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Abstract
Chest X-ray (CXR) imaging is one of the most widely used diagnostic modalities in clini-
cal practice, encompassing a broad spectrum of diagnostic tasks. Recent advancements have
seen the extensive application of reasoning-based multimodal large language models (MLLMs)
in medical imaging to enhance diagnostic efficiency and interpretability. However, existing
multimodal models predominantly rely on ”one-time” diagnostic approaches, lacking verifiable
supervision of the reasoning process. This leads to challenges in multi-task CXR diagnosis, in-
cluding protracted reasoning, sparse rewards, and difficulties in controlling hallucinations. To
address these issues, we propose CX-Mind, the first generative model to achieve interleaved
”think-answer” reasoning for CXR tasks, driven by curriculum-based reinforcement learning
and verifiable process rewards (CuRL‑VPR). Specifically, we constructed an instruction-tuning
dataset, CX-Set, comprising 708,473 images and 2,619,148 samples, and generated 42,828 high-
quality interleaved reasoning data points supervised by clinical reports. Optimization was
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conducted in two stages under the Group Relative Policy Optimization framework: initially
stabilizing basic reasoning with closed-domain tasks, followed by transfer to open-domain diag-
nostics, incorporating rule-based conditional process rewards to bypass the need for pretrained
reward models. Extensive experimental results demonstrate that CX-Mind significantly out-
performs existing medical and general-domain MLLMs in visual understanding, text genera-
tion, and spatiotemporal alignment, achieving an average performance improvement of 25.1%
over comparable CXR-specific models. On real-world clinical dataset (Rui-CXR), CX-Mind
achieves a mean recall@1 across 14 diseases that substantially surpasses the second-best re-
sults, with multi-center expert evaluations further confirming its clinical utility across multiple
dimensions. CX-Mind establishes a new paradigm for constructing interpretable, and high-
performing medical MLLMs.
Keywords: Medical Reasoning; Multimodal Large Language Models; Chest X-Ray;
Reinforcement Learning; Curriculum Learning

1. Introduction

In the past year alone, the global landscape of large language models (LLMs) has undergone
a ”reasoning revolution”: OpenAI-o1 pioneered the introduction of extended chain-of-thought
(CoT) pathways [1], while models such as DeepSeek-R1 and Gemini 2.5 Pro have continued to
push the boundaries of reasoning capabilities [2, 3]. Empirical evidence has demonstrated that
providing models with sufficient ”reasoning space” enables them to exhibit near-expert-level
proficiency in highly constrained tasks, such as mathematical proofs and structured program-
ming. This momentum has rapidly transcended textual domains, extending into multimodal
scenarios. When visual and linguistic signals are deeply integrated and mapped to a unified
semantic space, CoT reasoning significantly amplifies model capabilities, consistently setting
new benchmarks in cross-modal inference tasks [4].

In the medical domain, particularly in the high-frequency and task-diverse context of chest
X-ray imaging, the development of user-friendly and interpretable AI assistants is imperative.
Clinicians expect iterative feedback tracing evidence chains to conclusions, rather than opaque,
one-shot answers. Only through reviewable and queryable intermediate conclusions can clini-
cal personnel promptly identify and correct errors, ensuring safety and compliance [5, 6]. As
shown in Figure 1(b), some studies have attempted to simulate ”doctor-like reasoning” by
leveraging large-scale chest X-ray report instruction fine-tuning or incorporating CoT prompts
and reasoning process text in medical visual question answering (VQA) [7, 8]. As depicted in
Figure 1(c), other research has employed reinforcement learning to enhance reasoning capabil-
ities, designing rewards at the answer level or relying on additionally trained reward models
[9, 10]. These efforts have significantly improved model performance in medical tasks, validat-
ing the value of CoT reasoning and reinforcement learning. However, existing medical reasoning
multimodal large language models (MLLMs) predominantly adhere to a ”one-shot judgment”
paradigm, delivering final answers after protracted reasoning processes. This approach lacks
verifiable process supervision, making it challenging for clinicians to intervene and correct er-
rors in a timely manner [10, 11]. Furthermore, reliance on reward signals tied to final outcomes
exacerbates the risk of hallucinations [12, 13]. Consequently, there is an urgent need in the
chest X-ray domain for a novel paradigm that supports interleaved reasoning while mitigating
hallucinations.

To address these challenges, we propose CX-Mind: a reasoning-focused multimodal large
language model tailored for chest X-ray diagnostics, with ”think–answer” interleaved reason-
ing as its fundamental interaction unit. This approach ensures interpretability and reviewa-
bility while significantly enhancing multi-task diagnostic performance. Specifically, we adopt
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Curriculum-based RL with Verifiable Process Rewards (CuRL-VPR)
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Q：Choose the findings reflected in view. 
Options:
A) Edema, Lung Opacity, Pleural Effusion 
B) Cardiomegaly, Pneumonia, Enlarged 
Cardiomediastinum 
C) Lung Lesion, Atelectasis, Pleural Other 
D) Consolidation, Atelectasis, Pneumonia

A： A) Edema, Lung Opacity, Pleural 
Effusion

To determine the findings 
reflected in the view, let's 
analyze the image step by 
step: ...
Considering the options:\n- **A) 
Edema, Lung Opacity, Pleural 
Effusion**: The heart is not 
enlarged, so edema is unlikely ...
D) Consolidation, Atelectasis, 
Pneumonia**: There are no signs 
of consolidation, atelectasis, or 
pneumonia.

Based on the analysis, the best 
option that correctly reflects 
the findings is:
B) Cardiomegaly, Pneumonia, 
Enlarged Cardiomediastinum

Base Model

<think>Option A suggests the presence of 
Edema, Lung Opacity, and Pleural Effusion. 
Upon examining the chest X-ray 
image ...</think>  
<answer>A) ✅</answer>  

<think>Option B suggests Cardiomegaly, 
Pneumonia, and Enlarged ... </think>
<answer>B) ❌</answer>
...
<think>D) Consolidation, Atelectasis, 
Pneumonia. Upon reviewing the X-ray, there 
is ...</think>  
<answer>D) ❌</answer>  

Summary: Based on systematic evaluation ..., 
All other options were ruled out due to the 
lack of supporting evidence for their 
proposed conditions.</think>  
<answer>A) ✅</answer>

CX-Mind

Q：Which conditions are detectable in the 
CXRs?

A： Atelectasis, Lung Opacity

The image you provided appears to 
be a chest X-ray, which is a 
medical imaging technique ... Here 
are some examples of conditions 
that can be detected in a chest X-
ray:
1. Pneumonia: A bacterial, viral, 
fungal, or parasitic infection of the 
lungs can cause inflammation ...
...
10. Foreign Body/Inhalable 
Material: Accidental ...
It's important to note that while a 
chest X-ray is a valuable diagnostic 
tool, ... If there is any concern 
about the visual findings, further 
assessment and investigation are 
typically required.

Base Model

<think>Upon examining the chest X-ray images, 
I observe low lung volumes, which are 
consistent with reduced lung expansion. There 
is evidence of ....</think> 
<answer>Differential Diagnoses: [Atelectasis, 
Lung Opacity]</answer>  

<think>Considering Atelectasis ....</think>
<answer>Atelectasis ✅</answer>  

<think>Regarding Lung Opacity, the bibasilar 
opacities ...</think> 
<answer>Lung Opacity ✅</answer>  

<think>
Summary: Based on the systematic 
evaluation ... Thus, Atelectasis and Lung 
Opacity are the final diagnoses.</think> 
<answer>Atelectasis, Lung Opacity</answer>

Evaluation Result

CX-Mind

DI_O

DI_BDI_S

DI_M

DI_M*

DI_S* DI_B*

DI_O*
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FG: Finding Generation
FG_I: Finding Generation 
with Indication
FS: Finding Summary
IG: Impression Generation
IG_I: Impression 
Generation with Indication

DI_O: Disease Identification 
(open)
DI_B: Disease Identification 
(binary)
DI_S: Finding Summary
DI_M: Impression Generation

Figure 1: CX-Mind: An MLLM for interleaved reasoning in Chest X-ray. (a) Task Definition & Data
Collection: A broad suite of chest X-ray interpretation tasks, with more than 30 single-model and multi-modal
public datasets collected. (b) Visual Instruction Tuning: Fine-tuning with large-scale instruction data. (c)
RL with Verifiable Answer Rewards: Reinforcement learning driven solely by outcome (answer) rewards. (d)
CuRL-VPR framework: A curriculum-style RL fine-tuning paradigm that mines real reports to achieve process
supervision. (e) Evaluation Result: Summary of CX-Mind versus numerous baselines, reporting Accuracy for
visual understanding and BERTScore for text generation, and * denotes out-of-domain testing.
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curriculum-based reinforcement learning and verifiable process rewards as the core optimization
strategy, with the overall workflow illustrated in Figure 1.

We first systematically outline three essential capabilities required for a chest X-ray rea-
soning model: Visual Understanding, Text Generation, and Spatiotemporal Alignment. As
illustrated in Figure 1(a), inspired by [7], we decompose each capability into task subsets with
clearly defined input-output structures. We collected over 30 publicly available datasets and,
based on these, utilized DeepSeek-V3 [14] and GPT-4o [15] models to automatically construct
a large-scale instruction dataset, CX-Set, comprising 708,473 images and 2,619,148 samples,
along with 42,828 high-quality interleaved reasoning samples generated under supervision from
real-world reports, providing robust data support for the interleaved reasoning paradigm.

Regarding training, as shown in Figure 1(d), we adopt a four-stage curriculum design.
First, we leverage purely textual medical corpora to pre-train the language model component,
enabling mastery of clinical terminology and reasoning patterns. Second, large-scale chest X-
ray instruction fine-tuning injects vision-language knowledge and establishes robust semantic
alignment for imaging data. Inspired by DeepSeek-R1 [3], reinforcement learning employs a
two-stage training approach: the third stage uses a hybrid of answer-only and interleaved rea-
soning samples for cold-start supervision, allowing the model to learn the interleaved output
format and providing a stable starting point for subsequent policy optimization. The fourth
stage, conducted within the Group Relative Policy Optimization (GRPO) framework, similarly
employs a curriculum-based approach for reinforcement learning. It begins with close-ended
tasks to construct stable and verifiable reward signals, then transitions to open-ended diagnos-
tics to achieve higher-level free reasoning capabilities [16]. Unlike traditional methods that rely
solely on final answer rewards, our proposed verifiable process reward mechanism provides fine-
grained feedback after each think–answer pair and employs conditional incentives, mitigating
the credit assignment problem.

In the evaluation phase, we constructed a comprehensive benchmark covering open-source
datasets such as MIMIC-CXR, CheXpert, and MS-CXR, as well as proprietary data from Rui-
CXR. This benchmark includes over 30K VQA samples, assessing multiple tasks under each
capability domain. As shown in Figure 1(f), experimental results demonstrate that CX-Mind
significantly outperforms existing general-purpose and medical-specialized MLLMs across all
three capability domains, achieving an average performance improvement of 25.1% compared
to chest X-ray-specific models. More importantly, the interleaved output showcased in Figure
1(e) avoids the lengthy and difficult-to-review reasoning chains generated by traditional CoT
approaches. Furthermore, we conducted comprehensive ablation studies and large-scale valida-
tion on the real-world clinical dataset Rui-CXR, accompanied by multidimensional evaluations
from multiple clinical experts.

In summary, the main contributions of this paper can be outlined in six key points:

• We introduce a large-scale chest X-ray VQA dataset, CX-Set, encompassing 23 related
datasets and 13 distinct tasks, with a total of over 2 million data entries. Additionally,
we construct over 40K high-quality interleaved CoT data based on supervised patterns
derived from real-world reports.

• We introduce a novel stage-wise training strategy guided by curriculum learning, which
progressively injects chest X-ray-related medical knowledge and enhances the reasoning
capabilities of MLLMs.

