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Below-threshold nonsequential double ionization with linearly polarized two-color
fields. I. Symmetry and dominance
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We investigate laser-induced nonsequential double ionization with linearly polarized bichromatic fields,
focusing on the recollision-excitation with subsequent ionization (RESI) mechanism. Using the strong-field
approximation, we assess how the symmetries of the field influence the dominant events. Furthermore, we show
that, by manipulating the field parameters such as the field frequencies and relative phase between the two
driving waves, one can influence the correlated electron-momentum distributions. Specific features of a linearly
polarized bichromatic field are that the momentum distributions of the second electron are no longer centered
around vanishing momenta and that there may be more than one ionization event per half-cycle. This can be used
to confine the RESI distributions to specific momentum regions and to determine a hierarchy of parameters that

make an event dominant.
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I. INTRODUCTION

Tailored fields are powerful tools to control laser-induced
processes, such as high-order harmonic generation (HHG),
above-threshold ionization (ATI), and nonsequential dou-
ble ionization (NSDI) (for reviews, see, e.g., Refs. [1-3]).
Well-known applications, among others, are the in situ char-
acterization of attosecond pulses [4—6], the measurement of
tunneling times employing elliptically polarized [7-13] and
bicircular [14,15] fields, temporal gates [16—18] or interfer-
ometric schemes [19,20], the investigation of chiral systems
[21-25], the study of how the orbital angular momentum
influences photoelectron vortices [26-29], and the phase-of-
the phase spectroscopy using collinear [30—32] or circularly
polarized [33,34] two-color fields. The fields explored also
exhibit a myriad of shapes, including linearly polarized
bichromatic fields [2], few-cycle pulses [1], elliptically po-
larized fields [35], orthogonally polarized two-color (OTC)
[17,18,36—44] and bicircular [15,21-24,29,45-51] fields, as
well as more exotic shapes such as chiral [52] and knotted
fields [53] or even the perfect wave [54].

Steering laser-induced processes with shaped fields is
enabled by their underlying physical mechanisms, namely
laser-induced rescattering or recombination [55]. First, an in-
tense laser field considerably distorts the binding potential.
This triggers the tunnel ionization of an electron. Once in the
continuum, the electron is accelerated by the field and may or
may not be driven back to its parent ion. Direct ATT happens
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if the electron reaches the detector without further interaction
with the core, while rescattered or high-order ATT (HATI)
results from its elastic scattering with its parent ion [3,56,57].
If, instead, the electron recombines with a target’s bound state,
then it releases its kinetic energy as high-frequency, high-
harmonic radiation [58]. Finally, it may also happen that the
electron recollides inelastically with the core, releasing one or
more electrons. If a second electron is released, then this gives
rise to NSDI (for reviews see Refs. [59,60]).

A systematic way to understand the imprint of the field
and the type of the target on the resulting spectra or pho-
toelectron momentum distributions (PMDs) is provided by
symmetry. Symmetry is a widespread concept in many ar-
eas of knowledge, such as chemistry [61], physics [62], and
biology [63]. Not only does it allow us to predict a specific
outcome or feature without solving the actual problem, but, in
addition, it can be used to derive the selection rules or explain
features that would otherwise remain murky. In strong-field
laser-matter interaction, symmetry has been explored since
the mid-1990s to derive selection rules for HHG [51,64-67]
and ATI [46,68,69], to determine the shape of photoelectron
momentum distributions [44], and, recently, to explain how
different scattering properties of a soft-core and a Coulomb
potential manifest themselves in the HATT spectra [70]. How-
ever, the development of a more complete theory, focused on
group-theoretical methods and exploring structured light of
increasing complexity, as well as other degrees of freedom
such as spin and angular momenta is still work in progress
(see the perspective articles [25,71]).

Even linearly polarized fields exhibit temporal symmetries
that can be investigated consistently. The best known of these
symmetries is the half-cycle symmetry, which implies that a
field is invariant upon a half-cycle translation followed by a
reflection about the time axis. In Ref. [72], we have shown
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that, further to that, a monochromatic field is also reflection-
symmetric about its maxima and crossings. Adding a second
wave may break or retain these symmetries, depending on its
frequency and relative phase. If the half-cycle symmetry is
broken, then one of the other two symmetries is automati-
cally broken, while, if it is retained, then the other two may
either be broken or retained. For orthogonally polarized fields,
symmetries are often studied by constructing compound sys-
tems, using properties of the field and sometimes of the target.
The field exhibits temporal and geometric symmetries, which
were studied systematically in Ref. [67]. Furthermore, when
the geometry of the target must be taken into account, it
must be considered jointly with the symmetry of the field
[66,68,69].

For laser-induced processes involving more than one active
electron, such as NSDI, there have been plenty of studies of
NSDI in few-cycle pulses [73-77], circularly polarized fields
[78,79], polarization gated fields [80], OTC fields [36,47,81],
or few-cycle counter-rotating two-color circularly or ellip-
tically polarized laser fields [82-84]. The overwhelming
majority of these investigations have been performed using
classical-trajectory methods, and have focused on the shape of
the electron-momentum distributions, which is determined by,
for instance, final-state electron-electron repulsion [75], dif-
ferent types of recollisions and pathways [77], and temporal
windows for recollision dynamics [36,47,78]. Similarly, quan-
tum mechanical approaches have also been mainly used to
address analogous questions. For instance, the full solution of
the time-dependent Schrodinger equation was used to assess
how the shapes of the electron momentum distributions are
affected by the type of electron-electron interaction [85,86]
or the field [87,88]. The same holds for early work using the
strong-field approximation (SFA) [8§9-92], or studies employ-
ing the quantitative rescattering theory [93-96].

Nonetheless, group-theoretical arguments are much less
explored for correlated momentum distributions in NSDI.
Still, some symmetries have been identified. For instance,
if the NSDI process is electron-impact ionization, which
prevails if the first electron returns with enough energy to
make the second electron overcome the ionization potential
of the singly ionized target, then the electron momentum
distributions, as functions of the electron momentum com-
ponents py; and py parallel to the laser-field polarization,
are symmetric concerning reflections about the main diagonal
D1 = P2|» occupy the first and third quadrant of the parallel
momentum plane, and, for half-cycle symmetric fields, are
symmetric upon (plllvaH) <> (—p|||, —p2||) [89,91] If, on
the other hand, the second electron is dislodged by recollision-
excitation with subsequent ionization (RESI), in which the
second electron is excited by the first and is freed with a
time delay, then a myriad of shapes has been identified. These
include electron momentum distributions occupying the sec-
ond and fourth quadrants of the p;p, plane, distributions
occupying the axes p,; =0, n =1, 2, and/or the diagonals
D1 = £p2, or distributions concentrated in the positive or
negative parallel momentum half-plane. RESI is prevalent in
the below-threshold regime, for which the electron’s kinetic
energy, upon return, is only sufficient to promote the second
electron to an excited state. In particular, quantum-mechanical
studies based on the SFA revealed fourfold symmetric RESI

distributions for linearly polarized monochromatic fields,
whose shape depends on the geometry of the bound state
to which the second electron was excited [97]. The fourfold
symmetry is broken if the field is not half-cycle symmetric,
such as for the few-cycle pulses [98—100]. In this case, the cor-
related electron momentum distributions will be shaped by the
dominant events and the momentum regions they occupy. Ad-
ditionally, in Ref. [101], it was shown that fourfold symmetry
is broken if quantum interference between different excitation
channels is incorporated. These results were confirmed and
extended in our previous work, in which we identified various
types of quantum interference in the RESI distributions for
monochromatic fields [102,103] and few-cycle pulses [100].

In the present work, we investigate RESI with bichromatic
driving fields composed of a wave of frequency w and its
second or third harmonic, using the symmetry arguments
from our previous publication [72]. These fields are widely
known as (w, 2w) and (w, 3w) fields, respectively. By chang-
ing the relative phase between both waves, the field-specific
symmetries may be either broken or retained. In the present
publication, we focus on the influence of the symmetries
and dominant events on the PMDs and perform incoherent
sums. In particular, we assess how the symmetries dictated
by the field are mapped into the RESI electron momentum
distributions, as functions of the electron-momentum com-
ponents parallel to the driving-field polarization. Quantum
interference is expected to break some field symmetries, and
would mask these features [101-103]. In a complementary
paper, we show that it leads to a myriad of fringe shapes,
whose interpretation is beyond the scope of the present
work [104].

Throughout, we use the SFA, employing the transition
amplitude derived in Ref. [97] for RESI, in which we incor-
porated electron-electron correlation and excitation. Although
the SFA relies on several simplifications, such as neglecting
the residual binding potentials in the electrons’ continuum
propagation, it provides a good testing ground for the fea-
tures we intend to study. First, the SFA allows us to single
out the specific scattering process leading to RESI, while
different physical mechanisms are difficult to disentangle in
ab initio methods such as the full solution of the time-
dependent Schrodinger equation (see the perspective article
[105] for the advantages and shortcomings of numerical and
analytical methods). Second, because the SFA is a Born-
type approach, it provides a clear-cut definition of direct
and rescattered processes. These definitions become blurred
in Coulomb-distorted approaches, for which there are hy-
brid quantum pathways that do not fit in either category
[106—-110]. Third, if the transition amplitude is calculated
using the steepest descent method, then specific quantum
pathways may be associated with electron orbits, which pro-
vides a great deal of physical insight. Fourth, due to being
semianalytic, the SFA exhibits features that can be switched
on an off at will. Depending on context, making it de-
liberately less accurate sheds light on important physics.
Finally, in the SFA framework, RESI can be viewed as two
time-ordered ATI-like processes. This is a physical picture
that is useful for studying symmetries and has been made
more obvious by the SFA, as it entails precise definitions of
scattering.
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This article is organized as follows. In Sec. II, we bring the
necessary background to understand the subsequent results.
This includes the SFA transition amplitude for RESI and the
saddle-point equations, the three symmetries exhibited by the
linearly polarized monochromatic field, and which of those
are broken or retained if a two-color field is considered. Sec-
tion III is devoted to determining the dominant events, and
linking them to the existing field symmetries. Subsequently,
in Sec. IV, we assess how these findings fit together in corre-
lated electron momentum distributions. Finally, in Sec. V, we
summarize this work and state our conclusions.

II. BACKGROUND
A. Transition amplitude

The SFA transition amplitude for RESI and an arbitrary
excitation channel C reads

o0 t t
C / 3 C)y/(C)
M (py,po) = /_Oodt /_OO dt f_oo df”/d kVs Voro ke

X V,f?exp[is(@(pl, p2. k2,21, (D)
where

SO, pa2, k, 1,1/, 1)

k + A(0)P?
= Ei1" + Byt + B / —[ AT

_/°° [p: +;&(r)]2dr _f"" [p +;(r)]2dr

is the semiclassical action. Equations (1) and (2) have been de-
rived in detail in Refs. [97,111] and correspond to a process in
which an electron, initially bound in a state of energy —F l(g),
is freed in the continuum at a time ¢”. Subsequently, at a time
t', it returns to its parent ion with intermediate momentum k
and excites a second electron from a bound state with energy
—Ez(g) to a state with energy —Ez(ec). The first electron then
leaves, reaching the detector with the final momentum p;.
The second electron is freed at a later time # and has final
momentum p;.

In the SFA, all information about the target geometry and
the interactions is embedded in the prefactors v© v© and

kg > "piekg
V,©). The prefactor

2

v“” K+ A"V |¢<C>)
1

= _(27-[ )3/2 /dSrle—l[k+A(t")] r‘V(rl )WI(C)(IH) (3)

where V (r;) is the neutral atom’s binding potential, and 1//1(5)
is the ground-state wave function for the first electron, is as-
sociated with the ionization of the first electron. This electron,
initially in |1/f1(§) ), is released in an intermediate Volkov state
k +A@")).

The prefactor

©) (©)
Vple kg — (pl ’ 1//2e 1// >
VIZ(P k) —i 2.,
= R [ ey O ey O,

“)

where

Via(p1 — k) = / d’rVip(r) exp[—i(p1 — k) - 1]

(&)

is the electron-electron interaction in momentum space, r =
r; — 1, and V), (r), taken to be of contact type, describes the
interaction by which the second electron is excited. The wave
functions (r,|y5) = Y4e)(12) and (52| Yse)) = Y50 (ry) are
associated with the excited and ground states of the second
electron, respectively. Finally, the prefactor

Vp(f,;) = (p + A(l‘)|VionW/2(S))
1

— G [ e OO ), @

where Vo, (1) is the potential of the singly ionized target,
describes the ionization of the second electron. One should
note that Egs. (3) and (6) are written in the length gauge.
In their velocity-gauge counterparts, the vector potentials are
removed from the final states due to the unitary transformation
from the length to the velocity gauge, which is a translation in
momentum space. This means that the continuum states | )
and |y,) read |Y")) = |k) instead of | ")) = |k + A(t"))
and [y{")) = |py) instead of |y{") = |p, + A(z)). Nonethe-
less, ionization occurs most probably around a field maxima,
which, for monochromatic fields and few-cycle pulses, im-
plies that |A(t)| < 1, with T = ¢”, ¢. From the practical point
of view, this means that the length- and velocity-gauge prefac-
tors lead to very similar results, although strictly speaking the
SFA is not gauge invariant. Thus, it is a reasonable approxi-
mation to neglect the vector potential in Egs. (3) and (6). This
approximation has been discussed in detail in Ref. [97] and
has been used in our previous publications. However, in some
instances, it may break down for the two-color driving fields.

In those cases, it will be necessary to incorporate the vec-
tor potential in the length-gauge prefactors. This will render
the prefactors calculated using hydrogenic bound-state wave
functions singular due to the saddle-point equation (10) given
below. The explicit expression for these prefactors are given in
Refs. [97,100,102]. This problem may be overcome by either
exponentializing the prefactors to eliminate the singularity
and incorporating it in the action as a logarithmic term [91],
or by approximating the hydrogenic wave functions using
a Gaussian basis set. The latter method has been employed
in Refs. [112,113] in the context of diatomic molecules and
will be used in Sec. IVB whenever necessary. In case the
singularity is absent, we will employ the prefactors calculated
in Refs. [97,100,102] for hydrogenic wave functions. The
explicit expression for V;,. computed using a Gaussian basis
set, together with a test showing that the results are essentially
the same as if using hydrogenic functions, is provided in the
Appendix.

