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Abstract—Large-scale lithium-ion battery applications signif-
icantly promote marine transport decarbonization. However,
inevitable marine transport swaying conditions markedly deteri-
orate the health of batteries. There are no quantitative methods
to elucidate unique degradation behaviors and their unknown
interdependencies. In this context, this paper proposes a physics-
informed battery aging model (PIBM). First, the dominant aging
patterns of batteries affected by the external mechanical stress
are revealed through a laboratory-scale experimental system with
standard marine transport swaying conditions. Then, a universal
pseudo-two-dimensional (P2D) electrochemical model combining
coupled degradation mechanisms is introduced to quantify the
particle-level state degradation. Subsequently, a general data-
driven strategy that respects physical causality is embedded into
the modified P2D model. This strategy can approximate the finite-
order partial differential equations and efficiently resolve the full-
life Li+ diffusion dynamics. Compared with the conventional
hybrid data-driven model, the proposed method quantifies the
health degradation of batteries from the particle to the cell level
and demonstrates more accurate and faster performance.

Index Terms—Marine transport swaying conditions, Lithium-
ion battery (LiB), Coupled degradation mechanisms, Physics-
informed battery aging model (PIBM).

NOMENCLATURE

PIBM, Physics-informed battery model.
OLHM, Open-loop hybrid model.
BPLM, Back-propagation learning machine.
i = n, p, Description of negative (n) and positive (p).
cs,i, Lithium-ion concentration of electrode (mol/m3).
ce, Lithium-ion concentration of electrolyte (mol/m3).
Deff
s,i , Diffusion coefficient of electrode (m2/s).

Deff
e , Diffusion coefficient of electrolyte (m2/s).

r, Radial coordinate (m);
R, Particle radius (m).
x, Spatial coordinate (m);
L, Length of Cell (m).
σeff , Electric conductivity of electrode (S/m).
κeff , Electric conductivity of electrolyte phase (S/m).
φs,i, Electric potential of electrode (V).
φe, Electric potential of electrolyte phase (V).
εs,i, Volume fraction of electrode (mol/m3· s−1).
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εe, Volume fraction of the electrolyte (mol/m3· s−1).
t+, Transference number of lithium-ion.
F , Faraday’s constant (96485.3 C/mol).
Rg , Molar gas constant (8.314 J/(mol· K)).
T , Kelvin temperature (K).
j Interfacial current density of electrode (A/m2)
jsei Interfacial current density of SEI layer (A/m2)
i0, Exchange current density (A/m2).
as,i, Specific surface area of electrode (m2), s = n, p.
Iapp, Applied current (A).
ηs,i, Overpotential of electrode (V).
cmaxs , Maximum concentration of electrode (mol/m3).
csurfs , Surface concentration of electrode (mol/m3).

I. INTRODUCTION

A. Background and motivation

THE global marine lithium-ion battery (LiB) market is
forecast to expand at 17.1% per year by 2030, pro-

moting sustainable development in electrified marine trans-
port systems [1], [2]. However, uncertain marine transport
swaying conditions easily exacerbate the coupled mechanical-
electrochemical processes of LiBs, resulting in irreversible
health degradation and even thermal runaway [3]. As a result,
LiB’s life and safety have emerged as the primary concerns in
harsh marine applications.

Conventional destructive tests or qualitative models make
it hard to capture particle-level degradation efficiently, and
identifying unique degradation mechanisms directly presents a
significant challenge [4]. Although interpretable insights into
degradation patterns are critical for observing state-of-health
(SOH) variations, they significantly increase the order and
solution complexity of electrochemical models [5]. Therefore,
there is a motivation to establish a non-destructive and efficient
battery aging model suitable for harsh marine applications.

