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Abstract

This thesis is primarily concerned with developing novel survival models that are

able to extrapolate hazards beyond final event times, and the development of novel,

efficient posterior sampling methods based on non-reversible processes.

Polyhazard models are a class of flexible parametric models for modelling

survival over extended time horizons. Significant user input is required, however, in

selecting the number of latent hazards to model, their distributions and the choice

of which variables to associate with each hazard. The resulting set of models is too

large to explore manually, limiting their practical usefulness. To address this we

extend the standard polyhazard model through a prior structure allowing for joint

inference of parameters and structural quantities.

The piecewise exponential model utilises a piecewise constant hazard function.

We develop a novel extension to this model to allow for principled extrapolations,

based on a two part prior: i) A discretisation of an underlying diffusion process,

allowing prior information to inform extrapolations. ii) A Poisson point process prior

for the set of knots, allowing this set to be extrapolated beyond final event times.

Posterior inference in both cases is achieved using Markov Chain Monte Carlo meth-

ods based on Piecewise Deterministic Markov Processes. These processes have seen

significant theoretical interest due to non-reversible dynamics allowing for efficient

exploration of the state space, and tractable continuous trajectories that allow for

efficient sampling from transdimensional posteriors. This thesis provides a literature

review for the current state of these processes and makes several contributions to

improving their implementation, including extending methods for generating the

underlying Poisson process and extending the range of transdimensional posteriors
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they can be applied to. With respect to the latter, we develop theory that allows

these processes to navigate posteriors comprised of mixtures of a manifold and the

ambient space the manifold is embedded in.
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Chapter 1

Thesis overview

This thesis is primarily concerned with developing novel survival models that are

able to extrapolate hazards beyond final event times, and the development of novel,

efficient posterior sampling methods based on non-reversible Markov processes.

1.1 Survival extrapolation
Chapter 2 provides an introduction to survival analysis and a review of current

methods for extrapolating hazard functions beyond final observation times. This

problem is particularly relevant in Health Technology Assessment [HTA ; Latimer,

2013]. Healthcare systems, such as the UK’s National Health Service, have the

objective of maximising the health of the population given finite financial resources.

HTA provides a decision-theoretic framework for analysing the cost-effectiveness

of novel medical interventions in publicly funded healthcare systems, to ensure this

objective is fulfilled.

In England, following the recommendations of the National Institute for Health

and Care Excellence (NICE), expected life years (i.e mean survival) is commonly

incorporated as the primary measure of benefit in these analyses. Estimation of

this quantity requires survival, or equivalently hazard, curves to be estimated over

a lifetime time horizon. This task is not trivial as data from both clinical trials and

observational studies is often limited in follow up. Analysts are therefore tasked with

inferring hazard curves on an extended interval given data from the initial period.

There is therefore a focus on the development of methods that can extrapolate beyond
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final event times in a principled manner.

Chapter 4 is concerned with the extension of polyhazard models, a commonly

used model for survival extrapolation [Berger and Sun, 1993, Demiris et al., 2015].

This model utilises an additive hazard formulation to extrapolate hazards beyond

event times, informed by final observations. In practice, use of this model has been

limited, however, by a challenging model selection problem that requires the analyst

to specify the number of hazards, covariates associated with each hazard and the

functional form of each hazard. The focus of Chapter 4 is the extension of the

polyhazard model to infer these quantities within a Bayesian framework, with priors

on each quantity. This allows analysts to fit a single model to the data, rather than

having to fit a large set of candidate models that grows rapidly with the number of

considered sub-hazards and covariates. The model is showcased on data arising from

stroke survivors and kidney transplant patients.

Chapter 5 introduces a new prior structure for the piecewise exponential model

as the discretisation of a latent diffusion process. In the context of survival extrapola-

tion this allows for flexible, data-driven inference during the time period of the trial.

Extrapolations are then informed by a pre-specified diffusion that encodes explicit

prior beliefs about the long-term behaviour of the hazard. We outline extensions

that incorporate non-proportional covariate effects, time-varying drifts and waning

treatment effects. The model is showcased on data from colon cancer and Leukaemia

patients.

Chapter 6 discusses future directions, focusing on the practical implementa-

tion of these models and the specification of alternative latent processes to those

considered in Chapter 5.

1.2 Piecewise deterministic Monte Carlo

The primary inferential tool employed in this work is Markov Chain Monte Carlo

(MCMC) methods based on Piecewise Deterministic Markov Processes [PDMPs

; Davis, 1993, Fearnhead et al., 2018]. MCMC methods, where samples of the

posterior are generated by designing a Markov process with the posterior as its
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stationary distribution, are a well established tool for applied statisticians. Most

popular MCMC methods rely on a reversibility condition for validity. This condition

is typically easy to satisfy, but can introduce diffusive dynamics into sampling,

limiting computational efficiency.

This has motivated the development of samplers that are non-reversible, re-

placing the diffusive dynamics of reversible samplers with ballistic exploration of

the state space [Diaconis et al., 2000, Andrieu and Livingstone, 2021]. A class of

processes that exhibit this behaviour are Piecewise Deterministic Markov Processes,

where velocities drive piecewise deterministic exploration of the state space. In

the context of Bayesian inference, there has been a large body of theoretical work

studying these processes recently, however, there have been limited practical imple-

mentations. A key contribution of this thesis is the practical application of these

methods.

Chapter 3 provides a review of Markov Chain Monte Carlo focused on Piecewise

Deterministic Markov Processes. In particular we highlight the challenges associated

with implementing these processes. Further we highlight an attractive property of

these processes that, when they have tractable deterministic dynamics, they are

able to move directly between nested models commonly found in Bayesian model

averaging problems.

Chapter 4 applies these processes to the extended polyhazard model. We

develop results that allow for incorporation of transdimensional birth-death processes

alongside PDMPs and extend existing methods for implementing these processes.

Chapter 5 extends the transdimensional aspects of these processes to sample

from the posterior of the piecewise exponential model when a Poisson point process

prior is used for the number and location of knots in the sampler.

Chapter 6 introduces methodology that allows these processes to stick to an

embedded manifold.



Chapter 2

Survival analysis for Health

Technology Assessment

Understanding the benefit of medical interventions in terms of the amount of “life”

gained is a foundational statistical problem. To the best of the author’s knowledge,

the earliest attempt at the study of this problem was undertaken by Daniel Bernoulli

[Bernoulli, 1766, Bernoulli and Blower, 2004], who advocated for the introduction of

smallpox inoculation by developing a mathematical model to understand the number

of life years gained given the eradication of the disease.

More broadly, time to event data (such as survival times given smallpox inocu-

lation) are ubiquitous in many fields, perhaps most prominently in medical research

but also engineering and reliability, insurance and financial risk modelling, and both

social and environmental sciences. Following seminal contributions in the second

half of the 20th Century [Cox, 1972, Feigl and Zelen, 1965, Kaplan and Meier, 1958]

the study of these data, commonly referred to as survival analysis, has become an

established field of applied statistics [Ibrahim et al., 2001, Legrand, 2021].

Perhaps the defining feature of survival data is the presence of censoring, where

a subset of observations are only partially observed. This commonly occurs in

clinical trials and observational studies where individuals may not have experienced

the event of interest by the end of the study.

This chapter provides an introduction to survival analysis primarily in the

context of Health Technology Assessment [HTA; Latimer, 2011, Baio, 2013], where
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A B

h(y)

1

Figure 2.1: Visualisation of the data-generating process for survival models considered in
this thesis, where A is the initial state (e.g being alive), B is the final absorbing
state (e.g death), and h(y) is the time-dependent hazard function, or equivalently
the inhomogeneous rate of transitions from A to B.

the costs and benefits of novel medical interventions are analysed. Survival analysis

is used to quantify the benefits within this framework primarily in terms of (quality-

adjusted) life years gained, requiring estimation of expected survival. This contrasts

with standard measures used in more traditional survival analysis, where measures

of interest typically include median survival or hazard ratios.

2.1 Survival analysis

The standard data generating process for many survival models assumes that obser-

vations arise from a simple two-state continuous-time Markov chain, depicted in

Figure 2.1, with an initial state, A, and a single final absorbing state, B. Transitions

are determined by a time-dependent hazard function, h(y), y ∈ (0,∞). Here, A and

B can correspond to, for example, being alive and being dead or cancer having not

progressed and cancer having progressed. The standard objective of survival analysis

is the modelling of the time, Y , spent in state A and associated quantities.

Figure 2.1 encodes several assumptions associated with classical survival analy-

sis. Primarily that events (i.e transitions) can only occur once and that there is a single

transition of interest. Further, with the additional assumption that
∫

∞

0 h(y)dy=∞, that

events always occur in finite time. Note that relaxing any of the above assumptions

leads to several active areas of research in modern survival analysis, including the

modelling of repeated events [Amorim and Cai, 2015], multi-state models [Jackson,

2011] and cure models [Amico and Van Keilegom, 2018].

Given the two-state Markov chain formulation above, we can define the proba-

bility density function of Y ∈ R>0 as f (y), with corresponding cumulative density

function F(y) = P(Y < y). More commonly, however, Y is analysed through the
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hazard and survival functions

h(y) := lim
ε→0

P(Y ≤ y+ ε | Y > y)
ε

, S(y) := 1−F(y). (2.1)

Here, h(y) can be interpreted as the instantaneous risk experienced by an individual,

and S(y) is simply the probability the transition has not occurred at time y. These

quantities are directly linked to the probability density function and to each other as

f (y) = h(y)S(y), S(y) = exp
(
−
∫ y

0
h(u)du

)
.

In short, specification of either S(y) or h(y) is sufficient to specify the entire data-

generating process for Y . As such, hazard selection, i.e the process of deciding the

form of h(y), is equivalent to standard model selection. Finally, given a sequence of

n independent observations for Y , {yi}n
i=1, and assuming that the hazard and survival

functions are parametrised by a vector of parameters, θ , this allows us to specify a

likelihood

L(θ ;{yi}n
i=1) =

n

∏
i=1

hθ (yi)Sθ (yi).

2.1.1 Censoring

Throughout this thesis we will assume that data are partially right-censored due to,

for example, random patient drop out or the end of clinical trials. This is accounted

for in the data-generating process by observations arising according to

Y O = min{Y,YC},

where Y O is the observed time and YC is the censoring time with corresponding

probability density function g(y) and cumulative density function G(y). Specifically,

this encodes the definition of right-censoring, that for all censored times Y > Y O. In

this work any references to censoring are referring to right-censoring; however, more

generally, individuals may also be subject to left- or interval-censoring. Throughout

we will assume that we know which event times are censored, i.e we observe the
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censoring indicator,

∆ = 1(Y < YC),

realised as {δi}n
i=1. The data are therefore comprised of a tuple of event and censoring

times, censoring indicators and, in some cases, covariates for individuals, w ∈ Rp,

summarised as D = {yi,δi,wi}n
i=1. The resulting likelihood can then be written as

L(θ ;D) =
n

∏
i=1

[(1−G(yi)) fθ (yi | wi)]
δi[Sθ (yi | wi)g(yi)]

1−δi,

=
n

∏
i=1

hθ (yi | wi)
δiSθ (yi | wi). (2.2)

To move from the first to the second line we have crucially made the assumption

that the censoring mechanism does not depend on θ , the parameters of the survival

distribution [e.g., Legrand, 2021]. This is referred to as non-informative censoring

and is a common assumption underpinning many survival models. In many of the

examples of this thesis, survival times will be deterministically truncated at some

time as a result of, e.g the end point of a clinical trial, in addition to the random

censoring mechanism. In these cases we will refer to these observations being

administratively censored, and denote this censoring time as y+.

2.1.2 Survival extrapolation

Health Technology Assessment often requires the inference of expected survival

over a lifetime time-horizon [Latimer, 2011, Baio, 2013], (0,y∞) as a measure of the

benefit received under a certain treatment,

E[Y ] =
∫ y∞

0
(1−F(y))dy =

∫ y∞

0
S(y)dy. (2.3)

A typical feature of data in this setting is that they are subject to a high degree of

administrative censoring, often with y+ << y∞. For example, Gibbons and Latimer

[2024] estimate that since 2018 56% of NICE appraisals for cancer treatments have

been conducted using immature survival data, where the majority of events occur
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after y+. Re-writing (2.3) illustrates the difficulties this censoring can create,

E[Y ] =
∫ y+

0
S(y)dy+

∫ y∞

y+
S(y)dy, (2.4)

as we now require a specification for S(y) that can extrapolate beyond y+ [Latimer,

2011]. In particular, as the rate of censoring increases, inferences of E[Y ] will

become increasingly sensitive to this extrapolation. This extrapolation excludes

standard non-parametric approaches such as Kaplan-Meier estimators. Further, the

problem cannot be circumvented by simply using an alternative estimand as a proxy

for (2.4). For example, in the presence of high censoring rates median survival will

often not be observed, and restricted mean survival estimates on the interval (0,y+)

will be markedly different to those on (0,y∞) as they ignore the non-negligible

contribution from the second half of (2.4). We review current approaches to this

problem in Section 2.2.

2.1.3 Bayesian survival analysis

This thesis is primarily concerned with Bayesian approaches to survival analysis.

Within this paradigm, uncertainty about model parameters is represented through

probability distributions. This is achieved by combining the survival likelihood (2.2)

with a prior distribution, π0(θ) for θ to derive a posterior distribution

π(θ | D) ∝ L(θ ;D)π0(θ).

This distribution is then used to make inferences about quantities of interest, in most

cases considered in this thesis, Eθ [Y ]. This perspective is particularly appealing in

the context of survival extrapolation, as it allows for the principled incorporation

of prior information into inferences either in the form of external data or expert

opinion. We expand on this point in Section 2.2.3. Note, throughout this thesis we

will occasionally drop the dependence on D in the posterior, denoting instead as

π(θ).
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2.2 Current approaches to survival extrapolation
For the remainder of this chapter we review current approaches to survival extrapola-

tion in Health Technology Assessment.

2.2.1 Parametric models

Perhaps the most common approach to extrapolation is to assume Y is generated by

a (typically two-parameter) parametric survival distribution [Latimer, 2013]. For

example Y ∼Weibull(λ ,γ) gives the hazard function h(y) = λγyγ−1. The parametric

form of the hazard function then allows extrapolation beyond y+. This approach

was reviewed in an influential NICE decision support unit report [Latimer, 2011],

who recommend in the presence of incomplete survival data to compare several

parametric survival models for the data based on information criteria and plausibility

of extrapolations. A table of commonly used distributions is found in Table 1 of

Baio [2020]. This approach is showcased in Appendix C.

This approach has several limitations:

1. Standard parametric models are only able to model a limited range of hazard

behaviours. For example, none of the distributions in Table 1 of Baio [2020]

can model a hazard with multiple points of inflection.

2. Extrapolations are based on the assumption the parametric model is correctly

specified. This assumption is untestable when a large proportion of events

occur in (y+,y∞).

3. As a direct consequence of the previous point, credible intervals for the hazard

function on (y+,y∞) and therefore also the second half of (2.4) will shrink as

more events are observed in (0,y+), despite no data being observed during the

extrapolation period. If the model is misspecified, this will then underestimate

uncertainty in the extrapolation period.

4. Further, any information incorporated into π0(θ) [e.g Soikkeli et al., 2019,

Palmer et al., 2023] to inform extrapolations will be overridden by the data as

the number of events in (0,y+) increases.
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The following sections review current methods for overcoming these limitations.

The primary method for overcoming points 1 & 2 is to utilise a flexible parametric

model for (0,y+). We review several approaches in this vein primarily following the

review of Rutherford et al. [2020]. Flexible models can also prevent underestimation

of uncertainty in the extrapolation period (point 3), but flexible assumptions do

not automatically guarantee uncertainty is correctly calibrated. Points 3 & 4 are

often overcome using external data and assumptions about the long-term form of

the hazard, we review how these are often incorporated into standard modelling

techniques in Section 2.2.3.

2.2.2 Flexible models

There are several choices of flexible parametric model available in the literature

for survival extrapolation, allowing for data-driven inferences during the observa-

tion period. In some cases these models do not contain an automatic method for

extrapolation, however, requiring the analyst to specify the extrapolation mechanism.

2.2.2.1 Polyhazard models

Polyhazard models are a class of flexible parametric models defined by additively

combining hazards from one- or two-parameter survival distributions,

h(y) =
K

∑
j=1

h j(y).

This procedure results in hazard functions that are flexible and able to model a wide

range of covariate effects. Originally developed for analysis of latent competing

risks [Berger and Sun, 1993, Louzada-Neto, 1999], polyhazard models have become

increasingly popular for modelling long-term survival required for Health Technology

Assessment following the work of Demiris et al. [2015], who used a poly-Weibull

model to analyse survival in transplant patients. Note they have also been used in

the HTA literature to model data generating processes where the latent competing

risks are given explicitly [Benaglia et al., 2015]. Polyhazard models can capture a

wide range of hazard curves while retaining the interpretability and parsimony of

simpler models. Further, due to the additive decomposition of the hazard function,
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later observations naturally have more influence on long-term survival. Recently

Apsemidis and Demiris [2024] have also developed a piecewise version of the

polyhazard model based on a single changepoint.

Polyhazard models are the primary focus of Chapter 4.

2.2.2.2 Piecewise models

A common approach for introducing flexibility into the hazard function is to define

the hazard as a piecewise continuous function [Ibrahim et al., 2001, Feigl and Zelen,

1965, Fearnhead and Liu, 2011],

h(y) =
J

∑
j=1

h j(y)1(y ∈ [s j−1,s j)).

where {s j}J
j=1 is a set of knots. The most common specification for h j(y) in this

context is a constant, defining a piecewise exponential model. This could also be

taken to be a linear or log-linear function, or taken as the hazard function from

an existing parametric model, however we will focus on the piecewise constant

case. These models naturally provide a flexible fit to the hazard assuming {s j}J
j=1 is

sensibly chosen. Extrapolations are highly sensitive to model specification, however,

with the analyst required to specify both how the the local hazard h j(y) evolves in

time, and the location of knots in the extrapolation period.

The simplest way to define this extrapolation is through a random walk prior on

the local (log-)hazards, and then manually placing knots in the extrapolation period

[Che et al., 2023, Kearns et al., 2021]. The uncertainty associated with the resulting

hazards, however, will increase indefinitely with the number of knots, often beyond

a range of plausible long term hazard values. Further, this rate of increase is highly

sensitive to the location of knots, increasing faster when more knots are specified

and slower when fewer are specified.

An alternative perspective is provided by Cooney and White [2023a]. The

piecewise exponential model is specified with independent gamma priors for the

local constant hazards, and a Poisson prior for the number of knots. This prior allows

for the location of sJ to be determined by the data. Hazards are then extrapolated as a
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constant after this point. This approach, advocated by Bagust and Beale [2014], has

proved controversial due to the reliance on the model selected for the observation

period, and the inability to inform long-term hazards with prior information [Latimer,

2014]. Further the independent priors for the local hazards reduce the flexibility

of the hazard inferred during the observation period. This approach has also been

extended to incorporate waning treatment effects [Cooney and White, 2023b].

Recently, Kearns et al. [2019, 2022] used piecewise models for extrapolation

within the framework of dynamic survival models. These models incorporate a trend

into the evolution of the hazard function, which can then be used to inform long-term

extrapolations. These models retain the flexibility of standard piecewise models,

however, for extrapolation they are reliant on the assumption that the long-term trend

is correctly specified and can be inferred from the limited data in the observation

period.

2.2.2.3 Spline models

A final class of approaches we consider model the hazard function using splines. In

similar fashion to piecewise models, these approaches model the hazard function

with a set of basis functions separated by knots. Similar considerations apply with

their use, in that they are sensitive to placement of knots, in both the observation and

extrapolation periods.

Spline-based extrapolation methods were introduced in Guyot et al. [2017],

where Bayesian multi-parameter evidence synthesis was used to combine a restricted

cubic spline model for the observed data with external information to guide long-term

extrapolations. Restricted cubic splines can provide poor estimates in the context of

hazard modelling, however, as they allow for negative hazards.

This approach was improved by Jackson [2023] who used M-splines as a model

for h(y). In contrast to restricted cubic splines, these guarantee that the hazard is

positive. Extrapolation, without external data, is then based on placing a final knot

in (y+,y∞). In the absence of additional information these methods will be sensitive

to the placement of this knot. Further studies have validated the performance of this

approach to fit data during the observation period [Timmins et al., 2025a], and the
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quality of extrapolations when external data is incorporated [Timmins et al., 2025b].

2.2.3 Incorporation of external information

When the observation period is short relative to the overall time-period of interest,

y+ << y∞, extrapolations can often be improved by the incorporation of additional

information into survival models. In the Bayesian setting this information may be

specified as a prior derived, for example, from expert opinion on the plausibility of

long-term survival probabilities. Alternatively, it may be available as an external

dataset from a population with some shared characteristics of the study population.

2.2.3.1 External data

Examples of external datasets include life-tables for the national population level,

disease registries and previously conducted clinical trials [Bullement et al., 2024,

Jackson et al., 2017]. Importantly, the similarity of the study and external population

will inform how the external data are incorporated into the model.

These assumptions are reviewed in Jackson et al. [2017], where the hazard for

the population of interest are related through one the following assumptions

hS(y) = hE(y), y > y∗, (2.5)

hS(y) = exp(β )hE(y), (2.6)

hS(y) = hE(y)+ γ. (2.7)

Here, (2.5) encodes a converging hazard assumption such that the study and external

population hazards converge after some pre-specified time y∗; (2.6) encodes a long-

term proportional hazard assumption between the study and external data populations;

and (2.7) encodes a long-term additive difference between the external and study

population hazards. Importantly each of these hazard forms are based on assumptions

made by the analyst. These may be supported by data from the observation period,

but an inherent feature of the survival extrapolation is that they are not able to be

conclusively tested.

Principled incorporation of these assumptions with external data is undertaken

through Bayesian multi-parameter evidence synthesis whereby external data, for
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example encoded through (2.5)-(2.7), is explicitly included in the likelihood function.

The two spline-based approaches highlighted in Guyot et al. [2017], Jackson et al.

[2017] are able to incorporate external data through these assumptions, and formally

compared in Bullement et al. [2024]. Both approaches allow for the incorporation of

data from both disease registries and background mortality.

In general, these assumptions are often incorporated into the analysis after

the point of model fitting. This involves first fitting a model for hS(y), and then

basing the analysis on, for example, the hazards h(y) = hS(y)+ hE(y), or h(y) =

max{hS(y),hE(y)} [Andersson et al., 2013]. Note, there is no principled basis for

either of these approaches. This is highlighted in van Oostrum et al. [2021], where

the authors compare these approaches to methods incorporating external data directly

into the likelihood and found superior performance in the latter.

A final method for incorporating external data is the blended survival approach

[Che et al., 2023]. Two survival curves are inferred; The first, SO(y), for the ob-

servation period and based on study data, from a flexible, possibly non-parametric,

survival model; The second, SE(y), for the extrapolation period is derived from

external data, that represents the expected long-term survival of the study population.

The two curves are then blended together as

S(y) = SO(y)w(y)×SE(y)(1−w(y)),

w(y) = FB

(
y−a
b−a

)
,

where FB is the cumulative density function of a Beta(α,β ) distribution. Here, a,b

correspond to the limits of the interval over which the blending occurs, with α and

β set to control the rate of blending between the two survival curves. Note, while

we have introduced this method as an approach for incorporating external data, the

authors also outline how SE(y) can be elicited via expert opinion.

2.2.3.2 Prior information

An alternative to direct incorporation of external data, is the use of a prior distribution

to inform extrapolations. Derivation of this prior may be based on historical trial
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data. For example, Soikkeli et al. [2019], use historical data to derive a prior for the

shape parameter of a Weibull distribution. Note, when standard parametric models

are used for survival extrapolation, the influence of this prior information will decay

as the number of events in the observation period increases, limiting the ability of

this approach to influence extrapolations.

Cooney and White [2023c] propose an alternative method that incorporates

expert opinion on the value of the survival function at a fixed time point, y∗ > y+,

by eliciting a loss function for S(y∗). This is then incorporated into the posterior by

multiplicatively including the term

π(θ | µ∗,σ
2
∗ ) ∝ exp

(
− 1

2σ2
∗
(Sθ (y∗)−µ∗)

2
)
,

in addition to a standard prior for θ . Here, (µ∗,σ
2
∗ ) are the expert’s expected value of

Sθ (y∗) and quantification of the corresponding uncertainty associated with this term.

Theoretically the authors justify this approach within a generalised Bayes framework

[Bissiri et al., 2016, Section 4.1]. This is a simpler approach than eliciting a prior

distribution directly, as it does not require the elicited distribution to be transformed

into an explicit density for θ . It does, however, suffer from the same drawbacks as

when Sθ (y) is modelled with a parametric model, with data in the observation period

dominating long-term inferences.

The above examples do not outline how prior information should be elicited.

Prior elicitation is its own field within Bayesian statistics, with several general

proposed frameworks. Recently, the Sheffield Elicitation Framework (SHELF) has

been applied directly to the case of survival extrapolation for HTA [Gosling, 2017,

Oakley et al., 2025] using standard parametric models [Cope et al., 2019] and in M-

spline models [Jackson, 2023]. This provides a structured framework to elicit expert

beliefs about long-term survival probabilities. These prior beliefs are then converted

into synthetic datasets that can be incorporated into the analysis, as outlined earlier

in this section.



Chapter 3

Piecewise Deterministic Monte Carlo

This chapter introduces and reviews recent advances in Markov Chain Monte Carlo

methods [MCMC ; Brooks et al., 2011] primarily based on Piecewise Deterministic

Markov Processes [PDMPs ; Davis, 1993]. This is an area of active research, and

as such several of the works cited in this chapter have been published during the

development of this thesis. The chapter begins with a review of the computational

challenges presented by Bayesian inference before reviewing standard Markov Chain

Monte Carlo approaches. Most state of the art approaches are based on a reversibility

condition that introduces diffusivity into the dynamics of the sampler. This has

motivated recent work on non-reversible processes that break this diffusivity by

introducing velocities that can drive exploration of the state space. We review

several of the recommended processes focusing in particular on their generation and

transdimensional sampling.

3.1 Bayesian computation

Bayesian inference generates the posterior distribution, π(θ), θ ∈ Ω ⊆Rd , resulting

from the combination of the prior and likelihood. This distribution is then used to

generate the quantities of interest to the analyst. For example, these may be marginal

quantities of interest expressed as expectations of functions of θ ,

Eπ [ f (θ)] =
∫

Ω

f (θ)π(θ)dθ , (3.1)
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posterior predictive distributions

p(yn+1 | D) =
∫

Ω

p(yn+1 | θ)π(θ | D)dθ ,

or marginal likelihoods as a measure of model evidence

p(y1:n) =
∫

Ω

π̃(θ)dθ ,

where π̃(θ) ∝ π(θ) is an unnormalised version of π(θ).

Outside of restricted cases, these integrals cannot be computed analytically

due to the form of the posterior, or the high dimension of θ . One of the primary

challenges associated with Bayesian inference, therefore, is the development of

computational methods that can accurately approximate these quantities. Arguably

the most popular and flexible of these methods is the Markov Chain Monte Carlo

method [Brooks et al., 2011, Martin et al., 2024].

3.2 Markov Chain Monte Carlo
The results stated in this section, unless stated otherwise, can be found in [Brooks

et al., 2011, Chapter 1]. Monte Carlo methods, in the context of Bayesian computa-

tion, use samples from the posterior distribution to approximate expectations (3.1)

via the average

Eπ [ f (θ)]≈ N−1
N

∑
i=1

f (xi), x1, . . . ,xN ∼ π(·). (3.2)

Practically this replaces the, now trivial, task of evaluating (3.1) with the task of

generating suitably accurate samples from π(θ). Convergence of these estimates is

then ensured by the Law of Large Numbers

N−1
N

∑
i=1

f (xi)→ Eπ [ f (θ)], N → ∞.

