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ABSTRACT
Despite underpinning entire polar and temperate coastal ecosystems, kelp is rarely exam
ined in standard ecotoxicology test batteries, and no universally accepted testing guidelines 
exist despite the growing regulatory interest in macroalgal tests. Declines in kelp popula
tions, linked increasingly to pollution and other anthropogenic stressors, reinforce an urgent 
need to quantify contaminant effects on kelp health and survival. Reliable and consistent 
kelp cultivation protocols are therefore essential for generating ecotoxicological data that 
both addresses critical gaps in environmental risk assessment and provides alternatives to 
vertebrate testing in toxicology. The microscopic kelp life stages present a particular oppor
tunity for reproducible assays at recognized bottlenecks in the life cycle, where kelp is often 
most sensitive to environmental stressors. This review consolidates laboratory cultivation 
techniques for three key species: Laminaria hyperborea, L. digitata, and Saccharina latissima, 
drawing on published literature and practitioner interviews. Protocols are outlined for spores, 
gametophytes, juvenile sporophytes, and mature sporophytes, with an emphasis on mana
ging life stage transitions. Key parameters include temperature (5–15°C), nutrient enrichment 
(F2P), and precise control of light intensity, wavelength, and photoperiod. Strategies to 
address challenges such as contamination, genetic drift, and long-term culture maintenance 
are identified, alongside a discussion of emerging efforts to standardize kelp bioassays. The 
synthesis supports a broader and more robust use of kelp-based assays, which will 
strengthen our capacity to assess and understand pollution risks to kelp forests, and advance 
conservation and sustainable management of coastal ecosystems.
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Introduction

Kelp is a collective term for brown marine macrophytes, usually of the order Laminariales, that underpin 
temperate and polar coastal ecosystems (Steneck et al., 2002). These canopy-forming algae are primary 
producers and ecosystem engineers, providing a range of important ecosystem services (Carranza et al.,  
2024; Shelamoff et al., 2022; Smale et al., 2013; Steneck et al., 2002; Teagle et al., 2017). Kelp contributes to 
the productivity of fisheries by providing nurseries, feeding grounds, and protection for economically 
important species (Bertocci et al., 2015). In addition, kelp-derived carbon can be exported to deep sediments 
or offshore sinks, with retention times varying by species and habitats, giving kelp a potential (but debated) 
role in long-term carbon sequestration (Duarte et al., 2022; Filbee-Dexter et al., 2022; Fujita et al., 2023; 
Krause-Jensen et al., 2018). Kelp is known to modify abiotic conditions positively by reducing water flow, 
sedimentation, and irradiance (Layton et al., 2019; Shelamoff et al., 2022), with their structural influence 
within coastal ecosystems often more significant than their role as a food source (Denny, 2021; Miller et al.,  
2018). However, kelp degradation can impair their ecosystem engineering capabilities, potentially leading to 
reduced resilience and stability (Layton et al., 2019).

Kelp is also sensitive to environmental stress and is recognized as a bioindicator of coastal water 
quality (Areej et al., 2012; Bryan, 1969, 1980; Chalkley et al., 2019). Changes in abundance, vigor, and 
morphology can signal issues with the underlying health of kelp populations. For example, bleaching, 
growth abnormalities, and population declines can signal pollution or broader stressors in the field 
(Edwards, 2022; Wear et al., 2023). At the tissue level, kelp readily takes up and concentrates 
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pollutants, often mirroring ambient concentrations or, in some cases, showing bioaccumulation 
(Bryan, 1969, 1980; Burger et al., 2007). This sensitivity underpins its formal use in regulatory 
monitoring. For instance, the U.S. Environmental Protection Agency (EPA) developed 
a reproduction test for Saccharina latissima, later replaced in West Coast effluent toxicity assessments 
by the more locally relevant Macrocystis pyrifera (Chapman, 1990). The resulting 48-hour spore 
germination and growth inhibition test is now formally recognized in West Coast water quality 
regulations (Andersen, 2005). In Norway, L. hyperborea is used routinely to monitor short-term 
exposure to organic and inorganic pollutants (Ervik, 2019). Despite such local examples, no single, 
unifying global standard exists, such as an International Organisation for Standardization (ISO) or an 
Organization for Economic Co-operation and Development (OECD) method, and kelp remains 
absent from most routine ecotoxicological batteries, which focus instead on vertebrates, invertebrates, 
or microalgae (Burridge & Bidwell, 2002).

Despite their ecological importance, kelp forests worldwide are in decline, driven by climate change, localized 
pollution, and habitat degradation (Krumhansl et al., 2016; Steneck et al., 2002). These losses compromise 
ecosystem services and reduce biodiversity, prompting conservation practitioners to explore active restoration 
initiatives (Eger et al., 2022). Kelp cultivation methods, already a mainstay in commercial seaweed production, 
have become increasingly relevant to conservation, providing an approach for the propagation of kelp in 
controlled settings for use in restoration out-planting (Eger et al., 2022; Fredriksen et al., 2020). In addition, 
a clearer and more robust understanding of how pollutants affect kelp at various life stages is also critical (Bartsch 
et al., 2008; Burridge & Bidwell, 2002; Hughes et al., 2005). Pollution may play a role in significant, acute and 
chronic kelp decline, yet there is limited standardization in the ecotoxicological testing protocols for these algae to 
enable us to quantify the impact (Burridge & Bidwell, 2002; Eklund & Kautsky, 2003). As interest grows in using 
kelp for ecotoxicology, motivated by both regulatory concerns and the shift away from vertebrate testing, robust 
and reproducible cultivation methods are needed urgently to meet research demands and strengthen marine 
ecotoxicological test batteries. Bridging these gaps requires a concerted effort to review, synthesize, and 
standardize cultivation methodologies. Doing so would also advance ecotoxicological research on kelp by 
ensuring robust, reliable data that can inform regulatory guidelines and conservation strategies. Standardized 
protocols could also help illuminate the relative importance of pollution, both generally and specifically, as 
a driver of kelp decline, thereby guiding restoration and management approaches.