• We establish the first interleaved reasoning paradigm for multimodal medical applica-
tions, which enhances the interpretability of reasoning models and facilitates effective
communication during human interaction.
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• We design an effective rule-based process reward method to cultivate the predefined in-
terleaved reasoning capabilities of MLLMs, with targeted training for both close-ended
and open-ended questions.

• We demonstrate that CX-Mind achieves competitive performance compared to previous
state-of-the-art medical reasoning MLLMs through extensive experiments across multiple
benchmarks.

• We further conduct external validation using a collected real-world clinical dataset, Rui-
CXR, and recruit three clinical experts to comprehensively evaluate CX-Mind across
five distinct metrics to demonstrate its clinical utility.

2. Related Works

2.1. X-ray Foundation Model
Recent advancements in foundation models have revolutionized chest X-ray analysis, driv-

ing significant progress in image generation, disease diagnosis, and radiology report generation.
These innovations leverage cutting-edge techniques such as domain-adapted pretraining and
self-supervised learning to address persistent challenges like data scarcity and model gener-
alizability. For instance, Chambon et al. [17] introduced a vision-language foundation model
that generates highly realistic synthetic chest X-ray images by fine-tuning latent diffusion mod-
els on public datasets. Transitioning to disease diagnosis, Wang et al. [18] developed Ark+,
an open-source model pretrained on diverse datasets with heterogeneous expert annotations.
Ark+ achieves high diagnostic accuracy across multiple chest diseases while supporting privacy-
preserving federated learning, making it a practical tool for clinical use. Complementing this,
Zhang et al. [19] proposed EVA-X, which uses self-supervised learning to extract semantic and
geometric features from unlabeled images. By reducing reliance on annotated data, EVA-X
excels in over 11 detection tasks, advancing the field’s ability to address data scarcity. In the
realm of radiology report generation, Chen et al. [20] introduced CheXagent, trained on the
large-scale CheXinstruct dataset. CheXagent significantly reduces clinicians’ report drafting
time, as validated by the CheXbench benchmark, enhancing clinical efficiency. Similarly, Lee et
al. [21] compared M4CXR, a domain-specific MLLM, with ChatGPT-4o, showing that M4CXR
outperforms in diagnostic accuracy and report generation due to its tailored adaptation to chest
X-ray tasks. However, existing foundation models have not applied advanced techniques for
enhancing reasoning capabilities to chest X-ray tasks. CX-Mind, through a multi-stage cur-
riculum learning strategy, not only improves its ability to handle various fundamental clinical
tasks but also enhances its reasoning capabilities for addressing complex problems.

2.2. Reasoning in Medical MLLMs
Advancements in LLMs have enhanced vision-language models, enabling them to address

complex visual reasoning tasks that demand robust visual perception and advanced cognitive
capabilities. Recent studies have optimized visual encoding strategies to improve the quality
of visual tokens. Techniques such as prompt tuning, supervised fine-tuning (SFT), and rein-
forcement learning (RL) have proven critical in enhancing the reasoning capabilities of MLLMs.
In medical domains, where interpretability is paramount, models like HuatuoGPT-o1 [22] and
Baichuan-M1 [23] emphasize transparent reasoning paths to tackle medical challenges. How-
ever, integrating multimodal medical data for reasoning in MLLMs remains in its early stages.
Well-crafted prompts simulating doctor-like reasoning processes show promise but are limited
in applicability. Leveraging DeepSeek-R1’s success with RL, GRPO employs rule-based re-
ward functions to improve adaptability across diverse medical tasks. For example, Med-R1
[9], utilizing GRPO, demonstrates superior performance across eight medical image modalities
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and five question types, enhancing generalizability and reliability. Similarly, MedVLM-R1 [10]
adopts an RL framework to promote interpretable reasoning paths without reliance on refer-
ence reasoning, mitigating overfitting issues associated with SFT. Despite these advancements,
current models have yet to apply specialized medical reasoning to diagnostic tasks involving
chest X-rays. Our proposed CX-Mind addresses this gap, enabling enhanced interaction with
clinicians through interleaved reasoning processes.

2.3. RL for MLLMs Reasoning
RL has become a powerful approach for enhancing the reasoning capabilities of MLLMs,

which integrate text and image data to perform tasks like visual question answering, image
captioning, and clinical decision support. RL enables MLLMs to refine decision-making by
optimizing reward functions, improving logical coherence and robustness over traditional SFT,
which often struggles with overfitting and limited generalization. In general applications, RL
techniques like GRPO guide MLLMs to focus on relevant visual and textual features, enhanc-
ing performance in complex reasoning tasks. In medical contexts, RL’s impact is particularly
significant, as it supports interpretable and trustworthy reasoning across diverse data sources,
such as medical images (e.g., X-rays, MRIs) and clinical notes. For instance, Lai et al. in-
troduced Med-R1 [9], which leverages GRPO to achieve a 29.94% accuracy improvement over
its base model (Qwen2-VL-2B) across eight medical imaging modalities, outperforming larger
models and enhancing cross-task generalization by 32.06%. Similarly, Pan et al. proposed
MedVLM-R1 [10], which uses RL to foster interpretable reasoning paths without reference rea-
soning, improving accuracy from 55.11% to 78.22% on MRI, CT, and X-ray benchmarks with
minimal training data. Other works, such as Patho-R1 [24] and studies on radiology report
generation, further demonstrate RL’s versatility in enhancing specialized medical reasoning.
Although these methods integrate RL with medical tasks, they rely solely on the final an-
swer as the basis for reward computation. In contrast, we propose a novel rule-based reward
mechanism that encompasses the reasoning process, intermediate results, and the final answer.
This approach is designed to train CX-Mind, thereby reducing hallucinations and enhancing
reasoning accuracy.

3. Methodology

As described in Section 1, traditional CoT reasoning employs a ”think-then-answer” ap-
proach, where the thinking component is often excessively verbose. We illustrate an example
of the proposed interleaved diagnostic reasoning in Figure 2(c). Furthermore, existing multi-
modal reasoning models only apply verifiable reinforcement learning to the final results, lacking
supervision over the reasoning process. To address this, we propose curriculum-based reinforce-
ment learning and verifiable process rewards (CuRL-VPR). Specifically, as shown in Figure 2,
we introduce a fine-tuning paradigm for medical models that integrates SFT and open-ended
reinforcement learning. This paradigm, grounded in a curriculum learning strategy, divides
the training process into four stages. To ensure the verifiability and transferability of rewards,
we exclusively employ rule-based multidimensional evaluators, mitigating the risk of reward
hacking.

In the following, this section will elaborate on the curriculum learning strategy in a step-
wise manner: (1) Section 3.2 introduces multiple metrics to filter high-quality textual medical
data for enhancing foundational medical capabilities, (2) Section 3.3 constructs a large-scale
instruction-following dataset, CX-Set, for knowledge injection, (3) Section 3.4 generates inter-
leaved chain-of-thought data for cold-start training, (4) Section 3.5 implements curriculum-
based reinforcement learning with process supervision.
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Figure 2: CX-Mind training pipeline. (a) Enhancing Foundational Medical Capabilities: We collect public
text corpora and filter them with LLM-based scoring to obtain the CX-Text, then warm up the language-model
component. (b) Injecting Domain-Specific Knowledge: We curate and construct over two million QA pairs to
cultivate professional X-ray interpretation capability. (c) Cultivating the Interleaved Reasoning Pattern: Based
on real medical reports, we prompt GPT-4o to build different forms of interleaved reasoning chains for close-
ended and open-ended questions, thereby cold-starting the model. (d) RL with Process Supervision: The entire
optimization is conducted with GRPO. The warm-up policy model πθ generates interleaved reasoning paths.
Beyond outcome and format rewards, we further reward key reasoning steps.
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3.1. Problem Definition
Unlike conventional approaches that rely on a vision–language model (VLM) to render a

single‑pass judgement, we introduce an interleaved diagnostic reasoning paradigm in which the
model alternates between visual evidence parsing and linguistic inference, performing step‑wise
differential refinement to achieve both higher accuracy and stronger interpretability for chest
X‑ray analysis. Concretely, we construct a multimodal dataset D:

D =
{(

Xi, Ci, Qi, Ri, Si, Ai

)}N

i=1
, (1)

where N is the number of studies, Xi = {x(1)
i , . . . , x

(Ki)
i } are the multi‑view radiographs from

the same examination, Ci denotes the textual context, Qi contains both open-ended and
close-ended questions, Si is the reference report, and Ri =

[
(τ

⟨1⟩
i , ρ

⟨1⟩
i ), . . . , (τ

⟨Ti⟩
i , ρ

⟨Ti⟩
i )

]
is the

ground‑truth interleaved reasoning chain whose elements (τ
⟨s⟩
i , ρ

⟨s⟩
i ) represent the s-th thought

fragment and its accompanying answer snippet guided by Si, and Ai records the definitive
diagnosis and lesion coordinates.

We fine‑tune an open‑source multimodal large language model πθ so that, given only the
images X, context C, and question Q, it auto‑regressively produces the interleaved sequence:

Y = τ ⟨1⟩︸︷︷︸
think

⊕ ρ⟨1⟩︸︷︷︸
answer

⊕ · · · ⊕ τ ⟨s⟩ ⊕ ρ⟨s⟩ = πθ

(
· | X,C,Q

)
, (2)

where each pair (τ ⟨s⟩, ρ⟨s⟩) is supervised by the corresponding ground‑truth step in R. The final
answer fragment ρ⟨s⟩ must jointly realise lesion localisation, differential diagnosis, and report
generation.

We partition the dataset as:

D = DR ∪DA , DR = DRo ∪DRc , (3)

where DR provides complete reasoning chains (R,S,A) and is further split into DRo (open‑ended
queries) and DRc (close‑ended queries), whereas DA contains answer‑only samples without R.
The utilisation strategy of these subsets is detailed in subsequent section.

3.2. Enhancing Foundational Medical Capabilities
To equip the model with foundational medical vocabulary and clinical reasoning capabilities,

we begin our curriculum with a concise, text-only SFT phase. Recent studies have indicated
that such a targeted textual warm-up can significantly facilitate subsequent multimodal optimi-
sation. For instance, HealthGPT reported improved stability and faster convergence following
an initial SFT on clinical documents [25], while BiomedGPT observed notable performance
improvements in medical vision-language tasks when the vision encoder was kept frozen during
an early textual training stage [26]. Motivated by these findings, we restrict updates to the lan-
guage layers in this stage, maintaining all visual parameters frozen in Figure 2(a). This ensures
that the model internalises domain-specific knowledge before visual features are integrated.

The warm‑up corpus comprises roughly 200K English question–answer (QA) pairs auto-
matically translated from eight public resources. In terms of data types, it spans (i) conver-
sational exchanges, (ii) structured case summaries, (iii) instruction‑style prompts, (iv) ency-
clopaedic definitions, and (v) medical examination items. Concretely, we draw from CBLUE,
CMB‑Clin, HuatuoGPT2, CMExam, CMB‑Exam, MedDialog and MedQA. This mixture ex-
poses the model to a broad range of clinical entities, diagnostic cues, therapeutic options, and
general medical reasoning patterns.

Each candidate QA pair is then evaluated by LLMs that serves as an automatic judge. We
adopt a five‑point scale on three enriched axes. Accuracy assesses whether the text faithfully
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reflects medical facts, including symptoms, diagnoses, and treatment plans, and whether it
is consistent with recognised clinical practice. Relevance measures how closely the content
aligns with radiological diagnostic themes, penalising digressions into unrelated specialties.
Clarity evaluates the use of standard medical terminology together with syntactic completeness
and discourse coherence. Pairs scoring below three on any axis are discarded, and a random
portion of the remaining data is independently reviewed by two senior physicians to confirm
the automatic ratings.

