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Abstract

This thesis is primarily concerned with developing novel survival models that are
able to extrapolate hazards beyond final event times, and the development of novel,

efficient posterior sampling methods based on non-reversible processes.

Polyhazard models are a class of flexible parametric models for modelling
survival over extended time horizons. Significant user input is required, however, in
selecting the number of latent hazards to model, their distributions and the choice
of which variables to associate with each hazard. The resulting set of models is too
large to explore manually, limiting their practical usefulness. To address this we
extend the standard polyhazard model through a prior structure allowing for joint

inference of parameters and structural quantities.

The piecewise exponential model utilises a piecewise constant hazard function.
We develop a novel extension to this model to allow for principled extrapolations,
based on a two part prior: 1) A discretisation of an underlying diffusion process,
allowing prior information to inform extrapolations. ii) A Poisson point process prior
for the set of knots, allowing this set to be extrapolated beyond final event times.
Posterior inference in both cases is achieved using Markov Chain Monte Carlo meth-
ods based on Piecewise Deterministic Markov Processes. These processes have seen
significant theoretical interest due to non-reversible dynamics allowing for efficient
exploration of the state space, and tractable continuous trajectories that allow for
efficient sampling from transdimensional posteriors. This thesis provides a literature
review for the current state of these processes and makes several contributions to
improving their implementation, including extending methods for generating the

underlying Poisson process and extending the range of transdimensional posteriors
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they can be applied to. With respect to the latter, we develop theory that allows
these processes to navigate posteriors comprised of mixtures of a manifold and the

ambient space the manifold is embedded in.
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for easy implementation of these models. Further, a crucial point of these models
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provide insights to those looking to employ these methods in future work.
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Chapter 1

Thesis overview

This thesis is primarily concerned with developing novel survival models that are
able to extrapolate hazards beyond final event times, and the development of novel,

efficient posterior sampling methods based on non-reversible Markov processes.

1.1 Survival extrapolation

Chapter 2 provides an introduction to survival analysis and a review of current
methods for extrapolating hazard functions beyond final observation times. This
problem is particularly relevant in Health Technology Assessment [HTA ; Latimer,
2013]. Healthcare systems, such as the UK’s National Health Service, have the
objective of maximising the health of the population given finite financial resources.
HTA provides a decision-theoretic framework for analysing the cost-effectiveness
of novel medical interventions in publicly funded healthcare systems, to ensure this
objective is fulfilled.

In England, following the recommendations of the National Institute for Health
and Care Excellence (NICE), expected life years (i.e mean survival) is commonly
incorporated as the primary measure of benefit in these analyses. Estimation of
this quantity requires survival, or equivalently hazard, curves to be estimated over
a lifetime time horizon. This task is not trivial as data from both clinical trials and
observational studies is often limited in follow up. Analysts are therefore tasked with
inferring hazard curves on an extended interval given data from the initial period.

There is therefore a focus on the development of methods that can extrapolate beyond
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final event times in a principled manner.

Chapter 4 is concerned with the extension of polyhazard models, a commonly
used model for survival extrapolation [Berger and Sun, 1993, Demiris et al., 2015].
This model utilises an additive hazard formulation to extrapolate hazards beyond
event times, informed by final observations. In practice, use of this model has been
limited, however, by a challenging model selection problem that requires the analyst
to specify the number of hazards, covariates associated with each hazard and the
functional form of each hazard. The focus of Chapter 4 is the extension of the
polyhazard model to infer these quantities within a Bayesian framework, with priors
on each quantity. This allows analysts to fit a single model to the data, rather than
having to fit a large set of candidate models that grows rapidly with the number of
considered sub-hazards and covariates. The model is showcased on data arising from

stroke survivors and kidney transplant patients.

Chapter 5 introduces a new prior structure for the piecewise exponential model
as the discretisation of a latent diffusion process. In the context of survival extrapola-
tion this allows for flexible, data-driven inference during the time period of the trial.
Extrapolations are then informed by a pre-specified diffusion that encodes explicit
prior beliefs about the long-term behaviour of the hazard. We outline extensions
that incorporate non-proportional covariate effects, time-varying drifts and waning
treatment effects. The model is showcased on data from colon cancer and Leukaemia
patients.

Chapter 6 discusses future directions, focusing on the practical implementa-
tion of these models and the specification of alternative latent processes to those

considered in Chapter 5.

1.2 Piecewise deterministic Monte Carlo

The primary inferential tool employed in this work is Markov Chain Monte Carlo
(MCMC) methods based on Piecewise Deterministic Markov Processes [PDMPs
; Davis, 1993, Fearnhead et al., 2018]. MCMC methods, where samples of the

posterior are generated by designing a Markov process with the posterior as its
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stationary distribution, are a well established tool for applied statisticians. Most
popular MCMC methods rely on a reversibility condition for validity. This condition
is typically easy to satisfy, but can introduce diffusive dynamics into sampling,
limiting computational efficiency.

This has motivated the development of samplers that are non-reversible, re-
placing the diffusive dynamics of reversible samplers with ballistic exploration of
the state space [Diaconis et al., 2000, Andrieu and Livingstone, 2021]. A class of
processes that exhibit this behaviour are Piecewise Deterministic Markov Processes,
where velocities drive piecewise deterministic exploration of the state space. In
the context of Bayesian inference, there has been a large body of theoretical work
studying these processes recently, however, there have been limited practical imple-
mentations. A key contribution of this thesis is the practical application of these
methods.

Chapter 3 provides a review of Markov Chain Monte Carlo focused on Piecewise
Deterministic Markov Processes. In particular we highlight the challenges associated
with implementing these processes. Further we highlight an attractive property of
these processes that, when they have tractable deterministic dynamics, they are
able to move directly between nested models commonly found in Bayesian model
averaging problems.

Chapter 4 applies these processes to the extended polyhazard model. We
develop results that allow for incorporation of transdimensional birth-death processes
alongside PDMPs and extend existing methods for implementing these processes.

Chapter 5 extends the transdimensional aspects of these processes to sample
from the posterior of the piecewise exponential model when a Poisson point process
prior is used for the number and location of knots in the sampler.

Chapter 6 introduces methodology that allows these processes to stick to an

embedded manifold.



Chapter 2

Survival analysis for Health

Technology Assessment

Understanding the benefit of medical interventions in terms of the amount of “life”
gained is a foundational statistical problem. To the best of the author’s knowledge,
the earliest attempt at the study of this problem was undertaken by Daniel Bernoulli
[Bernoulli, 1766, Bernoulli and Blower, 2004], who advocated for the introduction of
smallpox inoculation by developing a mathematical model to understand the number

of life years gained given the eradication of the disease.

More broadly, time to event data (such as survival times given smallpox inocu-
lation) are ubiquitous in many fields, perhaps most prominently in medical research
but also engineering and reliability, insurance and financial risk modelling, and both
social and environmental sciences. Following seminal contributions in the second
half of the 20 Century [Cox, 1972, Feigl and Zelen, 1965, Kaplan and Meier, 1958]
the study of these data, commonly referred to as survival analysis, has become an
established field of applied statistics [Ibrahim et al., 2001, Legrand, 2021].

Perhaps the defining feature of survival data is the presence of censoring, where
a subset of observations are only partially observed. This commonly occurs in
clinical trials and observational studies where individuals may not have experienced
the event of interest by the end of the study.

This chapter provides an introduction to survival analysis primarily in the

context of Health Technology Assessment [HTA; Latimer, 2011, Baio, 2013], where
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Figure 2.1: Visualisation of the data-generating process for survival models considered in
this thesis, where A is the initial state (e.g being alive), B is the final absorbing
state (e.g death), and A(y) is the time-dependent hazard function, or equivalently
the inhomogeneous rate of transitions from A to B.

the costs and benefits of novel medical interventions are analysed. Survival analysis
is used to quantify the benefits within this framework primarily in terms of (quality-
adjusted) life years gained, requiring estimation of expected survival. This contrasts
with standard measures used in more traditional survival analysis, where measures

of interest typically include median survival or hazard ratios.

2.1 Survival analysis

The standard data generating process for many survival models assumes that obser-
vations arise from a simple two-state continuous-time Markov chain, depicted in
Figure 2.1, with an initial state, A, and a single final absorbing state, B. Transitions
are determined by a time-dependent hazard function, i(y), y € (0,c0). Here, A and
B can correspond to, for example, being alive and being dead or cancer having not
progressed and cancer having progressed. The standard objective of survival analysis

is the modelling of the time, Y, spent in state A and associated quantities.

Figure 2.1 encodes several assumptions associated with classical survival analy-
sis. Primarily that events (i.e transitions) can only occur once and that there is a single
transition of interest. Further, with the additional assumption that [;” h(y)dy = oo, that
events always occur in finite time. Note that relaxing any of the above assumptions
leads to several active areas of research in modern survival analysis, including the
modelling of repeated events [Amorim and Cai, 2015], multi-state models [Jackson,
2011] and cure models [Amico and Van Keilegom, 2018].

Given the two-state Markov chain formulation above, we can define the proba-
bility density function of Y € R~ as f(y), with corresponding cumulative density

function F(y) = P(Y < y). More commonly, however, Y is analysed through the
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hazard and survival functions

Py < Y
h(y) = lim ( —ytf‘ =) s) = 1-F(y). @.1)

Here, h(y) can be interpreted as the instantaneous risk experienced by an individual,
and S(y) is simply the probability the transition has not occurred at time y. These

quantities are directly linked to the probability density function and to each other as

£0)=h)S),  SG) = exp (— /O yh(u)du) |

In short, specification of either S(y) or i(y) is sufficient to specify the entire data-
generating process for Y. As such, hazard selection, i.e the process of deciding the
form of A(y), is equivalent to standard model selection. Finally, given a sequence of
n independent observations for Y, {y;}"_,, and assuming that the hazard and survival
functions are parametrised by a vector of parameters, 0, this allows us to specify a

likelihood
L(0;{yi}iy) = Hhe(yi)Se(yi)-

i=1

2.1.1 Censoring

Throughout this thesis we will assume that data are partially right-censored due to,
for example, random patient drop out or the end of clinical trials. This is accounted

for in the data-generating process by observations arising according to
Y9 = min{y,Y°},

where Y© is the observed time and Y€ is the censoring time with corresponding
probability density function g(y) and cumulative density function G(y). Specifically,
this encodes the definition of right-censoring, that for all censored times ¥ > Y?. In
this work any references to censoring are referring to right-censoring; however, more
generally, individuals may also be subject to left- or interval-censoring. Throughout

we will assume that we know which event times are censored, i.e we observe the
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censoring indicator,

A=1(Y <Y°),

realised as {6;}_,. The data are therefore comprised of a tuple of event and censoring
times, censoring indicators and, in some cases, covariates for individuals, w € R?,

summarised as D = {y;, &;, wi}?zl. The resulting likelihood can then be written as

L£(6:D) = ﬁl[(l — G (i) fo (i | wi)]¥[Se (vi | wi)g(vi)]' ™2,
Tho i [ w) S0 | wi). (2.2)
=1

1

To move from the first to the second line we have crucially made the assumption
that the censoring mechanism does not depend on 0, the parameters of the survival
distribution [e.g., Legrand, 2021]. This is referred to as non-informative censoring
and is a common assumption underpinning many survival models. In many of the
examples of this thesis, survival times will be deterministically truncated at some
time as a result of, e.g the end point of a clinical trial, in addition to the random
censoring mechanism. In these cases we will refer to these observations being

administratively censored, and denote this censoring time as y .

2.1.2 Survival extrapolation

Health Technology Assessment often requires the inference of expected survival
over a lifetime time-horizon [Latimer, 2011, Baio, 2013], (0,y«) as a measure of the

benefit received under a certain treatment,

E[Y] =/Oym(l—F(y))dy=/0ymS(y)dy~ (2.3)

A typical feature of data in this setting is that they are subject to a high degree of
administrative censoring, often with y, << y.. For example, Gibbons and Latimer
[2024] estimate that since 2018 56% of NICE appraisals for cancer treatments have

been conducted using immature survival data, where the majority of events occur
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after y;. Re-writing (2.3) illustrates the difficulties this censoring can create,

ElY] = /0 T S)dy+ /y i“s(ymy, 2.4)

as we now require a specification for S(y) that can extrapolate beyond y [Latimer,
2011]. In particular, as the rate of censoring increases, inferences of E[Y] will
become increasingly sensitive to this extrapolation. This extrapolation excludes
standard non-parametric approaches such as Kaplan-Meier estimators. Further, the
problem cannot be circumvented by simply using an alternative estimand as a proxy
for (2.4). For example, in the presence of high censoring rates median survival will
often not be observed, and restricted mean survival estimates on the interval (0,y. )
will be markedly different to those on (0,y.) as they ignore the non-negligible
contribution from the second half of (2.4). We review current approaches to this

problem in Section 2.2.

2.1.3 Bayesian survival analysis

This thesis is primarily concerned with Bayesian approaches to survival analysis.
Within this paradigm, uncertainty about model parameters is represented through
probability distributions. This is achieved by combining the survival likelihood (2.2)

with a prior distribution, my(0) for 6 to derive a posterior distribution
(6| D)o L(6;D)mp(0).

This distribution is then used to make inferences about quantities of interest, in most
cases considered in this thesis, Eg[Y]. This perspective is particularly appealing in
the context of survival extrapolation, as it allows for the principled incorporation
of prior information into inferences either in the form of external data or expert
opinion. We expand on this point in Section 2.2.3. Note, throughout this thesis we
will occasionally drop the dependence on D in the posterior, denoting instead as

m(6).
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2.2 Current approaches to survival extrapolation

For the remainder of this chapter we review current approaches to survival extrapola-

tion in Health Technology Assessment.

2.2.1 Parametric models

Perhaps the most common approach to extrapolation is to assume Y is generated by
a (typically two-parameter) parametric survival distribution [Latimer, 2013]. For
example Y ~ Weibull(A,y) gives the hazard function 4(y) = Ayy?~!. The parametric
form of the hazard function then allows extrapolation beyond y.. This approach
was reviewed in an influential NICE decision support unit report [Latimer, 2011],
who recommend in the presence of incomplete survival data to compare several
parametric survival models for the data based on information criteria and plausibility
of extrapolations. A table of commonly used distributions is found in Table 1 of
Baio [2020]. This approach is showcased in Appendix C.

This approach has several limitations:

1. Standard parametric models are only able to model a limited range of hazard
behaviours. For example, none of the distributions in Table 1 of Baio [2020]

can model a hazard with multiple points of inflection.

2. Extrapolations are based on the assumption the parametric model is correctly
specified. This assumption is untestable when a large proportion of events

oceur in (Y4, Ve ).

3. As a direct consequence of the previous point, credible intervals for the hazard
function on (y.,ye) and therefore also the second half of (2.4) will shrink as
more events are observed in (0,y.. ), despite no data being observed during the
extrapolation period. If the model is misspecified, this will then underestimate

uncertainty in the extrapolation period.

4. Further, any information incorporated into my(6) [e.g Soikkeli et al., 2019,
Palmer et al., 2023] to inform extrapolations will be overridden by the data as

the number of events in (0,y. ) increases.
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The following sections review current methods for overcoming these limitations.
The primary method for overcoming points 1 & 2 is to utilise a flexible parametric
model for (0,y, ). We review several approaches in this vein primarily following the
review of Rutherford et al. [2020]. Flexible models can also prevent underestimation
of uncertainty in the extrapolation period (point 3), but flexible assumptions do
not automatically guarantee uncertainty is correctly calibrated. Points 3 & 4 are
often overcome using external data and assumptions about the long-term form of
the hazard, we review how these are often incorporated into standard modelling

techniques in Section 2.2.3.

2.2.2 Flexible models

There are several choices of flexible parametric model available in the literature
for survival extrapolation, allowing for data-driven inferences during the observa-
tion period. In some cases these models do not contain an automatic method for

extrapolation, however, requiring the analyst to specify the extrapolation mechanism.

2.2.2.1 Polyhazard models

Polyhazard models are a class of flexible parametric models defined by additively

combining hazards from one- or two-parameter survival distributions,

K
h(y) = ;hj(y)-

This procedure results in hazard functions that are flexible and able to model a wide
range of covariate effects. Originally developed for analysis of latent competing
risks [Berger and Sun, 1993, Louzada-Neto, 1999], polyhazard models have become
increasingly popular for modelling long-term survival required for Health Technology
Assessment following the work of Demiris et al. [2015], who used a poly-Weibull
model to analyse survival in transplant patients. Note they have also been used in
the HTA literature to model data generating processes where the latent competing
risks are given explicitly [Benaglia et al., 2015]. Polyhazard models can capture a
wide range of hazard curves while retaining the interpretability and parsimony of

simpler models. Further, due to the additive decomposition of the hazard function,



2.2. Current approaches to survival extrapolation 32

later observations naturally have more influence on long-term survival. Recently
Apsemidis and Demiris [2024] have also developed a piecewise version of the

polyhazard model based on a single changepoint.

Polyhazard models are the primary focus of Chapter 4.

2.2.2.2 Piecewise models

A common approach for introducing flexibility into the hazard function is to define
the hazard as a piecewise continuous function [Ibrahim et al., 2001, Feigl and Zelen,

1965, Fearnhead and Liu, 2011],
J
h(y) =Y hi(y)1(y € [sj-1,5)))-
j=1

where {s j}§: | is a set of knots. The most common specification for /;(y) in this
context is a constant, defining a piecewise exponential model. This could also be
taken to be a linear or log-linear function, or taken as the hazard function from
an existing parametric model, however we will focus on the piecewise constant
case. These models naturally provide a flexible fit to the hazard assuming {s j}le is
sensibly chosen. Extrapolations are highly sensitive to model specification, however,
with the analyst required to specify both how the the local hazard /;(y) evolves in
time, and the location of knots in the extrapolation period.

The simplest way to define this extrapolation is through a random walk prior on
the local (log-)hazards, and then manually placing knots in the extrapolation period
[Che et al., 2023, Kearns et al., 2021]. The uncertainty associated with the resulting
hazards, however, will increase indefinitely with the number of knots, often beyond
a range of plausible long term hazard values. Further, this rate of increase is highly
sensitive to the location of knots, increasing faster when more knots are specified
and slower when fewer are specified.

An alternative perspective is provided by Cooney and White [2023a]. The
piecewise exponential model is specified with independent gamma priors for the
local constant hazards, and a Poisson prior for the number of knots. This prior allows

for the location of s; to be determined by the data. Hazards are then extrapolated as a
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constant after this point. This approach, advocated by Bagust and Beale [2014], has
proved controversial due to the reliance on the model selected for the observation
period, and the inability to inform long-term hazards with prior information [Latimer,
2014]. Further the independent priors for the local hazards reduce the flexibility
of the hazard inferred during the observation period. This approach has also been
extended to incorporate waning treatment effects [Cooney and White, 2023b].
Recently, Kearns et al. [2019, 2022] used piecewise models for extrapolation
within the framework of dynamic survival models. These models incorporate a trend
into the evolution of the hazard function, which can then be used to inform long-term
extrapolations. These models retain the flexibility of standard piecewise models,
however, for extrapolation they are reliant on the assumption that the long-term trend
is correctly specified and can be inferred from the limited data in the observation

period.

2.2.2.3 Spline models

A final class of approaches we consider model the hazard function using splines. In
similar fashion to piecewise models, these approaches model the hazard function
with a set of basis functions separated by knots. Similar considerations apply with
their use, in that they are sensitive to placement of knots, in both the observation and
extrapolation periods.

Spline-based extrapolation methods were introduced in Guyot et al. [2017],
where Bayesian multi-parameter evidence synthesis was used to combine a restricted
cubic spline model for the observed data with external information to guide long-term
extrapolations. Restricted cubic splines can provide poor estimates in the context of
hazard modelling, however, as they allow for negative hazards.

This approach was improved by Jackson [2023] who used M-splines as a model
for h(y). In contrast to restricted cubic splines, these guarantee that the hazard is
positive. Extrapolation, without external data, is then based on placing a final knot
in (y+, V). In the absence of additional information these methods will be sensitive
to the placement of this knot. Further studies have validated the performance of this

approach to fit data during the observation period [Timmins et al., 2025a], and the
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quality of extrapolations when external data is incorporated [Timmins et al., 2025b].

2.2.3 Incorporation of external information

When the observation period is short relative to the overall time-period of interest,
V4 << Y, €xtrapolations can often be improved by the incorporation of additional
information into survival models. In the Bayesian setting this information may be
specified as a prior derived, for example, from expert opinion on the plausibility of
long-term survival probabilities. Alternatively, it may be available as an external

dataset from a population with some shared characteristics of the study population.

2.2.3.1 External data

Examples of external datasets include life-tables for the national population level,
disease registries and previously conducted clinical trials [Bullement et al., 2024,
Jackson et al., 2017]. Importantly, the similarity of the study and external population
will inform how the external data are incorporated into the model.

These assumptions are reviewed in Jackson et al. [2017], where the hazard for

the population of interest are related through one the following assumptions

hs(y) =he(y), y>ys, (2.5)
hs(y) = exp(B)he(y), (2.6)
hs(y) = he(y) +7. (2.7)

Here, (2.5) encodes a converging hazard assumption such that the study and external
population hazards converge after some pre-specified time y.; (2.6) encodes a long-
term proportional hazard assumption between the study and external data populations;
and (2.7) encodes a long-term additive difference between the external and study
population hazards. Importantly each of these hazard forms are based on assumptions
made by the analyst. These may be supported by data from the observation period,
but an inherent feature of the survival extrapolation is that they are not able to be
conclusively tested.

Principled incorporation of these assumptions with external data is undertaken

through Bayesian multi-parameter evidence synthesis whereby external data, for
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example encoded through (2.5)-(2.7), is explicitly included in the likelihood function.
The two spline-based approaches highlighted in Guyot et al. [2017], Jackson et al.
[2017] are able to incorporate external data through these assumptions, and formally
compared in Bullement et al. [2024]. Both approaches allow for the incorporation of
data from both disease registries and background mortality.

In general, these assumptions are often incorporated into the analysis after
the point of model fitting. This involves first fitting a model for ig(y), and then
basing the analysis on, for example, the hazards h(y) = hs(y) + hg(y), or h(y) =
max{&s(y),he(y)} [Andersson et al., 2013]. Note, there is no principled basis for
either of these approaches. This is highlighted in van Oostrum et al. [2021], where
the authors compare these approaches to methods incorporating external data directly
into the likelihood and found superior performance in the latter.

A final method for incorporating external data is the blended survival approach
[Che et al., 2023]. Two survival curves are inferred; The first, Sp(y), for the ob-
servation period and based on study data, from a flexible, possibly non-parametric,
survival model; The second, Sg(y), for the extrapolation period is derived from
external data, that represents the expected long-term survival of the study population.

The two curves are then blended together as

() = So(y)") x Sg(y) 170,
wo) = (3=2).

where Fjp is the cumulative density function of a Beta(ct, 3) distribution. Here, a,b

correspond to the limits of the interval over which the blending occurs, with o and
B set to control the rate of blending between the two survival curves. Note, while
we have introduced this method as an approach for incorporating external data, the

authors also outline how Sg(y) can be elicited via expert opinion.

2.2.3.2  Prior information

An alternative to direct incorporation of external data, is the use of a prior distribution

to inform extrapolations. Derivation of this prior may be based on historical trial
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data. For example, Soikkeli et al. [2019], use historical data to derive a prior for the
shape parameter of a Weibull distribution. Note, when standard parametric models
are used for survival extrapolation, the influence of this prior information will decay
as the number of events in the observation period increases, limiting the ability of
this approach to influence extrapolations.

Cooney and White [2023c] propose an alternative method that incorporates
expert opinion on the value of the survival function at a fixed time point, y, > y.,
by eliciting a loss function for S(y.). This is then incorporated into the posterior by

multiplicatively including the term

1
(6 | ., 07) o< exp | —=— (So(ye) — s)? | ,
20

in addition to a standard prior for 8. Here, (u,,c2) are the expert’s expected value of
S¢(v«) and quantification of the corresponding uncertainty associated with this term.
Theoretically the authors justify this approach within a generalised Bayes framework
[Bissiri et al., 2016, Section 4.1]. This is a simpler approach than eliciting a prior
distribution directly, as it does not require the elicited distribution to be transformed
into an explicit density for 0. It does, however, suffer from the same drawbacks as
when Sg(y) is modelled with a parametric model, with data in the observation period
dominating long-term inferences.

The above examples do not outline how prior information should be elicited.
Prior elicitation is its own field within Bayesian statistics, with several general
proposed frameworks. Recently, the Sheffield Elicitation Framework (SHELF) has
been applied directly to the case of survival extrapolation for HTA [Gosling, 2017,
Oakley et al., 2025] using standard parametric models [Cope et al., 2019] and in M-
spline models [Jackson, 2023]. This provides a structured framework to elicit expert
beliefs about long-term survival probabilities. These prior beliefs are then converted
into synthetic datasets that can be incorporated into the analysis, as outlined earlier

in this section.



Chapter 3

Piecewise Deterministic Monte Carlo

This chapter introduces and reviews recent advances in Markov Chain Monte Carlo
methods [MCMC ; Brooks et al., 2011] primarily based on Piecewise Deterministic
Markov Processes [PDMPs ; Davis, 1993]. This is an area of active research, and
as such several of the works cited in this chapter have been published during the
development of this thesis. The chapter begins with a review of the computational
challenges presented by Bayesian inference before reviewing standard Markov Chain
Monte Carlo approaches. Most state of the art approaches are based on a reversibility
condition that introduces diffusivity into the dynamics of the sampler. This has
motivated recent work on non-reversible processes that break this diffusivity by
introducing velocities that can drive exploration of the state space. We review
several of the recommended processes focusing in particular on their generation and

transdimensional sampling.

3.1 Bayesian computation

Bayesian inference generates the posterior distribution, 7(0), 8 € Q C R, resulting
from the combination of the prior and likelihood. This distribution is then used to
generate the quantities of interest to the analyst. For example, these may be marginal

quantities of interest expressed as expectations of functions of 6,

Exlf(0)] = | f(0)n(0)de, @)
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posterior predictive distributions

PO |D) = [ plywct | 0)n(6 | D)do,

or marginal likelihoods as a measure of model evidence

p(yl:n):/gﬁ(e)dea

where 7(0) o< (0) is an unnormalised version of 7(0).

Outside of restricted cases, these integrals cannot be computed analytically
due to the form of the posterior, or the high dimension of 6. One of the primary
challenges associated with Bayesian inference, therefore, is the development of
computational methods that can accurately approximate these quantities. Arguably
the most popular and flexible of these methods is the Markov Chain Monte Carlo
method [Brooks et al., 2011, Martin et al., 2024].