This review focuses on three kelp species of ecological, restoration and economic relevance to Southeast 
England: Laminaria hyperborea, L. digitata, and Saccharina latissima. These species were selected for their 
prevalence in UK waters, their alignment with local restoration priorities, and their contrasting life history 
traits, which offer insights relevant to kelp forest recovery and management in other temperate regions. 
L. hyperborea is currently the dominant kelp in UK waters, while L. digitata dominates the historical record 
for Southeast England (Natural History Museum, n.d.). Both Laminaria species are long-lived perennials 
(4–20 years) that form the structural foundation of marine kelp forests (Fletcher, 2024). By contrast, 
S. latissima is a short-lived (1–3 years), fast-growing pioneer that rapidly colonizes disturbed substrates 
where other kelp species are limited or absent (Fletcher, 2024). All three species are also of commercial 
significance. S. latissima is widely cultivated commercially in the Northern Hemisphere (Sæther et al., 2024). 
L. hyperborea is harvested from wild populations in Scandinavia, although it is not yet cultivated in 
laboratory-based systems (Vea & Ask, 2011), and L. digitata is being explored for its aquaculture potential 
(Purcell-Meyerink et al., 2021). The three targeted species are all subtidal brown phaeophyte macroalgae. 
Their life cycle is biphasic, alternating between a large diploid sporophyte (0.2–2.0 m) with blades, stipe, and 
holdfast, characterized by fucoxanthin pigmentation, producing microscopic haploid flagellated motile 
spores by mitosis from ripe sorus tissue (Bartsch et al., 2008; Kain, 1979). The spores develop into haploid 
gametophytes by mitosis. The gametophytes differentiate into flagellated motile sperm cells or non-motile 
egg cells. A sperm cell fertilizes the egg cell to produce a diploid zygote, which develops by mitosis into 
a juvenile sporophyte (Fig. 1). The timing and duration of the different stages for each species are plastic, 
showing variation across the geographic range of the species, and with the development stage being 
triggered by a range of stimuli rather than always exhibiting a simple circannual rhythm (Bartsch et al.,  
2008; Bolton & Lüning, 1982).

Commercial growers have developed cultivation techniques to meet industrial demands for seeded spore 
cultures (Edwards & Watson, 2015; Flavin et al., 2013; Rolin et al., 2016). There is also a substantial body of 
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growth and single-substance toxicology studies that, although not codified into formal guidelines, have effectively 
operationalized the cultivation of L. digitata, L. hyperborea, and S. latissima in controlled laboratory environ
ments (Eklund & Kautsky, 2003). Standardized cultivation methods not only support aquaculture but also 
provide reproducible, controlled life stage material for ecotoxicological tests, ensuring results are comparable 
across laboratories (Andersen, 2005; Bartsch, 2018; Charrier et al., 2018; Forbord et al., 2018). Despite these 
developments, no internationally standardized bioassay currently exists (Eklund & Kautsky, 2003; Environment 
Agency, 2025; European Environment Agency, 2025; U.S. Environment Protection Agency, n.d.). This review 
aims to consolidate laboratory cultivation protocols for the three kelp species included —L. hyperborea, 
L. digitata, and S. latissima—and evaluate their application in ecotoxicological studies. First, it details cultivation 
methodologies across each life stage, analyzing challenges and proposing solutions drawn from published 
literature and interviews with expert practitioners. It then discusses the application of these methodologies to 
ecotoxicological bioassays and concludes with recommendations for standardization.

Method

Integrative literature review

We carried out an integrative literature review of cultivation protocols for L. hyperborea, L. digitata, and 
S. latissima during the winter of 2023 (Callahan, 2010; Snyder, 2019; Torraco, 2005, 2016). Searches were 
run in SCOPUS, Web of Science, and with the University of Sussex Library, using keywords covering 

Fig. 1. Life cycle for Laminariales: Laminaria hyperborea, L. digitata and Saccharina latissimi.
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culture methods, life stage descriptors, species names (past and present), and collective nouns likely to 
capture cultivation studies (Supplementary table S1, Supplementary table S2; Clarivate, n.d.; Elsevier, n.d.; 
University of Sussex Library, n.d.). Searches were completed in November 2022, and publication alerts were 
set up to capture new articles published up to manuscript submission. All species names were updated to the 
current taxonomy (Bartsch et al., 2008). We tabulated results across common themes and emphasized 
findings supported by multiple peer-reviewed publications (Johnson et al., 2020; Newing et al., 2011). 
Studies reporting conflicting or isolated findings were still included but given less weight when shaping 
overall recommendations.

Semi-structured interviews

To complement the literature review, we conducted 12 qualitative interviews with practitioners in labora
tory-based kelp cultivation in academia, restoration, and commercial kelp production (Flick et al., 2004). 
The aim was to capture current practices and practical insights that may not appear in published sources, 
including perspectives from practitioners who may not publish in English (Johnson et al., 2020; Newing 
et al., 2011). Semi-structured interviews were conducted between March and May 2023, each lasting 
between 45 and 120 minutes, and followed a topic guide focused on critical steps in propagation and 
cultivation (Supplementary table S3). Participants represented work conducted on four continents: Europe 
(including the UK), North America, South America, and Australasia. The group included three commercial 
growers producing ‘seeded’ kelp lines, six restoration practitioners, and three academic researchers.

Results

The keywords and criteria searches identified 274 publications consisting of 13 books, 235 journal articles, 
one dissertation/thesis, and 25 lay publications. Academic journal articles provided the primary material of 
the findings, while commercial kelp growing instructions offered valuable practical details on the specifics 
of each step or stage. Practitioner interviews were invaluable in specifying and describing the degree of 
variability with how these methods and guidelines are applied in practice, what results were achieved, and 
how they adapted and introduced methods for their specific circumstances and strategies. The integrative 
literature review and practitioner interviews revealed robust and consistent cultivation practices for each 
kelp life stage. However, considerable variability also existed, reflecting diverse research objectives and 
potential geographic adaptations. This variability highlights and reinforces the critical need for standardiza
tion to ensure reliable comparability of ecotoxicological data across different studies.

Cultivation protocols by life stage

These life stages, from spore release to gametophyte maintenance and sporophyte growth, directly align 
with ecotoxicological endpoints, such as spore germination success, gametophyte growth rate, and juvenile 
sporophyte size, which can be measured to assess sub-lethal stress responses. Light intensity (µmol m−2 s−1) 
is expressed in photon flux density, the standard unit used in plant and algal physiology to describe 
photosynthetically active radiation (PAR).

Sorus collection
Mature sporophytes with fertile sorus tissue are the starting point for laboratory kelp cultures. All 
studies used the collection of wild sorus tissue from mature individuals. This reproductive tissue is 
situated on kelp blades with the more mature sorus at the distal ends. The sorus tissue is identified by 
darker areas of blade tissue, which is in raised patches. In many protocols, spores from multiple 
individuals are pooled; to avoid dominance by a single genotype in such cases, collections are made 
from at least 5–10 individuals (ideally 20+). In some experimental contexts, such as intra‑population 
variation studies, spores or gametophytes from individual sporophytes are kept separate to preserve 
genotype identity. Maintaining genetic diversity is important in ecotoxicology, as it supports represen
tative responses and reduces the risk of including artefacts from unusually sensitive or tolerant 
genotypes. Sorus tissue is generally sourced with each phase of study from the same range of population 
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sources to preserve its genetic identity and associated physiological traits. This also helps limit the risks 
of inbreeding depression (loss of fitness from breeding between closely related individuals) and out
breeding depression (loss of local adaptation from genetic mixing between distinct populations). 
Inbreeding depression is well documented in Macrocystis pyrifera, where sibling crosses significantly 
reduce female fecundity and fertility (Camus et al., 2021). While direct demonstrations for Laminariales 
are lacking, population genetic studies in L. digitata and S. latissima indicate reduced genetic diversity 
in small or isolated populations, suggesting a potential risk (Billot et al., 2003; Guzinski et al., 2020; 
Møller Nielsen et al., 2016).