3.3. Injecting Domain-Specific Knowledge
3.3.1. Data Collection

Despite advancements in enhancing the model’s capability to address clinical medical prob-
lems, the complexity and diversity of medical tasks still prevent the model from achieving
satisfactory performance in specialized domains. Theoretically, the data heterogeneity across
different domains underscores the urgent need to incorporate domain-specific knowledge into
the model. To lay the foundation for enhancing interleaved reasoning capabilities, we col-
lected 23 publicly available datasets related to chest X-rays, including ChestXray14, CheX-
pert, MIMIC-CXR, PadChest, RSNA, COVIDX-CXR-3, CXR-LT, BRAX, NLM-TB, Candid-
PTX, BIMCV-COVID19, MS-CXR-T, VinDr-CXR, VinDr-PCXR, SIIM, MS-CXR, MIMIC-
III, MIMIC-CXR-VQA, Rad-Restruct, MIMIC-NLE, RadGraph, MIMIC-Diff-VQA, and CXR-
AL14. Each dataset typically contains one or more X-ray images from various perspectives,
corresponding radiology reports, and common disease labels or visual localization coordinates.
The diversity of data types is highly aligned with our objective of embedding X-ray-related
knowledge into the model. Specifically, through comprehensive analysis of these extensive
datasets, we identified three key capabilities that the model should possess: Visual Under-
standing, Text Generation, and Spatiotemporal Alignment.

3.3.2. Construction of the CX-Set
To enhance the model’s performance across the three primary capabilities, we propose an

instruction-fine-tuning dataset named CX-Set, tailored for chest X-rays. Specifically, we cat-
egorized different task types under each capability to comprehensively cover the knowledge
domains in which the model should be trained. (i) Visual Understanding: Disease iden-
tification is the most common task in chest X-ray diagnostics, typically requiring differential
diagnosis of 14 distinct diseases. Building on existing examination data, we constructed both
open-ended and close-ended disease diagnosis questions, focusing on the interpretation and un-
derstanding of images. To diversify question types, close-ended questions are further classified
into binary differentiation, single-disease diagnosis, and co-morbidity diagnosis. (ii) Text Gen-
eration: Writing radiology reports based on X-ray images is a time-consuming and repetitive
task for clinicians. We aim to equip the model with the ability to generate specific sections
of reports based on instructions, thereby alleviating the burden on clinicians. Specific tasks
include findings generation, impression generation, and findings summary. (iii) Spatiotem-
poral Alignment: This encompasses additional core functionalities expected of an ”X-ray
expert”, such as matching images with radiology reports, distinguishing images from different
perspectives, assessing disease progression, and localizing diseases. Collectively, these tasks
comprehensively address the capabilities required of an exceptional chest X-ray expert model.

As shown in Figure 2(b), We systematically constructed the CX-Set dataset based on the
aforementioned tasks. To mitigate the impact of excessive noise on model performance, we
first implemented an automated pipeline to clean the collected public datasets. This process
involved removing data entries lacking images or radiology reports and filtering out cases with
low-resolution images or reports that inadequately described disease conditions. Subsequently,
to enhance data diversity, we designed 50 distinct question templates corresponding to the 13
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previously defined task types. For task types where gold-standard answers could be directly
extracted from the datasets, we adopted a “template-filling” approach for data construction
[7]. Conversely, for tasks where answers could not be directly derived from existing data, we
utilized DeepSeek-V3 [14] to generate standardized answers by summarizing radiology reports
in alignment with specific questions. This automated data construction pipeline significantly
reduced the labor-intensive manual annotation process. Leveraging this pipeline, we developed
a large-scale chest X-ray instruction-fine-tuning dataset comprising 2,619,148 entries, covering
708,473 X-ray images. Each entry consists of three components: a task-specific question, one
or more images, and the corresponding answer. To support enhanced interactive reasoning, we
partitioned the entire dataset D into two subsets: DA and DR, which are used for injecting
foundational X-ray knowledge and training subsequent reasoning capabilities, respectively. The
objective of “knowledge injection” is to maximize the likelihood of generating correct answers
based on the provided images and questions.

LSFT = −E(X,Q,A)∼DA

N∑
n=1

log πθ(an | X,Q, a<n), (4)

Where X, Q, and A represent the image, question, and corresponding answer, respectively. πθ

denotes the policy model under training, n represents the index of the token a decoded by the
model, and N corresponds to the length of A.

3.4. Cultivating Interleaved Reasoning Pattern
3.4.1. Definition of Interleaved Reasoning

Interleaved reasoning in medical MLLMs entails addressing complex, multi-step medical
queries by resolving sub-tasks step-by-step. This approach decomposes a query into a series of
intermediate reasoning steps, each producing a distinct, user-facing ”sub-answer” that repre-
sents a confident, self-contained conclusion or milestone in the reasoning process. For example,
in the diagnosis of a chest X-ray, a sub-answer might identify a specific abnormality, such as a
lung nodule, as a resolved step, guiding subsequent reasoning toward differential diagnoses or
treatment recommendations.

A critical distinction in this framework is between thinking and answering. Thinking refers
to the internal, private reasoning processes—such as hypothesis generation or cross-modal data
integration that are not directly accessible or immediately useful to the user [27]. In contrast,
answering involves generating public, finalized outputs that advance the user’s understanding
or support clinical decision-making. These outputs, presented as sub-answers, are conclusive at
their respective stages and collectively contribute to a comprehensive response. For instance, in
a multi-hop medical query requiring both image analysis and clinical correlation, a sub-answer
might confirm a visual finding (e.g., ”The X-ray reveals pulmonary edema”) before proceeding
to evidence-based differential diagnoses supported by image analysis. By interleaving reason-
ing across modalities and delivering clear, incremental sub-answers, medical MLLMs enhance
transparency, interpretability, and collaboration with clinicians.

Specifically, we designed distinct interleaved reasoning modes based on the type of question
in Figure 3(c). For close-ended questions, CX-Mind systematically evaluates each option to
ensure that it is either retained or excluded based on evidence. Subsequently, it summarizes
the reasoning process and intermediate results to derive the final conclusion. Conversely, when
addressing open-ended questions, CX-Mind first identifies potential diseases based on a prelim-
inary analysis of the image. It then evaluates each of these diseases through an evidence-based
approach, ultimately providing a diagnostic conclusion. Formally, the interleaved reasoning
mode is defined as follows:

Yclose = τ ⟨1⟩ ⊕ ρ⟨1⟩︸ ︷︷ ︸
Option A

⊕ τ ⟨2⟩ ⊕ ρ⟨2⟩︸ ︷︷ ︸
Option B

⊕ · · · ⊕ τ ⟨s⟩ ⊕ ρ⟨s⟩︸ ︷︷ ︸
Final Answer

(4)

10



Yopen = τ ⟨1⟩ ⊕ ρ⟨1⟩︸ ︷︷ ︸
Possible List

⊕ τ ⟨2⟩ ⊕ ρ⟨2⟩︸ ︷︷ ︸
Disease 1

⊕ · · · ⊕ τ ⟨s⟩ ⊕ ρ⟨s⟩︸ ︷︷ ︸
Final Answer

(5)

where Y represents the interleaved reasoning process, and τ and ρ denote the reasoning and
answer segments, respectively, corresponding to Equation 2.

3.4.2. Cold Start for Interleaved Pattern
To enhance the interleaved reasoning capabilities of CX-Mind, we initially employed a cold-

start phase to enable the model to familiarize itself with and master the interleaved reasoning
mode. This approach lays the groundwork for subsequent RL to further elevate reasoning
performance. Specifically, we constructed 42,828 high-quality interleaved CoT data entries,
guided by tailored prompts and supplemented by authentic radiology reports as supervisory
signals. These data encompass complex tasks, including various types of disease identification
and disease progression. The CoT data construction pipeline is outlined as follows:

(i) Report Screening: As authentic radiological findings in reports provide critical sup-
port for addressing complex tasks, we extracted information from the ”Findings” section. How-
ever, the absence of a standardized format in the collected clinical reports posed challenges to
extracting specific sections. To streamline this process, we targeted only reports containing the
strings ”FINDINGS:” and ”IMPRESSION:”, extracting the content between these markers to
serve as supervisory signals for subsequent steps.

(ii) Token Statistics: More detailed radiological findings offer richer supportive evidence
to guide the generation of high-quality CoT data. Accordingly, we utilized the tokenizer from
the Qwen3 series to perform token counting on the radiology reports. Data entries with a
”Findings” section exceeding 120 tokens were selected as the raw data for CoT construction.

(iii) Category Balancing: Statistical analysis revealed an imbalanced label distribution
in the collected data. For instance, co-morbidity diagnosis tasks included a disproportionate
number of entries labeled ”No Finding.” To enhance the robustness of reasoning capabilities, we
employed an automated approach to balance the label distribution across different task types.

(iv) Interleaved Reasoning Generation: Leveraging the advanced language and vision
capabilities of ChatGPT-4o, we generated interleaved reasoning processes for various task types.
Notably, unlike other CoT construction methods, we utilized the authentic radiological findings
extracted earlier as supervisory signals to minimize hallucinations. Specifically, we applied
distinct interleaved reasoning logics tailored to different task types to align with practical
scenarios. The reasoning logic for open-ended questions is illustrated in Figure 3:

• - Open-Ended: Thinking & Initial Differentials −→ Sequential Diagnosis Evaluation −→
Final Conclusion

• - Close-Ended: Sequential Option Evaluation −→ Final Conclusion

• - Binary: Analysis and Conclusion

During the cold-start phase, we employed SFT to enable CX-Mind to adapt to the inter-
leaved reasoning mode by utilizing a hybrid dataset composed of DA and a subset of DR. The
dataset DR was randomly divided into DR1 and DR2, each comprising half of the data. The
former was utilized for cold-start training, with the objective function defined as follows:

LCold-Start = −E(X,Q,C,R)∼DR1

N∑
n=1

log πθ(rn | X,Q,C, r<n), (7)

where C and R represent the instruction output in a specific format and the complete interactive
reasoning process, respectively.
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1. Thinking & Initial Differentials:
<think> Begin your analysis by describing the key visual findings observed on the chest X-ray. Frame your statements as 
direct observations (e.g., "I observe bilateral airspace opacities...", "The cardiomediastinal silhouette appears...", "There 
is evidence of..."). Your description should be based on the information provided in the "Findings" text, but rephrased as 
your own visual assessment.
Format: <think>{think process}</think>
<answer> Present a list of differential diagnoses based on your initial observations. This list must include the provided 
ground truth diagnosis along with several other plausible but incorrect diagnoses (one or two distractors will suffice). 
Format: <answer>Differential Diagnoses: [Diagnosis A, Diagnosis B (Ground Truth), ...]</answer>

2. Sequential Diagnosis Evaluation:
For each diagnosis in your differential list, you will perform one cycle of <think> and <answer>. 
<think> In this block, focus on a single diagnosis. Justify why it should be considered or ruled out by comparing the 
expected radiological signs of this disease with the specific visual evidence you have observed in the image. Your 
reasoning must be grounded in the abnormalities (or lack thereof) that are visible.
Format: <think>{think process}</think>
<answer> After your reasoning, provide a concise conclusion for that single diagnosis. 
Format:
<answer>{Disease Name} ✅</answer> (if confirmed)
<answer>{Disease Name} ❌</answer> (if ruled out)

3. Final Conclusion:
<think> Provide a final, brief thought process summarizing why the selected diagnosis is the most fitting, based on the 
elimination process you just completed and your visual assessment.
Format: <think>{think process}</think>
<answer> The final output must be a single <answer> tag containing only the ground truth diagnosis. Do not include any 
other text, symbols, or explanations in this final tag.
Format: <answer>{Ground Truth Diagnosis1, Ground Truth Diagnosis2, ...}</answer>

Figure 3: Illustration of the interleaved reasoning process required for open-ended questions.

3.5. Curriculum-based Reinforcement Learning with Process Supervision
This section details our curriculum‑based reinforcement learning pipeline. We adopt a

GRPO backbone and extend it with step‑wise process rewards so that the policy is updated not
only on the final answer but after every think–answer pair. Rewards are shaped to capture local
consistency, cross‑turn coherence and medical safety within the interleaved stream. Training
proceeds in two phases: the policy is first stabilised on close-ended questions and then unlocked
for open‑ended queries, enabling a smooth transition from constrained to free‑form reasoning.

