar 2010)
against UniProt Knowledgebase and UniRefl100 databases
(Suzek et al. 2007), and the Kyoto Encyclopaedia of Genes
and Genomes (KEGG) (Ogata et al. 1999). Genes were also
annotated with a custom set of HMMs using HMMER v3.3
(Johnson et al. 2010). tRNA sequences were predicted with
tRNAscan-SE (Schattner et al. 2005) and 16S rRNA sequences
were predicted as previously described (Nawrocki et al. 2009)
using ‘cmsearch’ from Infernal (Nawrocki et al. 2009) and
SSU-Align (Nawrocki 2009). Assembled scaffolds >1000bp
in length and annotations were uploaded to ggKbase.

Genomic sequences for all organisms and plasmids were binned
manually with the ggkbase interface using methods previously
described (Brown et al. 2015; Anantharaman et al. 2016; Devoto
et al. 2019) based on a combination of guanine-cytosine content,
DNA read coverage, taxonomic assignment and single copy
gene content. Organisms were also binned automatically with
ABAWACA (Brown et al. 2015) and metaBAT2 v2.12.1 (Kang
et al. 2019). Of these manual and automated organism bins, the
most complete and highest quality bins were selected from each
sample with DASTool (Sieber et al. 2018) using default param-
eters. The resulting set of 56 total organism genomes from all
samples was dereplicated using dRep v3.0.1 (Olm et al. 2017)
at the 99% ANI threshold with the settings ‘-pa 0.5-sa 0.99’
yielding a set of 12 non-redundant genomes. Similarly, the 72
total plasmid bins from all samples were dereplicated with
the settings ‘-pa 0.5-sa 0.99-noQualityFiltering’ yielding 12
non-redundant plasmids. Completeness and contamination of
organism genomes was estimated with CheckM v1.1.3 (Parks
et al. 2015) command ‘lineage_wf” and default parameters. All
genomes used in downstream analysis passed 70% completeness
and 10% contamination thresholds. Furthermore, the 12 derep-
licated genomes were classified with GTDB-Tk v1.3.0 with ‘clas-
sify wf” using default parameters (Chaumeil et al. 2020). All
non-redundant organism and plasmid genomes are available at
https://ggkbase.berkeley.edu/cu_bioleaching_organisms_and_
plasmids and NCBI; Genbank Accession Numbers and associ-
ated information are listed in Table S2.

To explore plasmid replication, iRep script GC_skew.py (Brown
et al. 2016) with default parameters was used to assess the GC
skew and coverage of the 12 plasmids in the dereplicated set.

2.6 | Metabolic Analysis

In addition to the above-described annotation methods,
Metabolic-G.pl v2.0 was used with default parameters on the
dereplicated set of 12 organism genomes to inform metabolic
analysis in the system (Zhou et al. 2022).

2.7 | Phylogenetic Analysis

The phylogenetic trees were constructed using sequences from
the set of 12 non-redundant genomes as well as sequences
from acid mine drainage and analogous environments. Using
GTOTree v1.6.12 (Lee 2019), bacterial and archaeal phyloge-
netic trees were constructed from concatenated single-copy
gene sets for bacteria (74 target genes) and archaea (76 target
genes), respectively. By default, genomes with less than half of
the targeted SCGs were excluded from downstream analysis.
FastTree 2 v.2.1.10 was used to estimate the phylogenies, which
were then midpoint rooted (Price et al. 2010).

2.8 | CRISPR Analysis

To investigate the presence of CRISPR-Cas systems encoded
by contigs of bacterial, archaeal and plasmid contigs, we first
searched their protein-coding genes against the HMM databases
of Cas proteins from TIGRFAM (Haft et al. 2003). For the contigs
identified with at least one Cas protein, the upstream and down-
stream 10kbp of the nucleotide sequences of the Cas protein(s)
were searched for repeat array using PILER-CR version 1.06
(Edgar 2007) with default parameters. The spacers from both
the contigs, the mapped reads, and also the unplaced mapped
reads were analysed as previously described (Chen et al. 2019).
Blastn-short was used to identify matches between CRISPR
spacers and contigs from the sample, thus predicting the po-
tential targets of the CRISPR spacers. Contigs that were hits
of the spacers were filtered with alignment length >24bp and
<1 mismatch as described previously (Al-Shayeb et al. 2020).
To further verify taxonomic assignment of hits from the spacer
query, targeted proteins from the targeted contigs were searched
against NCBI using blastp (BLAST 2022).