3.2 Markov Chain Monte Carlo

The results stated in this section, unless stated otherwise, can be found in [Brooks
et al., 2011, Chapter 1]. Monte Carlo methods, in the context of Bayesian computa-
tion, use samples from the posterior distribution to approximate expectations (3.1)

via the average

N

Ex[f(0)] ~N 'Y f(xi), xi,....xn ~7(-). (3.2)

i=1

Practically this replaces the, now trivial, task of evaluating (3.1) with the task of
generating suitably accurate samples from 7(6). Convergence of these estimates is

then ensured by the Law of Large Numbers

N

N'Y f(x) = Ex[f(0)], N —oo.

i=1

This allows the approximation error to be reduced to an arbitrary degree by increasing

the number of samples, although this result does not guarantee that the number of
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required samples can be generated in finite time. For guarantees of this form, we

require the existence of central limit theorem

N
VN(NT'Y f(xi) — ) % Normal (0,62, (3.3)
i=1

where u =E.[f(0)] and 62 = var(f(8)), and 4 denotes convergence in distribution.

For independent sampling this holds if 62 < oo,

Independent posterior sampling is a challenging task. Standard methods in-
clude (adaptive) rejection sampling [Gilks and Wild, 1992] and importance sampling
[Kloek and Van Dijk, 1978]. They all, however, typically scale poorly with dimen-
sion, and are not necessarily applicable to generic target distributions. Note, for
the remainder of this chapter we drop the distinction between the parameters of the
model, denoted previously as 6, and the samples of the process, slightly abusing

notation to denote both by x.

3.2.1 Markov Chain Monte Carlo and Metropolis-Hastings
methods

Markov Chain Monte Carlo methods [Brooks et al., 2011] generate a sequence of
dependent samples from 7(-) by generating a Markov chain with 7(-) as its stationary
distribution. In particular, the Law of Large Numbers does not necessarily require
samples to be independent and so (3.1) can be approximated by the ergodic average
of the generated samples. Under certain conditions [e.g Roberts and Rosenthal,
19971, there also exists a Markov chain Central Limit theorem replacing c2in (3.3)
with

0% = var(f(x;))+2 i cov(f(xi), f(xit)),

k=1
where x| ~ 7(+). This typically results in estimates with lower statistical efficiency
when compared to independent sampling approaches, offset by significantly in-
creased computational efficiency. Further, implementation of these methods requires
no knowledge of the geometry of the posterior distribution beyond access to point-

wise evaluations of log 7 and possibly its gradient. As such they have become
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the standard workhorse for Bayesian modelling, enhanced by a large suite of com-
putational tools facilitating their use in applied statistics [Lunn et al., 2009, Stan

Development Team, 2025, Fjelde et al., 2025].

The most common construction of a Markov chain that has 7 as its stationary
distribution is based on constructing a chain that is i) £—irreducible, ii) aperiodic and
iii) t—invariant. Full definitions and statements of relevant results are supplied in
Appendix A. Here m-irreducibility and aperiodicity ensure that the chain can explore
the entire posterior distribution and are often easy to verify. Arguably the simplest
way of ensuring the chain is 7-invariant is to ensure the chain is 7-reversible, such

that for all pairs (x,x') € Q x Q

n(x)p(x,x') = 2(x)p(x',x),
where p(x,x’) is the one step ahead transition density of the chain conditional on the

current state x.

Metropolis-Hastings methods [Metropolis et al., 1953, Hastings, 1970] ensure
the above condition is met by taking a general Markov chain with transition kernel
q(x,x"), and then coercing it to the correct stationary distribution through an accep-
tance step that either moves the adjusted chain to a new state or leaves it in its current
position. More precisely, the transition kernel of the Metropolis-Hastings chain is

given by

P(x;,dxip1) = o0(xi, xi1)q (i, Xip ) dxig
+/g(1 — a(xj,Xit1))q(xi, Xig1)dxip1 6o (dxip1 — x;),

E(Xi+1)q<xi+laxi) }
(xi)q(xisxiv1) )

a(xi,xi-l-l) = min { 17

In the above the choice of ¢, referred to as the proposal distribution, will de-
termine the efficiency of the chain. Common choices include independent proposal
distributions [Tierney, 1994] and random walk proposals that centre g at x [Gelman

et al., 1997]. More generally, proposal distributions can be improved by incorpo-
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rating local information about the posterior via the gradient, V1og 7(x), commonly
incorporated by taking g as the one step transition kernel of a discretised 7-stationary
Langevin diffusion. Examples of this include the Metropolis Adjusted Langevin
Algorithm [Roberts and Tweedie, 1996] and the more recently introduced Barker
proposal [Livingstone and Zanella, 2022]. Full forms of these proposals are outlined
in Appendix A.

Reversibility ensures that Metropolis-Hastings methods are widely applicable,
however, it also results in processes that exhibit diffusive behaviour. This has

motivated the development of methods that reduce this diffusive behaviour.

3.2.2 Kinetic sampling

A common solution to this problem is to consider kinetic sampling methods. In
short these approaches augment the state space with velocities, v € V C R?, such
that the resulting state, z = (x,v) € R¢ x V, is driven through the state space by these
velocities. In theory this reduces the diffusivity of reversible methods as the process
retains memory of its trajectory through the state space.

The most common kinetic sampling methods are based on Hamiltonian dynam-

ics [Neal, 2011], that target a joint stationary distribution defined by,
(x,v) < exp(—H(x,v)), H(x,v)=U(x)+v'v.

where H is the Hamiltonian, U is the potential energy corresponding to the negative
log-density of the desired target distribution, 7(x) < exp(—U (x)), and the remaining
terms in H are referred to as the kinetic energy. The continuous-time evolution of

(x;,v¢) is then given by the system of differential equations

dx,; OJ0H dv, oH
& _dr 91 3.4
dt avt ’ dt ax, ( )

In the context of sampling Hamiltonian dynamics are an attractive choice of
proposal distribution as they are energy conserving. Explicitly, an initial (xg,vg)
propagated for time ¢ according to the above equations will have the property that

H (x0,v0) = H(x;,v;). An idealised sampler that utilises these dynamic, referred to in
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the literature as Randomised Hamiltonian Monte Carlo [Bou-Rabee and Sanz-Serna,

2017], is then defined by
1. Given (xg,vp), simulate t* ~ Exponential(A).

2. Generate (x;+,vs+) by evolving (xg,vp) for time 7* according to Hamiltonian

dynamics, (3.4).

3. Take (x;+,v+) to be the next samples in the chain, and refresh v from its

stationary distribution v ~ Normal(0,7).

The idealised version of this algorithm avoids a Metropolis correction due to the
energy-preserving property of (3.4). In practice, however, for most target distribu-
tions (3.4) cannot be solved exactly and requires the use of a numerical integrator.
The dynamics are therefore only approximately energy-conserving and require a
Metropolis step to account for integrator error and ensure the correct distribution is
targeted. The resulting algorithms, while highly efficient, require careful selection of
tuning parameters or the use of adaptive MCMC methods [Hoffman and Gelman,
2014, Bou-Rabee et al., 2024].

An alternative perspective on Randomised Hamiltonian Monte Carlo is as
an example of a Piecewise Deterministic Markov Process [Davis, 1993] as it is
defined by: i) Generating a random event time. ii) Evolving (x,v) according to a
deterministic flow until this event time. iii) Updating v according to some event
dynamics. Computationally, for Randomised Hamiltonian Monte Carlo, steps i) and
iii) are trivial with the computational cost of the method arising from generating
the deterministic flow in step ii). For the remainder of this chapter we will review a
new class of MCMC methods based on PDMPs that retain the attractive properties
of kinetic sampling methods, and utilise simple to compute deterministic dynamics

removing the computational cost associated with ii).

3.3 Piecewise Deterministic Markov Processes

We begin by formalising the definition of Piecewise Deterministic Markov Processes

introduced in the previous section. PDMPs are defined by a state and velocity on
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the augmented space (x,v) € Q x V. We denote in the following the j/* element of
z = (%,v;) as z,j = (x;,j,vs,j). The processes are constructed via three components

Davis [1993]:

1. Deterministic dynamics: Given by the system of ordinary differential equa-

tions

such that the process at time ¢ 4 s, conditional on no event having occurred,
is given deterministically by z,; = ¥(z,s), for known functions ®;(z,) and
W(z,s), where the latter is the flow map of the above ordinary differential

equation.

2. Event rate: Af(z) a state dependent event rate under which events occur
according to an inhomogeneous Poisson process. More precisely, given the

current state of the sampler, z;, this defines the next event time as
S
t* —inf{s >0 / AE (2 10)du = —log V'), (3.5)
0

for V ~ Uniform(0, 1). We will usually suppress the dependence on z; for the

remainder of this thesis, denoting the event rate by AZ ().

3. A transition kernel: ¢(- | z;), which determines the change in the velocity of

the process occurring at each event.

For the remainder of this thesis, unless explicitly stated otherwise, the determin-

istic dynamics are defined by

dx; dV[

—=v, — =0, 3.6
ar 0 dr (3.6
such that the state of the process evolves linearly with constant velocity. Further, all

the examples of PDMPs discussed in this thesis will be designed to target from a

stationary distribution given by

" (x,v) o< w(x)p(v),
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for a pre-defined stationary distribution for the velocities and a target posterior
distribution 7(x). Samples from the posterior are recovered by simply marginalising
out v. Under the above construction these processes are non-reversible, and will
therefore typically result in faster mixing times and smaller asymptotic variances
than reversible alternatives [Bierkens, 2016, Bierkens et al., 2019, Andrieu and
Livingstone, 2021].

Note, in contrast to the MCMC methods defined in Section 3.2, samples are
given by the piecewise continuous sample paths of the process rather than the value
of the process at event times. In particular, the distribution of the state at event times

is not 7. In practice rather than computing the ergodic averages defined by

Bl i)~ 7 [

it is computationally simpler to sample from the path of the process, either at fixed
intervals or uniformly at random, and then compute averages using (3.2). Practically,
these samples can be generated during a post-processing step, allowing only the
skeleton points of the algorithm to be stored during sampling.

The primary challenge with generating these processes is the generation of event
times that arise according to the inhomogeneous Poisson process with rate A (¢).
This rate is additively comprised of two parts AE (t) = AB(¢) + AR, where AB(¢) is an
inhomogeneous bounce rate that depends on the local geometry of the posterior, and
AR > 0 is an homogeneous refreshment rate required to ensure irreducibility in some
cases. Note, this is in contrast to randomised Hamiltonian Monte Carlo, where the
event times are simple to generate and the computational cost arises from integrating
the deterministic dynamics. Generating these event times is the focus of Section 3.5.

As an aside, the development of PDMPs for the purposes of sampling has
primarily occurred in the context of statistical physics [Bernard et al., 2009, Michel
et al., 2014] and are referred to as event chain Monte Carlo methods. Interestingly,
this mirrors the original development of both the original MCMC method [Metropolis
et al., 1953] and Hamiltonian Monte Carlo (referred to as Hybrid Monte Carlo)

[Duane et al., 1987]. A recent review of connections between sampling in Bayesian
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Figure 3.1: Sample paths of PDMPs targetting a two dimensional standard Gaussian distri-
bution. (Left) The Zig-Zag sampler. (Centre) The Bouncy Particle sampler with
AR = 1. (Right) The Bouncy Particle sampler with AR = 0.

inference and statistical physics can be found in Faulkner and Livingstone [2024].

3.4 Example processes

There are several examples of PDMPs that satisfy the definition introduced in the
previous section. Here, we introduce the two processes that have seen the most

interest in the Bayesian computation literature.

3.4.1 Zig-Zag sampler

The Zig-Zag sampler [Bierkens et al., 2019] utilises velocities with a uniform station-
ary distribution on V = {—1,1}¢ and deterministic dynamics given by (3.6). The
remaining dynamics of the process are then defined in coordinate-wise fashion with
the event rate for the j*" coordinate given by

Af (1) = max{0, v, ;9;U (x;)},

and the corresponding event kernel flipping the associated velocity v, j — —v; ;.
Intuitively, in the j* coordinate, if the process is moving into areas of lower
potential (equivalently higher posterior density) it continues uninterrupted. If, how-

ever, the converse is true, then v, ; flips with rate proportional to the rate of growth
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in the potential. The result is an almost-surely continuous (on x-space), piecewise
deterministic process, whose sample paths produce a zig-zag pattern shown in Figure
3.1.

In practice, to avoid simulating d inhomogeneous Poisson processes, the next
event time, ¢*, can be generated by simulating AB(r) = 27:1 f (t). Once this event
time is simulated, the coordinate to switch can then be chosen with probability
proportional to Af (t*). See Appendix A for more detail.

In general', the Zig-Zag sampler is irreducible with AR = 0 [Bierkens et al.,
2019]. This reduces the number of tuning parameters needed to implement the

sampler in practice, and the diffusivity associated with refreshments.

3.4.2 Bouncy Particle Sampler

The Bouncy Particle sampler [Bouchard-Coté et al., 2018] takes V =R¢ or V = §¢~!
with respectively Gaussian or uniform invariant distribution, and linear deterministic
dynamics. In contrast to the coordinate-wise updates of the Zig-Zag sampler, the

Bouncy Particle sampler is defined by the global reflection rate
AB(t) = max{0, (VU (x;),v;)},

and transition kernel that updates velocities by reflecting them off the contours of
the potential. This can be viewed as first computing the orthogonal decomposition
of v; with respect to the subspace spanned by VU and then flipping the component
aligned with VU

v=v|+vy, V—V] —Vyy. (3.7)

The sample paths of the Bouncy Particles sampler with refreshment are shown in
Figure 3.1. The intuition regarding when events occur is similar to the Zig-Zag
sampler, however, rather than whether individual coordinates are moving into areas

of higher potential, all coordinates are considered together, with reflection events

!For a counter-example consider a potential with square contours. The process is then irreducible
as the the trajectory can only navigate the potential in clockwise or counter-clockwise fashion,
depending on the initial conditions. This example was shown to us in a talk given by Prof. Gareth
Roberts at a workshop at the University of Warwick in 2024.
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only occurring when (VU (x;),v;) > 0. The event rate for the Bouncy Particle sampler
is therefore often smaller than that of the Zig-Zag sampler due to the possibility of

terms cancelling. Note, in one-dimension the two processes are identical.

Unlike the Zig-Zag sampler, the Bouncy Particle sampler typically requires
AR > 0 in order to be irreducible [Bouchard-Cété et al., 2018]. The behaviour of the
process when AR = 0 is shown on a Gaussian target distribution in Figure 3.1 where,
without refreshments, the process is unable to reach a ball centred at the mode of
the distribution. The efficiency of the process is highly sensitive to the choice of
AR, Scaling limit arguments suggest that optimal tuning of AR results in 78.12%
corresponding to refreshments [Bertazzi and Bierkens, 2022, Bierkens et al., 2022].
This introduces significant diffusivity into the process, limiting the benefit of the

non-reversible dynamics.

Several authors have suggested generalising the dynamics of the Bouncy Particle
sampler to incorporate randomness in the transition kernels [Wu and Robert, 2019,
Michel et al., 2020]. The primary advantage of this is that it reduces the reliance
on refreshments for irreducibility. In particular, in Chapter 5 we review the work of

Michel et al. [2020] in this direction in more detail.

Initially it seems easy to conclude that the Bouncy Particle sampler is naturally
more efficient than the Zig-Zag sampler as the velocities for each coordinate are up-
dated at each event time. Note, however, that in high dimensions random vectors are
close to orthogonal, and as such v will be increasingly dominated by v | . Therefore
at each bounce event the changes in v in a given coordinate will be small, requiring
several events in order to flip the velocity in the fashion of the Zig-Zag sampler. An
argument in favour of the Bouncy Particle sampler is in the context of anisotropic
target distributions, the Bouncy Particle sampler has been shown to have preferable

scaling behaviour in contrast to the Zig-Zag sampler [Bierkens et al., 2025].

3.4.3 Other processes

We briefly overview some alternative PDMP samplers that have not seen the same

methodological interest that the Zig-Zag and Bouncy Particle samplers have.



3.4. Example processes 48

3.4.3.1 The Boomerang sampler
The Boomerang sampler [Bierkens et al., 2020] replaces the linear dynamics of the
above processes with the Hamiltonian dynamics defined with respect to a Gaussian

reference measure
dx; d V¢
—_— =V R
d " dt
The resulting deterministic trajectories then have an explicit solution, and events and
reflections occur with the same rate and transitions as the Bouncy Particle sampler.
The potential, however, is now defined relative to the reference measure, resulting in

events that essentially correct the discrepancy between the posterior and the reference

measure. This generalises an idea originally introduced in Vanetti et al. [2017].

3.4.3.2 The coordinate sampler

The coordinate sampler [Wu and Robert, 2020] takes the space of velocities to be
V ={xe;,j=1,...,d} where ¢; are the canonical basis vectors of R4, with the
motivation that often event times are simpler to generate when updating single coor-
dinates at a time. The event rate is then taken to be AZ(¢) = max{0, (VU (x,),v)},
and at event times a new velocity, v* € V is selected with probabilities proportional

to max{0, (VU (x;),v*) }.

3.4.3.3 Hamiltonianised PDMPs

Samplers that utilise Hamiltonian dynamics use momentum to explore the state space
through kinetic energy that increases when potential energy is lost (3.4). In contrast,
the previously discussed PDMP samplers only retain momentum in the sense that
the velocities encode piecewise constant direction of movement.

This observation has motivated the development of “Hamiltonianised” versions
of the Zig-Zag and Bouncy Particle samplers that build momentum as the potential
energy reduces [Chin and Nishimura, 2024, Nishimura et al., 2025]. This is achieved
for the Bouncy Particle sampler by replacing the generation of the next event time in
(3.5), with

= inf{s >0 /0 VU () = 1), (3.8)

>0

for [ ~ Exponential(1) that is re-drawn at each event time. As v,',,, VU (x,1,) is neg-
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ative when the potential is decreasing, this allows the processes to build momentum.
The momentum introduced is an attractive theoretical property, however, it limits
implementation as event times are no longer able to be generated via Poisson thinning
(Section 3.5). Instead, (3.8) needs to be solved directly leaving the algorithm valid

only for potentials with convex level sets.

3.5 Generating the process

For the PDMPs outlined in the previous section the computational cost associated
with their implementation lies in the generation of event times given by the inhomo-
geneous Poisson process with rate A®(¢). This is an active area of research that we

review in this section.

3.5.1 Exact simulation and Poisson thinning

In simple cases (3.5) can be solved directly. For example, for standard Gaussian

target distributions [Bouchard-C6té et al., 2018], ¢* is directly computed as

1 | —xv++/—v[2logV, xv<0,

v[?

*

—xv+ /()2 = [v|2logV, xv>0.

Such examples are the exception, however, and while this equation can be solved
numerically [Bouchard-Co6té et al., 2018, Pagani et al., 2024], these methods are
computationally expensive due to the need for multiple evaluations of U (x).

A more common approach to exactly simulate event times is to utilise Poisson
thinning [Lewis and Shedler, 1979] (Appendix A). In short this requires upper
bounding the event rate AF(¢) > A (¢), with the event rate of a Poisson process for
which (3.5) has an explicit solution. A candidate time is then generated using the
upper bounding rate, AF(¢), with an event occurring at that time with probability
AE(t)/AE(t). If the event is rejected, the process is repeated starting from the
rejected candidate time.

Example bounds include constant upper bounds (applied to, for example, logis-

tic regression models [e.g Bierkens et al., 2019]) and affine upper bounds that can
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be computed when the potential is Lipschitz with known Lipschitz constant. These
bounds depend on the target distribution and their existence does not mean they will
be efficient [e.g Section 6, Bertazzi et al., 2023], in that the ratio AZ () /AE (¢) may

be small resulting in a large number of rejected events.

This has lead to several proposed methods that seek to find efficient methods
for approximating A (¢) using local evaluations of VU. There are broadly two
approaches to this problem. The first seeks to find a tractable rate A”(¢) that
approximately upper bounds AZ(¢). The second seeks to directly approximate
AE (t) with a tractable rate. In both cases the bias introduced by numerical errors and
approximation is then controlled using tuning parameters. In the second, the bias can
also be explicitly corrected for using a Metropolis correction. Four of these methods
are visualised for AB(¢) = t* in Figure 3.2. This event rate is representative of the
event rates found when sampling from posteriors with light tails. This commonly

occurs in survival models due to exponential terms arising in the potential.

3.5.2 Approximating an upper bound

Methods for numerically generating an upper bound typically do this locally over an

interval, (0, #max)-

3.5.2.1 Automatic Zig-Zag

The automatic Zig-Zag method [Corbella et al., 2022] sets AZ(¢) to a constant by
upper bounding the event rate over the interval (0,#nax ). This is visualised in Figure
3.2 (A). The primary method for this is Brent’s method [Brent, 1971]. To avoid
repeated evaluations of VU, however, the authors introduce heuristics that check
for monotonicity of the function on (0, #yax ). If these checks hold, the maximum at
either end of the interval can be used in place of the maximum found by repeated
iteration of Brent’s method, saving significant computational cost. If the proposed
time is greater than #,,x the process is repeated on the next interval, (fmax, 2fmax) tO
ensure the upper bounds remain valid. We discuss this method further and extend it

in Chapter 4.

Recently, Andral and Kamatani [2024] extended this approach by subdividing
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Figure 3.2: Visualisation of methods for upper bounding or approximating A3(t), for
AB(t) = t*, assuming no events or refreshments occur. (Blue). The upper
bound or approximation for A3(¢) is shown in red. Points of evaluation of the
event rate are shown with dotted lines. (A) The automatic Zig-Zag method,
Section 3.5.2.1. (B) The concave-convex method, Section 3.5.2.2. (C) The linear
interpolation method, Section 3.5.2.3. (D) Splitting schemes for approximating
AB(t), Section 3.5.3.1.



3.5. Generating the process 52

(0,fmax ) into smaller intervals and then computing constant bounds on each interval.
The additional computational cost is circumvented by evaluating VU at each time

point in parallel.

3.5.2.2 Convex-concave bounding

Writing the event rate as AF(t) = max{0,1(¢)}, AE(¢) can be upper bounded
analytically if /() can be decomposed into convex and concave components,
I1(t) = Iy(t) + I~ (), respectively. Here [,(¢) can be upper bounded using piece-
wise linear segments connecting points of / and /~(¢) can be bounded by connecting
the tangents at a set of evaluation points. The bounds are then combined to generate
an upper bound for A (¢). This forms the basis of the concave-convex PDMP method
[Sutton and Fearnhead, 2023].

This method is exact if this decomposition can be done analytically. Alterna-
tively, A () can be approximated, either by Taylor expansion or Lagrange poly-
nomial interpolation on a fixed interval [0,n,y). If the k' derivative of I can be
bounded, then a fixed offset can be added such that the method remains exact, oth-
erwise this upper bound is only approximate and the method will bias the resulting
samples. This method is visualised in Figure 3.2 (B). As the example event rate is
convex, the method generates linear segments between evaluation points. For more

complex target distributions upper bounds are unlikely to be as tight.

3.5.2.3 Linear interpolation

A final method for approximating upper bounds is introduced by Goan et al. [2023].
The method begins by evaluating AE (1) at the current state and some future time ;.
A piecewise linear upper bound is then constructed by interpolating between AF (¢)
at these two points. If the proposed event is rejected the next bound is then proposed
by linearly interpolating between AE(¢) at t* and the rejected event time. This
sequence is then repeated until an event time is accepted. To offset numerical bias
this introduces, the authors suggested targeting a scaled Bouncy Particle sampler rate,
AB(t) = max{0, o(v;, VU (x;)}, for o > 1. Here larger values of & reduce sampling
bias, at the cost of lower computational efficiency. The method is visualised in

Figure 3.2 (C). In particular the method generates a poor bound without correction
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for the convex event rate. The performance would be improved with the suggested

correction and on concave event rates [Figure 2, Goan et al., 2023].

3.5.2.4 Tuning parameters and bias reduction

All these methods are sensitive to the choice of tuning parameters. For the automatic
Zig-Zag methods and concave-convex PDMP method the choice of bounding interval,
max, determines the efficiency of the method. As #max — 0O, the resulting rate becomes
arbitrarily tight meaning that proposed events are accepted with probability close
to 1 (meaning there is little to no thinning), but at the cost of having to compute
AE(t) over a large number of intervals before an event is observed. Alternatively, if
AE(t) is unbounded, as tx — o0 we have AE (1) /AE(t) — 0 resulting in the need
to compute many thinning events before an event is accepted. The computational
efficiency of the sampler is therefore dependent on balancing the cost of constructing
a tighter upper bound A” (¢) against that of rejecting too many proposed events when
the bound is loose. Similar considerations hold for the choice of initial interval in

the method of Goan et al. [2023].

3.5.3 Approximating the event rate

The alternative approach to generating PDMP dynamics is to directly approximate

AE(t) with a tractable event rate.

3.5.3.1 Splitting schemes

This idea is first presented by Bertazzi et al. [2023] who introduce splitting schemes
for PDMPs. Splitting schemes are a standard tool in the study of dynamical systems,
whereby individual components of a system are simulated in turn, and has recently
been developed for the PDMPs outlined in Section 3.4. Here the deterministic,
reflection and refreshment rates are updated separately given a step size 8. This is
outlined for the Bouncy Particle sampler in Algorithm 1, and the approximation to
the event rate visualised in Figure 3.2. The computational advantage of this method is
that by updating each component of the algorithm in turn, the inhomogeneous event
rate is replaced by a fixed homogeneous event rate that can be simulated exactly.

This approach introduces a bias into the resulting posterior, that vanishes as
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Algorithm 1 A single iteration of a splitting scheme for the bouncy particle sampler

1: Input state and velocity (xg,vo) and step-size, 0.

2: Setv) =g

3: With probability (1 —exp(—AR8/2) refresh vy. > Refreshment
4: Setx; =x9+v16/2. > Deterministic dynamics
5: With probability (1 —exp(—AF (x;)8) update v via (3.7). > Reflection
6: Setx; =x;+v10/2. > Deterministic dynamics
7: With probability (1 —exp(—ARS/2) refresh vy. > Refreshment
8: Return (xp,vy).

0 — 0. Alternatively a Metropolis correction can be used to fully correct this bias.
Notably, this approach replaces the continuous time process with a discrete time
approximation.

