

The relative role of drift and selection in shaping the human skull

2

3 Lia Betti¹, François Balloux², Tsunehiko Hanihara³ and Andrea Manica¹

4

5 ¹ Department of Zoology, University of Cambridge, Downing Street,
6 Cambridge CB2 3EJ, UK

7

8 ² MRC Centre for Outbreak Analysis and Modelling, Department of Infectious
9 Disease Epidemiology, Imperial College, St Mary's Campus, Norfolk Place,
10 London W2 1PG, UK

11

³ Department of Anatomy, Saga Medical School, Saga 849-8501, Japan

13

*Corresponding authors: François Balloux fballoux@imperial.ac.uk

15

Andrea Manica am315@cam.ac.uk

16

Length of manuscript: # of text pages: 22; # of tables: 2; # of figures: 2.

18

Abbreviated title: drift and selection in skulls

20

Key words: neutral processes, selection, geographic patterns, skull traits

22

Proofs to: Andrea Manica, Department of Zoology, University of Cambridge,

24

Downing Street, Cambridge CB2 3EJ, UK, Tel: +441223336627;

25

1 **Abstract**

2 Human populations across the world vary greatly in cranial morphology. It is
3 highly debated to what extent this variability has accumulated through neutral
4 processes (genetic drift) or through natural selection driven by climate. By
5 taking advantage of recent work showing that geographic distance along
6 landmasses is an excellent proxy for neutral genetic differentiation, we
7 quantify the relative role of drift versus selection in an exceptionally large
8 dataset of human skulls. We show that neutral processes have been much
9 more important than climate in shaping the human cranium. We further
10 demonstrate that a large proportion of the signal for natural selection comes
11 from populations from extremely cold regions. More generally, we show that, if
12 drift is not explicitly accounted for, the effect of natural selection can be greatly
13 overestimated.

14

1 The extent to which climate has shaped the cranium is still highly
2 debated. While some authors have reported a significant effect of natural
3 selection on some cranial traits (e.g. Beals et al. 1984; Harvati and Weaver
4 2006; Roseman 2004), other studies have failed to find any sizable link
5 between climate and cranial morphology (Betti et al. 2009; Manica et al. 2007;
6 Relethford 2004a; Roseman and Weaver 2007; von Cramon-Taubadel and
7 Lycett 2008). An important difference among these studies is that they deal
8 with different phenotypic metrics that refer either to the size, the shape or the
9 form (size and shape) of the cranium. In general, studies that have looked at
10 size related metrics (either size or form), have detected signatures of selection
11 by climate. For example, the size and breadth of the nasal aperture are often
12 considered under selective pressures related to thermoregulatory breathing
13 strategies (Carey and Steegmann 1981; Franciscus and Long 1991), and a
14 rounded, brachicephalic cranium has been suggested to be an adaptation to
15 cold climate, thanks to the reduced surface:mass ratio (Beals et al. 1984). On
16 the other hand, studies focusing on shape have found very limited links of
17 climate. For example, the shape of the temporal bone has been argued to
18 reflect mostly ancient demography (Smith HF et al. 2007), and similar results
19 have been recently obtained for several other cranial bones, such as the
20 sphenoid, frontal and temporal bone (von Cramon-Taubadel in press). Even in
21 cases where shape has been linked to climate, such as for the shape of the
22 maxilla bone (von Cramon-Taubadel in press), this effect is of limited
23 magnitude.

24

1 A major complication in assessing the effect of climate on craniometric
2 traits, irrespective of the phenotypic metric used, arises from the fact that
3 populations affected by similar climatic conditions are often geographically
4 close to each other. Thus, even when we find shared craniometric
5 characteristics among populations from similar climates, we should not jump
6 to the conclusion that these imply natural selection. Such similarity could
7 simply reflect the recent common ancestry and/or recent genetic exchange
8 due to their proximity.