Increasingly, local regulations govern the approach for sorus sampling. For example, Alaska’s 50:50 
Rule requires tissue from at least 50 unrelated individuals and restricts replanting to within 50 km of the 
source site, while in the UK, the Sussex IFCA Hand Gathering (Restrictions and Permitting) Byelaw 
requires application for a permit (Gruenthal & Habicht, 2022; Sussex IFCA, 2021). Best practice 
guidelines, including the ASC-MSC seaweed (algae) standard (Aquaculture Stewardship Council, & 
Marine Stewardship Council, 2018) and the Guidelines for the ecolabelling of fish and fishery products 
from marine capture fisheries: Revision 1 (Food and Agriculture Organization of the United Nations,  
2009), recommend sourcing locally to maintain population integrity but do not set universal thresholds 
for distances or sample sizes. Where wild stocks are limited, sustainable sampling should be designed, 
defined, quantified, and prioritized. For example, rather than removing entire fertile blades or whole 
sporophytes, small discs or strips of fertile sorus can be collected, allowing adequate sorus collection 
while leaving the donor sporophytes intact and able to reproduce (Bartsch, 2018). This approach 
minimizes ecological impact and should be encouraged as standard practice in research and restoration.

The timing and duration of sorus development vary widely in kelp life cycles. Some authors propose an 
underlying endogenous and circannual rhythm, while others suggest external drivers such as temperature 
and nutrient availability (Dring, 1992; Ebbing, Pierik, et al., 2021; Martins et al., 2017; Roleda, 2009; 
Schaffelke & Lüning, 1994; Stekoll et al., 2021; Yarish et al., 1990). The relative influence of these factors 
is likely to differ by site and years, with interactions between photoperiod, temperature, and nutrient 
conditions determining the onset and duration of sorus production. L. hyperborea, L. digitata, and 
S. latissima sorus tissue can be sampled throughout the year, but not for all locations. Typically, practi
tioners report greater peaks in autumn/winter and spring (Bartsch et al., 2008; Boderskov, 2021; Dring,  
1992; Lee & Brinkhuis, 1988; Yarish et al., 1990), though some populations of L. digitata in Helgoland 
(Martins et al., 2017) and Arctic regions (Roleda, 2009; Zacher et al., 2019) show peak production in 
summer.

Spore release
Laboratory cultures are typically initiated by triggering spore release through the cleaning, desiccation, 
and submersion of fertile sori, often using temperature and osmotic stress (see Fig. 3 and Supplementary 
tables S4 and S5). Variation in induction methods, drying duration, temperature, or rehydration 
protocol suggests that the process is relatively insensitive, indicating phenotypic plasticity in local 
variants. Sorus segments are typically cleaned to remove epiphytes by scraping and rinsing, often 
with freshwater or diluted iodine/bleach solutions (Alsuwaiyan et al., 2019; Bartsch, 2018; Charrier 
et al., 2018; Kain & Jones, 1964). Two main approaches are then used to induce spore release. The more 
common method involves desiccating cleaned sori overnight at ~ 4°C to trigger maturation, followed by 
rehydration in sterile, filtered seawater, enriched with nutrients, which stimulates mass spore release 
over 1–24 hours depending on species (Alsuwaiyan et al., 2019; Boderskov et al., 2022; Forbord et al.,  
2018; Fig. 2). The alternative method, described by Bartsch (2018), avoids prolonged air exposure; 
cleaned sori are placed in humid conditions in covered petri dishes, allowing only ripe, mature 
sporangia to release spores. Spores can be motile for days to weeks, depending on blue light exposure 
(Bartsch, 2018; Bartsch et al., 2008). If immediate culture is not possible, dried sorus tissue is 
refrigerated for short periods from days to weeks with some retention of spore viability. A more 
long-term approach is to germinate spores into gametophytes and maintain these rather than storing 
spores (see Gametophyte Culture Initiation and Maintenance).

APPLIED PHYCOLOGY 5



Gametophyte culture initiation and maintenance
Under favorable conditions, spores settle quickly and germinate into male and female gametophytes, usually 
within 1–2 days. Each spore’s internal reserves support initial development, but culture media should be enriched 
to sustain further growth after germination (Forbord et al., 2018). While various enrichment formulations have 
been used, nutrient‑enriched seawater is used most frequently and can improve germination and early game
tophyte growth. The preferred formulation from this review is F2P, which has been widely adopted in laboratory 
kelp culture development (see Fig. 3, see Nutrients). The F2P medium is defined as Guillard’s f/2 medium 
supplemented with Provasoli’s vitamin mix, combining the macronutrients and trace metals of f/2 with the 
vitamin profile of PES (Guillard, 1975; Guillard & Ryther, 1962; Provasoli, 1968). Optimal germination and 
gametophyte growth for cold-water kelp occurs at 10–15°C (Bolton & Lüning, 1982; Flavin et al., 2013; Forbord 
et al., 2012; Lee & Brinkhuis, 1988; Redmond et al., 2014). Conditions for germination are highly temperature- 
sensitive; S. latissima spores show close to zero germination at 20°C, whereas they germinate readily at 0–15°C 
(Lee & Brinkhuis, 1988). Light is kept low during gametophyte initiation (10–30 µmol photons m−2 s−1 of white 
light) to prevent photo-inhibition and excessive heating (Bartsch, 2018; Redmond et al., 2014). Gametophytes 
start as tiny filaments or clumps of cells; these vegetative gametophytes can be grown in liquid suspension 
cultures or on surfaces. Martins et al. (2017) reported improved gametogenesis in L. digitata under long-day 
regimes when nutrient levels were enhanced (see Fig. 3).