B. Saddle-point method

The multiple integral that appears in the transi-
tion amplitude (1) is solved using the saddle-point
method [114], which requires finding the values
of the integrating variables such that the action is
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stationary. This leads to dS(py, p2, k;t,1,1")/0t =
aS(p1, p2. k2, ¢/, ¢7)/0t = 0S(py, p2, ki ¢, ¢, 1")/0t" =0
and 9S(py, p2, k;t,¢,¢")/0k = 0, which give the saddle-
point equations

[k +A@"))* = —2E),, (7)

1 ¢
k=— / dtA(7), ®)
' —t" J

[p1 + A = [k + A — 2(Exe — Ea),  (9)

for the first electron, while for the second electron, the corre-
sponding saddle-point equation is

[p2 + A = —2E;,. (10)

Equation (7) represents the energy-conservation condition at
time t”, while Eq. (8) represents the constraint on the inter-
mediate momentum k of the first electron, i.e., it gives the
condition which has to be satisfied in order for the electron
to return to the parent ion. Moreover, Eq. (9) is the energy-
conservation condition at time ¢'. Finally, Eq. (10) describes
the tunneling ionization of the second electron at some later
time ¢. Equations (7) and (10) have no real solution, which is
a consequence of tunneling having no classical counterpart.
However, in the limit E1, — 0, E», — 0, these equations lead
to the mappings k = —A(”), p, = —A(¢), widely used in
classical-trajectory methods, and real t”, ¢. This is the classical
limit of the SFA, which allows simplifications that can be
used for determining kinematic constraints or for construct-
ing graphical methods to identify approximate ionization and
rescattering times [115].

If written in terms of the momentum components p,; and
pu1,n = 1,2, parallel and perpendicular to the laser-field po-
larization, then saddle-point equations (9) and (10) shed some
light on the momentum regions occupied by the correlated
electron momentum distributions.

For a lineary polarized fied, Eq. (9) can be rewritten as

[p1) + AW = [k + AT — [2(E — Exe) + 97, ], (1D)

which, in terms of the momentum components of the
first electron, gives a sphere centered at (piy, piy, p1)) =
(0,0, —A(")), where pi = pi.éx + piyéy, Whose radius is
real if [k + A(t)]*> > 2(E>g — E».). A real radius means that
the process is classically allowed. This concept can be used
to define a momentum region for which there is a classical
counterpart, known as the "classically allowed region." Within
this region, the RESI probability density is appreciable, while
outside this region it is exponentially decaying. For details
within the framework of RESI and electron-impact ionization,
see Refs. [98,100] and [90,116], respectively.

For constant p; , , the right-hand side of Eq. (11) shows that
it mainly adds a term to the energy gap E», — E»,, effectively
decreasing the classically allowed region, so that an upper
bound can be obtained for p;; = 0. This bound suggests a
classically allowed region centered at p;; = —A(#’), whose
extension is determined by the difference between the max-
imal kinetic energy of the first electron upon return and the

energy gap.
For the second electron, Eq. (10) reads

[p2) + AW = —2E», — p3 (12)

where, similarly, the perpendicular momentum effectively
shifts the bound state energy for the second electron if it is
kept fixed. Equation (12) has no classical counterpart but also
describes a sphere centered around the most probable momen-
tum. Therefore, we can infer that the probability density, as
a function of py|, is centered around p,; = —A(¢). Bringing
these constraints together means that the length and width of
the correlated two-electron momentum distributions are deter-
mined by the first and second electron, respectively. Electron
indistinguishability requires symmetrization upon momentum
exchange, which means that we must consider M (C)(pz, pP1)
in addition to M©)(p, p»). For details on both constraints for
monochromatic fields and few-cycle pulses see Refs. [111]
and [100], respectively.

C. Correlated momentum distributions

Here we aim at computing the correlated two-electron
probability density as a function of the momentum compo-
nents p,, n = 1, 2 parallel to the driving-field polarization.
Its explicit expression reads

Pp. p21) = // d’p11d*pr 1 P(p1, p2), (13)

where P(p;, p2) is the fully resolved two-electron momentum
probability density, and the transverse momentum compo-
nents have been integrated over. In this paper, we focus on
a single excitation channel (C) and incoherent sums of proba-
bility densities, so that P(p;, p2) = P©(p;, p2) and

PO®LP) =Y MO p)[* + MO p[ ],

(14)

where the subscripts (ii) indicate that we are summing inco-
herently upon events & and upon the two contributions due
to the electron symmetrization. In the subsequent sections, we
will omit both subscripts as we are not studying coherent sums
in the present work.

Furthermore, it is useful to compute partial momentum
distributions for each electron, given by

PO (pyy) = / d*pui IM™ (p,)I?, (15)

with n = 1,2, and M (p,,) the amplitude which corresponds
to a single electron.

D. Model and field symmetries

Next we briefly state the target and the field used in
this work. We consider argon, for which the first ionization
potential is El(c) = 0.58 a.u. for all channels. An electron
tunnels from the outer shell, so that the target becomes
singly ionized. The corresponding electronic configuration is
152252 2p° 352 3p°, so that Ej) = E5Y = 1.016 a.u., which
is the second ionization potential. Most of our computations
are performed for the 3s — 3p excitation channel (electron
configuration 3s3p°), with E{}) = 0.52 a.u., which is the deep-
est bound state for this specific target. In Sec. IV B, we also
take the 3p — 4s (3p*4s) excitation pathway, with Ez(i) =
0.40 a.u., in order to assess the influence of an s excited
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state in correlated electron momentum distributions. Choosing
deeply bound excited states aims at avoiding a too strong
influence of the field gradient, which is critical if the excited
state is loosely bound [100].

We use linearly polarized bichromatic fields with commen-
surate frequencies rw and sw, where r, s are chosen to be
co-prime integers. For this field, the vector potential can be
written in the form

2,/U, T[&cos(swt +¢) cos(rat)],
Ar,s,é,q)(t) = > B + , f4)
Ja+s
(16)
where
E,(1 ¢
Up=%5+5 (17)

is the ponderomotive energy and the field is polarized along
é,. Also, in Eqgs. (16) and (17), E,, is the amplitude associated
with the wave of frequency rw, ¢ is the relative phase between
the two driving waves, and & = E,/E,, is the field-strength
ratio. We assume that our driving field is a long pulse with a
flat envelope.

Depending on the values of these parameters, the field
exhibits different symmetries with regard to three main types
of transformations and the combinations thereof. These trans-
formations are reflections about the time axis [for which E(¢)
and A(¢) vanish] shifting E(t) - —E(t) and A(t) — —A(2),
denoted by F, translations in time, referred to as 7r(tr),
and reflections about specific times, called 7z(tg), where
the arguments 77 and tg give the time interval considered
in the translation and the time about which the reflection is
performed, respectively.

For instance, a monochromatic linearly polarized field of
frequency ro exhibits three symmetries. First, it is symmetric
with regard to a translation by half a cycle followed by a
reflection about the time axis. Summarizing, F 7}(%)E @)=
E(z). This is known as the half-cycle symmetry and is
usually written as E(t =7 /2) = —E(t). Second, it is sym-
metric regarding a time reflection around its extrema, so that
Tr(tex )E(t) = E(t), where 7, are the times for which the
extrema occur. Finally, the field remains invariant with respect
to a time reflection around its zero crossings followed by
a reflection with regard to the time axis. This implies that
FTr(te)E(t) = E(t), where 1., are the times for which the
field zero crossings happen.

Adding a collinearly polarized second wave of frequency
sw may retain these symmetries or break some of them. If
r + s is even, for instance, for the (w, 3w) field, then the half-
cycle symmetry is retained, while, depending on the relative
phase, the other symmetries may be retained or broken. If r 4
s is odd, for example, for the (w, 2w) field, then the half-cycle
symmetry and one of the other two symmetries is broken. For
details see our previous publication [72].

III. SYMMETRIES AND DOMINANT EVENTS

Next, we investigate how the specific field shape consid-
ered in this paper, corresponding to the vector potential given
by Eq. (16), influences the RESI momentum distributions.

TABLE 1. Relevant events for the first and second electron, for
the driving fields employed in Fig. 1. The first column gives the field
parameters, the second column gives the events (pairs and orbits)
associated with the first and second electron, respectively, the third
column gives the time interval for which these events occur, and the
last column states the signs of the parallel momenta associated with
each event.

Fields
r s ¢ Events Times (mod T) DI
1 3 0
7_P1a P2a —T/2<t<0 >0
L3 72 e b 0<i<T)2 <0
B 0 0y T)2<t<T  >0,<0
b3 T2 QgL 0y T<t<3T/2  <0,>0
—T2<1<
Lo 0 el,:Pm T/2<t<0 >0
Py Py 0<tr<T)/2 <0
_ O T2<t<T 0
b2 3/ aig 0, T<i<3T)2 <0,50
_ Py —T/2<t<0 >0
b2 T “p, 0<t<T)2 <0
o Ou T2<t<T =0
2‘01;, T<t<3T/2 >0

To achieve this goal, it is necessary to identify the domi-
nant ionization and rescattering events for the first electron,
followed by their counterparts for the second electron’s ion-
ization. These events are first mapped by employing classical
arguments and inspecting the field. This can be done as, in
the limit of vanishing binding energies, the saddle-point equa-
tions give the classical times of an electron in the presence
of the driving field (see, e.g., Ref. [115] for recent work on
classical considerations and the SFA). The real parts of the
ionization and rescattering times of the first electron can be
approximately related to the field extrema and zero crossings,
respectively. Similarly, the ionization times of the second elec-
tron can be associated with the field extrema after rescattering
has taken place. Even though the real parts of the saddle-point
solutions do not exactly correspond to the field maxima and
zero crossings, the latter are useful for interpretational pur-
poses and allow one to easily classify different ionization and
rescattering events. The insight into the dominance of specific
events can be inferred from the imaginary part of the saddle-
point solutions. All momentum distributions investigated in
this paper are calculated using the saddle-point solutions,
which are complex. The saddle-point solutions are also used
to compute partial momentum distributions for each electron.

For the mapping of the ionization and rescattering times of
the first electron, we employ the tangent construction, which is
a graphical method relating the classical ionization and return
times to field tangent near the field maxima and its intercept
near a later field zero crossing, respectively! [117]. A sum-
mary of the most important solutions, together with the fields

!One should note that the classical ionization times given by the
tangent construction is slightly after the maximum as times exactly
at the maximum give a tangent of vanishing slope.
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FIG. 1. Electric field (black solid line) and the corresponding vector potential (orange dashed line) as functions of time for the (v, 3w)
[panels (a), (b), and (¢)] and (w, 2w) [panels (d), (e), and (f)] bichromatic linearly polarized field. The ratio of the field amplitudes is & = 0.8,
and the relative phase is indicated in the panels. The approximate values of the real part of the ionization and rescattering times of the first
electron associated with the saddle-point pairs which lead to the most significant contributions to the photoelectron yield are indicated by the
arrows, while the shaded rectangles correspond to the approximate values of the real part of the ionization time of the second electron. The

subscript n = 1, 2 in the pairs P,,

classifies them in increasing order of excursion times in the continuum, i.e., the excursion times for the pairs

Py, are smaller than those for pairs P»,. The index p = a, b refers to the first and second half-cycle taken into consideration, respectively. The
red and pink, and the blue and cyan arrows indicate rescattering events populating the positive and negative momentum regions, respectively.
The colors of the shaded rectangles match those of the arrow but rather indicate that the orbits Oj; of the second electron are associated with
a specific pair for the first electron, instead of referring to the momentum region they populate. The subscript j = 1, 2 refers to how close
the event is regarding the time of rescattering of the first electron, and the indices a and b refer to the first and second half-cycle considered,
respectively. The gray dots indicate irrelevant ionization events. The electric fields have been normalized to their maximum amplitude in each

panel.

used in this work, is provided in Fig. 1 and Table I. When
calculating the partial electron momentum distributions, we
neglect the prefactors and consider the 3s — 3p transition for
argon. The corresponding bound-state energies and ionization
potentials are stated in Sec. IID.

A. Field shapes and event mapping

In Fig. 1 we present the electric field (black solid line)
and the corresponding vector potential (orange dashed line)
as functions of time for the (w, 3w) [Figs. 1(a), 1(b), and 1(c)]
and (w, 2w) [Figs. 1(d), 1(e), and 1(f)] bichromatic linearly
polarized field. The ratio of the field amplitudes is & = 0.8,
and the relative phase is indicated in the panels. The ion-
ization and rescattering times occur in pairs that coalesce at
the boundaries of the classical allowed region [97,98,116].
For that reason, we will use the notation P,,, where n is
an integer and u = a, b, to refer to them depending on the
half-cycle taken into consideration. The pairs of orbits for
the first electron are indicated by arrows in Fig. 1. Arrows
in blue and cyan (red and pink) suggest that the contribu-
tion of a specific pair will populate the negative (positive)

parallel momentum regions. The second electron will be
roughly freed at the subsequent electric field maxima, marked
with shaded rectangles in the figure, whose colors were cho-
sen to match those of the pairs associated with the first
electron. Blue and cyan (red and pink) rectangles indicate
the first and second ionization events of the second electron
associated with the rescattering times in the negative (positive)
momentum regions. The most important orbits are denoted by
O,,u, where n is an integer and u = a, b is associated with
the half-cycle from which it leaves. These orbits may lead to
significant contributions for py; > 0 or p;; < 0. Gray dots
indicate that the ionization event can be neglected because,
for these solutions, the electric field is close to zero when the
ionization happens. Throughout, we considered at most the
two dominant pairs of solutions for the first electron, which
are characterized by a large instantaneous amplitude |E(t")|
and/or relatively short excursion times. The contributions of
pairs with longer excursion times will be strongly suppressed
due to wave-packet spreading orthogonal to the field, and, if
a local maximum |E(¢”)| is much smaller than the absolute
maximum of the field, then ionization will decrease. For the
second electron, we consider only ionization events occurring
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in the half-cycle subsequent to rescattering, as later events
will be rendered irrelevant due to bound-state depletion. This
approximation has also been used in our previous publica-
tions [97,98,100,102]. A summary of the relevant orbits is
provided in Table I. Figure 1 shows that, for a two-color
field, there are key differences from the behavior observed
for a monochromatic field or few-cycle pulses. First, within a
field half-cycle, there may be more than one ionization event
leading to rescattering at the same field zero crossing. For
instance, in the upper row of Fig. 1, there are two pairs P,
and P», j,, with the ionization and return times occurring at dif-
ferent and subsequent half-cycles. The pairs Py, and P, (Py;
and P,;,) populate the positive (negative) momentum regions.
Besides the sign reversal in the momentum, the dynamics
unleashed by these pairs are identical. This is expected due
to the half-cycle symmetry that exists for the (w, 3w) field. In
the lower row, we see a single event associated with the pair
Py, and the two pairs Py, and P, occur only every second
half-cycle as the (w, 2w) field is not half-cycle symmetric.
Similarly, in the half-cycle subsequent to the rescattering,
there are up to two field maxima for which the second electron
may be freed. Also, for pairs of events located in the same
half-cycle, the field extrema at the time of ionization do not
correspond to zero crossings of the vector potential, which
will have implications for the most probable momentum with
which the second electron will reach the continuum. In con-
trast, for a monochromatic field [102,103] or few-cycle pulses
[98-100], there is only one pair of events per half-cycle and
the field extrema exactly or approximately correspond to zero
crossings of A(t), respectively.