This allows the approximation error to be reduced to an arbitrary degree by increasing

the number of samples, although this result does not guarantee that the number of
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required samples can be generated in finite time. For guarantees of this form, we

require the existence of central limit theorem

√
N(N−1

N

∑
i=1

f (xi)−µ)
d→ Normal

(
0,σ2) , (3.3)

where µ =Eπ [ f (θ)] and σ2 = var( f (θ)), and d→ denotes convergence in distribution.

For independent sampling this holds if σ2 < ∞.

Independent posterior sampling is a challenging task. Standard methods in-

clude (adaptive) rejection sampling [Gilks and Wild, 1992] and importance sampling

[Kloek and Van Dijk, 1978]. They all, however, typically scale poorly with dimen-

sion, and are not necessarily applicable to generic target distributions. Note, for

the remainder of this chapter we drop the distinction between the parameters of the

model, denoted previously as θ , and the samples of the process, slightly abusing

notation to denote both by x.

3.2.1 Markov Chain Monte Carlo and Metropolis-Hastings

methods

Markov Chain Monte Carlo methods [Brooks et al., 2011] generate a sequence of

dependent samples from π(·) by generating a Markov chain with π(·) as its stationary

distribution. In particular, the Law of Large Numbers does not necessarily require

samples to be independent and so (3.1) can be approximated by the ergodic average

of the generated samples. Under certain conditions [e.g Roberts and Rosenthal,

1997], there also exists a Markov chain Central Limit theorem replacing σ2 in (3.3)

with

σ
2 = var( f (x1))+2

∞

∑
k=1

cov( f (xi), f (xi+k)),

where x1 ∼ π(·). This typically results in estimates with lower statistical efficiency

when compared to independent sampling approaches, offset by significantly in-

creased computational efficiency. Further, implementation of these methods requires

no knowledge of the geometry of the posterior distribution beyond access to point-

wise evaluations of logπ and possibly its gradient. As such they have become
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the standard workhorse for Bayesian modelling, enhanced by a large suite of com-

putational tools facilitating their use in applied statistics [Lunn et al., 2009, Stan

Development Team, 2025, Fjelde et al., 2025].

The most common construction of a Markov chain that has π as its stationary

distribution is based on constructing a chain that is i) π−irreducible, ii) aperiodic and

iii) π−invariant. Full definitions and statements of relevant results are supplied in

Appendix A. Here π-irreducibility and aperiodicity ensure that the chain can explore

the entire posterior distribution and are often easy to verify. Arguably the simplest

way of ensuring the chain is π-invariant is to ensure the chain is π-reversible, such

that for all pairs (x,x′) ∈ Ω×Ω

π(x)p(x,x′) = π(x′)p(x′,x),

where p(x,x′) is the one step ahead transition density of the chain conditional on the

current state x.

Metropolis-Hastings methods [Metropolis et al., 1953, Hastings, 1970] ensure

the above condition is met by taking a general Markov chain with transition kernel

q(x,x′), and then coercing it to the correct stationary distribution through an accep-

tance step that either moves the adjusted chain to a new state or leaves it in its current

position. More precisely, the transition kernel of the Metropolis-Hastings chain is

given by

P(xi,dxi+1) = α(xi,xi+1)q(xi,xi+1)dxi+1

+
∫

Ω

(1−α(xi,xi+1))q(xi,xi+1)dxi+1δ0(dxi+1 − xi),

α(xi,xi+1) = min
{

1,
π(xi+1)q(xi+1,xi)

π(xi)q(xi,xi+1)

}
.

In the above the choice of q, referred to as the proposal distribution, will de-

termine the efficiency of the chain. Common choices include independent proposal

distributions [Tierney, 1994] and random walk proposals that centre q at x [Gelman

et al., 1997]. More generally, proposal distributions can be improved by incorpo-
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rating local information about the posterior via the gradient, ∇ logπ(x), commonly

incorporated by taking q as the one step transition kernel of a discretised π-stationary

Langevin diffusion. Examples of this include the Metropolis Adjusted Langevin

Algorithm [Roberts and Tweedie, 1996] and the more recently introduced Barker

proposal [Livingstone and Zanella, 2022]. Full forms of these proposals are outlined

in Appendix A.

Reversibility ensures that Metropolis-Hastings methods are widely applicable,

however, it also results in processes that exhibit diffusive behaviour. This has

motivated the development of methods that reduce this diffusive behaviour.

3.2.2 Kinetic sampling

A common solution to this problem is to consider kinetic sampling methods. In

short these approaches augment the state space with velocities, v ∈ V ⊆ Rd , such

that the resulting state, z = (x,v) ∈Rd ×V , is driven through the state space by these

velocities. In theory this reduces the diffusivity of reversible methods as the process

retains memory of its trajectory through the state space.

The most common kinetic sampling methods are based on Hamiltonian dynam-

ics [Neal, 2011], that target a joint stationary distribution defined by,

π(x,v) ∝ exp(−H(x,v)), H(x,v) =U(x)+ v⊤v.

where H is the Hamiltonian, U is the potential energy corresponding to the negative

log-density of the desired target distribution, π(x) ∝ exp(−U(x)), and the remaining

terms in H are referred to as the kinetic energy. The continuous-time evolution of

(xt ,vt) is then given by the system of differential equations

dxt

dt
=

∂H
∂vt

,
dvt

dt
=−∂H

∂xt
. (3.4)

In the context of sampling Hamiltonian dynamics are an attractive choice of

proposal distribution as they are energy conserving. Explicitly, an initial (x0,v0)

propagated for time t according to the above equations will have the property that

H(x0,v0) = H(xt ,vt). An idealised sampler that utilises these dynamic, referred to in



3.3. Piecewise Deterministic Markov Processes 42

the literature as Randomised Hamiltonian Monte Carlo [Bou-Rabee and Sanz-Serna,

2017], is then defined by

1. Given (x0,v0), simulate t∗ ∼ Exponential(Λ).

2. Generate (xt∗,vt∗) by evolving (x0,v0) for time t∗ according to Hamiltonian

dynamics, (3.4).

3. Take (xt∗,vt∗) to be the next samples in the chain, and refresh v from its

stationary distribution v ∼ Normal(0, I).

The idealised version of this algorithm avoids a Metropolis correction due to the

energy-preserving property of (3.4). In practice, however, for most target distribu-

tions (3.4) cannot be solved exactly and requires the use of a numerical integrator.

The dynamics are therefore only approximately energy-conserving and require a

Metropolis step to account for integrator error and ensure the correct distribution is

targeted. The resulting algorithms, while highly efficient, require careful selection of

tuning parameters or the use of adaptive MCMC methods [Hoffman and Gelman,

2014, Bou-Rabee et al., 2024].

An alternative perspective on Randomised Hamiltonian Monte Carlo is as

an example of a Piecewise Deterministic Markov Process [Davis, 1993] as it is

defined by: i) Generating a random event time. ii) Evolving (x,v) according to a

deterministic flow until this event time. iii) Updating v according to some event

dynamics. Computationally, for Randomised Hamiltonian Monte Carlo, steps i) and

iii) are trivial with the computational cost of the method arising from generating

the deterministic flow in step ii). For the remainder of this chapter we will review a

new class of MCMC methods based on PDMPs that retain the attractive properties

of kinetic sampling methods, and utilise simple to compute deterministic dynamics

removing the computational cost associated with ii).

3.3 Piecewise Deterministic Markov Processes
We begin by formalising the definition of Piecewise Deterministic Markov Processes

introduced in the previous section. PDMPs are defined by a state and velocity on
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the augmented space (x,v) ∈ Ω×V . We denote in the following the jth element of

zt = (xt ,vt) as zt, j = (xt, j,vt, j). The processes are constructed via three components

Davis [1993]:

1. Deterministic dynamics: Given by the system of ordinary differential equa-

tions
dzt, j

dt
= Φ j(zt), j = 1, . . . ,2d

such that the process at time t + s, conditional on no event having occurred,

is given deterministically by zt+s = Ψ(zt ,s), for known functions Φ j(zt) and

Ψ(zt ,s), where the latter is the flow map of the above ordinary differential

equation.

2. Event rate: ΛE(zt) a state dependent event rate under which events occur

according to an inhomogeneous Poisson process. More precisely, given the

current state of the sampler, zt , this defines the next event time as

t∗ = inf{s > 0 :
∫ s

0
Λ

E(zt+u)du =− logV}, (3.5)

for V ∼ Uniform(0,1). We will usually suppress the dependence on zt for the

remainder of this thesis, denoting the event rate by ΛE(t).

3. A transition kernel: q(· | zt), which determines the change in the velocity of

the process occurring at each event.

For the remainder of this thesis, unless explicitly stated otherwise, the determin-

istic dynamics are defined by

dxt

dt
= vt ,

dvt

dt
= 0, (3.6)

such that the state of the process evolves linearly with constant velocity. Further, all

the examples of PDMPs discussed in this thesis will be designed to target from a

stationary distribution given by

π
∗(x,v) ∝ π(x)ρ(v),
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for a pre-defined stationary distribution for the velocities and a target posterior

distribution π(x). Samples from the posterior are recovered by simply marginalising

out v. Under the above construction these processes are non-reversible, and will

therefore typically result in faster mixing times and smaller asymptotic variances

than reversible alternatives [Bierkens, 2016, Bierkens et al., 2019, Andrieu and

Livingstone, 2021].

Note, in contrast to the MCMC methods defined in Section 3.2, samples are

given by the piecewise continuous sample paths of the process rather than the value

of the process at event times. In particular, the distribution of the state at event times

is not π . In practice rather than computing the ergodic averages defined by

Eπ [ f (xt)]≈ T−1
∫ T

0
f (xt)dt,

it is computationally simpler to sample from the path of the process, either at fixed

intervals or uniformly at random, and then compute averages using (3.2). Practically,

these samples can be generated during a post-processing step, allowing only the

skeleton points of the algorithm to be stored during sampling.

The primary challenge with generating these processes is the generation of event

times that arise according to the inhomogeneous Poisson process with rate ΛE(t).

This rate is additively comprised of two parts ΛE(t) = ΛB(t)+ΛR, where ΛB(t) is an

inhomogeneous bounce rate that depends on the local geometry of the posterior, and

ΛR ≥ 0 is an homogeneous refreshment rate required to ensure irreducibility in some

cases. Note, this is in contrast to randomised Hamiltonian Monte Carlo, where the

event times are simple to generate and the computational cost arises from integrating

the deterministic dynamics. Generating these event times is the focus of Section 3.5.

As an aside, the development of PDMPs for the purposes of sampling has

primarily occurred in the context of statistical physics [Bernard et al., 2009, Michel

et al., 2014] and are referred to as event chain Monte Carlo methods. Interestingly,

this mirrors the original development of both the original MCMC method [Metropolis

et al., 1953] and Hamiltonian Monte Carlo (referred to as Hybrid Monte Carlo)

[Duane et al., 1987]. A recent review of connections between sampling in Bayesian
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Figure 3.1: Sample paths of PDMPs targetting a two dimensional standard Gaussian distri-
bution. (Left) The Zig-Zag sampler. (Centre) The Bouncy Particle sampler with
ΛR = 1. (Right) The Bouncy Particle sampler with ΛR = 0.

inference and statistical physics can be found in Faulkner and Livingstone [2024].

3.4 Example processes
There are several examples of PDMPs that satisfy the definition introduced in the

previous section. Here, we introduce the two processes that have seen the most

interest in the Bayesian computation literature.

3.4.1 Zig-Zag sampler

The Zig-Zag sampler [Bierkens et al., 2019] utilises velocities with a uniform station-

ary distribution on V = {−1,1}d and deterministic dynamics given by (3.6). The

remaining dynamics of the process are then defined in coordinate-wise fashion with

the event rate for the jth coordinate given by

Λ
F
j (t) = max{0,vt, j∂ jU(xt, j)},

and the corresponding event kernel flipping the associated velocity vt, j 7→ −vt, j.

Intuitively, in the jth coordinate, if the process is moving into areas of lower

potential (equivalently higher posterior density) it continues uninterrupted. If, how-

ever, the converse is true, then vt, j flips with rate proportional to the rate of growth



3.4. Example processes 46

in the potential. The result is an almost-surely continuous (on x-space), piecewise

deterministic process, whose sample paths produce a zig-zag pattern shown in Figure

3.1.

In practice, to avoid simulating d inhomogeneous Poisson processes, the next

event time, t∗, can be generated by simulating ΛB(t) = ∑
d
j=1 ΛF

j (t). Once this event

time is simulated, the coordinate to switch can then be chosen with probability

proportional to ΛF
j (t

∗). See Appendix A for more detail.

In general1, the Zig-Zag sampler is irreducible with ΛR = 0 [Bierkens et al.,

2019]. This reduces the number of tuning parameters needed to implement the

sampler in practice, and the diffusivity associated with refreshments.

3.4.2 Bouncy Particle Sampler

The Bouncy Particle sampler [Bouchard-Côté et al., 2018] takes V =Rd or V = Sd−1

with respectively Gaussian or uniform invariant distribution, and linear deterministic

dynamics. In contrast to the coordinate-wise updates of the Zig-Zag sampler, the

Bouncy Particle sampler is defined by the global reflection rate

Λ
B(t) = max{0,⟨∇U(xt),vt⟩},

and transition kernel that updates velocities by reflecting them off the contours of

the potential. This can be viewed as first computing the orthogonal decomposition

of vt with respect to the subspace spanned by ∇U and then flipping the component

aligned with ∇U

v = v⊥+ v∇U , v 7→ v⊥− v∇U . (3.7)

The sample paths of the Bouncy Particles sampler with refreshment are shown in

Figure 3.1. The intuition regarding when events occur is similar to the Zig-Zag

sampler, however, rather than whether individual coordinates are moving into areas

of higher potential, all coordinates are considered together, with reflection events

1For a counter-example consider a potential with square contours. The process is then irreducible
as the the trajectory can only navigate the potential in clockwise or counter-clockwise fashion,
depending on the initial conditions. This example was shown to us in a talk given by Prof. Gareth
Roberts at a workshop at the University of Warwick in 2024.
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only occurring when ⟨∇U(xt),vt⟩> 0. The event rate for the Bouncy Particle sampler

is therefore often smaller than that of the Zig-Zag sampler due to the possibility of

terms cancelling. Note, in one-dimension the two processes are identical.

Unlike the Zig-Zag sampler, the Bouncy Particle sampler typically requires

ΛR > 0 in order to be irreducible [Bouchard-Côté et al., 2018]. The behaviour of the

process when ΛR = 0 is shown on a Gaussian target distribution in Figure 3.1 where,

without refreshments, the process is unable to reach a ball centred at the mode of

the distribution. The efficiency of the process is highly sensitive to the choice of

ΛR. Scaling limit arguments suggest that optimal tuning of ΛR results in 78.12%

corresponding to refreshments [Bertazzi and Bierkens, 2022, Bierkens et al., 2022].

This introduces significant diffusivity into the process, limiting the benefit of the

non-reversible dynamics.

Several authors have suggested generalising the dynamics of the Bouncy Particle

sampler to incorporate randomness in the transition kernels [Wu and Robert, 2019,

Michel et al., 2020]. The primary advantage of this is that it reduces the reliance

on refreshments for irreducibility. In particular, in Chapter 5 we review the work of

Michel et al. [2020] in this direction in more detail.

Initially it seems easy to conclude that the Bouncy Particle sampler is naturally

more efficient than the Zig-Zag sampler as the velocities for each coordinate are up-

dated at each event time. Note, however, that in high dimensions random vectors are

close to orthogonal, and as such v will be increasingly dominated by v⊥. Therefore

at each bounce event the changes in v in a given coordinate will be small, requiring

several events in order to flip the velocity in the fashion of the Zig-Zag sampler. An

argument in favour of the Bouncy Particle sampler is in the context of anisotropic

target distributions, the Bouncy Particle sampler has been shown to have preferable

scaling behaviour in contrast to the Zig-Zag sampler [Bierkens et al., 2025].

3.4.3 Other processes

We briefly overview some alternative PDMP samplers that have not seen the same

methodological interest that the Zig-Zag and Bouncy Particle samplers have.
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3.4.3.1 The Boomerang sampler

The Boomerang sampler [Bierkens et al., 2020] replaces the linear dynamics of the

above processes with the Hamiltonian dynamics defined with respect to a Gaussian

reference measure
dxt

dt
= vt ,

dvt

dt
=−xt .

The resulting deterministic trajectories then have an explicit solution, and events and

reflections occur with the same rate and transitions as the Bouncy Particle sampler.

The potential, however, is now defined relative to the reference measure, resulting in

events that essentially correct the discrepancy between the posterior and the reference

measure. This generalises an idea originally introduced in Vanetti et al. [2017].

3.4.3.2 The coordinate sampler

The coordinate sampler [Wu and Robert, 2020] takes the space of velocities to be

V = {±e j, j = 1, . . . ,d} where ei are the canonical basis vectors of Rd , with the

motivation that often event times are simpler to generate when updating single coor-

dinates at a time. The event rate is then taken to be ΛB(t) = max{0,⟨∇U(xt),vt⟩},

and at event times a new velocity, v∗ ∈ V is selected with probabilities proportional

to max{0,⟨∇U(xt),v∗⟩}.

3.4.3.3 Hamiltonianised PDMPs

Samplers that utilise Hamiltonian dynamics use momentum to explore the state space

through kinetic energy that increases when potential energy is lost (3.4). In contrast,

the previously discussed PDMP samplers only retain momentum in the sense that

the velocities encode piecewise constant direction of movement.

This observation has motivated the development of “Hamiltonianised” versions

of the Zig-Zag and Bouncy Particle samplers that build momentum as the potential

energy reduces [Chin and Nishimura, 2024, Nishimura et al., 2025]. This is achieved

for the Bouncy Particle sampler by replacing the generation of the next event time in

(3.5), with

t∗ = inf
t>0

{s > 0 :
∫ s

0
v⊤t+u∇U(xt+u)du = l}, (3.8)

for l ∼ Exponential(1) that is re-drawn at each event time. As v⊤t+u∇U(xt+u) is neg-
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ative when the potential is decreasing, this allows the processes to build momentum.

The momentum introduced is an attractive theoretical property, however, it limits

implementation as event times are no longer able to be generated via Poisson thinning

(Section 3.5). Instead, (3.8) needs to be solved directly leaving the algorithm valid

only for potentials with convex level sets.

3.5 Generating the process
For the PDMPs outlined in the previous section the computational cost associated

with their implementation lies in the generation of event times given by the inhomo-

geneous Poisson process with rate ΛB(t). This is an active area of research that we

review in this section.

3.5.1 Exact simulation and Poisson thinning

In simple cases (3.5) can be solved directly. For example, for standard Gaussian

target distributions [Bouchard-Côté et al., 2018], t∗ is directly computed as

t∗ =
1
|v|2

−xv+
√
−|v|2 logV , xv ≤ 0,

−xv+
√
(xv)2 −|v|2 logV , xv > 0.

Such examples are the exception, however, and while this equation can be solved

numerically [Bouchard-Côté et al., 2018, Pagani et al., 2024], these methods are

computationally expensive due to the need for multiple evaluations of U(x).

A more common approach to exactly simulate event times is to utilise Poisson

thinning [Lewis and Shedler, 1979] (Appendix A). In short this requires upper

bounding the event rate Λ̄E(t)> ΛE(t), with the event rate of a Poisson process for

which (3.5) has an explicit solution. A candidate time is then generated using the

upper bounding rate, Λ̄E(t), with an event occurring at that time with probability

ΛE(t)/Λ̄E(t). If the event is rejected, the process is repeated starting from the

rejected candidate time.

Example bounds include constant upper bounds (applied to, for example, logis-

tic regression models [e.g Bierkens et al., 2019]) and affine upper bounds that can
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be computed when the potential is Lipschitz with known Lipschitz constant. These

bounds depend on the target distribution and their existence does not mean they will

be efficient [e.g Section 6, Bertazzi et al., 2023], in that the ratio ΛE(t)/Λ̄E(t) may

be small resulting in a large number of rejected events.

This has lead to several proposed methods that seek to find efficient methods

for approximating ΛE(t) using local evaluations of ∇U . There are broadly two

approaches to this problem. The first seeks to find a tractable rate Λ̄E(t) that

approximately upper bounds ΛE(t). The second seeks to directly approximate

ΛE(t) with a tractable rate. In both cases the bias introduced by numerical errors and

approximation is then controlled using tuning parameters. In the second, the bias can

also be explicitly corrected for using a Metropolis correction. Four of these methods

are visualised for ΛB(t) = t4 in Figure 3.2. This event rate is representative of the

event rates found when sampling from posteriors with light tails. This commonly

occurs in survival models due to exponential terms arising in the potential.

3.5.2 Approximating an upper bound

Methods for numerically generating an upper bound typically do this locally over an

interval, (0, tmax).

3.5.2.1 Automatic Zig-Zag

The automatic Zig-Zag method [Corbella et al., 2022] sets Λ̄E(t) to a constant by

upper bounding the event rate over the interval (0, tmax). This is visualised in Figure

3.2 (A). The primary method for this is Brent’s method [Brent, 1971]. To avoid

repeated evaluations of ∇U , however, the authors introduce heuristics that check

for monotonicity of the function on (0, tmax). If these checks hold, the maximum at

either end of the interval can be used in place of the maximum found by repeated

iteration of Brent’s method, saving significant computational cost. If the proposed

time is greater than tmax the process is repeated on the next interval, (tmax,2tmax) to

ensure the upper bounds remain valid. We discuss this method further and extend it

in Chapter 4.

Recently, Andral and Kamatani [2024] extended this approach by subdividing
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Figure 3.2: Visualisation of methods for upper bounding or approximating ΛB(t), for
ΛB(t) = t4, assuming no events or refreshments occur. (Blue). The upper
bound or approximation for ΛB(t) is shown in red. Points of evaluation of the
event rate are shown with dotted lines. (A) The automatic Zig-Zag method,
Section 3.5.2.1. (B) The concave-convex method, Section 3.5.2.2. (C) The linear
interpolation method, Section 3.5.2.3. (D) Splitting schemes for approximating
ΛB(t), Section 3.5.3.1.
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(0, tmax) into smaller intervals and then computing constant bounds on each interval.

The additional computational cost is circumvented by evaluating ∇U at each time

point in parallel.

3.5.2.2 Convex-concave bounding

Writing the event rate as ΛE(t) = max{0, l(t)}, ΛE(t) can be upper bounded

analytically if l(t) can be decomposed into convex and concave components,

l(t) = l∪(t) + l∩(t), respectively. Here l∪(t) can be upper bounded using piece-

wise linear segments connecting points of l and l∩(t) can be bounded by connecting

the tangents at a set of evaluation points. The bounds are then combined to generate

an upper bound for ΛE(t). This forms the basis of the concave-convex PDMP method

[Sutton and Fearnhead, 2023].

This method is exact if this decomposition can be done analytically. Alterna-

tively, ΛE(t) can be approximated, either by Taylor expansion or Lagrange poly-

nomial interpolation on a fixed interval [0, tmax). If the kth derivative of l can be

bounded, then a fixed offset can be added such that the method remains exact, oth-

erwise this upper bound is only approximate and the method will bias the resulting

samples. This method is visualised in Figure 3.2 (B). As the example event rate is

convex, the method generates linear segments between evaluation points. For more

complex target distributions upper bounds are unlikely to be as tight.

3.5.2.3 Linear interpolation

A final method for approximating upper bounds is introduced by Goan et al. [2023].

The method begins by evaluating ΛE(t) at the current state and some future time tinit .

A piecewise linear upper bound is then constructed by interpolating between ΛE(t)

at these two points. If the proposed event is rejected the next bound is then proposed

by linearly interpolating between ΛE(t) at t∗ and the rejected event time. This

sequence is then repeated until an event time is accepted. To offset numerical bias

this introduces, the authors suggested targeting a scaled Bouncy Particle sampler rate,

Λ̃B(t) = max{0,α⟨vt ,∇U(xt)}, for α ≥ 1. Here larger values of α reduce sampling

bias, at the cost of lower computational efficiency. The method is visualised in

Figure 3.2 (C). In particular the method generates a poor bound without correction
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for the convex event rate. The performance would be improved with the suggested

correction and on concave event rates [Figure 2, Goan et al., 2023].

3.5.2.4 Tuning parameters and bias reduction

All these methods are sensitive to the choice of tuning parameters. For the automatic

Zig-Zag methods and concave-convex PDMP method the choice of bounding interval,

tmax, determines the efficiency of the method. As tmax → 0, the resulting rate becomes

arbitrarily tight meaning that proposed events are accepted with probability close

to 1 (meaning there is little to no thinning), but at the cost of having to compute

Λ̄E(t) over a large number of intervals before an event is observed. Alternatively, if

ΛE(t) is unbounded, as tmax → ∞ we have ΛE(t)/Λ̄E(t)→ 0 resulting in the need

to compute many thinning events before an event is accepted. The computational

efficiency of the sampler is therefore dependent on balancing the cost of constructing

a tighter upper bound Λ̄E(t) against that of rejecting too many proposed events when

the bound is loose. Similar considerations hold for the choice of initial interval in

the method of Goan et al. [2023].

3.5.3 Approximating the event rate

The alternative approach to generating PDMP dynamics is to directly approximate

ΛE(t) with a tractable event rate.

3.5.3.1 Splitting schemes

This idea is first presented by Bertazzi et al. [2023] who introduce splitting schemes

for PDMPs. Splitting schemes are a standard tool in the study of dynamical systems,

whereby individual components of a system are simulated in turn, and has recently

been developed for the PDMPs outlined in Section 3.4. Here the deterministic,

reflection and refreshment rates are updated separately given a step size δ . This is

outlined for the Bouncy Particle sampler in Algorithm 1, and the approximation to

the event rate visualised in Figure 3.2. The computational advantage of this method is

that by updating each component of the algorithm in turn, the inhomogeneous event

rate is replaced by a fixed homogeneous event rate that can be simulated exactly.

This approach introduces a bias into the resulting posterior, that vanishes as
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Algorithm 1 A single iteration of a splitting scheme for the bouncy particle sampler

1: Input state and velocity (x0,v0) and step-size, δ .
2: Set v1 = v0
3: With probability (1− exp(−ΛRδ/2) refresh v1. ▷ Refreshment
4: Set x1 = x0 + v1δ/2. ▷ Deterministic dynamics
5: With probability (1− exp(−ΛE(x1)δ ) update v1 via (3.7). ▷ Reflection
6: Set x1 = x1 + v1δ/2. ▷ Deterministic dynamics
7: With probability (1− exp(−ΛRδ/2) refresh v1. ▷ Refreshment
8: Return (x1,v1).

δ → 0. Alternatively a Metropolis correction can be used to fully correct this bias.

Notably, this approach replaces the continuous time process with a discrete time

approximation.

A similar proposal has recently been introduced by Chevallier et al. [2025],

where the authors use PDMPs as a proposal distribution within a skew-reversible

Metropolis framework. Proposals are generated by propagating the process forwards

and backwards in time until a stopping criterion is reached in similar fashion to the

No U-turn sampler [Hoffman and Gelman, 2014].

Generation of the event rate remains the main limitation for wider implemen-

tation of PDMP based samplers. In particular, non-reversible samplers will often

out-perform reversible alternatives in terms of statistical efficiency, however recent

work has suggested this benefit may be limited [Roberts and Rosenthal, 2025]. Fast

generation of the event rate is therefore required, to ensure the computational cost of

these processes is low enough that these benefits may be realised. We briefly note

that a promising development in this direction is the use of unbiased sub-sampling

techniques for PDMPs, allowing event times to be generated using only a single

sample from the data [Bierkens et al., 2019, Agrawal et al., 2024].