Long-term maintenance requires adjusting to favor vegetative growth rather than reproduction. This is 
achieved by providing moderate nutrients and limiting the light quality to red wavelengths or low intensities, 
since blue light and high irradiance induce gametogenesis (Lüning, 1991). The removal of iron from the nutrient 
solution, combined with the application of relatively high but sub-lethal temperatures, has also been reported to 
promote gametophyte vegetative growth (Lewis et al., 2016; Nielsen et al., 2003; Stekoll et al., 2021; Zhang et al.,  
2015). Gametophyte stock cultures are often held under dim red light or in a 12:12 light:dark cycle at 8–15°C, 
which allows them to proliferate mitotically without forming gametes (Anderson et al., 2004; Charrier et al., 2018; 
Forbord et al., 2012; Lüning, 1991). Under such conditions, kelp gametophytes can be sustained for many 
months or even years through regular subculturing. Nutrient-enriched seawater media should be changed weekly 
(Bartsch, 2018). Extended storage is possible using multi‑annual delayed (MAD) gametophyte culture methods 

Fig. 2. Sorus tissue preparation for spore release.
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that combine light and nutrient control to maintain vegetative growth for up to several years, with reproduction 
suppressed until required (Ebbing, Fivash, et al., 2021, 2021; Ebbing et al., 2025; see Sorus Collection). Periodic 
dilution or fragmentation of gametophyte cultures is performed to prevent over-density and nutrient depletion. 
These vegetative cultures can then be induced to reproduce for sporophyte production or be maintained as 
genetic stock for later seeding applications (Andersen, 2005). Cryopreservation techniques are also being 
explored for kelp gametophytes (Andersen, 2005; Visch et al., 2019); if perfected, this would allow laboratories 
to store a library of diverse strains and revive them as needed, ensuring a sustainable supply of genetically diverse 
material. S. latissima gametophyte germplasm banks in aquaculture have been successfully established via 
cryopreservation and could potentially be similarly helpful for research cultures (Visch et al., 2019).

Sporophyte development and substrate attachment
To produce sporophytes from vegetative gametophyte cultures, reproduction is induced by changing 
culture conditions. This involves increasing light intensity (providing blue-rich light) and, in the case of 
S. latissima, shifting to a short-day photoperiod (8:16 light:dark; Lüning, 1988). Blue light is a well- 
established cue for kelp gametogenesis in L. hyperborea, L. digitata and S. latissima (Bartsch, 2018; Hsiao 
& Druehl, 1973; Lüning, 1980, 1991; Lüning & Dring, 1975). Standard practice is to transfer vegetative 
gametophyte cultures from red light to white or blue light (20–30 µmol m−2 s−1), ensuring both sexes are 
present. A 1:1 to 2:1 male-to-female ratio maximizes fertilization success. Within days, fertilization occurs, 
and juvenile sporophytes typically appear as tiny blades (~0.5–1 mm after 1–2 weeks, depending on species) 
attached to the substrate the gametophyte occupies (Bartsch, 2018; Forbord et al., 2018).

In hatchery and research practice, sporophytes can be initiated in two main ways. In spore seeding, fertile 
sori are induced to release motile spores, which then settle directly onto the target substrate. Spores adhere 

Fig. 3. Summary of cultivation parameters by life stage. Photoperiod is in hours light:dark.
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strongly because they secrete adhesives upon contact with the substrate. This method also preserves high 
genetic diversity, since each spore represents a unique meiotic product from multiple source sporophytes 
(Kerrison et al., 2016). In gametophyte seeding, vegetative or fertilized gametophytes are maintained under 
controlled conditions and then applied to substrates. This allows greater genetic control, often from a small 
number of parental lines, but typically results in lower attachment success due to weaker adhesion (Augyte 
et al., 2017; Forbord et al., 2012). Hatchery practice generally matches the method to production goals: spore 
seeding is favored for broad genetic representation and rapid colonization, whereas gametophyte seeding is 
preferred for propagation of selected genotypes.

Substrate properties strongly influence settlement. Roughened or fabric surfaces, such as polyester 
strings, nylon meshes, and textured slides, often yield better attachment success than smooth surfaces 
(Kerrison et al., 2016). In hatcheries, gametophytes are commonly seeded onto spools of twine or tape to 
provide an attachment medium for developing sporophytes. In research studies, microscope slides or Petri 
dishes are used as settlement surfaces for spores (Kerrison et al., 2016). Substrates are pre-cleaned and may 
be conditioned with a thin coating of organic compounds such as poly-L-lysine, D-glucose or yeast extract 
to enhance spore adhesion (Kerrison et al., 2016). Once attached, sporophytes derive nutrients from the 
culture medium and can either remain in place or be transferred by moving the colonized substrates. 
Growth and nutrient availability must be monitored to avoid overcrowding and nutrient limitation, with 
thinning or transfers as needed. L. hyperborea sporophytes grow more slowly than S. latissima, so time 
frames to reach a given size can vary by species. Gentle water motion and adequate nutrition remain critical 
to producing robust juveniles.

While most laboratory culture work focuses on early life stages, it is possible to complete the life cycle to 
sorus production under controlled conditions. Sporophytes are grown to maturity in outdoor or large flow- 
through tanks, then sporogenesis is induced by trimming distal blade sections (5–15 cm) and maintaining 
them at ~10°C under cool white light at moderate irradiance (70–100 µmol m−2 s−1) for 4–12 weeks 
(Boderskov, 2021; Buchholz & Lüning, 1999; Forbord et al., 2012). A short-day photoperiod (8:16 h, light: 
dark) is commonly included in these protocols (Bartsch, 2018; Boderskov, 2021; Boderskov et al., 2022; 
Forbord et al., 2018; Lüning, 1988), but its role in sorus production appears species-specific. An effect of 
daylength has only been demonstrated in S. latissima (Boderskov, 2021; Boderskov et al., 2022). It appears 
unnecessary in L. digitata (Buchholz & Lüning, 1999) and has not been reported for L. hyperborea.

Optimal environmental parameters for kelp culture

Successful laboratory cultivation of kelp demands specific, controlled environmental conditions. Each life 
stage has particular optimum ranges, often reflecting the cool, nutrient-rich habitats these species inhabit. 
Key parameters include temperature, light (intensity, photoperiod, and wavelength), nutrient media, sea
water source, and water movement (see Fig. 3).