3.5.1. GRPO‑Based Optimization Methodology
With the release of Deepseek‑R1, GRPO has been shown to markedly enhance the rea-

soning capabilities of LLMs. Recent studies further demonstrate that the GRPO algorithm
can improve the cross‑modal reasoning ability of medical vision–language models. As a vari-
ant of Proximal Policy Optimization (PPO), GRPO computes the generalized advantage es-
timate using group‑relative rewards. Unlike methods that rely on pretrained reward models,
GRPO evaluates outputs through a verifiable rule‑based procedure. Specifically, for each sam-
ple

(
Xi, Ci, Qi, Ri, Si, Ai

)
in D, the model generates G candidate responses {oi}Gi=1 under the

current policy πθ. Each response receives a corresponding reward ri, and the group of rewards
is normalized to compute the advantage:

Ai =
ri −mean

(
{rj}Gj=1

)
std

(
{rj}Gj=1

) . (6)

The GRPO objective can be written as:

J(θ) = Eq∼P (Q),{oi}

[
1

G

G∑
i=1

min
(
RiAi, clip(Ri, 1− ϵ, 1 + ϵ)Ai

)
− β DKL

(
πθ∥πref

)]
, (7)

where Ri =
πθ(oi|X,C,Q)

πθold
(oi|X,C,Q)

, and its corresponding advantage Ai. The clipping mechanism limits
extreme updates by constraining Ri to the interval [1− ϵ, 1 + ϵ], while the KL‑divergence term
weighted by β penalizes large deviations from the reference policy πref .
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3.5.2. Rule-based Rewards Policy for Interleaved Process
Because GRPO lacks inherent supervision on intermediate steps and pre‑trained reward

models are prone to reward hacking, we define explicit rule‑based signals for both close‑ended
and open‑ended questions in Figure 2(d). To ensure correct parsing of the interleaved response,
we prompt the model during training with the instruction template shown in Figure 4.

Open-Ended:
Please first provide potential diagnoses, then evaluate each one in sequence, and summarize to output the final 
answer. Please think step by step, and conduct your reasoning within <think></think> and share intermediate 
answers within <answer></answer>. 
Use an alternating reasoning format: 
<think></think><answer></answer><think></think><answer></answer>until you reach the final answer.

Close-Ended:
Please review and evaluate each option in sequence, providing judgments for each, and summarize to output the 
final answer. Please think step by step, and conduct your reasoning within <think></think> and share intermediate 
answers within <answer></answer>. 
Use an alternating reasoning format: 
<think></think><answer></answer><think></think><answer></answer>until you reach the final answer.

Binary:
Please include your reasoning process within </think> tags and provide the final answer (output only the option, 
e.g., A)) within <answer> and </answer> tags.

Figure 4: Prompts following specific thinking-answer formats for different types of questions.

• Format Reward Rformat: A trajectory earns 1.0 if every <think>–</think> fragment
is immediately followed by a matching <answer>–</answer> fragment and the sequence
ends with an <answer>, otherwise 0.0.

• Final‑result Reward Rfinal: The final accuracy reward evaluates the correctness of the
last <answer> segment. For close‑ended questions we use a binary reward:

R
(closed)
final =

{
1, if ŷopt = ygold,

0, otherwise,
(8)

where ŷopt is the predicted choice and ygold is the ground‑truth label for a multiple‑choice
question. For open‑ended diagnosis, a single choice is often insufficient because multi-
ple conditions may co‑occur. We therefore employ the micro‑F1 score, which balances
precision and recall over the entire disease set:

R
(open)
final = F1

(
ŷdisease, ygold

)
, (9)

where ŷdisease and ygold denote the predicted and reference disease sets, respectively.

• Process Reward Rproc: To harness real reports for supervising multi‑step reason-
ing and curb hallucinations, we first verify the final answer and only then allocate re-
wards to intermediate steps; blindly rewarding the whole chain often fails because of the
credit‑assignment problem. Instead, our mechanism first verifies the answer and then
assigns an additional bonus to logically consistent and well‑structured reasoning traces.
Inspired by [27], we introduce a conditional, interleaved reward scheme that encourages
correct reasoning. The method is entirely rule‑based and multi‑step, requiring no trained
reward model, which makes it both verifiable and efficient.
Concretely, a process reward is issued for close-ended questions only when three pri-
ors hold: (i) the output format is correct, (ii) the final answer is correct, and (iii)
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the mini‑batch accuracy exceeds the exponential moving average (EMA) of all previ-
ous batches. This design ensures that intermediate supervision is applied only after the
model shows meaningful learning progress. For open-ended questions, conditions (ii) and
(iii) are combined by replacing accuracy with an F1‑score. Formally, let Accb be the
accuracy of mini‑batch b and EMAb−1 the EMA from preceding batches. Only samples
satisfying all conditions receive the additional rewards rthink and rans for their intermediate
reasoning steps and corresponding answers. The conditional process reward is:

Rproc
(
{τ̂ ⟨k⟩i , ρ̂

⟨k⟩
i }s−1

k=1, {τ
⟨k⟩
i , ρ

⟨k⟩
i }s−1

k=1, ŷ, y
)

= I(C)
s−1∑
k=1

rthink
(
τ̂
⟨k⟩
i , τ

⟨k⟩
i

)
+ rans{ρ̂⟨k⟩i , ρ

⟨k⟩
i }s−1

k=1,
(10)

C = Check
(
{τ̂ ⟨k⟩i , ρ̂

⟨k⟩
i }sk=1

)
∧ Judge(ŷ) ∧

(
Accb > EMAb−1

)
, (11)

where I(·) denotes the indicator function, ŷ is the predicted‑answer segment, and Check(·)
and Judge(·) verify the interleaved format and the correctness of the final answer, re-
spectively. For close-ended questions, EMAb−1 is iteratively updated with each batch’s
accuracy. For open-ended questions, the same criterion applies with accuracy replaced
by the batch‑level F1‑score.
For the thinking reward rthink, the ground‑truth reasoning text is drawn verbatim from
authoritative medical reports. We therefore devise a text-similarity-based reward func-
tion: each model‑generated reasoning part is aligned with its ground‑truth counterpart,
after which BLEU‑1 and ROUGE‑L are computed to quantify lexical overlap. Their
weighted average constitutes the reward:

rthink = α · BLEU1

(
τ̂
⟨k⟩
i , τ

⟨k⟩
i

)
+ (1− α) · ROUGEL

(
τ̂
⟨k⟩
i , τ

⟨k⟩
i

)
, (12)

where α ∈ [0, 1] balances the two metrics.
For rans, we adopt an All‑or‑None self‑consistent reward: a fixed coefficient γ is granted
only when every intermediate conclusion fragment is semantically identical to the refer-
ence answer, and no extra score is given if any discrepancy exists.

rans
(
ρ̂
⟨k⟩
i , ρ

⟨k⟩
i

)
=

{
0.2, if ρ̂⟨k⟩i = ρ

⟨k⟩
i , ∀ k ∈ [1, s− 1],

0, otherwise.
(13)

This minimalist rule constrains answer-level accuracy while preventing misleading incen-
tives arising from partial matches.

• Total Reward R: The overall per‑trajectory reward can be formulated as the weighted
sum:

R = λRfomat + (1− λ)Rfinal +Rproc, (14)

Specifically, λ modulates the relative contributions of the format reward and the final
reward, where Rfinal is instantiated as R(closed)

final for close‑ended questions and as R(open)
final for

open‑ended questions.
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3.5.3. Training Strategy
In contrast to fields such as mathematics or formal logic, where the answer space is strictly

defined, the reward landscape of open‑ended medical diagnosis is extremely sparse, which
greatly reduces the efficiency of RL updates. Drawing on curriculum learning [28] and fur-
ther inspired by the approach in [16], we first train the agent on simpler close‑ended tasks, such
as binary judgements and multiple‑choice questions, to establish fundamental reasoning skills.
We then refine the policy on open‑ended diagnostic tasks. The complete reinforcement‑learning
pipeline is summarised in Algorithm 1.

4. Experiments

4.1. Dataset
To demonstrate the broad generalization capabilities of CX-Mind, we evaluated its mul-

timodal chest X-ray abilities and foundational clinical language proficiency. Specifically, for
the three designated capability categories—visual understanding, text generation, and spa-
tiotemporal alignment—we utilized tasks constructed from MIMIC-CXR [29] and CheXpert
[30] as training and in-domain evaluation datasets. For each task category, 2,000 samples
were randomly selected as the test set, with the remainder used for training. Correspondingly,
we established an out-of-domain test set using OpenI [31], following the same data construc-
tion methodology (500 samples per task category), to validate the model’s robust generaliza-
tion. For the evaluation of language proficiency, we selected datasets [32] from five categories
to comprehensively assess CX-Mind, encompassing medical language understanding (CHIP-
CDN, CMeEE), medical language generation (IMCS-V2-MRG), complex medical reasoning
(DDx-basic), medical safety and ethics (MedSafety), and medical knowledge question-answering
(MedHG, Med-Exam). These datasets were randomly split, with 90% of the data allocated for
training and the remaining 10% for testing.

4.2. Evaluation Metircs
For the evaluation metrics, we employed distinct measures tailored to the task types. For

close-ended questions, accuracy (Acc) was used as the primary metric. For open-ended ques-
tions, disease identification tasks were assessed using the Jaccard index and accuracy, with
a threshold of Jaccard > 0.5. For report generation tasks, we adopted standard natural lan-
guage generation metrics, including BLEU, ROUGE-1, ROUGE-2, and ROUGE-L. Addition-
ally, BERTScore was utilized to evaluate semantic similarity. For disease localization tasks, we
used Intersection over Union (IoU) and accuracy, with a threshold of IoU > 0.5.

4.3. Implementation Details
The entire training pipeline, encompassing SFT and RL, was conducted using eight 80GB

H100 GPUs. During the SFT phase, we adopted QwenVL2.5-VL-7B-Instruct as the base model
for CX-Mind, employing LoRA for fine-tuning, with AdamW as the optimizer, a learning rate
of 1e-4 following a cosine decay schedule, a batch size of 16, and bfloat16 mixed precision. For
the RL phase, we employed the EasyR1 framework to achieve efficient VLM training, leveraging
the HybridEngine from veRL. The training utilized the model after SFT for full-parameter fine-
tuning, with FlashAttention-2 implemented to enhance efficiency. The rollout batch size was
set to 64, with a maximum input pixel limit of 4,194,304. The learning rate was configured
at 1e-6, with a weight decay of 0.01 and a KL penalty coefficient β of 0.01, with λ = 0.2
and α = 0.3. For each sample, 10 completions were generated using vLLM with a sampling
temperature of 1.0. RL training was conducted for 1 epoch on close-ended questions and 2
epochs on open-ended questions, totaling approximately 12 hours.
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Algorithm 1 Curriculum GRPO Training with Rule‑Based Process Rewards
Require: Datasets: close‑ended Dclosed and open‑ended Dopen; Policies: initial πθ and refer-

ence policy πref ; GRPO hyper‑parameters: group size G, clipping window ϵ, KL weight
β; Reward weights: format–final trade‑off λ, thinking‑similarity weight α, process bonus
γ; Training steps: Nc (closed phase) and No (open phase).
// Method

1: function TrainPhase(D, N, Closed)
2: Initialise EMA← 0
3: for t = 1 to N do ▷ Iterate Mini‑batches
4: Sample batch B ⊂ D; LPG ← 0
5: for all query q ∈ B do
6: Generate G trajectories {oj}Gj=1 ∼ πθ(o | q)
7: for j = 1 to G do ▷ Rule‑based Reward
8: Rformat←I