B. Literature survey

Affected by unpredictable wind, waves, and ocean currents,
marine transport systems such as ferry, dynamic position
platform, tugboat, and barge, etc., are always in motion with
six degrees of freedom, which inevitably exposes the onboard
LiBs to swaying effects, characterized by high-amplitude and
low-frequency vibrations, about the oscillation frequency of
0.1-0.2 Hz [6]. As for LiBs, external mechanical stress is an
important source of the internal stress field, easily accelerating
their electrochemical reaction and even damaging the electrode
material structure [7]. For example, mechanical stress damages
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electrode particles and further thickens the solid electrolyte
interphase (SEI) layer, which is always regarded as a domi-
nant degradation factor [8]. Then, a series of side reactions
caused by coupled mechanical-electrochemical processes are
formulated in [9], including loss of lithium-ion inventory
(LLI) and porosity reduction. Moreover, tests with different
vibration frequencies (20 Hz, 50 Hz, and 75 Hz) all show
that the negative electrode graphite particles undergo cracking
and stripping, leading to the increase of ohmic resistance
and the loss of active material (LAM) [10]. Based on ma-
terial characterization techniques at the microscopic scale,
the quantitative analysis concluded that LLI and LAM are
the dominant degradation mechanisms under vibration [11].
Furthermore, reference [12] shows that vibration amplitude
has a greater impact on the aging of LiBs in the Z-axis
direction, while vibration frequency has a greater impact on
aging in the X-axis and Y-axis directions. Similarly, as a
special vibration condition, the mechanical stress generated by
swaying may also significantly change the internal operating
characteristics of LiBs, thereby deteriorating their health and
performance. Nevertheless, existing studies focus more on the
operating conditions of terrestrial electric vehicles and rarely
consider the marine transport swaying conditions. As a result,
the impact of marine transport swaying conditions on LIBs
remains poorly understood, and there is still a lack of abundant
experimental data and quantitative approaches to characterize
the impact of swaying effects, which are essential for accurate
SOH estimation under long-term application.

The available experimental data provide a foundation for
accurate SOH diagnosis, and numerous studies have been
conducted. Generally, the internal resistance variations of LiBs
are used to assess their health level in most commercial
applications [13]. Similarly, periodic full charge-discharge
capacity testing [14] and open-circuit voltage (OCV) testing
[15] can effectively correct the health level, but are unsuitable
for frequent discharging conditions such as electrified marine
transport propulsion. Moreover, the relaxation voltage [16],
terminal voltage decay rate [17], and discharging/charging
time-ratio features [18] are also considered as degradation
features. For example, the peak distribution features of the
incremental capacity (IC) are utilized to capture the coupled
relationship between charging capacity and voltage decay
[19]. Additionally, frequency-domain health indicators are
integrated to achieve excellent estimation performance, but the
accurate decomposition of the frequency range poses a high
requirement on a profound understanding of physical charac-
teristics within LiBs [20]. Therefore, combining the author’s
existing knowledge, three primary challenges are summarized,
including: 1) the evolution of LiB performance under swaying
conditions remains underexplored, 2) without a high-fidelity
mechanistic foundation, the established models cannot be
assured to adhere to the governing physics [21], and 3) the
absence of aging features with embedded physical principle
makes it hard to characterize the LiB aging behaviors [22]. In
this background, a comprehensive and accurate formulation
of the electrochemical/physical behaviors is a prerequisite for
quantifying the health degradation of LiBs.

The conventional pseudo-two-dimensional model (P2D) and

single-particle model (SPM) can formulate the microscopic
electrochemical behaviors of LiBs, such as partially reversible
lithium-ion (Li+) stripping/plating and SEI layer growth [23].
Although comprehensive insights can capture more underlying
degradation behaviors, they improve the number and solution
difficulty of interrelated partial differential equations (PDEs).
To reduce complexity, existing equivalent circuit models can
be utilized, but they lose an excellent opportunity to formulate
electrochemical phenomena inside cells [24]. In contrast, data-
driven methods provide a fresh perspective for establishing
various nonlinear relationships observed from data directly.
For example, gaussian process regression (GPR) [25], support
vector regression (SVR) [26] and artificial neural networks
(ANN) [27], etc. Nevertheless, these black-box models require
numerous high-quality datasets and have long been criticized
for their weak interpretability. But in an alternative view, many
complex physical processes cannot be described directly by
PDEs, but rather by a set of empirical laws [28]. These fail to
be accurately formulated when data is scarce or in complex
conditions, which sparks interest in hybrid models.