3.6 Transdimensional sampling
The MCMC methods discussed so far have been focused on sampling from posteriors

where the dimension of the state space is fixed. In this section we review methods for

sampling from posteriors where the dimension of the state space is updated during

sampling. This phenomenon commonly occurs in Bayesian models where a prior has
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been placed on a structural quantity, for example the choice of covariates to include

in a linear predictor, or the number of components in a mixture model [Mitchell and

Beauchamp, 1988, Richardson and Green, 1997]. The posterior is then defined as

π(x,k) ∝ π(x | k)π(k), k ∈ K,

where K is a set of model indicators, and π(x | k) is the posterior conditional on the

specification of the kth model.

3.6.1 Reversible Jump MCMC

The standard approach to this problem is reversible jump MCMC [Green, 1995]. This

generalises Metropolis-Hastings methods to cases where dimension of the posterior

needs to be updated during sampling.

The core principle behind reversible jump MCMC is to separate the process of

proposing candidate states into two parts. First generating some random innovation

u with density g(u), and then generating a proposal using the diffeomorphism

h : (x,u) 7→ (x′,u′), with inverse h′. Here, x′ is the candidate state, and u′ is the

innovation required in the reverse move from x′ 7→ x. The new state is then accepted

with probability

α(x,x′) = min
{

1,
π(x′)g(u′)
π(x)g(u)

∣∣∣∣∂ (x′,u′)∂ (x,u)

∣∣∣∣} , (3.9)

where the ratio on the right hand side is referred to as the Metropolis-Hastings-Green

ratio.

This framework can then be applied freely to the transdimensional case as long

as h remains a diffeomorphism. This is achieved through a dimension matching

condition, whereby if the dimension of x,u,x′,u′ are given by d,r,d′,r′, we set

that we require d + r = d′+ r′. If this does not hold, either h or h′ would not be

differentiable.

Further, multiple types of move can be included in the sampler. When the

probability of making move m given state x is jm(x), the acceptance probability is
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then given by

α(x,x′) = min
{

1,
π(x′) jm(x′)gm(u′)
π(x) jm(x)gm(u)

∣∣∣∣∂ (x′,u′)∂ (x,u)

∣∣∣∣} . (3.10)

This is commonly used to alternate between different across-model proposals,

and between reversible jump moves that update k and fixed dimension Metropolis-

Hastings steps that sample from π(x | k).

3.6.1.1 Designing proposals

The efficiency of reversible jump MCMC methods is strongly dependent on carefully

designed between model moves. In general, a common desiderata for these proposals

is that they are constructed such that the proposed state has similar posterior support

to the current state, ensuring high acceptance rates for the move and its reverse.

To ensure this most reversible jump schemes only consider local moves within

model space e.g adding or removing a single variable in variable selection. Many

popular methods then utilise some known aspect of the model structure. For example,

the reversible jump scheme for Normal mixtures with an unknown number of com-

ponents developed by Richardson and Green [1997], which involves split-merge and

birth-death moves. Merge moves combine two components into a single component

such that µ = 1
2(µ1 +µ2), with the reverse split moves generating two components

from one, and the generation of new variances being aided by moment-matching.

Death moves remove a component with no allocated observations from the model,

and birth moves introduce an empty component into the model.

This intuition is developed further by Brooks et al. [2003] who suggest designing

transdimensional proposals around a centring point between two nested models. This

point is defined as a subspace Γ ⊂ Rd , such that the two likelihoods are equivalent.

For example, in Bayesian variable selection this corresponds to a covariate equalling

0 [Mitchell and Beauchamp, 1988].

3.6.2 Transdimensional PDMP sampling

PDMPs are defined by deterministic continuous sample paths between event times.

A consequence of this feature is that, when sampling from nested models where Γ
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is a d −1-dimensional subspace, these processes will eventually intersect Γ. This

feature has been utilised to design samplers that move into the lower-dimensional

model at exactly this point, when the hyperplane is of the form Γ = {x ∈Rd : x j = 0}

[Chevallier et al., 2023, Bierkens et al., 2023a]. This is commonly induced by the

use of spike and slab priors,

π(dx) ∝ ωπ(x)+(1−ω)δ0(dx),

where δ0(·) is a Dirac mass at 0 representing the spike, and π(x) is the slab, i.e the

prior density conditional on not being in the model.

Given the posterior induced by these priors, PDMPs sample as

1. A standard PDMP sampler on Rd .

2. When the process intersects with Γ the velocity in the jth coordinate is set to 0.

3. The process continues as a standard PDMP on Rd−1.

4. The process moves back to the higher dimensional space with rate ΛS.

In designing the above process Chevallier et al. [2023] refresh v j when the process

returns to the higher-dimensional space, basing their construction on a reversibility

condition. In contrast, the sampler of Bierkens et al. [2023a] resets v j to its value

when the sampler intersected Γ, retaining the non-reversible dynamics of the original

PDMP. These differences are illustrated in the contrasting unsticking rates for the

Bouncy Particle sampler with Gaussian velocities

Λ
S
1 =

ω

1−ω
π(0)

2√
2π

, Λ
S
2 =

ω

1−ω
π(0)|v j|,

with ΛS
1 corresponding to the rate in Chevallier et al. [2023] and ΛS

2 the rate in

Bierkens et al. [2023a].

In Chapter 6 we further illustrate the differences between these approaches and

extend both methods to the case when Γ is a general d −1-dimensional embedded

manifold.
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3.7 Bayesian computation for survival analysis
We conclude this chapter by highlighting current approaches to Bayesian computation

for survival models, with a focus on those used in HTA. Many survival models used

in HTA have fixed dimension, a small or moderate number of parameters, and

small or moderate sample sizes. These models can therefore be fit using generic

sampling approaches. The current state-of-the-art is the implementation of the No-U-

Turn sampler in Stan [Hoffman and Gelman, 2014, Stan Development Team, 2025].

In R, parametric and spline survival models can be fit through the development

branch of the rstanarm package [Brilleman et al., 2020]. Further, bespoke Stan

implementations tailored to HTA are available for parametric models via the survhe

package [Baio, 2020], and for M-splines in the survextrap package [Jackson,

2023]. In addition, Kearns et al. [2021] utilises a Stan implementation for dynamic

survival models with a cure fraction. Alternative implementations include the use of

Integrated Nested Laplace Approximation [Baio, 2020, Che et al., 2023] and Gibbs

sampling via BUGS [Lunn et al., 2009, Demiris et al., 2015].

Transdimensional sampling is less commonly used in HTA survival models,

in part due to limited off the shelf tools that can be used for posterior sampling.

Cooney and White [2023a] implement a reversible jump sampler to average over

the location and number of knots in a piecewise exponential model. Notably, they

specify independent Gamma priors for the local hazards. This simplifies the pos-

terior to independent, conjugate exponential-gamma models for each local hazard.

Alternatively approaches to Bayesian model averaging in an HTA context have also

implemented information criteria based approximations [Negrı́n et al., 2017].



Chapter 4

Averaging polyhazard models

The content of this chapter is based on the paper

L. Hardcastle, S. Livingstone, and G. Baio. Averaging polyhazard

models using Piecewise Deterministic Monte Carlo with applications to

data with long-term survivors. arXiv preprint arXiv:2406.14182, 2024

in press at Annals of Applied Statistics.

4.1 Introduction
Polyhazard models, introduced in Section 2.2.2.1, are a class of flexible parametric

models for time-to-event data, defined by additively combining hazards from simpler,

typically one- or two-parameter survival distributions

hY (y) =
K

∑
j=1

h j(y),

where Y is a random variable representing a time-to-event outcome, and hY (y),h j(y)

are hazard functions.

As reviewed in Chapter 2, standard methods for estimation of mean survival

involve imposing parametric assumptions on Y , which given parameters θ , allows

mean survival to be computed either analytically or through a simple numerical

approximation, with or without censored observations. In many cases these models

encode identical covariate assumptions as non-parametric alternatives (e.g propor-

tional hazards or accelerated failure time) with the addition of a suitable parametric
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extrapolation mechanism. This broadly follows the recommendations of Latimer

[2011] who proposes a set of two- or three-parameter survival distributions to be

used for this purpose; given the leading role, globally, of NICE, these have become

the gold-standard in HTA. While parsimonious, these distributions are typically

restricted to hazards that are increasing, decreasing or unimodal and covariate effects

restricted by assumptions of proportional hazards or odds. Further, these standard

models infer the parameters dictating extrapolation from the whole sample, while

in reality observations at the end of the trial are likely to contain more information

about how survival can be expected to evolve in the long-term.

Polyhazard models can capture a much wider range of hazard curves while

retaining the interpretability and parsimony of simpler models. Further, due to the

additive decomposition of the hazard function, later observations naturally have

more influence on long-term survival. This has resulted in an increased interest in

applications to Health Technology Assessment [Demiris et al., 2015, Rutherford

et al., 2020].

Despite theses advantages applications of polyhazard models have been limited

due to: i) the lack of accessible computational tools and understanding of how

prior specification affects inference; ii) a number of structural choices which, in the

presence of even a small number of covariates, leads to a space of candidate models

which is infeasibly large to explore manually.

This chapter addresses these issues via Bayesian model averaging, to facilitating

wider application of polyhazard models. In Section 4.2 we extend the polyhazard

model by accounting for uncertainty in structural choices through an extended prior

specification leading to a Bayesian model averaging approach. In Section 4.3 we

develop bespoke Markov Chain Monte Carlo (MCMC) methodology extending

existing sampling methods based on Piecewise Deterministic Markov Processes

[PDMPs; Fearnhead et al., 2018]. This allows for efficient generation of posterior

samples, reducing the computational burden from fitting each individual polyhazard

model to fitting a small set of models with high posterior mass. PDMP-based

samplers have emerged as a promising new direction in Bayesian computation.
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Their development has been hindered, however, by a limited understanding of their

effectiveness in applied settings, a limitation this chapter begins to address. In

Section 4.4 we study the extended model by re-analysing a digitised version of data

first studied by Demiris et al. [2015]. Through this comparative analysis we show

the effects of non-informative vs weakly informative priors in this setting and the

importance of accounting for structural uncertainty. Following this we apply the

extended polyhazard model to two complex data sets based on survival times in

stroke survivors from the Copenhagen Stroke study (COST) [Jørgensen, 1996] and

from kidney transplant patients [Chen et al., 2022b].

4.2 Polyhazard models

We maintain the notation and definitions introduced in Chapter 2. In particular

throughout this chapter we assume the data take the form of D = (yi,δi,wi)
n
i=1,

where yi are, possibly right-censored, survival times, δi are event indicators, and

wi ∈ Rp are vectors of individual covariates.

4.2.1 Polyhazard model definition

Polyhazard models [Berger and Sun, 1993, Louzada-Neto, 1999] are constructed by

combining multiple independent parametric hazards via the additive formulation

hD,θ ,γ(y | w) =
K

∑
k=1

hDk,γk,θk(y | w). (4.1)

Each subhazard corresponds to a proper hazard function from a known distribu-

tion Dk ∈H, where H is a set of candidate distributions (for the examples considered

in Section 4.4, H = {Weibull,Log-logistic}). Each θk is a vector of subhazard

specific parameters composed of a shape parameter νk, and rate, scale or location

parameter µk, such that θk = (νk,µk). For each hazard, covariate information is

included in the location parameter via a log-link, such that

µk(w,γk) = exp

(
βk,0 + ∑

j:γk j=1
w jβk, j

)
, (4.2)
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where γk j ∈ {0,1} indicates whether the jth covariate is included in the kth subhazard.

In practice we will centre and normalise each element of w such that for a given

hazard βk,0 can be interpreted as the location parameter for the average individual

in the sample. This information is collated as D = (Dk)
K
k=1, θ = (θk)

K
k=1, and γ =

(γk)
K
k=1, such that the model is completely defined by the specification of (K,D,γ,θ).

We place no restriction on the combination of simpler hazard forms, neither

requiring each subhazard to be from the same parametric family nor requiring each

parametric family to be represented in (4.1). Similarly, γk, need not be identical

across all subhazards.

In this chapter we will focus on polyhazard models where H contains the

Weibull and log-logistic distributions with respective hazard functions

hW (y) = µνyν−1, hLL(y) =
( ν

µ
)( y

µ
)ν−1

1+( y
µ
)ν

,

while noting that the methods presented naturally extend to other choices [see for

example Louzada-Neto, 1999].

Combining hazard functions with different shapes results in flexible baseline

hazards and covariate effects that are more flexible than those possible with simpler

models. Various example hazard shapes generated by combining Weibull and log-

logistic hazards are shown in Figure 4.1.

We briefly address two common misconceptions regarding the polyhazard

model. i) The polyhazard model is not a mixture model. In contrast, each individual

in the population is subject to risk from every subhazard (with intensity determined

by relevant covariates), and there is no explicit weighting of subhazards within the

population. ii) While the form of (4.1) is recognisable as the hazard for an individual

subjected to independent, latent competing risks, we do not necessarily assume that

the data were generated in this way. Rather, we utilise the form of (4.1) as a flexible

modelling assumption.

Standard application of polyhazard models typically follows one of two ap-

proaches. In the first K,D and γ are fixed a priori, meaning inference is performed
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Figure 4.1: Example hazard shapes obtainable by the polyhazard model with combinations
of log-logistic (LL) and Weibull (W) latent hazards.

on θ only. In HTA applications, for example, it has become common to only consider

the bi-Weibull model (e.g Negrı́n et al. 2017). This often means that potentially

viable candidate models are excluded from the analysis without justification. Alter-

natively, K,D and γ are reduced to a small set of possible values for which all models

are fitted and compared a posteriori. Demiris et al. [2015] compare poly-Weibull

models with K from 1 to 4 and γ based on the deviance and clinical plausibility,

and Benaglia et al. [2015] compare the bi-Weibull and bi-Gompertz model based on

visual fit.

Both these approaches rely on the set of candidate models being small enough

to fit and interrogate individually, which is very restrictive, as for a fixed maximum

number of subhazards, Kmax, the size of the set of candidate models is given by

Kmax

∑
k=1

2pk
(
|H|+ k−1

k

)
.

The result is a model space which is infeasible to explore manually for anything

beyond very small Kmax, H and p. For the kidney transplant data analysed in Section

4.4.3, taking Kmax = 3, |H|= 2 and p = 13, results in 274,928,246,784 candidate

models.
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4.2.2 Priors

We now introduce an extended specification of prior for the polyhazard model,

which will incorporate uncertainty across each element of (K,D,γ,θ). This induces

posterior model weights that can then be used for Bayesian model selection or

averaging. The prior, denoted throughout by π0(·), is specified as

π0(K,D,γ,θ ,φ) ∝ π0(θ | K,D,γ,φ)π0(γ | K,φ)π0(φ)π0(D | K)π0(K),

where φ = (ω,σβ ) is a vector of hyperparameters to be defined.

First considering θ | K,D,γ,φ , we specify

log(νk) = αk ∼ Normal(0,σα), k = 1, . . . ,K,

βk,0 ∼ Normal(0,σβ0), k = 1, . . . ,K.

We place weakly informative priors on each (νk,βk,0) independent of distribu-

tion, in the first case following the reasoning of Demiris et al. [2015]. Crucially the

specification of (σα ,σβ0) will depend both on the scale of the data (years in all the

examples in Section 4.4) and the rate of censoring in the data [De Santis et al., 2001].

Specifically, as the rate of censoring increases tighter priors are required in order to

regularise long-term hazards. Further justification for, and discussion of, this choice

is provided in Section 4.4.1.1.

A contrasting approach is taken for the poly-Weibull model by Demiris et al.

[2015] and Benaglia et al. [2015] who place a Uniform(0,1) prior on ν1. While

justifiable for fixed (K,D), the effect of this prior on the posterior is unclear when

(K,D) are also being inferred.

We note that in the above specification the same priors are utilised for all

sub-hazard functions. When different parametric families are considered this will

result in different implied priors for certain sub-hazard quantities (e.g median sub-

hazard survival), however, by design this information is only weakly informative

and therefore we expect the effect on posterior inferences of mean survival to be

minimal. In addition, the universal priors used in our case require the specification
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of single hyperparameter, allowing for the impact of prior assumptions to be easily

investigated, while this is not the case if different priors were used for different

sub-hazard distributions.

For the remaining linear predictor terms in (4.2) we account for uncertainty in

the effect of the covariates on the outcome through the specification of the spike-and-

slab prior [Mitchell and Beauchamp, 1988]

π0(dβk, j | φ) ∝ (1−ω)δ0(dβk, j)+ωπ̃0(βk, j | σβ ), (4.3)

k = 1, . . . ,K, j = 1, . . . , p,

where π̃0(· | σβ ) is the density of a Normal distribution with mean 0 and δ0 is a Dirac

measure centred at 0. This formulation implies independent Bernoulli(ω) priors for

each element of γk, resulting in

π0(γ | K) ∝ ω∑k, j γk, j(1−ω)pK−∑k, j γk, j ,

and we extend this to a hierarchical modelling setting through a conjugate Beta prior

on ω ,

ω ∼ Beta(a,b),

as recommended by Kohn et al. [2001]. This is a well established approach, which

reduces the influence of prior specification in the context of Bayesian model averag-

ing [Ley and Steel, 2009]. When applied to the COST and kidney transplant data we

set a = b = 4. Further to this, in order to regularise the effect sizes observed in the

linear predictors we utilise a horseshoe, half-Cauchy hyperprior on σβ ,

σβ ∼ Cauchy>0(0,1),

designed to circumvent well known model misspecifcation issues arising from using

a fixed σβ [Polson and Scott, 2012].

Note that in the above formulation ω and σβ are shared hyperparameters across

subhazards encouraging sharing of information between hazards about expected
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effect sizes, which implies that the induced prior on |γ| should be interpreted as

a prior on the number of covariates across the model, rather than the number of

covariates associated with each individual subhazard.

Each subhazard distribution, Dk, is drawn uniformly from the set of candidate

distributions

Dk | K ∼ Uniform(H),

inducing a multinomial prior on D. If expert knowledge favours certain subhazards

being present in the model this can be encoded at this stage.

Finally, prior belief about the number of hazards in the model is represented

through a truncated Poisson prior

K ∼ Poisson>0(ξ ),

for fixed ξ . We set ξ = 2 defining a weakly informative prior, encoding a soft

preference for models with a smaller number of hazards. Any discrete distribution

could be used as, for example, there may be expert knowledge which suggests a

strong prior belief that K > 2, however in practice we find there is rarely justification

for K > 4 (see e.g [Louzada-Neto, 1999, Demiris et al., 2015]). This is reflected in

the choice of ξ which implies P(K > 4) = 0.061 a priori. A full expression for the

resulting posterior is provided in Appendix B.

4.3 Posterior sampling

The posterior induced by the prior formulation of Section 4.2 presents a challenging

target distribution for many of the standard posterior sampling tools of Bayesian

inference. Difficulties stem from the varying dimension of the parameter space and

changing form of the likelihood due to the priors on (K,D,γ), as well as the geometry

of the posterior when (K,D,γ) are fixed. Here, when the data are highly censored,

the marginal posteriors of parameters for subhazards (which are influential later in

the follow-up period) are often skewed due to partial information from censored

observations. Further, subhazards can switch roles in the model. When these
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subhazards are from the same distribution, exchangeable prior information results in

a symmetric, multimodal posterior with K! modes. Role switching, however, can also

occur when the subhazards have different distributions, inducing a non-symmetric,

multimodal posterior. This is akin to the label switching problem in mixture models

(e.g. Jasra et al. [2005]). An example is shown in Appendix B and we discuss this

issue further in Section 4.3.5.1. In this Section we develop a bespoke sampling

algorithm to handle these challenging posterior features.

Current approaches to posterior computation for fixed (K,D,γ) include a Gibbs

sampler implemented in WinBUGS and a Stan implementation of the No-U-Turn

Sampler, both for the poly-Weibull model [Demiris et al., 2015, Baio, 2020]. Neither

of these approaches naturally extend to the transdimensional case. The former is also

susceptible to high levels of auto-correlation, while both can struggle in the presence

of multimodality.

The foundation of the method developed in this section is the Zig-Zag sampler

[Bierkens et al., 2019] (Section 3.4), an example of a class of novel MCMC methods

based on continuous-time Piecewise Deterministic Markov Processes [PDMPs;

Fearnhead et al., 2018] (Section 3.3). As outlined in Chapter 3 these processes are

non-reversible. As a result, and in contrast to more commonly used reversible MCMC

methods, they often exhibit faster convergence and can use ballistic motion to help

navigate the challenging geometry of the posterior [Diaconis et al., 2000, Andrieu

and Livingstone, 2021]. Further, they are able to use their continuous, piecewise

deterministic sample paths to directly sample from spike and slab distributions

[Chevallier et al., 2023, Bierkens et al., 2023a] as defined by (4.3). These continuous

time dynamics are combined with jump processes for updating (K,D,φ), allowing

navigation of the full posterior. A summary of the algorithm is provided in Algorithm

2 with a fully detailed Algorithmic presentation provided in Appendix B.

Discrete time MCMC methods in transdimensional settings typically resort to

the use of Gibbs sampling for within-model sampling, despite often superior mixing

properties of gradient informed samplers. This is due to the sensitivity of these

methods to the choice of step-size and mass matrix [Livingstone and Zanella, 2022].
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In a large model space, these need to be tuned individually for each sub-model. In

contrast, continuous time PDMP samplers require minimal tuning as the step size is

replaced by constant velocity terms. A further advantage is the ability to perform

transdimensional updates to γ without the specification of a proposal distribution or

the need to evaluate likelihoods (Section 4.3.3), in contrast to reversible jump MCMC

that requires careful tuning of proposal distributions to ensure modest acceptance

rates, and likelihood evaluations at every step [Green, 1995]. Alternative model

averaging approaches are possible using, for example, the Bayesian Information

Criteria [Volinsky and Raftery, 2000]. These require each sub-model to be computed,

however, dramatically increasing computational cost. Further, the approximation to

the marginal likelihood is only asymptotically valid in the number of observed events,

and is therefore likely to be inaccurate in the highly censored examples we consider.

This is supported by recent empirical studies in the context of extrapolating survival

curves [Bütepage et al., 2022]. For the remainder of this Section we will use π(·) to

denote the posterior, conditional on any parameters not given as the argument.

Algorithm 2 Sampling algorithm

1: Initialise (θ ,v,γ,φ ,K,D) at t = 0.
2: while t < tend do
3: Sample next event time te ∼ Exponential(Λb +Λd +Λs +Λh),.
4: Sample π(θ ,v,γ | φ ,K,D) until time t + te. ▷ PDMP with sticky dynamics

(4.3.1,4.3.3)
5: Set t 7→ t + te.
6: Select event i with probability proportional to Λi.
7: if i = h then
8: Sample ω ∼ π(ω | γ) ▷ Gibbs step (4.3.2)
9: Sample σ ∼ π(σ | θ) ▷ Adaptive Metropolis-within-Gibbs step (4.3.2)

10: end if
11: if i ∈ {b,d,s} then
12: Perform move i with probability Λi(t)/Λi. ▷ Birth-death-swap process

update for (K,D) (4.3.4)
13: end if
14: end while
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Figure 4.2: Trajectories from the Zig-Zag sampler (left) and variable selection Zig-Zag
sampler (right) for arbitrary parameters.

4.3.1 Zig-Zag sampling

Zig-Zag sampling was introduced and reviewed in Chapter 3. In this chapter, the

sampler is used to sample the parameters θ ∈R2K+|γ| conditional on fixed (K,D,γ,φ)

with the dynamics outlined in Section 3.4.

4.3.1.1 Generating the inhomogeneous Poisson process

The efficiency of the Zig-Zag sampler is crucially dependent on the cost of generating

event times from an IHPP with rate ΛB(t). This is most commonly achieved via

Poisson thinning [Lewis and Shedler, 1979], in which a proposed event time t∗ is

generated from a dominating Poisson process with rate Λ̄B(t)> ΛB(t), accepted with

probability ΛB(t∗)/Λ̄B(t∗); if the proposed move is rejected, the process continues

with the same dynamics from time t∗.

While it is possible to derive a tight upper bound analytically in some cases,

we know of no such choice of Λ̄B(t) that is suitable for polyhazard models. We

therefore numerically bound ΛB(t) on the interval [t0, t0 + tmax), via an extension of

the Automatic Zig-Zag method of Corbella et al. [2022] (Section 3.5.2.1). In the

Automatic Zig-Zag approach a constant upper bound for ΛB(t) is found using Brent’s

method on an interval with fixed length. Costly, repeated gradient evaluations are

avoided by performing a monotonicity check after the first iteration, which if passed
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allows the evaluation of ΛB(t) at one end of the interval to be used as the bounding

rate.

We make three modifications to this approach, summarised here with full details

provided in Appendix B:

1. In the first iteration we check for monotonicity and local convexity. If local

convexity holds we use a tighter linear bound.

2. We adaptively set the length of the bounding interval tmax using a modified

version of the scheme suggested by Sutton and Fearnhead [2023] in a similar

context.

3. We add a constant offset rate Λ0 to Λ̄B(t) to offset numerical errors and failures

in the above checks.

The above modifications allow the sampler to adapt to the changing geometry and

curvature of the target induced by the priors on (K,D). Further, if the bounding

does fail, this is easily diagnosed by reporting instances when the upper bound is

exceeded. These errors can then be investigated or the offset increased.

4.3.2 Updating hyperparameters

The hyperparameters (ω,σβ ) could be sampled directly by the Zig-Zag sampler, but

strong posterior dependence between parameters and hyperparameters induced by

the hyperprior structure would inhibit sampling efficiency. A more elegant solution is

to follow the Gibbs Zig-Zag approach of Sachs et al. [2023], which allows traditional

Gibbs updates to be interwoven into the Zig-Zag sampler at exponentially distributed

intervals with rate ΛH . In particular this allows ω to be updated by the closed form

full conditional due to the Beta-Binomial prior formulation.

Full conditionals for σβ are not available in closed form. However, sampling

can be performed via adaptive random walk Metropolis steps. To avoid sampling

difficulties resulting from the heavy-tails of the Cauchy distribution we utilise the

re-parameterisation proposed by Betancourt [2018]

σβ = z1
√

z2, z1 ∼ Normal(0,1), z2 ∼ Inv-Gamma(1/2,1/2),
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and determine the step-size and covariance matrix of the random walk Metropo-

lis proposal adaptively using a Robbins-Monro style updating scheme as seen in

Algorithm 4 of Andrieu and Thoms [2008].

4.3.3 Zig-Zag sampling for variable selection

Bayesian variable selection is a challenging problem even in standard parametric

survival models. Current state-of-the-art approaches involve focusing sampling

efforts on the marginal posterior for the variable inclusion indicator π(γ), where

γ ∈ {0,1}p. Efficient exploration of the state space, however, requires efficient

approximations of the marginal likelihood, which are typically not straightforward

for polyhazard models [Liang et al., 2023]. Furthermore, simpler, uninformed

schemes such as the add-delete-swap reversible jump sampler of Newcombe et al.

[2017] are likely inhibited by poor acceptance rates.