(
interleaved format correct

)
9: if Closed then ▷ Final-result Reward
10: Rfinal←I

(
ŷopt = ygold

)
11: else
12: Rfinal←F1(ŷdisease, ygold)
13: end if
14: C←(Rformat = 1) ∧ (Rfinal > 0) ∧ (BatchMetric > EMA)
15: if C then ▷ Process Reward
16: Rproc←

∑s−1
k=1 r

(k)
think + rans

17: else
18: Rproc ← 0
19: end if
20: rj ← λRformat + (1− λ)Rfinal +Rproc

21: end for
22: µ, σ←mean/std({rj}); Aj=(rj − µ)/σ

23: LPG += 1
G

∑G
j=1 min

(
RjAj, clip(Rj, 1− ϵ, 1 + ϵ)Aj

)
24: end for
25: θ←θ+η∇θ

(
LPG/|B| − βDKL(πθ∥πref)

)
26: Update EMA with current batch accuracy (or F1)
27: end for
28: end function

// Training Pipeline
29: Phase 1: close‑ended RL
30: TrainPhase(Dclosed, Nc, Closed = True)
31: Phase 2: Open‑ended RL
32: TrainPhase(Dopen, No, Closed = False)
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4.4. Baselines
To evaluate the performance of CX-Mind, we compare it against the following three cat-

egories of baseline models: (i) General MLLMs: This category includes high-performance
vision-language models designed for general-purpose tasks. We selected both closed-source
models, such as GPT-4o [15] and GPT-4o-mini [15], known for their robust performance across
diverse benchmarks including visual question answering and reasoning, and open-source models,
such as Qwen2.5-VL-7B-Instruct [33]� Qwen2.5-VL-72B-Instruct [33] and DeepSeek-VL2 [34],
which demonstrate advanced capabilities in image and video understanding, document parsing,
and visual agent tasks. (ii) Medical MLLMs: This category comprises vision-language mod-
els pretrained or fine-tuned on medical corpora, tailored for medical imaging and clinical tasks.
We include HuatuoGPT-Vision-7B [22], which leverages medical-specific data for enhanced
clinical understanding, CheXagent [20], designed for chest X-ray analysis. (iii) Medical Rea-
soning MLLMs: This category includes models specifically fine-tuned for advanced medical
reasoning tasks, often incorporating techniques such as GRPO. We selected MedVLM-R1 [10],
optimized for medical reasoning, and ChestX-Reasoner [35], which focuses on reasoning tasks
specific to chest X-ray diagnostics. These baseline models provide a comprehensive comparison
framework, encompassing general-purpose multimodal capabilities, medical-specific pretraining,
and advanced medical reasoning, to rigorously evaluate the performance and generalization of
CX-Mind across diverse chest X-ray tasks.

4.5. Main Results
4.5.1. Performance on Visual Understanding

We first evaluated the performance of CX-Mind in visual understanding capabilities, com-
paring it with other SOTA models. Specifically, close-ended and open-ended disease identifi-
cation tasks were employed to assess the model’s ability to interpret X-ray images and detect
abnormalities. As disease identification is a fundamental skill expected of radiologists, we cat-
egorized the tasks into binary (yes/no) classification, single-disease identification, co-morbidity
identification, and free-form responses without predefined options, aiming to enhance the ro-
bustness of the evaluation results. Furthermore, we conducted evaluations on both in-domain
(MIMIC-CXR, CheXpert) and out-of-domain (OpenI) test sets.

As shown in Figure 5, the results demonstrate that CX-Mind exhibits superior performance
across various disease identification tasks, outperforming a range of large-scale closed-source
and open-source models, such as GPT-4o and Qwen2.5-VL-72B-Instruct, as well as models fine-
tuned on specific X-ray corpora, such as ChestX-Reasoner and CheXagent. This performance
advantage remains consistent in out-of-domain test sets, underscoring CX-Mind’s robust visual
understanding capabilities. Specifically, for binary classification tasks, CX-Mind outperformed
the best baseline model, ChestX-Reasoner, by 15% (82% vs. 67%) and 6% (78% vs. 72%) in
in-domain evaluations. In out-of-domain testing, CX-Mind achieved a 12.2% performance
improvement over GPT-4o. Due to the simplicity of binary tasks, CX-Mind’s advantage is
less pronounced in this context. However, for single-disease and co-morbidity identification
tasks, the performance gap widens significantly. Compared to models fine-tuned on chest X-
ray datasets, CX-Mind achieved an average performance improvement of 19.5% and 21%
over CheXagent and ChestX-Reasoner, respectively, in single-disease identification, and 63.5%
and 21.2% in co-morbidity diagnosis. This highlights CX-Mind’s substantial advantage in
complex tasks such as co-morbidity detection, an area often overlooked by comparable models.
For open-ended tasks, we required all models to output results in a list format, with ChatGPT-
4o used to extract answers to account for non-standardized outputs. The results indicate that
most models experience a significant performance drop when no options are provided, with the
exception of CX-Mind and ChestX-Reasoner. Compared to the latter, CX-Mind achieved
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Figure 5: Comparative study of CX-Mind and various baseline models in visual understanding capabilities. (a)
Performance comparison of different models on a binary disease classification task, where the in-domain test
set is primarily derived from authentic reports in MIMIC-CXR and CheXpert. (b) Performance comparison
of different models on a single-disease identification task. (c) Performance comparison of different models on
a co-morbidity identification task. (d) Performance comparison of different models on an open-ended disease
identification task, evaluated using precision and Jaccard score. (e) Performance comparison of CX-Mind
against mainstream models on an out-of-domain test set (OpenI). (f) Differences in disease categories covered
by in-domain and out-of-domain test sets.
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performance improvements of 3.1% and 17.2% on the MIMIC-CXR and CheXpert test sets,
respectively.

4.5.2. Performance on Text Generation

FG

IG

FS
FG 

(Ind)

IG 
(Ind)

FG
FG 

(Ind)

IG

IN-DOMAIN

OUT-OF-DOMAIN

 a

Q: Detail the radiographic findings evident on these images.

A: Heart size is normal. The mediastinal and hilar contours 
are remarkable for unchanged tortuosity of the thoracic 
aorta. The pulmonary vasculature is normal. Lungs are clear. 
No pleural effusion or pneumothorax is seen. There are no 
acute osseous abnormalities.

Finding Generation (FG)
 b

Q: Summarize the following findings: Heart size is normal.  
Relatively narrow mediastinal contour may be related to  to 
known congenital heart disease.  The lungs are clear without 
pleural  effusion, focal consolidation, or pneumothorax.Mild 
rightward curvature of the  upper thoracic spine noted.

A: No acute intrathoracic process.  Narrowed upper 
mediastinal contour is likely  due to known congenital heart 
disease.

Finding Summary (FS)
 c

Q: Generate an impression summarizing the important 
observations across the images.

A: 1. No acute cardiopulmonary process.  2. Calcified 
nodule in the right anterior neck, most likely of thyroid  
etiology.  If clinically indicated, recommend further 
evaluation with a  nonemergent thyroid ultrasound.

Impression Generation (IG)
 d

Figure 6: Comparative study of CX-Mind and various baseline models in text generation capabilities. (a)
We evaluated five in-domain and three out-of-domain tasks using five report generation metrics, where FG,
IG, FS, FG(Ind), and IG(Ind) denote finding generation, impression generation, finding summarization, finding
generation with indication, and impression generation with indication, respectively, representing five distinct text
generation tasks. (b) Sample data demonstration for the finding generation task. (c) Sample data demonstration
for the impression generation task. (d) Sample data demonstration for the finding summarization task.

Writing radiology reports based on the interpretation of X-ray images is a labor-intensive
and time-consuming repetitive task for clinicians. CX-Mind, through a four-stage progres-
sive training approach, has achieved significant advancements in text generation capabilities.
This progress contributes to alleviating clinicians’ workload and enhancing the diagnostic ef-
ficiency of medical institutions. To evaluate CX-Mind’s text generation performance, we
conducted assessments across five tasks: finding generation, impression generation, and finding
summarization, among others. To ensure a comprehensive evaluation, we not only focused
on traditional metrics for report generation, such as character-level matching (e.g., BLEU,
ROUGE), but also emphasized semantic similarity between the generated outputs and gold-
standard reports. Experimental results in Figure 6 (a) demonstrate that CX-Mind achieves
SOTA performance across various text generation tasks. Specifically, in the finding generation
task, which requires robust anomaly detection capabilities, GPT-4o exhibited commendable
performance compared to other baseline models. However, CX-Mind outperformed GPT-4o,
achieving a 1.6% higher BertScore, 7.6% higher BLEU, and an average 11.1% higher ROUGE
score in the ”Finding Generation” task. In the ”Finding Generation (Indication)” task, CX-
Mind surpassed GPT-4o by 3.6% in BertScore, 21.7% in BLEU, and an average of 22% in
ROUGE scores. These results underscore the model’s precise and reliable report generation ca-
pabilities. For the finding summarization task, CX-Mind outperformed the best-performing

19



baseline model, CheXagent, by an average of 2.2% across all evaluation metrics. Addition-
ally, the impression generation task, which requires high-level summarization of radiological
findings from images, revealed a substantial performance gap between most models and CX-
Mind. Notably, CX-Mind’s generated impressions demonstrated high semantic consistency
with ground-truth reports, achieving BertScores of 90.3% and 80.7% in the ”Impression Gen-
eration” and ”Impression Generation (Indication)” tasks, respectively. Furthermore, on an
out-of-domain test set (OpenI), CX-Mind maintained SOTA performance in common report
generation tasks, showcasing strong generalization capabilities.

4.5.3. Performance on Spatiotemporal Alignment

Image-Text Matching

View Matching

Temporal Classification

 a

Medical MLLMs Medical Reasoning 
MLLMs

General MLLMs 
(open)

General MLLMs 
(close)

CX-Mind Series

 b

 c

View Matching

Image-Text Matching

 d

RSNA

CXR-AL14

—— GPT-4o  —— CX-Mind  —— Ground Truth

Parameters (B)

Figure 7: Comparative study of CX-Mind and various baseline models in spatiotemporal alignment capabilities.
(a) Comparison of average precision between CX-Mind and four other types of MLLMs across image-text match-
ing, view matching, and temporal classification tasks, where circle size represents model parameter scale. (b)
Performance comparison of CX-Mind against mainstream models on an out-of-domain test set. (c) Comparison
of IoU for different models in the disease target detection task. (d) Visualization results of disease localization
range for each model.

In addition to the core capabilities outlined previously, an exceptional ”X-ray expert”
should possess robust temporal and spatial perception abilities. For temporal perception, we
constructed two tasks—image-text matching and disease progression assessment—using the
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Table 1: Comparative study of CX-Mind and various baseline models in foundational language capabilities.
The upper half of the table includes LLMs with large parameter scales, while the lower half includes MLLMs
based on the Qwen2.5-VL-7B-Instruct model.