9

10 A central tenet of population genetics is that, when looking for selection
11 in the spatial distribution of allele frequencies, we have first to account for
12 patterns that can be explained by neutral processes (i.e. drift) (Smouse et al.
13 1986; Sokal et al. 2000). Roseman (2004), and von-Cramon-Taubadel (in
14 press) approached this problem by using populations for which both genetic
15 and phenotypic data were available, using the neutral genetic information to
16 control for the effect of past demography when investigating selection on
17 cranial traits. Harvati and Weaver (2006) also used neutral genetic
18 information, but only compared the fit between phenotypic distance and
19 genetic distances versus the fit with climatic distances rather than explicitly
20 correcting for past demography. A drawback of this approach is that these
21 studies were limited to a very small number of populations (n=10, 12 and 13
22 respectively). Recent work on global genetic datasets has demonstrated a
23 very strong correlation ($R \sim 0.9$) between genetic distance and geographic
24 distance measured along landmasses to mimic human migrations (Manica et
25 al. 2005; Ramachandran et al. 2005; Romero et al. 2008). Such a perfect

1 match implies that, in large scale analyses, geography can be used as an
2 adequate proxy for ancient demography (Lawson Handley et al. 2007). This
3 important finding allows us to investigate the role of drift and selection in large
4 phenotypic datasets without matching genetic datasets. To our knowledge,
5 this approach has only been adopted once by Relethford (2004a), who looked
6 at full and partial Mantel correlations between phenotypic distance,
7 geographic distance and average temperature for 26 populations measured
8 by Howells.

9

10 In this paper, we investigated the role of climate in explaining
11 differentiation among human populations by analyzing a large global dataset
12 of craniometric traits (Hanihara and Ishida 2001; 2005; Manica et al. 2007).
13 We used phenotypic measures that mostly characterize the size and form of
14 the cranium, rather than the shape of individual bones, as the former have
15 been argued in the past to be the most affected by climate. We first test to
16 what extent phenotypic differentiation can be explained by geographic
17 proximity (a proxy for neutral genetic differentiation), by looking at the
18 relationship between pairwise phenotypic distances among populations and
19 pairwise geographic distances (using both a linear Isolation By Distance
20 model and a more realistic non-linear IBD model). We then test for climatic
21 effects that are above and beyond the patterns due to geographic proximity by
22 correlating pairwise phenotypic distances with pairwise differences in three
23 climatic variables (minimum and maximum temperature, and precipitation)
24 after correcting for IBD.

25

1 **MATERIALS AND METHODS**

2

3 **Datasets and distance matrices**

4 We used a large worldwide dataset of 37 morphometric measurements
5 (for a detailed description of the traits see Table S1) from 4,666 male
6 individuals belonging to 105 populations and 1,579 females drawn from 39
7 populations (Fig. 1; for a detailed list see Table S2) (Hanihara and Ishida
8 2001; 2005; Manica et al. 2007). To reduce the possible sampling bias, a
9 minimum sample size of 15 individuals per population was enforced (median
10 size = 36), and only samples younger than 2,000 years were included in the
11 analyses. The raw data were transformed into Z-scores to allow the direct
12 comparison of different cranial traits. Beside analyzing the two sexes
13 separately, we also repeated all our analyses excluding the Inuits, Eskimos
14 and other populations living in regions with minimum annual temperature
15 lower than -20°C, to verify the effect of extreme climatic conditions.

16

17 A matrix of phenotypic distances between populations, based on
18 morphometric traits, was computed following Relethford and Blangero (1990)
19 and Relethford and colleagues (1997). The method treats morphometric data
20 as genetic markers, and derives a matrix of genetic distances (**Q**) from the
21 pooled within-population phenotypic covariance matrices scaled on the traits'
22 heritability (h^2). Because an estimate of heritability is at present available for
23 only a few traits in specific populations (Arya et al. 2002; Carson 2006), we
24 applied a conservative approach and we scaled the covariance matrix to $h^2=1$.
25 Scaling the matrix to $h^2=1$ assumes that the phenotypic covariance matrix is

1 proportional to the additive genetic covariance matrix, an assumption that is
2 supported by previous studies (e.g. Cheverud 1988; Gonzalez-Jose et al.
3 2004). It is possible to scale the phenotypic covariance matrix to an estimated
4 average heritability for cranial traits ($h^2=0.55$ or $h^2=0.36$, Relethford 1994;
5 Weaver et al. 2008), but the result would be a matrix of genetic distance
6 proportional to the previous one, with no effect on the relative genetic distance
7 of populations (Relethford 2004a).