3 | Results and Discussion
3.1 | Cu Bioleaching by SC3 Microbial Consortium

Compared to the abiotic controls, the microbial consortia treat-
ment groups with Cu-containing minerals released 1.5-2.3
times more soluble Cu and S than the abiotic controls (Figure 2,
Table S3). The soluble Fe concentration in the CuFeS, cultures
increased and was primarily Fe**. However, overall the total
amount of soluble Fe was lower than expected for stoichiomet-
ric dissolution of CuFeS,, possibly indicating the formation of
iron-containing minerals (Cérdoba et al. 2008). The pH of the
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FIGURE2 | Community composition and chemical abundances over time with CuFeS, and Cu,$ cultivation. (a) Average relative abundance of

raw reads mapped to MAGS of species groups (three replicates per timepoint). At Week 4, samples from the surface of mineral and fluid supernatant

were mixed, while at Week 8 the supernatant and microbes attached to the surface of the metals were sampled separately. (b) Chemical abundances

of abiotic controls (dashed lines) and treatment groups: CuFeS, and Cu,S cultivation (solid lines).

CuFeS, cultures remained between 1.5 and 1.7 throughout the
incubation, suggesting that any increase in pH from Fe oxidation
was offset by the decrease in pH due to S oxidation to sulphate
and the formation of iron-containing minerals in the passivation
layer such as jarosite (Cordoba et al. 2008; Blowes et al. 2003).
The mechanism of chalcopyrite bioleaching via the polysulfide
(H,S,) pathway is shown in the following equations (MS rep-
resents a metal sulphide, for example chalcopyrite) (Schippers
and Sand 1999; Jones and Santini 2023; Baker and Banfield 2003):

MS + Fe* + H —» Cu* +0.5H,S, +Fe** n>2) (1)

Fe** +0.250, + H* - Fe** +0.5H,0 ®)
0.5H,S, + Fe** - 0.125 S, + Fe*t + H* 3)
0.125Sg + 1.5 0, + H,0 - SO,*™ + 2H* @)

The pH of the Fe-free Cu,S cultures (both abiotic and biotic) in-
creased to 2.2-2.3, consistent with the oxidation of sulphide to
elemental S without further oxidation of elemental S to sulphate
(Miki et al. 2011). The equation for chalcocite oxidation is shown
below (Fisher and Roman 1970):

Cu,S+0.50,+2H" - 2 Cu* +5° 4+ 2H,0 )

By 8weeks, 2.26 times more Cu was bioleached in the chalcoc-
ite treatment (0.93g/L) compared to the chalcopyrite (2.1g/L).
The structures of these minerals are distinct; in chalcopyrite,
sulphur is in cubic closest packing with alternating trivalent
iron and monovalent copper occupying half of the available tet-
rahedral sites whereas chalcocite contains sulphur arranged in
hexagonal closest packing and only monovalent copper occupy-
ing all tetrahedral sites (Anthony et al. 2022). This difference
in bioleaching efficiency could in part be due to the inorganic
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FIGURE 3 | Scanning electron micrograph images of SC3 consortium on CuFeS,. Different sub-samples of the mineral are shown in (a) and (c)

with a magnified image shown in (b) and (d), respectively. Arrows point to small dissolution pits or the removal of a surface coating underneath the

microbial cells.
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FIGURE4 | Sulphur cycling of SC3 microbial consortia. The coloured circles represent organisms containing the genes for these transformations.

dissolution rates of chalcocite (faster) versus chalcopyrite
(slower) under acidic conditions, as shown in previous exper-
imental data (Yevenes 2009; Miki et al. 2011; Medina Ferrer
et al. 2021; Neira et al. 2021).