An alternative approach, concurrently developed by Chevallier et al. [2023] and

Bierkens et al. [2023a] was reviewed in Section 3.6.2, is to utilise the continuous

sample paths of the Zig-Zag sampler to directly sample from the spike and slab

posterior induced by (4.3). Here the process sticks to the hyperplane {θ : βk, j = 0},

corresponding to the spike, whenever it crosses it, by setting the corresponding

velocity to 0 and then resetting the velocity after a waiting time, τβ . Specifying τβ

as the first time of the homogeneous Poisson process

Λ
V
k, j(t) =

ω

1−ω
π̃0(0 | σβ ),

preserves the correct target distribution. We note that the key point of this con-

struction is that the rate of unsticking is given by the posterior ratio between the

models with γk j = 1 and γk j = 0. Since this ratio is being evaluated at βk, j = 0, the

likelihood takes the same value for γk j = 1 and γk j = 0, and this ratio cancels to a

ratio of priors resulting in a homogeneous Poisson process. This approach, therefore,

has the dual advantage of being informed by the current state of the process and

also being computationally efficient as updates to γ do not require any likelihood or

gradient evaluations beyond those required for sampling θ . Example trajectories for
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this process are given in Figure 4.2 (right).

We extend the work of Chevallier et al. [2023], Bierkens et al. [2023a] by

including a hyperprior structure on (ω,σβ ) as detailed in Section 4.2.2. Directly

sampling (ω,σβ ) via the Zig-Zag sampler would result in unsticking times given

by an inhomogeneous Poisson process requiring additional computational cost to

generate. Alternatively by updating (ω,σβ ) with a continuous-time jump process as

described in Section 4.3.2, the waiting times remain easy to generate as the first time

of a Poisson process with piecewise constant rate.

4.3.4 Birth-death-swap processes

The final sampling ingredient is a birth-death-swap process which is able to update

the number of hazards K and the vector of subhazard distributions D in continuous

time. Births, deaths and swaps occur at rates given by Λb(t), Λd(t) and Λs(t)

respectively, with corresponding proposal distributions for new parameters given

by qb(u), qd(u) and qs(u). We note that in addition to allowing exploration of the

posterior for (K,D), these transdimensional updates also allow for traversal between

modes for fixed (K,D).

4.3.4.1 Birth-death process

To define the birth-death process we require that a detailed balance condition is met

Λ
b(t)π(θ ,D,K)qb(u) = Λ

d(t)π(θ ′,D′,K +1)qd(u′). (4.4)

In similar fashion to reversible jump MCMC [Green, 1995] and birth-death MCMC

[Stephens, 2000], we also require that the transformation that maps (θ ,u) 7→ (θ ′,u′)

is a bijection and that a dimension matching condition is met. To satisfy these

conditions birth moves are defined by drawing parameters for a new hazard, u, from

the prior conditional on φ and selecting the distribution of the new hazard uniformly

at random. The reverse move then selects a hazard uniformly at random to remove

from the model.

To satisfy (4.4), a simple way of specifying Λb(t) is via a balancing function

[e.g. Zanella, 2020] g : R+ → R+ satisfying g(a) = a · g(1/a), and taking the
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Metropolis–Hastings–Green ratio

a(t) :=
π(θ ′

t ,v
′
t ,φ ,D

′,K +1)qD(u′)
π(θt ,vt ,φ ,D,K)qB(u)

,

as its argument. The required death move is then defined similarly but with the

argument a(t)−1. The most commonly used example of this is the Metropolis

balancing function, gM(a) = min{1,a}, which is the foundation of the Metropolis-

Hastings algorithm. Extended theoretical justification of this approach and further

discussion of the role of balancing functions is provided in Appendix B.

An alternative specification, which is the birth-death MCMC approach, is to

take Λb(t) constant and set Λd(t) = a−1. This method fails in our setting as, in

contrast to Stephens [2000], θ is being updated in continuous-time. The resulting

ratio of posterior densities is then challenging to upper bound, which is needed to

apply Poisson thinning. Note, however, that gM(a)≤ 1 and therefore this birth rate is

amenable to Poisson thinning. The specification of gM(a) holds up to a multiplicative

constant, ΛK , which can be used to control the intensity of transdimensional updates.

4.3.4.2 Swap moves

While the birth-death process is sufficient to sample from the correct target dis-

tribution, we find that posterior exploration can be significantly improved by the

introduction of moves which swap subhazard distributions without updating K. These

allow the sampler to move between models with the same number of hazards but

different underlying distributions. The improvement in mixing is most noticeable

when the posterior for K is concentrated but the posterior for D | K is more diffuse,

as it avoids the need for transitions through higher or lower order hazard models

with low posterior mass.

We define our swap moves, qs(·) between distributions based on the principle

of median matching. Moment matching is a well established approach in defining

reversible jump moves [Richardson and Green, 1997] but is not applicable here as

moments for some survival distributions are not well defined (e.g the log-logistic

distribution with ν < 1).
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We propose using median matching as a novel deterministic proposal in which

the distribution of a subhazard is swapped from log-logistic to Weibull or vice versa.

Considering the case without covariates first, the method keeps the shape parameters

of the old and new hazards the same, and then transforms the location parameter to

keep the medians the same, using the formula

MedLL(ν ,µ) = µ =

(
1
µ ′

) 1
ν

(log2)1/ν = MedW (ν ,µ ′),

=⇒ µ
′ = µ

−ν log2.

When including standardised covariates, the interpretation of the above is that

the subhazard median is preserved for the average individual. To include covariates

in the transformation we apply the mapping βLL 7→ −βLL = βW . Intuitively it

seems reasonable to expect the magnitude of the coefficient effects to be the same

when altering the subhazard distribution. However, the interpretation of the effect

is inverted, hence the switching of the sign. The median matching proposal can

be placed into the balancing function framework outlined previously, although

the Metropolis–Hastings–Green ratio now requires a Jacobian to account for the

transformation.

Figure 4.3 shows trace plots of posterior model probabilities for samplers using

solely the birth-death process; independent swaps; and median matching swaps;

based on data containing 100 simulated survival times and a single binary covariate.

Note that swap moves and birth-death moves have the same computational cost and,

as the overall birth-death-swap rate was set to 10 in each case, the expected compu-

tational cost is identical for each sampler. Almost all the posterior mass is placed

on models such that K < 3, but posterior mass is spread relatively evenly between

these models. The median matching moves provide clearly superior convergence

in comparison to the alternative processes, where slow convergence is observed for

the log-logistic and Weibull models as posterior exploration between these models

requires moving through higher order models. Acceptance rates for independent

swaps and median match swaps were respectively 6.09% and 44.17%, showing the
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Figure 4.3: Experiment comparing the efficiency of the median matching swap moves to
the birth-death moves and independent swap moves, on data simulated from a
poly-log-normal-Weibull model with a single covariate. Coloured lines represent
different subhazard combinations. Two chains for each method were produced
running for 10,000 time units, with reversible jump moves occurring at the same
rate. The median matching swap moves provide more stable and efficient mixing
in comparison to the alternative methods.

clear superiority of the bespoke moves.

4.3.5 Practical implementation and computational cost

The methodology outlined in this Section requires the generation of multiple event

times simultaneously. For computational efficiency this is done via the multinomial

trick, whereby a single event time is generated with rate equal to the sum of rates

and then a single event is chosen with probability proportional to its rate. Times until

deterministic sticking events are also simply tracked and updated when necessary.

The majority of the computational cost for the method outlined in this Section

arises from two areas, generating PDMP event times given by the inhomogeneous

Poisson process and simulating the birth-death-swap process. Notably, updates

to γ incur negligible computational cost, as the only requirements are computing

sticking events (which is trivial given constant velocities) and computing unsticking

times involving the simulation of exponential random variables, because of the

use of the Gibbs Zig-Zag approach for updating hyperparameters. For the method

outlined in Section 3.1.1, for each interval over which the event rate is generated
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we typically require two evaluations of ∇U(θ) (as, in the absence of an event,

evaluations can be saved between intervals), plus an additional gradient evaluation

for each thinning event. We note that this cost should not be compared directly

to the cost of a single Metropolis-Hastings step, as the trajectory between events

in a PDMP typically corresponds to multiple equivalent discrete-time steps. This

step is the most computationally costly. Fortunately, however, it is amenable to any

methodological improvements in generating the event rate which is currently an

area of active research. The birth-death process requires two evaluations of U(θ)

per thinning step. Using the constant bounds derived here this cost is identical to

reversible jump MCMC. While we do not believe it is possible to find tighter bounds

in the case of polyhazard models, in alternative settings these may exist, meaning

the resulting cost is always lower than the discrete time alternative.

An alternative approach is to perform the averaging procedure conditional on

each potential K, given the small set of values considered. This will in most cases

lead to a dramatically higher computational cost, due to the additional computational

resources required for values of K with negligible posterior mass. In contrast, the

sampler developed here focuses the computation on a much smaller set of viable

models, while maintaining the weights required for averaging over K.

4.3.5.1 MCMC output

As stated previously the Zig-Zag sampler outputs piecewise continuous sample paths.

This can be stored either as a skeleton of points which indicate updates to one of

(v,K,D,γ), or as samples at exponential times. The effect of this and the rate of

drawing samples is analogous to the role of thinning in discrete time MCMC.

For identifiability purposes we place an ordering constraint on the shape pa-

rameters of hazards with the same distribution as a post-processing step to sort the

MCMC output. This is appropriate in this setting as: a) The quantity of interest,

mean survival, is invariant to permutation, and so our inference should not suffer due

to the re-labelling issue. b) Kozumi [2004] explored the use of loss functions in the

poly-Weibull model and found that the resulting inferences were almost identical to

the use of an ordering constraint. We therefore believe that alternative approaches
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would have little benefit, and that the ordering constraint is sufficient when examining

individual subhazards during, for example, model checking.

To summarise, our approach utilises the sticky Zig-Zag sampler to update θ ,γ |

K,D,φ in continuous-time using gradient information and non-reversible dynamics

to ensure efficient exploration of the posterior. This sampler is combined with

continuous-time jump processes for updating K,D,φ based on conjugate updates,

adaptive Metropolis steps and a bespoke birth-death-swap process. The shared

continuous-time framework allows for events to be efficiently generated via Poisson

thinning and the multinomial trick.

Code for implementing the models developed in this chapter is available at

https://github.com/LkHardcastle/PolyhazardPaper.

4.4 Real data case studies
In this section we apply the methodological extensions to polyhazard models pro-

posed in the previous two Sections to three real world examples focusing on the effect

of prior specification on computation and inference and the non-linear covariate

effects produced by polyhazard models.

4.4.1 Lung transplant data

Demiris et al. [2015] used poly-Weibull models to calculate mean survival in lung

transplant patients, focusing particularly on differences between patients who re-

ceived single and double lung transplants. The data contain survival or censoring

times of 338 patients, 173 (144 observed) of whom received single lung transplants

and 165 (79 observed) of whom received double lung transplants. They focus their

analysis on a set of ‘highly likely‘ variations of the poly-Weibull model, as assessed

by the mean deviance, all of which indicate small differences in early survival but

higher risk for single lung transplant patients in the long-term. This is due to a partial

treatment effect, which increases the risk patients experience over a lifetime time

horizon.

Although the original data are not publicly available we have constructed a

similar dataset by digitising Figure 1 of Demiris et al. [2015]. This was done using

https://github.com/LkHardcastle/PolyhazardPaper
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Model Post. prob. Mean survival DLT Mean survival SLT Difference
Avg. model — 7.41 (5.26, 12.81) 4.59 (3.85, 5.53) 2.81 (0.01, 8.26)

Original W-W — 8.78 (6.14, 13.7) 4.96 (4.32, 5.75) 3.83 (1.04, 8.72)
W-L 0.192 7.41 (5.30, 11.85) 4.50 (3.79, 5.34) 2.9 (0.76, 7.37)
W-W 0.010 7.64 (5.52, 11.37) 4.58 (3.74, 5.62) 3.06 (0.86, 6.77)
L-L 0.638 7.40 (5.24, 13.12) 4.61 (3.87, 5.57) 2.78 (0.00, 8.58)

W-W-L 0.016 7.47 (5.22, 11.57) 4.49 (3.75, 5.42) 2.98 (0.54, 7.07)
W-L-L 0.068 7.39 (5.30, 12.50) 4.56 (3.83, 5.49) 2.83 (0.47, 7.94)
L-L-L 0.070 7.37 (5.23, 12.73) 4.59 (3.87, 5.55) 2.77 (0.0, 8.23)

Table 4.1: Model summaries for the averaged (Avg.) model, original (Orig.) model, and
sub-models with > 1% posterior mass. Posterior model probabilities are reported
in the second column (Post. prob.). Mean survival estimates are shown for
single (SLT) and double (DLT) lung transplant patients along with the expected
difference in survival (and relevant 95% credible intervals). Estimates from the
original bi-Weibull model are as reported in the original analysis.

the implementation of the method of Guyot et al. [2012] available via the Survhe

R package. We re-analyse these data with the same objective using the extended

polyhazard model. We set σα = 2, Kmax = 4, and adjust the above prior struc-

ture by fixing σβ = 5 and ω = 0.5, which prevents (ω,σβ ) from being essentially

nonidentifiable in the presence of a single covariate.

The number of candidate models in this scenario is 128, which, although

possible to explore manually, would still be computationally expensive. Our approach

has the dual advantage of saving computational cost by focusing on models with high

posterior probability, and also providing posterior probabilities for each sub-model.

Sampler trace plots are available in Appendix B.

Table 4.1 shows model summaries for the original bi-Weibull model chosen

by [Demiris et al., 2015, original W-W], the averaged polyhazard model and all

submodels with posterior probability greater than 1%. Notably the original bi-

Weibull model receives 1% posterior probability, with the majority of the posterior

mass focused on the bi-log-logistic model (63.8%), with reasonable mass on the

Weibull-log-logistic model (19.2%) and 15.4% posterior probability shared between

three of the three hazard models.

Mean survival estimates for single (SLT) and double (DLT) lung transplant

patients are more conservative than those reported in the original analysis. In
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Figure 4.4: Hazards for different models fit to the lung transplant data. The hazards for the
model from the original analysis (dash-dot), from the bi-Weibull model in our
analysis (dashed) and from the overall hazard from our analysis (solid). These
are plotted for DLT (blue) and SLT (red) patients.

particular, the credible interval for the difference in mean survival between the

two groups is close to 0 under our analysis. As the reduction in DLT survival is

larger than for SLT survival, the analysis using the averaged model reports a smaller

difference in expected survival. Although this disparity is driven by a preference for

the bi-log-logistic model, the estimates from the bi-Weibull sub-model also suggest

more conservative survival estimates and a smaller difference in survival. These

differences are discussed in Section 4.4.1.1. Negligible posterior mass was placed on

the single hazard models, corroborating the results from the original analysis, which

suggested that single hazard models were insufficient.

Figure 4.4 shows hazards for SLT and DLT patients from the overall model,

the bi-Weibull model from our analysis and the bi-Weibull model from the original

analysis. Notably all three models produce very similar results in the short-term and

only differ noticeably after 3 years. This suggests the difference in results reported

in Table 4.1 is due to differences in hazards for long-term survivors. Compared to

the original analysis the hazard for SLT patients increases faster than in the original

analysis after five years explaining the difference in the results reported in Table 4.1.

A key foundation of the original analysis is that the bathtub curve is commonly
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observed for transplant patients. This can be seen in our example where, although

the bi-log-logistic model with highest posterior probability is not a bathtub curve,

a decreasing-increasing pattern is observed over a typical patient lifetime, with the

overall mixture of polyhazard models ensuring that as y → ∞ we observe h(y)→ ∞.

4.4.1.1 Weakly informative priors

The two bi-Weibull models in Table 4.1 report different estimates of difference in

mean survival between transplant types. While some of this difference arises from

the data digitisation process, this is also due to the use of weakly informative rather

than non-informative prior information.

Increasing the standard deviation of the prior for β , increases the posterior

estimate for mean survival in both arms and the corresponding credible intervals.

This is due to the increasing mass placed on extreme mean survival values by the

increasingly non-informative prior. In a single hazard model this is not problematic

as the likelihood provides sufficient regularisation of β10. In a K hazard model,

however, this behaviour results in the kth subhazard having negligible influence on

the likelihood and the model in effect reducing to a K −1 hazard model. This has

the combined effect of hindering computation, whether via Gibbs sampling or using

gradient-based samplers, and impairing the resulting inference. We note that this

effect is independent of the prior for γ which has historically been the focus of

identifiability in polyhazard models.

This undesirable behaviour can be excluded by the use of weakly informative

priors for βk,0, as outlined in Section 4.2.2. Although tighter than those used previ-

ously in the literature, we would argue that these priors are still weakly informative in

that they are able to generate data and inferences well beyond the range of plausible

values following similar arguments made in Gabry et al. [2019]. As such these priors

should be robust to small changes in the choice of σβ0 . We recommend conducting

prior sensitivity analysis to ensure this regularisation is sufficient but not unneces-

sarily influential. In cases with a large number of candidate models, this can be

focused on the small subset of models with high posterior probability to preserve

computational efficiency.
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4.4.2 COST data

We now apply the methodology to a more challenging example – data from the

Copenhagen Stroke Study (COST), a prospective, cohort study of stroke survivors in

Copenhagen starting in 1991 [Jørgensen, 1996]. The data contains survival times for

stroke survivors with 13 relevant covariates. Previous works have used this study

to investigate the long-term risks faced by stroke survivors. Kammersgaard et al.

[2004] sought to understand the prognosis for very old patients (defined as age ≥ 85),

conducting a subanalysis using Cox proportional hazards regression with very old

age, stroke severity score and presence of atrial fibrilation as covariates. Andersen

et al. [2005] investigated the association between sex and survival outcomes, fitting a

Cox proportional hazards model to artificial 1-, 5- and 10- year data cuts to assess the

changing effect of sex on survival in the short- and long-term. Similarly, Andersen

and Olsen [2011] investigated the interaction between stroke severity, as defined by

the stroke severity score, and other prognostic indicators.

In this setting, extrapolation using standard parametric models relies either

on simplifying assumptions (e.g proportional hazards) or fitting separate models

to each subgroup. Neither approach is ideal. Given the number of covariates,

it is unreasonable to assume that proportional hazards hold for each subgroup.

Furthermore, fitting separate models for each subgroup will increase uncertainty in

extrapolations and provide a poor fit to the data due to small sample sizes. Polyhazard

models adapt to smaller sample sizes via assuming homogeneous shape parameters

in the sub-hazard functions between sub-groups. However, heterogeneous effects

still arise from the model, due to differing covariate effects between sub-hazards,

and by averaging across models.

A subset of the data containing survival times, event indicators and 13 covariates,

including those discussed previously, for 518 patients is available via the pec R

package [Mogensen et al., 2012]. A complete summary of the dataset is provided in

Appendix B.
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4.4.2.1 COST results

We fit the model using the full prior structure outlined in Section 4.2.2. Given the

larger sample size and lower censoring rate posterior submodel probabilities are

relatively concentrated, with 86.44% of the posterior mass given to the bi-log-logistic

model, 6.47% to the tri-log-logistic model, 4.96% to the W-L-L model, and 1.71% to

the Weibull-log-logistic model. All other models have less than 1% posterior mass.

An advantage of using polyhazard models is the ability to model covariate

effects more flexibly than under standard assumptions of proportional hazards or

accelerated failure times. This can be seen in Figure 4.5, where we plot the hazard

ratios over time for atrial fibrillation, age, sex and stroke score. For continuous

covariates these are defined as the hazard ratio between the observed 25% quantile

and 75% quantile in the data with all other covariates set to 0, corresponding to their

sample mean after standardisation. Notably the averaged model is able to capture

a wide variety of flexible hazard ratios. These ratios are compared to the hazard

ratios for the simpler Weibull and log-logistic models. Further, we also estimate

hazard ratios using M-splines [Jackson, 2023] either combined with a proportional

hazards assumption, or using a non-proportional hazards model with partially pooled

effects. The parametric models are the established method for survival extrapolation

following the initial recommendations of Latimer [2011].

The hazard ratio for age suggests older stroke sufferers have a higher risk of

death, which decreases but remains notable for 10 years post-stroke. This aligns with

the analysis of Kammersgaard et al. [2004]. The hazard ratio for sex corroborates

the findings of Andersen et al. [2005] that women have higher survival than men,

although it suggests that the difference in risk decreases in time after an initial peak.

A similar pattern is observed for atrial fibrillation. Stroke severity (as measured by

stroke score), shows that survivors of less severe strokes are at lower risk of death in

the short-term, but that this difference in risk becomes less prevalent in the long-term.

In each case the single Weibull and log-logistic hazard ratios are unable to match the

increased flexibility of the polyhazard model.

The M-spline models are fit using Stan. Two chains of were generated each
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consisting of 2000 posterior draws, the first 1000 of which were discarded as burn-

in. R-hat values for all parameters were < 1.01. For the M-spline models, the

proportional hazards assumption estimates hazard ratios close to the Weibull model.

The non-proportional M-spline model hazards appear to have, at least partially,

over-fit the data as it exhibits multiple inflection points and sharp changes that are

implausible given the study population and associated covariates. We note that over-

fitting could also be established using information criteria as outlined in Section 5.4.1.

An alternative specification of the M-spline model with fewer knots is presented

in Appendix B. The resulting hazard ratios are close to constant, suggesting this

over-fitting is due to the choice of knot location. We note that it may be possible

to optimally place knots such that the hazard ratios are smooth and capture similar

variability to the hazard ratios presented by the polyhazard model. This would be

challenging, however, given the number covariates in the data, and the need to place

knots manually.

An interesting feature is that the averaged polyhazard model estimates smaller

effect sizes for atrial fibrilation and stroke score, at 2.5 and 7.5 years respectively,

compared to the M-spline model. This is due to the sub-hazard functions considered

in this work that are unable to incorporate sudden peaks in hazard ratios for single

covariates. Alternative specifications of the non-proportional spline model (presented

in Appendix B along with baseline hazards) suggest these spikes are likely due to

over-fitting; however, in analyses where these spikes may be expected, the polyhazard

model may not provide sufficient flexibility without the specification of additional

sub-hazard forms.

Figure 4.6 plots hazards for each covariate group from the overall models (solid

lines) and from the two hazards from the dominating bi-log-logistic model (dashed

lines) for the same covariates. Interpreting the first hazard as the immediate post-

stroke risk and the second as the longer-term risks, we can understand the influence

of different covariates. In particular age increases both the immediate risk post-stroke

and the long-term risk, while atrial fibrillation and being male has no immediate

effect, but a noticeable long-term effect. Conversely, less severe strokes reduce risk
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Figure 4.5: Posterior median hazard ratios (HRs) for atrial fibrilation, age, sex and stroke
score from the COST dataset. The green line is the HR from the averaged
polyhazard model (Avg.), the blue and orange lines are hazard ratios obtained
from the simpler log-logistic (LL) and Weibull (W) models. The grey lines are
HRs from the proportional (dashed, Spl. p.) and non-proportional (solid, Spl.
n.p.) M-spline hazards model. A hazard ratio of 1 is indicated by a black dashed
line on each plot.

in the short-term but have a less noticeable effect in the long-term. Figure 4.6 also

contains estimates of mean survival and difference in mean survival. In each of the

highlighted covariates the 95% credible interval for difference in mean survival does

not contain 0, although for atrial fibrillation it coincides with the boundary of the

interval, presenting clear evidence that the presence of atrial fibrillation, increasing

age and being male lower survival, while less severe strokes improve survival.

4.4.3 Taiwan Kidney Transplant data

We apply our methodology to data on survival times of 3,562 Taiwanese patients

following uncomplicated kidney transplantation with the primary objective of under-

standing the impact of waiting times on mean survival [Chen et al., 2022a]. The data

were accessed via Dryad [Chen et al., 2022b]. The original analysis used hazard

ratios provided by a Cox regression to understand the impact of transplant waiting
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Figure 4.6: Hazards for different values of atrial fibrilation, age, sex and stroke score from
the COST dataset. Arial Fibrilation and sex: 0 (orange), 1 (blue). Age and
Stroke Score: Sample lower quartile (orange), sample upper quartile (blue).
Other covariates are set to 0 representing the average patient. Estimates of mean
survival are included in each plot for the blue hazard (U), orange hazard (L) and
the difference in mean survival (D).

times on long-term survival. Patients were split into four groups based on wait times

(<1 year, 1-3 years, 3-6 years, >6 years). Additional covariates in the data include

age at time of transplantation (defined in 10 year blocks), sex, hypertension and

Dyslipidemia. The primary challenge with the analysis of these data are the high

censoring rates in all age and waiting time groups, with only the oldest patient group

(71-80 years) reaching median survival with 41.18% censored, and censoring rates

of 89.90% and 92.00% in the youngest two age groups.

Using the prior structure in Section 4.2.2 we fit the averaged model to this data.

We make the modification of only considering models with K < 4 as, given the high

censoring rates, it is unlikely that there is sufficient information in the data to define

more than 3 hazards.

In addition, we use a slightly more informative Normal(0,1) prior for the

shape parameters as we otherwise encounter identifiability issues similar to those
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Model W-L W-W L-L W-W-L W-L-L W-W-W L-L-L
Post. prob. 0.321 0.322 0.054 0.140 0.064 0.085 0.010

Table 4.2: Posterior sub-model probabilities for the averaged model applied to the Taiwanese
Kidney Transplant dataset restricted to models with posterior mass above 0.005.
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Figure 4.7: Mean survival curves from the averaged model for the Kidney transplant data
set stratified by waiting time and age.

highlighted in Section 4.1.1 due to very high censoring rates in certain subgroups.

This resulted in estimated survival curves that allowed for unrealistically long survival

times. The sampler was run for 20,000 time units, with the rate of reversible jumps

or Gibbs moves set to 20. This took 11.76 hours to run.

Posterior model probabilities are reported in Table 4.2. The majority of the

posterior mass is shared between the bi-Weibull, Weibull-log-logistic and bi-Weibull-

log-logistic models. The posterior is less concentrated than in the previous examples,

due to the limited complete data in the sample.

Figure 4.7 shows survival curves for each waiting time group stratified by age.

Each curve appears to reach 0 in a reasonable time frame. Of particular note is the

apparently non-linear effect of age, with patients in the youngest age group (11-20)

having worse survival than patients aged 21-40. This effect is not implausible due to
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Figure 4.8: (Left) Posterior summaries for mean survival, stratified by age and waiting time.
(Right) Posterior summaries for mean survival difference. Results are stratified
by age and waiting times encoded as (1: <1 years, 2: 1-3 years, 3: 3-6 years, 4:
6+ years). A dashed line is used to indicate 0 difference. (Both) Posterior mean
(solid blue dot), 50% credible interval (blue, larger, error bar), 95% credible
intervals (orange, smaller error bar).

the differing reasons for requiring a kidney transplant in different age groups, which

are possibly more likely to be due to genetic or hereditary conditions for younger

patients, and more likely due to lifestyle factors in older patients. Further in all

waiting time groups there are minimal differences in survival between patients in the

oldest age groups.

To understand the effect of waiting times on mean survival, posterior estimates

of mean survival stratified by age and waiting time group are presented in Figure

4.8 (Left), with posterior means, 75% and 95% credible intervals plotted. Similarly,

the effect of moving reducing waiting time by one group is shown in Figure 4.8

(Right). The uncertainty associated with these estimates reduces with age in both

cases as the number of censored observations decreases, except for the oldest age

group which corresponds to only 17 patients in the sample, resulting in very high

uncertainty. Similarly there is high uncertainty in each age group for mean survival
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in patients who waited more than 6 years for a transplant which propagates through

to the estimates of difference in mean survival between patients who waited 6+ years

and those who waited 3-6 years. From Figure 4.8 (Right) there is strong evidence to

suggest that in the youngest age group and patients over 51 reducing waiting times

from 1-3 years to <1 year improves mean survival and similarly reducing wait times

from 3-6 years to 1-3 years for patients under 50 improves mean survival. In each

age group the lack of information for patients with wait times over 6 years means

there is high uncertainty related to the corresponding effect size.