8

9 The default approach is to assume identical population size in every
10 population. An alternative is to take advantage of the linear relationship
11 between distance from Sub-Saharan Africa and within-population mean
12 coalescence time (Liu et al. 2006), which equals twice the effective population
13 size (Balloux et al. 2003; Laporte and Charlesworth 2002). We estimated
14 mean coalescence time, and thus effective sizes, for all populations from our
15 dataset based on their distance from Sub-Saharan Africa, and used these
16 estimates to compute **Q**. Since the results were not affected by whether **Q**
17 was corrected or not for population size, we only present results from the
18 corrected estimates in this paper. We also corrected the phenotypic
19 covariance matrices for the sample size, as suggested by Relethford and
20 colleagues (1997). Since **Q** distances between populations are effectively
21 ratios, we normalized the matrix using an arcsine square root transformation.
22 All computations were performed in R version 2.6.1 (R Development Core
23 Team 2007), and the results were validated using Relethford's software
24 RMET version 5.0 (available at <http://konig.la.utk.edu/relethsoft.html>) on a
25 smaller dataset (our dataset was too large for RMET).

1

2 A matrix of pairwise geographic distances (**D**) was computed between
3 populations. The distance between populations was calculated as the shortest
4 route on landmasses, avoiding areas with a mean altitude higher than 2,000
5 meters over sea level (Manica et al. 2005; Prugnolle et al. 2005). Connections
6 between Africa and Eurasia were through the Sinai Peninsula (no direct exit
7 through the Horn of Africa was allowed), and movement between Eurasia and
8 America through an assumed land bridge on the Bering Strait. Land bridges
9 were also assumed between the Malay Peninsula and Australia, connecting
10 the major Indonesian islands. Three different climatic distance matrices
11 [minimum annual temperature (**Tmin**), maximum annual temperature (**Tmax**)
12 and mean annual precipitation (**P**)] were computed as pairwise Euclidean
13 distances from WORLDCLIM, a set of global climatic GIS layers interpolating
14 data from approximately 15,000 weather stations distributed worldwide
15 (Hijmans et al. 2005).

16

17 **Statistical analysis**

18 We first tested the relationship between phenotypic and geographic
19 distances (**Q** vs **D**). Beside modeling Isolation By Distance (IBD) as a linear
20 relationship (tested with a Mantel test with 10,000 randomizations), we also
21 fitted a non-linear model based on Malecot's coefficient of kinship (Morton
22 1973; Morton 1975; Morton et al. 1971; Relethford 1980; Relethford and Lees
23 1982; Zegura et al. 1995):

24

25 $q_{ij}^2 = A' (1 - e^{-bd})$

1
2 where q_{ij} is the phenotypic distance between populations i and j , A' is the
3 value to which the phenotypic distance tends asymptotically to when
4 geographic distance (d_{ij}) increases, and b is the rate of increase in phenotypic
5 distance. We first found parameters values by non-linear least square
6 optimization, and then tested the significance of the fit (measured in terms of
7 proportion of explained variance, R^2) through a randomization approach
8 analogous to the one used for the Mantel tests. As the non-linear IBD model
9 explained sizably more variance than the linear version (32.1% vs. 19.9% for
10 males, Table 1), all later analyses were based on the non-linear model.

11
12 The relationship between phenotypic distance and the three climatic
13 variables was first estimated directly (i.e. without correcting for geography)
14 with a series of Mantel tests. We then fitted partial Mantel correlations
15 between phenotypic distance and climatic variables after accounting for
16 geography, which acted as a proxy for ancient demography. Thus we first
17 fitted the non-linear IBD relationship and then tested for a linear association
18 with the climatic variables. Significance was assessed by randomizations
19 ($n=10,000$). Tests were one-tailed to maximize the power of detecting positive
20 relationships, which are biologically meaningful. The fit was expressed as
21 percentage of explained variance (R^2), an intuitive measure with an easy to
22 interpret biological meaning, and arguably the most appropriate measure to
23 compare linear and non-linear models. For comparison with previous
24 analyses by other authors, we also provide partial correlation coefficients in

1 supplementary tables (the two measures can not be easily converted to each
2 other).