A similar proposal has recently been introduced by Chevallier et al. [2025],
where the authors use PDMPs as a proposal distribution within a skew-reversible
Metropolis framework. Proposals are generated by propagating the process forwards
and backwards in time until a stopping criterion is reached in similar fashion to the
No U-turn sampler [Hoffman and Gelman, 2014].

Generation of the event rate remains the main limitation for wider implemen-
tation of PDMP based samplers. In particular, non-reversible samplers will often
out-perform reversible alternatives in terms of statistical efficiency, however recent
work has suggested this benefit may be limited [Roberts and Rosenthal, 2025]. Fast
generation of the event rate is therefore required, to ensure the computational cost of
these processes is low enough that these benefits may be realised. We briefly note
that a promising development in this direction is the use of unbiased sub-sampling
techniques for PDMPs, allowing event times to be generated using only a single

sample from the data [Bierkens et al., 2019, Agrawal et al., 2024].

3.6 Transdimensional sampling

The MCMC methods discussed so far have been focused on sampling from posteriors
where the dimension of the state space is fixed. In this section we review methods for
sampling from posteriors where the dimension of the state space is updated during

sampling. This phenomenon commonly occurs in Bayesian models where a prior has
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been placed on a structural quantity, for example the choice of covariates to include
in a linear predictor, or the number of components in a mixture model [Mitchell and

Beauchamp, 1988, Richardson and Green, 1997]. The posterior is then defined as
w(x,k) < (x| k)m(k), ke,

where K is a set of model indicators, and 7(x | k) is the posterior conditional on the

specification of the k" model.

3.6.1 Reversible Jump MCMC

The standard approach to this problem is reversible jump MCMC [Green, 1995]. This
generalises Metropolis-Hastings methods to cases where dimension of the posterior
needs to be updated during sampling.

The core principle behind reversible jump MCMC is to separate the process of
proposing candidate states into two parts. First generating some random innovation
u with density g(u), and then generating a proposal using the diffeomorphism
h: (x,u) — (¥',u’), with inverse #’. Here, X’ is the candidate state, and v’ is the

innovation required in the reverse move from x’ — x. The new state is then accepted

} ) (3.9)

where the ratio on the right hand side is referred to as the Metropolis-Hastings-Green

with probability

a(x',u)
d(x,u)

L Ee)
o) = {1’ 7))

ratio.

This framework can then be applied freely to the transdimensional case as long
as h remains a diffeomorphism. This is achieved through a dimension matching
condition, whereby if the dimension of x,u,x’,u’ are given by d,r,d’,r, we set
that we require d +r = d’ + /. If this does not hold, either 4 or // would not be

differentiable.

Further, multiple types of move can be included in the sampler. When the

probability of making move m given state x is j,,(x), the acceptance probability is
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}. (3.10)

This is commonly used to alternate between different across-model proposals,

then given by

(X, u)
d(x,u)

R in)en)
onx) = {1’ 702) () ()

and between reversible jump moves that update k and fixed dimension Metropolis-

Hastings steps that sample from 7 (x | k).

3.6.1.1 Designing proposals

The efficiency of reversible jump MCMC methods is strongly dependent on carefully
designed between model moves. In general, a common desiderata for these proposals
is that they are constructed such that the proposed state has similar posterior support
to the current state, ensuring high acceptance rates for the move and its reverse.

To ensure this most reversible jump schemes only consider local moves within
model space e.g adding or removing a single variable in variable selection. Many
popular methods then utilise some known aspect of the model structure. For example,
the reversible jump scheme for Normal mixtures with an unknown number of com-
ponents developed by Richardson and Green [1997], which involves split-merge and
birth-death moves. Merge moves combine two components into a single component
such that u = %( U1 + 1), with the reverse split moves generating two components
from one, and the generation of new variances being aided by moment-matching.
Death moves remove a component with no allocated observations from the model,
and birth moves introduce an empty component into the model.

This intuition is developed further by Brooks et al. [2003] who suggest designing
transdimensional proposals around a centring point between two nested models. This
point is defined as a subspace I' C R?, such that the two likelihoods are equivalent.
For example, in Bayesian variable selection this corresponds to a covariate equalling

0 [Mitchell and Beauchamp, 1988].

3.6.2 Transdimensional PDMP sampling

PDMPs are defined by deterministic continuous sample paths between event times.

A consequence of this feature is that, when sampling from nested models where I'
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is a d — 1-dimensional subspace, these processes will eventually intersect I'. This
feature has been utilised to design samplers that move into the lower-dimensional
model at exactly this point, when the hyperplane is of the form I' = {x € R¢ : x =0}
[Chevallier et al., 2023, Bierkens et al., 2023a]. This is commonly induced by the

use of spike and slab priors,
7(dx) o< 07 (x) + (1 — @)o(dx),

where y(-) is a Dirac mass at O representing the spike, and 7(x) is the slab, i.e the
prior density conditional on not being in the model.

Given the posterior induced by these priors, PDMPs sample as
1. A standard PDMP sampler on R<.
2. When the process intersects with I the velocity in the j/ coordinate is set to 0.
3. The process continues as a standard PDMP on R4~
4. The process moves back to the higher dimensional space with rate AS.

In designing the above process Chevallier et al. [2023] refresh v; when the process
returns to the higher-dimensional space, basing their construction on a reversibility
condition. In contrast, the sampler of Bierkens et al. [2023a] resets v; to its value
when the sampler intersected I, retaining the non-reversible dynamics of the original
PDMP. These differences are illustrated in the contrasting unsticking rates for the

Bouncy Particle sampler with Gaussian velocities

W 2 0}
A} = = (0) A3 = =m0yl

with Af corresponding to the rate in Chevallier et al. [2023] and Ag the rate in
Bierkens et al. [2023a].

In Chapter 6 we further illustrate the differences between these approaches and
extend both methods to the case when I is a general d — 1-dimensional embedded

manifold.
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3.7 Bayesian computation for survival analysis

We conclude this chapter by highlighting current approaches to Bayesian computation
for survival models, with a focus on those used in HTA. Many survival models used
in HTA have fixed dimension, a small or moderate number of parameters, and
small or moderate sample sizes. These models can therefore be fit using generic
sampling approaches. The current state-of-the-art is the implementation of the No-U-
Turn sampler in Stan [Hoffman and Gelman, 2014, Stan Development Team, 2025].
In R, parametric and spline survival models can be fit through the development
branch of the rstanarm package [Brilleman et al., 2020]. Further, bespoke Stan
implementations tailored to HTA are available for parametric models via the survhe
package [Baio, 2020], and for M-splines in the survextrap package [Jackson,
2023]. In addition, Kearns et al. [2021] utilises a Stan implementation for dynamic
survival models with a cure fraction. Alternative implementations include the use of
Integrated Nested Laplace Approximation [Baio, 2020, Che et al., 2023] and Gibbs
sampling via BUGS [Lunn et al., 2009, Demiris et al., 2015].

Transdimensional sampling is less commonly used in HTA survival models,
in part due to limited off the shelf tools that can be used for posterior sampling.
Cooney and White [2023a] implement a reversible jump sampler to average over
the location and number of knots in a piecewise exponential model. Notably, they
specify independent Gamma priors for the local hazards. This simplifies the pos-
terior to independent, conjugate exponential-gamma models for each local hazard.
Alternatively approaches to Bayesian model averaging in an HTA context have also

implemented information criteria based approximations [Negrin et al., 2017].



Chapter 4

Averaging polyhazard models

The content of this chapter is based on the paper

L. Hardcastle, S. Livingstone, and G. Baio. Averaging polyhazard
models using Piecewise Deterministic Monte Carlo with applications to

data with long-term survivors. arXiv preprint arXiv:2406.14182, 2024

in press at Annals of Applied Statistics.

4.1 Introduction

Polyhazard models, introduced in Section 2.2.2.1, are a class of flexible parametric
models for time-to-event data, defined by additively combining hazards from simpler,

typically one- or two-parameter survival distributions

K
hy(y) =} hi(y),
j=1
where Y is a random variable representing a time-to-event outcome, and &y (y),4;(y)
are hazard functions.

As reviewed in Chapter 2, standard methods for estimation of mean survival
involve imposing parametric assumptions on Y, which given parameters 0, allows
mean survival to be computed either analytically or through a simple numerical
approximation, with or without censored observations. In many cases these models
encode identical covariate assumptions as non-parametric alternatives (e.g propor-

tional hazards or accelerated failure time) with the addition of a suitable parametric
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extrapolation mechanism. This broadly follows the recommendations of Latimer
[2011] who proposes a set of two- or three-parameter survival distributions to be
used for this purpose; given the leading role, globally, of NICE, these have become
the gold-standard in HTA. While parsimonious, these distributions are typically
restricted to hazards that are increasing, decreasing or unimodal and covariate effects
restricted by assumptions of proportional hazards or odds. Further, these standard
models infer the parameters dictating extrapolation from the whole sample, while
in reality observations at the end of the trial are likely to contain more information

about how survival can be expected to evolve in the long-term.

Polyhazard models can capture a much wider range of hazard curves while
retaining the interpretability and parsimony of simpler models. Further, due to the
additive decomposition of the hazard function, later observations naturally have
more influence on long-term survival. This has resulted in an increased interest in
applications to Health Technology Assessment [Demiris et al., 2015, Rutherford
et al., 2020].

Despite theses advantages applications of polyhazard models have been limited
due to: i) the lack of accessible computational tools and understanding of how
prior specification affects inference; ii) a number of structural choices which, in the
presence of even a small number of covariates, leads to a space of candidate models

which is infeasibly large to explore manually.

This chapter addresses these issues via Bayesian model averaging, to facilitating
wider application of polyhazard models. In Section 4.2 we extend the polyhazard
model by accounting for uncertainty in structural choices through an extended prior
specification leading to a Bayesian model averaging approach. In Section 4.3 we
develop bespoke Markov Chain Monte Carlo (MCMC) methodology extending
existing sampling methods based on Piecewise Deterministic Markov Processes
[PDMPs; Fearnhead et al., 2018]. This allows for efficient generation of posterior
samples, reducing the computational burden from fitting each individual polyhazard
model to fitting a small set of models with high posterior mass. PDMP-based

samplers have emerged as a promising new direction in Bayesian computation.
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Their development has been hindered, however, by a limited understanding of their
effectiveness in applied settings, a limitation this chapter begins to address. In
Section 4.4 we study the extended model by re-analysing a digitised version of data
first studied by Demiris et al. [2015]. Through this comparative analysis we show
the effects of non-informative vs weakly informative priors in this setting and the
importance of accounting for structural uncertainty. Following this we apply the
extended polyhazard model to two complex data sets based on survival times in
stroke survivors from the Copenhagen Stroke study (COST) [Jgrgensen, 1996] and

from kidney transplant patients [Chen et al., 2022b].

4.2 Polyhazard models

We maintain the notation and definitions introduced in Chapter 2. In particular

throughout this chapter we assume the data take the form of D = (y;, &, w;)? |,
where y; are, possibly right-censored, survival times, ; are event indicators, and

w; € R? are vectors of individual covariates.

4.2.1 Polyhazard model definition

Polyhazard models [Berger and Sun, 1993, Louzada-Neto, 1999] are constructed by
combining multiple independent parametric hazards via the additive formulation

K
ooy (v W)=Y hp, g0, | W)- 4.1)
k=1

Each subhazard corresponds to a proper hazard function from a known distribu-
tion Dy € H, where H is a set of candidate distributions (for the examples considered
in Section 4.4, H = {Weibull, Log-logistic}). Each 6 is a vector of subhazard
specific parameters composed of a shape parameter vy, and rate, scale or location
parameter L, such that 6, = (i, ). For each hazard, covariate information is

included in the location parameter via a log-link, such that

Hi(w, %) = exp <l3k,0 + Y Wjﬁk.,j) ) 4.2)

J W =1
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where y;; € {0, 1} indicates whether the j”* covariate is included in the k" subhazard.
In practice we will centre and normalise each element of w such that for a given
hazard B o can be interpreted as the location parameter for the average individual
in the sample. This information is collated as D = (Dy)X_,, 6 = (6)K_|, and y=

(%)X, such that the model is completely defined by the specification of (K,D, v, ).

We place no restriction on the combination of simpler hazard forms, neither
requiring each subhazard to be from the same parametric family nor requiring each
parametric family to be represented in (4.1). Similarly, ¥, need not be identical

across all subhazards.

In this chapter we will focus on polyhazard models where H contains the

Weibull and log-logistic distributions with respective hazard functions

() (L)~
C

hw () = vy’ hp(y) = @Y

— =<
=< \_/

while noting that the methods presented naturally extend to other choices [see for

example Louzada-Neto, 1999].

Combining hazard functions with different shapes results in flexible baseline
hazards and covariate effects that are more flexible than those possible with simpler
models. Various example hazard shapes generated by combining Weibull and log-

logistic hazards are shown in Figure 4.1.

We briefly address two common misconceptions regarding the polyhazard
model. i) The polyhazard model is not a mixture model. In contrast, each individual
in the population is subject to risk from every subhazard (with intensity determined
by relevant covariates), and there is no explicit weighting of subhazards within the
population. ii) While the form of (4.1) is recognisable as the hazard for an individual
subjected to independent, latent competing risks, we do not necessarily assume that
the data were generated in this way. Rather, we utilise the form of (4.1) as a flexible

modelling assumption.

Standard application of polyhazard models typically follows one of two ap-

proaches. In the first K, D and v are fixed a priori, meaning inference is performed
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Figure 4.1: Example hazard shapes obtainable by the polyhazard model with combinations
of log-logistic (LL) and Weibull (W) latent hazards.

on 0 only. In HTA applications, for example, it has become common to only consider
the bi-Weibull model (e.g Negrin et al. 2017). This often means that potentially
viable candidate models are excluded from the analysis without justification. Alter-
natively, K, D and Y are reduced to a small set of possible values for which all models
are fitted and compared a posteriori. Demiris et al. [2015] compare poly-Weibull
models with K from 1 to 4 and 7y based on the deviance and clinical plausibility,
and Benaglia et al. [2015] compare the bi-Weibull and bi-Gompertz model based on

visual fit.

Both these approaches rely on the set of candidate models being small enough
to fit and interrogate individually, which is very restrictive, as for a fixed maximum

number of subhazards, Kp.x, the size of the set of candidate models is given by

fz,,k(mwk .

The result is a model space which is infeasible to explore manually for anything
beyond very small Ky, H and p. For the kidney transplant data analysed in Section
4.4.3, taking Kmax = 3, |H| =2 and p = 13, results in 274,928,246,784 candidate

models.
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4.2.2 Priors

We now introduce an extended specification of prior for the polyhazard model,
which will incorporate uncertainty across each element of (K, D, 7y, 0). This induces
posterior model weights that can then be used for Bayesian model selection or

averaging. The prior, denoted throughout by 7y (-), is specified as
m(K,D,7,6,0) < m(0 | K,D,v,¢)%0(Y | K,9)m(9)70(D | K)mo(K),

where ¢ = (o, o) is a vector of hyperparameters to be defined.

First considering 6 | K,D, v, ¢, we specify

log(vx) = o ~ Normal(0,04), k=1,...,K,

Br.o ~ Normal(0,0p,), k=1,...,K.

We place weakly informative priors on each (v, By0) independent of distribu-
tion, in the first case following the reasoning of Demiris et al. [2015]. Crucially the
specification of (G4, 0g,) will depend both on the scale of the data (years in all the
examples in Section 4.4) and the rate of censoring in the data [De Santis et al., 2001].
Specifically, as the rate of censoring increases tighter priors are required in order to
regularise long-term hazards. Further justification for, and discussion of, this choice
is provided in Section 4.4.1.1.

A contrasting approach is taken for the poly-Weibull model by Demiris et al.
[2015] and Benaglia et al. [2015] who place a Uniform(0, 1) prior on v;. While
justifiable for fixed (K, D), the effect of this prior on the posterior is unclear when
(K,D) are also being inferred.

We note that in the above specification the same priors are utilised for all
sub-hazard functions. When different parametric families are considered this will
result in different implied priors for certain sub-hazard quantities (e.g median sub-
hazard survival), however, by design this information is only weakly informative
and therefore we expect the effect on posterior inferences of mean survival to be

minimal. In addition, the universal priors used in our case require the specification
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of single hyperparameter, allowing for the impact of prior assumptions to be easily
investigated, while this is not the case if different priors were used for different

sub-hazard distributions.

For the remaining linear predictor terms in (4.2) we account for uncertainty in
the effect of the covariates on the outcome through the specification of the spike-and-

slab prior [Mitchell and Beauchamp, 1988]

o (dB.j | 9) o< (1 — @)do(dPy, ;) + @Fto(Br,j | 0p), (4.3)

where 7o (- | o) is the density of a Normal distribution with mean 0 and & is a Dirac
measure centred at 0. This formulation implies independent Bernoulli(®) priors for

each element of 7, resulting in
7o(Y | K) o< ki (1 — @)PK—Xejts,

and we extend this to a hierarchical modelling setting through a conjugate Beta prior
on ,

o ~ Beta(a,b),

as recommended by Kohn et al. [2001]. This is a well established approach, which
reduces the influence of prior specification in the context of Bayesian model averag-
ing [Ley and Steel, 2009]. When applied to the COST and kidney transplant data we
set a = b = 4. Further to this, in order to regularise the effect sizes observed in the

linear predictors we utilise a horseshoe, half-Cauchy hyperprior on o,
og ~ Cauchy_ (0, 1),

designed to circumvent well known model misspecifcation issues arising from using
a fixed op [Polson and Scott, 2012].
Note that in the above formulation @ and op are shared hyperparameters across

subhazards encouraging sharing of information between hazards about expected
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effect sizes, which implies that the induced prior on |y| should be interpreted as
a prior on the number of covariates across the model, rather than the number of

covariates associated with each individual subhazard.

Each subhazard distribution, Dy, is drawn uniformly from the set of candidate
distributions

Dy | K ~ Uniform(H),

inducing a multinomial prior on D. If expert knowledge favours certain subhazards

being present in the model this can be encoded at this stage.

Finally, prior belief about the number of hazards in the model is represented

through a truncated Poisson prior
K ~ Poissons(§),

for fixed . We set & = 2 defining a weakly informative prior, encoding a soft
preference for models with a smaller number of hazards. Any discrete distribution
could be used as, for example, there may be expert knowledge which suggests a
strong prior belief that K > 2, however in practice we find there is rarely justification
for K > 4 (see e.g [Louzada-Neto, 1999, Demiris et al., 2015]). This is reflected in
the choice of £ which implies P(K > 4) = 0.061 a priori. A full expression for the

resulting posterior is provided in Appendix B.

4.3 Posterior sampling

The posterior induced by the prior formulation of Section 4.2 presents a challenging
target distribution for many of the standard posterior sampling tools of Bayesian
inference. Difficulties stem from the varying dimension of the parameter space and
changing form of the likelihood due to the priors on (K, D, v), as well as the geometry
of the posterior when (K, D, y) are fixed. Here, when the data are highly censored,
the marginal posteriors of parameters for subhazards (which are influential later in
the follow-up period) are often skewed due to partial information from censored

observations. Further, subhazards can switch roles in the model. When these
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subhazards are from the same distribution, exchangeable prior information results in
a symmetric, multimodal posterior with K! modes. Role switching, however, can also
occur when the subhazards have different distributions, inducing a non-symmetric,
multimodal posterior. This is akin to the label switching problem in mixture models
(e.g. Jasra et al. [2005]). An example is shown in Appendix B and we discuss this
issue further in Section 4.3.5.1. In this Section we develop a bespoke sampling

algorithm to handle these challenging posterior features.

Current approaches to posterior computation for fixed (K, D, ) include a Gibbs
sampler implemented in WinBUGS and a Stan implementation of the No-U-Turn
Sampler, both for the poly-Weibull model [Demiris et al., 2015, Baio, 2020]. Neither
of these approaches naturally extend to the transdimensional case. The former is also
susceptible to high levels of auto-correlation, while both can struggle in the presence

of multimodality.

The foundation of the method developed in this section is the Zig-Zag sampler
[Bierkens et al., 2019] (Section 3.4), an example of a class of novel MCMC methods
based on continuous-time Piecewise Deterministic Markov Processes [PDMPs;
Fearnhead et al., 2018] (Section 3.3). As outlined in Chapter 3 these processes are
non-reversible. As a result, and in contrast to more commonly used reversible MCMC
methods, they often exhibit faster convergence and can use ballistic motion to help
navigate the challenging geometry of the posterior [Diaconis et al., 2000, Andrieu
and Livingstone, 2021]. Further, they are able to use their continuous, piecewise
deterministic sample paths to directly sample from spike and slab distributions
[Chevallier et al., 2023, Bierkens et al., 2023a] as defined by (4.3). These continuous
time dynamics are combined with jump processes for updating (K, D, ¢), allowing
navigation of the full posterior. A summary of the algorithm is provided in Algorithm

2 with a fully detailed Algorithmic presentation provided in Appendix B.

Discrete time MCMC methods in transdimensional settings typically resort to
the use of Gibbs sampling for within-model sampling, despite often superior mixing
properties of gradient informed samplers. This is due to the sensitivity of these

methods to the choice of step-size and mass matrix [Livingstone and Zanella, 2022].
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In a large model space, these need to be tuned individually for each sub-model. In
contrast, continuous time PDMP samplers require minimal tuning as the step size is
replaced by constant velocity terms. A further advantage is the ability to perform
transdimensional updates to y without the specification of a proposal distribution or
the need to evaluate likelihoods (Section 4.3.3), in contrast to reversible jump MCMC
that requires careful tuning of proposal distributions to ensure modest acceptance
rates, and likelihood evaluations at every step [Green, 1995]. Alternative model
averaging approaches are possible using, for example, the Bayesian Information
Criteria [ Volinsky and Raftery, 2000]. These require each sub-model to be computed,
however, dramatically increasing computational cost. Further, the approximation to
the marginal likelihood is only asymptotically valid in the number of observed events,
and is therefore likely to be inaccurate in the highly censored examples we consider.
This is supported by recent empirical studies in the context of extrapolating survival
curves [Biitepage et al., 2022]. For the remainder of this Section we will use 7(-) to

denote the posterior, conditional on any parameters not given as the argument.

Algorithm 2 Sampling algorithm

1: Initialise (0,v,7,¢,K,D) att = 0.

2: while 1 < topq do

3: Sample next event time 7, ~ Exponential(A? + A + A* + A"),.

4: Sample 7(60,v,v| ¢,K,D) until time ¢ +f,. > PDMP with sticky dynamics
(4.3.1,4.3.3)

5 Sett st +1,.

6: Select event i with probability proportional to A‘.

7: if i = h then

8

9

Sample @ ~ w(w | y) > Gibbs step (4.3.2)
: Sample 0 ~ (o | 6) > Adaptive Metropolis-within-Gibbs step (4.3.2)
10: end if
11: ifi € {b,d,s} then

12: Perform move i with probability A’(t)/A’. > Birth-death-swap process
update for (K,D) (4.3.4)
13: end if

14: end while
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Figure 4.2: Trajectories from the Zig-Zag sampler (left) and variable selection Zig-Zag
sampler (right) for arbitrary parameters.

4.3.1 Zig-Zag sampling

Zig-Zag sampling was introduced and reviewed in Chapter 3. In this chapter, the
sampler is used to sample the parameters 6 € R2X+" conditional on fixed (K, D, 7, ¢)

with the dynamics outlined in Section 3.4.

4.3.1.1 Generating the inhomogeneous Poisson process

The efficiency of the Zig-Zag sampler is crucially dependent on the cost of generating
event times from an THPP with rate A8(¢). This is most commonly achieved via
Poisson thinning [Lewis and Shedler, 1979], in which a proposed event time ¢* is
generated from a dominating Poisson process with rate AB(¢) > AP(t), accepted with
probability AZ(+*) /AB(t*); if the proposed move is rejected, the process continues
with the same dynamics from time #*.

While it is possible to derive a tight upper bound analytically in some cases,
we know of no such choice of AB(¢) that is suitable for polyhazard models. We
therefore numerically bound A8 (¢) on the interval [fg, ) + fmax ), Via an extension of
the Automatic Zig-Zag method of Corbella et al. [2022] (Section 3.5.2.1). In the
Automatic Zig-Zag approach a constant upper bound for AZ(¢) is found using Brent’s
method on an interval with fixed length. Costly, repeated gradient evaluations are

avoided by performing a monotonicity check after the first iteration, which if passed
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allows the evaluation of AZ(¢) at one end of the interval to be used as the bounding
rate.
We make three modifications to this approach, summarised here with full details

provided in Appendix B:

1. In the first iteration we check for monotonicity and local convexity. If local

convexity holds we use a tighter linear bound.

2. We adaptively set the length of the bounding interval #,,x using a modified
version of the scheme suggested by Sutton and Fearnhead [2023] in a similar

context.

3. We add a constant offset rate Ag to AB(¢) to offset numerical errors and failures

in the above checks.

The above modifications allow the sampler to adapt to the changing geometry and
curvature of the target induced by the priors on (K,D). Further, if the bounding
does fail, this is easily diagnosed by reporting instances when the upper bound is

exceeded. These errors can then be investigated or the offset increased.

4.3.2 Updating hyperparameters

The hyperparameters (@, Gﬁ) could be sampled directly by the Zig-Zag sampler, but
strong posterior dependence between parameters and hyperparameters induced by
the hyperprior structure would inhibit sampling efficiency. A more elegant solution is
to follow the Gibbs Zig-Zag approach of Sachs et al. [2023], which allows traditional
Gibbs updates to be interwoven into the Zig-Zag sampler at exponentially distributed
intervals with rate A”. In particular this allows ® to be updated by the closed form
full conditional due to the Beta-Binomial prior formulation.

Full conditionals for o4 are not available in closed form. However, sampling
can be performed via adaptive random walk Metropolis steps. To avoid sampling
difficulties resulting from the heavy-tails of the Cauchy distribution we utilise the

re-parameterisation proposed by Betancourt [2018]

Og =z1v/22, 21 ~Normal(0,1), 2z ~Inv-Gamma(1/2,1/2),
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and determine the step-size and covariance matrix of the random walk Metropo-
lis proposal adaptively using a Robbins-Monro style updating scheme as seen in

Algorithm 4 of Andrieu and Thoms [2008].