3.2 | Microbial Community Composition
and Metabolism

Overall, the microbial communities cultivated on
CuFeS, and Cu,S included organisms typically found
in bioleaching consortia: Acidithiobacillus ferrooxidans,
Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans,

Leptospirillum ferrodiazotrophum, Ferroplasma acidarma-
nus, Thermoplasmatales archaeon G-plasma (also known as
Cuniculiplasma divulgatum) and a Rhodospiralles species. At
all time points, the most striking differences are the higher
abundances of Rhodospiralles and the iron-oxidising organ-
isms Ferroplasma acidarmanus and Leptospirillum ferrodi-
azotrophum in the chalcopyrite enrichments and the higher
abundance of sulphur-oxidising A. thiooxidans and G-plasma
in the Cu,S enrichment (Figure 2a). Organisms are referred to
in the manuscript by their long-standing names for continuity
with the literature (the current GTDB taxonomic assignment
is detailed in Table S2). Archaeal and bacterial phylogenies are
available in Figure S1.
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FIGURES5 | Proposed bioleaching mechanisms of chalcopyrite (A) and chalcocite (B) SC3 bioleaching microbial consortia based on the literature
(Schippers and Sand 1999; Jones and Santini 2023; Baker and Banfield 2003; Lara et al. 2013).

After 4weeks, both the CuFeS, and Cu,S cultures were domi-
nated by A. ferrooxidans. Both communities contained L. ferro-
diazotrophum, reported to be an iron oxidizer (Tyson et al. 2005;
Battaglia et al. 1994) supporting the inference that this bacte-
rium can also grow on reduced sulphur compounds. The L. fer-
rodiazotrophum in this consortium contains genes for sulphur
metabolism: sulphate adenylyltransferase, adenylylsulfate re-
ductase and adenylylsulfate reductase subunit alpha (Table 1).

The composition of the chalcocite versus chalcopyrite commu-
nities and mineral-attached versus planktonic communities was
distinct (Figure 2a). At 8weeks, the CuFeS, surface-attached
community was similar to the overall 4-week community,
whereas the planktonic fraction had a high abundance of L. fer-
rodiazotrophum and a low abundance of A. ferrooxidans. These
findings suggest that L. ferrodiazotrophum oxidises dissolved in-
termediate sulphur compounds (e.g., thiosulfate/tetrathionate/
sulphite) whereas A. ferrooxidans may contribute to the oxidation
of surface-bound compounds such as polysulfide. Furthermore,
SEM images of the CuFeS, community on the surface of chal-
copyrite showed microbes with varied morphologies (Figure 3)
and the observed mineral surface may be a surface coating that
has been removed under the cells. Small dissolution pits may
have been formed biotically or abiotically, consistent with what
has been found previously for bioleaching of sulphide minerals
(Edwards et al. 2001).

Compared to the Cu,S 4-week community, the 8-week surface-
attached community had a greater relative abundance of L.
ferrodiazotrophum and Rhodospiralles. G-plasma is more abun-
dant in the planktonic fraction from the Cu,S enrichments, con-
sistent with its growth primarily via the oxidation of dissolved
intermediate sulphur compounds, as it contains the two genes
sqr (sulphide:quinone oxidoreductase) and sdo (sulphur dioxy-
genase) (Table 1). Previously, a G-plasma genome was reported
that contained a rhodanese-like domain on a genomic island,
indicating that it was likely acquired by horizontal gene transfer
(Yelton et al. 2013).

One of the most striking findings is the low abundance of A. ferro-
oxidans in the supernatant regardless of the mineral type used in
the enrichment. This result points to a preference for the oxidation
of surface-bound sulphur compounds over dissolved Fe?*, which is
regenerated in chalcopyrite-based experiments following its reac-
tion of Fe** with reduced sulphur at mineral surfaces.