Changing the relative phase between the two driving waves
will influence the most relevant pair, as exemplified in Fig. 1.
Figure 1(a) shows that, for the (w, 3w) field with the relative
phase ¢ = 0, the two field extrema associated with the pairs
Py, p and P, , have equal magnitude. Furthermore, both pairs
have ionization times close to each other and the same rescat-
tering time. This implies that the electron excursion times in
the continuum will be similar. Therefore, we expect their con-
tributions to be comparable. The same holds for the ionization
events associated with the second electron: They are expected
to yield comparable contributions, which, however, will be
located in opposite momentum regions. This can be inferred
by the instantaneous value of —A(#), where, according to the
saddle-point equation (10), the parallel momentum distribu-
tion is centered. For the events marked with the blue and
pink (red and cyan) shaded rectangles, A(#) is positive (neg-
ative), which means that the most probable momentum p;
associated with this event will be negative (positive). Because
both field extrema are equal in magnitude, we can infer that
the positive and negative momentum regions for py; will be
equally occupied. This field shape corresponds to a scenario
described in Ref. [72], for which the three symmetries that
exist for a monochromatic field are also present for a (@, 3w)
field.

In Figs. 1(b) and 1(c), the two field extrema have been
made unequal by changing ¢. Hence, although the half-cycle
symmetry is retained, the reflection symmetries about the
field extrema and zero crossings are broken. For ¢ = /2
[Fig. 1(b)], the field extrema associated with Pj,; have in-
creased in magnitude, with regard to those associated with

P>, . Therefore, we expect the pairs P; to be dominant. A
similar argument can be applied to the second electron: The
events immediately after rescattering have lost their signifi-
cance, while the later events have become more important.
This is due to the decrease and increase in the correspond-
ing field extrema, respectively. One should note that, for
consecutive half-cycles, opposite momentum regions will be
populated. For instance, the ionization events for 7/2 <t <
T (T <t < 3T/2) will lead to predominantly py; < 0 (py >
0), because the vector potential is positive (negative) at the
time of the dominant event. For ¢ = —m /2 [Fig. 1(c)], the
scenario has been reversed and the field extremes associated
with P, were made more prominent. This renders this pair
dominant for the first electron, although it corresponds to a
slightly longer orbit. Likewise, the first field extremes after
the crossing are now associated with the dominant events
for the second electron. For subsequent half-cycles, the signs
of the region occupied by p,; will alternate, but they will be
the opposite of what was observed for ¢ = 7 /2. Explicitly,
if the ionization events happened at T/2 <t < T (T <t <
3T/2), then py; > 0 (p2; < 0). Once more, this can be in-
ferred from the sign of the vector potential at the time of the
dominant event.

The situation becomes slightly more complicated for the
(w,2w) field due to the absence of the half-cycle symme-
try. Still, the conclusions drawn from the previous case are
largely applicable but with the periodicity of a full cycle. For
¢ = m/2 [Fig. 1(d)], we see that, for 0 < ¢ < T /2 modulo
T, the field has two maxima symmetric around the minimum
at around 7 /4 (mod T), while for T/2 <t < T modulo T
there is a single extremum. This means that there is the re-
flection symmetry 7z(7ex) about the field extremes, but the
symmetry F7g(7.) about the crossings is broken, in addition
to the half-cycle symmetry. The dominant events for the first
electron are related to the pair Pj,, highlighted by the red
arrow starting around ¢t = —7 /4. In the subsequent half-cycle,
there are two symmetric field maxima that resemble those
identified for the (w, 3w) field but are temporally further apart.
They are associated with the pairs P, and P»p, for which
the electron returns near 7. Because of the shorter electron
excursion amplitude, the contributions from Py, prevail. The
scattering event associated with Py, is followed by the ion-
ization event near ¢ = 37 /4 for the second electron. For this
event, A(t) ~ 0, which means that the most probable momen-
tum for the second electron will be vanishing. The other two
ionization events, after the rescattering triggered by Pj, are
similar to those assessed for the (w, 3w) field and will lead to
probability densities centered at nonvanishing momenta p; of
opposite signs.

Changing the relative phase ¢ disrupts this pattern by
breaking the reflection symmetry around the field extremes.
For instance, in Figs. 1(e) and 1(f) (¢ =37 /4 and ¢ =,
respectively), we suppress the field peaks associated with
Py, until, for ¢ = m, they are vanishingly small. Further-
more, the ionization events after the rescattering around 7
will now have different prominence, with that close to the
zero crossing losing relevance, until, for ¢ = 7, its contri-
butions become negligible [Fig. 1(f)]. Another, subtler effect
is that, for the other half-cycles, although A(¢#) = 0 for the
ionization events happening after the recollision caused by
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FIG. 2. Real parts of the rescattering time calculated for p;; = 0 using the saddle-point equations [upper row; panels (a), (b), and (c)]
and the partial momentum distribution of the first electron given by Eq. (15) [lower row; panels (d), (e), and (f)] as functions of the parallel
momentum py;, for values of the driving-field parameters as in the upper row of Fig. 1 (w, 3w). The colors of the saddle-point solutions and
partial distributions have been chosen to match those in Fig. 1. Specifically, the contributions associated with P;, and Py, are plotted using
solid red and blue lines, respectively, while those related to Py, and Py, are displayed using dashed pink and cyan lines. Only the pairs with
dominant contributions to the photoelectron yield are taken into consideration, except for the field with ¢ = 0 in which case, one additional
pair is considered. The partial momentum distribution for this pair has been scaled by 10. The values of the relative phase are indicated in the
legends. The intensity of the w field component is E2 = 6 x 10'*W /cm? and the fundamental wavelength is 800 nm.

Py, the gradients are no longer symmetric. This will affect
the resulting electron momentum distributions. Finally, it is
noteworthy that, for ¢ =, the symmetry FTr(t)E(t) =
E(t) around the field zero crossings holds. Furthermore,
the vector potential is reflection symmetric around its
maxima.

B. Partial momentum distributions—First electron

In Fig. 2, we analyze the contributions of the saddle-point
solutions to the first-electron partial RESI transition proba-
bility for the same (w, 3w) driving fields as in Fig. 1. In the
upper row [Figs. 2(a), 2(b), and 2(c)], we present the real
part of the rescattering time as a function of the parallel mo-
mentum pq;; computed using the corresponding saddle-point
equations for orthogonal momentum p;; = 0. In the lower
row [Figs. 2(d), 2(e), and 2(f)], we plot the corresponding
partial momentum distributions. They have been calculated
without any prefactors to avoid additional momentum bi-
ases. Here we consider only the dominant pairs and follow
the notation used in Fig. 1 and Table I. The pairs P,
(Pig.p) and their contributions are not plotted for ¢ = 7 /2
(¢ = —m/2), as their contributions are orders of magnitude
smaller than those of the other events. For that reason, we
do not include these in any of the momentum-distribution
calculations.

The sets of times plotted in Figs. 2(a), 2(b), and 2(c)
occur in pairs that nearly coalesce at a minimum and a max-
imum value of py;. Those momenta mark the boundary of
the region for which rescattering has a classical counterpart,
which we refer to as the classically allowed region. They
are also roughly centered at p;; = —A(¢'), which gives the

most probable momentum associated with rescattering. The
solutions associated with the pairs Py,, P>, and Py, Py, are dis-
placed by half a cycle and are the mirror image of each other
regarding pi = 0. This behavior follows from the (w, 3w)
field being half-cycle symmetric. For relative phase ¢ = 0,
the classically allowed region is similar for the pairs P; and
P> due to the other two symmetries associated with the field
extremes and zero crossings, namely Tz(7ex)E () = E(t) and
FTr(tr)E(t) = E(t), being present. These symmetries are
broken for the other two relative phases. Figure 2(a) also
shows that the rescattering times associated with P, (blue
solid line) and with Py, (dashed cyan line) are very close.
This is consistent with the classical mapping performed in the
previous section, which indicates that, for the two events, the
electron should return near the same field zero crossing. The
same holds for the pairs P,, (dashed pink line) and P, (red
solid line), displaced by half a cycle. For large-enough abso-
lute values of py, the solutions Re[w?'] tend to a value close
to the zero crossing. This behavior has also been observed
for the field parameters in 2(b), and 2(c), although, in these
latter cases, only the dominant saddle-point solutions have
been included. The remaining solutions lead to contributions
that are several orders of magnitude smaller, and thus are not
relevant for the present discussion.

The partial electron momentum distributions, displayed in
Figs. 2(d), 2(e), and 2(f), are invariant regarding the transfor-
mation pj; — —py (cf. the blue and red solid and the cyan
and pink dashed lines in the lower row of Fig. 2), being the
mirror image of the other. This is expected, due to the half-
cycle symmetry, and is also a consequence of the imaginary
parts of the ionization times #”, which are related to the prob-
ability that each electron tunnels through the instantaneous
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FIG. 3. Real parts of the rescattering time calculated for p;; = 0 using the saddle-point equations [upper row; panels (a), (b), and (c)]
and the partial momentum distribution of the first electron given by Eq. (15) [lower row; panels (d), (e), and (f)] as functions of the parallel
momentum py, for the values of the driving-field parameters as in the lower row of Fig. 1 (w, 2w). Only the pairs with dominant contributions
to the photoelectron yield, namely P, and P, are taken into consideration, and their corresponding saddle-point solutions and probability
densities are plotted using solid red and blue lines, respectively. The values of the relative phase are indicated in the legends. The intensity of
the o field component is E2 = 6 x 10'*W/cm? and the fundamental wavelength is 800 nm.

potential barrier that is narrowest near the field extrema,?

also being symmetric upon p;; — —pj;. Figures 2(d), 2(e),
and 2(f) also provide insight into the dominance of a specific
pair, determined by the interplay between the instantaneous
tunneling probability of the first electron, its excursion time
in the continuum and the classically allowed region deter-
mined at rescattering. For instance, for Fig. 2(d), the tunneling
probabilities associated with the pairs Py, and P, are equal,
and the corresponding classically allowed regions are similar.
The same holds for those of pairs Py, and P»;,, which are
displaced by half a cycle. Nonetheless, the partial momentum
distribution which corresponds to the pairs P, ; is scaled by
10, which means that the contribution of this pair is approxi-
mately one order of magnitude smaller than the contribution
of the pairs Py, p. This is due to the excursion amplitude
being larger for P,. If the tunneling probabilities associated
with Py, are made larger, for example, by taking ¢ = m /2
[Fig. 2(e)], then the contributions of P, ; are rendered vanish-
ingly small. Figure 2(f) shows how the tunneling probability
trumps the excursion amplitude in determining the relevance
of an event. By increasing the field maxima associated with
P, 1, these pairs of orbits were made dominant despite the
electron spending a longer time in the continuum.

2The probability of an electron tunneling through a potential barrier
and reaching a continuum state is proportional to exp[—2Im[S]],
where S is the semiclassical action. Because its dominant term
is proportional to U,t, one can, to first approximation, assert the
dominance of an event, linked to a specific quantum pathway, by
inspecting Im[¢] (for a review see Ref. [118]).

A similar study can be performed for the (w, 2w) driving
field, considering the dominant pairs as stated in Table 1. In
Fig. 3 we present the real part of the rescattering time as a
function of the parallel momentum p;;; (upper row) for pairs
of the saddle-point solutions associated with Py, i = a, b, in
the lower row of Fig. 1, calculated for orthogonal momentum
p11 = 0. In the lower row of Fig. 3, we plot the corresponding
partial momentum distribution of the first electron [given by
Eq. (15)] calculated as a function of the parallel momentum
p1y; without any prefactors. The (@, 2w) field does not possess
the half-cycle symmetry so that the saddle-point solutions in
the py; > 0 and py;; < O parts of the momentum plane are not
related via a simple translation or reflection. Consequently, the
partial momentum distributions in these momentum regions
are different. Furthermore, for the (w, 2w) field with the rela-
tive phase ¢ = 0°, the contributions of pair P;, dominate over
those of Py, [see Fig. 3(d)], although this pair is associated
with a longer excursion time and a much smaller classically
allowed region [see Figs. 1(d) and 3(a), respectively]. This is
evidence that a higher tunneling probability supersedes those
two other criteria. The picture is approximately swapped for
the results displayed in Fig. 3(f) [(w, 2w) field with the relative
phase ¢ = ], for which the contributions of Py, prevail. An
inspection of Fig. 1(f) shows that the tunneling probabilities,
associated with the field extrema, are comparable for both Py,
and Py, but the electron excursion times associated with Py
are shorter. This outweighs the larger classically allowed re-
gion observed for P, [see Fig. 3(c)]. For ¢ = 37 /4 [Fig. 3(e)]
the first-electron partial momentum distributions are approxi-
mately the same in both parts of the momentum plane. This is
consistent with the real parts of the rescattering times, which
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FIG. 4. Imaginary part of the ionization time ¢ calculated for p,; = O [upper row; panels (a), (b), and (c)] and the partial momentum
distribution of the second electron given by Eq. (15) [lower row; panels (d), (e), and (f)] as functions of the parallel momentum p,, for the
values of the driving-field parameters as in the upper row of Fig. 1 (w, 3w). The field intensity and the wavelength of the fundamental are the
same as in Fig. 2. Only the solutions with non-negligible contributions are taken into consideration. The colors of the lines correspond to those
of the shaded rectangles in the upper panels of Fig. 1. To distinguish between different events, the contributions associated with O;, and Oy,
are plotted using solid red and blue lines, respectively, while those related to O,, and Oy, are displayed using pink and cyan dashed lines.

are roughly mirror symmetric about py; = 0. This accidental
symmetry is likely due to the classically allowed regions being
very similar, and the other, more important contributing fac-
tors roughly compensating each other. According to Fig. 1(e),
the instantaneous tunneling probability associated with P,
is larger, due to a larger absolute value of E(t”), but the
excursion time for Py, is much shorter.

C. Partial momentum distributions—second electron

We now turn our attention to the second electron, which
may tunnel from an excited state some time after the recolli-
sion of the first electron. Within the saddle-point framework,
its ionization amplitude is related to the imaginary part of
the ionization time so that an increase in the value of the
imaginary part of the ionization time ¢ leads to an exponential
decrease in the ionization amplitude. Therefore, we plot Im[7]
in the figures that follow, together with the corresponding
partial probability distributions.