4.3.3 Zig-Zag sampling for variable selection

Bayesian variable selection is a challenging problem even in standard parametric
survival models. Current state-of-the-art approaches involve focusing sampling
efforts on the marginal posterior for the variable inclusion indicator 7(7y), where
y € {0,1}7. Efficient exploration of the state space, however, requires efficient
approximations of the marginal likelihood, which are typically not straightforward
for polyhazard models [Liang et al., 2023]. Furthermore, simpler, uninformed
schemes such as the add-delete-swap reversible jump sampler of Newcombe et al.

[2017] are likely inhibited by poor acceptance rates.

An alternative approach, concurrently developed by Chevallier et al. [2023] and
Bierkens et al. [2023a] was reviewed in Section 3.6.2, is to utilise the continuous
sample paths of the Zig-Zag sampler to directly sample from the spike and slab
posterior induced by (4.3). Here the process sticks to the hyperplane {6 : B ; = 0},
corresponding to the spike, whenever it crosses it, by setting the corresponding
velocity to 0 and then resetting the velocity after a waiting time, 7g. Specifying 73

as the first time of the homogeneous Poisson process

o
AL (1) = Ta wno(O | o5),

preserves the correct target distribution. We note that the key point of this con-
struction is that the rate of unsticking is given by the posterior ratio between the
models with ¥%; = 1 and y; = 0. Since this ratio is being evaluated at f; ; = 0, the
likelihood takes the same value for ¥%; = 1 and %; = 0, and this ratio cancels to a
ratio of priors resulting in a homogeneous Poisson process. This approach, therefore,
has the dual advantage of being informed by the current state of the process and
also being computationally efficient as updates to ¥ do not require any likelihood or

gradient evaluations beyond those required for sampling 6. Example trajectories for
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this process are given in Figure 4.2 (right).

We extend the work of Chevallier et al. [2023], Bierkens et al. [2023a] by
including a hyperprior structure on (@, Gﬁ) as detailed in Section 4.2.2. Directly
sampling (@, 0p) via the Zig-Zag sampler would result in unsticking times given
by an inhomogeneous Poisson process requiring additional computational cost to
generate. Alternatively by updating (@, 6g) with a continuous-time jump process as
described in Section 4.3.2, the waiting times remain easy to generate as the first time

of a Poisson process with piecewise constant rate.

4.3.4 Birth-death-swap processes

The final sampling ingredient is a birth-death-swap process which is able to update
the number of hazards K and the vector of subhazard distributions D in continuous
time. Births, deaths and swaps occur at rates given by A”(r), A4(¢) and A*(¢)
respectively, with corresponding proposal distributions for new parameters given
by qp(u), q4(u) and gs(u). We note that in addition to allowing exploration of the
posterior for (K, D), these transdimensional updates also allow for traversal between

modes for fixed (K,D).

4.3.4.1 Birth-death process

To define the birth-death process we require that a detailed balance condition is met
AP ()7(6,D,K)qp(u) = A(1)m(6',D', K+ 1)q,(ut). (4.4)

In similar fashion to reversible jump MCMC [Green, 1995] and birth-death MCMC
[Stephens, 2000], we also require that the transformation that maps (0,u) — (6',u)
is a bijection and that a dimension matching condition is met. To satisfy these
conditions birth moves are defined by drawing parameters for a new hazard, u, from
the prior conditional on ¢ and selecting the distribution of the new hazard uniformly
at random. The reverse move then selects a hazard uniformly at random to remove
from the model.

To satisfy (4.4), a simple way of specifying A’(¢) is via a balancing function

[e.g. Zanella, 2020] g : R; — R satisfying g(a) = a- g(1/a), and taking the
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Metropolis—Hastings—Green ratio

Cl([) . 7'[(9;,\);,¢),D/,K—|— I)CID(M,)
o 7'[(9[,\/'[,¢,D,K)q3(u)

as its argument. The required death move is then defined similarly but with the

argument a(t) !

. The most commonly used example of this is the Metropolis
balancing function, gy (a) = min{1,a}, which is the foundation of the Metropolis-
Hastings algorithm. Extended theoretical justification of this approach and further

discussion of the role of balancing functions is provided in Appendix B.

An alternative specification, which is the birth-death MCMC approach, is to
take A?(¢) constant and set A?(¢) = a~!. This method fails in our setting as, in
contrast to Stephens [2000], 0 is being updated in continuous-time. The resulting
ratio of posterior densities is then challenging to upper bound, which is needed to
apply Poisson thinning. Note, however, that gjs(a) < 1 and therefore this birth rate is
amenable to Poisson thinning. The specification of gs(a) holds up to a multiplicative

constant, AX, which can be used to control the intensity of transdimensional updates.

4.3.42 Swap moves

While the birth-death process is sufficient to sample from the correct target dis-
tribution, we find that posterior exploration can be significantly improved by the
introduction of moves which swap subhazard distributions without updating K. These
allow the sampler to move between models with the same number of hazards but
different underlying distributions. The improvement in mixing is most noticeable
when the posterior for K is concentrated but the posterior for D | K is more diffuse,
as it avoids the need for transitions through higher or lower order hazard models

with low posterior mass.

We define our swap moves, ¢;(-) between distributions based on the principle
of median matching. Moment matching is a well established approach in defining
reversible jump moves [Richardson and Green, 1997] but is not applicable here as
moments for some survival distributions are not well defined (e.g the log-logistic

distribution with v < 1).
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We propose using median matching as a novel deterministic proposal in which
the distribution of a subhazard is swapped from log-logistic to Weibull or vice versa.
Considering the case without covariates first, the method keeps the shape parameters
of the old and new hazards the same, and then transforms the location parameter to

keep the medians the same, using the formula

1 v
Med; (v, 1) = = (E) (log2)'/Y = Medy (v, 1),

= ' =pu"log2.

When including standardised covariates, the interpretation of the above is that
the subhazard median is preserved for the average individual. To include covariates
in the transformation we apply the mapping PBrr — —Brr = Bw. Intuitively it
seems reasonable to expect the magnitude of the coefficient effects to be the same
when altering the subhazard distribution. However, the interpretation of the effect
is inverted, hence the switching of the sign. The median matching proposal can
be placed into the balancing function framework outlined previously, although
the Metropolis—Hastings—Green ratio now requires a Jacobian to account for the

transformation.

Figure 4.3 shows trace plots of posterior model probabilities for samplers using
solely the birth-death process; independent swaps; and median matching swaps;
based on data containing 100 simulated survival times and a single binary covariate.
Note that swap moves and birth-death moves have the same computational cost and,
as the overall birth-death-swap rate was set to 10 in each case, the expected compu-
tational cost is identical for each sampler. Almost all the posterior mass is placed
on models such that K < 3, but posterior mass is spread relatively evenly between
these models. The median matching moves provide clearly superior convergence
in comparison to the alternative processes, where slow convergence is observed for
the log-logistic and Weibull models as posterior exploration between these models
requires moving through higher order models. Acceptance rates for independent

swaps and median match swaps were respectively 6.09% and 44.17%, showing the



4.3. Posterior sampling 75

Birth—death | | Independent Swap | | Med. match Swap |
1.00 1
2
5 0.751
@©
o
o
E— 0.50 1
i)
o)
1 0.25- & b
o
(al
0.00 1 r

'Sa'mpler time (arbitrary un'its)'

Model LL LL-LL — LL-W — W — W-W

Figure 4.3: Experiment comparing the efficiency of the median matching swap moves to
the birth-death moves and independent swap moves, on data simulated from a
poly-log-normal-Weibull model with a single covariate. Coloured lines represent
different subhazard combinations. Two chains for each method were produced
running for 10,000 time units, with reversible jump moves occurring at the same
rate. The median matching swap moves provide more stable and efficient mixing
in comparison to the alternative methods.

clear superiority of the bespoke moves.

4.3.5 Practical implementation and computational cost

The methodology outlined in this Section requires the generation of multiple event
times simultaneously. For computational efficiency this is done via the multinomial
trick, whereby a single event time is generated with rate equal to the sum of rates
and then a single event is chosen with probability proportional to its rate. Times until
deterministic sticking events are also simply tracked and updated when necessary.
The majority of the computational cost for the method outlined in this Section
arises from two areas, generating PDMP event times given by the inhomogeneous
Poisson process and simulating the birth-death-swap process. Notably, updates
to 7y incur negligible computational cost, as the only requirements are computing
sticking events (which is trivial given constant velocities) and computing unsticking
times involving the simulation of exponential random variables, because of the
use of the Gibbs Zig-Zag approach for updating hyperparameters. For the method

outlined in Section 3.1.1, for each interval over which the event rate is generated
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we typically require two evaluations of VU(6) (as, in the absence of an event,
evaluations can be saved between intervals), plus an additional gradient evaluation
for each thinning event. We note that this cost should not be compared directly
to the cost of a single Metropolis-Hastings step, as the trajectory between events
in a PDMP typically corresponds to multiple equivalent discrete-time steps. This
step is the most computationally costly. Fortunately, however, it is amenable to any
methodological improvements in generating the event rate which is currently an
area of active research. The birth-death process requires two evaluations of U(0)
per thinning step. Using the constant bounds derived here this cost is identical to
reversible jump MCMC. While we do not believe it is possible to find tighter bounds
in the case of polyhazard models, in alternative settings these may exist, meaning
the resulting cost is always lower than the discrete time alternative.

An alternative approach is to perform the averaging procedure conditional on
each potential K, given the small set of values considered. This will in most cases
lead to a dramatically higher computational cost, due to the additional computational
resources required for values of K with negligible posterior mass. In contrast, the
sampler developed here focuses the computation on a much smaller set of viable

models, while maintaining the weights required for averaging over K.

4.3.5.1 MCMC output

As stated previously the Zig-Zag sampler outputs piecewise continuous sample paths.
This can be stored either as a skeleton of points which indicate updates to one of
(v,K,D,7), or as samples at exponential times. The effect of this and the rate of
drawing samples is analogous to the role of thinning in discrete time MCMC.

For identifiability purposes we place an ordering constraint on the shape pa-
rameters of hazards with the same distribution as a post-processing step to sort the
MCMC output. This is appropriate in this setting as: a) The quantity of interest,
mean survival, is invariant to permutation, and so our inference should not suffer due
to the re-labelling issue. b) Kozumi [2004] explored the use of loss functions in the
poly-Weibull model and found that the resulting inferences were almost identical to

the use of an ordering constraint. We therefore believe that alternative approaches
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would have little benefit, and that the ordering constraint is sufficient when examining
individual subhazards during, for example, model checking.

To summarise, our approach utilises the sticky Zig-Zag sampler to update 6,7 |
K, D, ¢ in continuous-time using gradient information and non-reversible dynamics
to ensure efficient exploration of the posterior. This sampler is combined with
continuous-time jump processes for updating K, D, ¢ based on conjugate updates,
adaptive Metropolis steps and a bespoke birth-death-swap process. The shared
continuous-time framework allows for events to be efficiently generated via Poisson
thinning and the multinomial trick.

Code for implementing the models developed in this chapter is available at

https://github.com/LkHardcastle/PolyhazardPaper.

4.4 Real data case studies

In this section we apply the methodological extensions to polyhazard models pro-
posed in the previous two Sections to three real world examples focusing on the effect
of prior specification on computation and inference and the non-linear covariate

effects produced by polyhazard models.

4.4.1 Lung transplant data

Demiris et al. [2015] used poly-Weibull models to calculate mean survival in lung
transplant patients, focusing particularly on differences between patients who re-
ceived single and double lung transplants. The data contain survival or censoring
times of 338 patients, 173 (144 observed) of whom received single lung transplants
and 165 (79 observed) of whom received double lung transplants. They focus their
analysis on a set of ‘highly likely* variations of the poly-Weibull model, as assessed
by the mean deviance, all of which indicate small differences in early survival but
higher risk for single lung transplant patients in the long-term. This is due to a partial
treatment effect, which increases the risk patients experience over a lifetime time
horizon.

Although the original data are not publicly available we have constructed a

similar dataset by digitising Figure 1 of Demiris et al. [2015]. This was done using
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Model Post. prob. | Mean survival DLT | Mean survival SLT Difference
Avg. model — 7.41 (5.26, 12.81) 4.59 (3.85,5.53) | 2.81(0.01, 8.26)
Original W-W — 8.78 (6.14, 13.7) 4.96 (4.32,5.75) | 3.83(1.04, 8.72)
W-L 0.192 7.41 (5.30, 11.85) 4.50 (3.79,5.34) | 2.9(0.76,7.37)
W-W 0.010 7.64 (5.52,11.37) 4.58 (3.74,5.62) | 3.06 (0.86, 6.77)
L-L 0.638 7.40 (5.24, 13.12) 4.61 (3.87,5.57) | 2.78 (0.00, 8.58)
W-W-L 0.016 7.47 (5.22,11.57) 4.49 (3.75,5.42) | 2.98 (0.54,7.07)
W-L-L 0.068 7.39 (5.30, 12.50) 4.56 (3.83,5.49) | 2.83(0.47,7.94)
L-L-L 0.070 7.37 (5.23, 12.73) 4.59 (3.87,5.55) | 2.77 (0.0, 8.23)

Table 4.1: Model summaries for the averaged (Avg.) model, original (Orig.) model, and
sub-models with > 1% posterior mass. Posterior model probabilities are reported
in the second column (Post. prob.). Mean survival estimates are shown for
single (SLT) and double (DLT) lung transplant patients along with the expected
difference in survival (and relevant 95% credible intervals). Estimates from the
original bi-Weibull model are as reported in the original analysis.

the implementation of the method of Guyot et al. [2012] available via the Survhe
R package. We re-analyse these data with the same objective using the extended
polyhazard model. We set 0y = 2, Kmax = 4, and adjust the above prior struc-
ture by fixing og =5 and @ = 0.5, which prevents (@, og) from being essentially

nonidentifiable in the presence of a single covariate.

The number of candidate models in this scenario is 128, which, although
possible to explore manually, would still be computationally expensive. Our approach
has the dual advantage of saving computational cost by focusing on models with high
posterior probability, and also providing posterior probabilities for each sub-model.

Sampler trace plots are available in Appendix B.

Table 4.1 shows model summaries for the original bi-Weibull model chosen
by [Demiris et al., 2015, original W-W], the averaged polyhazard model and all
submodels with posterior probability greater than 1%. Notably the original bi-
Weibull model receives 1% posterior probability, with the majority of the posterior
mass focused on the bi-log-logistic model (63.8%), with reasonable mass on the
Weibull-log-logistic model (19.2%) and 15.4% posterior probability shared between

three of the three hazard models.

Mean survival estimates for single (SLT) and double (DLT) lung transplant

patients are more conservative than those reported in the original analysis. In
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Figure 4.4: Hazards for different models fit to the lung transplant data. The hazards for the
model from the original analysis (dash-dot), from the bi-Weibull model in our
analysis (dashed) and from the overall hazard from our analysis (solid). These
are plotted for DLT (blue) and SLT (red) patients.

particular, the credible interval for the difference in mean survival between the
two groups is close to 0 under our analysis. As the reduction in DLT survival is
larger than for SLT survival, the analysis using the averaged model reports a smaller
difference in expected survival. Although this disparity is driven by a preference for
the bi-log-logistic model, the estimates from the bi-Weibull sub-model also suggest
more conservative survival estimates and a smaller difference in survival. These
differences are discussed in Section 4.4.1.1. Negligible posterior mass was placed on
the single hazard models, corroborating the results from the original analysis, which

suggested that single hazard models were insufficient.

Figure 4.4 shows hazards for SLT and DLT patients from the overall model,
the bi-Weibull model from our analysis and the bi-Weibull model from the original
analysis. Notably all three models produce very similar results in the short-term and
only differ noticeably after 3 years. This suggests the difference in results reported
in Table 4.1 is due to differences in hazards for long-term survivors. Compared to
the original analysis the hazard for SLT patients increases faster than in the original

analysis after five years explaining the difference in the results reported in Table 4.1.

A key foundation of the original analysis is that the bathtub curve is commonly
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observed for transplant patients. This can be seen in our example where, although
the bi-log-logistic model with highest posterior probability is not a bathtub curve,
a decreasing-increasing pattern is observed over a typical patient lifetime, with the

overall mixture of polyhazard models ensuring that as y — oo we observe h(y) — co.

4.4.1.1 Weakly informative priors

The two bi-Weibull models in Table 4.1 report different estimates of difference in
mean survival between transplant types. While some of this difference arises from
the data digitisation process, this is also due to the use of weakly informative rather
than non-informative prior information.

Increasing the standard deviation of the prior for 3, increases the posterior
estimate for mean survival in both arms and the corresponding credible intervals.
This is due to the increasing mass placed on extreme mean survival values by the
increasingly non-informative prior. In a single hazard model this is not problematic
as the likelihood provides sufficient regularisation of fjy. In a K hazard model,
however, this behaviour results in the ¥’ subhazard having negligible influence on
the likelihood and the model in effect reducing to a K — 1 hazard model. This has
the combined effect of hindering computation, whether via Gibbs sampling or using
gradient-based samplers, and impairing the resulting inference. We note that this
effect is independent of the prior for ¥ which has historically been the focus of
identifiability in polyhazard models.

This undesirable behaviour can be excluded by the use of weakly informative
priors for f o, as outlined in Section 4.2.2. Although tighter than those used previ-
ously in the literature, we would argue that these priors are still weakly informative in
that they are able to generate data and inferences well beyond the range of plausible
values following similar arguments made in Gabry et al. [2019]. As such these priors
should be robust to small changes in the choice of 63,. We recommend conducting
prior sensitivity analysis to ensure this regularisation is sufficient but not unneces-
sarily influential. In cases with a large number of candidate models, this can be
focused on the small subset of models with high posterior probability to preserve

computational efficiency.
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4.4.2 COST data

We now apply the methodology to a more challenging example — data from the
Copenhagen Stroke Study (COST), a prospective, cohort study of stroke survivors in
Copenhagen starting in 1991 [Jgrgensen, 1996]. The data contains survival times for
stroke survivors with 13 relevant covariates. Previous works have used this study
to investigate the long-term risks faced by stroke survivors. Kammersgaard et al.
[2004] sought to understand the prognosis for very old patients (defined as age > 85),
conducting a subanalysis using Cox proportional hazards regression with very old
age, stroke severity score and presence of atrial fibrilation as covariates. Andersen
et al. [2005] investigated the association between sex and survival outcomes, fitting a
Cox proportional hazards model to artificial 1-, 5- and 10- year data cuts to assess the
changing effect of sex on survival in the short- and long-term. Similarly, Andersen
and Olsen [2011] investigated the interaction between stroke severity, as defined by

the stroke severity score, and other prognostic indicators.

In this setting, extrapolation using standard parametric models relies either
on simplifying assumptions (e.g proportional hazards) or fitting separate models
to each subgroup. Neither approach is ideal. Given the number of covariates,
it is unreasonable to assume that proportional hazards hold for each subgroup.
Furthermore, fitting separate models for each subgroup will increase uncertainty in
extrapolations and provide a poor fit to the data due to small sample sizes. Polyhazard
models adapt to smaller sample sizes via assuming homogeneous shape parameters
in the sub-hazard functions between sub-groups. However, heterogeneous effects
still arise from the model, due to differing covariate effects between sub-hazards,

and by averaging across models.

A subset of the data containing survival times, event indicators and 13 covariates,
including those discussed previously, for 518 patients is available via the pec R
package [Mogensen et al., 2012]. A complete summary of the dataset is provided in

Appendix B.
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4421 COST results

We fit the model using the full prior structure outlined in Section 4.2.2. Given the
larger sample size and lower censoring rate posterior submodel probabilities are
relatively concentrated, with 86.44% of the posterior mass given to the bi-log-logistic
model, 6.47% to the tri-log-logistic model, 4.96% to the W-L-L model, and 1.71% to

the Weibull-log-logistic model. All other models have less than 1% posterior mass.

An advantage of using polyhazard models is the ability to model covariate
effects more flexibly than under standard assumptions of proportional hazards or
accelerated failure times. This can be seen in Figure 4.5, where we plot the hazard
ratios over time for atrial fibrillation, age, sex and stroke score. For continuous
covariates these are defined as the hazard ratio between the observed 25% quantile
and 75% quantile in the data with all other covariates set to 0, corresponding to their
sample mean after standardisation. Notably the averaged model is able to capture
a wide variety of flexible hazard ratios. These ratios are compared to the hazard
ratios for the simpler Weibull and log-logistic models. Further, we also estimate
hazard ratios using M-splines [Jackson, 2023] either combined with a proportional
hazards assumption, or using a non-proportional hazards model with partially pooled
effects. The parametric models are the established method for survival extrapolation

following the initial recommendations of Latimer [2011].

The hazard ratio for age suggests older stroke sufferers have a higher risk of
death, which decreases but remains notable for 10 years post-stroke. This aligns with
the analysis of Kammersgaard et al. [2004]. The hazard ratio for sex corroborates
the findings of Andersen et al. [2005] that women have higher survival than men,
although it suggests that the difference in risk decreases in time after an initial peak.
A similar pattern is observed for atrial fibrillation. Stroke severity (as measured by
stroke score), shows that survivors of less severe strokes are at lower risk of death in
the short-term, but that this difference in risk becomes less prevalent in the long-term.
In each case the single Weibull and log-logistic hazard ratios are unable to match the

increased flexibility of the polyhazard model.

The M-spline models are fit using Stan. Two chains of were generated each
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consisting of 2000 posterior draws, the first 1000 of which were discarded as burn-
in. R-hat values for all parameters were < 1.01. For the M-spline models, the
proportional hazards assumption estimates hazard ratios close to the Weibull model.
The non-proportional M-spline model hazards appear to have, at least partially,
over-fit the data as it exhibits multiple inflection points and sharp changes that are
implausible given the study population and associated covariates. We note that over-
fitting could also be established using information criteria as outlined in Section 5.4.1.
An alternative specification of the M-spline model with fewer knots is presented
in Appendix B. The resulting hazard ratios are close to constant, suggesting this
over-fitting is due to the choice of knot location. We note that it may be possible
to optimally place knots such that the hazard ratios are smooth and capture similar
variability to the hazard ratios presented by the polyhazard model. This would be
challenging, however, given the number covariates in the data, and the need to place

knots manually.

An interesting feature is that the averaged polyhazard model estimates smaller
effect sizes for atrial fibrilation and stroke score, at 2.5 and 7.5 years respectively,
compared to the M-spline model. This is due to the sub-hazard functions considered
in this work that are unable to incorporate sudden peaks in hazard ratios for single
covariates. Alternative specifications of the non-proportional spline model (presented
in Appendix B along with baseline hazards) suggest these spikes are likely due to
over-fitting; however, in analyses where these spikes may be expected, the polyhazard
model may not provide sufficient flexibility without the specification of additional

sub-hazard forms.

Figure 4.6 plots hazards for each covariate group from the overall models (solid
lines) and from the two hazards from the dominating bi-log-logistic model (dashed
lines) for the same covariates. Interpreting the first hazard as the immediate post-
stroke risk and the second as the longer-term risks, we can understand the influence
of different covariates. In particular age increases both the immediate risk post-stroke
and the long-term risk, while atrial fibrillation and being male has no immediate

effect, but a noticeable long-term effect. Conversely, less severe strokes reduce risk
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Figure 4.5: Posterior median hazard ratios (HRs) for atrial fibrilation, age, sex and stroke
score from the COST dataset. The green line is the HR from the averaged
polyhazard model (Avg.), the blue and orange lines are hazard ratios obtained
from the simpler log-logistic (LL) and Weibull (W) models. The grey lines are
HRs from the proportional (dashed, Spl. p.) and non-proportional (solid, Spl.
n.p.) M-spline hazards model. A hazard ratio of 1 is indicated by a black dashed
line on each plot.

in the short-term but have a less noticeable effect in the long-term. Figure 4.6 also
contains estimates of mean survival and difference in mean survival. In each of the
highlighted covariates the 95% credible interval for difference in mean survival does
not contain 0, although for atrial fibrillation it coincides with the boundary of the
interval, presenting clear evidence that the presence of atrial fibrillation, increasing

age and being male lower survival, while less severe strokes improve survival.

4.4.3 Taiwan Kidney Transplant data

We apply our methodology to data on survival times of 3,562 Taiwanese patients
following uncomplicated kidney transplantation with the primary objective of under-
standing the impact of waiting times on mean survival [Chen et al., 2022a]. The data
were accessed via Dryad [Chen et al., 2022b]. The original analysis used hazard

ratios provided by a Cox regression to understand the impact of transplant waiting
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Figure 4.6: Hazards for different values of atrial fibrilation, age, sex and stroke score from
the COST dataset. Arial Fibrilation and sex: O (orange), 1 (blue). Age and
Stroke Score: Sample lower quartile (orange), sample upper quartile (blue).
Other covariates are set to 0 representing the average patient. Estimates of mean
survival are included in each plot for the blue hazard (U), orange hazard (L) and
the difference in mean survival (D).

times on long-term survival. Patients were split into four groups based on wait times
(<1 year, 1-3 years, 3-6 years, >6 years). Additional covariates in the data include
age at time of transplantation (defined in 10 year blocks), sex, hypertension and
Dyslipidemia. The primary challenge with the analysis of these data are the high
censoring rates in all age and waiting time groups, with only the oldest patient group
(71-80 years) reaching median survival with 41.18% censored, and censoring rates

of 89.90% and 92.00% in the youngest two age groups.

Using the prior structure in Section 4.2.2 we fit the averaged model to this data.
We make the modification of only considering models with K < 4 as, given the high
censoring rates, it is unlikely that there is sufficient information in the data to define

more than 3 hazards.

In addition, we use a slightly more informative Normal(0, 1) prior for the

shape parameters as we otherwise encounter identifiability issues similar to those
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Model W-L W-W L-L W-WL WLL WWW L-LL
Post. prob. | 0.321 0.322 0.054 0.140  0.064 0.085  0.010

Table 4.2: Posterior sub-model probabilities for the averaged model applied to the Taiwanese
Kidney Transplant dataset restricted to models with posterior mass above 0.005.

<1 year | | 1-3 years
1.009 -~
0.75 1
0.501 Age group
0.251 11-20
21-30
0.001 31-40
>
2 — 41-50
1.009
— 51-60
0.75 1 — 61-70
0,50 71-80
0.25 1
0.00 -

0 20 40 60 0 20 40 60
Time (years)

Figure 4.7: Mean survival curves from the averaged model for the Kidney transplant data
set stratified by waiting time and age.

highlighted in Section 4.1.1 due to very high censoring rates in certain subgroups.
This resulted in estimated survival curves that allowed for unrealistically long survival
times. The sampler was run for 20,000 time units, with the rate of reversible jumps
or Gibbs moves set to 20. This took 11.76 hours to run.