In contrast to the abundance of A. ferrooxidans, A. thiooxidans
(sulphur oxidizer) is present in similar abundances in both the
surface and supernatant of the CuS, enrichment and low in the
CuFeS, treatment. This suggests that in the absence of iron, A.
thiooxidans may be a more competitive sulphur oxidizer at both
the surface and in the supernatant.

Overall, A. ferrivorans has a similar low abundance at 4 weeks
in CuFeS, and CuS,, and at 8 weeks attached in CuFeS, but neg-
ligible abundance at 8weeks in the CuFeS, supernatant, and
8weeks attached and supernatant in CuS,. Similar to A. ferrox-
idans in being a sulphur and iron oxidizer, A. ferrivorans’ abun-
dance distribution is distinct. Differences may be explained in
variations in their iron oxidation pathways and/or regulation of
these pathways (Hallberg et al. 2009). Furthermore, each micro-
bial community has distinct functional and ecological partition-
ing, and the ecological community dynamics of this inoculum
may explain these differences in distribution.

Our results underline the partitioning of functions in the consor-
tia, with iron oxidation likely carried out by planktonic L. ferro-
diazotrophum. The produced ferric iron drives the oxidation of
mineral-associated reduced sulphur, contributing to the removal of
intermediate sulphur compounds from mineral surfaces. A combi-
nation of other bacteria and archaea likely completes the sulphur
oxidation pathway in solution (e.g., with primarily Ferroplasma,
Rhodospiralles, and possibly L. ferrodiazotrophum in chalcopyrite
enrichments and G-plasma, L. ferrodiazotrophum and A. thiooxi-
dans in chalcocite experiments). As A. thiooxidans is known to ox-
idise elemental sulphur (Tyson et al. 2005; Suzuki et al. 1992; Lara
et al. 2013), the overall enrichment of A. thiooxidans in the Cu,S
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cultures could reflect the development of appreciable elemental
sulphur only on the surface of chalcocite (Kitai et al. 2022).

Overall sulphur metabolisms predicted from the dereplicated
set of genomes are shown in Figure 4. These metabolisms show
genetic capabilities from the metagenome-assembled genomes,
not activity of these organisms in the enrichments. Figure 5
illustrates the proposed bioleaching mechanisms of the con-
sortia on chalcopyrite (5A) and chalcocite (5B) (Schippers and
Sand 1999; Jones and Santini 2023; Baker and Banfield 2003;
Lara et al. 2013).

3.3 | Mobile Elements in SC3 Bioleaching
Community

The role of mobile elements such as plasmids and prokaryotic
viruses (phages) in transferring genes involved in metabolic pro-
cesses and resistance to stress such as antibiotics is well known
(Palomino et al. 2023; Acman et al. 2020). Moreover, phages
carrying auxiliary metabolic genes (AMGs) have been shown
to play critical roles in photosynthesis (Mann et al. 2003), the
metabolism of sulphur in microbiomes from diverse ecosystems
(Kieft et al. 2021), and in the aerobic oxidation of methane in
freshwater (Kieft et al. 2021). Mobile elements may also play
important roles in microbial ecology and evolution; we identi-
fied 12 distinct plasmids, some of which carry genes involved
in metal resistance, metabolism and CRISPR-Cas loci (Table 2).
The 128 kbp Plasmid_64_937 with genes phylogenetically most
similar to those of Alphaproteobacteria contained two putative
copper resistance genes. Acidithiobacillus Plasmid_56_860 en-
codes a putative sulphate adenylyltransferase, which plays a key
role in assimilatory sulphur reduction and dissimilatory sulphur
oxidation and reduction. Plasmid_55_30 also encodes a putative
rusticyanin, an essential component of the Fe(II) oxidation elec-
tron transport chain. Plasmid_59_32 encodes a putative nitrite
reductase. GC skews were low and the patterns were noisy, but
three of the plasmids' patterns are suggestive of rolling circle
replication (Figure S2).