Temperature
All three kelp species are cold-temperate algae that have adapted to relatively low temperatures (Fig. 3; 
Supplementary table S6). Early life stages of all three species are cold-tolerant, surviving to −1.5°C (Dieck,  
1993). For example, Arctic S. latissima spores germinate at 0°C with 100% success (Diehl et al., 2023). Spore 
and gametophyte stages generally tolerate temperatures of 5–15°C, with germination and vegetative growth 
being optimal near 10°C for many populations (Bartsch, 2018; Bolton & Lüning, 1982; Edwards & Watson,  
2015). L. digitata growth is optimal at 10°C (Bartsch et al., 2013), showing poor survival and fertility at 
temperatures ≥20°C, with high temperatures blocking the gametophyte-to-sporophyte transition (Lee & 
Brinkhuis, 1988). S. latissima gametophytes grow best at 10–15°C, with declines outside this range 
depending on thermal history (Bass et al., 2023; Diehl et al., 2023; Edwards & Watson, 2015). Juvenile 
growth is inhibited at ≥17°C, it fails to produce sporophytes at 20°C, and Arctic strains fail to survive at 20°C 
(Diehl et al., 2023; Lee & Brinkhuis, 1988). L. hyperborea shows optimal growth at 15°C (Bolton & Lüning,  
1982) but has a lower heat tolerance than the other two species, with gametophytes and juveniles exhibiting 
stress when sustained above 16–17°C, and upper survival limits of 20–21°C for sporophytes and gameto
phytes (Bolton & Lüning, 1982; Dieck, 1993). At its southern range limit in Portugal, L. hyperborea has 
declined markedly, linked to summer sea temperatures exceeding its tolerance and reduced coastal 
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upwelling (Casado-Amezúa et al., 2019; Monteiro et al., 2022; Pinho et al., 2016). In culture, ~10°C is used as 
a practical optimum for multi-species cultivation (Bartsch, 2018; Flavin et al., 2013; Lee & Brinkhuis, 1988). 
Thermal history can shift tolerance limits; L. digitata can acclimate seasonally to warmer conditions by a few 
degrees (Bass et al., 2023; Bolton & Lüning, 1982; Lüning, 1984) but long-term culture development near the 
upper tolerance is not recommended (Bolton & Lüning, 1982).

Light intensity and photoperiod
Light is important for kelp culture management, both providing energy for photosynthesis as well as acting 
as a developmental signal (see Fig. 3; Supplementary table S7).

Intensity. Kelp gametophytes and young sporophytes are shade-adapted and grow under relatively low 
light (Han & Kain (Jones), 1996). Gametophytes are maintained under 20–30 μmol photons m−2 s−1, 
depending on photoperiod and species, following gametogenesis at 15–20 μmol photons m−2 s−1 

(Edwards et al., 2016). Juvenile sporophytes grow initially under 20–30 µmol photons m−2 s−1, increasing 
to 30–50 µmol photons m−2 s−1 after the first week, and then from 50 to 120 µmol photons m−2 s−1 as adult 
sporophytes develop (Edwards & Watson, 2015; Lüning, 1988). High light intensity can cause kelp photo- 
stress, such as bleaching or DNA damage, particularly if combined with elevated temperatures. It is, 
therefore, typical practice to use moderate fluorescent or LED lighting and to avoid direct sunlight.

Photoperiod. Daylength influences kelp physiology (Lüning, 1991). For general growth, a 12:12 light:dark 
cycle is widely used (Forbord et al., 2018). For vegetative growth of gametophyte cultures, a long day regime 
is recommended with a 16:8 light:dark (Bartsch, 2018). To delay reproduction, practitioners keep gameto
phytes under red light. To induce reproduction, short-day regimes (8:16 h, light:dark) are combined with 
blue-enriched light (Lüning, 1988). For sorus production of mature blade sections, short-day (8:16 light: 
dark) is established until sorus ripens (Boderskov, 2021).

Light quality. Wavelength has a strong influence on development (see Fig. 3). Blue light (434–452 nm) 
reliably triggers gametogenesis in brown algae (Lüning, 1991), whereas gametophytes remain vegetative 
when blue light is absent. This absence is achieved in culture by using red light (~660 nm) or filters that 
block blue wavelengths. Practitioners use this to their advantage; fertility is suppressed under red LEDs or 
blue‑blocking filters and promoted with cool white or blue‑enriched lighting. This is why the spectrum 
profile of the light source should always be checked against the study aims (Bartsch, 2018). Both LED and 
fluorescent lighting are widely used. Many laboratories use broad-spectrum ‘cool white’ lights containing 
red and blue components (Bolton & Lüning, 1982). For routine growth, low-to-moderate light intensity, 
a 12:12 h light:dark photoperiod, and cool white spectra are optimal. To induce reproduction, cultures are 
shifted to higher intensities, shorter photoperiods and blue-enriched spectra. Practical considerations also 
matter; energy efficiency and low heat output reduce refrigeration loads. While one restoration practitioner 
perceived daylight as superior, most cultivation relies on artificial lighting. Unlike horticulture, kelp culture 
management has not yet adopted crop-specific spectral recipes (Sipos et al., 2020).

Nutrients
Kelp are large algae and require a full complement of macro- and micronutrients for sustained growth in the 
laboratory (Grobbelaar & Bornman, 2004). In natural seawater, nitrates and phosphate levels fluctuate 
seasonally; in culture, growth media is enriched to avoid limitation. PES and Guillard f/2 medium (f/2), 
initially developed for microalgae, are widely used media for kelp cultures (see Supplementary table S8; 
Andersen, 2005; Forbord et al., 2012; Kerrison et al., 2016; Provasoli, 1968; Provasoli et al., 1957; Ratcliff 
et al., 2017; Redmond et al., 2014; Rolin et al., 2016). These provide nitrogen (as nitrate or ammonia), 
phosphorus (as phosphate), vitamins (e.g. B12, thiamine), and trace metals (iron, zinc, manganese) in 
standardized concentrations (Alsuwaiyan et al., 2019; Kerrison et al., 2016). Typical target concentrations 
are nitrate at ~0.1–0.5 mM and phosphate at ~0.01–0.03 mM. For example, f/2 provides ~0.088 mM NO3

− 

and 0.0036 mM PO4
3-, sufficient to support algal growth without excessive bacterial growth (Andersen,  

2005). Iron is critical for kelp photosynthesis, respiration, and energy metabolism, and nutrient media 
usually include chelated iron (such as Fe-EDTA) in the order of 10−6 M unless actively excluded to prevent 
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gametophyte development (Andersen, 2005; Lewis et al., 2013). Trace metals, such as zinc, cobalt, molyb
denum, and manganese, are added in micromolar or nanomolar amounts according to PES/F/2 recipes 
(Andersen, 2005). Vitamins (B12, B1, biotin) are also included for optimal growth, energy metabolism, and 
proper cellular function.

Overall, this review suggests that F2P, Guillard’s F/2 medium supplemented with the Provasoli vitamin 
mix, is the most successful nutrient mix, as it provides both the macro- and micronutrients of F/2 and the 
vitamin profile of PES (Guillard, 1975; Guillard & Ryther, 1962; Provasoli, 1968).

Media
Media should be sterilized to avoid contamination. For batch cultures, complete media changes every 
1–2 weeks are standard; for continuous or semi-continuous cultures, fresh media may be added continu
ously, along with periodic dilution (Alsuwaiyan et al., 2019; Anderson et al., 2004).