4.5 Discussion

In this work we have developed an extended version of the polyhazard model, using

an extended prior specification and novel posterior sampling methodology. This

allows for the efficient application of polyhazard models to two motivating data

sets for which previous approaches to model selection and computation would have

been infeasible. Further, through the use of Bayesian model averaging, we limit the

risk of survival extrapolation and mean survival inferences being affected by model

misspecification when compared to selecting a single best model.

The findings from the analysis of the digitised lung transplant data from Demiris

et al. [2015] suggest that non-informative priors are not appropriate in the polyhazard

model setting as they place too much mass on unreasonably large mean survival val-

ues. This results in poor posterior estimates and identifiability issues not previously

commented on in the literature.

The analysis of the COST dataset shows how the polyhazard model is able to

translate epidemiological findings to a cost-effectiveness analysis in the presence of

covariates. In particular our approach circumvents issues with current approaches,

that either fit models for each subgroup or rely on strong covariate assumptions. The

analysis of the kidney transplant data set shows that the extended polyhazard model

is able to account for high censoring rates. In particular, being able to combine

estimates from many plausible models provides more principled extrapolations in

the presence of partial information.
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The approach of this chapter is an addition to a number of methods which seek to

provide more principled extrapolations by learning the parameters for extrapolation

primarily from data towards the end of the observation period. Other examples

include the use of M-splines [Jackson, 2023] and dynamic survival models [Kearns

et al., 2022]. Compared to the M-spline models, our approach retains a degree of

interpretability, and as we show in Section 4.4.2 it is also more stable in the presence

of many covariates.

We note that the extended polyhazard model can be easily combined with

several methods for improving extrapolations and integrating external information. In

particular polyhazard models are the natural form for integrating external information,

whether this relates to specific causes of death [Benaglia et al., 2015] or life table

data for the wider population [van Oostrum et al., 2021]. Alternatively, the extended

polyhazard model could be used to model the observed period and then combined

with life-table data via the blended survival approach of Che et al. [2023]. Further

simple adjustments to the model could also be made to combine it with other model

averaging approaches to extrapolation. For example, the adjusted model averaging

approach of Negrı́n et al. [2017] can be combined with our methods by adjusting

posterior weights to account for optimistic and skeptical scenarios.

We briefly outline some obvious extensions to the model presented in Section

4.2. Alternative prior structures for sub-hazard parameters could be considered. For

example, as suggested by a reviewer, these could be based on the right-tail behaviour

of the sub-hazard functions. This could be particularly beneficial when strong prior

information is available about the behaviour of the long-term hazard function. We

have assumed that covariates enter the model through location parameters, in line

with the recommendations of Latimer [2011]. A linear predictor could also be

introduced for shape parameters. This would provide additional flexibility to the

model; however, we expect that this would require stronger prior regularisation and

increase the computational cost for limited additional flexibility.

We can naturally extend the model to include additional subhazard forms. Al-

though there are many two-parameter survival distributions in the literature, selecting
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a small number of additional distributions should provide sufficient flexibility to

model many datasets. In this context the swap moves from Section 4.3 could be

extended to define pairwise transformations between different types of subhazards,

or replaced with moment-matching moves where appropriate. Another novel exten-

sion would be to introduce the possibility of improper subhazards such that for the

corresponding survivor functions

Sk,θ (y)→ c > 0, y → ∞.

This would correspond to a cure model for that subhazard, but would need highly

informative external information to ensure principled extrapolations. A final exten-

sion would be to introduce dependence between hazards, as explored by Tsai et al.

[2013].

Finally, we believe we have made important contributions to the applications

of PDMP samplers. While these samplers have seen several methodological and

theoretical developments, they have seen limited practical application. We hope that

their usage in this work can motivate their usage in other contexts. In particular,

the bounding method developed in Section 4.3 is not model dependent so could be

applied in other contexts, as could the extension of the Gibbs Zig-Zag approach

to transdimensional updates. Moreover, we expect the birth-death process to be

applicable in wider applications. A natural setting would be in mixture models with

an unknown number of components. A further possibility would be the incorporation

of global jump moves in fixed-dimensions to improve the mixing of the inherently

local PDMP dynamics. In the context of PDMP samplers for variable selection,

the combination of variable selection dynamics with the Gibbs Zig-Zag approach

for updating hyperparameters efficiently is an important advancement, which can

avoid the use of fixed spike and slab weights. Finally, the median matching heuristic

developed for the swap moves may be useful in other contexts.



Chapter 5

Diffusion piecewise exponential

models

The content of this chapter is based on the paper

L. Hardcastle, S. Livingstone, and G. Baio. Diffusion piecewise expo-

nential models for survival extrapolation using Piecewise Deterministic

Monte Carlo. arXiv preprint arXiv:2505.05932, 2025

available on arxiv and currently undergoing the journal review process.

5.1 Introduction
This chapter develops a novel prior specification for the piecewise exponential model

allowing for the principled inclusion of prior information to inform extrapolation of

the hazard function beyond final event times y+. Piecewise models are increasingly

used to model survival in HTA analyses. This allows for flexible, data-driven

inference of hazards during the observation period. In each of the examples discussed

in Section 2.2, however, extrapolations are either driven by behaviour of the hazard

function inferred during the observation period, external data included in the model,

or both, and are often sensitive to modelling assumption, e.g the placement of knots

beyond y+.

In Section 2.2.3 we reviewed several recent advances in the incorporation of

explicit prior information to inform extrapolations. We adopt two primary consid-

erations for specifying this prior information: i) Assumptions about the form of
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this prior information should be minimal allowing the analyst maximal flexibility in

its specification [Mikkola et al., 2023]. ii) The prior should be at least moderately

informative during the extrapolation period. We argue, given the often sparse nature

of data in these applications, that specification of an informative prior is the only

way to ensure sensible inference in the extrapolation period.

5.1.1 Our contributions

We introduce the Diffusion Piecewise Exponential Model. The piecewise exponential

model is defined by a piecewise constant log-hazard function,

logh(y) =
J

∑
j=1

α j1
(
y ∈ (s j−1,s j]

)
, (5.1)

where {α j}J
j=1 are a sequence of local log-hazards, and {s j}J

j=0 are a sequence of

knot locations with s0 = 0. Explicitly, our contributions are as follows.

In Section 5.2, we introduce a novel prior formulation for the sequences {α j}J
j=1

and {s j}J
j=0, allowing for the principled combination of inferences for the observa-

tion period, primarily driven by the data, and inferences for the extrapolation period,

primarily driven by prior information. This prior for {α j}J
j=1 is given by the dis-

cretisation of a diffusion, with drift function used to encode strong prior information

about the long-term behaviour of the hazard function. Notably, restrictions on the

form of the drift are minimal allowing for a range of prior information to be encoded

into the model. The prior for {s j}J
j=0 is given by a Poisson point process. This

acts as a time change between the underlying diffusion and {α j}J
j=1 allowing for

intensity in the changes of the hazard during the extrapolation period to be informed

by those observed on (0,y+).

In Section 5.3, we introduce a novel Markov Chain Monte Carlo (MCMC)

sampling algorithm based on Piecewise Deterministic Markov Processes (PDMPs).

In particular we make use of recent developments in defining and generating these

processes to design an efficient sampler that requires minimal user tuning [Bertazzi

et al., 2023, Michel et al., 2020]. Further, to handle the transdimensional posterior

resulting from the prior on {s j}J
j=0, we extend recent results that use PDMPs to
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sample from posteriors induced by spike and slab priors [Bierkens et al., 2023a,

Chevallier et al., 2023] to more general transdimensional posteriors.

In Section 5.4 we demonstrate the flexibility of the model and prior structure,

and provide practical guidelines for its use via case studies corresponding to two

clinical data sets. We conclude with a discussion in Section 5.5.

5.2 The Diffusion Piecewise Exponential Model
Throughout we adopt the notation and assumptions introduced in Chapter 2, and

assume that we observe data, D= {yi,δi,wi}n
i=1, consisting of n independent survival

times, yi, event indicators, δi and covariate vectors wi ∈ Rp.

5.2.1 Piecewise exponential models

Piecewise exponential models [Feigl and Zelen, 1965, Ibrahim et al., 2001] are

constructed via a piecewise constant log-hazard function (5.1). Covariates can be

incorporated into (5.1) by replacing α j with ηi j = α j +w⊤
i β j. We refer to α j as the

local baseline log-hazard and β j ∈ Rp as a vector of local covariate effects, which

can encode a local proportional hazards assumption.

To complete the model specification we require priors for {α j,β j,s j}. Computa-

tional convenience is a common motivation for prior selection, primarily through the

use of independent, conjugate Gamma priors on exp(α j). Another common objective

is some degree of smoothing between local hazards, by using either a random-walk

prior on α j [Fahrmeir and Lang, 2001], Markov-Poisson-Gamma priors [Lin et al.,

2021] or priors incorporating local and global trend terms [Kearns et al., 2019].

A broader review of prior structures used for survival extrapolation is provided in

Section 2.2. The prior we introduce in the following section will contain most of

these prior structures as special cases, while providing a weakly informative prior

during the observation period.

5.2.2 Discretised Diffusion Priors

To capture prior knowledge about the long-term behaviour of the hazard we assume

that the discrete-time log-hazard process {α j}J
j=1 can be described via a continuous-

time stochastic process (α̌y̌)y̌≥0 with dynamics governed by the stochastic differential
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equation

dα̌y̌ = µ(α̌y̌)dy̌+dWy̌, α̌0 = a0, (5.2)

with drift µ(α̌y̌), where (Wy̌)y̌≥0 is a standard Brownian motion [Oksendal, 2013].

The random variables α1, ...,αJ are then defined through the relation α j := α̌ jσ2 ,

where σ2 is a step size defined later in this section. The primary motivation behind

this prior is that information about the evolution of the hazard can be encoded into

µ(α̌y̌). During the observation period, where data are more abundant, this acts as a

weakly informative prior with limited impact on the resulting inference. However,

as observations become sparser and the hazard is extrapolated beyond y+, this prior

naturally becomes increasingly informative, allowing for long-term inferences to be

driven by expert opinion encoded through µ(α̌y̌).

Previous works have utilised diffusions as priors for hazard functions, including

Aalen and Gjessing [2004] in which the hazard function is modelled as a squared

Ornstein-Uhlenbeck process and Roberts and Sangali [2010] in which µ(α̌y̌) is

defined such that the resulting diffusion is a stochastic perturbation around a pre-

specified hazard function. The challenges of working directly with diffusions are

primarily computational. Diffusions of interest rarely have tractable solutions, and

therefore need to be finely discretised, increasing computational cost. To combat

this, our approach involves a hierarchical formulation in which the numerical dis-

cretisation is dictated by the knot locations {s j}J
j=1, which in turn are sampled from

an underlying process, and a prior on the discretisation step-size. This allows for

more parsimonious and computationally convenient hazard functions to be specified.

More details are given in Section 5.2.3.

5.2.2.1 Example choices of µ(α̌y̌)

We briefly outline some example choices for µ(α̌y̌), with their behaviour illustrated

in Figure 5.1. A first trivial example is to set µ(α̌y̌) = 0. The underlying diffusion

is then a Brownian motion and the discretised version recovers the random walk

prior [Fahrmeir and Lang, 2001]. In practice this corresponds to having no expert

opinion about the long-term behaviour of the hazard, with credible intervals for the
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log-hazard increasing in width at a constant rate as y → y∞. This assumption will

often contradict available prior information, however, and can be improved upon in

the following examples.

Stationary distributions: There will often be prior information available

about a range of plausible values for the hazard function in the extrapolation

period. In our framework this is encoded as a Langevin diffusion, such that

µ(α̌y̌) = ∇ log fψ(α̌y̌)/2, where fψ(α̌y̌) is the density of the required stationary

distribution for the log-hazard, with parameters ψ . We consider log-Normal and

Gamma (equivalently Normal and log-Gamma) stationary distributions for the hazard

function (equivalently log-hazard function). The required drifts are then given by

µLN(α̌y̌) =
1

ψ2
(α̌y̌ −ψ1), µG(α̌y̌) = ψ1 −ψ2 exp(α̌y̌). (5.3)

Underlying hazards: The stochastic perturbation approach introduced by

Roberts and Sangali [2010] can also be incorporated into our framework. In short

we suppose that we have access to a known hazard function h0(y) that quantifies our

belief about how the hazard function evolves in the extrapolation period derived, for

example, from data from previous clinical trials. A suitable drift function can then

be derived by viewing h0(y) as the solution to an autonomous ordinary differential

equation,
dh0(y)

dy
= g(h0(y)), µ0(α̌y̌) = g(α̌y̌).

In Roberts and Sangali [2010], the absolute value of the diffusion is used to map

the diffusion from R to R>0. In our case g(α̌y̌) requires a final change of variables

to be transformed to a drift for the log-hazard. As a running example, we consider

the case where h0(y) corresponds to a Gompertz hazard function. This is a natural

choice as the Gompertz distribution is often used to model long-term survival in

the general population [Thatcher, 1999], and therefore intuitively should provide

sensible inferences for the extrapolation period. In our framework this ensures

estimates of mean survival in the population of interest are consistent with those

seen in the (usually healthier) general population. The corresponding stochastic
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Figure 5.1: Prior simulations for h(y) under different specifications for µ(α̌y̌). (Left) Ran-
dom Walk prior µ(α̌y̌) = 0. (Centre) Gaussian Langevin prior (5.3). (Right)
Gompertz prior dynamics (log-linear drift) (5.4).

differential equation has a linear drift

µ(α̌y̌) = ψ, (5.4)

where ψ is the scale parameter of the required Gompertz distribution. The derivation

of this quantity is provided in Appendix C.

Time-varying drifts: The above examples have utilised time-homogeneous

drift functions. This is, however, not a necessary requirement. In particular, expert

opinion on the evolution of the hazard function will often evolve with time. A more

flexible class of diffusions can therefore be defined with time-varying drifts µ(α̌y̌,y).

We investigate this possibility further in Section 5.4.2.

5.2.2.2 Discretisation

As noted previously, stochastic differential equations rarely have analytic solutions

and therefore implementation requires (5.2) to be discretised. The standard approach

is the Euler-Maruyama discretisation [Platen and Bruti-Liberati, 2010]

α̌( j+1)σ2 = α̌ jσ2 +θ j+1, θ j+1 ∼ Normal(σ2
µ(α̌ jσ2),σ2). (5.5)
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where σ2 is the step size, for 1 ≤ j ≤ J. Note the slight abuse of notation, with

{α̌ jσ2}J
j=1 now used to denote the discretised version of (α̌y̌)y̌≥0. It is well estab-

lished that (5.5) can be numerically unstable when µ(α̌ j) is not globally Lipschitz

[Roberts and Tweedie, 1996]. In our application this condition is particularly re-

strictive and is not satisfied, for example, by the log-Gamma Langevin drift (5.3).

More broadly, it is unrealistic to ask practitioners without a mathematical back-

ground to carefully check whether the drifts they elicit meet this condition before

implementation, and an ideal generalisable prior would not rely on a Lipschitz drift.

To mitigate instabilities when considering non-Lipschitz drifts we utilise a

recently introduced scheme based on skew-symmetric innovation densities [Iguchi

et al., 2024],

α̌( j+1)σ2 = α̌ jσ2 +θ j+1, f0(θ j+1 | α̌ jσ2)∝

(
1+ tanh(µ(α̌ jσ2)θ j+1)

)
φ(θ j+1 |σ

2).

(5.6)

Here φ(· | σ2) is the density of a Normal(0,σ2) random variable, and 1 +

tanh(µ(α̌ jσ2)θ j+1) is a skewing term corresponding to the cumulative distribu-

tion function of a logistic distribution evaluated at µ(α̌ jσ2)θ j+1.1 Similarly to the

Euler-Maruyama method this approach introduces approximation error that vanishes

as σ → 0.

Intuitively, while the Euler-Maruyama method shifts θ j+1 in the direction of

the drift, the skew-symmetric scheme skews θ j+1 in the direction of the drift. This

difference is depicted in Figure 5.2 for fixed σ and increasing values of µ(α̌y̌). In

Iguchi et al. [2024] the authors show that (5.6) is more robust than (5.5), both to

the choice of σ and to non-globally Lipschitz µ(α̌y̌). In both of the above cases we

initialise the process at α̌0 ∼ Normal(0,σ2
0 ). In Section 5.3.5 we will also show that

this approach is computationally advantageous, when combined with the prior for

{s j}J
j=1 introduced in the following section.

To complete the specification of the above process, we place an exponential

1In fact, this construction is more general in that any CDF of a centred symmetric random variable
is sufficient.



5.2. The Diffusion Piecewise Exponential Model 98

0.0

0.2

0.4

0.6

0.0 2.5 5.0
θ

f(
θ)

Euler−Maruyama Skew−Symmetric = 1 = 2 = 3 = 4

Figure 5.2: Density functions for the innovations θ under the Euler-Maruyama (dashed) and
skew-symmetric (solid) schemes for increasing values of µ(α̌y̌) = 1,2,3,4 and
fixed σ2.

prior on σ ,

σ ∼ Exponential(a),

corresponding to a penalised-complexity prior [Simpson et al., 2017]. This prior

shrinks the innovation standard deviation towards 0, thus shrinking the overall hazard

function towards a single constant value. In all the examples here we set the rate of

the exponential prior to a = 2. Justification for this choice is provided in Appendix

C, however we expect inferences to be generally unaffected for sensible choices of a.

5.2.3 A prior for knot locations

The specification of the model is completed with a prior for the knot locations,

{s j}J
j=1. The standard approach is for {s j}J

j=1 to be fixed a priori, for example at set

quantiles of observed event times or at regular intervals [Murray et al., 2016]. The

resulting hazard, however, will be sensitive to this specification, particularly in the

absence of data during extrapolation period.

We address these issues directly by assuming that {s j}J
j=1 arise from a Pois-

son Point Process with intensity γ on the interval (0,y∞), denoted throughout as

{s j}J
j=1 ∼ PPP(γ,(0,y∞)). This can be expressed equivalently as

J ∼ Poisson(y∞γ), {s j}J
j=1

iid∼ Uniform(0,y∞). (5.7)

This prior (and variations) have been considered previously [Chapple et al., 2020,
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Demarqui et al., 2012]; however, this specification is commonly avoided due to the

computational challenges it introduces.

Note that, in contrast to [e.g Roberts and Sangali, 2010], in the above construc-

tion the discretisation step size σ2 is independent of the distance between knots

(s j − s j−1). Because of this, the prior for logh(y) is in fact given by (5.2) through a

random time-change defined by (5.7), such that a priori

logh(y) = α j = α̌ jσ2, j = min{l : y < sl}.

This construction can be viewed as first simulating a numerical skeleton {α̌ jσ2}J
j=1,

via (5.6) and then mapping this to the time-scale of interest, (0,y∞), via (5.7).

Under this prior the number of knots, and therefore the flexibility of the hazard

function, is directly controlled by γ . The diffusion speeds up when the data require a

more volatile hazard and slows down when the hazard is less volatile, adapting to the

data without being constrained by the prior. In terms of extrapolation, the advantage

of this formulation is that γ determines the speed at which µ dominates the long-term

hazard. Intuitively, if the hazard function is more volatile in the observation period

we should expect the influence of the data to decay faster in the extrapolation period

(with the prior taking over faster). Conversely, if the hazard is less volatile the data

should remain informative for longer during the extrapolation period.

We consider two approaches for specifying γ . The first is to consider a set of

models for a fixed number of values for γ . These models can then be compared

using information criteria. A second, fully Bayesian approach places a prior γ ∼

Gamma(a,b), equivalent to a Negative Binomial prior on J. We compare these

methods further in Section 5.4.1.

5.2.4 Incorporating covariates

We have focused so far on specification of a prior for the log-baseline hazard and

corresponding knots. Both priors extend to the case when covariates are incorporated

in the model.

For the underlying diffusion, it suffices to provide a specification for each β j
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process, independently of the diffusion for α j. As β j is a covariate effect, a natural

process to specify is a Langevin diffusion with Gaussian stationary distribution.2

Setting the mean to 0 implies the expected long-term treatment effect vanishes as

y → ∞. In Section 5.4.2 we show that µ(β j,y) can be modified to incorporate a

waning long-term treatment effect, a common and important assumption in many

HTA analyses [Jackson et al., 2017]. Specifying a non-zero mean would imply a

long-term proportional average treatment effect, but this would need to be supported

by strong clinical opinion. Similarly for the prior for {s j}J
j=1, we define a set of

knots {sk
j} independently of the set of knots for the baseline log-hazard.

5.3 Posterior sampling
The diffusion piecewise exponential model generates several challenges for com-

monly used Bayesian inference engines primarily associated with the prior on

{s j}J
j=1. The resulting posterior is transdimensional for which the standard sampling

approach is to use reversible jump MCMC [Green, 1995]. These samplers require

the specification of a between-model proposal distribution that must be carefully

tuned to achieve modest acceptance rates. This results in a noticeable increase in

computational cost due to the additional likelihood evaluations required at each

transdimensional step.

Note, in addition to the above, that the fixed {s j}J
j=1 model can still present sam-

pling challenges. The potential function, U(x) :=− logπ(x) is non-Lipschitz, caus-

ing instability in gradient-based methods such as the Metropolis Adjusted Langevin

Algorithm (MALA) [Roberts and Tweedie, 1996] and Hamiltonian Monte Carlo

(HMC) [Livingstone et al., 2019]. Further, in the presence of high censoring rates

(which is precisely the scenario we are considering), posteriors of survival models

can exhibit high skew, again challenging standard Metropolis-Hastings methods

[Hird et al., 2020].

To circumvent these issues we utilise sampling techniques based on continuous

time Piecewise Deterministic Markov Processes (PDMPs) [Fearnhead et al., 2024].

2Note this is equivalent to specifying an Ornstein-Uhlenbeck prior for β j.
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These processes are non-reversible (e.g. Andrieu and Livingstone [2021]) and use

ballistic motion and gradient information to efficiently explore the target distribution.

Further, in contrast to MALA and HMC, they have constant velocity and require min-

imal tuning making them more robust to non-Lipschitz potentials. Recent works have

also shown that they are able to sample from transdimensional posteriors induced by

spike and slab priors without the need for additional likelihood evaluations or tuning

of between-model proposals [Chevallier et al., 2023, Bierkens et al., 2023a]. The key

contribution of this Section is to show how these results can be extended to more gen-

eral transdimensional posteriors. A concise presentation of the algorithm is given in

Appendix C. Code to implement these model is available at https://github.com/

LkHardcastle/DiffusionPiecewiseExponential.jl (see also Section 6.2).

We briefly note that for posterior sampling we use a non-centred parameterisa-

tion of the model [Betancourt and Girolami, 2015]

θ̃0 = α0 θ̃ j = σ
−1

θ j.

This avoids strong posterior dependence between α j’s and eliminates funnel-shaped

geometry that can arise when simultaneously updating θ and σ (e.g. Betancourt and

Girolami [2015]).

5.3.1 The Bouncy Particle Sampler and Forward event chain

Monte Carlo

Piecewise Deterministic Monte Carlo methods have emerged as a promising class of

non-reversible processes for posterior sampling in challenging Bayesian inference

problems. In this work we use a variation of the bouncy particle sampler [Bouchard-

Côté et al., 2018], known as Forward Event Chain Monte Carlo [Michel et al., 2020].

These methods were reviewed in Chapter 3.

Given the current sampler time, t, recall that the bouncy particle sampler is

defined on an state-space augmented with velocities zt = (xt ,vt) ∈ Rd ×Sd−1, with

x = (θ̃ ,σ) and d = J(p+1)+1. The continuous-time deterministic evolution of zt

https://github.com/LkHardcastle/DiffusionPiecewiseExponential.jl
https://github.com/LkHardcastle/DiffusionPiecewiseExponential.jl
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is given by the system of ordinary differential equations

dxt

dt
= vt ,

dvt

dt
= 0,

which results in vt driving the linear evolution of xt . This evolution is interrupted

by a jump process, with jump times given by the inhomogeneous event rate, ΛE(t),

and the transformation of zt at these times given by the deterministic map Q. For the

standard bouncy particle sampler these are defined as

Λ
E(t) = max{0,⟨vt ,∇U(xt)⟩}+Λ

R,

Q : (xt ,vt) 7→ (xt ,vt −2v∇U
t ).

Recall from Section 3.4, ΛR ∈ R≥0 is the refreshment rate, with ΛR > 0 required to

ensure the process is irreducible, and v∇U
t arises from the orthogonal decomposition

of vt with respect to ∇U(xt), vt = v∇U
t + v⊥t , with v⊥t ⊥ ∇U(xt). Events associated

with the first term of ΛE(t) only occur when ⟨v,∇U(xt)⟩ > 0, i.e when the process

is moving into areas of lower posterior mass, resulting in fast convergence towards

areas of high posterior mass, meanwhile the map Q corresponds to a reflection of the

velocity off the tangent to the potential.

A well-known drawback of the bouncy particle sampler is that ΛR requires

careful tuning, and that optimal values of ΛR can result in approximately 78% of

events being refreshments [Bertazzi and Bierkens, 2022]. This replaces the ballistic

motion of the process with increasingly diffusive dynamics, inhibiting sampling

efficiency. To remedy this issue the forward event chain method [Michel et al., 2020]

replaces the the deterministic mapping Q with a jump kernel stochastically updating

both of (v∇U
t ,v⊥t ). This incorporates refreshment into reflections while ensuring the

process targets the correct stationary distribution. In particular, v⊥t is re-sampled as

ṽ⊥t such that ⟨v⊥t , ṽ⊥t ⟩ ≥ 0, reducing the diffusivity as compared to full refreshments.

Further, the update to v⊥t need not occur at every event, but can be set to update at the

first event after each time given by a homogeneous Poisson process with rate ΛR∗
.

To understand the robustness these alterations introduce we can consider the
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process when ΛR∗
is poorly tuned. In the case ΛR∗

is set to be too large the refresh-

ment rate is capped by the rate at which reflections occur. Conversely, when ΛR∗
is

too small, the stochastic updates of v∇U
t ameliorate the irreducibility issues observed

in the original bouncy particle sampler. In contrast, poor tuning of the refreshment

rate ΛR in the bouncy particle sampler can significantly impact the resulting process.

The forward event chain approach has seen uptake in the statistical physics literature,

but we believe this to be the first application to an applied Bayesian statistics problem.

The specific strategies from Michel et al. [2020] used in this work are outlined in

Appendix C.

5.3.2 Generating the process

The deterministic dynamics and jump kernel of the bouncy particle sampler and

forward event chain Monte Carlo are simple to generate, but the inhomogeneous

Poisson process associated with ΛE(t) is typically more challenging, and an area

of active research [Andral and Kamatani, 2024, Corbella et al., 2022, Sutton and

Fearnhead, 2023]. The primary method we use to generate this event rate is the

splitting schemes approach of [Bertazzi et al., 2023] (Section 3.5.3.1), which alter-

nates between updating the deterministic and event rate processes over a given time

step ∆t. Without adjustment this scheme introduces a small approximation error

into the posterior, which could in principle be corrected for using a non-reversible

Metropolis–Hastings filter as described in Bertazzi et al. [2023], though we found

this to be unnecessary here. Note that this replaces the continuous time sample paths

of the original process with a discrete time approximation.

A second exact scheme we consider is to update σ using conditional Metropolis-

within-Gibbs steps at exponential times in the sampler [Sachs et al., 2023]. For the

random walk, Gaussian Langevin and Gompertz drifts, the potential for θ̃ is then

convex and the process can be generated exactly by determining event times using a

line search [Bouchard-Côté et al., 2018, Example 1].