Two plasmids contained CRISPR-associated genes, and
Plasmid_56_509, phylogenetically linked to Acidithiobacillus,
had an associated CRISPR locus. CRISPR spacers on this plas-
mid targeted two unbinned contigs taxonomically categorised
as Acidithiobacillus in the same sample (Table 3). Both contigs
encoded genes annotated as ‘conjugal transfer proteins or re-
lated’ and other plasmid-related genes such as Type IV secretion
systems. Thus, Plasmid_56_509 is inferred to use a CRISPR-Cas
system to target plasmids of the same genus, that is, evidence
of intra-plasmid competition. This has previously been reported
for plasmids of Leptospirillum that target other Leptospirillum
plasmids (Goltsman et al. 2009) and it has been shown that
CRISPR-Cas systems often target other plasmids associated
with the same species (Pinilla-Redondo et al. 2022). As shown
in this bioleaching consortia, plasmid-plasmid competition
dynamics may be more prevalent than previously recognised.
The inventory of plasmids reported here expands the database
of plasmids from acidophiles. Considering the rapidly expand-
ing research on extrachromosomal elements (Yu et al. 2024;
Al-Shayeb et al. 2022; Zheludev et al. 2024) and engineering of
microbial consortia (Rubin et al. 2022; Wang et al. 2023; Ronda

et al. 2019), these mobile elements may find application in fu-
ture experiments that adapt these genetic elements for delivery
of genome editing tools into microbes within consortia, possibly
to improve bioleaching performance. With the decrease in ore
grade and high demand for rare earth elements for the green
energy transition, researchers are currently using directed evo-
lution and engineering individual microbes to increase yield and
expand applications (Schmitz et al. 2025; Jung et al. 2023); tar-
geted engineering of consortia with genetic elements may enable
a systems approach to fill this gap.

4 | Conclusions

The SC3 bioleaching microbial consortia were characterised
using chemical analyses, SEM microscopy and genomics. This
investigation demonstrates the importance of combining single
mineral bioleaching experiments with metagenomics. Here, we
show how mineral type drives microbial community composi-
tion and metabolism in both planktonic and mineral-attached
consortia during microbially mediated dissolution of copper ore
minerals. Our results provide new insights into how the avail-
ability of different sulphur compounds shapes the bioleaching
microbial community and the roles of plasmids in these systems.
Importantly, the data constrain the capacities of specific organ-
isms, such as oxidation of intermediate sulphur compounds,
that can only be partially predicted based on gene content.

A frontier in microbiology research is the use of genome edit-
ing tools to modify microbes without removing the organism
from the community, thus preserving key microbe-microbe
interactions (Rubin et al. 2022). Two requirements for such
experiments are (i) the availability of realistic, stable labora-
tory consortia in which to perform experiments and (ii) mech-
anisms to effectively deliver editing tools to specific consortia
members with high efficiency. Given the results of this study,
we suggest that future work might leverage enrichments and
plasmids such as reported here to perform such experiments.
This approach could elucidate how these communities func-
tion as the result of individual and interconnected metabolic
networks. Ultimately, such work could open the way for sub-
stantial improvements in organism modifications that could
enhance bioleaching performance.
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Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Figure S1: Phylogenetic trees. The
phylogenetic trees of Archaea (A) and Bacteria (B) show the evolu-
tionary relationships between microorganisms isolated from the SC3
metagenomes (blue) and references from NCBI (black). Reference NCBI
GenBank accession numbers are included in the tree after reference
taxonomy. GC Skew of Plasmid_Leptospirillum_56_1137. Figure S2:
Plasmid replication types. Overall, across the plasmids the observed GC
skew was low and the patterns were noisy, but some of the three plas-
mids' skew might be consistent with a rolling circle, for example plasmid
Plasmid_Leptospirillum_56_137 shown here. Table S1: Metagenome
sample data. Coverage of assembly was calculated by mapping reads
of the source sample to the assembly. Table S2: Coverage of organisms
in each sample, Figure 2A. Coverage of genomes was calculated by
mapping reads of the source sample to the genome. Table S3: Chemical
analysis of incubations.
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