Seawater source (natural vs. artificial)
Natural seawater provides the ionic composition, trace elements, and dissolved organic compounds that 
kelp is adapted to. It should be filtered or sterilized (via autoclaving or UV/Tyndallization) to remove 
microorganisms (Alsuwaiyan et al., 2019). Many kelp researchers and practitioners use filtered natural 
seawater enriched with nutrients, as it replicates seawater chemistry (Alsuwaiyan et al., 2019). Artificial 
seawater, made from reagent-grade salts, offers both quantified consistency and purity, valuable for 
toxicology assays to eliminate unknown background pollutants. However, artificial mixes may lack influ
ential trace components or organic matter. Both sources can produce good results, provided they are 
adequately supplemented. In a review of kelp culture studies, 72% used filtered natural seawater (often 
nutrient-enriched), and 14% used Provasoli-enriched seawater directly (Alsuwaiyan et al., 2019). Only 2% 
used artificial seawater without enrichment (Alsuwaiyan et al., 2019).

Salinity
Kelp grows best at salinities close to natural seawater. L. digitata tolerates 20–35 g kg−1; while S. latissima is 
reported across slightly narrower ranges, 28–34 g kg−1 and 24–35 g kg−1 in different studies (Davison & 
Reed, 1985; Flavin et al., 2013; Kerrison et al., 2016; Redmond et al., 2014; Reed et al., 1985). Low salinity 
causes physiological stress and reduces growth. We recommend maintaining a salinity level of 28–34 kg−1.

pH
Reported pH ranges for healthy kelp culture are 8.1–8.5 (Fox & Swanson, 2007; Kerrison et al., 2016) to 
7.0–9.0 (Flavin et al., 2013). pH should be monitored and stabilized with buffers (such as bicarbonate or 
Tris), especially in static cultures where photosynthesis can raise pH (Andersen, 2005). This study suggests 
that pH be maintained at 8.1–8.5.

Aeration and water movement
Kelp benefits from gentle water movement which enhances nutrient and gas exchange, supplies CO2 for 
photosynthesis, prevents clumping of sporophytes, and dilutes inhibitory exudates (Charrier et al., 2018; 
Edwards & Watson, 2015). Aeration also helps maintain uniform light exposure and temperature, while 
reducing the risk of surface films or anoxia in dense cultures (Andersen, 2005).

During delicate stages such as spore settlement or early gametophyte growth, aeration is kept minimal; 
water is typically static or only lightly bubbled for the first 24–48 hours. Once attachment is secure, gentle 
bubbling can be introduced (1–2 bubbles s−1 in 100–500 ml flasks; Edwards & Watson, 2015). In larger 
tanks, air stones are commonly used to circulate water without dislodging juveniles (Andersen, 2005). Care 
must be taken to avoid excessive aeration, which can cause shear stress or detachment, even in species with 
robust haptera such as L. hyperborea and L. digitata. In large flow-through tanks, orbital shakers or low‑flow 
recirculating pumps can provide water motion, but inlets should be screened to protect small sporophytes 
(Andersen, 2005).
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Ecotoxicological sensitivity

Ecotoxicological assays have generated valuable but disparate insights into the sensitivity of 
L. hyperborea, L. digitata, and S. latissima to pollutants (Supplementary table S10). A synthesis 
of published data highlights that early life stages are more sensitive to stressors, reflecting the 
bottleneck role these play in the kelp life cycle (Bartsch et al., 2013; Edwards, 2022). Fig. 4 
summarizes the lowest observed effect concentration (LOEC) and, where available, lethal doses, 
reported for these species across major pollutant classes, including metals, herbicides, pesticides, 
and detergents.

These comparisons suggest apparent differences in sensitivity across species and pollutant classes. For 
example, L. hyperborea shows a reported sensitivity of LOEC 0.05 µg l‒1 atrazine (herbicide A), whereas 
S. latissima was inhibited at 72.2 µg l−1 (Hopkin & Kain, 1978; Thursby & Tagliabue, 1990). Copper 
thresholds span LOECs ranging from 0.025 µg l−1 in L. hyperborea to 50 µg l−1 in L. digitata and 10 µg 
L−1 in S. latissima (Chapman, 1990; Chung & Brinkhuis, 1986; Gledhill et al., 1997; Hopkin & Kain, 1978). 
Similarly, mercury has been reported at concentrations as low as 0.001 µg l−1 in L. hyperborea compared to 
0.5–5 µg l−1 in S. latissima (Hopkin & Kain, 1978; Thompson & Burrows, 1984). Detergents also show 
inhibitory effects at sub-µg l−1 levels in some cases. On first examination, these results imply significant 
differences in species sensitivity. However, in reality, they largely reflect variation in study design, including 
the exposure concentration tested, the life stage examined, and the response metric used. Environmental 
parameters further complicate interpretation. Temperature, salinity, and light regime also influence the 
timing and magnitude of kelp responses (Eklund & Kautsky, 2003), making it challenging to separate 
pollutant effects from background variability without standardized conditions. This underscores the need 
for harmonized protocols and shared endpoints to allow meaningful comparisons of sensitivity across 
species, pollutants and studies.

Eklund & Kautsky (2003, p. 171) emphasized that ‘many [kelp] stages are more sensitive than other 
aquatic organisms’, and argued that macroalgal assays should be incorporated into coastal monitoring 
programs. Although some Laminariales are endemic, their shared habitat requirements and parallel life 
stages provide a strong basis for comparative testing. Standardized protocols would not only improve 
reproducibility but also enable results from different species to be interpreted within a broader ecological 
framework.

Response metrics
A range of response metrics have been used in ecotoxicology studies on kelps. Here we outline the most 
consistently applied endpoints, along with some emerging approaches.

Spore germination percentage. Microscopic assessment determines the proportion of spores that have 
germinated, produced a germ tube, or undergone first cell division versus those that remained ungermi
nated (Anderson et al., 2004). Typically, ~100 spores per replicate are scored.

Germ tube length, gametophyte dimensions, sporophyte growth. Early growth can be quantified by measur
ing germ tube length or gametophyte diameter of young gametophytes after a defined exposure period, with 
often 48 and 96 hours used as the preferred timescale. A reduction in length relative to the control indicates 
growth inhibition (Anderson et al., 2004; Hopkin & Kain, 1978; Thompson & Burrows, 1984). For spor
ophytes, blade length is the most widely used endpoint reported.

Developmental stage. For longer tests ( >96 hours), developmental progress can be tracked, with progress 
defined as the percentage of gametophytes that have transitioned to a two-celled stage or the percentage 
forming sporophytes after a defined number of days. Toxicants may delay or prevent these life stage 
transitions (Chapman, 1990; Chung & Brinkhuis, 1986; Gledhill et al., 1997; Hopkin & Kain, 1978; 
Thompson & Burrows, 1984; Thursby & Steele, 1988; Thursby & Tagliabue, 1990).
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Survival. In chronic exposures, the survival of gametophytes or juvenile sporophytes can be monitored 
directly. For short spore tests, mortality is often inferred from a failure to germinate (Garman et al., 1994; 
Hopkin & Kain, 1978).