Of the two schemes we prefer the first. Both algorithms have tuning parameters

that are easy to specify, although we find this is marginally easier to do in the former

case. Further the sampling efficiency of the second method seems to be inhibited,
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both by reversible updates for σ , and conditional updating that struggles to explore

the geometry of the posterior. Finally, the splitting method allows for a general drift

function µ in the diffusion prior to be specified, which is an important goal of this

work. Full algorithms for both methods are produced in Appendix C.

5.3.3 Spike and slab PDMPs

Transdimensional posteriors are often induced by priors that are mixtures of continu-

ous and atomic components (commonly referred to as spike and slab priors) of the

form

π0(dθ̃ j) ∝ (1−ω)δ0(dθ̃ j)+ω f0(dθ̃ j), (5.8)

where δ0 is a Dirac mass at 0, f0 is a continuous density and ω ∈ (0,1). In all of our

examples we set ω = 0.5.

These posteriors can be sampled from directly using the forward event chain

sampler, by moving from the continuous component to the atomic component at

exactly the point when θ̃ intersects the hyperplane {θ̃ : θ̃ j = 0} [Bierkens et al.,

2023a, Chevallier et al., 2023]. Equivalently this can be seen as setting v j 7→ 0 at this

point, with an appropriate renormalisation step when v ∈ Sd−1. For forward event

chain Monte Carlo, v j is then refreshed after an exponential time, τ with

τ ∼ Exponential
(

ω

1−ω
f0(0)|J |

)
, (5.9)

where |J | is the Jacobian associated with renormalising v. The remaining terms in

this rate are given by a posterior ratio, between the model where θ̃ j is on the slab

and θ̃ j is on the spike. Homogeneity of (5.9) arises due to the transdimensional

updates occurring at a point where the likelihoods in both models are equivalent and

therefore cancel, along with the majority of prior terms, simplifying this posterior

ratio. When multiple components are considered simultaneously the next unsticking

time is simply given by summing together the unsticking rates, with the component

to update then selected uniformly at random.

The construction of (5.9) is remarkable as, in contrast to most reversible jump

MCMC methods [Green, 1995], transdimensional updates do not require either
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the specification of tuning parameters or likelihood evaluations. Following the

terminology of Bierkens et al. [2023a] we will refer to these dynamics as sticky

PDMP dynamics from this point forward.

5.3.4 Sticky PDMPs for knot selection

While the computational efficiency and lack of tuning parameters in the above con-

struction is appealing they have not yet been applied to transdimensional posteriors

beyond those induced by spike and slab priors. We now show that the above dy-

namics can be extended to sampling the location of knots under a Poisson process

prior following a two step procedure: i) Given a fixed set of candidate knots, use

sticky PDMP dynamics to update which knots are active in the model and which

are inactive. ii) Use a Gibbs step to update the set of candidate knots solely through

updating the set of inactive knots.

5.3.4.1 Updating given fixed candidate knot locations

We begin by considering the simpler case in which a fixed a set of unique candidate

knot locations {mi}M
i=1 with scaled innovation parameters θ̃ ∈ RM are chosen. We

will assume that this set is composed of a set of active knots {s j}J
j=1 such that

mi ∈ {s j}J
j=1 implies that θ̃i ̸= 0 almost surely, and a set of inactive knots, {r j}M−J

j=1 ,

such that mi ∈ {r j}M−J
j=1 implies θ̃i = 0. Assuming a priori that P(mi ∈ {s j}J

j=1) = ω

is equivalent to defining a spike and slab prior introduced in (5.8) independently for

each θ̃i, with f0(dθ̃i) corresponding to prior density for θ̃i induced by (5.6).

Sticky PDMP dynamics can then be directly applied without modification,

with moves onto and off the spike updating membership of {s j}J
j=1 and {r j}M−J

j=1 .

When viewed in α-space, the resulting dynamics split and merge the trajectory of

neighbouring α’s in continuous time, showcasing a natural connection to split-merge

reversible jump moves used in several settings [Brooks et al., 2003]. These dynamics

are illustrated in Figure 5.3.

Note, these dynamics cannot be immediately extended to the model with a

Poisson process prior, as the set of candidate knots is uncountable. Each element

of {r j} has an associated Poisson clock with rate defined in (5.9), and therefore the
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Figure 5.3: Trajectories for the PDMP sampler for knot selection viewed on α-space (left)
and θ -space (right). (Blue) First coordinate, (Orange) second coordinate of both
α and θ .

resulting combined unsticking rate will be infinite unless only a countable number

of them are non-zero.

5.3.4.2 Updating the set of candidate knots

The second part of this procedure circumvents this explosivity, by initialising the

sampler with a finite set of candidate knots that is then regularly updated via a

Gibbs step. To define this update, we first let the intensity γ := ωΓ with ω defined

in equation (5.8) and Γ > 0. This does not alter the prior introduced in Section

5.2.3. Under this specification the set of (now random) candidate knot locations

{mi}M
i=1 ∼ PPP(Γ,(0,y+)), and {s j}J

j=1 can be viewed as a thinned version of this

process with thinning probability ω . As in the previous section, this is equivalent to

defining a spike and slab prior (5.8) independently for each θ̃i.

A valid and computationally efficient Gibbs step then proceeds by re-sampling

{r j}M−J
j=1 ∼ PPP((1−ω)Γ,(0,y+)). As these knots are inactive, updating their loca-

tion does not alter the value of the likelihood and they can therefore be drawn directly

from the prior. Conversely, if {mi}M
i=1 was updated this would require a Metropolis

correction with corresponding likelihood evaluations. These Gibbs updates can occur

at fixed or exponentially distributed times in the sampler [Sachs et al., 2023]. Further,

if a hyperprior has been placed on γ , this can also be updated at these times. These

steps are shown in full in the algorithms presented in Appendix C.
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5.3.5 Mixing time of the process

The efficiency of the above process is dependent on the value of f0(0), i.e the

continuous part of the prior for θ̃ j evaluated at 0. This can be seen through (5.9), as

smaller values of f0(0) result in longer sticking times at 0, requiring the process to

be run for longer to obtain the same estimates. We can in fact formalise this intuition

to compare the mixing times of the process under different parameterisations of the

underlying diffusion.

Proposition 1. Given a fixed set of candidate knots, let τS
0 (respectively τEM

0 ) be the

recurrence time to the null model (i.e the model when all knots are inactive) under

the skew-symmetric parameterisation (respectively the Euler-Maruyama parameteri-

sation). Then

E[τS
0 ]≤ E[τEM

0 ]. (5.10)

Proof. Following [Bierkens et al., 2023a, Remark 2.4], as the process is invariant the

expected recurrence time to the null model is inversely proportional to the expected

occupation time in the null model,

E[τ0] ∝

(
ω

1−ω
f0(0 | θ̃ ,σ)|J |

)−M

∝ f0(0 | θ̃ ,σ)−M. (5.11)

Then note that under the skew-symmetric parameterisation, f S
0 (0 | θ̃ ,σ) is the density

of a standard Normal distribution evaluated at 0, as the skewing term equals one

when θ̃ j = 0. Further under the Euler-Maruyama scheme the density, f EM
0 (· | θ̃ ,σ) is

that of a Normal(σ2µ(α j−1),1) distribution. Therefore f EM
0 (0 | θ̃ ,σ)≤ f S

0 (0 | θ̃ ,σ)

and (5.10) follows directly.

A direct consequence of Proposition 1 is that we can expect faster mixing times

under the skew-symmetric parameterisation. We support this argument empirically

by examining the performance of the sampler under each parameterisation for

identical µ(α j). In particular we consider mean 0 Gaussian Langevin diffusions

with standard deviations φ2 = 2 and φ2 = 0.2, for increasing values of fixed σ . Note

that the resulting µ(α j) is Lipschitz and the approximation of the drift should be

stable under both parameterisations.
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Figure 5.4: Comparison of efficiency of the PDMP sampler under the skew-symmetric and
Euler-Maruyama parameterisations for different fixed values of σ . (Diffusion 1)
µ(α j) = α j/22, (Diffusion 2) µ(α j) = α j/0.22. The dotted line indicates the
true value ω = P(θ = 0) = 0.5.

Figure 5.4 shows the resulting estimates of ω . For the case φ2 = 2, µ(α) is

relatively flat and so both parameterisations provide good sampling for small values

of σ , however the Euler-Maruyama parameterisation becomes increasingly unstable

as σ increases. For φ2 = 0.2 the Euler-Maruyama parameterisation remains stuck

either on or off indicating noticeably slower mixing. There is larger variance in the es-

timates provided by the skew-symmetric parameterisation for larger values of σ , but

the sampling is clearly improved compared to the Euler-Maruyama parameterisation.

5.3.6 Generating extrapolations

We note that the sampling methodology presented in this section has been designed

to sample from parameters corresponding to the observed data period. Sampling

parameters for the extrapolation period is easily handled using the skew-symmetric

scheme directly along with posterior samples for (αM,σ ,γ). This direct sampling

is more efficient than using the PDMP in the absence of data, and helps mitigates

strong posterior dependencies that arise over extended time horizons.

Discretising the diffusion does introduce a first order bias that vanishes as

σ → 0. To reduce the bias in the extrapolation period, the (γ,σ) can be rescaled

during this procedure. Full details are provided in Appendix C.
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Figure 5.5: (Left) Inferred hazards under the reversible jump sampler (Orange) and the
PDMP sampler (blue) with median hazards (solid) and 95% credible intervals
(dashed) reported. (Right) Trace plots for log(h(1.2)) under the two samplers.
Note that the reversible jump sampler is struggling to fully explore the tails of
the hazard function.

5.3.7 Comparison to reversible jump

To understand the efficiency of the developed methodology we compare the sampler

to a comparable reversible jump scheme consisting of alternating an update for

{s j}J
j=1 by either adding or removing a knot at each iteration with a random walk

Metropolis update for θ̃ . We prefer the Random Walk to other choices of proposal

kernel due to its robustness to tuning parameters that can be challenging to tune

correctly within transdimensional sampling algorithms [Livingstone and Zanella,

2022].

We fit the diffusion piecewise exponential model to the Colon data set anal-

ysed in Section 5.4.1 using both the introduced PDMP sampler and the reversible

jump sampler run for the same computational budget. Plots of the resulting hazard

functions are shown in Figure 5.5, along with trace plots for h(1.2). Notably, the

reversible jump sampler is unable to sufficiently explore the tails of the posterior for

the hazard function, and therefore underestimates posterior uncertainty.

It is natural to wonder how the design choices we have made affect the efficiency

of the reversible jump sampler. In Appendix C we show results for alternative values

of tuning parameter in the reversible jump proposal and full details of the algorithm.

Further, we provide a comparison to the sampler introduced by Chapple et al. [2020]
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for a similar model specification.

5.4 Applications

5.4.1 Colon Cancer data

Our first illustrative application is to a dataset consisting of survival times from

191 colon cancer patients, of whom 22 were censored before 3 years and 104 were

administratively censored at 3 years. This data is available via the survextrap R

package [Jackson, 2023]. To implement the model the practitioner is required to

specify two quantities, the hyperprior (or fixed value) for γ , and the drift µ(α j).

5.4.1.1 Specifying γ

We consider both methods for the specification of γ highlighted in Section 5.2.2,

namely i) Selecting an optimal value of γ based on information criteria. ii) Placing a

hyperprior on γ .

Information criteria are commonly used when selecting a model for survival

extrapolation [Baio, 2020]. These results must be combined with an assessment

of the plausibility of extrapolated hazards, however, as information criteria only

assess goodness-of-fit within the observation period, providing no guarantees for

the quality of extrapolations. As a result, analysts are often faced with the choice of

either selecting a model that fits the observed data poorly or a model that exhibits

unrealistic long-term behaviour. We note that the use of a more flexible model is

not an automatic remedy to this issue. If no additional information is provided to

guarantee the quality of extrapolations, then the above scenario will always be a

possibility.

The diffusion piecewise exponential model avoids this trade-off through the

specification of µ , breaking the dependence between the model fit to the observation

period and the limiting behaviour of the hazard function. As such information

criteria can be used to select γ . The practical impact of this choice beyond y+, is to

control the rate at which the influence of the data in the observation period decays.

Intuitively, if the observed hazard is more volatile, we can expect this influence to

decay faster in comparison to a more stable hazard function.
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In this work we use the leave-one-out information criteria estimated using

Pareto-smoothed importance sampling [Vehtari et al., 2017] due to its stability

properties compared to alternative criteria. The same criteria are used by Jackson

[2023] to determine the number and location of knots when using M-splines. We

believe that our approach is simpler, however, as it requires only the selection of a

single parameter.

We find the approximation to the leave-one-out cross-validation score does

not always sufficiently penalise overly complex models, resulting in implausibly

shaped hazard functions. We therefore suggest that this score should be minimised,

while also ensuring the shape of the hazard function remains plausible. The optimal

value for the colon cancer data, using µ(α j) = 0, is γ = 3.5. The full results of this

procedure are available in Appendix C.

For the second approach, to allow for consistent comparisons with the above

procedure we specify

γ ∼ Gamma(3.5,1).

As noted previously we can view this as a Negative Binomial prior. Previous

applications of Negative Binomial priors in similar contexts have found they are less

informative than Poisson priors for J [Sharef et al., 2010]. In practice we find that

while the Negative Binomial prior is robust to the specification of the overdispersion

parameter, in the sense that posterior inferences are minimally affected, the specified

prior mean can still be influential. Therefore in practice modelling needs to be

coupled with sensitivity analysis to understand the influence of this choice.

5.4.1.2 Specifying µ(α j)

Specification of µ(α j) drives the behaviour of the hazard function during the ex-

trapolation period, and should be elicited using expert opinion or external data on

the long-term behaviour of the hazard. In particular it should not be selected using

information criteria, as this only measures predictive ability during the observation

period.

We consider various specifications of the time-homogeneous drifts outlined
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Model E[Y ] on (0,y+) E[Y ] on (0,y∞)
Random Walk (Poisson) 2.19 (2.01, 2.36) 4.73 (3.14, 6.09)
Random Walk (Neg. Binomial) 2.21 (2.02, 2.38) 4.67 (3.21, 6.06)
Log-Normal stationary (Poisson) 2.19 (1.99, 2.36) 3.80 (3.22, 4.49)
Log-Normal stationary (Neg. Binomial) 2.20 (1.99, 2.39) 3.97 (3.26, 4.82)
Gamma stationary (Poisson) 2.19 (2.01, 2.36) 4.31 (3.29, 5.52)
Gamma stationary (Neg. Binomial) 2.21 (2.01, 2.39) 4.39 (3.34, 5.57)
Gompertz (Poisson) 2.19 (2.02, 2.36) 4.43 (2.94, 5.89)
Gompertz (Neg. Binomial) 2.20 (2.01, 2.38) 4.44 (3.03, 5.84)
Log-normal parametric 2.18 (2.03, 2.32) 5.79 (4.71, 6.86)
Independent piecewise exponential 2.27 (2.11, 2.42) 5.37 (4.10, 7.34)
M-spline (final knot = 5) 2.25 (2.10, 2.40) 6.89 (4.65, 9.10)
M-spline (final knot = 10) 2.25 (2.10, 2.41) 6.57 (4.00, 8.81)
M-spline (final knot = 15) 2.26 (2.10, 2.40) 6.45 (3.65, 8.56)

Table 5.1: Mean survival estimates for the colon cancer data for the observation period
and total window of interest with 95% credible intervals. (Top) Estimates under
varying specifications of µ(α j) for both the Poisson and Negative Binomial
priors. (Bottom) Estimates from the log-normal standard parametric model, an
independent piecewise exponential model, and M-spline hazard model.

in Section 5.2.2. The use of Langevin diffusions with log-Gamma or Gaussian

stationary distributions encodes an assumption that the expected hazard function will

be constant as y → ∞. To illustrate the method in the following examples we use

Langevin diffusions with Normal(log(0.29),0.4) and log-Gamma(2,7) stationary

distributions for the log-hazard, and the Gompertz diffusion (5.4) with ψ = 0.3. For

each model generating two chains of 10,000 samples including burn-in took approxi-

mately 45 seconds. Examples of how to derive these prior drifts, full computational

and modelling details are provided in Appendix C.

5.4.1.3 Results

Mean survival estimates for each specification of µ(α j) under the Poisson and

Negative Binomial priors are presented in Table 5.1, with corresponding hazard

functions in Figure 5.6. Posterior mean survival estimates for the observation period

are almost identical under each specification of γ and µ(α j), with inferences driven

by the observed data. Similarly, µ(α j) has minimal influence on the hazard functions

in the observation period, although notably the Negative Binomial prior provides a

smoother fit than the corresponding Poisson prior.
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In contrast, mean survival estimates in the extrapolation period are highly reliant

on the information encoded in µ(α j). In particular the credible intervals under the

Random Walk and Gompertz drifts are larger than those under the Log-Normal

and Gamma Langevin drifts. This difference in behaviour can also been seen in

the hazard functions, where the credible intervals are noticeably larger under the

former prior specifications. In general, although not for the random walk prior, the

Negative Binomial specification results in larger estimates of mean survival. This is

due to the smoother hazard function inferred for the observation period, slowing the

speed of the underlying diffusion and the corresponding rate that the influence of

the prior grows. Note that this behaviour is because the prior information encodes a

typically higher hazard value than that observed at the end of the observation period.

If the converse were true, then the Negative Binomial prior would result in more

conservative estimates of mean survival. Finally, Figure 5.6 shows that the Gompertz

drift results in large credible intervals (larger in fact than the random walk prior),

suggesting this prior does not encode much information in the extrapolation period.

This is due to the exponential form of the Gompertz hazard function. As such,

extrapolations are highly sensitive to the hazard observed at the end of observation

period. We explore improvements to this specification in Section 5.4.2.

5.4.1.4 Alternative approaches

To contextualise the inferences obtained under the diffusion piecewise exponen-

tial model, we consider three alternative methods: i) The standard approach of

selecting a two-parameter parametric model using information criteria (in this case

the log-Normal parametric model) [Latimer, 2011, Baio, 2020]. ii) The piecewise

exponential model with independent priors, where the hazard at the end of the obser-

vation period is taken as the hazard for the extrapolation period [Cooney and White,

2023a]. iii) Modelling the hazard using M-splines [Jackson, 2023]. In particular, as

extrapolations are based on the placement of a final knot on (y+,y∞), we consider

inferences under three different knot locations. Full implementation details and

additional analysis are provided in Appendix C. Mean survival estimates are reported

in Table 5.1.
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Figure 5.6: Hazard functions for the colon cancer data for observation period (top) and
total period of interest (bottom) under the Poisson (left) and Negative Binomial
(right) prior specifications. Median hazard values (solid) and corresponding
95% credible intervals (dashed) are reported for varying specifications of µ(α j).

In each case mean survival estimates for the observation period are close to

those reported by the diffusion piecewise exponential model, although the spline

and independent piecewise model provide slightly larger estimates of mean survival.

We expect this to be due to the influence of µ(α j) at the end of the observation

period when less data are available. Total mean survival estimates vary significantly

between models. Note that the log-normal reports the smallest credible intervals, as

the hazard in the extrapolation period inherits the parameter uncertainty from the

observation period, and is therefore underestimating the uncertainty associated in

total mean survival.

Both the independent piecewise model and the M-spline models report far

higher values of mean survival in the extrapolation period. As the independent piece-

wise model extrapolates a constant hazard from the end of the observation period,

this estimate is large with smaller credible intervals than the diffusion piecewise

exponential model, as there is no additional uncertainty associated with the hazard as

y → ∞. Under the M-spline model, the uncertainty associated with the hazard grows

until the final knot, after which a constant hazard is extrapolated. As evidenced in the
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estimates reported in Table 5.1 the placement of this final knot is highly influential,

yet it is unclear how this knot should be placed beyond trial and error.

5.4.2 Time varying drifts

In the preceding Section we have only considered time homogeneous drift functions

to guide extrapolations. As observed in Section 5.2.2, however, the prior structure

can naturally be extended to incorporate time-varying drifts, µ(α j,y). This allows

for a far more expressive range of expert information to be encoded into the prior.

5.4.2.1 Example time-varying drifts

For the log-baseline hazard we consider two time-varying drifts

µ(α j,y) = ψ1(y)−ψ2(y)exp(α j), (5.12)

µ(α j,y) =
1

ψ2
2
(α j −ψ1(y)), (5.13)

constructed by adding time-varying parameters into the two Langevin drifts consid-

ered previously. In particular for the first drift (ψ1(y),ψ2(y)) are constructed such

that they taper between the parameters of two different Gamma distributions on a

finite given interval. As such this drift encodes a highly informative prior about the

long-term hazard, but a weaker prior to be used for the observation period. The

second drift allows the prior mean of the log-hazard to vary with time. In particular

this allows for a pre-specified hazard function, for example elicited from previous

clinical trials, to be used to guide long-term extrapolations. We note that this com-

bining of the observed hazard with a pre-specified long-term hazard bears a strong

resemblance to the blended survival approach of Che et al. [2023], albeit on the

hazard rather than survival function.

A similar consideration can be taken when incorporating covariates directly in

the model. Often in these cases, analysts will seek to encode a waning treatment

effect assumption into extrapolations [Jackson et al., 2017]. This can be done
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explicitly within our framework as

µ(β j,y) =
1

ψ2(y)2 β j, (5.14)

shrinking the treatment effect to 0 as y → ∞.

5.4.2.2 CLL-8 trial data

We apply the time-varying drifts to data from the CLL-8 trial [Williams et al.,

2017], that investigated the effect of an immunotherapy treatment in combination

with chemotherapy on survival in chronic lymphocytic leukemia (CLL) patients,

compared to survival in patients who received chemotherapy alone. Here 810 patients

were enrolled with 403 randomised to the treatment group and 407 to the control

group, with only 11.5% of patients dying during the trial. Previous analysis has noted

that there is expected to be a notable drop in S(y) after 4 years [Che et al., 2023].

In particular we compare a Langevin diffusion prior with a fixed Gamma(10,10)

distribution to one that converges to a Gamma(10,10) distribution in the extrapolation

period, specified by (5.12). We also compare the baseline Gompertz drift to another

centred around a given Gompertz hazard function (5.13). Generating two chains

of 10,000 samples including burn-in took under 2 minutes for each model, except

for the Gamma(10,10) model where poor prior specification hindered computation.

Full prior specifications, computational details and further results are provided in

Appendix C.

Survival curves for the above drifts are provided in Figure 5.7 for both the

treatment and control arms along with corresponding posterior estimates of mean

survival in Table 5.2. Expected mean survival is larger under each prior specification.

Note that compared to the data in Section 5.4.1 events are rarer near the point of

administrative censoring and therefore µ(α j,y) is more influential before y+, as

can be observed in Figure 5.7. This effect is particularly profound for the fixed

Gamma(10,10) drift, in contrast (5.12) allows for the data to remain informative for

longer before µ(α j,y) becomes influential. As can be seen in both trial arms, the

Gompertz baseline prior is highly sensitive to the value of the survival function at y+.



5.4. Applications 117

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
Time (years)

S
(y

)

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
Time (years)

S
(y

)

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Time (years)

S
(y

)

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Time (years)

S
(y

)

Model
Gamma (converging) Gamma (fixed) Gompertz (baseline) Gompertz (centred)

Figure 5.7: Survival curves for the diffusion piecewise exponential model for varying speci-
fications of µ(α j) fit to the control (left) and treatment (right) arms of the CLL-8
trial data. Curves are plotted for the observation period (top) and extrapolation
period (bottom), with y+ = 4 denoted by the dotted line. Median values for S(y)
are given by the solid lines with 95% credible intervals indicated by the dashed
lines.

Model Trial arm E[Y ] on (0,y+) E[Y ] on (0,y∞)
Gamma fixed Control 3.51 (3.36, 3.64) 4.25 (3.70, 5.03)
Gamma fixed Treatment 3.66 (3.53, 3.77) 4.67 (4.14, 5.81)
Gamma waning Control 3.55 (3.40, 3.68) 4.71 (3.83, 6.25)
Gamma waning Treatment 3.70 (3.58, 3.80) 5.54 (4.37, 7.95)
Gompertz Baseline Control 3.56 (3.41, 3.69) 6.61 (3.72, 11.30)
Gompertz Baseline Treatment 3.70 (3.58, 3.80) 9.78 (4.80, 13.11)
Gompertz centred Control 3.58 (3.44, 3.71) 10.75 (8.35, 12.18)
Gompertz centred Treatment 3.71 (3.60, 3.82) 12.17 (10.65, 13.08)

Table 5.2: Estimates for mean survival for the CLL-8 trial in the control and treatment arms
when modelled independently under various prior assumptions. Expected mean
survival and 95% credible intervals are reported for the observation period and
the entire window of interest.
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Figure 5.8: (Left) Hazard functions for the control and treatment arms with corresponding
95% credible intervals during the observation period. (Right) Log-hazard func-
tions for the control and treatment arms (under both waning and non-waning
assumptions) during the extrapolation period.

Treat. arm E[Y ] on (0,y+) E[Y ] on (0,y∞) E[Yt]−E[Yc]
Control 3.55 (3.41, 3.67) 5.62 (4.84, 6.60) —
Treatment (fixed) 3.73 (3.61, 3.82) 6.34 (4.56, 9.02) 0.73 (-1.07, 3.17)
Treatment (waning) 3.73 (3.61, 3.82) 6.29 (4.90, 7.73) 0.68 (-0.64, 1.87)

Table 5.3: Estimates for mean survival and corresponding 95% credible intervals for the
CLL-8 trial in the control and treatment arms (under both waning and non-waning
assumptions) during the observation period, (0,y+), and the entire window of
interest, (0,y∞). The final column reports estimates of the difference between
mean survival for the treatment and control groups.

As a result, minor differences in the data (as seen between the two trial arms) give

rise to very different long-term survival estimates. In contrast, the centred hazard

provides a far more controlled method for incorporating informative long-term

information.

We conclude by investigating the model when covariates are directly incorpo-

rated rather than modelled independently. Here we use a Gamma(5,15) Langevin

diffusion for the baseline log-hazard and compare a Normal(0,1) Langevin drift for

µ(βy), with (5.14) where the waning begins after y+ resulting in identical inferences

during the observation period. Hazards for the observation period and log-hazards

for the extrapolation period are shown in Figure 5.8, with mean survival estimates

provided in Table 5.3.

From the hazard functions, there is clear evidence of some non-proportionality
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in the observation period, and some weak evidence to suggest the treatment is

beneficial compared to the control, that is corroborated by mean survival estimates.

Examining the extrapolation period, both drifts for the treatment arm imply that the

expected hazard should converge to the hazard for the control arm. For the fixed

Langevin diffusion, uncertainty then arises from both the process for α j and β j. In

contrast, the treatment hazard converges faster to the hazard of the control arm, and

the associated credible intervals are far smaller. This is reflected in the estimates of

the difference in mean survival where the waning assumption reduces the uncertainty

in the estimates of difference in mean survival. We note that treatment effect waning

is a strong and untestable assumption that in practice will require expert justification

to be incorporated.

5.5 Discussion

In this work we have introduced the diffusion piecewise exponential model, a

novel prior structure combining flexible modelling of the hazard function in the

observation period with expert information in the extrapolation period within a

principled Bayesian framework.