In Fig. 4 we present the imaginary part of the ionization
time of the second electron calculated for p,; = 0 [Figs. 4(a),
4(b), and 4(c)] and the partial momentum distribution of the
second electron [Figs. 4(d), 4(e), and 4(f)] as functions of
the parallel momentum p;|;, for the values of the driving-field
parameters as in the upper row of Fig. 1 [i.e., for the (v, 3w)
field], and for the saddle-point solutions associated with the
events O,, 5, n = 1,2 in Table 1. The times associated with
each event are t,,, 5, n = 1, 2, following the same notation, i.e.,
14 corresponds to Oy,, and so forth. A common feature ob-
served in Figs. 4(a), 4(b), and 4(c) is that the minima of Im[#]
occur at nonvanishing parallel momenta, which are symmetric
about py; = 0. These momenta are approximately given by
D2 = FA(?) and agree with the location of the maxima of the
partial electron momentum distributions [see Figs. 4(d), 4(e),
and 4(f)]. Furthermore, the saddle-point solutions and partial

momentum distributions displaced by half a cycle are mirror
symmetric. This stems from the half-cycle symmetry of the
(w, 3w) field. Specifically, the contributions of O}, and Oy,
are peaked in the positive parallel momentum region, while
those of Oy, and O,, have maxima for negative p,|.
Nonetheless, the dominant orbits and the momentum re-
gions they occupy depend on the relative phases ¢. For
¢ =0 [Fig. 4(a)], Im[t1,] = Im[ty;] and Im[zt1;] = Im[tp.],
with Im[z, ;] being the mirror image of Im[#y, ;]. The same
symmetries hold for the partial electron momentum distribu-
tions, shown in Fig. 4(d), with the contributions of Oy, and
Oy, (01, and Oy,) being identical. Physically, these addi-
tional features are due to the symmetries Tg(7ex)E () = E(t)
and FTg(te)E(t) = E(t) around the field extremes and zero
crossing being present in addition to the half-cycle symmetry.
In contrast, for the relative phase ¢ = /2, these additional
symmetries are broken, and dominant contributions to the par-
tial momentum distribution of the second electron come from
the solutions O,, and O,;,. These solutions have the smallest
imaginary part of the ionization time [see the pink and cyan
dashed lines in Figs. 4(b) and 4(e)]. The partial momentum
distributions which correspond to the solutions O, and Oy,
are scaled by 10 in Fig. 4(e) which means that only two
saddle-point solutions have to be taken into consideration.
This is expected since the electric-field peaks related to the
solutions O,, and O,;, are much stronger than the peaks related
to the solutions O;, and Oj; [cf. the shaded rectangles in
Fig. 1(b) and their corresponding field amplitudes]. Finally,
for the relative phase ¢ = —m /2 the situation is reversed
with respect to the times and the distributions displayed in
Figs. 4(b) and 4(e). The dominant contributions to the second-
electron yield come from the saddle-point solutions O,, and
O [red and blue solid lines in Figs. 4(c) and 4(f)], while
the contributions of O, and Oy, [pink and cyan dashed lines
in Figs. 4(c) and 4(f)] are much weaker. In Fig. 4(f), the
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FIG. 5. Imaginary part of the ionization time ¢ calculated for p,;, = O [upper row; panels (a), (b), and (c)] and the partial momentum
distribution of the second electron given by Eq. (15) [lower row; panels (d), (e), and (f)] as functions of the parallel momentum p,, for the
values of the driving-field parameters as in the lower row of Fig. 1 (w, 2w). The field intensity and the wavelength of the fundamental are the
same as in Fig. 2. Only the solutions with nonnegligible contributions are taken into consideration. The colors of the lines correspond to those
of the shaded rectangles in the lower panels of Fig. 1. However, the styles and the shades are slightly changed to facilitate the discussion, with
the contributions of Oy, plotted with red solid lines, those of Oy, with blue dashed lines, and those of O, with cyan dashed lines. Note that

this convention is different from that used in the previous figure.

contributions of O,, and O, are scaled by the factor 10. A
similar analysis can be performed for the (w,2w) field. In
this case, there are four saddle-point solutions per cycle, but
usually three and sometimes only two lead to a significant
contribution to the second-electron yield. Furthermore, the
half-cycle symmetry is broken, which means that the solutions
obtained for the first half-cycle are not the mirror image of
those of the second. Here, we consider the solutions outlined
in Table I. In all cases, there is a single event Oy, for times
(2n —1)T/2 <t < nT, and at most two relevant events for
the subsequent half-cycles, i.e., nT <t < (2n+ 1)T/2, here
called Oj;, and O5p. The results analogous to those presented
in Fig. 4 but for the (w, 2w) field are shown in Fig. 5.

For ¢ =7 /2 and ¢ = 3/4m (first and second columns of
Fig. 5), Oy, is the dominant solution [see the red solid lines in
Figs. 5(d) and 5(e)], with the smallest imaginary part for #;,
and the largest partial electron momentum distribution. The
other two solutions lead to much less relevant contributions
[the blue and cyan dashed lines in Fig. 5(d) are scaled by 100
and their counterparts in Fig. 5(¢) are even smaller]. This is
in accordance with the electric-field profiles shown in Figs.
1(d) and 1(e). In particular, the peak that corresponds to the
solution Oy, [denoted by the red rectangles in Figs. 1(d) and
1(e)] is the strongest thus leading to the most prominent par-
tial contribution, while the solutions O}, and O,; correspond
to the much smaller peaks. The minimum of Im[¢#,] and
the peaks of the partial momentum distributions are located
around py; = 0. This is expected as, for Oy,, A(t1,) = 0. The
remaining solutions exhibit minima at nonvanishing momenta
and behave like their counterparts in the (w, 3w) case. For
¢ = /2 (first column in Fig. 5), the imaginary parts of the
ionization times related to Oy, and O, and the correspond-
ing partial electron momentum distributions are the mirror
image of each other, while, for Oy,, the partial distribution

and Im[#,] is perfectly symmetric around p,; = 0. These be-
haviors are explained by the field being reflection-symmetric
around its maxima. For ¢ = 3/4m, this no longer holds and
the gradients around the maxima are unequal. Therefore, the
contributions of Oy, are slightly skewed towards py; > 0 and
those of Oy, and O, are no longer mirror symmetric about
D2 = 0. Finally, for ¢ = 7, the two solutions Oy, and Oy,
have the same imaginary part of the ionization time, thus lead-
ing to identical partial momentum distributions. This is due
to the symmetry F7z(t)E(t) = E(t) around the crossings
being present. Furthermore, the vector potential is reflection
symmetric about its maxima and minima, which guarantees
the same momentum transfer for both events.

IV. TWO-ELECTRON MOMENTUM DISTRIBUTIONS

We now investigate the RESI two-electron momentum dis-
tributions in the pijpy plane. First, using the knowledge
obtained in the previous section, we sketch the shapes of these
distributions for the driving fields considered in this work.
These diagrammatic representations are presented in Fig. 6,
and consider the dominant events determined in the previous
section. They are helpful to assess the shapes of the fully
incoherent distributions and also to map the key interference
events. They constitute a modified version of those in our
previous work [100], as, depending on the circumstances, one
needs to account for more than one event per half-cycle. A
straight line corresponds to the contribution of a specific event
to the distribution. The length and width of each horizontal
line are determined by the kinematic constraints associated
with the first and second electron, respectively, but these
roles are reversed once the electron momenta are exchanged.
Different and the same colors are associated with different
and the same event, respectively. We recall that the events
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FIG. 6. Diagrammatic representation of the dominant events for
RESI with (w, 3w) and (w, 2w) driving fields (upper and lower rows,
respectively). Panels (a), (b), and (c) indicate the dominant events for
an (w, 3w) field with ¢ =0, ¢ = 7 /2 and ¢ = —m /2, respectively,
while panels (d), (e), and (f) outline the dominant events for an
(w,2w) field with¢ = 7 /2, ¢ = 37 /4, and ¢ = 7, respectively. The
thick straight lines in the figure provide a schematic of what mo-
mentum regions of the p;; p, plane the correlated RESI distributions
occupy. We consider the time intervals and events given in Table I.
Different colors indicate a time delay between events, while the same
color indicates that one is dealing with the same event, with different
regions associated with symmetrization. The colors associated with
the events were matched to those in Fig. 1, with red and pink used
for the pairs and orbits P, O;,, and blue and cyan for the pairs and
orbits Py, Oy, respectively. The events and orbits are indicated by
the labels P;;Oy; in the momentum regions they occupy, where i and
k are integers, and j and / are a or b. The thick lines representing an
event P;;Oy; are colored according to the convention adopted for the
orbits Oy, rather than the total event.

corresponding to the first electron are denoted by F;;, while
the orbits for the second electron are denoted by Oy; where i, k
are integers and j, [ are either a or b. Due to the depletion of
the bound state, the prevailing ionization times of the second
electron occur within the half-cycle after the rescattering of
the first electron. This means that, for the (w, 3w) field, the
contributions of the P, pair for p;; > 0 should be combined
with the Oy, and O,, solutions for the second electron, while
the contributions of the Py, pair for p;;; < 0 should be com-
bined with the Oy; and Oy, solutions for the second electron.
For the (w, 2w) driving field, the Py, pair should be combined
with Oy,, and the Py, pair with Oy, and Oyp.

The diagram in Fig. 6(a) is associated with the (v, 3w, ¢ =
0) field. The RESI distributions are expected to be fourfold
symmetric, with a single event contributing to the probability
density in the first and third quadrants (P;,0;, and POy,
respectively) of the pypy plane, and two events (P;,0,, and
P1,05;) determining the probability distribution in the second
and fourth quadrants. An interesting feature is that, because
the most probable parallel momenta are nonvanishing for the
second electron, the distributions are not expected to occupy
the p, =0 axes. For (w,3w,¢ =7n/2) and (w,3w, ¢ =
—m /2) fields [Figs. 6(b) and 6(c), respectively], we anticipate
the contributions in the first and third (second and fourth)
quadrants to be suppressed. A noteworthy feature is that, upon
symmetrization, contributions occupying the second quadrant
will move to the fourth and vice versa, while those occupying

the first and third quadrants will remain in the same quadrants.
This is a consequence of the momentum constraints speci-
fied in Table I. For (w, 2w, ¢ = 7/2) and (w, 2w, ¢ = 37 /4)
fields, we expect the distributions to be L-shaped and mainly
located along the positive p,; = 0 half axis. This happens
because there is only one dominant event per half-cycle, and
the most probable momentum of the second electron vanishes.
These predictions are summarized in Figs. 6(d) and 6(e),
respectively. For (w, 2w, ¢ = ) [Fig. 6(f)], P, has become
more important than Py, [see Fig. 3(f)] for the first electron,
while the contributions of O;, and O, are identical and
centered at positive p,|. Putting these features together, one
may construct a diagram in which the negative half axes are
populated and occupy mainly the second and fourth quadrants
of the parallel momentum plane, as shown in Figs. 6(f). Note
that in this case, the event Oy, actually corresponds to the
event Oy, for (w, 2w, ¢ = m/2,3m/4). Due to the fact that
the original Oy, event is completely suppressed, the event Oy,
is named Oyp.

A. Momentum constraints and distributions

The two-electron RESI momentum distributions, plotted
in Fig. 7, agree with the above-mentioned predictions. Since
we are assessing the dominance of specific events, we omit
the prefactors and analyze the fully incoherent sum, which
assumes that the contributions of different events as well as the
contributions due to the symmetrization are taken into account
incoherently. Including prefactors and quantum interference
introduces additional biases and potentially breaks symme-
tries and is detrimental to this assessment. Nonetheless, for the
first electron, the contributions of the two solutions of a single
pair are combined coherently using the uniform approxima-
tion as in Ref. [119]. This is necessary because the artificial
peaks present in the individual solutions’ photoelectron yield
alter the final distribution through integration via orthogonal
momentum (see Fig. 3 in Ref. [116]). This type of interference
is washed out upon transverse momentum integration.

For the (w, 3w) field (see the upper row in Fig. 7), all dis-
tributions possess the reflection symmetry about the diagonal
and antidiagonal due to the half-cycle symmetry of the field.
In addition, for relative phase ¢ = 0 [Fig. 7(a)], the momen-
tum distribution is symmetric with respect to the reflections
p1 — —p1 and py; — —py) . Besides the equivalence of the
contributions of Oy, and Oy, for the second electron, these
additional symmetries require that the contributions of the
Py, solutions of the first electron in the py); > 0 and py; < 0
parts of the momentum plane are equal as well. As shown
in Figs. 7(b) and 7(c), these additional reflection symmetries
are not preserved for ¢ = £ /2. This is expected as, due
to unequal field peaks, the relevance of the ionization events
O14,» and Oy, 1s unequal. It causes the RESI distributions to
occupy the first and third quadrants of the pypy; plane for
¢ = —m /2 and the second and fourth quadrants for ¢ = /2,
as predicted in Fig. 6.

The parallel momentum distributions obtained using the
(w, 2w) field are displayed in the lower row of Fig. 7. In this
case, the reflection symmetry about the diagonal is always
broken due to the absence of the half-cycle symmetry of
the field. The reflection symmetry about the antidiagonal is
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FIG. 7. Incoherent momentum distributions without prefactors calculated for the (@, 3w) (upper row) and (w, 2w) (lower row) driving
fields with the relative phase as indicated in the panels. Other driving-field parameters are the same as in the corresponding panels of Fig. 1.
The intensity of the w field component and the fundamental wavelength are the same as in Fig. 2.

preserved. For relative phase ¢ = m /2, plotted in Fig. 7(d),
the distributions occupy predominantly the positive p,, n =
1, 2 half axes, according to the predictions in Fig. 6(d). This
is due to the P;,0;, event being dominant. Furthermore, the
probability densities are centered around the axes, which is
due to E(t1,) at the dominant ionization times for the second
electron being reflection symmetric around its maxima. Some
of these features, such as the positive momenta half-axis being
populated, are preserved for ¢ =37 /4 [see Fig. 7(e) and
the mapping in Fig. 6(e)]. This is not surprising, as P;,01,
still dominates. However, instead of being symmetric around
P =0, n=1,2, the distributions are skewed towards the
first quadrant of the parallel momentum plane. This is a con-
sequence of the reflection symmetry around the field extrema
being broken: Although p,; = 0 is still the most probable
momentum with which the second electron will be freed, the
field gradients differ for the positive and negative momentum
regions in such a way that ionization is favored for p,; > 0.
Finally, for ¢ = m, the dominant event is P;,O1,. The pair
Py, populates mainly momentum regions for which py; <0,
and the events O\,,; are most probable for p,; > 0. Therefore,
the distributions have moved to the second and fourth quad-
rants of the parallel momentum plane, in agreement with the
mapping in Fig. 6(f). Nonetheless, one sees a faint probabil-
ity density in the first and third quadrants. They stem from
P,,0,,, which is expected to populate these regions.

B. Influence of prefactors

After analyzing the momentum distributions calculated
without prefactors, we now turn our attention to the influence
of the prefactors on these distributions. Upon incorporation of
the prefactors, all the distributions are narrowed and occupy a
much smaller region of the momentum space. In particular,
the ionization prefactor for the second electron, Vy, , plays

a critical role in determining the shapes of the momentum
distributions, so it will be our main focus. In our previous
publications, this prefactor led to practically identical results
in the velocity and length gauge [97]. However, in the present
work, this is not necessarily the case. A nonvanishing vector
potential with complex arguments may lead to very different
results in the length and velocity gauges, as well as counterin-
tuitive features.