Physiological indices. Measures include chlorophyll content and photosynthetic efficiency measured by pulse 
amplitude modulated (PAM) fluorometry or continuous excitation fluorimetry, respiration rates, and nutrient 

Fig. 4. Summary of lowest observable effect concentrations and lethal doses reported across studies for Laminaria 
hyperborea, L. digitata, and Sacchrina latissima. Key to test substances: herbicide A - Atrazine; herbicide M – methyl 
chlorophenoxy acetic acid (MCPA); herbicide 2 – 2,4-dichlorophenoxyacetic acid (2,4-D); pesticide S - Sodium pentachlor
ophenate; pesticide p - Phenol pentachlorophenate; household detergent – fairy Liquid; industrial detergent – Blusyl; 
anionic detergent - sodium lauryl ether sulphate. Key to sources (1) Hopkin & Kain (1978); (2) Gledhill et al. (1997); (3) Chung 
& Brinkhuis (1986); (4) Thompson & Burrows (1984); (5) Chapman (1990); (6) Thursby & Steele (1988); (7) Thursby & 
Tagliabue (1990); (8) Bryan (1969).
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uptake. Respiration can be measured indirectly through changes in oxygen concentrations in the culture 
medium. However, this endpoint can be confounded by simultaneous photosynthetic activity, so specific control 
of light:dark cycles and replication is required to distinguish the two processes. A drop in the ratio of variable 
fluorescence (Fv) to maximum fluorescence (Fm) indicates the maximum quantum yield of photosystem II in 
algae. In sporophytes, it can indicate sublethal stress from a pollutant affecting photosynthesis (Gera et al., 2012; 
Gledhill et al., 1997; Mayer-Pinto et al., 2020). In other macroalgae, simple visual inspection of thallus color has 
been tested as a bioassay endpoint, though this has not yet been applied to kelps (Han et al., 2007).

Reproductive success. Multi-week exposures can test whether gametophytes previously exposed to 
a pollutant retain the ability to produce sporophytes, based on how reduced sporophyte formation relative 
to controls affects fertility or fertilization (Oyarzo-Miranda et al., 2020; Wear et al., 2023).

Bioaccumulation. This approach uses tissue analyses with ecotoxicological bioassays and offers poten
tial use in both environmental monitoring and regulatory decision-making. To illustrate how kelp can 
be a bioaccumulator, Burger et al. (2007) examined mercury concentrations in different parts of a 5  
m-long kelp blade. The study found that environmental mercury levels correlated negatively with kelp 
blade length. However, levels within kelp tissues differed substantially between the stipe and blade 
tissue, underscoring the importance of standardized sampling protocols, as each tissue can harbor 
distinct contaminant loads. In the case of heavy metals or organics, measuring the concentration of 
a pollutant in kelp tissue quantifies uptake. Although this is not a direct effect endpoint, it helps 
correlate internal dose with observed effects and can act as a ‘bioindicator for short-term exposure’ 
(Ervik, 2019, p. 4). By analyzing these tissue-specific burdens, researchers can identify hotspots of metal 
accumulation and track pollution gradients in coastal ecosystems.

Kelp species, through bioassays, can be reliable bioindicators of environmental pollution. There is 
a range of possible endpoints for models of impacts, from metals to organics, that could be applied to 
pollutants. The micro-life stages provide a bottleneck in the development, growth, and establishment of 
kelp and represent a valuable metric for viability in the wild (Coelho et al., 2000; Underwood & 
Fairweather, 1989).

Genetic diversity and sustainability of cultures

Maintaining genetic diversity in laboratory cultures is a key challenge for ensuring ecologically meaningful 
results. When cultures are initiated from a single sporophyte or a small number of parent plants, the 
gametophyte stocks may have limited genetic variation (Robuchon et al., 2014). Over time, repeated sub
culturing of these lines can lead to clonal propagation and potential inbreeding effects, increasing the risk that 
responses to stressors will reflect narrow genetic traits rather than those of natural populations. Diversity can 
be further reduced by parthenogenesis, in which female gametophytes form sporophytes without fertilization, 
creating homozygous offspring (Oppliger et al., 2024). To counter these risks, optimized sampling strategies 
(see Spore Collection), including maintaining multiple gametophyte lines that can be intercrossed and 
supplementing cultures with new wild collected material on an annual or seasonal basis, can help offset 
genetic drift and sustain representative diversity.

Contamination by microalgae and microbes

Contamination is a persistent challenge in kelp culture management. Kelp spores and gametophytes are 
small and grow relatively slowly, making them vulnerable to being overgrown by faster-growing organisms 
such as microalgae, diatoms, fungi, and bacteria. Diatoms are the most common contaminants, often 
introduced via sorus surfaces or airborne spores, and can bloom in nutrient-rich seawater. A thick film of 
diatoms can smother kelp gametophytes and prevent sporophyte attachment. To reduce the risk, protocols 
include thorough surface sterilization of sorus tissue before spore release and the use of selective inhibitors. 
The most widely applied is germanium dioxide (GeO2), which disrupts silica uptake in diatoms. It has been 
applied to kelp culture media at a rate of 0.045–0.1 mg l−1 during the first week after spore settlement (see 
Supplementary table S9; Charrier et al., 2018; Kerrison et al., 2016; Markham & Hagmeier, 1982; Shea & 
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Chopin, 2007). However, prolonged or high-dose use can affect kelp development negatively (Andersen,  
2005; McLachlan et al., 1971; Thomas et al., 2022). For this reason, some practitioners apply GeO2 only 
briefly while others avoid it entirely, relying instead on frequent media changes or careful culture density 
management to prevent microalgal overgrowth.

Bacterial contamination is another concern. Bacteria can proliferate in nutrient media and sometimes 
form films on developing gametophytes or sporophytes, potentially causing disease or altering growth. An 
initial sorus pretreatment with iodine or dilute bleach is partly aimed at reducing bacterial load (Alsuwaiyan 
et al., 2019). Antibiotics can be used when axenic cultures are required, such as a mix of penicillin- 
streptomycin in the medium, though they may also slow algal growth (Tatewaki, 1989). Most laboratories 
focus on minimizing bacterial introductions by using filtered, autoclaved seawater, sterile handling techni
ques and maintaining moderate culture densities.

Fungal endophytes can be another source of contamination, with Laminariales hosting filamentous fungi 
in their tissues (Vallet et al., 2020). While some may function as mutualists (Bonthond et al., 2022), they can 
complicate culture work. Cleaning and disinfection of collected tissue, sterile media and dedicated incuba
tors are the most utilized methods for reducing risk.