3

4 The same approach was repeated for individual morphometric traits, in
5 order to test for different responses depending on the cranial features
6 considered. As measurement error is more likely to affect smaller traits, we
7 tested whether our ability to detect a link between climate and individual traits
8 was affected by the size the traits. We tested for such an effect by plotting the
9 magnitude of the trait specific correlation coefficients against the mean size of
10 the traits. We found no relationship between trait size and the strength of the
11 relationship between phenotypic differentiation and geographic distance or
12 climate (Figure S1).

13

1 **RESULTS**

2

3 Under a linear IBD model, geographic distance between pairs of
4 populations is a good predictor of phenotypic differentiation in males as well
5 as in females ($R^2=21\%$ and 25% respectively, Table 1; equivalent conclusions
6 can be drawn using partial correlations, Table S3). A non-linear IBD model
7 does even better, with distance explaining 33% for both males and females
8 (Table 1 & S3; Fig. 2 A&B). Beside explaining the same amount of variance,
9 the parameter values for the IBD models are almost identical in the two sexes
10 (for males: $A'=0.561\pm0.003$, $b=0.00030\pm0.00001$; for females:
11 $A'=0.575\pm0.006$, $b=0.00039\pm0.00002$). This relationship is robust to the
12 removal of populations from extreme climates (the Inuits, Eskimos and other
13 populations living in regions with minimum annual temperature lower than -
14 20°C ; Table 1). The relationship remains strong and significant even if we first
15 corrected for climatic variables ($R^2\geq26.5\%$, $p<0.001$ for males, and $R^2\geq27.0\%$,
16 $p<0.001$ for females).

17

18 Minimum and maximum temperature (but not precipitation) are also
19 significant predictors of phenotypic differentiation between populations, but
20 their explanatory power (R^2 ranging from 11% to 18%) is much lower than
21 geography, and is largely driven by populations from extremely cold climates
22 (Table 1). With the exception of maximum temperature in females, excluding
23 such populations leads to a sizable reduction in R^2 (Table 1). The relationship
24 with climate becomes even weaker if we account for isolation by distance
25 (Table 1). As geographic distance and climatic differences are collinear, not

1 accounting for isolation by distance leads to overestimating the effect of
2 climate on phenotypic differentiation among populations.

3

4 The relative effect of climate and geographic distance in determining
5 phenotypic differentiation differs greatly for individual cranial traits (Table 2 &
6 S4). Most of the traits show a significant correlation with minimum and/or
7 maximum temperature, while only two of them are significantly but very
8 weakly associated to annual precipitation. The correlation with climate always
9 decreases after correcting for the IBD pattern. The traits showing a stronger
10 correlation with climate are mainly related to facial breadth (e.g. M11, AUB),
11 or to the dimensions of the orbits and nasal aperture (e.g. OBH, NLA, NPH).

12

1 **DISCUSSION**

2

3 Isolation By Distance proved a very good predictor of between-
4 populations phenotypic differentiation, confirming Relethford's findings on a
5 smaller dataset (2004b). Interestingly, the slope we estimated for the non-
6 linear IBD function is almost identical to the value obtained by Relethford
7 (2004b) on a different dataset, suggesting that our reconstruction of neutral
8 differentiation is robust and not dependent on the populations used in the
9 analysis. Minimum and maximum temperature, when considered in isolation,
10 showed a moderate link with phenotypic differentiation. Climatic variables had
11 much weaker explanatory power than geographic distance and, more
12 importantly, their role was much reduced once we accounted for the
13 underlying isolation by distance pattern. This important result illustrates that,
14 since populations that are close by also tend to experience similar climatic
15 conditions, it is essential to account explicitly for isolation by distance to avoid
16 overestimating the effect of climate.

17

18 It is intriguing that both Roseman (2004) and Relethford (2004a), on
19 the contrary, found an increase in correlation with climate after accounting for
20 the neutral genetic pattern, even though both these studies use the same
21 measurements considered in our work. Both works are also directly
22 comparable with the present one, as they do not use size-corrected data,
23 analyzing form and not shape. However, their studies were characterized by
24 rather small sample sizes (10 and 26 populations, respectively) compared to
25 our study (105 populations for male and 39 for females). Also, there might be

1 limitations in the way neutral genetic patterns were modeled in these two
2 studies. In the case of Roseman (2004), perfectly matched samples for the
3 genetic and morphometric traits were not available, and genetic data from
4 neighboring populations had to be used instead. Relethford (2004a) used
5 geography as proxy for neutral genetics as we did in our analysis, but only
6 modeled isolation by distance as a linear function. In our dataset, a non-linear
7 saturating function did much better, and this also applies to the dataset used
8 by Relethford [as proven by Relethford himself (2004b) in another analysis of
9 that dataset]. Until appropriate datasets containing matching genotypic and
10 phenotypic measurements become available, extracting the neutral
11 information (i.e. drift) from the traits themselves (as illustrated in this paper) is
12 a viable and desirable option, preferably using more realistic, non-linear IBD
13 functions.