Model
Medical

Language
Understanding

Medical
Language

Generation

Complex
Medical

Reasoning

Medical
Safety &

Ethics
Medical QA Mean

CHIP-CDN CMeEE IMCS-V2-MRG DDx-basic MedSafety MedHG Med-Exam

o1-mini 85.10 50.50 76.50 83.00 27.50 38.20 52.90 59.10
Llama-3.3-70B-Instruct 98.60 48.80 91.00 84.20 66.90 71.10 66.80 75.34
GPT-4o 91.40 45.90 79.60 84.00 47.10 73.80 64.90 69.53

Qwen2.5-VL-7B-Instruct 88.67 39.86 86.56 75.89 18.00 40.21 16.33 52.22
CX-Mind (stage1) 92.00(+3.33) 46.92(+7.06) 88.86(+2.30) 83.24(+7.35) 64.00(+46.00) 62.94(+22.73) 64.67(+48.34) 71.80(+19.58)

CX-Mind 89.33(+0.66) 41.34(+1.48) 86.73(+0.17) 82.40(+6.51) 49.33(+31.33) 58.47(+18.26) 43.33(+27.00) 64.42(+12.20)

MIMIC-CXR and MS-CXR datasets. The image-text matching task involves selecting radio-
logical examinations from the same patient at different time points to match the corresponding
X-ray image. The disease progression task extracts two sequential radiology reports from the
same patient, utilizing DeepSeek-V3 [14] to assess the progression of a specific critical dis-
ease, thereby evaluating the model’s temporal perception capabilities. For spatial perception,
we evaluated the model through image view classification and disease detection-localization
tasks. Experimental results in Figure 7 (a) reveal a substantial performance gap between
baseline models and CX-Mind in temporal perception tasks. Our model outperformed the
best-performing baseline, ChestX-Reasoner, by an average of 25.8% in image-text matching and
30.2% in disease progression tasks, demonstrating superior temporal perception capabilities. In
the simpler image view classification task, CX-Mind achieved near-perfect performance across
multiple datasets. Compared to high-performing closed-source models GPT-4o and GPT-4o-
mini, CX-Mind surpassed them by 31% and 37.2%, respectively. As shown in Figure 7 (b),
this significant advantage in spatiotemporal alignment was consistent in the out-of-domain
OpenI test set, where CX-Mind achieved 76% and 88.3% performance in image-text matching
and view classification tasks, respectively. Furthermore, CX-Mind exhibited strong target
localization capabilities, enabling the detection of potential anomalies in X-ray images. When
compared to SOTA models with target detection functionality, CX-Mind achieved 38.5% and
14.9% in IoU metrics (Figure 7 (d)) on the out-of-domain RSNA and CXR-AL14 datasets,
respectively.

4.5.4. Performance on Foundational Language Capabilities
Fine-tuning MLLMs for visual tasks often leads to a degradation of their language capa-

bilities. Consequently, we not only focused on CX-Mind’s performance in chest X-ray tasks
but also prioritized maintaining its original language proficiency. This consistency is critical
for addressing complex clinical medical tasks. To this end, we collected seven publicly available
text-only medical datasets, encompassing five key medical scenarios: language understanding,
language generation, complex reasoning, safety and ethics, and knowledge-based question an-
swering. Experimental results show that after the first stage of SFT on text-only medical
data, CX-Mind (stage1) achieved performance comparable to closed-source models o1-mini
and GPT-4o across most benchmarks. Notably, CX-Mind (stage1) outperformed these mod-
els by an average of 3.7% on CHIP-CDN, 10.8% on IMCS-V2-MRG, and 26.7% on MedSafety.
Compared to the SOTA text-only large language model Llama-3.3-70B-Instruct, which has ten
times the parameter count, CX-Mind (stage1) exhibited only slightly inferior performance.
More importantly, CX-Mind maintained robust medical language capabilities even after X-
ray knowledge injection and interleaved reasoning enhancement. Our findings indicate that
CX-Mind outperformed the baseline model Qwen2.5-VL-7B-Instruct and the closed-source
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reasoning model o1-mini by an average of 12.2% and 5.3% across all benchmarks, respectively,
without significant loss of precision compared to CX-Mind (stage1). These results collec-
tively demonstrate that CX-Mind successfully enhances visual reasoning capabilities while
preserving strong foundational language abilities.

4.6. Ablation
In this section, we first conduct a comprehensive ablation to disentangle the contribution

of each training stage. Specifically, we isolate the four sequential modules and quantify their
individual impact on downstream performance. Second, although SFT based on CoT data has
recently become the cold‑start recipe, the relative value of answer‑only samples versus CoT
samples remains under‑explored for medical VLMs. We therefore compare both data regimes.
Besides, we investigate how close‑ended and open‑ended samples shapes RL, revealing distinct
gains that depend on task structure. Finally, we benchmark several RL variants that differ only
in their reward definitions, confirming that a well‑designed reward signal is pivotal to stable
policy improvement.

4.6.1. Training Stages
In order to fully demonstrate the effectiveness of CuRL-VPR, we compare the performance

of SFT stages 1, 2, 3 and RL stages on three types of benchmarks, and the results are shown
in Table 2. To avoid the possible impact of extra reward policies, this part of the ablation
experiments all use RL based on answer-only samples.

The effectiveness and necessity of knowledge injection in SFT. As shown in Table
2, Stage 1 enhances language ability, the model’s text generation capability improves signif-
icantly without sacrificing visual understanding. For example, on the finding summary task,
the average metric increases by 5.3%. After Stage 2 large‐scale image fine‐tuning (Stage 1+2),
the model’s overall performance increases from 27.3% to 51.3%. Further mixing CoT data and
answer‐only data for SFT (Stage 1+2+3) pushes the model to continue improving across all
three capabilities. Moreover, compared to the variant that applies RL without Stage 2 training
(Stage 1+3+4), its overall performance drops significantly to 41.6%, even below the variant
without RL. This demonstrates that large‐scale image fine‐tuning not only establishes a robust
visual‐semantic foundation but also provides a convergent initialization strategy for RL.

Cold‐start RL further improves performance. RL is built upon a strong base model to
comprehensively enhance the VLM’s interleaved reasoning capability. The Deepseek‐R0 style
RL (Stage 1+2+4) achieves an overall score of 54.0%, while with cold‐start, CX‑Mind‑Base
combined with RL further increases by 2.7%. This shows that cold‐start examples provide
a better initialization for policy optimization, accelerating convergence and improving final
performance.

Table 2: Ablation Results on training stages across tasks (higher is better). ”Base” refers to Qwen2.5‑VL‑7B‑Instruct. ”Stage”
denotes the model after applying the corresponding training stage. CX‑Mind‑Base is the model trained through the full pipeline,
where the RL stage uses only outcome (answer) rewards. ”w/” denotes ”with”. ”Ind.” refers to Indication part in clinical report.
”B1” and ”B2” denote two benchmarks for the same task, distinguished by different question formulations. Bold highlights the
best scores in each segment.

Task Dataset Metric Base Stage 1 Stage
1+2

Stage
1+2+3

Stage
1+2+4

Stage
1+3+4

CX‑Mind
-Base

Visual Understanding

Disease Identification (open) CheXpert Accuracy 10.0 11.5 11.5 11.5 11.5 11.0 12.0
Disease Identification (open) Jaccard 11.9 11.5 12.5 21.8 43.0 20.7 43.9
Disease Identification (open) MIMIC‑CXR Accuracy 35.5 35.0 35.0 36.5 35.5 35.0 37.5

Continued on next page
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Continued from previous page
Task Dataset Metric Base S1 S1+2 S1+2+3 S1+2+4 S1+3+4 CX‑Mind

Disease Identification (open) Jaccard 36.2 44.0 44.0 46.8 47.9 44.3 51.5
Disease Identification (binary) CheXpert Accuracy 46.0 59.0 80.5 78.0 74.5 64.5 80.5
Disease Identification (binary) MIMIC‑CXR Accuracy 46.5 61.0 72.0 77.0 77.5 65.0 78.0
Disease Identification (single) CheXpert Accuracy 25.0 35.5 64.0 74.5 71.0 65.5 75.0
Disease Identification (single) MIMIC‑CXR Accuracy 31.0 51.0 83.5 85.5 87.0 69.5 88.0
Disease Identification (multiple) CheXpert Accuracy 25.5 59.5 89.5 93.5 91.0 82.5 95.0
Disease Identification (multiple) MIMIC‑CXR Accuracy 21.0 52.5 84.0 95.0 90.5 62.5 98.0

Text Generation

Finding Generation MIMIC‑CXR BERTScore 82.5 83.1 87.5 87.9 88.6 82.7 88.7
Finding Generation BLEU 7.2 8.2 16.7 17.0 17.3 12.0 19.7
Finding Generation ROUGE‑1 22.4 22.0 37.9 38.4 38.8 31.6 40.7
Finding Generation ROUGE‑2 4.2 4.9 15.6 15.9 16.0 9.8 16.1
Finding Generation ROUGE‑L 8.0 8.3 29.2 27.4 29.1 15.2 28.5
Finding Generation w/ Ind. MIMIC‑CXR BERTScore 84.6 84.8 82.3 88.4 89.1 85.3 90.5
Finding Generation w/ Ind. BLEU 7.0 7.8 29.9 31.6 30.6 10.4 30.4
Finding Generation w/ Ind. ROUGE‑1 21.4 22.9 47.2 48.5 48.5 23.0 49.7
Finding Generation w/ Ind. ROUGE‑2 2.9 2.9 30.5 27.9 33.5 7.7 28.5
Finding Generation w/ Ind. ROUGE‑L 13.3 14.7 37.0 36.4 37.4 23.6 37.4
Finding Summary MIMIC‑CXR BERTScore 85.5 85.6 92.9 93.3 93.4 87.7 93.6
Finding Summary BLEU 7.5 8.4 45.3 46.1 46.8 30.1 47.4
Finding Summary ROUGE‑1 19.3 19.8 60.3 63.4 63.5 40.6 65.1
Finding Summary ROUGE‑2 9.1 9.9 48.6 50.9 51.9 30.7 53.1
Finding Summary ROUGE‑L 17.2 17.7 58.8 61.5 62.0 50.9 63.4
Impression Generation MIMIC‑CXR BERTScore 83.6 83.4 88.0 88.4 89.1 84.1 89.2
Impression Generation BLEU 3.7 5.7 26.6 27.2 26.8 6.8 27.6
Impression Generation ROUGE‑1 10.0 10.7 36.8 38.7 38.1 14.1 44.5
Impression Generation ROUGE‑2 2.0 2.2 27.2 28.2 27.8 15.7 31.8
Impression Generation ROUGE‑L 7.2 5.5 36.3 37.8 37.5 10.6 42.8
Impression Generation w/ Ind. MIMIC‑CXR BERTScore 48.4 48.6 55.1 55.0 55.4 50.1 78.3
Impression Generation w/ Ind. BLEU 2.3 5.3 18.1 17.4 18.1 17.4 18.3
Impression Generation w/ Ind. ROUGE‑1 7.0 7.8 20.5 19.1 21.0 13.9 21.8
Impression Generation w/ Ind. ROUGE‑2 1.1 2.0 13.9 14.2 15.2 7.7 15.2
Impression Generation w/ Ind. ROUGE‑L 5.9 7.1 20.3 19.1 21.9 10.5 21.5

Spatiotemporal Alignment

Image–Text Match B1 Accuracy 47.5 48.0 81.0 92.0 86.0 75.0 90.5
Image–Text Match B2 Accuracy 59.0 60.0 92.5 92.5 94.5 81.5 94.0
Temporal Classification MS‑CXR Accuracy 26.5 35.5 68.5 67.5 70.0 54.5 71.5
Temporal Classification MIMIC‑CXR Accuracy 27.0 43.5 80.5 77.5 79.5 67.0 80.5
View Match B1 Accuracy 48.5 59.5 78.0 96.0 87.0 71.0 92.0
View Match B2 Accuracy 61.0 63.0 63.0 69.0 69.0 64.0 93.5

Average 27.3 31.9+4.6 51.3+24.0 53.5+26.2 54.0+26.7 41.6+14.3 56.7+29.4

4.6.2. Training Data
To demonstrate the effectiveness of each part of the training data, we performed ablations

on both the cold‑start data and the curriculum‑based RL. Similarly, to avoid interference, all
models undergoing RL here use only the final‑answer reward Rfinal.