When V,,, is computed using the velocity gauge and hy-
drogenic wave functions (the expression can be found in
Refs. [100,102], while the shape and the mapping onto the
D1 1P2 plane are presented in Fig. 8 in Ref. [100]), the dis-
tributions (presented in Fig. 8) exhibit a splitting along the
axes characteristic for p states (also see Fig. 8(g) in Ref.
[100]). This is particularly noticeable for the fields and phases
in Figs. 8(b)-8(e). For example, in Figs. 8(b) and 8(c), the
prefactor splits the trailing edge of the distributions crossing
Dn = 0,n =1, 2, while in Figs. 8(d) and 8(e) its effect is even
more critical, as it suppresses the maxima in the positive half
axes p, = 0,n = 1, 2 [see Figs. 7(b) to 7(e) for comparison].
For the (w,2w), ¢ =  case, the nodes along the axes are
not present, and instead, the prefactor shifts the distribution
to the axes. This is because, in the dominant P;,0;;, event,
Oy, is centered in the positive half p,| plane. It is thus af-
fected mainly by the top lobe of the p-state prefactor, which
causes O}, to become narrower and localized higher up in
the positive half-plane. Upon combination with Py, the total
contribution from this event moves from being very close to
the origin in the negative-half plane to being centered around
the axes.

Because A(¢) is no longer vanishing at the ionization time
of the second electron, we can no longer neglect the vec-
tor potential in Vj, if it is computed in the length gauge.
Within the SFA, particular care must be taken as the ionization
prefactor exhibits a singularity, according to the saddle-point
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FIG. 8. Incoherent momentum distributions with prefactors in the velocity gauge calculated using hydrogenic wave functions for the
(w, 3w) (upper row) and (w, 2w) (lower row) driving fields with the relative phase as indicated in the panels. Other driving-field parameters are
the same as in the corresponding panels of Fig. 1. The intensity of the w field component and the fundamental wavelength are the same as in

Fig. 2.

equation (10), when the electron state is described by an
exponentially decaying wave function, such as when using a
hydrogenic basis. For more details, see Ref. [91]. This can
be avoided by employing a Gaussian basis set to compute
Vb,.» the expression for which is detailed in Appendix Al,
where we also verify that Gaussian and hydrogenic basis sets
both lead to the same momentum distributions in the velocity
gauge.

Next, we discuss the effect of the prefactor on the length-
gauge RESI distribution (see Fig. 9). The shape of the excited
state influences the prefactor through the spherical harmonic
term in Eq. (A1), which can be expressed in terms of the mo-
menta and the vector potential—for details, see Appendix Al.
Figure 9 shows a narrowing and slight sharpening of the
distributions but the overall shape, notably the locations of the
nodes and maxima, are not significantly altered in comparison
to the distributions without prefactors (cf. the corresponding
distributions presented in Figs. 9 and 7). These results are
counterintuitive, as one would expect that a nonvanishing
vector potential in the length-gauge prefactor would shift the
maxima and/or the nodes of the prefactors away from the p,
axes. To better understand this shape, a more detailed exam-
ination of the vector potential is necessary because, within
the saddle-point framework, the vector potential of a linearly
polarized bichromatic field is a sum of cosine functions with
complex arguments, which can be written as a combina-
tion of ordinary and hyperbolic trigonometric functions—see
Appendix A3. In Appendix A2, we analyze this effect in
more depth by considering real arguments in the length-gauge
prefactors. The exception is Fig. 9(f) associated with (w, 2w)
field with the relative phase ¢ = m, for which the prefactor
is large enough to transfer the distribution from the negative
half-plane to the origin. The impact of the prefactor for the

p states in the length gauge is much subtler than anticipated.
Using similar reasoning, it can be shown that the impact of
the prefactor for the d states is of relatively little importance
as its shape depends on the square of the argument ¢, of
the spherical harmonic [for details see Eqs. (A1)—(A4) in the
Appendix].

For s states, the overwhelming contribution comes from
the radial integral, which is a confluent hypergeometric func-
tion. For real arguments, such as when A(¢) is excluded,
the function decays (grows) exponentially for large negative
(positive) arguments. Adding the vector potential A(¢) shifts
the real part of the argument in the prefactor, depending on
the field symmetry. This shift localizes the prefactor near the
peaks of the momentum distributions. Figure 10 shows this
effect for the 3p — 4s excitation channel, using two different
fields: (w, 3w) with ¢ = 0 and (w, 2w) with ¢ = 7 /2 (top and
bottom rows, respectively). These parameters were chosen
to illustrate cases where A(¢) is nonzero and zero, respec-
tively. The first column [Figs. 10(a) and 10(d)] shows the
results without prefactors. As expected, they resemble those
obtained for the 3s — 3p excitation channel, but the more
weakly bound 4s state leads to broader distributions than in
Fig. 7. Including the velocity-gauge prefactor V,,, shifts the
distributions to along the axes [Figs. 10(b) and 10(e)], as is
typical for s states [97]. This prefactor also introduces radial
nodes, which appear as straight lines along the momentum
axes (see Fig. 8(j) in Ref. [100]), causing the suppression
in Fig. 10(b) at nonzero parallel momenta. For the (w, 2w),
¢ = /2 field, these nodal lines make the distribution nar-
rower but still centered along p,; = 0 [Fig. 10(e)]. A similar
effect is seen with the length-gauge prefactor [Figs. 10(c) and
10(f)], which also shifts the distribution along the axes and
has a comparable nodal structure. However, the length-gauge
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FIG. 9. Incoherent momentum distributions with prefactors in the length gauge calculated using Gaussian wave functions and taking the
complex second-electron ionization time for the (w, 3w) (upper row) and (w, 2w) (lower row) driving fields with the relative phase as indicated
in the panels. Other driving-field parameters are the same as in the corresponding panels of Fig. 1. The intensity of the  field component and
the fundamental wavelength are the same as in Fig. 2.

distributions are more extended due to the imaginary part V. CONCLUSIONS

of the confluent hypergeometric function, which introduces .
. . . . In summary, we have studied the effect of the field symme-

oscillations when the argument is complex. This elongation i d dominant ts on the sh FRESI photoelect

is also observed for the (w,2w), ¢ = /2 field [compare 118 and cominant events on the shapes o photoetectron
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FIG. 10. Incoherent momentum distributions without prefactors (first column), with hydrogenic prefactors in the velocity gauge (second
column) and with Gaussian prefactors in the length gauge (third column), calculated for the (w, 3w), ¢ = 0 (upper row) and (v, 2w), ¢ = 7 /2
(lower row) driving fields. Other driving-field parameters are the same as in the associated panels of Fig. 1. The intensity of the w field
component and the fundamental wavelength are the same as in Fig. 2.
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the pyp2) plane and investigated the effect coming from the
dynamics of each electron in detail. Furthermore, we have
looked at the momentum bias associated with the geometry
of the bound states, which, in our framework, is introduced by
prefactors. In order to make an unambiguous assessment, we
left two-electron quantum interference out.

A key difference between RESI in bichromatic fields and
in the monochromatic fields [97,102,103,111] or few-cycle
pulses [98—100] previously studied by us, is that, in general,
it is not possible to relate a maximum of the field with a zero
crossing of the vector potential, not even approximately. This
comes from the approximate mapping p,; = —A(t) and has
major consequences for the ionization of the second electron
and the resulting correlated RESI electron-momentum distri-
butions. For a monochromatic field and a few-cycle pulse,
tunnel ionization for the second electron is most probable
around a zero crossing of the vector potential, which means
that the momentum transfer from the field to the electron is
approximately vanishing. If there is no additional bias from a
prefactor, then this implies that the RESI distributions will be
located around the momentum axes p, = 0.

In contrast, for a bichromatic field, if the intensity of the
second wave is high enough, then the vector potential cor-
responding to an extremum of E(f) may be nonvanishing.
This implies that the maxima of the RESI distributions will
move away from the momentum axes. A striking example was
obtained for a (w, 3w) field with ¢ = 0, for which there is a
strong suppression around the p,; = 0 axes. In this case, there
is also more than one event contributing per half-cycle and the
same symmetries as for the monochromatic field hold, leading
to a fourfold symmetric distribution. The prominence of these
events was influenced by the relative phase of the (w, 3w) field
but kept the distributions centered at nonvanishing momenta.
One should note, however, that this is not always the case,
as exemplified by the results obtained by the (w, 2w) field
with ¢ = 0. In this case, although the half-cycle symmetry is
broken, the distributions are centered around the positive half
axis py| =0, pmy = 0, n # m.

Moving the distributions away from the p,; = 0 axes also
means that, in principle, depending on the frequency ratios
and relative phase, we can confine electron momentum distri-
butions to specific regions of the parallel momentum plane.
In the present work, this has been achieved with (w, 3w)
fields, for which distributions were confined to the first and
third quadrant for ¢ = —m /2, and to the second and fourth
quadrant for ¢ = /2. This confinement may be even more
extreme if we are dealing with scenarios for which the half-
cycle symmetry is broken, such as the (w,2w) field. For
instance, if one chooses ¢ = 37 /4, then the distributions are
located almost entirely in the first quadrant, although in this
case, the shifts stem from the unequal gradients around the
electric field maximum. Confinement in a specific momentum
region and comparable contributions from different events are
important if one wishes to consider coherent superpositions of
events and assess quantum-interference effects.

In order to perform this confinement, one must determine
what causes a specific event to be dominant. The present
results suggest a hierarchy of parameters. For the first elec-
tron, the most important factor determining whether a pair
of orbits is dominant is the tunneling probability around the

field extrema associated with specific events. An example was
provided for the (w, 3w, ¢ = —n /2) field, for which a longer
orbit pair led to the dominant contributions. The second most
important parameter is the electron’s excursion amplitude in
the continuum. This is exemplified by the (w, 2w, ¢ = 7/2)
field when comparing the contributions of the pairs Py, and
P,,. Finally, the classically allowed region is superseded by
the other factors, as shown in the discussion of the results
by the (w,2w, ¢ = m) field. For the second electron, the
tunneling probability is extremely important, and, depending
on the circumstances, tends to skew the dominance of the
correlated electron momentum distributions. Establishing this
hierarchy has been attempted before using few-cycle pulses
and allocating a dominance parameter [100], but a bichro-
matic field seems to provide more control. Still, we anticipate
that a single number to determine dominance, such as what
was proposed in Ref. [100] will not be sufficient due to the
strong momentum dependence of the partial distributions.

Furthermore, the RESI distributions are only fourfold
symmetric if the three symmetries associated with the
monochromatic fields are retained in a two-color scenario.
This is achieved for an (w, 3w) field with ¢ = 0 but not
with the other phases studied here. Nonetheless, retaining the
half-cycle symmetry means that the RESI distributions are
reflection symmetric about both diagonals p;; = £p,, while
if this symmetry is broken, then only the one with respect
to py = pz| holds. This intuitively makes sense because the
processes displaced by half a cycle, which populate opposite
sides of the antidiagonal, should give the same contributions
if this symmetry is retained.

Distributions peaked at nonvanishing momenta py|, to-
gether with the mapping p,; = —A(?), means that extra care
must be taken when incorporating prefactors in the electron-
momentum distributions. This will influence the ionization
prefactor Vp,. of the second electron considerably. Although
we incorporated both rescattering and ionization prefactors,
our discussions focus on Vp,, as it is instrumental for deter-
mining the shapes of the RESI distributions. In particular,
A(t) # 0 implies that calculating V},. in the velocity and
length gauges may lead to very distinct results, in contrast
to what we observed for monochromatic fields [97] and
few-cycle pulses [100]. In order to avoid the bound-state
singularities that appear in the length gauge, we employ a
Gaussian basis to perform these calculations. The choice of
gauge in the SFA has been the subject of long-standing debate
[120-122]. In our previous studies, a vanishingly small vector
potential around the most probable ionizaton times meant that,
in practice, this question could be put aside. However, the
present work shows that, for bichromatic fields with waves
of comparable strengths, care must be taken.

Using the velocity gauge, the prefactor is centered about
the origin. It causes a narrowing of the distributions, and the
distributions take on the expected shape associated with the
excited state: p states lead to suppressions about p,, n =1, 2
axes and s states mainly narrow the distributions. Incorporat-
ing A(t) has different effects for p and d states, compared to s
states. For p and d states, the shape is determined predom-
inantly by the spherical harmonics, while, for s states, the
shape is determined by the confluent hypergeometric func-
tion. The present work shows that shifts in the prefactors
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predicted by the classical mapping p, = —A(Re[?]) do not
hold and are counteracted by the imaginary part of this tun-
neling time. This is counterintuitive and shows limitations
in the classical mappings, which behave as expected if the
argument of the prefactors is forced to be real (see Ap-
pendix A 2). For discussions of the role of Im[¢] in a broader,
Coulomb-distorted context see Refs. [123,124] for high-
order harmonic generation and photoelectron holography,
respectively.

Finally, in terms of using confinement in a specific mo-
mentum region to strengthen quantum interference in RESI,
or even using orbit-based approaches beyond the SFA to
model RESI distributions, a few issues must be taken into
consideration. First, the mapping p;; = —A(#), upon which
many of the physical interpretations in this work rely, only
holds if the long-range potential can be neglected in the con-
tinuum. Incorporating this potential is expected to influence
the dynamics of the second electron substantially, and the
mapping could fail if the acceleration caused by the poten-
tial in the continuum becomes significant. Therefore, since
the shapes and maxima of the RESI momentum distributions
are critically affected by the second electron, it is important
to understand the parameter ranges for which this mapping
is a good approximation, and when it is severely disrupted.
Examples of this disruption have been provided in Ref. [36]
for orthogonally polarized two-color fields. Furthermore, the
presence of the binding potential will lead to more orbits
for the second electron, whose effects must be incorporated
[72,125]. Still, Coulomb-distorted two-color studies of pho-
toelectron holography show that the symmetries investigated
approximately using the SFA amplitude for direct ATI hold
approximately when the Coulomb potential is incorporated
[72]. Fortunately, recent results indicate that, for the first
electron, the dynamics of the rescattered orbits relevant to
the present problem are well mimicked by the SFA [126].
Second, the prefactor V;,,. being dependent on A(?), together
with the times ¢ being complex in a saddle-point framework,
mean that the momentum biases introduced may be counter-
intuitive with regard to classical symmetry arguments. For
incoherent sums regarding symmetrization and events, we
have verified in the present work that the effects are subtle
in comparison to taking A(¢#) = 0. Nonetheless, it is not clear
how this extra dependence will influence coherent sums and
the interference patterns in the correlated two-electron proba-
bility densities. Although, as shown in Refs. [100,102,103],
the RESI interference patterns are determined primarily by
the phase differences stemming from the semiclassical action,
time-dependent prefactors may cause some loss of contrast.
This could neutralize or reduce the increased overlap caused
by confining the dominant contributions to RESI distributions
to specific momentum regions. Answers to those open ques-
tions require further investigation.
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APPENDIX: PREFACTORS

1. Prefactor using Gaussian basis

Using a linear combination of Gaussian-type orbitals
(GTOs) to represent the radial part of the wave function, the
ionization prefactor can be written as:

N
Vise = (=) ps27157980(0,,. ) Yo' e

i=1

rA+1,) 3 3
— 1+ =+, ——=), Al
Xr(%+le)11<+e2+e 10, (Al)
where
0,, =cos™'(q2), (A2)
pr =/ lp2y + AP + 1, (A3)
and
+ A(t)
go =TT (Ad)
D2

I, is the orbital angular momentum of the excited state and
¢; and «; are the coefficients and exponents of the Gaussian
basis, respectively.