No model can automatically guarantee plausible extrapolations. The diffusion

piecewise exponential model is no exception, with reasonable extrapolation relying

on sensible specification of µ . Our approach has key advantages, however, compared

to current state-of-the-art methods. First, as demonstrated through the variety of drifts

used in Section 5.4, µ is able to incorporate a wide-range of prior information, with

minimal restrictions on the form this should take. Second, specification of this prior

information is only weakly informative during the observation period, becoming

increasingly influential as the data become sparse. Finally, the assumptions encoded

into this prior are explicit and easy to interrogate. This is a core part of the process

of appraising the cost-effectiveness of novel medical interventions, and as such our

model promotes improved decision making and analysis by both pharmaceutical

companies and regulatory bodies.

In this chapter, we have focused on the process of incorporating prior informa-
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tion into long-term hazard extrapolations assuming that this information has already

been elicited from subject-matter experts. Formalising the process of eliciting this

information is the subject of future work, ensuring that processes exist that allow for

information to be translated from expert opinion into principled prior information.

Further work could also focus on implementing existing elicitation methods into this

framework, for example the Sheffield elicitation framework [Gosling, 2017].

We have presented a wide range of possibilities for the specification of µ , but

the examples considered here are by no means exhaustive. In the context of clinical

trial data with two treatment arms, for example, dependence between each hazard

could be introduced through µ rather than the local proportional hazard assumption

incorporated in this work. We believe the design of drift functions that can capture an

even wider range of expert information to be an exciting avenue for future research.

We have assumed a Poisson process prior for {s j}J
j=1 with homogeneous inten-

sity. This assumption could be altered to incorporate a process with, for example,

decreasing intensity if more volatility is expected at the start of the observation

period. A particular strength of the sampling methods developed for this work is that

changes to µ and γ in general do not require changes to the sampler. The only weak

condition for the prior on {s j}J
j=1 is the existence of a dominating process that is

simple to sample from, given the thinning procedure outlined in Section 5.3.4.

We have shown how efficient computational procedures for sampling from

posteriors induced by spike and slab priors using PDMPs can be extended to more

general transdimensional posteriors. The key feature of this construction was the

identification of a hyperplane in θ -space such that the likelihoods of the simpler

and more complex models were identical. In the reversible jump literature this is

referred to as a centring point [Brooks et al., 2003] and is a common feature of

many transdimensional posteriors. The sampling framework provided in Section 5.3

should therefore allow for the extension of sticky PDMP dynamics to a far wider

range of transdimensional sampling problems.



Chapter 6

Ongoing and future work

In this chapter we outline ongoing and future work stemming from the research

discussed in this thesis. Extensions to PDMP samplers are outlined in Section 6.1,

generalising the sticky dynamics utilised in Chapters 4 and 5 to general surfaces.

Chapter 5 introduced an underlying process as a prior for the hazard function based

on the discretisation of a diffusion. In Section 6.2 we outline initial work towards

the implementation of these methods into software packages. We conclude with a

discussion of alternative processes that could be utilised as prior distributions for

survival models.

6.1 Sticky manifold PDMP
The work in this section was partially undertaken during a visit to the Institute of

Statistical Mathematics in Tokyo, Japan, and is a joint work with Professor Kengo

Kamatani and Mr Hirofumi Shiba.

Chapter 5 discussed sampling from the posterior of the piecewise exponential

model with a prior over the number and location of knots. The primary sampling tool

used was sticky PDMP dynamics that allow PDMPs to sample from target distribu-

tions defined by a mixture of atomic and continuous components. Implementing this

sampler required a re-parameterisation to sample on the space of (scaled) innovations

between local hazards visualised in Figure 5.3. A natural question is whether this step

can be avoided through sampling directly on the space of log-hazards. This requires

the sampler to stick to an embedded d − 1-dimensional hyperplane, rather than a
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single parameter sticking to zero under the construction of Chevallier et al. [2023],

Bierkens et al. [2023a]. In this section we show that this sampling is possible, and

provide results that show how to construct samplers that stick to general embedded

surfaces.

More precisely, we aim to construct a d-dimensional PDMP with invariant

measure that is jointly defined on Euclidean space and an embedded manifold,

M⊂ Rd

π
∗(dx,dv) = (ωπ1(x)dx+(1−ω)π0(x)dHd−1(x))ρ(dv), (6.1)

where π1 is a density with respect to the d-dimensional Lebesgue measure (denoted

dx), π0 is a density on M with respect to the Hausdorff measure (denoted dHd−1(x)),

and ρ is the density of the velocities. The construction of the process follows the

construction in Bierkens et al. [2023a], comprising of

1. A PDMP defined on the ambient space, that targets π1 as its invariant distri-

bution. Throughout this section we will take this to be the Bouncy Particle

sampler.

2. Deterministic sticking dynamics when the ambient process intersects M,

allowing movement from the ambient space to M.

3. A PDMP on the constrained space, with π0 as its invariant distribution, where

π0 will often be taken as the restriction of π1 to M. In particular, the deter-

ministic dynamics of the constrained process are given by the geodesic flow

on M.

4. An unsticking rate and kernel that preserves the velocity of the process relative

to M before the sticking event, allowing the process to move from M to the

ambient space. This rate is given by

Λ
s(t) = ∥u⊥∥

ωπ1(x)ρ(v)
(1−ω)π0(x)ρ(v)

, (6.2)
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where u⊥ is the component of the velocity that is orthogonal to the tangent

space when the process hits M.

Note this is a generalisation of the processes designed by Bierkens et al. [2023a],

where M = {x ∈ Rd : x j = 0}. We will focus on two examples throughout this

section:

Example 1 (Embedded hyperplane).

M1 = {x ∈ R2 : x2 = tanθx1}.

Taking θ = 0 recovers the original sticky PDMP process, while taking θ = π/4

results in the diagonal hyperplane occurring in the piecewise exponential model

without reparametrisation. Similarly to Bierkens et al. [2023a] the process on M1

is simply a lower-dimensional version of the process defined in the ambient space

PDMP.

Example 2 (Embedded hypersphere).

M2,R = {x ∈ Rd : ∥x∥= R}.

Here the process on M2,R has deterministic dynamics defined by the geodesic

flow

(xt+s,vt+s) =

(
sin
(sα

R

) vtR
α

+ cos
(sα

R

)
xt ,cos

(sα

R

)
vt − sin

(sα

R

) xtα

R

)
.

Dynamics of PDMPs of this form have been introduced as the stereographic Bouncy

Particle sampler [Yang et al., 2024, Bell et al., 2024]. Note, in the stereographic BPS

the target measure is defined as a projection of the measure from Rd to Sd , while we

define the measure on the sphere as the restriction of the density in Rd to (a scaled

version of) Sd−1.

Theorem 1. ] Let M be a d − 1 dimensional, two-sided manifold embedded in

Rd . Then the PDMP defined by steps 1), 2), 3) and 4) has (6.1) as its invariant

distribution.
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6.1.1 Sketch proof of Theorem 1

The sketch proof of Theorem 1 generalises the approach of Bierkens et al. [2023a] to

embedded manifolds. The main derivation is to show that the process is π∗-invariant.

Bierkens et al. [2023a] show that sticky PDMP samplers are Harris recurrent, and that

some skeleton of the chain is irreducible. If the process is also π-invariant then the

chain is π-ergodic [Meyn and Tweedie, 1993, Theorem 6.1]. In this section we show

π-invariance for the above processes. We believe that the proofs of Harris recurrence

and irreducibility generalise to the manifold process, but have not formally shown

this at this point.

Invariance of PDMPs is typically studied via the infinitesimal generator [Davis,

1993]

L f (z) = Φ(z) ·∇ f (z)+Λ
B(z)

∫
q(z′ | z)[ f (z′)− f (z)]dz′,

for all functions f in a core of L. Defining this core is typically non-trivial, and we

omit this step during this sketch proof. The process is then π∗-invariant if

∫
L f π

∗(dz) = 0, (6.3)

for all f . The generator of the sticky manifold PDMP is given by

L f (z)=

Φ1(z) ·∇ f (z)+ΛR
1 (QR f − f )+ΛE

1 (z)(QE f − f ), z ∈ Rd ×V1

Φ0(z) ·∇ f (z)+ΛR
0 (QR f − f )+ΛE

0 (z)(QE f − f )+ΛS
0(z)(T f − f ) z ∈M×V0.

Here, the first line corresponds to the process in the ambient space, with, respectively,

deterministic dynamics, reflection events and refreshment events. The second line

corresponds to the process on M through either representation. The additional term

is the unsticking rate, determining when the process leaves M, with T denoting the

transfer mapping that dictates the transformation of z at these events.

If the deterministic dynamics, reflection and refreshment components on both

the ambient and embedded spaces are designed such that they are π∗-invariant, for π∗

restricted to that space, then standard invariance results state that the corresponding
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terms in the generator cancel. Similar arguments are made in the processes outlined

in Chevallier et al. [2023], Bierkens et al. [2023a]. The remaining terms are given

by the unsticking rate on M and the boundary terms of the process in the ambient

space, reducing (6.3) to

∫
L f dπ

∗ =
∫
V1

∫
M+∪M−

∥u⊥∥ f exp(−U(x))Hd−1(dx)ρ(dv) (6.4)

+
∫
V0

∫
M

Λ
S(z)(T f − f )Hd−1(dx)ρ(dv),

where Hd−1 is the Hausdorff measure and ∥u⊥∥ arises as a consequence of the

divergence theorem [Bierkens et al., 2023b, Proposition 2.7]. To construct a non-

reversible process on this space we need to assume that M is two-sided, such that

we can divide M into two parts corresponding to its sides, M− and M+. This is a

generalisation of the construction in Bierkens et al. [2023a], where two copies of

0 are introduced as 0− and 0+. This is possible for the two examples introduced

previously, but is not possible, for example, if M is a Mobius strip1. For the examples

we consider, the ambient space, Rd is orientable, so this condition is equivalent to

M being orientable.

Applying this to (6.4) gives

∫
L f dπ

∗ =∫ ∫
M
( f (x−,u⊥)− f (x+,u⊥))exp(−U(x))∥u⊥∥κ(x)Hd−1(dx)ρ(du)

+
∫ ∫

M
−( f (x+,−u⊥)− f (x−,−u⊥))exp(−U(x))∥u⊥∥κ(x)Hd−1(dx)ρ(du)

+
∫ ∫

M
λs,0(z)( f (x+,u⊥)− f (x−,u⊥))exp(−U(x))Hd−1(dx)ρ(du)

+
∫ ∫

M
λs,0(z)( f (x−,−u⊥)− f (x+,−u⊥))exp(−U(x))Hd−1(dx)ρ(du).

Matching terms gives the resulting rate as stated in (6.2).

1Note, the Mobius strip can be made two-sided, by cutting the manifold at two points, and then
considering each surface separately.
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Figure 6.1: (A) Trajectories for the sticky bouncy particle sampler for Example 1, with M
highlighted in red. (B) Box plots of estimates of ω based on 10 chains, for
varying θ .

6.1.2 Examples

We outline the construction of these processes for the two introduced examples.

6.1.2.1 Example 1

Here we take π(x) to be a standard two dimensional Gaussian with ω = 1/2. The

rate is then given by

Λ
S(z) =

∥u⊥∥√
2π

,

where
√

2π arises as the ratio of the normalising constants between the two-

dimensional Gaussian and the Gaussian restricted to M1. Note in particular when

θ = 0 this recovers the sticky bouncy particle sampler rate of Bierkens et al. [2023a],

as u⊥ is aligned with v1. Figure 6.1 (A) shows the trajectory of this process for the

θ = π/4. Figure 6.1 (B) shows the estimated value of ω for varying values of θ ,

based on estimates from 10 separate chains. The process in the ambient space and

on M1 can be computed exactly as outlined in Section 3.5.
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6.1.2.2 Example 2

Here we take π(x) to be a d-dimensional Gaussian. When restricted to M2,R the

resulting distribution is therefore uniform. The rate is given by

Λ
S(z) = ∥u⊥∥

(2π)d/2 exp(−1
2R2)

Ad−1(R)−1 ,

where Ad(R) is the area of the d −1-sphere with radius R.

Figure 6.2 shows the trajectories of this process for a sphere embedded in R3.

Note the trajectories on the sphere are given by the geodesic flow, rather than the

linear dynamics in the ambient space. Figure 6.3 shows the sample paths of ∥x∥ for

d = 10, and R =
√

5, (A), and R = 1, (B). For standard Gaussian distributions, mass

concentrates around ∥x∥ =
√

d. This figure highlights the differences in sampler

dynamics when the mass of the distribution is concentrated around M and when it

is located away from M. In the former case, sticking times are short to account for

shorter excursions away from M. In the latter, excursions away from M are longer,

and this is compensated for by longer sticking times.

6.1.3 Future work

Future work will seek to formalise the proof of π-ergodicity presented for the

sticky manifold process. In particular focusing on clarifying the conditions on

M. The processes here have been constructed using the geodesic flow on the

manifold to define the lower dimensional PDMP. In most cases this flow is intractable.

These flows can be approximated using numerical integrators [Ryckaert et al., 1977,

Andersen, 1983], however this increases the computational cost of generating the

process. Alternatively, M may be defined in terms of a coordinate chart, for example

spherical coordinates can be used to represent M2,R, and a standard PDMP used

on lower-dimensional Euclidean space. This is closer in spirit to the reversible

jump PDMP introduced by [Chevallier et al., 2023], and would typically require

the introduction of Jacobian terms into the rate to account for the corresponding

transformation.

For more general choices of M, it may not be possible to define a single
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Figure 6.2: Trajectories of the sticky PDMP sampler for M2 ⊂ R3 with R = 1.
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Figure 6.3: Trace plots of the ∥x∥ for M2 ⊂ R10, with R =
√

5, (A), and R = 1, (B).
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coordinate chart that spans the entire manifold. Instead an atlas, a countable union

of coordinate charts, may be used, with the process transitioning between charts at

predetermined boundaries.

The primary application of the above processes is likely to be in transdimen-

sional sampling problems, for example the model introduced in Chapter 5. A similar

process can be used to update the poly-Weibull model discussed in Chapter 42.

In particular, note that a bi-Weibull model whose shape parameters are equal, is

equivalent to a single Weibull model with rate λ1 +λ2,

h(y) = λ1γyγ−1 +λ2γyγ−1 = (λ1 +λ2)γyγ−1

This is an example of a centring point [Brooks et al., 2003] (also Section 3.6). To

construct the required process, the hyperplane example would need to be extended

to account for the transformation (λ1,λ2) 7→ λ . Alternatively, the lower order model

could be treated as over-parametrised with both parameters sampled and jointly

constrained by a prior.

6.2 Diffusion piecewise exponential package
The models and samplers developed in Chapter 4 and Chapter 5 were implemented

in the julia programming language [Bezanson et al., 2017]. In particular, the dif-

fusion piecewise exponential model developed in Chapter 5 is available via the

DiffusionPiecewiseExponential.jl package that is in the early stages of de-

velopment.

6.2.1 Model specification

An example model call is given by

1 dpem_model = pem_fit(state0, data, priors,

2 settings, test_times, burn_in)

2This was, in fact, the primary motivation for this work!
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this implements two chains of the PDMP sampler introduced in Chapter 5 to fit the

diffusion piecewise exponential model. The primary terms in this call relating to the

model are the data and priors objects. These are encoded in julia as structs. These

are a composite type that allows multiple, related data fields of potentially differing

type to be grouped together. The data struct in the above code is defined as

1 struct PEMData

2 y::Vector{Float64}

3 cens::Vector{Float64}

4 covar::Matrix{Float64}

5 grp::Vector{Int64}

6 p::Int64

7 n::Int64

8 \delta::Matrix{Int64}

9 W::Matrix{Float64}

10 UQ::Matrix{Float64}

11 end

12 data = init_data(y, cens, covar, breaks)

In practice, the majority of these terms are not required to be specified by the analyst

as they are precomputed quantities for efficient evaluation of the likelihood. Instead,

the struct can be initialised by the init data function, with analyst specifying

survival times, a vector of event indicators, a matrix of covariates, and the initial

specification of the grid of knots.

The priors struct is defined similarly. An example initialisation of this object

is given by

1 priors = BasicPrior(..., PC(1.0, 2,...),

2 FixedW([0.5]), ...

3 CtsPois(7.0, 100.0, max(data.y)),
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4 [GaussLangevin(t -> log(0.29), t-> 0.4)],...)

In the above, additional terms to specify have been supressed by ellipses. In the

full release of the package these are options that will be set automatically, unless

specified. The remaining, highlighted terms respectively encode the prior for σ , the

value of ω , the prior for {s j}J
j=1 and the underlying diffusion. Note in particular,

each of these options is defined as its own struct. This allows the code to take

advantage of julia’s multiple dispatch functionality, reducing the amount of code that

needs to be written.

The CtsPois() struct specifies the fixed Poisson prior for the set of knots,

with a maximum knot value set to the maximum time in the data, Γ = 7 and the

maximum number of knots truncated at 100. The Negative-Binomial prior can be

similarly specified through the CtsNB() struct, with additional arguments for the

hyperparameters of the Gamma hyperprior.

The diffusion struct, GaussLangevin(t -> log(0.29), t-> 0.4), spec-

ifies a Gaussian stationary distribution for the baseline log-hazard with mean

log(0.29) and standard deviation 0.4. In particular, the arguments for this struct are

given by functions, set to constants in this example. This allows for the specification

of the time varying drifts introduced in Section 5.4.2. Similar structs are defined for

the alternative diffusions introduced in Chapter 5.

Currently specification of new diffusions requires specifications of functions

for the drift and its derivative with respect to the standardised innovations θ̃ j. In the

full release of the package, users should ideally be able to specify the drift in terms

of the local log-hazards, with automatic differentiation tools being used to generate

the required derivatives [Revels et al., 2016].

6.2.2 Sampling and diagnostics

The above code implements the PDMP sampler introduced in Chapter 5. The

transdimensional nature of the algorithm means individual parameters for the log-

hazard cannot be monitored for convergence, as their definition shifts with the

sampler. Instead we track convergence by monitoring the value of the hazard function
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at pre-specified time points, and the innovation standard deviation σ . Convergence

for these values can then be monitored through Gelman-Rubin statistics and effective

sample sizes [Gelman and Rubin, 1992, Fjelde et al., 2025], that are automatically

calculated in the call to pem fit.

Future work will also implement the Metropolis adjusted version of the PDMP

algorithm. This requires the specification of a step-size parameter. Given the constant

speed of the algorithm, however, the method should be robust to the choice of this

tuning parameter. Practically a typical workflow would involve using the faster,

unadjusted algorithm for exploratory model fitting, including the procedures for

selecting γ outlined in Section 5.4.1. The adjusted version of the algorithm can then

be used for the implementation of the final model.

Note, in particular, that the above sampler only implements the model for the

observation period. As noted in Chapter 5, as extrapolations only depend on the data

through the posterior of the log-hazard at the final event times, and posteriors for σ ,Γ,

extrapolations can be generated via direct implementation of the skew-symmetric

discretisation scheme. This is implemented in the package as a separate function that

can be called after the model has been fit.

6.2.3 R integration

The julia language is not typically used in most HTA workflows. This is typically

done using a mixture of R and excel [Incerti et al., 2019]. To support practitioners

using these methods, practitioners can currently implement these methods from R

using the JuliaCall package. This allows R users to call julia from R, integrating

with R workflows as

1 julia_command("dpem_model = pem_fit(state0, data, priors,

2 settings, test_times, burn_in)")

3 dpem_model_in_R = julia_eval("dpem_model")

The current implementation requires users to still write julia code. Future work

will wrap these calls in an R package, matching existing syntax with established



6.3. Alternative processes as priors for hazards 133

packages [Baio, 2020, Jackson, 2016] allowing practitioners to interact with these

methods entirely within the R ecosystem. Future work will format the output of the

model call, such that the results can interface with the HTA specific outputs provided

by the survHE package [Baio, 2020].

6.3 Alternative processes as priors for hazards
The prior constructed in Chapter 5 is based on an approximation to an underlying

diffusion process, with long-term behaviour that aligns with the expected long-term

behaviour of the hazard function. In this section we explore alternative formulations

of the underlying stochastic process.

6.3.1 Dense volatility matrix

The prior in the diffusion piecewise exponential model utilises a diagonal volatility

matrix, with covariates encoded through a local proportional hazards assumption.

An alternative specification, when the data contain multiple subgroups, is to directly

model the log-hazard within each subgroup, and induce between-group dependence

via a dense volatility matrix. Focusing on the case when the prior for the long-

term log-hazard is encoded as a stationary distribution with density f , let αy =

(αy,1, . . . ,αy,k) denote the vector of log-hazards at time y for subgroups 1, . . . ,k. The

underlying diffusion is then specified as

dαy =
1
2

A∇ log f (α)dy+
√

AdWy,

for positive definite matrix A, and with Wy denoting a k-dimensional Brownian

motion [Oksendal, 2013].

Here, A is a parameter in the model requiring a prior distribution. If there exists

strong prior information about the structure of A this can be encoded at this stage. For

example, this could encode spatial dependence, with the off-diagonal entries encoded

as Ai j = ρ |i− j|, or clustering between subgroups through a block-diagonal structure.

The latter is particularly relevant in the context of basket trials and heterogeneous

treatment groups, where analysts often seek to cluster subgroups as responsive and
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non-responsive [Chen et al., 2023, Hobbs et al., 2022, Lin et al., 2021].

6.3.2 Underdamped Langevin

A limitation of the previously utilised diffusions is that the prior for the innovations θ

only depends on the current state of the hazard in relation to the underlying dynamics.

As a result the innovation density cannot account for information about the recent

trajectory of the hazard. In practice this results in sharp turning points in the hazard

at the start of the extrapolation period when the expected trajectory of the hazard is

moving away from areas of high density of the specified stationary distribution.

An immediate solution to this is to replace the over-damped Langevin dynamics

encoded in the prior with under-damped Langevin dynamics

dvt =−γvtdt − 1
2

u∇ f (αt)dt +
√

γudBt ,

dαt = vtdt,

where αt is the log-hazard with stationary distribution that has density proportional

to exp(− f (x)) and vt are velocities with stationary distribution Normal(0,U).

The dynamics would need to be realised via splitting schemes. This approach

would increase the number of parameters in the model, and sampling would likely

be challenging due to the dependence between the state and velocities of the latent

process. Further, a prior for γ would need to be defined which is not necessarily

trivial.

6.3.3 PDMPs as a prior

An alternative to the above dynamics, that allows for momentum to be retained in

the hazard function would be to use a Piecewise Deterministic Markov Process as

a prior distribution for a log-linear hazard function. Stationary distributions could

be encoded by the processes used for sampling outlined in Section 3.4. Further, the

number of parameters in the model would be reduced due to the use of log-linear

hazards.

To be more specific the model is defined by an initial log-hazard α0, a set of



6.3. Alternative processes as priors for hazards 135

velocities {v j}J
j=1 and a set of knots, {s j}J

j=1 corresponding to the event times of

the PDMP, with s0 = 0. Denoting the value of the log-hazard at time s j as αs j , this

results in the log-hazard function

logh(y) = αs j−1 + v j(y− s j−1).

Note, in contrast to the underdamped Langevin prior, the deterministic dynamics of

the PDMP reduce the number of parameters in the model, as the hazard is uniquely

defined by the velocity and event times.

The primary sampling challenge associated with this prior is that the density

of the between knot intervals will typically be intractable as it arises from an in-

homogeneous Poisson process with rate ΛE(y). This challenge can be resolved if

the event rate can be bounded above by a homogeneous Poisson process, Λ̄E . The

location of candidate events, {ml}L
l=1 can then be generated via the homogeneous

Poisson process with rate Λ̄E . Each event then corresponds to a knot, {s j}J
j=1 with

probability ΛE(ml)/Λ̄E .

This representation makes the prior distribution tractable, but standard MCMC

samplers may still struggle due to strong dependence encoded via the velocities and

changes at event times. For example, removing sk from {s j}J
j=1 results in an update

of h(y) for all y > sk.

We finish by noting two additional challenges of implementation. The first is

that, without refreshments, the process is unable to change direction when moving

towards its stationary distribution. Applications, therefore, require a positive refresh-

ment rate to allow the process to accurately model the hazard function. A second

consideration is that typically one-dimensional stationary PDMPs have velocities

constrained to {−v,v} for fixed v ∈ R+. In applications, a prior could be placed on

v, allowing the speed of the hazard to be learned from the process. Alternatively,

processes with a wider range of velocity values could be incorporated such as the

multi-directional Zig-Zag process [Vasdekis, 2021].



Chapter 7

General Conclusions

This thesis has focused on the joint development of novel Bayesian survival models

for inferring long-term survival in the context of Health Technology Assessment,

and the development and application of sampling algorithms based on Piecewise

Deterministic Markov Processes. The current state of both these fields was reviewed

in Chapter 2 and Chapter 3, respectively.

7.1 Contributions to survival analysis
Chapter 4 extended the existing polyhazard model, introducing a prior specifica-

tion that allows for structural quantities to be inferred from observed data through

Bayesian model averaging. This addresses a model selection problem that has

hindered the further development and application of these models.

Chapter 5 introduces a novel prior structure for the piecewise exponential model

based on a latent diffusion process for the log-hazard and a Poisson point process

prior for the location of knots. This contributes to a growing literature on the use

of time-varying parameter models for survival extrapolation [Kearns et al., 2019,

Jackson, 2023].

A natural question is to consider which of the above approaches is preferable in

certain situations. Both models provide a flexible fit to the observed data. The former

then bases extrapolation on the hazard structure inferred during the observation

period, while the latter informs extrapolations based on explicit prior information.

The extrapolations from the diffusion piecewise exponential model are therefore
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likely to be more stable, when this prior information exists and can be encoded in the

model. In contrast, where this prior information is unavailable, the polyhazard model

is likely to provide superior extrapolations, as it is able to infer more structure from

the observation period. Both models are able to incorporate covariates, however,

we expect the diffusion piecewise exponential model to perform similarly to the

non-proportional hazard M-spline model when the number of covariates is larger,

suggesting the polyhazard model is preferable in these scenarios.

Both models developed in this thesis contribute to the increased use of flexible

survival models in Health Technology Assessment. In particular, the extended

polyhazard model presents a promising approach to incorporating flexible covariate

effects directly in the model. This avoids the common practice of fitting separate

models for each subgroup, which scales poorly with the number of covariates.

Further, it allows for the structural uncertainty connected with these models to

be directly accounted for in the analysis. The diffusion piecewise exponential

model allows for a wide range of prior information to be incorporated to inform

extrapolations. In particular, due to the flexibility in specifying the underlying drift,

it separates the process of selecting a model for extrapolation from the specification

of prior information, allowing for more principled inferences of mean survival in

both the observation and extrapolation periods.

7.2 Contributions to posterior sampling methods

The sampling methods presented in this thesis are primarily based on Piecewise

Deterministic Markov Processes. In contrast to the notable theoretical and method-

ological interest these processes have seen, applications in Bayesian modelling have

been limited. Outside of the contributions of this thesis, we believe the primary

applied work to be that of Koskela [2022].

In Chapter 4 we applied the Zig-Zag sampler to the transdimensional posterior

arising from the extended polyhazard model. Generation of the event times required

for sampling was achieved using a modified version of the Automatic Zig-Zag method

[Corbella et al., 2022]. For non-regular, multi-modal geometries, as exhibited in
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polyhazard models, we believe this to be the current best choice for generating the

event rate. There is a pressing need, however, for a more formal comparison of

event rate generation methods. In particular, it is unlikely that there is a universally

superior method out of those outlined in Section 3.5, and deeper understanding of

the strengths and weaknesses of each would facilitate further application of PDMPs.

In Chapter 5 we utilised the forward event chain Monte Carlo method, discre-

tised using splitting schemes, to sample from the diffusion piecewise exponential

model posterior. An important feature of the forward event chain method is the

robustness it exhibits to the choice of refreshment rate.