Cold‑start with answer‑only supervision samples is important. To further validate
the value of answer‑only samples in cold‑start and subsequent reinforcement learning, we also
evaluated the performance when introducing answer‑only data in Stage 3 (variant CX‑Mind
1+2+3) and then applying RL on this basis (variant CX‑Mind 1+2+3+4 (w/ Ans)). As shown
in Figure 8, using only CoT for cold‑start (CX‑Mind 1+2+3 (w/o Ans)) leads to performance
degradation on certain tasks; for example, finding generation drops by 1.61% compared to the
Stage 2 baseline, and after adding RL (CX‑Mind 1+2+3+4 (w/o Ans)), the average accuracy
further decreases by 0.857% and the ROUGE‑L score by 3.33% relative to CX‑Mind‑Base. In
contrast, when we mix in answer‑only samples during Stage 3, the model’s capabilities are
significantly restored and improved.
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Figure 8: Ablation study on the impact of training data for our trained models, including CX-Mind stage1+2,
CX-Mind 1+2+3 (w/o Ans), CX-Mind 1+2+3+4 (w/o Ans), CX-Mind 1+2+3+4 (w/ closed), CX-Mind
1+2+3+4 (w/ open), and CX-Mind-Base. a. Comparison of Visual Understanding capabilities among variants,
covering five disease identification tasks evaluated using Accuracy and Jaccard metrics. b. Comparison of Visual
Understanding capabilities among variants, including three localization and progression tasks. c. Comparison
of Text Generation capabilities among variants, covering five generation tasks.

Close‑ended and open‑ended RL further enhance reasoning capabilities. Compared
to CX‑Mind-Base, omitting either close‑ended or open‑ended data during RL results in degraded
performance. In visual understanding, disease identification Jaccard on open‐ended examples
falls by 6.32% without close‑ended rewards and by 6.81% without open‐ended rewards. In text
generation, the Rouge-L for finding summary decreases by 6.03% when close‑ended rewards
are removed and by 4.74% when open‐ended rewards are omitted. Spatiotemporal alignment
average accuracy drops by 2.1%. Thus, both reward types are crucial for effective RL in
interleaved cross‑modal reasoning.

4.6.3. Different Reward Strategies
We evaluate the effectiveness of different reward configurations in Table 3, using CX-Mind-

Base trained solely on DA as the baseline for comparison.

Direct supervision at every step negatively impacts model performance. Introducing
direct step-wise thinking supervision (Direct Think) reduces the overall average metric from
56.7% to 54.1%, suggesting that unconstrained intermediate supervision may hinder effective
model learning and exacerbate the credit assignment issue.

Two additional process-based rewards are important. Incorporating conditional think-
ing rewards (Base (Think)) slightly raises the average performance to 56.9% (+0.2%). When
further adding process-answer rewards during close-ended RL (w/ r

(open)
ans ) and open-ended RL

stages (w/ r
(close)
ans ), the average metric improves further. Finally, CX-Mind, integrating all

reward strategies and mechanisms, achieves the best overall performance across tasks. These
results highlight the necessity of process-oriented rewards guided by real medical reports for
multimodal interleaved diagnostic reasoning in medical domains.
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Table 3: Reward ablation across tasks (higher is better). ”Direct Think” applies step-wise think rewards unconditionally at every
training step. ”Base (Think)” applies step-wise think rewards conditionally. In addition to (Think), ”w/ r

(open)
ans ” and ”w/ r

(close)
ans ”

are variants that add step‑wise answer rewards during the open‑ended and close‑ended RL stages, respectively. ”CX‑Mind” is the
full model with both process and answer rewards. Bold highlights the best score in each row.

Task Dataset Metric CX‑Mind
-Base

Direct
Think

Base
(Think)

w/
r
(open)
ans

w/
r
(close)
ans

CX‑Mind

Visual Understanding

Disease Identification (open) CheXpert Accuracy 12.0 11.5 12.0 12.0 11.5 13.0
Disease Identification (open) Jaccard 43.9 11.5 42.0 40.3 39.3 46.7
Disease Identification (open) MIMIC‑CXR Accuracy 37.5 44.0 40.0 41.0 40.5 41.5
Disease Identification (open) Jaccard 51.5 44.0 51.0 52.0 51.5 52.3
Disease Identification (binary) CheXpert Accuracy 80.5 77.5 77.0 77.5 77.5 78.0
Disease Identification (binary) MIMIC‑CXR Accuracy 78.0 77.5 78.5 78.5 79.5 82.0
Disease Identification (single) CheXpert Accuracy 75.0 57.5 79.5 80.0 73.0 77.5
Disease Identification (single) MIMIC‑CXR Accuracy 88.0 81.0 85.5 90.0 86.0 87.0
Disease Identification (multiple) CheXpert Accuracy 95.0 94.5 94.5 96.0 94.5 95.5
Disease Identification (multiple) MIMIC‑CXR Accuracy 98.0 96.0 96.0 96.5 97.0 97.0

Text Generation

Finding Generation MIMIC‑CXR BERTScore 88.7 88.1 88.1 87.9 87.6 87.8
Finding Generation BLEU 19.7 15.4 18.6 18.4 18.0 18.7
Finding Generation ROUGE‑1 40.7 36.6 41.3 38.4 41.3 42.6
Finding Generation ROUGE‑2 16.1 13.2 15.9 16.2 15.5 16.9
Finding Generation ROUGE‑L 28.5 26.4 28.2 28.7 26.5 29.0
Finding Generation w/ Ind. MIMIC‑CXR BERTScore 90.5 90.9 89.9 90.8 90.9 91.0
Finding Generation w/ Ind. BLEU 30.4 32.8 33.9 33.4 33.3 34.2
Finding Generation w/ Ind. ROUGE‑1 49.7 51.4 48.9 51.2 52.1 52.0
Finding Generation w/ Ind. ROUGE‑2 28.5 31.6 32.5 33.6 33.5 33.0
Finding Generation w/ Ind. ROUGE‑L 37.4 41.3 39.3 41.7 41.7 41.8
Finding Summary MIMIC‑CXR BERTScore 93.6 93.0 93.1 93.1 93.0 93.1
Finding Summary BLEU 47.4 44.6 46.4 47.8 46.6 47.4
Finding Summary ROUGE‑1 65.1 61.7 65.9 65.2 60.9 66.1
Finding Summary ROUGE‑2 53.1 48.8 54.7 54.6 53.1 55.8
Finding Summary ROUGE‑L 63.4 60.0 63.7 64.4 62.2 64.3
Impression Generation MIMIC‑CXR BERTScore 89.2 90.9 89.9 90.8 90.9 90.7
Impression Generation BLEU 27.6 28.6 30.2 30.5 29.2 27.7
Impression Generation ROUGE‑1 44.5 38.3 44.8 45.0 45.5 45.6
Impression Generation ROUGE‑2 31.8 27.8 31.2 28.7 30.3 32.7
Impression Generation ROUGE‑L 42.8 37.5 43.0 43.2 40.5 43.6
Impression Generation w/ Ind. MIMIC‑CXR BERTScore 78.3 59.8 71.2 76.2 78.8 80.7
Impression Generation w/ Ind. BLEU 18.3 32.9 19.0 14.1 21.3 22.7
Impression Generation w/ Ind. ROUGE‑1 21.8 51.4 20.6 20.0 21.3 21.9
Impression Generation w/ Ind. ROUGE‑2 15.2 32.7 15.9 14.4 16.4 17.4
Impression Generation w/ Ind. ROUGE‑L 21.5 22.7 20.3 19.3 21.9 21.9

Spatiotemporal Alignment

Image–Text Match B1 Accuracy 90.5 91.5 90.5 88.5 90.0 92.0
Image–Text Match B2 Accuracy 94.0 92.0 94.0 94.0 92.0 94.5
Temporal Classification MS‑CXR Accuracy 71.5 71.5 71.0 71.0 72.0 72.0
Temporal Classification MIMIC‑CXR Accuracy 80.5 80.0 80.5 80.0 81.0 80.5
View Match B1 Accuracy 92.0 92.0 95.0 95.0 95.5 95.5
View Match B2 Accuracy 93.5 96.5 98.5 98.5 99.5 99.0

Average 56.7 54.1-2.6 56.9+0.2 57.1+0.4 56.8+0.1 58.2+1.5

4.7. Clinical Evaluation
To comprehensively demonstrate CX‑Mind’s outstanding performance, we conducted an

extensive cross‑center clinical evaluation. Specifically, the Rui‑CXR dataset originates from
4,031 chest X‑ray image reports collected at the Orthopedics Department of Ruijin Hospital,
Shanghai Jiao Tong University, between 2018 and 2023. To protect patient privacy, all images
and medical records were rigorously de‑identified and approved by the hospital ethics commit-
tee. To prevent data leakage, all comparative models, including CX‑Mind, were evaluated via
local deployment.
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Figure 9: Evaluation of different models on Rui‑CXR. (a) Diagnostic performance comparison of different
models on 14 diseases. (b) Comparison of text generation performance of different models on Rui‑CXR.

26



4.7.1. Rui‑CXR Dataset Curation
The Rui‑CXR dataset initially included chest radiographs and accompanying text reports

for 80,648 patients acquired by the standard posterior–anterior (PA) chest X‑ray system at the
Orthopedics Department of Ruijin Hospital, Shanghai Jiao Tong University, from 2018–2023.
To align with the publicly available MIMIC‑CXR dataset, this study focused on 14 common
chest diseases (e.g., lung opacity, pleural effusion, Atelectasis, etc.) featured in MIMIC‑CXR.
We adopted a three‑stage data filtering strategy: first, we performed an image quality screening
on the original 80,648 images, excluding 12,292 samples with severe artifacts or non‑standard
PA views. Next, we applied automated keyword matching on the remaining images and re-
ports to select 8,059 candidate images containing descriptions of the target lesions. Based on
report completeness checks and diagnostic label consistency verification, we further filtered out
4,028 samples with overly brief reports or mismatched labels, resulting in a high‑quality, fully
de‑identified test set of 4,031 images. Since patients may present multiple concurrent diseases,
the total count of disease annotations exceeds 4,031.

Based on these 4,031 high‑quality images, we constructed two real‑world clinical evaluation
tasks: (1) a disease diagnosis task based on recall@k, where we prompt the model to output k
candidate diagnostic labels and quantify the model’s coverage by computing the proportion of
true labels in the k predictions. (2) an open‑ended report generation task, in which the model,
given a single chest X‑ray input, generates a radiology report conforming to clinical writing
standards, and its accuracy and completeness are assessed using quantitative metrics.

4.7.2. Evaluation Result
As shown in Figure 9 (a), CX‑Mind demonstrates remarkable diagnostic capabilities on

Rui‑CXR: its top‑1 diagnostic accuracy for lung opacity reaches 0.53, significantly outper-
forming comparative models by 0.20 on average, and achieves the best performance among
common diseases such as pleural effusion and Atelectasis, fully validating its high coverage in
multi‑candidate diagnostic scenarios. Accuracy declines for conditions such as lung lesion and
pleural other, indicating areas for clinical improvement.

As illustrated in Figure 9(b), CX‑Mind secures the highest scores across all five text genera-
tion tasks: standard Finding Generation BERTScore 0.80 (w/ Ind. 0.82), averaging a 5% gain
over the second‑best models. These results convincingly demonstrate CX‑Mind’s exceptional
ability in fusing chest X‑ray imaging with clinical text for reasoning and high‑quality report
generation.

4.7.3. Expert Assessment
We invited internists and surgeons from multiple medical centers to conduct a subjective

evaluation of 390 chest radiographs drawn from the Rui‑CXR dataset, covering 13 common
thoracic diseases (excluding the ”No Finding” category, 30 cases per disease). The diagnostic
outputs of Qwen2.5‑VL‑7B‑Instruct, CheXagent, ChestX‑Reasoner, and CX‑Mind were com-
pared. All cases were fully de‑identified, and both model names and any potentially identifying
information were masked. The images and model responses were randomly shuffled, yielding a
total of 1,560 independent evaluation samples.

For each case, physicians scored the model answer on five dimensions:

• CRS (Clinical Relevance Score): whether the conclusion matches clinical priorities, ter-
minology conventions, and management recommendations.

• LCS (Logical Coherence Score): whether the reasoning chain is complete and self‑consistent,
free of hallucinations and logical jumps.