Posterior model probabilities are reported in Table 4.2. The majority of the
posterior mass is shared between the bi-Weibull, Weibull-log-logistic and bi-Weibull-
log-logistic models. The posterior is less concentrated than in the previous examples,
due to the limited complete data in the sample.

Figure 4.7 shows survival curves for each waiting time group stratified by age.
Each curve appears to reach 0 in a reasonable time frame. Of particular note is the
apparently non-linear effect of age, with patients in the youngest age group (11-20)

having worse survival than patients aged 21-40. This effect is not implausible due to
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Figure 4.8: (Left) Posterior summaries for mean survival, stratified by age and waiting time.
(Right) Posterior summaries for mean survival difference. Results are stratified
by age and waiting times encoded as (1: <1 years, 2: 1-3 years, 3: 3-6 years, 4:
6+ years). A dashed line is used to indicate O difference. (Both) Posterior mean
(solid blue dot), 50% credible interval (blue, larger, error bar), 95% credible
intervals (orange, smaller error bar).

the differing reasons for requiring a kidney transplant in different age groups, which
are possibly more likely to be due to genetic or hereditary conditions for younger
patients, and more likely due to lifestyle factors in older patients. Further in all
waiting time groups there are minimal differences in survival between patients in the

oldest age groups.

To understand the effect of waiting times on mean survival, posterior estimates
of mean survival stratified by age and waiting time group are presented in Figure
4.8 (Left), with posterior means, 75% and 95% credible intervals plotted. Similarly,
the effect of moving reducing waiting time by one group is shown in Figure 4.8
(Right). The uncertainty associated with these estimates reduces with age in both
cases as the number of censored observations decreases, except for the oldest age
group which corresponds to only 17 patients in the sample, resulting in very high

uncertainty. Similarly there is high uncertainty in each age group for mean survival
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in patients who waited more than 6 years for a transplant which propagates through
to the estimates of difference in mean survival between patients who waited 6+ years
and those who waited 3-6 years. From Figure 4.8 (Right) there is strong evidence to
suggest that in the youngest age group and patients over 51 reducing waiting times
from 1-3 years to <1 year improves mean survival and similarly reducing wait times
from 3-6 years to 1-3 years for patients under 50 improves mean survival. In each
age group the lack of information for patients with wait times over 6 years means

there is high uncertainty related to the corresponding effect size.

4.5 Discussion

In this work we have developed an extended version of the polyhazard model, using
an extended prior specification and novel posterior sampling methodology. This
allows for the efficient application of polyhazard models to two motivating data
sets for which previous approaches to model selection and computation would have
been infeasible. Further, through the use of Bayesian model averaging, we limit the
risk of survival extrapolation and mean survival inferences being affected by model

misspecification when compared to selecting a single best model.

The findings from the analysis of the digitised lung transplant data from Demiris
et al. [2015] suggest that non-informative priors are not appropriate in the polyhazard
model setting as they place too much mass on unreasonably large mean survival val-
ues. This results in poor posterior estimates and identifiability issues not previously

commented on in the literature.

The analysis of the COST dataset shows how the polyhazard model is able to
translate epidemiological findings to a cost-effectiveness analysis in the presence of
covariates. In particular our approach circumvents issues with current approaches,
that either fit models for each subgroup or rely on strong covariate assumptions. The
analysis of the kidney transplant data set shows that the extended polyhazard model
is able to account for high censoring rates. In particular, being able to combine
estimates from many plausible models provides more principled extrapolations in

the presence of partial information.
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The approach of this chapter is an addition to a number of methods which seek to
provide more principled extrapolations by learning the parameters for extrapolation
primarily from data towards the end of the observation period. Other examples
include the use of M-splines [Jackson, 2023] and dynamic survival models [Kearns
et al., 2022]. Compared to the M-spline models, our approach retains a degree of
interpretability, and as we show in Section 4.4.2 it is also more stable in the presence

of many covariates.

We note that the extended polyhazard model can be easily combined with
several methods for improving extrapolations and integrating external information. In
particular polyhazard models are the natural form for integrating external information,
whether this relates to specific causes of death [Benaglia et al., 2015] or life table
data for the wider population [van Oostrum et al., 2021]. Alternatively, the extended
polyhazard model could be used to model the observed period and then combined
with life-table data via the blended survival approach of Che et al. [2023]. Further
simple adjustments to the model could also be made to combine it with other model
averaging approaches to extrapolation. For example, the adjusted model averaging
approach of Negrin et al. [2017] can be combined with our methods by adjusting

posterior weights to account for optimistic and skeptical scenarios.

We briefly outline some obvious extensions to the model presented in Section
4.2. Alternative prior structures for sub-hazard parameters could be considered. For
example, as suggested by a reviewer, these could be based on the right-tail behaviour
of the sub-hazard functions. This could be particularly beneficial when strong prior
information is available about the behaviour of the long-term hazard function. We
have assumed that covariates enter the model through location parameters, in line
with the recommendations of Latimer [2011]. A linear predictor could also be
introduced for shape parameters. This would provide additional flexibility to the
model; however, we expect that this would require stronger prior regularisation and

increase the computational cost for limited additional flexibility.

We can naturally extend the model to include additional subhazard forms. Al-

though there are many two-parameter survival distributions in the literature, selecting
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a small number of additional distributions should provide sufficient flexibility to
model many datasets. In this context the swap moves from Section 4.3 could be
extended to define pairwise transformations between different types of subhazards,
or replaced with moment-matching moves where appropriate. Another novel exten-
sion would be to introduce the possibility of improper subhazards such that for the

corresponding survivor functions

Sk79(y)_>c>07 Yy —> oo,

This would correspond to a cure model for that subhazard, but would need highly
informative external information to ensure principled extrapolations. A final exten-
sion would be to introduce dependence between hazards, as explored by Tsai et al.
[2013].

Finally, we believe we have made important contributions to the applications
of PDMP samplers. While these samplers have seen several methodological and
theoretical developments, they have seen limited practical application. We hope that
their usage in this work can motivate their usage in other contexts. In particular,
the bounding method developed in Section 4.3 is not model dependent so could be
applied in other contexts, as could the extension of the Gibbs Zig-Zag approach
to transdimensional updates. Moreover, we expect the birth-death process to be
applicable in wider applications. A natural setting would be in mixture models with
an unknown number of components. A further possibility would be the incorporation
of global jump moves in fixed-dimensions to improve the mixing of the inherently
local PDMP dynamics. In the context of PDMP samplers for variable selection,
the combination of variable selection dynamics with the Gibbs Zig-Zag approach
for updating hyperparameters efficiently is an important advancement, which can
avoid the use of fixed spike and slab weights. Finally, the median matching heuristic

developed for the swap moves may be useful in other contexts.



Chapter 5

Diffusion piecewise exponential

models

The content of this chapter is based on the paper

L. Hardcastle, S. Livingstone, and G. Baio. Diffusion piecewise expo-
nential models for survival extrapolation using Piecewise Deterministic

Monte Carlo. arXiv preprint arXiv:2505.05932, 2025

available on arxiv and currently undergoing the journal review process.

5.1 Introduction

This chapter develops a novel prior specification for the piecewise exponential model
allowing for the principled inclusion of prior information to inform extrapolation of
the hazard function beyond final event times y. Piecewise models are increasingly
used to model survival in HTA analyses. This allows for flexible, data-driven
inference of hazards during the observation period. In each of the examples discussed
in Section 2.2, however, extrapolations are either driven by behaviour of the hazard
function inferred during the observation period, external data included in the model,
or both, and are often sensitive to modelling assumption, e.g the placement of knots
beyond y .

In Section 2.2.3 we reviewed several recent advances in the incorporation of
explicit prior information to inform extrapolations. We adopt two primary consid-

erations for specifying this prior information: i) Assumptions about the form of
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this prior information should be minimal allowing the analyst maximal flexibility in
its specification [Mikkola et al., 2023]. ii) The prior should be at least moderately
informative during the extrapolation period. We argue, given the often sparse nature
of data in these applications, that specification of an informative prior is the only

way to ensure sensible inference in the extrapolation period.

5.1.1 Our contributions

We introduce the Diffusion Piecewise Exponential Model. The piecewise exponential

model is defined by a piecewise constant log-hazard function,

logh(y) = zj‘,locj]l (v € (sj-1,8]]) , 5.1)
=
where {o j}le are a sequence of local log-hazards, and {s; }fzo are a sequence of
knot locations with so = 0. Explicitly, our contributions are as follows.

In Section 5.2, we introduce a novel prior formulation for the sequences { ¢; }§=1
and {s j}fzo’ allowing for the principled combination of inferences for the observa-
tion period, primarily driven by the data, and inferences for the extrapolation period,
primarily driven by prior information. This prior for {c j}§:1 is given by the dis-
cretisation of a diffusion, with drift function used to encode strong prior information
about the long-term behaviour of the hazard function. Notably, restrictions on the
form of the drift are minimal allowing for a range of prior information to be encoded
into the model. The prior for {s j}fzo is given by a Poisson point process. This
acts as a time change between the underlying diffusion and {« j}le allowing for
intensity in the changes of the hazard during the extrapolation period to be informed
by those observed on (0,y.).

In Section 5.3, we introduce a novel Markov Chain Monte Carlo (MCMC)
sampling algorithm based on Piecewise Deterministic Markov Processes (PDMPs).
In particular we make use of recent developments in defining and generating these
processes to design an efficient sampler that requires minimal user tuning [Bertazzi
et al., 2023, Michel et al., 2020]. Further, to handle the transdimensional posterior

resulting from the prior on {s j}fzo’ we extend recent results that use PDMPs to
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sample from posteriors induced by spike and slab priors [Bierkens et al., 2023a,
Chevallier et al., 2023] to more general transdimensional posteriors.

In Section 5.4 we demonstrate the flexibility of the model and prior structure,
and provide practical guidelines for its use via case studies corresponding to two

clinical data sets. We conclude with a discussion in Section 5.5.

5.2 The Diffusion Piecewise Exponential Model

Throughout we adopt the notation and assumptions introduced in Chapter 2, and
assume that we observe data, D = {y;, 6;,w;}}_,, consisting of n independent survival

times, y;, event indicators, 0; and covariate vectors w; € R?,

5.2.1 Piecewise exponential models

Piecewise exponential models [Feigl and Zelen, 1965, Ibrahim et al., 2001] are
constructed via a piecewise constant log-hazard function (5.1). Covariates can be
incorporated into (5.1) by replacing o; with 1;; = a; + wiT B;. We refer to ; as the
local baseline log-hazard and 3; € R” as a vector of local covariate effects, which
can encode a local proportional hazards assumption.

To complete the model specification we require priors for {¢t;, 8;,s;}. Computa-
tional convenience is a common motivation for prior selection, primarily through the
use of independent, conjugate Gamma priors on exp(a:;). Another common objective
is some degree of smoothing between local hazards, by using either a random-walk
prior on ¢; [Fahrmeir and Lang, 2001], Markov-Poisson-Gamma priors [Lin et al.,
2021] or priors incorporating local and global trend terms [Kearns et al., 2019].
A broader review of prior structures used for survival extrapolation is provided in
Section 2.2. The prior we introduce in the following section will contain most of
these prior structures as special cases, while providing a weakly informative prior

during the observation period.

5.2.2 Discretised Diffusion Priors
To capture prior knowledge about the long-term behaviour of the hazard we assume
that the discrete-time log-hazard process {a j}§:1 can be described via a continuous-

time stochastic process (d)y>0 with dynamics governed by the stochastic differential
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equation

doy = p(dy)dy+dWy, &g = ao, (5.2)

with drift p(cty), where (Wy)y>o is a standard Brownian motion [Oksendal, 2013].

v

The random variables «j, ..., a, are then defined through the relation o; := & 2>
where o7 is a step size defined later in this section. The primary motivation behind
this prior is that information about the evolution of the hazard can be encoded into
(L (Cty). During the observation period, where data are more abundant, this acts as a
weakly informative prior with limited impact on the resulting inference. However,
as observations become sparser and the hazard is extrapolated beyond y.., this prior

naturally becomes increasingly informative, allowing for long-term inferences to be

driven by expert opinion encoded through ().

Previous works have utilised diffusions as priors for hazard functions, including
Aalen and Gjessing [2004] in which the hazard function is modelled as a squared
Ornstein-Uhlenbeck process and Roberts and Sangali [2010] in which u(dy) is
defined such that the resulting diffusion is a stochastic perturbation around a pre-
specified hazard function. The challenges of working directly with diffusions are
primarily computational. Diffusions of interest rarely have tractable solutions, and
therefore need to be finely discretised, increasing computational cost. To combat
this, our approach involves a hierarchical formulation in which the numerical dis-
cretisation is dictated by the knot locations {s; }jzl, which in turn are sampled from
an underlying process, and a prior on the discretisation step-size. This allows for
more parsimonious and computationally convenient hazard functions to be specified.

More details are given in Section 5.2.3.

5.2.2.1 Example choices of ()

We briefly outline some example choices for p1( &), with their behaviour illustrated
in Figure 5.1. A first trivial example is to set i(0y) = 0. The underlying diffusion
is then a Brownian motion and the discretised version recovers the random walk
prior [Fahrmeir and Lang, 2001]. In practice this corresponds to having no expert

opinion about the long-term behaviour of the hazard, with credible intervals for the
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log-hazard increasing in width at a constant rate as y — y.. This assumption will
often contradict available prior information, however, and can be improved upon in

the following examples.

Stationary distributions: There will often be prior information available
about a range of plausible values for the hazard function in the extrapolation
period. In our framework this is encoded as a Langevin diffusion, such that
p(cy) = Vlog fy(dy) /2, where fy(Cty) is the density of the required stationary
distribution for the log-hazard, with parameters y. We consider log-Normal and
Gamma (equivalently Normal and log-Gamma) stationary distributions for the hazard
function (equivalently log-hazard function). The required drifts are then given by

pun(l) = (G5 =), () = vi —vaenp(d). (53

Underlying hazards: The stochastic perturbation approach introduced by
Roberts and Sangali [2010] can also be incorporated into our framework. In short
we suppose that we have access to a known hazard function /(y) that quantifies our
belief about how the hazard function evolves in the extrapolation period derived, for
example, from data from previous clinical trials. A suitable drift function can then
be derived by viewing g (y) as the solution to an autonomous ordinary differential

equation,
dho(y)
dy

v

=g(ho(y)), Mo(dy) = g(dy).

In Roberts and Sangali [2010], the absolute value of the diffusion is used to map
the diffusion from R to R~ (. In our case g(&y) requires a final change of variables
to be transformed to a drift for the log-hazard. As a running example, we consider
the case where %(y) corresponds to a Gompertz hazard function. This is a natural
choice as the Gompertz distribution is often used to model long-term survival in
the general population [Thatcher, 1999], and therefore intuitively should provide
sensible inferences for the extrapolation period. In our framework this ensures
estimates of mean survival in the population of interest are consistent with those

seen in the (usually healthier) general population. The corresponding stochastic
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Figure 5.1: Prior simulations for 4(y) under different specifications for p(d). (Left) Ran-
dom Walk prior u(cty) = 0. (Centre) Gaussian Langevin prior (5.3). (Right)
Gompertz prior dynamics (log-linear drift) (5.4).

differential equation has a linear drift

w(dy) = v, (5.4)

where  is the scale parameter of the required Gompertz distribution. The derivation

of this quantity is provided in Appendix C.

Time-varying drifts: The above examples have utilised time-homogeneous
drift functions. This is, however, not a necessary requirement. In particular, expert
opinion on the evolution of the hazard function will often evolve with time. A more
flexible class of diffusions can therefore be defined with time-varying drifts p(dy,y).

We investigate this possibility further in Section 5.4.2.

5.2.2.2 Discretisation

As noted previously, stochastic differential equations rarely have analytic solutions
and therefore implementation requires (5.2) to be discretised. The standard approach

is the Euler-Maruyama discretisation [Platen and Bruti-Liberati, 2010]

&y 102 = Yoz +0j11, 641~ Normal(6?u(&;52), 0%). (5.5)
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where 62 is the step size, for 1 < j < J. Note the slight abuse of notation, with
{Gc2 }le now used to denote the discretised version of (d)y>o. It is well estab-
lished that (5.5) can be numerically unstable when p(¢;) is not globally Lipschitz
[Roberts and Tweedie, 1996]. In our application this condition is particularly re-
strictive and is not satisfied, for example, by the log-Gamma Langevin drift (5.3).
More broadly, it is unrealistic to ask practitioners without a mathematical back-
ground to carefully check whether the drifts they elicit meet this condition before

implementation, and an ideal generalisable prior would not rely on a Lipschitz drift.

To mitigate instabilities when considering non-Lipschitz drifts we utilise a
recently introduced scheme based on skew-symmetric innovation densities [Iguchi

et al., 2024],

v

A jr1)o2 = o2+ 011, fo(O)11 | &jg2) o (1 +tanh(ﬂ(5‘j02)ej+1)) 9(611]0%).

(5.6)
Here ¢(- | 6?) is the density of a Normal(0,6?) random variable, and 1+
tanh(p(¢;52)6;+1) is a skewing term corresponding to the cumulative distribu-
tion function of a logistic distribution evaluated at 1(&;52) 01 .I' Similarly to the
Euler-Maruyama method this approach introduces approximation error that vanishes

as o — 0.

Intuitively, while the Euler-Maruyama method shifis 6, in the direction of
the drift, the skew-symmetric scheme skews 6,1 in the direction of the drift. This
difference is depicted in Figure 5.2 for fixed o and increasing values of u (). In
Iguchi et al. [2024] the authors show that (5.6) is more robust than (5.5), both to
the choice of ¢ and to non-globally Lipschitz p(d). In both of the above cases we
initialise the process at ¢ ~ Normal(0, Gg). In Section 5.3.5 we will also show that
this approach is computationally advantageous, when combined with the prior for

{s j}§:1 introduced in the following section.

To complete the specification of the above process, we place an exponential

'In fact, this construction is more general in that any CDF of a centred symmetric random variable
is sufficient.
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Figure 5.2: Density functions for the innovations 6 under the Euler-Maruyama (dashed) and
skew-symmetric (solid) schemes for increasing values of u(¢&;) = 1,2,3,4 and
fixed o2.

prior on ©,

o ~ Exponential(a),

corresponding to a penalised-complexity prior [Simpson et al., 2017]. This prior
shrinks the innovation standard deviation towards 0, thus shrinking the overall hazard
function towards a single constant value. In all the examples here we set the rate of
the exponential prior to a = 2. Justification for this choice is provided in Appendix

C, however we expect inferences to be generally unaffected for sensible choices of a.

5.2.3 A prior for knot locations

The specification of the model is completed with a prior for the knot locations,
J . J . .
{s;}—- The standard approach is for {s;};_, to be fixed a priori, for example at set
quantiles of observed event times or at regular intervals [Murray et al., 2016]. The
resulting hazard, however, will be sensitive to this specification, particularly in the
absence of data during extrapolation period.
We address these issues directly by assuming that {s j}le arise from a Pois-
son Point Process with intensity ¥ on the interval (0,y), denoted throughout as

{s j}le ~ PPP(7,(0,y)). This can be expressed equivalently as
J ~Poisson(y.y), {s;}7_ s Uniform(0, o). (5.7

This prior (and variations) have been considered previously [Chapple et al., 2020,
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Demarqui et al., 2012]; however, this specification is commonly avoided due to the
computational challenges it introduces.

Note that, in contrast to [e.g Roberts and Sangali, 2010], in the above construc-
tion the discretisation step size 62 is independent of the distance between knots
(sj—sj—1). Because of this, the prior for logh(y) is in fact given by (5.2) through a

random time-change defined by (5.7), such that a priori
logh(y) = 0j = &;52, j=min{l:y<s}.

This construction can be viewed as first simulating a numerical skeleton { ¢ io? }§:1 ,
via (5.6) and then mapping this to the time-scale of interest, (0, y«), via (5.7).

Under this prior the number of knots, and therefore the flexibility of the hazard
function, is directly controlled by . The diffusion speeds up when the data require a
more volatile hazard and slows down when the hazard is less volatile, adapting to the
data without being constrained by the prior. In terms of extrapolation, the advantage
of this formulation is that y determines the speed at which y dominates the long-term
hazard. Intuitively, if the hazard function is more volatile in the observation period
we should expect the influence of the data to decay faster in the extrapolation period
(with the prior taking over faster). Conversely, if the hazard is less volatile the data
should remain informative for longer during the extrapolation period.

We consider two approaches for specifying y. The first is to consider a set of
models for a fixed number of values for y. These models can then be compared
using information criteria. A second, fully Bayesian approach places a prior y ~
Gamma(a,b), equivalent to a Negative Binomial prior on J. We compare these

methods further in Section 5.4.1.

5.2.4 Incorporating covariates

We have focused so far on specification of a prior for the log-baseline hazard and
corresponding knots. Both priors extend to the case when covariates are incorporated
in the model.

For the underlying diffusion, it suffices to provide a specification for each f3;
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process, independently of the diffusion for o;. As B is a covariate effect, a natural
process to specify is a Langevin diffusion with Gaussian stationary distribution.?
Setting the mean to O implies the expected long-term treatment effect vanishes as
y — co. In Section 5.4.2 we show that p(f;,y) can be modified to incorporate a
waning long-term treatment effect, a common and important assumption in many
HTA analyses [Jackson et al., 2017]. Specifying a non-zero mean would imply a

long-term proportional average treatment effect, but this would need to be supported

J

i—1> We define a set of

by strong clinical opinion. Similarly for the prior for {s;}

knots {slj‘ } independently of the set of knots for the baseline log-hazard.

5.3 Posterior sampling

The diffusion piecewise exponential model generates several challenges for com-
monly used Bayesian inference engines primarily associated with the prior on
{s j}le. The resulting posterior is transdimensional for which the standard sampling
approach is to use reversible jump MCMC [Green, 1995]. These samplers require
the specification of a between-model proposal distribution that must be carefully
tuned to achieve modest acceptance rates. This results in a noticeable increase in
computational cost due to the additional likelihood evaluations required at each
transdimensional step.

Note, in addition to the above, that the fixed {s j}le model can still present sam-
pling challenges. The potential function, U (x) := —log (x) is non-Lipschitz, caus-
ing instability in gradient-based methods such as the Metropolis Adjusted Langevin
Algorithm (MALA) [Roberts and Tweedie, 1996] and Hamiltonian Monte Carlo
(HMC) [Livingstone et al., 2019]. Further, in the presence of high censoring rates
(which is precisely the scenario we are considering), posteriors of survival models
can exhibit high skew, again challenging standard Metropolis-Hastings methods
[Hird et al., 2020].

To circumvent these issues we utilise sampling techniques based on continuous

time Piecewise Deterministic Markov Processes (PDMPs) [Fearnhead et al., 2024].

ZNote this is equivalent to specifying an Ornstein-Uhlenbeck prior for .
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These processes are non-reversible (e.g. Andrieu and Livingstone [2021]) and use
ballistic motion and gradient information to efficiently explore the target distribution.
Further, in contrast to MALA and HMC, they have constant velocity and require min-
imal tuning making them more robust to non-Lipschitz potentials. Recent works have
also shown that they are able to sample from transdimensional posteriors induced by
spike and slab priors without the need for additional likelihood evaluations or tuning
of between-model proposals [Chevallier et al., 2023, Bierkens et al., 2023a]. The key
contribution of this Section is to show how these results can be extended to more gen-
eral transdimensional posteriors. A concise presentation of the algorithm is given in
Appendix C. Code to implement these model is available at https://github.com/

LkHardcastle/DiffusionPiecewiseExponential. jl (see also Section 6.2).

We briefly note that for posterior sampling we use a non-centred parameterisa-

tion of the model [Betancourt and Girolami, 2015]
é() = 0 9j = 6_19]'.

This avoids strong posterior dependence between «;’s and eliminates funnel-shaped
geometry that can arise when simultaneously updating 6 and ¢ (e.g. Betancourt and

Girolami [2015]).

5.3.1 The Bouncy Particle Sampler and Forward event chain

Monte Carlo

Piecewise Deterministic Monte Carlo methods have emerged as a promising class of
non-reversible processes for posterior sampling in challenging Bayesian inference
problems. In this work we use a variation of the bouncy particle sampler [Bouchard-
Coté et al., 2018], known as Forward Event Chain Monte Carlo [Michel et al., 2020].

These methods were reviewed in Chapter 3.

Given the current sampler time, #, recall that the bouncy particle sampler is
defined on an state-space augmented with velocities z; = (x;,v;) € RY x S, with

x=(0,0) andd = J(p+ 1)+ 1. The continuous-time deterministic evolution of z
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is given by the system of ordinary differential equations

dx; dV[

—_— =y -
dat " dt ’

which results in v, driving the linear evolution of x;. This evolution is interrupted
by a jump process, with jump times given by the inhomogeneous event rate, AZ (1),
and the transformation of z; at these times given by the deterministic map Q. For the

standard bouncy particle sampler these are defined as

AE (1) = max{0, (v;, VU (x;))} + AR,

Q: (X, vr) = (X, vy —2vtVU).

Recall from Section 3.4, AR € > is the refreshment rate, with AR >0 required to
ensure the process is irreducible, and v’V arises from the orthogonal decomposition
of v, with respect to VU (x;), v; = v/Y +v;-, with v;* 1 VU(x;). Events associated
with the first term of AZ(¢) only occur when (v, VU (x;)) > 0, i.e when the process
is moving into areas of lower posterior mass, resulting in fast convergence towards
areas of high posterior mass, meanwhile the map Q corresponds to a reflection of the

velocity off the tangent to the potential.

A well-known drawback of the bouncy particle sampler is that AR requires
careful tuning, and that optimal values of AR can result in approximately 78% of
events being refreshments [Bertazzi and Bierkens, 2022]. This replaces the ballistic
motion of the process with increasingly diffusive dynamics, inhibiting sampling
efficiency. To remedy this issue the forward event chain method [Michel et al., 2020]
replaces the the deterministic mapping Q with a jump kernel stochastically updating
both of (v'Y,v;). This incorporates refreshment into reflections while ensuring the
process targets the correct stationary distribution. In particular, v;" is re-sampled as
;- such that (v;-, ;) > 0, reducing the diffusivity as compared to full refreshments.
Further, the update to v;* need not occur at every event, but can be set to update at the

first event after each time given by a homogeneous Poisson process with rate AR,

To understand the robustness these alterations introduce we can consider the
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process when AR is poorly tuned. In the case AR is set to be too large the refresh-
ment rate is capped by the rate at which reflections occur. Conversely, when AR is
too small, the stochastic updates of vtVU ameliorate the irreducibility issues observed
in the original bouncy particle sampler. In contrast, poor tuning of the refreshment
rate AR in the bouncy particle sampler can significantly impact the resulting process.
The forward event chain approach has seen uptake in the statistical physics literature,
but we believe this to be the first application to an applied Bayesian statistics problem.
The specific strategies from Michel et al. [2020] used in this work are outlined in

Appendix C.