14

15 It is interesting that excluding populations from extremely cold regions
16 erases the correlation with minimum temperature and reduces the correlation
17 with maximum temperature. Our results confirm Roseman's (2004)
18 observation that his one population from cold regions seemed to differ
19 significantly from the other nine populations from temperate and tropical
20 climates. Why should populations from extreme cold regions differ so strongly
21 from the rest of the world? One possibility is that temperatures below a certain
22 threshold lead to a plastic response in cranial development, but previous work
23 has shown very limited influence of climate on most measurements during the
24 growth and development of the cranium (Relethford 2004a; Sparks and Jantz
25 2002). Another possibility is that our climatic variables are somewhat crude,

1 and thus only allow us to pick up a link with climate only for extreme
2 temperatures, when the magnitude of the effect is large enough to be
3 distinguished from the noise. Alternatively, it is possible that behavioural
4 adaptation, possibly through cultural evolution, is effective in buffering the
5 effect of cold climate up to a certain threshold, beyond which selective
6 pressure becomes strong enough to cause the climate related changes in
7 phenotype detected by our study as well as several others (e.g. Beals et al.
8 1984; Harvati and Weaver 2006; Roseman 2004).

9

10 The fact that we detected a role for climate in driving between-
11 population differentiation is not at odds with our recent finding on the same
12 dataset that climate does not affect within-population phenotypic diversity
13 (Betti et al. in press). Between-population differentiation and within-population
14 diversity can be affected in different ways, depending on the nature of the
15 selective forces. For example, unless directional selection is exceptionally
16 strong, it could shift a trait's mean value without affecting within-population
17 variability. This would translate in an effect of climate on between-population
18 differentiation without leaving any signature on global patterns of within-
19 population phenotypic diversity.

20

21 Looking at single traits, the highest correlations with climate are
22 observed for measurements of cranial and facial breadth, and measurements
23 describing the nasal and orbital apertures. It has been suggested that the
24 nasal index responds to selective pressures related to thermoregulatory
25 breathing strategies (Carey and Steegmann 1981; Franciscus and Long

1 1991). A thermoregulatory hypothesis has also been proposed to explain the
2 pattern of brachycephalization in different populations, and the breadth of the
3 cranium has been shown to highly contribute to the degree of
4 brachycephalization of the cranium (Beals et al. 1984).

5

6 It is worth stressing again that considering the whole set of traits and
7 excluding populations living in extremely cold areas eliminates the correlation
8 with minimum temperature and strongly reduces the correlation with maximum
9 temperature. Thus, for populations that do not come from extremely cold
10 climates, cranial measurements can be considered as good neutral markers.
11 The excavation of archeological sites, and specifically burial sites, has
12 provided plenty of specimens now stored in many museums and university
13 collections. These specimens cover in space and time most of human history
14 and prehistory. Despite the recent improvements in the extraction and
15 sequencing of ancient DNA, we are still far from having a transversal view of
16 human genetic variability over the millennia similar to the one available for
17 skeletal remains. Given our results, skeletal morphology can still play a key
18 role in studies of evolution of populations over time, adaptation to local
19 climate, or for reconstructing the affinities of extinct populations with coeval or
20 modern ones.

21

1 **ACKNOWLEDGMENTS**

2

3 LB was supported by a travelling studentship from the University of Milan. FB
4 acknowledges grant support from the BBSRC. AM acknowledges financial
5 support from the Leverhulme Trust. We thank two anonymous referees for
6 providing several very helpful suggestions.

7

1 LITERATURE CITED

2

3 Arya R, Duggirala R, Comuzzie AG, Puppala S, Modem S, Busi BR, and Crawford
4 MH. 2002. Heritability of anthropometric phenotypes in caste populations of
5 Visakhapatnam, India. *Human Biology* 74(3):325-344.