For the velocity gauge, we neglect the vector potential A(z).
This corresponds to assuming that the field-dressed momen-
tum remains effectively unaltered by the external field. The
incoherent momentum distributions computed using GTOs in
the velocity gauge (presented in Fig. 11) demonstrate good
qualitative agreement with those obtained using hydrogenic
wave functions (Fig. 8).

2. Two-electron momentum distributions
with real-time prefactors

When only the real component of the ionization time ¢ is
taken (Fig. 12), the shape of the vector potential remains as
shown in Fig. 1. The sum of the cosines merely causes a shift
in the arguments of the spherical harmonics and hypergeomet-
ric functions. Therefore, the prefactor retains the same shape
as when A(z) vanishes, except that the distribution is now
shifted along the p,; axis. In other words, instead of being
located at p,; =0, (n =1, 2), the nodes are now located at
Dn = FA(Re[t]), where ¢ is the ionization time for which
Im[z] has a minimum. The signature of the excited p state
is perfectly aligned with the location of the momentum dis-
tributions, causing the splitting of the distributions associated
with each event. This is particularly evident in the top row of
Fig. 12. Figure 12(a) shows that now the distribution in each
quadrant has the characteristic p-state nodes. In Fig. 12(c),
some distribution along the axes is retained because a node
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FIG. 11. Incoherent momentum distributions with prefactors in the velocity gauge calculated using Gaussian wave functions and taking
only the real part of the direct-electron ionization time for the (w, 3w) (upper row) and (w, 2w) (lower row) driving fields with the relative
phase as indicated in the panels. Other driving-field parameters are the same as in the corresponding panels of Fig. 1. The intensity of the w
field component and the fundamental wavelength are the same as in Fig. 2.

of the prefactor no longer occurs at the origin. For Fig. 12(d),
the suppression still occurs at the axes due to A(Re[f]) van-
ishing for (w, 2w) field with the relative phase ¢ = 7 /2. This
behavior is also approximately seen in Fig. 12(e) [(w, 2w),
¢ = 37 /4]. In Fig. 12(f), the prefactors cause the distribution
to shift from the second and fourth quadrants to the axes

and into the first quadrant. In addition, the Vp(lce?k < prefactor

() (W,3w) |
4 z
. 2
&
O
&

o=mn/2 (e)(w,2w)

. 2
=
g - e
o i :
* -2 i s
" s E
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causes a narrowing of the distribution and shifts it towards the
origin. Although the Vp(zce) prefactor causes a suppression at the
axes, we have verified that the partial momentum distribution
of the second electron is asymmetric around the origin and
very steep close to the axis, thus when considered in con-
junction with the bias introduced by the first electron, it is

washed out.

¢=n/2

() (w,3w)

o
n
P(p1y. p2)) (arb. units)

P/ Up

FIG. 12. Incoherent momentum distributions with prefactors in the length gauge calculated using Gaussian wave functions and taking only
the real part of the second-electron ionization time for the (@, 3w) (upper row) and (w, 2w) (lower row) driving fields with the relative phase
as indicated in the panels. Other driving-field parameters are the same as in the corresponding panels of Fig. 1. The intensity of the w field

component and the fundamental wavelength are the same as in Fig. 2.
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3. Length-gauge prefactor using complex time

Within the framework of the saddle-point method, the time
¢t which appears in the vector potential A(z) defined by Eq. (16)
is complex, i.e., ot = Re[wt] + ilm[wt]. In this case, each of
the cosine functions can be rewritten as

cos(wt) = cos(Re[wt]) cosh(Im[wt])

—isin(Re[wt]) sinh(Im[w?]). (AS)

In Figs. 5 and 4, we have presented the results for Im[w?]
for p,; = 0. We have also verified that Im[w?] > O for all
other values of p,, and vanishing p, . More specifically, a
nonvanishing p,; merely shifts the times upwards. In ad-
dition, we have checked that Re[wt] > 0, for all fields and
events used in this study and that Re[w?] > Im[w?] in all
cases. With a complex time, the behavior of A(¢) in the
complex plane is determined by the interplay of the ordinary
and hyperbolic trigonometric functions subject to these con-
straints.

Now we consider what happens to A(¢), and hence ¢,
for different values of Re[w?] and Im[w?] to understand the
behavior of g,, and thus how it affects the momentum distribu-
tions. Regardless of the time, at the origin, i.e., at (py), p21) =
0,0), g2 = 1.

For small real and imaginary parts of the time, Taylor-
series approximations, cos(Re[w?]) & 1, sin(Re[w?]) &~
Re[wt], cosh(Im[wt]) ~ 1, and sinh(Im[w?]) ~ Im[w?] for
the trigonometric functions can be utilized. This results in
A(t) having a constant positive real part, and a negative
imaginary part directly proportional to Re[w?] - Im[wt]. If
either of Re[wt] or Im[wt] is sufficiently small, then the
imaginary component of A(¢) may be neglected. In this case,
the sign of g, will be positive for

D2 > (A6)

and negative elsewhere.

When p, is negligible, but p,, is large, g, can be approx-
imated by

A(t)

P =
JA2) + P

In this limit, g, approaches 1 for vanishing p,; and a given
ionization time. In addition, it can be verified that Im[w?] in-
creases as p% | increases so that, for a given p, , the imaginary
component of A(7) increases. For large-enough values of p, ,
the function may approach 1/p,, . Conversely, small p,; and
large p results in the shape determined by

D2 +A()

o~ Z\/ (p2y + A2

In this limit, the function approaches +1 depending on the
magnitude of p, regardless of the individual real and imagi-
nary components. The term ¢, is dependent on p;| as well as
on p3 . When plotted in the py p2. plane, it exhibits regions
parallel to the p, axis of varying magnitude.

On the other hand, for large real and imaginary parts of
the time, the ordinary trigonometric functions oscillate while
the hyperbolic trigonometric functions both grow exponen-
tially (since Im[wt] > 0). Eventually, the hyperbolic functions
dominate, causing A(¢) to approach infinity. As a result, A(t)
dominates, and g, — 1 in this limit, regardless of the value of
the momenta.

Finally, away from the large and small time limits, i.e.,
with real and imaginary parts of the time that are neither very
small nor large, the oscillatory behavior of A(t) is retained.
For Re[wt] > Im[wt] the oscillatory components dominate.
The amplitude of the oscillation is constrained by p,, for neg-
ligible p,. For large p,; and negligible p,, the oscillations
are limited and stabilized around p,;. When the real part of
the time is not significantly greater than the imaginary part, we
obtain finite complex values for A(¢) constrained by momenta.

Taking everything into account, we conclude that for all
cases, the shape of the absolute value of the prefactor can be
interpreted as fringes parallel to the axes, either constant or
oscillating in value and symmetric about the axes.

(AT)

(A8)

[1] T. Brabec and F. Krausz, Intense few-cycle laser fields: Fron-
tiers of nonlinear optics, Rev. Mod. Phys. 72, 545 (2000).

[2] F. Ehlotzky, Atomic phenomena in bichromatic laser fields,
Phys. Rep. 345, 175 (2001).

[3] D. B. Milosevi¢, G. G. Paulus, D. Bauer, and W. Becker,
Above-threshold ionization by few-cycle pulses, J. Phys. B:
At. Mol. Opt. Phys. 39, R203 (2006).

[4] N. Dudovich, O. Smirnova, J. Levesque, Y. Mairesse, M. Y.
Ivanov, D. M. Villeneuve, and P. B. Corkum, Measuring and
controlling the birth of attosecond XUV pulses, Nat. Phys. 2,
781 (20006).

[5] G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and
L. F. DiMauro, Attosecond synchronization of high-order har-
monics from midinfrared drivers, Phys. Rev. Lett. 102, 093002
(2009).

[6] J. M. Dahlstrom, T. Fordell, E. Mansten, T. Ruchon,
M. Swoboda, K. Kliinder, M. Gisselbrecht, A. L’Huillier,
and J. Mauritsson, Atomic and macroscopic measurements

of attosecond pulse trains, Phys. Rev. A 80, 033836
(2009).

[7] P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dorner, H. G.
Muller, M. Biittiker, and U. Keller, Attosecond ionization and
tunneling delay time measurements in helium, Science 322,
1525 (2008).

[8] A. N. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M.
Abu-samha, L. B. Madsen, and U. Keller, Attoclock reveals
natural coordinates of the laser-induced tunnelling current
flow in atoms, Nat. Phys. 8, 76 (2012).

[9] A. N. Pfeiffer, C. Cirelli, A. S. Landsman, M. Smolarski,
D. Dimitrovski, L. B. Madsen, and U. Keller, Probing the
longitudinal momentum spread of the electron wave packet at
the tunnel exit, Phys. Rev. Lett. 109, 083002 (2012).

[10] M. Li, Y. Liu, H. Liu, Q. Ning, L. Fu, J. Liu, Y. Deng, C.
Wau, L.-Y. Peng, and Q. Gong, Subcycle dynamics of Coulomb
asymmetry in strong elliptical laser fields, Phys. Rev. Lett.
111, 023006 (2013).

023118-19


https://doi.org/10.1103/RevModPhys.72.545
https://doi.org/10.1016/S0370-1573(00)00100-9
https://doi.org/10.1088/0953-4075/39/14/R01
https://doi.org/10.1038/nphys434
https://doi.org/10.1103/PhysRevLett.102.093002
https://doi.org/10.1103/PhysRevA.80.033836
https://doi.org/10.1126/science.1163439
https://doi.org/10.1038/nphys2125
https://doi.org/10.1103/PhysRevLett.109.083002
https://doi.org/10.1103/PhysRevLett.111.023006

HASHIM, HABIBOVIC, AND FARIA

PHYSICAL REVIEW A 112, 023118 (2025)

[11] I. A. Ivanov and A. S. Kheifets, Strong-field ionization of He
by elliptically polarized light in attoclock configuration, Phys.
Rev. A 89, 021402(R) (2014).

[12] A. S. Landsman, A. N. Pfeiffer, C. Hofmann, M. Smolarski,
C. Cirelli, and U. Keller, Rydberg state creation by tunnel
ionization, New J. Phys. 15, 013001 (2013).

[13] L. Torlina, F. Morales, J. Kaushal, I. Ivanov, A. Kheifets, A.
Zielinski, A. Scrinzi, H. G. Muller, S. Sukiasyan, M. Ivanov,
and O. Smirnova, Interpreting attoclock measurements of tun-
nelling times, Nat. Phys. 11, 503 (2015).

[14] M. Han, P. Ge, Y. Shao, Q. Gong, and Y. Liu, Attoclock pho-
toelectron interferometry with two-color corotating circular
fields to probe the phase and the amplitude of emitting wave
packets, Phys. Rev. Lett. 120, 073202 (2018).

[15] N. Eicke and M. Lein, Attoclock with counter-rotating bicir-
cular laser fields, Phys. Rev. A 99, 031402(R) (2019).

[16] D. Shafir, H. Soifer, B. D. Bruner, M. Dagan, Y. Mairesse, S.
Patchkovskii, M. Y. Ivanov, O. Smirnova, and N. Dudovich,
Resolving the time when an electron exits a tunnelling barrier,
Nature (London) 485, 343 (2012).

[17] J. Zhao and M. Lein, Determination of ionization and tunnel-
ing times in high-order harmonic generation, Phys. Rev. Lett.
111, 043901 (2013).

[18] J. Henkel and M. Lein, Analysis of electron trajectories with
two-color strong-field ionization, Phys. Rev. A 92, 013422
(2015).

[19] O. Pedatzur, G. Orenstein, V. Serbinenko, H. Soifer, B. D.
Bruner, A.J. Uzan, D. S. Brambila, A. G. Harvey, L. Torlina,
F. Morales, O. Smirnova, and N. Dudovich, Attosecond tun-
nelling interferometry, Nat. Phys. 11, 815 (2015).

[20] M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, Under-the-
tunneling-barrier recollisions in strong-field ionization, Phys.
Rev. Lett. 120, 013201 (2018).

[21] O. Smirnova, Y. Mairesse, and S. Patchkovskii, Opportunities
for chiral discrimination using high harmonic generation in
tailored laser fields, J. Phys. B: At. Mol. Opt. Phys. 48, 234005
(2015).

[22] D. Ayuso, P. Decleva, S. Patchkovskii, and O. Smirnova, Chi-
ral dichroism in bi-elliptical high-order harmonic generation,
J. Phys. B: At. Mol. Opt. Phys. 51, 06LTO1 (2018).

[23] D. Ayuso, P. Decleva, S. Patchkovskii, and O. Smirnova,
Strong-field control and enhancement of chiral response
in bi-elliptical high-order harmonic generation: an analyt-
ical model, J. Phys. B: At. Mol. Opt. Phys. 51, 124002
(2018).

[24] D. Baykusheva and H. J. Worner, Chiral discrimination
through bielliptical high-harmonic spectroscopy, Phys. Rev. X
8, 031060 (2018).

[25] D. Habibovi¢, K. R. Hamilton, O. Neufeld, and L. Rego,
Emerging tailored light sources for studying chirality and sym-
metry, Nat. Rev. Phys. 6, 663 (2024).

[26] J. M. Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov,
A. V. Meremianin, and A. F. Starace, Electron vortices in pho-
toionization by circularly polarized attosecond pulses, Phys.
Rev. Lett. 115, 113004 (2015).

[27] T. Bayer, C. Philipp, K. Eickhoff, and M. Wollenhaupt,
Atomic photoionization dynamics in ultrashort cycloidal laser
fields, Phys. Rev. A 102, 013104 (2020).

[28] Y. Kang, E. Pisanty, M. Ciappina, M. Lewenstein, C. Figueira
de Morisson Faria, and A. S. Maxwell, Conservation laws for

electron vortices in strong-field ionisation, Eur. Phys. J. D 75,
199 (2021).

[29] A.S. Maxwell, G. S. J. Armstrong, M. F. Ciappina, E. Pisanty,
Y. Kang, A. C. Brown, M. Lewenstein, and C. Figueira de
Morisson Faria, Manipulating twisted electrons in strong-field
ionization, Faraday Discuss. 228, 394 (2021).

[30] S. Skruszewicz, J. Tiggesbaumker, K.-H. Meiwes-Broer, M.
Arbeiter, T. Fennel, and D. Bauer, Two-color strong-field pho-
toelectron spectroscopy and the phase of the phase, Phys. Rev.
Lett. 115, 043001 (2015).

[31] M. A. Almajid, M. Zabel, S. Skruszewicz, J. Tiggesbaumker,
and D. Bauer, Two-color phase-of-the-phase spectroscopy in
the multiphoton regime, J. Phys. B: At. Mol. Opt. Phys. 50,
194001 (2017).