5.3.2 Generating the process

The deterministic dynamics and jump kernel of the bouncy particle sampler and
forward event chain Monte Carlo are simple to generate, but the inhomogeneous
Poisson process associated with AE (¢) is typically more challenging, and an area
of active research [Andral and Kamatani, 2024, Corbella et al., 2022, Sutton and
Fearnhead, 2023]. The primary method we use to generate this event rate is the
splitting schemes approach of [Bertazzi et al., 2023] (Section 3.5.3.1), which alter-
nates between updating the deterministic and event rate processes over a given time
step Ar. Without adjustment this scheme introduces a small approximation error
into the posterior, which could in principle be corrected for using a non-reversible
Metropolis—Hastings filter as described in Bertazzi et al. [2023], though we found
this to be unnecessary here. Note that this replaces the continuous time sample paths
of the original process with a discrete time approximation.

A second exact scheme we consider is to update ¢ using conditional Metropolis-
within-Gibbs steps at exponential times in the sampler [Sachs et al., 2023]. For the
random walk, Gaussian Langevin and Gompertz drifts, the potential for 6 is then
convex and the process can be generated exactly by determining event times using a
line search [Bouchard-Coté et al., 2018, Example 1].

Of the two schemes we prefer the first. Both algorithms have tuning parameters
that are easy to specify, although we find this is marginally easier to do in the former

case. Further the sampling efficiency of the second method seems to be inhibited,
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both by reversible updates for o, and conditional updating that struggles to explore
the geometry of the posterior. Finally, the splitting method allows for a general drift
function u in the diffusion prior to be specified, which is an important goal of this

work. Full algorithms for both methods are produced in Appendix C.

5.3.3 Spike and slab PDMPs

Transdimensional posteriors are often induced by priors that are mixtures of continu-
ous and atomic components (commonly referred to as spike and slab priors) of the

form

m(d6;) o< (1 — )& (d6;) + wfo(dh;), (5.8)

where &y is a Dirac mass at 0, fj is a continuous density and @ € (0, 1). In all of our
examples we set @ = 0.5.

These posteriors can be sampled from directly using the forward event chain
sampler, by moving from the continuous component to the atomic component at
exactly the point when 6 intersects the hyperplane {é : éj = 0} [Bierkens et al.,
2023a, Chevallier et al., 2023]. Equivalently this can be seen as setting v; — 0 at this
point, with an appropriate renormalisation step when v € S?~!. For forward event

chain Monte Carlo, v; is then refreshed after an exponential time, T with

7 ~ Exponential (1 ﬁ)w 7(0) \j|> , (5.9)

where | 7| is the Jacobian associated with renormalising v. The remaining terms in
this rate are given by a posterior ratio, between the model where 0 ; is on the slab
and 0 ; 1s on the spike. Homogeneity of (5.9) arises due to the transdimensional
updates occurring at a point where the likelihoods in both models are equivalent and
therefore cancel, along with the majority of prior terms, simplifying this posterior
ratio. When multiple components are considered simultaneously the next unsticking
time is simply given by summing together the unsticking rates, with the component
to update then selected uniformly at random.

The construction of (5.9) is remarkable as, in contrast to most reversible jump

MCMC methods [Green, 1995], transdimensional updates do not require either
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the specification of tuning parameters or likelihood evaluations. Following the
terminology of Bierkens et al. [2023a] we will refer to these dynamics as sticky

PDMP dynamics from this point forward.

5.3.4 Sticky PDMPs for knot selection

While the computational efficiency and lack of tuning parameters in the above con-
struction is appealing they have not yet been applied to transdimensional posteriors
beyond those induced by spike and slab priors. We now show that the above dy-
namics can be extended to sampling the location of knots under a Poisson process
prior following a two step procedure: i) Given a fixed set of candidate knots, use
sticky PDMP dynamics to update which knots are active in the model and which
are inactive. ii) Use a Gibbs step to update the set of candidate knots solely through

updating the set of inactive knots.

5.3.4.1 Updating given fixed candidate knot locations

We begin by considering the simpler case in which a fixed a set of unique candidate
knot locations {m;}*  with scaled innovation parameters 8 € RM are chosen. We

will assume that this set is composed of a set of active knots {s j}§:1 such that

M—-J
=1

m; € {s j}§: | implies that 6; # 0 almost surely, and a set of inactive knots, {r;}
such that m; € {r; 1]‘.4:’1] implies 6; = 0. Assuming a priori that P(m; € {sj}le) .0
is equivalent to defining a spike and slab prior introduced in (5.8) independently for
each 6;, with fy(d6;) corresponding to prior density for 6; induced by (5.6).

Sticky PDMP dynamics can then be directly applied without modification,
with moves onto and off the spike updating membership of {s j}le and {r j}zjw: e
When viewed in o-space, the resulting dynamics split and merge the trajectory of
neighbouring &’s in continuous time, showcasing a natural connection to split-merge

reversible jump moves used in several settings [Brooks et al., 2003]. These dynamics
are illustrated in Figure 5.3.

Note, these dynamics cannot be immediately extended to the model with a
Poisson process prior, as the set of candidate knots is uncountable. Each element

of {r;} has an associated Poisson clock with rate defined in (5.9), and therefore the
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Figure 5.3: Trajectories for the PDMP sampler for knot selection viewed on a-space (left)
and O-space (right). (Blue) First coordinate, (Orange) second coordinate of both
o and 0.

resulting combined unsticking rate will be infinite unless only a countable number

of them are non-zero.

5.3.4.2 Updating the set of candidate knots

The second part of this procedure circumvents this explosivity, by initialising the
sampler with a finite set of candidate knots that is then regularly updated via a
Gibbs step. To define this update, we first let the intensity ¥ := @I" with @ defined
in equation (5.8) and I' > 0. This does not alter the prior introduced in Section
5.2.3. Under this specification the set of (now random) candidate knot locations
{mi}}L; ~PPP(T,(0,y.)), and {s;}7_, can be viewed as a thinned version of this
process with thinning probability @. As in the previous section, this is equivalent to
defining a spike and slab prior (5.8) independently for each 6;.

A valid and computationally efficient Gibbs step then proceeds by re-sampling
{r 1}1]”: -/ ~PPP((1— )T, (0,y+)). As these knots are inactive, updating their loca-
tion does not alter the value of the likelihood and they can therefore be drawn directly
from the prior. Conversely, if {m,}?i | was updated this would require a Metropolis
correction with corresponding likelihood evaluations. These Gibbs updates can occur
at fixed or exponentially distributed times in the sampler [Sachs et al., 2023]. Further,
if a hyperprior has been placed on 7, this can also be updated at these times. These

steps are shown in full in the algorithms presented in Appendix C.
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5.3.5 Mixing time of the process

The efficiency of the above process is dependent on the value of f;(0), i.e the
continuous part of the prior for 0 ; evaluated at 0. This can be seen through (5.9), as
smaller values of f,(0) result in longer sticking times at 0, requiring the process to
be run for longer to obtain the same estimates. We can in fact formalise this intuition
to compare the mixing times of the process under different parameterisations of the

underlying diffusion.

Proposition 1. Given a fixed set of candidate knots, let ’L'g (respectively T(‘)EM ) be the
recurrence time to the null model (i.e the model when all knots are inactive) under
the skew-symmetric parameterisation (respectively the Euler-Maruyama parameteri-

sation). Then

E[c5] < E[5™M). (5.10)

Proof. Following [Bierkens et al., 2023a, Remark 2.4], as the process is invariant the
expected recurrence time to the null model is inversely proportional to the expected

occupation time in the null model,

w
l-o

M
Efz] o ( 50 é,c>|J|) «fo0]8,0) M. (.11

Then note that under the skew-symmetric parameterisation, fg 0] 6, o) is the density
of a standard Normal distribution evaluated at 0, as the skewing term equals one
when 8; = 0. Further under the Euler-Maruyama scheme the density, f£4(- | 8, 0) is
that of a Normal (o2t (etj_1), 1) distribution. Therefore f£(0|6,0) < f5(0|6,0)

and (5.10) follows directly. L]

A direct consequence of Proposition 1 is that we can expect faster mixing times
under the skew-symmetric parameterisation. We support this argument empirically
by examining the performance of the sampler under each parameterisation for
identical p(o;). In particular we consider mean 0 Gaussian Langevin diffusions
with standard deviations ¢, = 2 and ¢, = 0.2, for increasing values of fixed o. Note
that the resulting f1(ct;) is Lipschitz and the approximation of the drift should be

stable under both parameterisations.
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Figure 5.4: Comparison of efficiency of the PDMP sampler under the skew-symmetric and
Euler-Maruyama parameterisations for different fixed values of o. (Diffusion 1)
p(a;) = oj/2%, (Diffusion 2) u(e;) = a;/0.2%. The dotted line indicates the
true value ® =P(60 =0) =0.5.

Figure 5.4 shows the resulting estimates of @. For the case ¢ =2, u(o) is
relatively flat and so both parameterisations provide good sampling for small values
of o, however the Euler-Maruyama parameterisation becomes increasingly unstable
as o increases. For ¢, = 0.2 the Euler-Maruyama parameterisation remains stuck
either on or off indicating noticeably slower mixing. There is larger variance in the es-
timates provided by the skew-symmetric parameterisation for larger values of o, but

the sampling is clearly improved compared to the Euler-Maruyama parameterisation.

5.3.6 Generating extrapolations

We note that the sampling methodology presented in this section has been designed
to sample from parameters corresponding to the observed data period. Sampling
parameters for the extrapolation period is easily handled using the skew-symmetric
scheme directly along with posterior samples for (0, o, 7). This direct sampling
is more efficient than using the PDMP in the absence of data, and helps mitigates

strong posterior dependencies that arise over extended time horizons.

Discretising the diffusion does introduce a first order bias that vanishes as
o — 0. To reduce the bias in the extrapolation period, the (y,0) can be rescaled

during this procedure. Full details are provided in Appendix C.
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Figure 5.5: (Left) Inferred hazards under the reversible jump sampler (Orange) and the
PDMP sampler (blue) with median hazards (solid) and 95% credible intervals
(dashed) reported. (Right) Trace plots for log(A(1.2)) under the two samplers.
Note that the reversible jump sampler is struggling to fully explore the tails of
the hazard function.

5.3.7 Comparison to reversible jump

To understand the efficiency of the developed methodology we compare the sampler
to a comparable reversible jump scheme consisting of alternating an update for
{s j}§: | by either adding or removing a knot at each iteration with a random walk
Metropolis update for 6. We prefer the Random Walk to other choices of proposal
kernel due to its robustness to tuning parameters that can be challenging to tune
correctly within transdimensional sampling algorithms [Livingstone and Zanella,
2022].

We fit the diffusion piecewise exponential model to the Colon data set anal-
ysed in Section 5.4.1 using both the introduced PDMP sampler and the reversible
jump sampler run for the same computational budget. Plots of the resulting hazard
functions are shown in Figure 5.5, along with trace plots for 4(1.2). Notably, the
reversible jump sampler is unable to sufficiently explore the tails of the posterior for
the hazard function, and therefore underestimates posterior uncertainty.

It is natural to wonder how the design choices we have made affect the efficiency
of the reversible jump sampler. In Appendix C we show results for alternative values
of tuning parameter in the reversible jump proposal and full details of the algorithm.

Further, we provide a comparison to the sampler introduced by Chapple et al. [2020]
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for a similar model specification.

5.4 Applications

5.4.1 Colon Cancer data

Our first illustrative application is to a dataset consisting of survival times from
191 colon cancer patients, of whom 22 were censored before 3 years and 104 were
administratively censored at 3 years. This data is available via the survextrap R
package [Jackson, 2023]. To implement the model the practitioner is required to

specify two quantities, the hyperprior (or fixed value) for ¥, and the drift u(o;).

5.4.1.1 Specifying y

We consider both methods for the specification of y highlighted in Section 5.2.2,
namely i) Selecting an optimal value of ¥ based on information criteria. ii) Placing a
hyperprior on 7.

Information criteria are commonly used when selecting a model for survival
extrapolation [Baio, 2020]. These results must be combined with an assessment
of the plausibility of extrapolated hazards, however, as information criteria only
assess goodness-of-fit within the observation period, providing no guarantees for
the quality of extrapolations. As a result, analysts are often faced with the choice of
either selecting a model that fits the observed data poorly or a model that exhibits
unrealistic long-term behaviour. We note that the use of a more flexible model is
not an automatic remedy to this issue. If no additional information is provided to
guarantee the quality of extrapolations, then the above scenario will always be a
possibility.

The diffusion piecewise exponential model avoids this trade-off through the
specification of u, breaking the dependence between the model fit to the observation
period and the limiting behaviour of the hazard function. As such information
criteria can be used to select y. The practical impact of this choice beyond y, is to
control the rate at which the influence of the data in the observation period decays.
Intuitively, if the observed hazard is more volatile, we can expect this influence to

decay faster in comparison to a more stable hazard function.
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In this work we use the leave-one-out information criteria estimated using
Pareto-smoothed importance sampling [Vehtari et al., 2017] due to its stability
properties compared to alternative criteria. The same criteria are used by Jackson
[2023] to determine the number and location of knots when using M-splines. We
believe that our approach is simpler, however, as it requires only the selection of a

single parameter.

We find the approximation to the leave-one-out cross-validation score does
not always sufficiently penalise overly complex models, resulting in implausibly
shaped hazard functions. We therefore suggest that this score should be minimised,
while also ensuring the shape of the hazard function remains plausible. The optimal
value for the colon cancer data, using p(o;) =0, is ¥ = 3.5. The full results of this

procedure are available in Appendix C.

For the second approach, to allow for consistent comparisons with the above
procedure we specify

Y ~ Gamma(3.5,1).

As noted previously we can view this as a Negative Binomial prior. Previous
applications of Negative Binomial priors in similar contexts have found they are less
informative than Poisson priors for J [Sharef et al., 2010]. In practice we find that
while the Negative Binomial prior is robust to the specification of the overdispersion
parameter, in the sense that posterior inferences are minimally affected, the specified
prior mean can still be influential. Therefore in practice modelling needs to be

coupled with sensitivity analysis to understand the influence of this choice.

5.4.1.2 Specitying u(c;)

Specification of u(ct;) drives the behaviour of the hazard function during the ex-
trapolation period, and should be elicited using expert opinion or external data on
the long-term behaviour of the hazard. In particular it should not be selected using
information criteria, as this only measures predictive ability during the observation

period.

We consider various specifications of the time-homogeneous drifts outlined
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Model E[Y]on (0,y+) | E[Y]on (0,ys)
Random Walk (Poisson) 2.19 (2.01,2.36) | 4.73 (3.14, 6.09)

Random Walk (Neg. Binomial)
Log-Normal stationary (Poisson)
Log-Normal stationary (Neg. Binomial)
Gamma stationary (Poisson)

Gamma stationary (Neg. Binomial)
Gompertz (Poisson)

Gompertz (Neg. Binomial)

2.21(2.02,2.38)
2.19 (1.99, 2.36)
2.20(1.99, 2.39)
2.19 (2.01, 2.36)
2.21 (2.01,2.39)
2.19 (2.02, 2.36)
2.20 (2.01, 2.38)

4.67 (3.21, 6.06)
3.80 (3.22, 4.49)
3.97 (3.26, 4.82)
4.31 (3.29,5.52)
4.39 (3.34,5.57)
4.43 (2.94, 5.89)
4.44 (3.03, 5.84)

Log-normal parametric
Independent piecewise exponential
M-spline (final knot = 5)

M-spline (final knot = 10)
M-spline (final knot = 15)

2.18 (2.03, 2.32)
227 (2.11,2.42)
2.25 (2.10, 2.40)
2.25(2.10, 2.41)
2.26 (2.10, 2.40)

5.79 (4.71, 6.86)
5.37 (4.10, 7.34)
6.89 (4.65, 9.10)
6.57 (4.00, 8.81)
6.45 (3.65, 8.56)

Table 5.1: Mean survival estimates for the colon cancer data for the observation period
and total window of interest with 95% credible intervals. (Top) Estimates under
varying specifications of u(a;) for both the Poisson and Negative Binomial
priors. (Bottom) Estimates from the log-normal standard parametric model, an
independent piecewise exponential model, and M-spline hazard model.

in Section 5.2.2. The use of Langevin diffusions with log-Gamma or Gaussian
stationary distributions encodes an assumption that the expected hazard function will
be constant as y — co. To illustrate the method in the following examples we use
Langevin diffusions with Normal(log(0.29),0.4) and log-Gamma(2,7) stationary
distributions for the log-hazard, and the Gompertz diffusion (5.4) with y = 0.3. For
each model generating two chains of 10,000 samples including burn-in took approxi-
mately 45 seconds. Examples of how to derive these prior drifts, full computational

and modelling details are provided in Appendix C.

5.4.1.3 Results

Mean survival estimates for each specification of u(a;) under the Poisson and
Negative Binomial priors are presented in Table 5.1, with corresponding hazard
functions in Figure 5.6. Posterior mean survival estimates for the observation period
are almost identical under each specification of y and u(o;), with inferences driven
by the observed data. Similarly, () has minimal influence on the hazard functions
in the observation period, although notably the Negative Binomial prior provides a

smoother fit than the corresponding Poisson prior.
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In contrast, mean survival estimates in the extrapolation period are highly reliant
on the information encoded in u(;). In particular the credible intervals under the
Random Walk and Gompertz drifts are larger than those under the Log-Normal
and Gamma Langevin drifts. This difference in behaviour can also been seen in
the hazard functions, where the credible intervals are noticeably larger under the
former prior specifications. In general, although not for the random walk prior, the
Negative Binomial specification results in larger estimates of mean survival. This is
due to the smoother hazard function inferred for the observation period, slowing the
speed of the underlying diffusion and the corresponding rate that the influence of
the prior grows. Note that this behaviour is because the prior information encodes a
typically higher hazard value than that observed at the end of the observation period.
If the converse were true, then the Negative Binomial prior would result in more
conservative estimates of mean survival. Finally, Figure 5.6 shows that the Gompertz
drift results in large credible intervals (larger in fact than the random walk prior),
suggesting this prior does not encode much information in the extrapolation period.
This is due to the exponential form of the Gompertz hazard function. As such,
extrapolations are highly sensitive to the hazard observed at the end of observation

period. We explore improvements to this specification in Section 5.4.2.

5.4.1.4 Alternative approaches

To contextualise the inferences obtained under the diffusion piecewise exponen-
tial model, we consider three alternative methods: i) The standard approach of
selecting a two-parameter parametric model using information criteria (in this case
the log-Normal parametric model) [Latimer, 2011, Baio, 2020]. ii) The piecewise
exponential model with independent priors, where the hazard at the end of the obser-
vation period is taken as the hazard for the extrapolation period [Cooney and White,
2023a]. iii) Modelling the hazard using M-splines [Jackson, 2023]. In particular, as
extrapolations are based on the placement of a final knot on (y, v ), we consider
inferences under three different knot locations. Full implementation details and
additional analysis are provided in Appendix C. Mean survival estimates are reported

in Table 5.1.
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Figure 5.6: Hazard functions for the colon cancer data for observation period (top) and
total period of interest (bottom) under the Poisson (left) and Negative Binomial
(right) prior specifications. Median hazard values (solid) and corresponding
95% credible intervals (dashed) are reported for varying specifications of u(a;).

In each case mean survival estimates for the observation period are close to
those reported by the diffusion piecewise exponential model, although the spline
and independent piecewise model provide slightly larger estimates of mean survival.
We expect this to be due to the influence of u(a;) at the end of the observation
period when less data are available. Total mean survival estimates vary significantly
between models. Note that the log-normal reports the smallest credible intervals, as
the hazard in the extrapolation period inherits the parameter uncertainty from the
observation period, and is therefore underestimating the uncertainty associated in

total mean survival.

Both the independent piecewise model and the M-spline models report far
higher values of mean survival in the extrapolation period. As the independent piece-
wise model extrapolates a constant hazard from the end of the observation period,
this estimate is large with smaller credible intervals than the diffusion piecewise
exponential model, as there is no additional uncertainty associated with the hazard as
y — oo. Under the M-spline model, the uncertainty associated with the hazard grows

until the final knot, after which a constant hazard is extrapolated. As evidenced in the
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estimates reported in Table 5.1 the placement of this final knot is highly influential,

yet it is unclear how this knot should be placed beyond trial and error.

5.4.2 Time varying drifts

In the preceding Section we have only considered time homogeneous drift functions
to guide extrapolations. As observed in Section 5.2.2, however, the prior structure
can naturally be extended to incorporate time-varying drifts, p(a;,y). This allows

for a far more expressive range of expert information to be encoded into the prior.

5.4.2.1 Example time-varying drifts

For the log-baseline hazard we consider two time-varying drifts

u(a,y) = wi(y) — ya(y) exp(a;), (5.12)
1

p(ey,y) = — (0 —yi(y)), (5.13)
Y,

constructed by adding time-varying parameters into the two Langevin drifts consid-
ered previously. In particular for the first drift (y(y), w2(y)) are constructed such
that they taper between the parameters of two different Gamma distributions on a
finite given interval. As such this drift encodes a highly informative prior about the
long-term hazard, but a weaker prior to be used for the observation period. The
second drift allows the prior mean of the log-hazard to vary with time. In particular
this allows for a pre-specified hazard function, for example elicited from previous
clinical trials, to be used to guide long-term extrapolations. We note that this com-
bining of the observed hazard with a pre-specified long-term hazard bears a strong
resemblance to the blended survival approach of Che et al. [2023], albeit on the

hazard rather than survival function.

A similar consideration can be taken when incorporating covariates directly in
the model. Often in these cases, analysts will seek to encode a waning treatment

effect assumption into extrapolations [Jackson et al., 2017]. This can be done
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explicitly within our framework as

u(By) = Wﬁj, (5.14)

shrinking the treatment effect to 0 as y — oo.

5.4.2.2 CLL-8 trial data

We apply the time-varying drifts to data from the CLL-8 trial [Williams et al.,
2017], that investigated the effect of an immunotherapy treatment in combination
with chemotherapy on survival in chronic lymphocytic leukemia (CLL) patients,
compared to survival in patients who received chemotherapy alone. Here 810 patients
were enrolled with 403 randomised to the treatment group and 407 to the control
group, with only 11.5% of patients dying during the trial. Previous analysis has noted
that there is expected to be a notable drop in S(y) after 4 years [Che et al., 2023].
In particular we compare a Langevin diffusion prior with a fixed Gamma(10,10)
distribution to one that converges to a Gamma(10,10) distribution in the extrapolation
period, specified by (5.12). We also compare the baseline Gompertz drift to another
centred around a given Gompertz hazard function (5.13). Generating two chains
of 10,000 samples including burn-in took under 2 minutes for each model, except
for the Gamma(10,10) model where poor prior specification hindered computation.
Full prior specifications, computational details and further results are provided in

Appendix C.

Survival curves for the above drifts are provided in Figure 5.7 for both the
treatment and control arms along with corresponding posterior estimates of mean
survival in Table 5.2. Expected mean survival is larger under each prior specification.
Note that compared to the data in Section 5.4.1 events are rarer near the point of
administrative censoring and therefore u(a;,y) is more influential before y,, as
can be observed in Figure 5.7. This effect is particularly profound for the fixed
Gamma(10,10) drift, in contrast (5.12) allows for the data to remain informative for
longer before p1(ctj,y) becomes influential. As can be seen in both trial arms, the

Gompertz baseline prior is highly sensitive to the value of the survival function at y_ .
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Figure 5.7: Survival curves for the diffusion piecewise exponential model for varying speci-
fications of u(¢;) fit to the control (left) and treatment (right) arms of the CLL-8
trial data. Curves are plotted for the observation period (top) and extrapolation
period (bottom), with y, = 4 denoted by the dotted line. Median values for S(y)
are given by the solid lines with 95% credible intervals indicated by the dashed

lines.
Model Trialarm | E[Y] on (0,y+) | E[Y] on (0,ye)
Gamma fixed Control 3.51 (3.36, 3.64) | 4.25(3.70, 5.03)
Gamma fixed Treatment | 3.66 (3.53,3.77) | 4.67 (4.14, 5.81)

Gamma waning Control 3.55(3.40, 3.68) | 4.71 (3.83, 6.25)
Gamma waning Treatment | 3.70 (3.58, 3.80) | 5.54 (4.37,7.95)
Gompertz Baseline | Control 3.56 (3.41, 3.69) | 6.61 (3.72, 11.30)
Gompertz Baseline | Treatment | 3.70 (3.58, 3.80) | 9.78 (4.80, 13.11)
Gompertz centred | Control 3.58 (3.44,3.71) | 10.75 (8.35, 12.18)
Gompertz centred | Treatment | 3.71 (3.60, 3.82) | 12.17 (10.65, 13.08)

Table 5.2: Estimates for mean survival for the CLL-8 trial in the control and treatment arms
when modelled independently under various prior assumptions. Expected mean
survival and 95% credible intervals are reported for the observation period and
the entire window of interest.
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Figure 5.8: (Left) Hazard functions for the control and treatment arms with corresponding
95% credible intervals during the observation period. (Right) Log-hazard func-
tions for the control and treatment arms (under both waning and non-waning
assumptions) during the extrapolation period.

Treat. arm

E[Y]on (0,y+)

E[Y] on (0,ye)

E[Yt] _E[YC]

Control
Treatment (fixed)
Treatment (waning)

3.55(3.41, 3.67)
3.73 (3.61, 3.82)
3.73 (3.61, 3.82)

5.62 (4.84, 6.60)
6.34 (4.56, 9.02)
6.29 (4.90, 7.73)

0.73 (-1.07, 3.17)
0.68 (-0.64, 1.87)

Table 5.3: Estimates for mean survival and corresponding 95% credible intervals for the
CLL-8 trial in the control and treatment arms (under both waning and non-waning
assumptions) during the observation period, (0,y; ), and the entire window of
interest, (0,ys). The final column reports estimates of the difference between
mean survival for the treatment and control groups.