6 Balloux F, Lehmann L, and de Meeus T. 2003. The Population Genetics of Clonal and
7 Partially Clonal Diploids. *Genetics* 164:1635-1644.

8 Beals KL, Smith CL, and Dodd SM. 1984. Brain Size, Cranial Morphology, Climate,
9 and Time Machines. *Current Anthropology* 25(3):301-330.

10 Betti L, Balloux F, Hanihara T, and Manica A. 2009. Distance from Africa, not
11 climate, explains within-population phenotypic diversity in humans.
12 *Proceedings of the Royal Society B Biological Sciences* 276:809-814

13 Betti L, Balloux F, Hanihara T, and Manica A. in press. Distance from Africa, not
14 climate, explains within-population phenotypic diversity in humans.
15 *Proceedings of the Royal Society B Biological Sciences*.

16 Carey JW, and Steegmann AT. 1981. HUMAN NASAL PROTRUSION,
17 LATITUDE, AND CLIMATE. *American Journal of Physical Anthropology*
18 56(3):313-319.

19 Carson EA. 2006. Maximum likelihood estimation of human craniometric
20 heritabilities. *American Journal of Physical Anthropology* 131(2):169-180.

21 Cheverud JM. 1988. A Comparison of Genetic and Phenotypic Correlations.
22 *Evolution* 42(5):958-968.

23 Franciscus RG, and Long JC. 1991. Variation in Human Nasal Height and Breadth.
24 *American Journal of Physical Anthropology* 85(4):419-427.

25 Gonzalez-Jose R, Van der Molen S, Gonzalez-Perez E, and Hernandez M. 2004.
26 Patterns of phenotypic covariation and correlation in modern humans as
27 viewed from morphological integration. *American Journal of Physical
28 Anthropology* 123(1):69-77.

29 Hanihara T, and Ishida H. 2001. Os incae: variation in frequency in major human
30 population groups. *Journal of Anatomy* 198:137-152.

31 Hanihara T, and Ishida H. 2005. Metric dental variation of major human populations.
32 *American Journal of Physical Anthropology* 128(2):287-298.

33 Harvati K, and Weaver TD. 2006. Human cranial anatomy and the differential
34 preservation of population history and climate signatures. *Anatomical Record
35 Part a-Discoveries in Molecular Cellular and Evolutionary Biology*
36 288A(12):1225-1233.

37 Hijmans RJ, Cameron SE, Parra JL, Jones PG, and Jarvis A. 2005. Very high
38 resolution interpolated climate surfaces for global land areas. *International
39 Journal of Climatology* 25(15):1965-1978.

40 Laporte V, and Charlesworth B. 2002. Effective Population Size and Population
41 Subdivision in Demographically Structured Populations. *Genetics* 162:501-
42 519

43 Lawson Handley LJ, Manica A, Goudet J, and Balloux F. 2007. Going the distance:
44 human population genetics in a clinal world *Trends in Genetics* 23(9):432-439.

45 Liu H, Prugnolle F, Manica A, and Balloux F. 2006. A geographically explicit genetic
46 model of worldwide human-settlement history. *American Journal of Human
47 Genetics* 79(2):230-237.

1 Manica A, Amos W, Balloux F, and Hanihara T. 2007. The effect of ancient
2 population bottlenecks on human phenotypic variation. *Nature* 448(7151):346-
3 U346.

4 Manica A, Prugnolle F, and Balloux F. 2005. Geography is a better determinant of
5 human genetic differentiation than ethnicity. *Human Genetics* 118(3-4):366-
6 371.

7 Morton NE. 1973. *Genetic structure of populations*. Honolulu: University of Hawaii
8 Press.

9 Morton NE. 1975. Kinship, information and biological distance. *Theoretical
10 Population Biology* 7:246-255.

11 Morton NE, Yee S, Harris DE, and Lew R. 1971. Bioassay of kinship. *Theoretical
12 Population Biology* 2:507-524.

13 Prugnolle F, Manica A, and Balloux F. 2005. Geography predicts neutral genetic
14 diversity of human populations. *Current Biology* 15(5):R159-R160.

15 R Development Core Team. 2007. *R: A language and environment for statistical
16 computing*. Version 2.6.1. Vienna: R Foundation for Statistical Computing.