[32] D. Wiirzler, S. Skruszewicz, A. M. Sayler, D. Zille, M. Moller,
P. Wustelt, Y. Zhang, J. Tiggesbdumker, and G. G. Paulus,
Accurate retrieval of ionization times by means of the phase-
of-the-phase spectroscopy, and its limits, Phys. Rev. A 101,
033416 (2020).

[33] V. A. Tulsky, M. A. Almajid, and D. Bauer, Two-color phase-
of-the-phase spectroscopy with circularly polarized laser
pulses, Phys. Rev. A 98, 053433 (2018).

[34] V. A. Tulsky, B. Krebs, J. Tiggesbaumker, and D. Bauer,
Revealing laser-coherent electron features using phase-of-the-
phase spectroscopy, J. Phys. B: At. Mol. Opt. Phys. 53, 074001
(2020).

[35] A. S. Landsman and U. Keller, Tunnelling time in strong field
ionisation, J. Phys. B: At. Mol. Opt. Phys. 47, 204024 (2014).

[36] L. Zhang, X. Xie, S. Roither, Y. Zhou, P. Lu, D. Kartashov, M.
Schoffler, D. Shafir, P. B. Corkum, A. Baltuska, A. Staudte,
and M. Kitzler, Subcycle control of electron-electron correla-
tion in double ionization, Phys. Rev. Lett. 112, 193002 (2014).

[37] M. Richter, M. Kunitski, M. Schoffler, T. Jahnke, L. P.
Schmidt, M. Li, Y. Liu, and R. Dorner, Streaking temporal
double slit interference by an orthogonal two-color laser field,
J. Phys.: Conf. Ser. 635, 092036 (2015).

[38] T. Das, B. B. Augstein, and C. Figueira de Morisson Faria,
High-order-harmonic generation from diatomic molecules in
driving fields with nonvanishing ellipticity: A generalized in-
terference condition, Phys. Rev. A 88, 023404 (2013).

[39] T. Das, B. B. Augstein, C. Figueira de Morisson Faria, L. E.
Chipperfield, D. J. Hoffmann, and J. P. Marangos, Extracting
an electron’s angle of return from shifted interference pat-
terns in macroscopic high-order-harmonic spectra of diatomic
molecules, Phys. Rev. A 92, 023406 (2015).

[40] Y. Li, Y. Zhou, M. He, M. Li, and P. Lu, Identifying
backward-rescattering photoelectron hologram with orthogo-
nal two-color laser fields, Opt. Express 24, 23697 (2016).

[41] M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q.
Gong, and Y. Liu, Revealing the sub-barrier phase using a
spatiotemporal interferometer with orthogonal two-color laser
fields of comparable intensity, Phys. Rev. Lett. 119, 073201
(2017).

[42] X. Gong, C. Lin, F. He, Q. Song, K. Lin, Q. Ji, W. Zhang,
J. Ma, P. Lu, Y. Liu, H. Zeng, W. Yang, and J. Wu, Energy-
resolved ultrashort delays of photoelectron emission clocked
by orthogonal two-color laser fields, Phys. Rev. Lett. 118,
143203 (2017).

[43] X. Xie, T. Wang, S. G. Yu, X. Y. Lai, S. Roither, D. Kartashov,
A. Baltuska, X. J. Liu, A. Staudte, and M. Kitzler, Disen-

023118-20


https://doi.org/10.1103/PhysRevA.89.021402
https://doi.org/10.1088/1367-2630/15/1/013001
https://doi.org/10.1038/nphys3340
https://doi.org/10.1103/PhysRevLett.120.073202
https://doi.org/10.1103/PhysRevA.99.031402
https://doi.org/10.1038/nature11025
https://doi.org/10.1103/PhysRevLett.111.043901
https://doi.org/10.1103/PhysRevA.92.013422
https://doi.org/10.1038/nphys3436
https://doi.org/10.1103/PhysRevLett.120.013201
https://doi.org/10.1088/0953-4075/48/23/234005
https://doi.org/10.1088/1361-6455/aaae5e
https://doi.org/10.1088/1361-6455/aabc95
https://doi.org/10.1103/PhysRevX.8.031060
https://doi.org/10.1038/s42254-024-00763-8
https://doi.org/10.1103/PhysRevLett.115.113004
https://doi.org/10.1103/PhysRevA.102.013104
https://doi.org/10.1140/epjd/s10053-021-00214-4
https://doi.org/10.1039/D0FD00105H
https://doi.org/10.1103/PhysRevLett.115.043001
https://doi.org/10.1088/1361-6455/aa896a
https://doi.org/10.1103/PhysRevA.101.033416
https://doi.org/10.1103/PhysRevA.98.053433
https://doi.org/10.1088/1361-6455/ab69ab
https://doi.org/10.1088/0953-4075/47/20/204024
https://doi.org/10.1103/PhysRevLett.112.193002
https://doi.org/10.1088/1742-6596/635/9/092036
https://doi.org/10.1103/PhysRevA.88.023404
https://doi.org/10.1103/PhysRevA.92.023406
https://doi.org/10.1364/OE.24.023697
https://doi.org/10.1103/PhysRevLett.119.073201
https://doi.org/10.1103/PhysRevLett.118.143203

BELOW-THRESHOLD NONSEQUENTIAL DOUBLE ...

PHYSICAL REVIEW A 112, 023118 (2025)

tangling intracycle interferences in photoelectron momentum
distributions using orthogonal two-color laser fields, Phys.
Rev. Lett. 119, 243201 (2017).

[44] D. Habibovi¢, W. Becker, and D. B. MiloSevi¢, Symme-
tries and selection rules of the spectra of photoelectrons and
high-order harmonics generated by field-driven atoms and
molecules, Symmetry 13, 1566 (2021).

[45] D. B. Milosevi¢, W. Becker, and R. Kopold, Generation of cir-
cularly polarized high-order harmonics by two-color coplanar
field mixing, Phys. Rev. A 61, 063403 (2000).

[46] D. B. Milosevi¢ and W. Becker, Improved strong-field
approximation and quantum-orbit theory: Application to ion-
ization by a bicircular laser field, Phys. Rev. A 93, 063418
(2016).

[47] C. A. Mancuso, D. D. Hickstein, K. M. Dorney, J. L. Ellis, E.
Hasovi¢, R. Knut, P. Grychtol, C. Gentry, M. Gopalakrishnan,
D. Zusin, F. J. Dollar, X.-M. Tong, D. B. Milosevi¢, W. Becker,
H. C. Kapteyn, and M. M. Murnane, Controlling electron-
ion rescattering in two-color circularly polarized femtosecond
laser fields, Phys. Rev. A 93, 053406 (2016).

[48] V.-H. Hoang, V.-H. Le, C. D. Lin, and A.-T. Le, Retrieval
of target structure information from laser-induced photoelec-
trons by few-cycle bicircular laser fields, Phys. Rev. A 95,
031402(R) (2017).

[49] S. Eckart, M. Kunitski, I. Ivanov, M. Richter, K. Fehre,
A. Hartung, J. Rist, K. Henrichs, D. Trabert, N. Schlott,
L. P. H. Schmidt, T. Jahnke, M. S. Schoffler, A. Kheifets, and
R. Dérner, Subcycle interference upon tunnel ionization by
counter-rotating two-color fields, Phys. Rev. A 97, 041402(R)
(2018).

[50] D. B. MiloSevi¢ and W. Becker, Channel-closing effects in
strong-field ionization by a bicircular field, J. Phys. B: At. Mol.
Opt. Phys. 51, 054001 (2018).

[51] S. Yue, S. Brennecke, H. Du, and M. Lein, Probing dynamical
symmetries by bicircular high-order harmonic spectroscopy
beyond the Born-Oppenheimer approximation, Phys. Rev. A
101, 053438 (2020).

[52] S. Rozen, A. Comby, E. Bloch, S. Beauvarlet, D. Descamps,
B. Fabre, S. Petit, V. Blanchet, B. Pons, N. Dudovich, and Y.
Mairesse, Controlling subcycle optical chirality in the pho-
toionization of chiral molecules, Phys. Rev. X 9, 031004
(2019).

[53] E. Pisanty, G. J. Machado, V. Vicuila-Herndndez, A. Picon,
A. Celi, J. P. Torres, and M. Lewenstein, Knotting fractional-
order knots with the polarization state of light, Nat. Photon.
13, 569 (2019).

[54] L. E. Chipperfield, J. S. Robinson, J. W. G. Tisch, and J. P.
Marangos, Ideal waveform to generate the maximum possible
electron recollision energy for any given oscillation period,
Phys. Rev. Lett. 102, 063003 (2009).

[55] P. B. Corkum, Plasma perspective on strong field multiphoton
ionization, Phys. Rev. Lett. 71, 1994 (1993).

[56] W. Becker, S. P. Goreslavski, D. B. Milosevié, and G. G.
Paulus, The plateau in above-threshold ionization: The key-
stone of rescattering physics, J. Phys. B: At. Mol. Opt. Phys.
51, 162002 (2018).

[57] W. Becker, F. Grasbon, R. Kopold, D. B. Milosevi¢, G. G.
Paulus, and H. Walther, Above-threshold ionization: From
classical features to quantum effects, Adv. At. Mol. Opt. Phys.
48, 35 (2002).

[58] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and
P. B. Corkum, Theory of high-harmonic generation by low-
frequency laser fields, Phys. Rev. A 49, 2117 (1994).

[59] C. Figueira de Morisson Faria and X. Liu, Electron—electron
correlation in strong laser fields, J. Mod. Opt. 58, 1076 (2011).

[60] W. Becker, X. J. Liu, P. J. Ho, and J. H. Eberly, Theories
of photoelectron correlation in laser-driven multiple atomic
ionization, Rev. Mod. Phys. 84, 1011 (2012).

[61] F. A. Cotton, Chemical Applications of Group Theory (Wiley-
Interscience, Hoboken, NJ, 1990).

[62] H. Weyl, Symmetry (Princeton University Press, Princeton, NJ,
1952).

[63] M. Polak and R. Trivers, The science of symmetry in biology,
Trends Ecol. Evol. 9, 122 (1994).

[64] O. E. Alon, V. Averbukh, and N. Moiseyev, Selection rules
for the high harmonic generation spectra, Phys. Rev. Lett. 80,
3743 (1998).

[65] D. B. Milosevi¢, Circularly polarized high harmonics gener-
ated by a bicircular field from inert atomic gases in the p state:
A tool for exploring chirality-sensitive processes, Phys. Rev.
A 92, 043827 (2015).

[66] X. Liu, X. Zhu, L. Li, Y. Li, Q. Zhang, P. Lan, and P. Lu,
Selection rules of high-order-harmonic generation: Symme-
tries of molecules and laser fields, Phys. Rev. A 94, 033410
(2016).

[67] O. Neufeld, D. Podolsky, and O. Cohen, Floquet group theory
and its application to selection rules in harmonic generation,
Nat. Commun. 10, 405 (2019).

[68] M. Busuladzi¢, A. Gazibegovié-Busuladzié, and D. B.
Milosevi¢, Strong-field ionization of homonuclear diatomic
molecules by a bicircular laser field: Rotational and reflection
symmetries, Phys. Rev. A 95, 033411 (2017).

[69] D. Habibovi¢, A. Gazibegovi¢-Busuladzi¢, M. Busuladzié,
A. Cerkié, and D. B. MiloSevi¢, Strong-field ionization of
homonuclear diatomic molecules using orthogonally polarized
two-color laser fields, Phys. Rev. A 102, 023111 (2020).

[70] T. Rook, L. C. Rodriguez, and C. Figueira de Morisson Faria,
Influence of catastrophes and hidden dynamical symmetries
on ultrafast backscattered photoelectrons, Phys. Rev. Res. 6,
023329 (2024).

[71] O. Neufeld, M. E. Tzur, O. Kfir, A. Fleischer, and O. Cohen,
Light’s symmetry, asymmetry, and their role in nonlinear op-
tics and ultrafast phenomena, arXiv:2503.19433.

[72] T. Rook and C. Figueira de Morisson Faria, Exploring sym-
metries in photoelectron holography with two-color linearly
polarized fields, J. Phys. B: At. Mol. Opt. Phys. 55, 165601
(2022).

[73] X. Liu and C. Figueira de Morisson Faria, Nonsequential
double ionization with few-cycle laser pulses, Phys. Rev. Lett.
92, 133006 (2004).

[74] B. Bergues, M. Kiibel, N. G. Johnson, B. Fischer, N. Camus,
K. J. Betsch, O. Herrwerth, A. Senftleben, a. M. Sayler, T.
Rathje, T. Pfeifer, I. Ben-Itzhak, R. R. Jones, G. G. Paulus, F.
Krausz, R. Moshammer, J. Ullrich, and M. F. Kling, Attosec-
ond tracing of correlated electron-emission in non-sequential
double ionization, Nat. Commun. 3, 813 (2012).

[75] C. Huang, W. Guo, Y. Zhou, and Z. Wu, Role of Coulomb re-
pulsion in correlated-electron emission from a doubly excited
state in nonsequential double ionization of molecules, Phys.
Rev. A 93, 013416 (2016).

023118-21


https://doi.org/10.1103/PhysRevLett.119.243201
https://doi.org/10.3390/sym13091566
https://doi.org/10.1103/PhysRevA.61.063403
https://doi.org/10.1103/PhysRevA.93.063418
https://doi.org/10.1103/PhysRevA.93.053406
https://doi.org/10.1103/PhysRevA.95.031402
https://doi.org/10.1103/PhysRevA.97.041402
https://doi.org/10.1088/1361-6455/aaaa36
https://doi.org/10.1103/PhysRevA.101.053438
https://doi.org/10.1103/PhysRevX.9.031004
https://doi.org/10.1038/s41566-019-0450-2
https://doi.org/10.1103/PhysRevLett.102.063003
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1088/1361-6455/aad150
https://doi.org/10.1016/S1049-250X(02)80006-4
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1080/09500340.2010.543958
https://doi.org/10.1103/RevModPhys.84.1011
https://doi.org/10.1016/0169-5347(94)90175-9
https://doi.org/10.1103/PhysRevLett.80.3743
https://doi.org/10.1103/PhysRevA.92.043827
https://doi.org/10.1103/PhysRevA.94.033410
https://doi.org/10.1038/s41467-018-07935-y
https://doi.org/10.1103/PhysRevA.95.033411
https://doi.org/10.1103/PhysRevA.102.023111
https://doi.org/10.1103/PhysRevResearch.6.023329
https://arxiv.org/abs/2503.19433
https://doi.org/10.1088/1361-6455/ac7bbf
https://doi.org/10.1103/PhysRevLett.92.133006
https://doi.org/10.1038/ncomms1807
https://doi.org/10.1103/PhysRevA.93.013416

HASHIM, HABIBOVIC, AND FARIA

PHYSICAL REVIEW A 112, 023118 (2025)

[76] M. Kiibel, C. Burger, N. G. Kling, T. Pischke, L. Beaufore,
1. Ben-Itzhak, G. G. Paulus, J. Ullrich, T. Pfeifer, R.
Moshammer, M. F. Kling, and B. Bergues, Complete charac-
terization of single-cycle double ionization of argon from the
nonsequential to the sequential ionization regime, Phys. Rev.
A 93, 053422 (2016).