An important feature of PDMPs is the ability to efficiently sample from trans-

dimensional posteriors when this is induced via a spike and slab prior [Chevallier

et al., 2023, Bierkens et al., 2023a]. Chapter 4 extended these developments to

incorporate continuous-time birth-death dynamics within PDMP samplers. Further,

Chapter 5 showed how existing dynamics can be incorporated to sampling from more

complex transdimensional posteriors via re-parameterisation and augmentation of

the state space. Finally, Chapter 6 outlined initial work that extends sticky dynamics

to more general embedded manifolds. Transdimensional sampling is a key strength

of these samplers. For these to become commonly applied, however, there needs to

be generally applicable methods for the generation of the event rate and more widely

available software for their implementation.



Appendix A

Results on Markov processes

A.1 Markov chains and MCMC

A.1.1 Definitions for Section 3.2

Definition 1. A Markov Chain {xi}N
i=1 with transition kernel p(xi,xi+1) is

π−irreducible if for all A ∈ B, and all x ∈ Ω, there exists n such that

π(A)> 0 =⇒ pn(x,A)> 0

Definition 2. A π-irreducible Markov chain is said to periodic if there exists a

partition of the state space A1, . . . ,Ap, with Ai ∩A j = for all i ̸= j, and ∪p
j=1A j if for

xi ∈ Ai

p(xi,A j) =

1, j = i+ k mod k,

0, otherwise.

If the chain is not periodic it is aperiodic.

Definition 3. A Markov chain is π-invariant if for all k ≥ 1,

xi ∼ π(·) =⇒ xi+k ∼ π(·).
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A.2 Reversible Metropolis-Hastings proposal

distributions

In Section 3.2 we referred to several choices of proposal kernel, q(xi,x′) for

Metropolis-Hastings MCMC methods. We explicitly state some forms of these

proposals here.

1. Independent: The independent Metropolis-Hastings sampler [Tierney, 1994]

takes q to be independent of the current state, e.g

q(xi,x′) ∝ exp
(
−1

2
∥x′∥2

)
.

2. Random walk: The random walk proposal [Gelman et al., 1997] takes q as

the density of a symmetric distribution centred at xi, e.g,

q(xi,x′) ∝ exp
(
− 1

2σ2∥x′− xi∥2
)
.

By symmetry the acceptance probability simplifies to

α(xi,x′) = min
{

1,
π(x′)
π(xi)

}
.

3. Metropolis adjusted Langevin proposal: MALA [Roberts and Tweedie,

1996] utilises the Euler-Maruyama discretisation of a Langevin diffusion as

the proposal distribution

q(xi,x′) ∝ exp
(
− 1

2σ2∥x′− xi +
σ2

2
∇U(xi)∥2

)
.

4. Barker proposal: The Barker proposal proposes a new point using the skew-

symmetric proposal. Generation of a new point is as follows:

(a) Draw z ∼ MultivariateNormal(0,Σ)
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(b) For each dimension, i, draw

vi ∼ Rademacher
(

1
1+ ezi∂iU(x)

)
.

(c) Propose the next iteration as

xi = x′+ vizi.

Note this is equivalent to the skew-symmetric density of innovations reviewed

in Chapter 5.

A.3 Poisson Point Processes
We briefly review important results from Poisson processes.

Definition 4. Given integrable function Λ : [0,∞)→ [0,∞), an integer valued count-

ing process {N(t), t ≥ 0} is an inhomogeneous Poisson process with rate Λ(t) if the

following conditions hold:

1. N(0) = 0;

2. N(t) has independent increments;

3. For any t ∈ [0,∞)

P(N(t +δ )−N(t) = 0) = 1−Λ(t)δ +o(δ ),

P(N(t +δ )−N(t) = 1) = Λ(t)δ +o(δ ),

P(N(t +δ )−N(t)≥ 2) = o(δ ).

Given this definition, we can define the distribution of the number of events on

a given interval [t, t + s)

N(t + s)−N(t)∼ Poisson
(∫ t+s

t
Λ(u)du

)
.
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Proposition 2. (Thinning) Let Λ(t) ≤ Λ̄(t) for t ≥ 0, and let {ti}∞
i=1 be the set of

points of the Poisson process with rate Λ̄(t). For each i, delete ti with probability

1−Λ(ti)/Λ̄(ti). Then the remaining points form a Poisson process with intensity

Λ(t).

Proposition 3. (Superposition) Given two independent Poisson point processes

{N1(t), t ≥ 0},{N2(t), t ≥ 0} with respective rates Λ1(t),Λ2(t). Then N(t) = N1(t)+

N2(t) is a Poisson point process with intensity Λ1(t)+Λ2(t).



Appendix B

Appendix for Chapter 4

As stated in the main paper the likelihood for parametric survival models is given by

L(θ ;D) =
n

∏
i=1

hθ (yi)
δiSθ (yi).

Explicitly the hazard function for the polyhazard model are given by

hD,θ ,γ(y | w) =
K

∑
k=1

hDk,γk,θ k(y | w).

This also defines the survival function through the relation

SD,θ ,γ(y | w) =
K

∏
k=1

SDk,γk,θ k(y | w)

= exp
(
−∑

∫ y

0
hD,θ ,γ(u | w)du

)
.

As stated in the paper the prior terms are given by

π0(K,D,γ,θ ,φ) ∝ π0(θ | K,D,γ,φ)π0(γ | K,φ)π0(φ)π0(D | K)π0(K).
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Explicitly these are

π0(θ | K,D,γ,φ) = ∏
j:γ j=1

N(β j | 0,σ2
β
)

K

∏
k=1

N(βk,0 | 0,σ2
β0
),

π0(γ | K,φ) ∝

(
K p
|γ|

)
ω

|γ|(1−ω)K p−|γ|,

π0(σβ ) ∝
1

1+σ2
β

, σβ > 0,

π0(ω) ∝ ω
a−1(1−ω)b−1,

π0(D | K) ∝ 1, π0(K) ∝
ξ K

K!
1(K ∈ {1, . . . ,Kmax}) .

The resulting posterior is then

π(K,D,γ,θ ,φ | D) = π(K,D,γ,θ ,φ) ∝ L(K,D,γ,θ ,φ ;D)π0(K,D,γ,θ ,φ)

B.1 The sampler

Algorithm 3 Sampling algorithm

1: Initialise (θ ,v,γ,φ ,K,D) at t = 0.
2: while t < tend do
3: Sample next event time te ∼ Exponential(Λb +Λd +Λs +ΛV +Λh),.
4: Sample π(θ ,v,γ | φ ,K,D) until time t + te. ▷ PDMP with sticky

components (Algorithm 4)
5: Set t 7→ t + te.
6: Select event i with probability proportional to Λi.
7: if i = h then
8: Update hyperparameters ▷ (Algorithm 5)
9: end if

10: if i ∈ {b,d,s} then
11: Perform move i with probability Λi(t)/Λi. ▷ Birth-death-swap process

update for (K,D)
12: end if
13: if i = V then ▷ Unsticking event
14: j ∼ Uniform(l : γl = 0).
15: v j ∼ Uniform({−1,1}).
16: γ j 7→ 1.
17: end if
18: end while
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Algorithm 4 Automatic Zig-Zag variant

1: Given (θ ,v,γ,φ ,K,D), and te at time t0.
2: Evaluate ΛB(t). ▷ Possibly retained from the previous iteration.
3: Find next sticking event tv. Denote the coordinate by j′.
4: Set tmax = min{t∗,ΛB(t)−1, tv}.
5: Evaluate ΛB(t + tmax),Λ

B(t + tmax/2).
6: if ΛB(t + tb/2)< (ΛB(t)+ΛB(t + tmax))/2 then
7: Set Λ̄B(t) = ΛB(t0)+

ΛB(t0+tmax)−ΛB(t0)
tmax

t ▷ Convexity check
8: else if min{ΛB(t),ΛB(t + tmax)}< ΛB(t + tmax/2)< max{ΛB(t),ΛB(t + tmax)}

then
9: Λ̄B(t) = max{ΛB(t),ΛB(t + tmax)} ▷ Monotonicity check

10: else
11: Λ̄B(t) = max{ΛB(s) : s ∈ (t, tmax)} ▷ Brent’s Method
12: end if
13: Generate t ′ as the first time from an IHPP with rate Λ̄B(t)+Λ0.
14: t 7→ t +min{t ′, tmax} ▷ Update time
15: θ 7→ θ + vmin{t ′, tmax} ▷ Update state
16: if t ′ < tb then ▷ Flip event
17: With probability 1−ΛB(t ′)/Λ̄B(t ′) leave all velocities unchanged.
18: With probability ΛB(t ′)/Λ̄B(t ′) select a single velocity to flip with probabili-

ties proportional to ΛB
i (t

′).
19: end if
20: if t ′ = tv then
21: Set v j′ = 0 and γ j′ = 0. ▷ Sticking event.
22: end if

Algorithm 5 Hyperparameter updates

1: Given (θ ,v,γ,φ ,K,D), and Σ ∈ R2×2

2: ω ∼ Beta(a+ |γ|,b+K p−|γ|) ▷ Conjugate Gibbs update
3: Draw u ∼ Normal(0,Σ). ▷ Metropolis-within-Gibbs
4: Set (z′1,z

′
2) = (z1 +u1,z2 +u2)

5: With probability min
{

1, π(z′1,z
′
2)

π(z1,z2)

}
, set (z1,z2) 7→ (z′1,z

′
2).

6: Update Σ using Algorithm 4 of Andrieu and Thoms [2008].
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Concise summaries of the overall loop of the algorithm, the IHPP generation

procedure and the hyperparameter update procedure are summarised in Algorithms

3, 4 & 5. We now provide additional details to the extensions developed for the

automatic Zig-Zag method.

B.1.1 Extensions to the automatic Zig-Zag method

In the main paper we outlined the following three extensions to the automatic Zig-Zag

method:

1. In the first iteration we check for monotonicity and local convexity. If local

convexity we use a tighter linear bound.

2. We adaptively set the length of the bounding interval tb using the scheme

suggested by Sutton and Fearnhead [2023] in a similar context.

3. We add a constant offset rate Λ0 to Λ̄B(t) to offset numerical errors and failures

in the above checks.

The full details of these extensions are summarised in the following. Firstly,

we replace the first iteration of Brent’s method with evaluations of ΛB(t) at {t0, t0 +

tmax/2, t0 + tmax}. We use these evaluations to check monotonicity and convexity. If

both these checks are passed we then use the linear bound

Λ̄
B(t) = Λ

B(t0)+
ΛB(t0 + tmax)−ΛB(t0)

tmax
t, t ∈ [t0, t0 + tmax),

which is provably tighter than the constant choice. If monotonicity holds but convex-

ity does not we use the relevant evaluation at the end of the interval as a constant

upper bound, and if neither hold we resort to Brent’s method. In both of the latter

two instances the resulting bound is as in the Automatic Zig-Zag, but when it is

applicable we have found that the linear bound can be much tighter than a constant

choice, which can speed up the sampler significantly.

The second modification is to adaptively set the length of the bounding interval,

as has previously been suggested in a similar context by Sutton and Fearnhead [2023],
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who recommend setting the length of the interval tmax to be the 80th percentile of ob-

served inter-event times, t∗. We extend this approach to set tmax =min{t∗,ΛB(t0)−1},

which uses information from both the history and current state of the chain. Intu-

itively, if the evaluation of the rate is high at the current state of the chain, a shorter

interval is likely to be appropriate. This heuristic is regularised by t∗ to avoid long

intervals induced by small ΛB(t0), which are likely to result in inefficient bounds.

We note that in contrast to many adaptive MCMC schemes, this approach does not

change the law of the process, and therefore we do not need to make considerations

such as diminishing adaptation [Andrieu and Thoms, 2008].

The offset introduced in the final point is as an alternative to the use of smaller

intervals recommended in Corbella et al. [2022].

The full method is outlined in Algorithm 4. We note that in practice rather than

repeating the whole procedure after a single event time is simulated, in practice the

bound can be re-used until the bounding interval is surpassed.

B.2 Birth-death-swap MCMC within Zig-Zag

sampling

We present an argument for the validity of the transdimensional moves by extending

the arguments presented in Sachs et al. [2023]. The main idea is to replace the Gibbs

kernel in (5) of Sachs et al. [2023] with a reversible jump kernel [Green, 1995],

including a Jacobian to account for the corresponding transformation (as is the case

with the median-matching swap moves).

Without the underlying PDMP sampler this would correspond to birth-death

MCMC [Stephens, 2000], although with an alternative specification of jumping rates,

and would (inefficiently) provide valid posterior samples. Following arguments from

Sachs et al. [2023], we can then superimpose the generators for this process, the

Zig-Zag sampler for sampling (θ ,γ) and the (Metropolis-within-)Gibbs updates for

hyperparameters to construct a process with the correct target distribution.
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B.2.1 On the role of balancing functions

In this work we use the Metropolis balancing function to define the birth-death-swap

process for updating (K,D). Other choices of balancing function are available,

however, for example the barker balancing function,

gB(a) =
a

1+a
.

In the context of discrete time MCMC Peskun [1973] showed that the Metropolis

balancing function dominates the Barker function in terms of variance of ergodic

averages. When generating birth-death-swap rates via Poisson thinning as outlined

in Section 3.4 we expect these results to still hold optimal.

An interesting prospect is raised, however, when considering whether this

birth-death-swap process could be generated with more efficient Poisson thinning

bounds. In this case the Metropolis balancing function may not be optimal and other

balancing functions may be worth investigating.

B.3 Swap moves efficiency experiment details

To conduct the swap experiment in Section 3.4.2 data were generated as the following

Y1 ∼ log-Normal(0,0.5),

Y2 ∼ Exponential(1),

Y = min{Y1,Y2},

YCensored ∼ Exponential(0.5),

YObserved = min{Y,YCensored}.

A single binary covariate was also generated from Bernoulli random variables with

p = 0.5.

Samplers were run for 10,000 time units generating approximately 10,000

samples with birth-death swap moves occurring with ΛS +ΛBD = 10. The sampler

took on average 10 minutes to run. Birth, death and swap acceptance rates of 4.90%,
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4.89% and 6.10% respectively this results in an across model update approximately

every 2 time units.

B.4 Additional details for Section 4
This Section contains descriptions of the sampler settings used for the Lung transplant

data, COST data and Kidney transplant data as well as trace plots. The digitised lung

transplant data is provided online. The subset of data used for the COST analysis

is available via the R pec package, and the kidney transplant data is available via

Dryad as described in the main paper.

B.4.1 Lung transplant data

The extended polyhazard model was fit using the prior specification outlined in

Section 2.3. except for the hyperprior specification, where fixed hyperparameters

were used. The sampler was run for 10,000 time units, with samples taken with rate

4 and ΛBD +ΛS = 10. Trace plots for submodel posterior probabilities and a subset

of parameters are shown in Figure B.1.

B.4.2 COST data

The extended polyhazard model was fit using the prior specification outlined in

Section 2.3. The sampler was run for 50,000 time units, with samples taken with

rate 5 and ΛBD = ΛS = ΛH = 3.33. Convergence plots for submodel posterior

probabilities along with trace plots for a subset of parameters are shown in Figure

B.2 using three chains. Birth, death and swap acceptance rates were 4.36%, 4.32%

and 1.99% respectively.

The M-spline models presented in the main text were fit using the default

specification of the R survextrap package. As shown in Figure 5 (main text), the

non-proportional hazards model significantly overfit. To attempt to reduce this effect

a model fit with 4 knots instead of the default 10 was used. This results in under-fit

hazard ratios seen in Figure B.3. The baseline hazard for the proportional hazard is

also shown. The fit is very similar to the hazards in Figure 6 (main text), however

with more pronounced peaks in the middle of the time period. This is discussed in

Section 4.2.1.
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Figure B.1: Trace plots for the extended polyhazard model fit to the Lung transplant data for:
(First row) Posterior sub-model probabilities from the first and second chain;
(Second row) The α1 from the bi- and tri-log-logistic models.

B.4.3 Kidney transplant data

The extended polyhazard model was fit using the prior specification outlined in

Section 2.3. The sampler was run for 10,000 time units, with samples taken with

rate 10 and ΛBD = ΛS = ΛH = 6.67. Convergence plots for submodel posterior

probabilities along with trace plots for a subset of parameters are shown in Figure

B.5 using three chains.
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Figure B.2: Trace plots for the extended polyhazard model fit to the COST data for: (First
row) Posterior sub-model probabilities from the first and second chain; (Second
row) Coefficient effects from the bi-log-logistic model; (Third row) z1 and z2.
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Figure B.3: (Left) Hazard ratios for the alternative specification of the M-spline model.
(Right) Baseline hazards for the proportional hazard spline model.
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Figure B.4: Alternative presentation of the M-spline hazard ratios based on a coarser dis-
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row) A coefficient effect from the bi-Weibull (left) and the Weibull shape
parameter from the Weibull-log-logistic (right) models. Note the multi-modality
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Appendix C

Appendix for diffusion piecewise

exponential models

C.1 Additional modelling details

C.1.1 Derivation of the Gompertz drift

The Gompertz hazard function is given by h0(y) = ψ1 exp(ψ2y). Following [Roberts

and Sangali, 2010] we assume this is the solution to an autonomous differential

equation

dh0(y)
dy

= g(h0(y))

= ψ1ψ2 exp(ψ2y)

= ψ2h0(y).

This can then be transformed to the log-scale via a change of variables to arrive at

the required drift

h1(y) = log(h0(y)),

dh1(y)
dh0(y)

=
1

h0(y)
ψ1h0(y) = ψ1 = µ(αy).
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C.1.2 Penalised-complexity prior derivation

We place a penalised complexity prior [Simpson et al., 2017] on the step size, σ ,

corresponding to the prior

σ ∼ Exponential(a).

Following the reasoning presented in Simpson et al. [2017] we calibrate a through

the probability

P(σ >U) = α.

Given the discretised diffusion prior presented in Section 2, this prior should place

the majority of its mass < 1 to preserve the numerical stability of the skew-symmetric

discretisation scheme [Iguchi et al., 2024]. Setting a = 2 gives

P(σ > 1) = 0.135,

suggesting this is appropriately penalising σ . Following the reasoning of [Simpson

et al., 2017] we expect this prior to be relatively insensitive to the specification of a.

C.2 Additional computational details

C.2.1 Algorithms

The core loop of the sampling algorithm consists of two components i) Generating

the sticky PDMP dynamics for a fixed set of candidate knots {mi}M
i=1. ii) Updating

the set of candidate knots and (if required) the hyperparameter γ . The former can

be achieved using either Algorithm 6 or Algorithm 7. The latter is specified in

Algorithm 8. Note that the method provided in Algorithm 6 is inexact without a

Metropolis correction, with the induced bias vanishing as δ → 0 [Bertazzi et al.,

2023]. This can be added after each loop of the algorithm. The results in the main

paper are generated using the uncorrected version of Algorithm 6. The updates to

v∇U ,v⊥ are given by the positive p-orthogonal refresh forward event chain Monte

Carlo method of [Michel et al., 2020].
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Algorithm 6 Generating the PDMP via splitting schemes

1: Given step size ∆t, current state z0 = (x0,v0) and current b

2: Simulate U1,U2,U3
iid∼ Uniform(0,1)

3: if U1 < 1− exp(−ΛR∗
∆t/2) then

4: Set b = 1
5: end if
6: Update x0 7→ x∆t/2, ▷ Sticky PDMP dynamics
7: if U2 < 1− exp(−ΛB(∆t/2)∆t) then
8: if b = 0 then
9: Update v∇U

10: end if
11: if b = 1 then
12: Update v∇U ,v⊥

13: Set b = 0
14: end if
15: end if
16: Update x∆t/2 7→ x∆t .
17: if U3 < 1− exp(−ΛR∗

∆t/2) then
18: Set b = 1
19: end if

Algorithm 7 Generating the PDMP using Gibbs updates and line search

1: Given current z0 = (x0,v0), σ0.
2: Simulate th ∼ Exponential(λh).
3: Update z0 7→ zth ▷ Sticky PDMP dynamics via [Bouchard-Côté et al., 2018,

Example 1]
4: Sample σ from the full conditional π(σ | zth). ▷ Metropolis-within-Gibbs

Algorithm 8 Updating {mi}M
i=1 and Γ

1: Given zt ,Γt ,{s j}J
j=1,{mi}M

i=1.
2: Update zt ,{s j}J

j=1 ▷ Algorithm 6 or Algorithm 7
3: Update K = M− J, K ∼ Poisson((1−ω)Γy+)

4: Update {r j}M−J
j=1

iid∼ Uniform(0,y+)
5: Update Γ ∼ Gamma(J+α,ω/(β +1)) ▷ If hyperprior specified
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C.2.2 Generating extrapolations

In Section 3.6 we highlight that extrapolations can: i) Be generated using the skew-

symmetric scheme directly. This reduces the computational cost of the methods. ii)

Be generated using a re-scaled consistent step size σ∗. This gives the practitioner

more control over the computational cost of generating extrapolations, and the bias

induced by using a discretisation scheme. Given σ∗, extrapolations can be generated

using a set of times with inter-arrival times given by

{τi}N
i=1

iid∼ Exponential(Γω(σ/σ
∗)2).

In the examples of Section 4 we use σ∗ = 0.1.

C.2.3 Reversible jump MCMC

The reversible jump algorithm of Section 3.7 alternates between a random walk

Metropolis update to θ̃ and reversible jump moves which add and delete knots in the

samplers [Green, 1995]. Knots are added as

1. Propose a new knot location s∗j ∼ Uniform(s1,y+).

2. Propose a new value for the scaled innovation at that knot, θ̃ ∗
j ∼

Normal(0,σ2
RJ).

3. Accept the proposed knot and innovation with probability min{1,A} with

A =
π(θ̃ ∗,s∗)/(J+1)

π(θ̃ ,s)q(θ̃ ∗)
.

Where q(·) is the proposal density, and the J+1 term arises as the probability

of picking a knot to remove in the reverse move.

Knots are removed by selecting a knot and corresponding innovation to remove from

the model. These moves are accepted with probability min{1,A−1}.

The reversible jump sampler in Section 3.7 was run using a step size of 0.05 for

the Random Walk Metropolis kernel and 0.01 for the step size of the reversible jump

proposal. The sampler was run for 1,000,000 iterations, with one iteration consisting
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Figure C.1: Hazards under the reversible jump sampler with alternative reversible jump
proposal parameter.
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Figure C.2: The mean hazard under the piecewise exponential model and sampler of Chap-
ple et al. [2020].

of a single Random Walk Metropolis and reversible jump step. The PDMP sampler

was run for the same computational budget. Using a step size of 1 in the reversible

jump proposal results in the hazards in Figure C.1.

We also sought to compare the sampler developed in Section 3 to an existing

sampler. To this end the results of applying the piecewise exponential model of

[Chapple et al., 2020] to the Colon cancer. The resulting hazard is plotted in Figure

C.2. In this case both the reversible jump and within model sampling components

have failed to explore the state space. This serves to illustrate the difficulty in

designing and implementing these samplers.
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Figure C.3: LOOIC values for various values of Γ for the colon cancer data.

C.3 Additional details for example applications
All the models were implemented in Julia with code available at https://github.

com/LkHardcastle/PEM_extrap.

C.3.1 Specification of γ

To find the optimal value of γ models were fit to the Colon cancer data using

µ(α j) = 0, for Γ ∈ {1,2,5,10,15,20,25}. LOOIC values were computed using

Pareto-smoothed importance sampling [Vehtari et al., 2017]. These values are

plotted in Figure C.3. While the LOOIC decreases as γ increases, the improvement

begins to plateau between Γ = 5 and Γ = 10, indicating Γ = 7 as a good choice of

hyperparameter.

C.3.2 Colon cancer data

The Colon cancer data were accessed via the R survextrap package. Each model

was run for 2 chains of 10,000 iterations, 5,000 of which were burn-in, and where

each iteration consists of a single Gibbs update for {rk}M−J
k=1 and 50 iterations of

Algorithm 6 with ∆t = 0.01 Convergence was assessed by examining trace plots, R̂

values for the hazard at fixed time points and effective sample sizes. In this example,

and all following examples, chains were run until R̂ < 1.01 for all time points (taken

at intervals of 0.2 on (0,y+)). Priors were as specified in Sections 2 and Section 4.1.

The specific drift functions were derived as follows. The log-Gamma(2,7) stationary

https://github.com/LkHardcastle/PEM_extrap
https://github.com/LkHardcastle/PEM_extrap
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Figure C.4: Hazards for the M-spline hazard model fit to the Colon cancer data with the
final knot placed at 5, 10 and 15 years [Jackson, 2023]. Note how extrapolations
are strongly dependent on the placement of the final knot.

Model AIC E[Y ](0,y+) E[Y ](0,y∞)
Exponential 431.57 2.22 (2.06, 2.35) 4.71 (3.80, 5.63)

Gamma 433.56 2.21 (2.08, 2.35) 4.73 (3.73, 5.72)
Gompertz 428.20 2.15 (1.98, 2.30) 7.12 (4.70, 8.75)
Weibull 433.34 2.20 (2.05, 2.35) 4.89 (3.78, 5.96)

Log-logistic 428.24 2.18 (2.02, 2.32) 5.60 (4.57, 6.61)
Log-normal 422.19 2.18 (2.03, 2.32) 5.79 (4.71, 6.86)

Table C.1: Results for the standard parametric models fit to the Colon cancer data. Mean
survival results and 95% confidence intervals are reported.

distribution was elicited by assuming a constant (exponential) hazard as y → y∞.

Using standard conjugacy results this can be elicited by assuming the observation

of a individuals for b time until events was observed. This stationary prior implies

2 individuals observed for a total of 7 years in the limit. The Gaussian Langevin

stationary distribution was then selected to approximately match the uncertainty inter-

vals of this Gamma distribution. We note that these examples are purely illustrative

and can likely be improved on in practice.

C.3.3 Comparators

Figure C.4 and Figure C.5 show hazard functions for the comparators in Section 4.1

[Baio, 2020, Cooney and White, 2023a, Jackson et al., 2017]. The results for the

standard parametric models are presented in Table C.1. AIC is minimised for the

log-normal model, and as such this is the model used as the comparator in the main

manuscript.
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Figure C.5: (Left) Hazards for the independent piecewise exponential model fit to the
Colon cancer data [Cooney and White, 2023a]. Note how the hazard is not as
expressive as either the diffusion piecewise exponential model or the M-spline
model. (Right) Hazards for the standard parametric models fit to the colon
cancer data. Hazards are computed using numerical derivatives of − log(S(y))
and as such appear non-smooth in the plot.

C.3.4 CLL-8 trial data

The same procedure as for the Colon cancer data was used to determine an optimal

value of Γ. The results of this procedure are shown in Figure C.6. While the LOOIC

is minimised for Γ = 20, the values begin to plateau around Γ = 10. Each model

was run for 2 chains of 10,000 iterations, 5,000 of which were burn-in, and where

each iteration consists of a single Gibbs update for {rk}M−J
k=1 and 50 iterations of

Algorithm 6 with ∆t = 0.01 Convergence was assessed by examining trace plots, R̂

values for the hazard at fixed time points and effective sample sizes.

We outline the time-varying drift functions used in Section 4.2.

Gamma waning:

µ(αy,y) = ψ1(y)−ψ2(y)exp(αy),

ψ1(y) = ψ1 max{min{1,y/c},1/c}, ψ2(y) = ψ2 max{min{1,y/c},1/c}.

Waning treatment effect:

µ(βy,y) =
1

ψ2(y)2 βy, ψ2(y) = max(1,(y/4)2)−1.
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Figure C.6: LOOIC values for various values of Γ for the CLL-8 data.
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