Discussion

This review investigates both the opportunities offered by kelp in ecotoxicological assays and the challenges 
we face in turning opportunity into reality. Laboratory protocols increasingly enable reliable and controlled 
cultivation across life stages. Building on this foundation and integrating this learning into ecotoxicology 
assays requires a greater understanding of methodological stress, biological variability, the route to 
standardization, and reproducibility to support development within regulatory frameworks.

Impact of stress-induction methods on spore viability and ecotoxicological relevance

Laboratory stress-induction methods, including osmotic shock, desiccation, and mechanical scraping, are 
routinely employed to trigger spore release from sorus tissue. However, these procedures could introduce 
unintended physiological stress, potentially affecting spore viability, developmental trajectories, and sub
sequent greater sensitivity to environmental pollutants. Studies have shown variability in spore performance 
post-stress, including delayed germination, reduced motility and reduced growth rates in response to 
changes in temperature and salinity (Bartsch, 2018; Fernández et al., 2021; Lind et al., 2017). Comparable 
effects from mechanical, osmotic, or desiccation stress have not been well quantified. Further work to assess 
their potential influence would help ensure that laboratory ecotoxicology results remain ecologically 
relevant, consistent and credible.

Ecological context: plasticity and local adaptation

Kelp responses to environmental conditions reflect both short-term plasticity and longer-term genetic 
adaptation. Bolton & Lüning (1982) observed plasticity, the capacity of an organism to adjust its physiology 
or development in response to environmental variation without requiring genetic change. In L. digitata and 
S. latissima, they found plasticity to be more influential than fixed local strain adaptation. This plasticity 
could explain why some studies report a wide range of responses to similar cultivation or pollutant 
conditions. For ecotoxicology, distinguishing plasticity from genetic adaptation is critical. Plastic responses 
may buffer kelp against pollutants in the short term, but they also complicate comparisons between studies 
if culture history or environmental conditioning is not reported. Conversely, low genetic diversity (from 
limited culture sources) may mask the potential range of responses. Recognizing these dynamics is essential 
for designing assays that yield results relevant for natural populations.

Standardization and reproducibility

Variability in kelp cultivation methods remains a key barrier to consistency and reproducibility in 
ecotoxicology. Protocols differ widely in desiccation times, media composition, and induction conditions, 
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even with the same species (Alsuwaiyan et al., 2019). Such inconsistencies make it difficult to compare 
results across laboratories and risk confounding pollutant effects with methodological artefacts. Best- 
practice guidelines from cultivation handbooks (Edwards et al., 2016; Redmond et al., 2014) recommend 
defined media, controlled temperatures, and standard light regimes. For ecotoxicology, early-life stage 
endpoints are more reproducible across laboratories than sporophyte assays, which are more sensitive to 
cultivation idiosyncrasies. Wider adoption of standard protocols outlined by Bartsch (2018) and Forbord 
et al. (2018), coupled with transparent reporting, will help generate comparable toxicity thresholds. 
Encouragingly, the M. pyrifera spore germination test has already been standardized for regulatory use 
on the U.S. West Coast (Anderson et al., 2004), and adaptations for Laminaria and Saccharina species show 
promising reproducibility (Han et al., 2011). Progress will depend on interlaboratory comparison studies 
and the inclusion of reference toxicants to calibrate test sensitivity (Eklund & Kautsky, 2003; Okumura et al.,  
2018). These steps are essential precursors for international standardization.

Regulatory outlook

For kelp bioassays to gain regulatory traction, they must be validated and incorporated into guideline 
frameworks. Progress has begun with the M. pyrifera spore test incorporated as part of Whole Effluent 
Toxicity (WET) testing (Anderson et al., 2004; Hunt et al., 1991; Thursby et al., 1993), and similar approaches 
have been applied in Australia for local kelp such as Ecklonia in antifouling assessments (Gunns Ltd, 2007). 
Despite these precedents, macroalgae remain absent from international test batteries. Including kelp would fill 
a critical gap by representing benthic primary producers, particularly for pollutants that disproportionately 
affect macroalgae. The next step is to develop and propose standardized methods through organizations such 
as ISO or OECD. This process will require interlaboratory ring tests, reference toxicant validation, and clear 
evidence that kelp assays are both robust and broadly applicable. A pragmatic approach may be to standardize 
a generic Laminariales spore germination and growth inhibition test, with species selected regionally, such as 
L. hyperborea, L. digitata, or S. latissima in the Eastern North Atlantic, and M. pyrifera in the Pacific. Such 
a framework would mirror existing flexibility in fish or invertebrate tests. By formalizing kelp assays within 
regulatory structures, ecotoxicology would gain a tool that not only complements existing models but also 
strengthens the protection of the ecosystems that kelp forests underpin.

Conclusion

Kelp is a critical primary producer and ecosystem engineer, yet remains underrepresented in standard 
ecotoxicology test batteries. Declining kelp populations, increasingly linked to pollutants and other anthro
pogenic stressors, highlight the urgent need for kelp-based assays. The microscopic life stages – spores, 
gametophytes, and early sporophytes – are especially valuable for ecotoxicology: they are readily reprodu
cible in culture, sensitive to stress, and represent natural bottlenecks in the kelp life cycle in which 
population success or failure is determined.

Reliable cultivation protocols now exist to sustain kelp year-round. Maintaining near-optimal tempera
tures (5–15°C), enriching seawater with F2P nutrients, controlling light intensity and wavelength to regulate 
reproduction, and managing contamination all make it possible to generate consistent test material. These 
practices also reduce reliance on wild harvest, especially when combined with laboratory sorus ripening and 
long-term gametophyte banks. The next step is wider standardization. At present, laboratory methods vary, 
creating challenges for reproducibility and comparability across studies. The M. pyrifera spore test in 
California demonstrates that kelp assays can be formalized into regulatory frameworks. Adapting similar 
protocols for L. hyperborea, L. digitata, and S. latissima would extend this approach to European waters, 
ensuring that kelp is included alongside microalgal and animal tests in ecotoxicological assessments.

Integrating kelp bioassays into formal guidelines would provide regulators and researchers with a more 
complete picture of coastal ecosystem risk. By refining culture techniques, aligning methodologies, and 
validating endpoints such as spore germination, gametophyte growth, and sporophyte development, kelp 
tests can move from specialist applications into standardized practice. Doing so will strengthen our capacity 
to detect and manage pollutant impacts, while supporting the conservation, restoration, and sustainable 
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management of kelp forests – ecosystems that anchor biodiversity, fisheries, and carbon cycling in 
temperate and polar coasts worldwide.
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