17 Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, and
18 Cavalli-Sforza LL. 2005. Support from the relationship of genetic and
19 geographic distance in human populations for a serial founder effect
20 originating in Africa. *Proceedings of the National Academy of Sciences of the
21 United States of America* 102(44):15942-15947.

22 Relethford JH. 1980. Bioassay of kinship from continuous trait. *Human Biology*
23 52:689-700.

24 Relethford JH. 1994. Craniometric Variation among Modern Human-Populations.
25 *American Journal of Physical Anthropology* 95(1):53-62.

26 Relethford JH. 2004a. Boas and beyond: Migration and craniometric variation.
27 *American Journal of Human Biology* 16(4):379-386.

28 Relethford JH. 2004b. Global patterns of isolation by distance based on genetic and
29 morphological data. *Human Biology* 76(4):499-513.

30 Relethford JH, and Blangero J. 1990. Detection of Differential Gene Flow from
31 Patterns of Quantitative Variation. *Human Biology* 62(1):5-25.

32 Relethford JH, Crawford MH, and Blangero J. 1997. Genetic drift and gene flow in
33 post-famine Ireland. *Human Biology* 69(4):443-465.

34 Relethford JH, and Lees FC. 1982. The use of quantitative traits in the study of human
35 population structure. *Yearbook of Physical Anthropology* 25:113-132.

36 Romero IG, Manica A, Goudet J, Handley LL, and Balloux F. 2008. How accurate is
37 the current picture of human genetic variation? *Heredity*.

38 Roseman CC. 2004. Detecting interregionally diversifying natural selection on
39 modern human cranial form by using matched molecular and morphometric
40 data. *Proceedings of the National Academy of Sciences of the United States of
41 America* 101(35):12824-12829.

42 Roseman CC, and Weaver TD. 2007. Molecules versus morphology? Not for the
43 human cranium. *Bioessays* 29(12):1185-1188.

44 Smith HF, Terhune CE, and CA L. 2007. Genetic, geographic, and environmental
45 correlates of human temporal bone variation. *American Journal of Physical
46 Anthropology* 134:312-322.

47 Smouse PE, Long JC, and Sokal RR. 1986. Multiple-regression and correlation
48 extensions of the Mantel test of matrix correspondence. *Systematic Zoology*
49 35(4):627-632.

1 Sokal RR, Oden NL, Rosenberg MS, and Thomson BA. 2000. Cancer incidences in
2 Europe related to mortalities, and ethnohistoric, genetic, and geographic
3 distances. *Proceedings of the National Academy of Sciences of the United
4 States of America* 97(11):6067-6072.

5 Sparks CS, and Jantz RL. 2002. A reassessment of human cranial plasticity: Boas
6 revisited. *Proceedings of the National Academy of Sciences of the United
7 States of America* 99(23):14636-14639.

8 von Cramon-Taubadel N. in press. Congruence of Individual Cranial Bone
9 Morphology and Neutral Molecular Affinity Patterns in Modern Humans.
10 *American Journal of Physical Anthropology*.

11 von Cramon-Taubadel N, and Lycett SJ. 2008. Brief communication: Human cranial
12 variation fits iterative founder effect model with African origin. *Am J Phys
13 Anthropol* 136(1):108-113.

14 Weaver TD, Roseman CC, and Stringer CB. 2008. Close correspondence between
15 quantitative- and molecular-genetic divergence times for Neandertals and
16 modern humans. *Proceedings of the National Academy of Sciences of the
17 United States of America* 105(12):4645-4649.

18 Zegura SL, Simic D, and Pavao R. 1995. Malécot's isolation by distance model:
19 empirical behavior and theoretical considerations. *Journal of Quantitative
20 Anthropology* 5:171-189.

21

22

1 **Figure Legends**
2

3 Figure 1: Locations of populations for which skulls from male (black circles),
4 female (white circles) and both sexes (grey circles) were available, plotted on
5 global maps of A) maximum temperature, B) minimum temperature and C)
6 precipitation.

7

8 Figure 2: Plots of between-population phenotypic distance and geographic
9 distance for A) males and B) females. The fit with a linear regression model
10 and an isolation-by-distance model are represented by a full blue line and a
11 dashed red line, respectively.