• ESS (Evidence Support Score): whether key image or textual evidence is sufficiently and
accurately cited and directly supports the conclusion.
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Figure 10: Expert evaluation of CX‑Mind and baselines by multi‑center clinicians. (a) Physician
scoring workflow interface: the system randomly presents a de‑identified chest radiograph and an anonymized
model output. Following unified guidelines, physicians annotate the image and text, then rate CRS, LCS, ESS,
DCS, and ECS in sequence. (b) Five‑dimension expert‑score heatmap on 13 thoracic diseases from Rui‑CXR.
CX‑Mind attains the highest average score on all dimensions.
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• DCS (Differential Diagnostic Coverage): whether common differential diagnoses are sys-
tematically considered and reasonably ruled out.

• ECS (Explanation Clarity Score): clarity of structure, terminology accuracy, and read-
ability of both the reasoning process and the final answer.

To facilitate efficient and convenient assessment, we developed a user‑friendly web interface
in Figure 10(a). The system randomly presents a de‑identified chest radiograph and an anony-
mous model output. After reading unified guidelines, physicians freely annotate the image
(marking suspicious findings) and the text (highlighting inappropriate statements), compare
them with the displayed ground‑truth answer, and then complete the above five ratings on a
1–5 scale (1 = poor, 5 = excellent). Approximately 10% of the cases are re‑sampled to check
intra‑rater consistency.

CX‑Mind consistently achieved the highest scores across CRS, LCS, ESS, DCS, and ECS,
demonstrating comprehensive superiority from evidence citation to reasoning and final word-
ing. ChestX‑Reasoner ranked at an intermediate level (around 3.5 on average). Its logic and
evidence were acceptable, but differential coverage and clarity lagged behind. CheXagent and
Qwen2.5‑VL‑7B‑Instruct received lower average scores. Notably, clinicians strongly preferred
CX‑Mind’s interleaved reasoning paradigm: they could directly inspect the thought process,
rapidly judge its soundness, and intervene promptly when necessary, thereby shortening the
feedback loop and enhancing trust and adoption of the model’s output.

4.8. Qualitative analysis
Figure 11 presents a visual comparison of CX-Mind’s performance in the co-morbidity iden-

tification task against the closed-source model GPT-4o and the comparable model CheXagent.
The content between green and pink tags represents CX-Mind’s reasoning process and inter-
mediate answers (final answer), respectively, while orange annotations highlight information
that is inconsistent with medical facts or deviates from clinical observations. The figure clearly
demonstrates that both large-scale closed-source models and downstream foundation models
fine-tuned on specific X-ray corpora struggle to avoid hallucinations. Such erroneous or fabri-
cated information hinders the practical application of MLLMs in clinical settings. Specifically,
in Figure 11 (a), CheXagent attributes lung opacity to potential infection or inflammation, yet
the X-ray images lack supporting evidence for these causes (e.g., no typical signs of infection or
inflammation, such as pulmonary consolidation). This results in a diagnosis lacking specificity,
as it fails to systematically rule out conditions based on available imaging evidence. Similarly,
GPT-4o’s reasoning process suggests that increased lung markings may be associated with pul-
monary edema. However, this observation alone is insufficient to confirm pulmonary edema,
as other conditions (e.g., chronic lung disease) may present similar findings. This process lacks
further differential diagnosis to enhance the reliability of the results. In contrast, CX-Mind
adheres to our predefined reasoning paradigm, producing a meticulous and accurate interleaved
reasoning process. This improves its interactivity with clinicians and enhances its potential for
deployment in real-world diagnostic scenarios.

5. Conclusion & Discussion

We have presented CX‑Mind, the first generative chest X-ray diagnostic model that inte-
grates an interleaved reasoning paradigm with structured process rewards within a curriculum
learning reinforcement learning framework, achieving a balance between clinical performance
and interpretability. The training process follows a staged curriculum in which the model first
acquires foundational knowledge via supervised fine‑tuning, then transitions into reinforcement
learning with GRPO—beginning with close‑ended tasks to establish core reasoning skills before
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Question: Which conditions are detectable in the CXRs?

Multi-Disease Identification (open)

CX-Mind:
<think> Upon examining the chest X-ray images, I observe low lung volumes, which are consistent 
with reduced lung expansion. There is evidence of bibasilar opacities, particularly in the left lung 
base, which suggest the presence of atelectasis ......</think> 
<answer>Differential Diagnoses: [Atelectasis, Lung Opacity]</answer> 
<think>Considering Atelectasis, the observed bibasilar opacities in the left lung base and the linear 
opacity in the left lung base are consistent with the radiological presentation of atelectasis. 
Atelectasis often appears as areas of increased density or opacification due to the collapse of alveoli. 
The findings in this image align with the expected appearance of atelectasis. No alternative 
explanation fits the observed evidence.</think> 
<answer>Atelectasis ✅</answer> 
......
<think>Summary: Based on the systematic evaluation of the X-ray findings, the observed bibasilar 
opacities and linear opacity in the left lung base are consistent with the diagnosis of atelectasis and 
the presence of a lung opacity. No alternative diagnoses fit the observed evidence. Thus, Atelectasis 
and Lung Opacity are the final diagnoses.</think> 
<answer>Atelectasis, Lung Opacity</answer>

CheXagent:
<think> The chest X-ray (CXR) reveals low lung volumes and bibasilar 
opacities, which are indicative of atelectasis. This condition is characterized by 
lung collapse or incomplete expansion, leading to reduced lung volumes and 
increased opacification at the lung bases. The absence of pleural effusion or 
pneumothorax further supports the diagnosis of atelectasis. Additionally, the 
bibasilar opacities observed on the CXR suggest lung opacity, which can be 
attributed to atelectasis or other causes such as infection or inflammation. ...... 
In conclusion, the final answer is atelectasis, lung opacity, and lung opacity due 
to atelectasis. </think>
<answer> atelectasis, lung opacity, lung opacity due to atelectasis </answer>

GPT-4o:
<think>Let's analyze each chest X-ray (CXR) systematically to determine any 
diagnostic findings. Image 1: 1. Cardiothoracic Ratio: The heart appears enlarged, 
exceeding half the thoracic width, suggesting cardiomegaly. 2. Lung Fields: The 
lung markings are prominent, particularly in the lower zones, possibly indicating 
pulmonary edema. 3. Costophrenic Angles: These are slightly blunted, possibly 
suggestive of small pleural effusions ......
Image 2: 1. Cardiac Silhouette: The heart appears smaller than in image 1, within 
normal limits. 2. Lung Fields: The right lower lung zone has a radio-opaque area 
(consolidation appearance), suggestive of pneumonia. 3. Costophrenic Angles: 
Blunted on the right side, indicating a small pleural effusion. 4. Lines/Tubes: 
There appears to be a right-sided lower zone line possibly for central venous 
access or a monitoring line (e.g., Swan-Ganz catheter) — appropriate positioning 
to consider ......</think>
<answer>Image 1: Cardiomegaly and possible pulmonary edema. Image 2: Right 
lower lobe pneumonia and right pleural effusion.</answer>

Ground Truth: Atelectasis, Lung Opacity

 a

 b

Question: Choose the answer showing all findings. Options:A) Consolidation, Lung Lesion B) 
Fracture, Pneumonia C) Pleural Effusion, Support Devices D) Pleural Other, Fracture

Multi-Disease Identification (close)

CX-Mind:
<think>Option A suggests the presence of consolidation and a lung lesion. Upon examining the 
chest X-ray, there is no evidence of focal consolidation. The lung fields do not show any distinct 
areas of increased density that would suggest consolidation. Additionally, there is no evidence of a 
lung lesion, such as a solitary nodule or abnormal opacity. This option can be ruled out.</think> 
<answer>A) ❌</answer> 
<think>Option B suggests the presence of a fracture and pneumonia. Upon reviewing the X-ray, 
there is no evidence of a fracture, as the bone structures do not show any discontinuity or abnormal 
alignment. Furthermore, there is no radiological evidence of pneumonia, such as alveolar opacities 
or air bronchograms. This option can be ruled out.</think> <answer>B) ❌</answer> 
......
<think>Summary: After systematically evaluating all options, the X-ray findings strongly support 
the presence of pleural effusion and multiple support devices, making Option C the most 
appropriate choice. All other options were ruled out due to the lack of supporting evidence in the 
image.</think> <answer>C) ✅</answer>

CheXagent:
<think>This chest  X-ray shows mult iple medical  devices (such as 
pacemaker/ICD leads and other support devices), clearly visible in the upper 
chest area. Additionally, there is a blunting of the costophrenic angles, 
especially on the left side, which is suggestive of a pleural effusion. I do not see 
a clear lung mass (rules out Lung Lesion) or overt consolidation (rules out 
Pneumonia and Consolidation). There are no obvious signs of bone 
discontinuity or cortical disruption that would suggest a fracture. Therefore, the 
two observable findings are Pleural Effusion and Support Devices.</think> 
<answer>C) Pleural Effusion, Support Devices</answer>

GPT-4o:
<think> The task is to identify findings on a chest X-ray, focusing on potential 
lung consolidation, lung lesions, fractures, pneumonia, pleural effusion, and the 
presence of support devices. First, we examine the lung fields for signs of 
consolidation, which would appear as areas of increased opacity ...... The X-ray 
shows no such irregularities, suggesting no fractures are present. Regarding 
pneumonia, we search for signs like consolidation or infiltrates. The X-ray lacks 
these features, indicating pneumonia is not present. For pleural effusion, we look 
for fluid accumulation in the pleural space, which would appear as blunting of the 
costophrenic angles or fluid layering. The X-ray shows small bilateral pleural 
effusions, confirming this finding. Finally, we identify support devices on the X-
ray. The presence of a right internal jugular catheter and a left subclavian catheter 
is confirmed ......</think>
<answer> C </answer>

Ground Truth: C) Pleural Effusion, 
Support Devices

Figure 11: Comparative examples of diagnostic responses from GPT-4o, CheXagent and CX-Mind.
(a) Open-ended diagnostic question results. (b) Close-ended diagnostic question results.

advancing to open‑ended diagnostic queries. By interleaving concise thinking and answering
steps, CX‑Mind mirrors the diagnostic workflow of radiologists, allowing each intermediate
conclusion to be visible and verifiable. This design not only improves transparency but also
enables clinicians to intervene if a reasoning path deviates, thereby reducing the risk of com-
pounding errors. The process reward mechanism, which grants additional feedback only when
both format and accuracy criteria are met, encourages the model to refine its reasoning without
overwhelming it with premature supervision.

Extensive evaluations demonstrate that CX‑Mind outperforms a broad spectrum of SOTA
baselines across disease identification, report generation, and spatiotemporal alignment tasks.
In particular, the interleaved outputs yield more focused and succinct chains of thought com-
pared to traditional chain‑of‑thought methods, which often produce verbose and redundant
reasoning. Our ablation studies further confirm that the synergy between interleaved rea-
soning, curriculum reinforcement learning, and process‑based rewards is critical: without this
combined framework, gains in final accuracy come at the expense of coherent intermediate
steps, whereas CX‑Mind achieves consistent improvements in both performance metrics and
clinician trust.

Despite these advances, real‑world deployment will require careful consideration of several

30



factors. The reliance on publicly available datasets may not fully capture the heterogeneity
of clinical imaging protocols or rare pathologies encountered in practice. Moreover, process
rewards depend on ground‑truth annotations that might not reflect every nuance of expert
radiological judgment. Computational demands for generating and evaluating interleaved rea-
soning sequences also present challenges for integration into time‑sensitive clinical workflows.

Future work should explore adaptive reward schedules that respond to task complexity
and incorporate human feedback loops for on‑the‑fly calibration. Extending the interleaved
paradigm and curriculum RL framework to additional imaging modalities and integrating pa-
tient history or laboratory findings could further enhance clinical utility. By grounding model
outputs in structured, inspectable steps and progressing through a carefully designed cur-
riculum, CX‑Mind paves the way for AI systems that collaborate seamlessly with healthcare
professionals, ultimately improving diagnostic accuracy and patient outcomes.
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