[77] A. Chen, M. Kiibel, B. Bergues, M. FE Kling, and
A. Emmanouilidou, Non-sequential double ionization
with near-single cycle laser pulses, Sci. Rep. 7, 7488
(2017).

[78] L. B. Fu, G. G. Xin, D. F. Ye, and J. Liu, Recollision dynamics
and phase diagram for nonsequential double ionization with
circularly polarized laser fields, Phys. Rev. Lett. 108, 103601
(2012).

[79] C. Huang, M. Zhong, and Z. Wu, Anomalous ellipticity depen-
dence in nonsequential double ionization of ArXe, Sci. Rep. 8,
8772 (2018).

[80] W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J.
Liu, X. T. He, S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu,
Y. Cheng, and Z. Z. Xu, Classical aspects in above-threshold
ionization with a midinfrared strong laser field, Phys. Rev.
Lett. 103, 093001 (2009).

[81] Q. Song, H. Li, J. Wang, P. Lu, X. Gong, Q. Ji, K. Lin,
W. Zhang, J. Ma, H. Li, H. Zeng, F. He, and J. Wu, Dou-
ble ionization of nitrogen molecules in orthogonal two-color
femtosecond laser fields, J. Phys. B: At. Mol. Opt. Phys. 51,
074002 (2018).

[82] H. Pang, X. Huang, and C. Huang, Sub-cycle dynamics of
nonsequential double ionization of Ar atom by few-cycle
counter-rotating two-color circularly polarized laser fields, Int.
J. Mod. Phys. B 34, 2050304 (2020).

[83] Z. Ge, L. Bai, X. Su, and K. Liu, Nonsequential double ioniza-
tion channels control of CO, molecules with counter-rotating
two-color circularly polarized laser field by laser wavelength,
Open Phys. 21, 20230114 (2023).

[84] Z. Liu, C. Huang, T. He, J. Liao, Y. Li, and B. Yu, The
Coulomb effect in nonsequential double ionization by counter-
rotating two-color elliptical polarization fields, Phys. Chem.
Chem. Phys. 26, 4572 (2024).

[85] M. Lein, E. K. U. Gross, and V. Engel, Intense-field double
ionization of helium: Identifying the mechanism, Phys. Rev.
Lett. 85, 4707 (2000).

[86] J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I.
Blaga, and L. F. DiMauro, High-energy cutoff in the spectrum
of strong-field nonsequential double ionization, Phys. Rev.
Lett. 96, 133001 (2006).

[87] S. Baier, C. Ruiz, L. Plaja, and A. Becker, Nonsequential
double ionization of the hydrogen molecule in a few-cycle
laser pulse, Phys. Rev. A 74, 033405 (2006).

[88] S. Baier, C. Ruiz, L. Plaja, and A. Becker, Single and double
ionization of the hydrogen molecule in an intense few-cycle
laser pulse, Laser Phys. 17, 358 (2007).

[89] C. Figueira de Morisson Faria, H. Schomerus, X. Liu,
and W. Becker, Electron-electron dynamics in laser-induced
nonsequential double ionization, Phys. Rev. A 69, 043405
(2004).

[90] C. Figueira de Morisson Faria, X. Liu, A. Sanpera, and M.
Lewenstein, Classical and quantum-mechanical treatments of
nonsequential double ionization with few-cycle laser pulses,
Phys. Rev. A 70, 043406 (2004).

[91] C. Figueira de Morisson Faria and M. Lewenstein, Bound-
state corrections in laser-induced nonsequential double ioniza-
tion, J. Phys. B: At. Mol. Opt. Phys. 38, 3251 (2005).

[92] C. Figueira de Morisson Faria, T. Shaaran, X. Liu, and W.
Yang, Quantum interference in laser-induced nonsequential
double ionization in diatomic molecules: Role of alignment
and orbital symmetry, Phys. Rev. A 78, 043407 (2008).

[93] Z. Chen, Y. Liang, and C. D. Lin, Quantitative rescatter-
ing theory of correlated two-electron momentum spectra for
strong-field nonsequential double ionization of helium, Phys.
Rev. A 82, 063417 (2010).

[94] Z. Chen, Y. Wang, T. Morishita, X. Hao, J. Chen, O.
Zatsarinny, and K. Bartschat, Revisiting the recollisional
excitation-tunneling process in strong-field nonsequential dou-
ble ionization of helium, Phys. Rev. A 100, 023405 (2019).

[95] Z. Chen, A. Zhou, T. Morishita, Y. Bai, X. Hao, O. Zatsarinny,
and K. Bartschat, Anticorrelation in nonsequential double ion-
ization of helium, Phys. Rev. A 103, 053102 (2021).

[96] Z. Chen, S. Li, H. Kang, T. Morishita, and K. Bartschat,
Ellipticity dependence of anticorrelation in the nonsequential
double ionization of Ar, Opt. Express 30, 44039 (2022).

[97] T. Shaaran, M. T. Nygren, and C. Figueira de Morisson Faria,
Laser-induced nonsequential double ionization at and above
the recollision-excitation-tunneling threshold, Phys. Rev. A
81, 063413 (2010).

[98] C. Figueira de Morisson Faria, T. Shaaran, and M. T. Nygren,
Time-delayed nonsequential double ionization with few-cycle
laser pulses: Importance of the carrier-envelope phase, Phys.
Rev. A 86, 053405 (2012).

[99] T. Shaaran, C. Figueira de Morisson Faria, and H. Schomerus,
Causality and quantum interference in time-delayed laser-
induced nonsequential double ionization, Phys. Rev. A 85,
023423 (2012).

[100] S. Hashim, R. Tenney, and C. Figueira de Morisson Faria,
Detangling the quantum tapestry of intrachannel interference
in below-threshold nonsequential double ionization with few-
cycle laser pulses, Phys. Rev. A 109, 063110 (2024).

[101] X. L. Hao, J. Chen, W. D. Li, B. Wang, X. Wang, and W.
Becker, Quantum effects in double ionization of argon below
the threshold intensity, Phys. Rev. Lett. 112, 073002 (2014).

[102] A. S. Maxwell and C. Figueira de Morisson Faria, Quantum
interference in time-delayed nonsequential double ionization,
Phys. Rev. A 92, 023421 (2015).

[103] A. S. Maxwell and C. Figueira de Morisson Faria, Controlling
below-threshold nonsequential double ionization via quantum
interference, Phys. Rev. Lett. 116, 143001 (2016).

[104] S. Hashim, D. Habibovi¢, and C. Figueira de Morisson Faria,
folllowing paper, Below-threshold nonsequential double ion-
ization with linearly polarized two-color fields. II. Quantum
interference, Phys. Rev. A 112, 023119 (2025).

[105] G. S. J. Armstrong, M. A. Khokhlova, M. Labeye, A. S.
Maxwell, E. Pisanty, and M. Ruberti, Dialogue on analytical
and ab initio methods in attoscience, Eur. Phys. J. D 75, 209
(2021).

[106] T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D.
Bauer, Low-energy structures in strong field ionization re-
vealed by quantum orbits, Phys. Rev. Lett. 105, 253002
(2010).

[107] X.Y. Lai, C. Poli, H. Schomerus, and C. Figueira de Morisson
Faria, Influence of the Coulomb potential on above-threshold

023118-22


https://doi.org/10.1103/PhysRevA.93.053422
https://doi.org/10.1038/s41598-017-07635-5
https://doi.org/10.1103/PhysRevLett.108.103601
https://doi.org/10.1038/s41598-018-27120-x
https://doi.org/10.1103/PhysRevLett.103.093001
https://doi.org/10.1088/1361-6455/aab198
https://doi.org/10.1142/S021797922050304X
https://doi.org/10.1515/phys-2023-0114
https://doi.org/10.1039/D3CP05536A
https://doi.org/10.1103/PhysRevLett.85.4707
https://doi.org/10.1103/PhysRevLett.96.133001
https://doi.org/10.1103/PhysRevA.74.033405
https://doi.org/10.1134/S1054660X07040111
https://doi.org/10.1103/PhysRevA.69.043405
https://doi.org/10.1103/PhysRevA.70.043406
https://doi.org/10.1088/0953-4075/38/17/014
https://doi.org/10.1103/PhysRevA.78.043407
https://doi.org/10.1103/PhysRevA.82.063417
https://doi.org/10.1103/PhysRevA.100.023405
https://doi.org/10.1103/PhysRevA.103.053102
https://doi.org/10.1364/OE.475497
https://doi.org/10.1103/PhysRevA.81.063413
https://doi.org/10.1103/PhysRevA.86.053405
https://doi.org/10.1103/PhysRevA.85.023423
https://doi.org/10.1103/PhysRevA.109.063110
https://doi.org/10.1103/PhysRevLett.112.073002
https://doi.org/10.1103/PhysRevA.92.023421
https://doi.org/10.1103/PhysRevLett.116.143001
https://doi.org/10.1103/g5wr-2gbz
https://doi.org/10.1140/epjd/s10053-021-00207-3
https://doi.org/10.1103/PhysRevLett.105.253002

BELOW-THRESHOLD NONSEQUENTIAL DOUBLE ...

PHYSICAL REVIEW A 112, 023118 (2025)

ionization: A quantum-orbit analysis beyond the strong-field
approximation, Phys. Rev. A 92, 043407 (2015).

[108] A. S. Maxwell, A. Al-Jawahiry, T. Das, and C. Figueira de
Morisson Faria, Coulomb-corrected quantum interference in
above-threshold ionization: Working towards multi-trajectory
electron holography, Phys. Rev. A 96, 023420 (2017).

[109] A. S. Maxwell and C. Figueira de Morisson Faria, Coulomb-
free and Coulomb-distorted recolliding quantum orbits in
photoelectron holography, J. Phys. B: At. Mol. Opt. Phys. 51,
124001 (2018).

[110] A. C. Bray, A. S. Maxwell, Y. Kissin, M. Ruberti, M. F.
Ciappina, V. Averbukh, and C. Figueira de Morisson Faria,
Polarization in strong-field ionization of excited helium,
J. Phys. B: At. Mol. Opt. Phys. 54, 194002 (2021).

[111] T. Shaaran and C. Figueira de Morisson Faria, Laser-induced
nonsequential double ionization: Kinematic constraints for the
recollision-excitation-tunneling mechanism, J. Mod. Opt. 57,
984 (2010).

[112] C. Figueira de Morisson Faria and B. B. Augstein, Molecular
high-order harmonic generation with more than one active
orbital: Quantum interference effects, Phys. Rev. A 81, 043409
(2010).

[113] T. Shaaran, B. B. Augstein, and C. Figueira de Morisson Faria,
Excitation two-center interference and the orbital geometry
in laser-induced nonsequential double ionization of diatomic
molecules, Phys. Rev. A 84, 013429 (2011).

[114] D. B. MiloSevi¢, A. S. Jasarevi¢, D. Habibovié, E. Hasovic,
A. Cerkié, and W. Becker, Asymptotic methods applied to
integrals occurring in strong-laser-field processes, J. Phys. A:
Math. Theor. 57, 393001 (2024).

[115] D. Habibovi¢, W. Becker, and D. B. Milosevi¢, Complete clas-
sification and additional saddle-point solutions for high-order
above-threshold ionization induced by a strong laser field. II.
Classical considerations, Phys. Rev. A 111, 053110 (2025).

[116] C. Figueira de Morisson Faria and W. Becker, Quantum-orbit
analysis of nonsequential double ionization, Laser Phys. 13,
1196 (2003).

[117] C. Figueira de Morisson Faria, M. Dorr, W. Becker, and W.
Sandner, Time-frequency analysis of two-color high-harmonic
generation, Phys. Rev. A 60, 1377 (1999).

[118] S. V. Popruzhenko, Keldysh theory of strong field ionization:
History, applications, difficulties and perspectives, J. Phys. B:
At. Mol. Opt. Phys. 47, 204001 (2014).

[119] C. Figueira de Morisson Faria, H. Schomerus, and W. Becker,
High-order above-threshold ionization: The uniform approxi-
mation and the effect of the binding potential, Phys. Rev. A
66, 043413 (2002).

[120] D. Bauer, D. B. Milosevi¢, and W. Becker, Strong-field ap-
proximation for intense-laser—atom processes: The choice of
gauge, Phys. Rev. A 72, 023415 (2005).

[121] M. Y. Ivanov, M. Spanner, and O. Smirnova, Anatomy of
strong field ionization, J. Mod. Opt. 52, 165 (2005).

[122] O. Smirnova, M. Spanner, and M. Ivanov, Anatomy of strong
field ionization ii: To dress or not to dress? J. Mod. Opt. 54,
1019 (2007).

[123] L. Torlina, J. Kaushal, and O. Smirnova, Time-resolving
electron-core dynamics during strong-field ionization in
circularly polarized fields, Phys. Rev. A 88, 053403
(2013).

[124] A. S. Maxwell, S. V. Popruzhenko, and C. Figueira de
Morisson Faria, Treating branch cuts in quantum trajectory
models for photoelectron holography, Phys. Rev. A 98, 063423
(2018).

[125] L. Cruz Rodriguez, T. Rook, B. B. Augstein, A. S.
Maxwell, and C. Figueira de Morisson Faria, Forward

and hybrid path-integral methods in photoelectron
holography: Sub-barrier corrections, initial sampling,
and momentum mapping, Phys. Rev. A 108, 033114
(2023).

[126] T. Rook, D. Habibovi¢, L. C. Rodriguez, D. B. Milosevi¢,
and C. Figueira de Morisson Faria, Impact of the contin-
uum coulomb interaction in quantum-orbit-based treatments
of high-order above-threshold ionization, Phys. Rev. A 109,
033115 (2024).

023118-23


https://doi.org/10.1103/PhysRevA.92.043407
https://doi.org/10.1103/PhysRevA.96.023420
https://doi.org/10.1088/1361-6455/aac164
https://doi.org/10.1088/1361-6455/ac2e4a
https://doi.org/10.1080/09500340903414619
https://doi.org/10.1103/PhysRevA.81.043409
https://doi.org/10.1103/PhysRevA.84.013429
https://doi.org/10.1088/1751-8121/ad7212
https://doi.org/10.1103/PhysRevA.111.053110
https://doi.org/10.1103/PhysRevA.60.1377
https://doi.org/10.1088/0953-4075/47/20/204001
https://doi.org/10.1103/PhysRevA.66.043413
https://doi.org/10.1103/PhysRevA.72.023415
https://doi.org/10.1080/0950034042000275360
https://doi.org/10.1080/09500340701234656
https://doi.org/10.1103/PhysRevA.88.053403
https://doi.org/10.1103/PhysRevA.98.063423
https://doi.org/10.1103/PhysRevA.108.033114
https://doi.org/10.1103/PhysRevA.109.033115