As a result, minor differences in the data (as seen between the two trial arms) give
rise to very different long-term survival estimates. In contrast, the centred hazard
provides a far more controlled method for incorporating informative long-term
information.

We conclude by investigating the model when covariates are directly incorpo-
rated rather than modelled independently. Here we use a Gamma(5, 15) Langevin
diffusion for the baseline log-hazard and compare a Normal(0, 1) Langevin drift for
1 (By), with (5.14) where the waning begins after y,. resulting in identical inferences
during the observation period. Hazards for the observation period and log-hazards
for the extrapolation period are shown in Figure 5.8, with mean survival estimates
provided in Table 5.3.

From the hazard functions, there is clear evidence of some non-proportionality
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in the observation period, and some weak evidence to suggest the treatment is
beneficial compared to the control, that is corroborated by mean survival estimates.
Examining the extrapolation period, both drifts for the treatment arm imply that the
expected hazard should converge to the hazard for the control arm. For the fixed
Langevin diffusion, uncertainty then arises from both the process for ¢; and f3;. In
contrast, the treatment hazard converges faster to the hazard of the control arm, and
the associated credible intervals are far smaller. This is reflected in the estimates of
the difference in mean survival where the waning assumption reduces the uncertainty
in the estimates of difference in mean survival. We note that treatment effect waning
is a strong and untestable assumption that in practice will require expert justification

to be incorporated.

5.5 Discussion

In this work we have introduced the diffusion piecewise exponential model, a
novel prior structure combining flexible modelling of the hazard function in the
observation period with expert information in the extrapolation period within a

principled Bayesian framework.

No model can automatically guarantee plausible extrapolations. The diffusion
piecewise exponential model is no exception, with reasonable extrapolation relying
on sensible specification of ©. Our approach has key advantages, however, compared
to current state-of-the-art methods. First, as demonstrated through the variety of drifts
used in Section 5.4, u is able to incorporate a wide-range of prior information, with
minimal restrictions on the form this should take. Second, specification of this prior
information is only weakly informative during the observation period, becoming
increasingly influential as the data become sparse. Finally, the assumptions encoded
into this prior are explicit and easy to interrogate. This is a core part of the process
of appraising the cost-effectiveness of novel medical interventions, and as such our
model promotes improved decision making and analysis by both pharmaceutical

companies and regulatory bodies.

In this chapter, we have focused on the process of incorporating prior informa-
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tion into long-term hazard extrapolations assuming that this information has already
been elicited from subject-matter experts. Formalising the process of eliciting this
information is the subject of future work, ensuring that processes exist that allow for
information to be translated from expert opinion into principled prior information.
Further work could also focus on implementing existing elicitation methods into this
framework, for example the Sheffield elicitation framework [Gosling, 2017].

We have presented a wide range of possibilities for the specification of u, but
the examples considered here are by no means exhaustive. In the context of clinical
trial data with two treatment arms, for example, dependence between each hazard
could be introduced through p rather than the local proportional hazard assumption
incorporated in this work. We believe the design of drift functions that can capture an
even wider range of expert information to be an exciting avenue for future research.

We have assumed a Poisson process prior for {s j}le with homogeneous inten-
sity. This assumption could be altered to incorporate a process with, for example,
decreasing intensity if more volatility is expected at the start of the observation
period. A particular strength of the sampling methods developed for this work is that
changes to ( and Y in general do not require changes to the sampler. The only weak
condition for the prior on {s; }§:1 is the existence of a dominating process that is
simple to sample from, given the thinning procedure outlined in Section 5.3.4.

We have shown how efficient computational procedures for sampling from
posteriors induced by spike and slab priors using PDMPs can be extended to more
general transdimensional posteriors. The key feature of this construction was the
identification of a hyperplane in 8-space such that the likelihoods of the simpler
and more complex models were identical. In the reversible jump literature this is
referred to as a centring point [Brooks et al., 2003] and is a common feature of
many transdimensional posteriors. The sampling framework provided in Section 5.3
should therefore allow for the extension of sticky PDMP dynamics to a far wider

range of transdimensional sampling problems.



Chapter 6

Ongoing and future work

In this chapter we outline ongoing and future work stemming from the research
discussed in this thesis. Extensions to PDMP samplers are outlined in Section 6.1,
generalising the sticky dynamics utilised in Chapters 4 and 5 to general surfaces.
Chapter 5 introduced an underlying process as a prior for the hazard function based
on the discretisation of a diffusion. In Section 6.2 we outline initial work towards
the implementation of these methods into software packages. We conclude with a
discussion of alternative processes that could be utilised as prior distributions for

survival models.

6.1 Sticky manifold PDMP

The work in this section was partially undertaken during a visit to the Institute of
Statistical Mathematics in Tokyo, Japan, and is a joint work with Professor Kengo
Kamatani and Mr Hirofumi Shiba.

Chapter 5 discussed sampling from the posterior of the piecewise exponential
model with a prior over the number and location of knots. The primary sampling tool
used was sticky PDMP dynamics that allow PDMPs to sample from target distribu-
tions defined by a mixture of atomic and continuous components. Implementing this
sampler required a re-parameterisation to sample on the space of (scaled) innovations
between local hazards visualised in Figure 5.3. A natural question is whether this step
can be avoided through sampling directly on the space of log-hazards. This requires

the sampler to stick to an embedded d — 1-dimensional hyperplane, rather than a
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single parameter sticking to zero under the construction of Chevallier et al. [2023],
Bierkens et al. [2023a]. In this section we show that this sampling is possible, and
provide results that show how to construct samplers that stick to general embedded
surfaces.

More precisely, we aim to construct a d-dimensional PDMP with invariant

measure that is jointly defined on Euclidean space and an embedded manifold,

M CR?
¥ (dx,dv) = (@m; (x)dx + (1 — @) (x)dH ™ (x))p(dv), (6.1)

where 7 is a density with respect to the d-dimensional Lebesgue measure (denoted
dx), m is a density on M with respect to the Hausdorff measure (denoted dHd-1 (x)),
and p is the density of the velocities. The construction of the process follows the

construction in Bierkens et al. [2023a], comprising of

1. A PDMP defined on the ambient space, that targets 7 as its invariant distri-
bution. Throughout this section we will take this to be the Bouncy Particle

sampler.

2. Deterministic sticking dynamics when the ambient process intersects M,

allowing movement from the ambient space to M.

3. A PDMP on the constrained space, with 7 as its invariant distribution, where
my will often be taken as the restriction of 7; to M. In particular, the deter-
ministic dynamics of the constrained process are given by the geodesic flow

on M.

4. An unsticking rate and kernel that preserves the velocity of the process relative
to M before the sticking event, allowing the process to move from M to the

ambient space. This rate is given by

o (x)p(v)

B (= FEIO)

(6.2)
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where u | is the component of the velocity that is orthogonal to the tangent

space when the process hits M.

Note this is a generalisation of the processes designed by Bierkens et al. [2023a],
where M = {x ¢ R : x ;= 0}. We will focus on two examples throughout this

section:

Example 1 (Embedded hyperplane).
M ={xeR?:x; =tanOx }.

Taking 6 = 0 recovers the original sticky PDMP process, while taking 6 = /4
results in the diagonal hyperplane occurring in the piecewise exponential model
without reparametrisation. Similarly to Bierkens et al. [2023a] the process on M
is simply a lower-dimensional version of the process defined in the ambient space

PDMP.

Example 2 (Embedded hypersphere).
Mog={xe RY : ||x|]| = R}.

Here the process on M) g has deterministic dynamics defined by the geodesic

flow

oy viR a o aN X0
(Xe+5,Vegs) = | sin (S—> s +cos <S—> X;,COS <s—> v; — sin (s_) -
R (04 R R R R

Dynamics of PDMPs of this form have been introduced as the stereographic Bouncy
Particle sampler [Yang et al., 2024, Bell et al., 2024]. Note, in the stereographic BPS
the target measure is defined as a projection of the measure from R to S, while we
define the measure on the sphere as the restriction of the density in R¢ to (a scaled

version of) S¢~1.

Theorem 1. | Let M be a d — 1 dimensional, two-sided manifold embedded in
RY. Then the PDMP defined by steps 1), 2), 3) and 4) has (6.1) as its invariant

distribution.
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6.1.1 Sketch proof of Theorem 1

The sketch proof of Theorem 1 generalises the approach of Bierkens et al. [2023a] to
embedded manifolds. The main derivation is to show that the process is 7*-invariant.
Bierkens et al. [2023a] show that sticky PDMP samplers are Harris recurrent, and that
some skeleton of the chain is irreducible. If the process is also 7-invariant then the
chain is w-ergodic [Meyn and Tweedie, 1993, Theorem 6.1]. In this section we show
m-invariance for the above processes. We believe that the proofs of Harris recurrence
and irreducibility generalise to the manifold process, but have not formally shown

this at this point.

Invariance of PDMPs is typically studied via the infinitesimal generator [Davis,

1993]
Lf(z) =D(2)-Vf(z)+A"(2) / q(Z | () - f(2)]d7,

for all functions f in a core of L. Defining this core is typically non-trivial, and we

omit this step during this sketch proof. The process is then 7*-invariant if

/ Lfn(dz) =0, 6.3)

for all f. The generator of the sticky manifold PDMP is given by

@1 (2) - Vf(z) + AR(Qrf — )+ AF (2)(Qef — f), Z€RIx V),

D(2)-VI(2) +AR(Qrf — f) + A (2)(Qef — )+ AS()(Tf—f) z€ Mx V.

Lf(z)=

Here, the first line corresponds to the process in the ambient space, with, respectively,
deterministic dynamics, reflection events and refreshment events. The second line
corresponds to the process on M through either representation. The additional term
is the unsticking rate, determining when the process leaves M, with 7' denoting the

transfer mapping that dictates the transformation of z at these events.

If the deterministic dynamics, reflection and refreshment components on both
the ambient and embedded spaces are designed such that they are 7£*-invariant, for 7*

restricted to that space, then standard invariance results state that the corresponding
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terms in the generator cancel. Similar arguments are made in the processes outlined
in Chevallier et al. [2023], Bierkens et al. [2023a]. The remaining terms are given
by the unsticking rate on M and the boundary terms of the process in the ambient

space, reducing (6.3) to

[eran = [ | oo lfep(-UE)H @op(@y) 64
+ [ [ AT - @p (@)
Vo J M

where H%~! is the Hausdorff measure and ||u, || arises as a consequence of the
divergence theorem [Bierkens et al., 2023b, Proposition 2.7]. To construct a non-
reversible process on this space we need to assume that M is two-sided, such that
we can divide M into two parts corresponding to its sides, M~ and M™. This is a
generalisation of the construction in Bierkens et al. [2023a], where two copies of
0 are introduced as 0~ and 0". This is possible for the two examples introduced
previously, but is not possible, for example, if M is a Mobius strip'. For the examples
we consider, the ambient space, R4 is orientable, so this condition is equivalent to

M being orientable.

Applying this to (6.4) gives

/ Lfdnt =
[ [ 6 = £ ) exp(=U () | ()4 (@ ()
[ [~ ) = £ ) exp(=U ) ()2 (@)l
[ [ Aao@ U0 ) = £ 1) exp(~U ()24 (@) p(a)
[ [ Aso@ U0 =) = £~ exp(—U ) (@ ().

Matching terms gives the resulting rate as stated in (6.2).

Note, the Mobius strip can be made two-sided, by cutting the manifold at two points, and then
considering each surface separately.
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Figure 6.1: (A) Trajectories for the sticky bouncy particle sampler for Example 1, with M
highlighted in red. (B) Box plots of estimates of @ based on 10 chains, for
varying 6.

6.1.2 Examples

We outline the construction of these processes for the two introduced examples.

6.1.2.1 Example 1

Here we take 7(x) to be a standard two dimensional Gaussian with @ = 1/2. The

rate is then given by

SN [ ||
A (Z)_ \/ﬁ’

where /27 arises as the ratio of the normalising constants between the two-

dimensional Gaussian and the Gaussian restricted to M. Note in particular when
0 = 0 this recovers the sticky bouncy particle sampler rate of Bierkens et al. [2023a],
as u 1is aligned with v;. Figure 6.1 (A) shows the trajectory of this process for the
0 = /4. Figure 6.1 (B) shows the estimated value of @ for varying values of 0,
based on estimates from 10 separate chains. The process in the ambient space and

on M can be computed exactly as outlined in Section 3.5.
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6.1.2.2 Example 2

Here we take 7(x) to be a d-dimensional Gaussian. When restricted to M g the

resulting distribution is therefore uniform. The rate is given by

(21) 2 exp(—1R?)
Ad_l(R)_l ’

A (2) = [fus |

where A;(R) is the area of the d — 1-sphere with radius R.

Figure 6.2 shows the trajectories of this process for a sphere embedded in R3.
Note the trajectories on the sphere are given by the geodesic flow, rather than the
linear dynamics in the ambient space. Figure 6.3 shows the sample paths of ||x|| for
d =10, and R = /5, (A), and R = 1, (B). For standard Gaussian distributions, mass
concentrates around ||x|| = v/d. This figure highlights the differences in sampler
dynamics when the mass of the distribution is concentrated around M and when it
is located away from M. In the former case, sticking times are short to account for
shorter excursions away from M. In the latter, excursions away from M are longer,

and this is compensated for by longer sticking times.

6.1.3 Future work

Future work will seek to formalise the proof of m-ergodicity presented for the
sticky manifold process. In particular focusing on clarifying the conditions on
M. The processes here have been constructed using the geodesic flow on the
manifold to define the lower dimensional PDMP. In most cases this flow is intractable.
These flows can be approximated using numerical integrators [Ryckaert et al., 1977,
Andersen, 1983], however this increases the computational cost of generating the
process. Alternatively, M may be defined in terms of a coordinate chart, for example
spherical coordinates can be used to represent My g, and a standard PDMP used
on lower-dimensional Euclidean space. This is closer in spirit to the reversible
jump PDMP introduced by [Chevallier et al., 2023], and would typically require
the introduction of Jacobian terms into the rate to account for the corresponding

transformation.

For more general choices of M, it may not be possible to define a single
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Figure 6.2: Trajectories of the sticky PDMP sampler for M, C R? with R = 1.
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Figure 6.3: Trace plots of the ||x|| for M, C R'?, with R = /5, (A), and R = 1, (B).
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coordinate chart that spans the entire manifold. Instead an atlas, a countable union
of coordinate charts, may be used, with the process transitioning between charts at
predetermined boundaries.

The primary application of the above processes is likely to be in transdimen-
sional sampling problems, for example the model introduced in Chapter 5. A similar
process can be used to update the poly-Weibull model discussed in Chapter 4.
In particular, note that a bi-Weibull model whose shape parameters are equal, is

equivalent to a single Weibull model with rate A; + A5,
h(y) ="+ Ay = (b +A) "

This is an example of a centring point [Brooks et al., 2003] (also Section 3.6). To
construct the required process, the hyperplane example would need to be extended
to account for the transformation (A;,A,) — A. Alternatively, the lower order model
could be treated as over-parametrised with both parameters sampled and jointly

constrained by a prior.

6.2 Diffusion piecewise exponential package

The models and samplers developed in Chapter 4 and Chapter 5 were implemented
in the julia programming language [Bezanson et al., 2017]. In particular, the dif-
fusion piecewise exponential model developed in Chapter 5 is available via the
DiffusionPiecewiseExponential. j1 package that is in the early stages of de-

velopment.

6.2.1 Model specification

An example model call is given by

dpem_model = pem_fit(stateO, data, priors,

settings, test_times, burn_in)

2This was, in fact, the primary motivation for this work!
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this implements two chains of the PDMP sampler introduced in Chapter 5 to fit the
diffusion piecewise exponential model. The primary terms in this call relating to the
model are the data and priors objects. These are encoded in julia as structs. These
are a composite type that allows multiple, related data fields of potentially differing

type to be grouped together. The data struct in the above code is defined as

struct PEMData

2 y::Vector{Float64}

3 cens: :Vector{Float64}
4 covar: :Matrix{Float64}
5 grp: :Vector{Int64}

6 p::Int64

7 n::Int64

8 \delta: :Matrix{Int64}
9 W::Matrix{Float64}

10 UQ: :Matrix{Float64}

11 end

» data = init_data(y, cens, covar, breaks)

In practice, the majority of these terms are not required to be specified by the analyst
as they are precomputed quantities for efficient evaluation of the likelihood. Instead,
the struct can be initialised by the init_data function, with analyst specifying
survival times, a vector of event indicators, a matrix of covariates, and the initial
specification of the grid of knots.

The priors struct is defined similarly. An example initialisation of this object

is given by

i priors = BasicPrior(..., PC(1.0, 2,...),
2 FixedW([0.5]),
3 CtsPois (7.0, 100.0, max(data.y)),
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[GaussLangevin(t -> log(0.29), t-> 0.4)],...)

In the above, additional terms to specify have been supressed by ellipses. In the
full release of the package these are options that will be set automatically, unless
specified. The remaining, highlighted terms respectively encode the prior for o, the
value of ®, the prior for {s; }§:1 and the underlying diffusion. Note in particular,
each of these options is defined as its own struct. This allows the code to take
advantage of julia’s multiple dispatch functionality, reducing the amount of code that
needs to be written.

The CtsPois () struct specifies the fixed Poisson prior for the set of knots,
with a maximum knot value set to the maximum time in the data, I' = 7 and the
maximum number of knots truncated at 100. The Negative-Binomial prior can be
similarly specified through the CtsNB() struct, with additional arguments for the
hyperparameters of the Gamma hyperprior.

The diffusion struct, GaussLangevin(t -> log(0.29), t-> 0.4), spec-
ifies a Gaussian stationary distribution for the baseline log-hazard with mean
log(0.29) and standard deviation 0.4. In particular, the arguments for this struct are
given by functions, set to constants in this example. This allows for the specification
of the time varying drifts introduced in Section 5.4.2. Similar structs are defined for
the alternative diffusions introduced in Chapter 5.

Currently specification of new diffusions requires specifications of functions
for the drift and its derivative with respect to the standardised innovations 0 ;. In the
full release of the package, users should ideally be able to specify the drift in terms
of the local log-hazards, with automatic differentiation tools being used to generate

the required derivatives [Revels et al., 2016].

6.2.2 Sampling and diagnostics

The above code implements the PDMP sampler introduced in Chapter 5. The
transdimensional nature of the algorithm means individual parameters for the log-
hazard cannot be monitored for convergence, as their definition shifts with the

sampler. Instead we track convergence by monitoring the value of the hazard function
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at pre-specified time points, and the innovation standard deviation 6. Convergence
for these values can then be monitored through Gelman-Rubin statistics and effective
sample sizes [Gelman and Rubin, 1992, Fjelde et al., 2025], that are automatically
calculated in the call to pem_fit.

Future work will also implement the Metropolis adjusted version of the PDMP
algorithm. This requires the specification of a step-size parameter. Given the constant
speed of the algorithm, however, the method should be robust to the choice of this
tuning parameter. Practically a typical workflow would involve using the faster,
unadjusted algorithm for exploratory model fitting, including the procedures for
selecting ¥ outlined in Section 5.4.1. The adjusted version of the algorithm can then
be used for the implementation of the final model.

Note, in particular, that the above sampler only implements the model for the
observation period. As noted in Chapter 5, as extrapolations only depend on the data
through the posterior of the log-hazard at the final event times, and posteriors for o, I,
extrapolations can be generated via direct implementation of the skew-symmetric
discretisation scheme. This is implemented in the package as a separate function that

can be called after the model has been fit.

6.2.3 R integration

The julia language is not typically used in most HTA workflows. This is typically
done using a mixture of R and excel [Incerti et al., 2019]. To support practitioners
using these methods, practitioners can currently implement these methods from R
using the JuliaCall package. This allows R users to call julia from R, integrating

with R workflows as

julia_command("dpem_model = pem_fit(stateO, data, priors,
settings, test_times, burn_in)")

dpem_model_in_R = julia_eval("dpem_model")

The current implementation requires users to still write julia code. Future work

will wrap these calls in an R package, matching existing syntax with established
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packages [Baio, 2020, Jackson, 2016] allowing practitioners to interact with these
methods entirely within the R ecosystem. Future work will format the output of the
model call, such that the results can interface with the HTA specific outputs provided

by the survHE package [Baio, 2020].

6.3 Alternative processes as priors for hazards

The prior constructed in Chapter 5 is based on an approximation to an underlying
diffusion process, with long-term behaviour that aligns with the expected long-term
behaviour of the hazard function. In this section we explore alternative formulations

of the underlying stochastic process.

6.3.1 Dense volatility matrix

The prior in the diffusion piecewise exponential model utilises a diagonal volatility
matrix, with covariates encoded through a local proportional hazards assumption.
An alternative specification, when the data contain multiple subgroups, is to directly
model the log-hazard within each subgroup, and induce between-group dependence
via a dense volatility matrix. Focusing on the case when the prior for the long-
term log-hazard is encoded as a stationary distribution with density f, let o, =
(o1, 0y, ) denote the vector of log-hazards at time y for subgroups 1,...,k. The

underlying diffusion is then specified as
1
day = SAVlog f(er)dy+ VAdW,,

for positive definite matrix A, and with W, denoting a k-dimensional Brownian
motion [Oksendal, 2013].

Here, A is a parameter in the model requiring a prior distribution. If there exists
strong prior information about the structure of A this can be encoded at this stage. For
example, this could encode spatial dependence, with the off-diagonal entries encoded
asA;j = p|i’j |, or clustering between subgroups through a block-diagonal structure.
The latter is particularly relevant in the context of basket trials and heterogeneous

treatment groups, where analysts often seek to cluster subgroups as responsive and
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non-responsive [Chen et al., 2023, Hobbs et al., 2022, Lin et al., 2021].

6.3.2 Underdamped Langevin

A limitation of the previously utilised diffusions is that the prior for the innovations 6
only depends on the current state of the hazard in relation to the underlying dynamics.
As a result the innovation density cannot account for information about the recent
trajectory of the hazard. In practice this results in sharp turning points in the hazard
at the start of the extrapolation period when the expected trajectory of the hazard is
moving away from areas of high density of the specified stationary distribution.

An immediate solution to this is to replace the over-damped Langevin dynamics

encoded in the prior with under-damped Langevin dynamics

1
dvt = —W[dt — Equ(Otz)dl‘ + \/WdB[,

dat = tht,

where o is the log-hazard with stationary distribution that has density proportional
to exp(—f(x)) and v; are velocities with stationary distribution Normal(0,U ).

The dynamics would need to be realised via splitting schemes. This approach
would increase the number of parameters in the model, and sampling would likely
be challenging due to the dependence between the state and velocities of the latent
process. Further, a prior for ¥ would need to be defined which is not necessarily

trivial.

6.3.3 PDMPs as a prior

An alternative to the above dynamics, that allows for momentum to be retained in
the hazard function would be to use a Piecewise Deterministic Markov Process as
a prior distribution for a log-linear hazard function. Stationary distributions could
be encoded by the processes used for sampling outlined in Section 3.4. Further, the
number of parameters in the model would be reduced due to the use of log-linear

hazards.

To be more specific the model is defined by an initial log-hazard oy, a set of
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velocities {v_,-}fz1 and a set of knots, {s j}§: , corresponding to the event times of
the PDMP, with 59 = 0. Denoting the value of the log-hazard at time s; as o i this

results in the log-hazard function

logh(y) = o;_ +vj(y—sj-1)-

Note, in contrast to the underdamped Langevin prior, the deterministic dynamics of
the PDMP reduce the number of parameters in the model, as the hazard is uniquely
defined by the velocity and event times.

The primary sampling challenge associated with this prior is that the density
of the between knot intervals will typically be intractable as it arises from an in-
homogeneous Poisson process with rate A (y). This challenge can be resolved if
the event rate can be bounded above by a homogeneous Poisson process, AE. The
location of candidate events, {ml}lL:l can then be generated via the homogeneous
Poisson process with rate AE. Each event then corresponds to a knot, {s j}§:1 with
probability AE (m;)/AE.

This representation makes the prior distribution tractable, but standard MCMC
samplers may still struggle due to strong dependence encoded via the velocities and
changes at event times. For example, removing s from {s j}§:1 results in an update
of h(y) for all y > s.

We finish by noting two additional challenges of implementation. The first is
that, without refreshments, the process is unable to change direction when moving
towards its stationary distribution. Applications, therefore, require a positive refresh-
ment rate to allow the process to accurately model the hazard function. A second
consideration is that typically one-dimensional stationary PDMPs have velocities
constrained to {—v, v} for fixed v € R, . In applications, a prior could be placed on
v, allowing the speed of the hazard to be learned from the process. Alternatively,
processes with a wider range of velocity values could be incorporated such as the

multi-directional Zig-Zag process [ Vasdekis, 2021].



Chapter 7

General Conclusions

This thesis has focused on the joint development of novel Bayesian survival models
for inferring long-term survival in the context of Health Technology Assessment,
and the development and application of sampling algorithms based on Piecewise
Deterministic Markov Processes. The current state of both these fields was reviewed

in Chapter 2 and Chapter 3, respectively.

7.1 Contributions to survival analysis

Chapter 4 extended the existing polyhazard model, introducing a prior specifica-
tion that allows for structural quantities to be inferred from observed data through
Bayesian model averaging. This addresses a model selection problem that has
hindered the further development and application of these models.

Chapter 5 introduces a novel prior structure for the piecewise exponential model
based on a latent diffusion process for the log-hazard and a Poisson point process
prior for the location of knots. This contributes to a growing literature on the use
of time-varying parameter models for survival extrapolation [Kearns et al., 2019,
Jackson, 2023].

A natural question is to consider which of the above approaches is preferable in
certain situations. Both models provide a flexible fit to the observed data. The former
then bases extrapolation on the hazard structure inferred during the observation
period, while the latter informs extrapolations based on explicit prior information.

The extrapolations from the diffusion piecewise exponential model are therefore
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likely to be more stable, when this prior information exists and can be encoded in the
model. In contrast, where this prior information is unavailable, the polyhazard model
is likely to provide superior extrapolations, as it is able to infer more structure from
the observation period. Both models are able to incorporate covariates, however,
we expect the diffusion piecewise exponential model to perform similarly to the
non-proportional hazard M-spline model when the number of covariates is larger,

suggesting the polyhazard model is preferable in these scenarios.

Both models developed in this thesis contribute to the increased use of flexible
survival models in Health Technology Assessment. In particular, the extended
polyhazard model presents a promising approach to incorporating flexible covariate
effects directly in the model. This avoids the common practice of fitting separate
models for each subgroup, which scales poorly with the number of covariates.
Further, it allows for the structural uncertainty connected with these models to
be directly accounted for in the analysis. The diffusion piecewise exponential
model allows for a wide range of prior information to be incorporated to inform
extrapolations. In particular, due to the flexibility in specifying the underlying drift,
it separates the process of selecting a model for extrapolation from the specification
of prior information, allowing for more principled inferences of mean survival in

both the observation and extrapolation periods.

7.2 Contributions to posterior sampling methods

The sampling methods presented in this thesis are primarily based on Piecewise
Deterministic Markov Processes. In contrast to the notable theoretical and method-
ological interest these processes have seen, applications in Bayesian modelling have
been limited. Outside of the contributions of this thesis, we believe the primary

applied work to be that of Koskela [2022].

In Chapter 4 we applied the Zig-Zag sampler to the transdimensional posterior
arising from the extended polyhazard model. Generation of the event times required
for sampling was achieved using a modified version of the Automatic Zig-Zag method

[Corbella et al., 2022]. For non-regular, multi-modal geometries, as exhibited in
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polyhazard models, we believe this to be the current best choice for generating the
event rate. There is a pressing need, however, for a more formal comparison of
event rate generation methods. In particular, it is unlikely that there is a universally
superior method out of those outlined in Section 3.5, and deeper understanding of
the strengths and weaknesses of each would facilitate further application of PDMPs.

In Chapter 5 we utilised the forward event chain Monte Carlo method, discre-
tised using splitting schemes, to sample from the diffusion piecewise exponential
model posterior. An important feature of the forward event chain method is the
robustness it exhibits to the choice of refreshment rate.

An important feature of PDMPs is the ability to efficiently sample from trans-
dimensional posteriors when this is induced via a spike and slab prior [Chevallier
et al., 2023, Bierkens et al., 2023a]. Chapter 4 extended these developments to
incorporate continuous-time birth-death dynamics within PDMP samplers. Further,
Chapter 5 showed how existing dynamics can be incorporated to sampling from more
complex transdimensional posteriors via re-parameterisation and augmentation of
the state space. Finally, Chapter 6 outlined initial work that extends sticky dynamics
to more general embedded manifolds. Transdimensional sampling is a key strength
of these samplers. For these to become commonly applied, however, there needs to
be generally applicable methods for the generation of the event rate and more widely

available software for their implementation.



Appendix A

Results on Markov processes

A.1 Markov chains and MCMC

A.1.1 Definitions for Section 3.2

Definition 1. A Markov Chain {x;}} | with transition kernel p(xi,xi+1) is

n—irreducible if for all A € B, and all x € Q, there exists n such that

w(A) >0 = p"(x,A) >0

Definition 2. A w-irreducible Markov chain is said to periodic if there exists a
partition of the state space Ay, ...,A,, with A;NA; = for all i # j, and U?ZlAj if for
X; €A;

1, j=i+k modk,

p(xi’Aj) =
0, otherwise.

If the chain is not periodic it is aperiodic.

Definition 3. A Markov chain is n-invariant if for all k > 1,

Xj ~ 7'[() = Xjyk 7'[()
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A.2 Reversible Metropolis-Hastings proposal

distributions

In Section 3.2 we referred to several choices of proposal kernel, g(x;,x") for
Metropolis-Hastings MCMC methods. We explicitly state some forms of these

proposals here.

1. Independent: The independent Metropolis-Hastings sampler [Tierney, 1994]

takes g to be independent of the current state, e.g
/ 1 /112
q(x;,x') o< exp —EHX [

2. Random walk: The random walk proposal [Gelman et al., 1997] takes g as

the density of a symmetric distribution centred at x;, e.g,

1
q(xi,x") < exp (—2—62Hx' —xin) i

By symmetry the acceptance probability simplifies to

() =min{ 1,55

3. Metropolis adjusted Langevin proposal: MALA [Roberts and Tweedie,
1996] utilises the Euler-Maruyama discretisation of a Langevin diffusion as
the proposal distribution

/ ) 62 N2
Ix —xi+ —=—VU(x)|” | -

otz ) = exp - 4

202

4. Barker proposal: The Barker proposal proposes a new point using the skew-

symmetric proposal. Generation of a new point is as follows:

(a) Draw z ~ MultivariateNormal(0,X)
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(b) For each dimension, i, draw

1
vi ~ Rademacher (W> '

(c) Propose the next iteration as
xi =x +vizi.

Note this is equivalent to the skew-symmetric density of innovations reviewed

in Chapter 5.
A.3 Poisson Point Processes
We briefly review important results from Poisson processes.

Definition 4. Given integrable function A : [0,00) — [0,0), an integer valued count-
ing process {N(t),t > 0} is an inhomogeneous Poisson process with rate A(t) if the

following conditions hold:

2. N(t) has independent increments;

3. Foranyt € [0,)
P(N(t+38)—N(@)=1)=A(t)d+0(5),
P(N(t+6)—N(t) >2) =0(9).

Given this definition, we can define the distribution of the number of events on

a given interval [t,7 + )

N(t +s) — N(t) ~ Poisson ( /t l+SA(u)du> .
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Proposition 2. (Thinning) Let A(t) < A(t) for t > 0, and let {;}7 | be the set of
points of the Poisson process with rate A(t). For each i, delete t; with probability

1 — A(t;)/A(t;). Then the remaining points form a Poisson process with intensity

A(r).

Proposition 3. (Superposition) Given two independent Poisson point processes
{Ni(t),t > 0},{N2(t),t > 0} with respective rates A (t),Ay(t). Then N(t) = Ny (t) +

N, (t) is a Poisson point process with intensity Aj(t) + Aa(t).
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Appendix for Chapter 4

As stated in the main paper the likelihood for parametric survival models is given by

£(05D) = [ To (39)¥S0 (1),
=1

l
Explicitly the hazard function for the polyhazard model are given by

K

hpeoy(y|w)= Z hpe 6,V [ W)
k=1

This also defines the survival function through the relation

K
SD,GV(y ‘ W) = HSDkakvek (y ’ W)
k=1

— exp (—Z /0  hpoyu W)du) .

As stated in the paper the prior terms are given by

mo(K,D,7,8,¢) o< (6 | K,D,v,9)m(y | K, 9)70(9) %0 (D | K)7(K).
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Explicitly these are
K

71:0(9 ‘ K7D7Y7¢) = H N(ﬁ] ‘ O’Gﬁ HN ,BkO | 0 Gﬁo
Jyi=1 k=1

(Y| K, ¢) =< (ﬁfr) o1 — w)kr—I",

o< — >0
7170(6[3) l-l-Gé, Gﬁ R
7(0) = 0 (1 - )",
éK
m(D | K)o 1, oK) o 2 1(K € {1, Kiax})-

The resulting posterior is then

n(K,D,v,0,¢ | D) =n(K,D,v,0,¢) < L(K,D,y,0,¢:D)m(K,D,7,6,9)

B.1 The sampler

Algorithm 3 Sampling algorithm

1: Initialise (6,v,7,¢,K,D) att =0.
3:  Sample next event time #, ~ Exponential(A? + A9 + AS +AY + A",
4

Sample 7(6,v,v| ¢,K,D) until time ¢ + 7. > PDMP with sticky
components (Algorithm 4)
5: Sett—t+t,.
6: Select event i with probability proportional to A'.
7: if i = h then
8: Update hyperparameters > (Algorithm 5)
9: end if
10: ifi € {b,d,s} then
11: Perform move i with probability A’(t)/A’. > Birth-death-swap process
update for (K, D)
12: end if
13: if i =V then > Unsticking event
14: Jj ~ Uniform(I : 3 =0).
15: vj ~ Uniform({—1,1}).
16: Yi— L.
17: end if

18: end while
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Algorithm 4 Automatic Zig-Zag variant

AN AN A

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:

Given (0,v,7,¢,K,D), and t, at time .

Evaluate AB(z). > Possibly retained from the previous iteration.
Find next sticking event #,. Denote the coordinate by j’.

Set fmax = min{t*,AB(t)*l,tv}.

Evaluate AB(r + tmax) AB(t +tmax /2).

if AB(t+1,/2) < ( Bt )—I—AB(t—I—tmaX))/Z then

Set AB(t) = AB(1y) + At +tman) =A% (1) > Convexity check

tmdx
else if min{AZ(¢), AB(t + tmax)} < AB(t + tmax /2) < max{AB(t), AB(t + tmax) }
then

AB(t) = max{AB(t), AB(t +tmax)} > Monotonicity check
else

AB(t) = max{AB(s) :s € (t,tmax) } > Brent’s Method
end if
Generate ¢’ as the first time from an IHPP with rate AZ(¢) + A,.
>t +min{t’, fmax } > Update time
0 — 0 +vmin{t’, fmax } > Update state
if /' < 1, then > Flip event

With probability 1 — AB(¢') /AP (¢') leave all velocities unchanged.
With probability AB(t") /AB(t') select a single velocity to flip with probabili-
ties proportional to AB(¢').

end if
if ' = ¢, then

Setvy, =0and y; =0. > Sticking event.
end if

Algorithm 5 Hyperparameter updates

AN O e

Given (0,v,7,¢,K,D), and £ € R*>*?

o ~ Beta(a+|y|,b+Kp—y]) > Conjugate Gibbs update
Draw u ~ Normal(0,X). > Metropolis-within-Gibbs
Set (2},25) = (z1 +u1,22+uz)

With probability min {1 2(z1.2) }, set (z1,22) — (2,25)-

) 7(z1,22)

Update X using Algorithm 4 of Andrieu and Thoms [2008].
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Concise summaries of the overall loop of the algorithm, the IHPP generation
procedure and the hyperparameter update procedure are summarised in Algorithms
3,4 & 5. We now provide additional details to the extensions developed for the

automatic Zig-Zag method.

B.1.1 Extensions to the automatic Zig-Zag method

In the main paper we outlined the following three extensions to the automatic Zig-Zag

method:

1. In the first iteration we check for monotonicity and local convexity. If local

convexity we use a tighter linear bound.

2. We adaptively set the length of the bounding interval 7, using the scheme

suggested by Sutton and Fearnhead [2023] in a similar context.

3. We add a constant offset rate Aq to AB(¢) to offset numerical errors and failures

in the above checks.

The full details of these extensions are summarised in the following. Firstly,
we replace the first iteration of Brent’s method with evaluations of AB(z) at {t9, 1) +
tmax /2,10 + tmax }- We use these evaluations to check monotonicity and convexity. If

both these checks are passed we then use the linear bound
. AB (104 tmax) — AB(&
AB(t) = AB(IO) + ( 0 maX) ( 0)t7 t E [IOJO +lmax)a

tmax

which is provably tighter than the constant choice. If monotonicity holds but convex-
ity does not we use the relevant evaluation at the end of the interval as a constant
upper bound, and if neither hold we resort to Brent’s method. In both of the latter
two instances the resulting bound is as in the Automatic Zig-Zag, but when it is
applicable we have found that the linear bound can be much tighter than a constant
choice, which can speed up the sampler significantly.

The second modification is to adaptively set the length of the bounding interval,

as has previously been suggested in a similar context by Sutton and Fearnhead [2023],
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who recommend setting the length of the interval 7,4« to be the goth percentile of ob-
served inter-event times, t*. We extend this approach to set fyax = min{t*, AB(#o) '},
which uses information from both the history and current state of the chain. Intu-
itively, if the evaluation of the rate is high at the current state of the chain, a shorter
interval is likely to be appropriate. This heuristic is regularised by ¢* to avoid long
intervals induced by small AZ(#y), which are likely to result in inefficient bounds.
We note that in contrast to many adaptive MCMC schemes, this approach does not
change the law of the process, and therefore we do not need to make considerations

such as diminishing adaptation [Andrieu and Thoms, 2008].

The offset introduced in the final point is as an alternative to the use of smaller

intervals recommended in Corbella et al. [2022].

The full method is outlined in Algorithm 4. We note that in practice rather than
repeating the whole procedure after a single event time is simulated, in practice the

bound can be re-used until the bounding interval is surpassed.

B.2 Birth-death-swap MCMC within Zig-Zag
sampling

We present an argument for the validity of the transdimensional moves by extending
the arguments presented in Sachs et al. [2023]. The main idea is to replace the Gibbs
kernel in (5) of Sachs et al. [2023] with a reversible jump kernel [Green, 1995],
including a Jacobian to account for the corresponding transformation (as is the case

with the median-matching swap moves).

Without the underlying PDMP sampler this would correspond to birth-death
MCMC [Stephens, 2000], although with an alternative specification of jumping rates,
and would (inefficiently) provide valid posterior samples. Following arguments from
Sachs et al. [2023], we can then superimpose the generators for this process, the
Zig-Zag sampler for sampling (6, 7y) and the (Metropolis-within-)Gibbs updates for

hyperparameters to construct a process with the correct target distribution.
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B.2.1 On the role of balancing functions

In this work we use the Metropolis balancing function to define the birth-death-swap
process for updating (K,D). Other choices of balancing function are available,

however, for example the barker balancing function,

In the context of discrete time MCMC Peskun [1973] showed that the Metropolis
balancing function dominates the Barker function in terms of variance of ergodic
averages. When generating birth-death-swap rates via Poisson thinning as outlined

in Section 3.4 we expect these results to still hold optimal.

An interesting prospect is raised, however, when considering whether this
birth-death-swap process could be generated with more efficient Poisson thinning
bounds. In this case the Metropolis balancing function may not be optimal and other

balancing functions may be worth investigating.

B.3 Swap moves efficiency experiment details

To conduct the swap experiment in Section 3.4.2 data were generated as the following

Y| ~ log-Normal(0,0.5),
Y, ~ Exponential(1),
Y =min{Y;,»},
YCensored ~ Exponential(0.5),

Yobserved = min{Y, Y Censored} .

A single binary covariate was also generated from Bernoulli random variables with
p=0..

Samplers were run for 10,000 time units generating approximately 10,000
samples with birth-death swap moves occurring with AS + ABP = 10. The sampler

took on average 10 minutes to run. Birth, death and swap acceptance rates of 4.90%,
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4.89% and 6.10% respectively this results in an across model update approximately

every 2 time units.

B.4 Additional details for Section 4

This Section contains descriptions of the sampler settings used for the Lung transplant
data, COST data and Kidney transplant data as well as trace plots. The digitised lung
transplant data is provided online. The subset of data used for the COST analysis
is available via the R pec package, and the kidney transplant data is available via

Dryad as described in the main paper.

B.4.1 Lung transplant data

The extended polyhazard model was fit using the prior specification outlined in
Section 2.3. except for the hyperprior specification, where fixed hyperparameters
were used. The sampler was run for 10,000 time units, with samples taken with rate
4 and ABP + A% = 10. Trace plots for submodel posterior probabilities and a subset

of parameters are shown in Figure B.1.

B.4.2 COST data

The extended polyhazard model was fit using the prior specification outlined in
Section 2.3. The sampler was run for 50,000 time units, with samples taken with
rate 5 and ABP = AS = AF = 3.33. Convergence plots for submodel posterior
probabilities along with trace plots for a subset of parameters are shown in Figure
B.2 using three chains. Birth, death and swap acceptance rates were 4.36%, 4.32%
and 1.99% respectively.

The M-spline models presented in the main text were fit using the default
specification of the R survextrap package. As shown in Figure 5 (main text), the
non-proportional hazards model significantly overfit. To attempt to reduce this effect
a model fit with 4 knots instead of the default 10 was used. This results in under-fit
hazard ratios seen in Figure B.3. The baseline hazard for the proportional hazard is
also shown. The fit is very similar to the hazards in Figure 6 (main text), however
with more pronounced peaks in the middle of the time period. This is discussed in

Section 4.2.1.
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Figure B.1: Trace plots for the extended polyhazard model fit to the Lung transplant data for:
(First row) Posterior sub-model probabilities from the first and second chain;
(Second row) The a; from the bi- and tri-log-logistic models.

B.4.3 Kidney transplant data

The extended polyhazard model was fit using the prior specification outlined in
Section 2.3. The sampler was run for 10,000 time units, with samples taken with
rate 10 and ABP = AS = A = 6.67. Convergence plots for submodel posterior
probabilities along with trace plots for a subset of parameters are shown in Figure

B.5 using three chains.
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Figure B.2: Trace plots for the extended polyhazard model fit to the COST data for: (First
row) Posterior sub-model probabilities from the first and second chain; (Second
row) Coefficient effects from the bi-log-logistic model; (Third row) z; and z;.
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Figure B.3: (Left) Hazard ratios for the alternative specification of the M-spline model.
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Appendix C

Appendix for diffusion piecewise

exponential models

C.1 Additional modelling details

C.1.1 Derivation of the Gompertz drift

The Gompertz hazard function is given by ho(y) = y; exp(yay). Following [Roberts
and Sangali, 2010] we assume this is the solution to an autonomous differential

equation

dho(y)
dy

=g(ho(y))

= Y1y exp(yry)
= Yoho(y).

This can then be transformed to the log-scale via a change of variables to arrive at

the required drift

hi(y) = log(ho(y)),

i)~ V) =¥ ()
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C.1.2 Penalised-complexity prior derivation

We place a penalised complexity prior [Simpson et al., 2017] on the step size, o,
corresponding to the prior

o ~ Exponential(a).

Following the reasoning presented in Simpson et al. [2017] we calibrate a through
the probability
P(c >U)=«a.

Given the discretised diffusion prior presented in Section 2, this prior should place
the majority of its mass < 1 to preserve the numerical stability of the skew-symmetric

discretisation scheme [Iguchi et al., 2024]. Setting a = 2 gives
P(c >1)=0.135,

suggesting this is appropriately penalising 6. Following the reasoning of [Simpson

et al., 2017] we expect this prior to be relatively insensitive to the specification of a.

C.2 Additional computational details

C.2.1 Algorithms

The core loop of the sampling algorithm consists of two components i) Generating
the sticky PDMP dynamics for a fixed set of candidate knots {m;}*,. ii) Updating
the set of candidate knots and (if required) the hyperparameter y. The former can
be achieved using either Algorithm 6 or Algorithm 7. The latter is specified in
Algorithm 8. Note that the method provided in Algorithm 6 is inexact without a
Metropolis correction, with the induced bias vanishing as 6 — 0 [Bertazzi et al.,
2023]. This can be added after each loop of the algorithm. The results in the main
paper are generated using the uncorrected version of Algorithm 6. The updates to
vYU vl are given by the positive p-orthogonal refresh forward event chain Monte

Carlo method of [Michel et al., 2020].
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Algorithm 6 Generating the PDMP via splitting schemes

1: Given step size At, current state zop = (xo,vp) and current b

Simulate Uy,U,,Us i Uniform(0, 1)

if Uy < 1 —exp(—AR Ar/2) then
Setb=1

end if

if Uy < 1 —exp(—AB(At/2)At) then
if b = 0 then
Update vV
end if
if b =1 then
Update vV v+
Setb =0
end if
: end if
: Update xp, /2 — xar-
. if Us < 1 —exp(—AX Ar/2) then
Setb =1
: end if

oI ERPD

e e e e T e T e S S S S =
D Al e

Update xo — xa; /2, > Sticky PDMP dynamics

Algorithm 7 Generating the PDMP using Gibbs updates and line search

1: Given current zg = (xp,V), Op-
2: Simulate #;, ~ Exponential(A;,).

3: Update zo — 2, > Sticky PDMP dynamics via [Bouchard-Coté et al., 2018,

Example 1]

4: Sample o from the full conditional 7(o | z, ). > Metropolis-within-Gibbs

Algorithm 8 Updating {m;}*, and T

: Given zt,F,7{sj}§:1,{m,-}?il.

: Update z;,{s j}§:1 > Algorithm 6 or Algorithm 7

1
2
3: Update K =M —J, K ~ Poisson((1 — ®)I'yy)
4: Update {rj}lj‘.’lz i S Uniform(0,y )

5

: Update I' ~ Gamma(J + o, 0/(B + 1)) > If hyperprior specified
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C.2.2 Generating extrapolations

In Section 3.6 we highlight that extrapolations can: i) Be generated using the skew-
symmetric scheme directly. This reduces the computational cost of the methods. i)
Be generated using a re-scaled consistent step size 6*. This gives the practitioner
more control over the computational cost of generating extrapolations, and the bias
induced by using a discretisation scheme. Given ¢, extrapolations can be generated

using a set of times with inter-arrival times given by
jid .
{7}, % Exponential(Tw(c/c*)?).

In the examples of Section 4 we use 6* =0.1.

C.2.3 Reversible jump MCMC

The reversible jump algorithm of Section 3.7 alternates between a random walk
Metropolis update to 8 and reversible jump moves which add and delete knots in the

samplers [Green, 1995]. Knots are added as

1. Propose a new knot location s7 ~ Uniform(sy,y+ ).

2. Propose a new value for the scaled innovation at that knot, é;.‘ ~

Normal(0, 63/).

3. Accept the proposed knot and innovation with probability min{1,A} with

Where ¢(-) is the proposal density, and the J + 1 term arises as the probability

of picking a knot to remove in the reverse move.

Knots are removed by selecting a knot and corresponding innovation to remove from
the model. These moves are accepted with probability min{1,A~'}.

The reversible jump sampler in Section 3.7 was run using a step size of 0.05 for
the Random Walk Metropolis kernel and 0.01 for the step size of the reversible jump

proposal. The sampler was run for 1,000,000 iterations, with one iteration consisting
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Figure C.1: Hazards under the reversible jump sampler with alternative reversible jump
proposal parameter.
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Figure C.2: The mean hazard under the piecewise exponential model and sampler of Chap-
ple et al. [2020].

of a single Random Walk Metropolis and reversible jump step. The PDMP sampler
was run for the same computational budget. Using a step size of 1 in the reversible

jump proposal results in the hazards in Figure C.1.

We also sought to compare the sampler developed in Section 3 to an existing
sampler. To this end the results of applying the piecewise exponential model of
[Chapple et al., 2020] to the Colon cancer. The resulting hazard is plotted in Figure
C.2. In this case both the reversible jump and within model sampling components
have failed to explore the state space. This serves to illustrate the difficulty in

designing and implementing these samplers.
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Figure C.3: LOOIC values for various values of I" for the colon cancer data.

C.3 Additional details for example applications

All the models were implemented in Julia with code available at https://github.

com/LkHardcastle/PEM_extrap.

C.3.1 Specification of y

To find the optimal value of Y models were fit to the Colon cancer data using
(o) =0, for I' € {1,2,5,10,15,20,25}. LOOIC values were computed using
Pareto-smoothed importance sampling [Vehtari et al., 2017]. These values are
plotted in Figure C.3. While the LOOIC decreases as Y increases, the improvement
begins to plateau between I' =5 and I' = 10, indicating I' = 7 as a good choice of

hyperparameter.

C.3.2 Colon cancer data

The Colon cancer data were accessed via the R survextrap package. Each model
was run for 2 chains of 10,000 iterations, 5,000 of which were burn-in, and where
each iteration consists of a single Gibbs update for {rk}ﬁ”: jJ and 50 iterations of
Algorithm 6 with Ar = 0.01 Convergence was assessed by examining trace plots, R
values for the hazard at fixed time points and effective sample sizes. In this example,
and all following examples, chains were run until R < 1.01 for all time points (taken

at intervals of 0.2 on (0,y )). Priors were as specified in Sections 2 and Section 4.1.

The specific drift functions were derived as follows. The log-Gamma(2,7) stationary
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Figure C.4: Hazards for the M-spline hazard model fit to the Colon cancer data with the
final knot placed at 5, 10 and 15 years [Jackson, 2023]. Note how extrapolations
are strongly dependent on the placement of the final knot.

Model AIC E[Y](0,y+) E[Y](0,yw)
Exponential | 431.57 | 2.22 (2.06, 2.35) | 4.71 (3.80, 5.63)
Gamma 433.56 | 2.21 (2.08, 2.35) | 4.73 (3.73,5.72)
Gompertz | 428.20 | 2.15(1.98, 2.30) | 7.12 (4.70, 8.75)
Weibull 433.34 | 2.20 (2.05, 2.35) | 4.89 (3.78, 5.96)
Log-logistic | 428.24 | 2.18 (2.02, 2.32) | 5.60 (4.57, 6.61)
Log-normal | 422.19 | 2.18 (2.03, 2.32) | 5.79 (4.71, 6.86)

Table C.1: Results for the standard parametric models fit to the Colon cancer data. Mean
survival results and 95% confidence intervals are reported.

distribution was elicited by assuming a constant (exponential) hazard as y — yo.
Using standard conjugacy results this can be elicited by assuming the observation
of a individuals for b time until events was observed. This stationary prior implies
2 individuals observed for a total of 7 years in the limit. The Gaussian Langevin
stationary distribution was then selected to approximately match the uncertainty inter-
vals of this Gamma distribution. We note that these examples are purely illustrative

and can likely be improved on in practice.

C.3.3 Comparators

Figure C.4 and Figure C.5 show hazard functions for the comparators in Section 4.1
[Baio, 2020, Cooney and White, 2023a, Jackson et al., 2017]. The results for the
standard parametric models are presented in Table C.1. AIC is minimised for the
log-normal model, and as such this is the model used as the comparator in the main

manuscript.
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Figure C.5: (Left) Hazards for the independent piecewise exponential model fit to the
Colon cancer data [Cooney and White, 2023a]. Note how the hazard is not as
expressive as either the diffusion piecewise exponential model or the M-spline
model. (Right) Hazards for the standard parametric models fit to the colon
cancer data. Hazards are computed using numerical derivatives of —log(S(y))
and as such appear non-smooth in the plot.

C.3.4 CLL-8 trial data

The same procedure as for the Colon cancer data was used to determine an optimal
value of I'. The results of this procedure are shown in Figure C.6. While the LOOIC
is minimised for I' = 20, the values begin to plateau around I" = 10. Each model
was run for 2 chains of 10,000 iterations, 5,000 of which were burn-in, and where
each iteration consists of a single Gibbs update for {rk}y: _IJ and 50 iterations of
Algorithm 6 with Ar = 0.01 Convergence was assessed by examining trace plots, R
values for the hazard at fixed time points and effective sample sizes.

We outline the time-varying drift functions used in Section 4.2.

Gamma waning:

p(ay,y) = yi(y) — va(y) exp(ay),
vi(y) = yimax{min{1,y/c},1/c}, yu(y) = yamax{min{l,y/c},1/c}.

Waning treatment effect:

1

H(By.y) = Wﬁy’ ya(y) = max(1, (v/4)*) 7.
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Figure C.6: LOOIC values for various values of I" for the CLL-8 data.
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