Conventional hybrid data-driven models tend to emphasize
correlation features and always employ an open-loop frame-
work to further improve accuracy and efficiency. For example,
an ANN-combined electrochemical impedance spectroscopy
(EIS) feature is investigated to estimate state-of-charge (SOC)
[29]. Then, heterogeneous models using multi-layer learning
mechanisms are investigated to maximize the aging model
generalization [30]. These open-loop hybrid models (OLHM)
have two characteristics: 1) the data-driven part only extracts
partial physical features and does not provide any updated
information to participate in the intermediate electrochemical
solution process, and 2) they commonly oversimplify the
physics that the degradation trends of LiBs should follow and
can only ensure the accuracy of the interested parameters.

According to these issues, a physics-informed neural net-
work (PINN) can simultaneously meet the model interpretabil-
ity and generalizability, i.e., 1) the physical laws are embedded
into the data-driven model in the form of residuals, which
can limit the operating boundary of electrochemical states
[31]; 2) Convolution kernels are trained to approximate finite-
order PDEs, thereby significantly reducing the complexity of
the model [32]. For example, a PINN model is investigated
to generate numerous particle-level data and thereby evaluate
the battery states [33]. Then, a grid-long short-term memory
(Grid-LSTM) method is established to estimate Li+ concentra-
tions and potentials in electrodes [34]. However, most models
avoid incorporating degradation mechanisms, as they still lack
adaptability and struggle to balance complexity with accuracy.
Especially, the assumption of a constant resistance makes it
hard to accurately describe dynamic electrolyte concentration
distribution [35]. This oversight may significantly undermine
the model’s performance as the LiB ages. Therefore, the
above challenges impose higher requirements for embedding
high-fidelity mechanistic insights into data-driven approaches,
thereby improving the health assessment capability of LiBs
under marine transport swaying conditions.
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Fig. 1: LiB test platform under simulated marine environments.

C. Contribution

According to the above issues, this paper proposes a
practical LiB aging model based on comprehensive physics
principles. The main contributions are as follows:

1) This work carries out cyclic LiB tests under standard ma-
rine transport swaying conditions. Through macroscopic
and microscopic analyses, the health degradation of LiBs
affected by the mechanical stress can be quantified.
Notably, the dominant aging factor is conductivity loss
(CL) under swaying. As the number of cycles increases,
the intensification of particle structure damage leads to
LAM becoming the dominant degradation factor.

2) A physics-informed battery aging model framework
(PIBM) that integrates coupled degradation mechanisms
is proposed to highlight the potential of reconstructing
electrochemical processes from the particle to the cell,
thereby quantifying the health level of LiBs.

3) Based on particle-level degradation insights, the pro-
posed PIBM can further evaluate cell-level aging effi-
ciently, including terminal voltage decay, Li+ dynamics,
and SOH variations. Finally, the computational effi-
ciency and accuracy of the proposed model are verified
in swaying and different current conditions.

II. AGING MECHANISM ANALYSIS OF SWAYING EFFECTS

A. Simulated marine experimental environments setup.

In electrified marine transport, essential tasks such as direc-
tional navigation, dynamic positioning, and docking inevitably
cause swaying of the hull and battery compartment. To de-
scribe swaying effects, a laboratory-scale experimental system
is established in Fig. 1, and the details are as follows:

1) Simulated marine environment settings: “Guidelines for
Type Approval Testing of Electrical and Electronic Products in
2015” of the China Classification Society is used for primary
reference [36]. The guideline specifies performance testing

requirements for shipboard electrical equipment under swaying
conditions, pointing out that swaying testing conditions with
an inclination angle of 22.5°, an amplitude of 1 mm, a thrust
of 3 kN, and a frequency of 0.1 Hz. Then, the ambient
temperature is set to 25°C and the air humidity level is set to
65% RH, which represents a typical operating environment to
avoid the influence of high humidity on the LiB performance.

2) Macroscopic cyclic aging test: Twenty-three identical
NCR 18650GA LiBs are used to accomplish the cyclic aging
test under swaying conditions. The parameters of LiBs are
shown in Table. I, and the testing protocol is constant current
and constant voltage (CCCV), the charge current rate is 0.5
C, and the discharge current rates range from 0.5 C to 3 C.

TABLE I: The NCR 18650GA LiB parameters.

Description Value Units
Cathode material Li(Ni0.80Co0.15Al0.05O2) [-]
Anode material Graphite [-]

Nominal capacity 3.35 [Ah]
Discharging cut-off voltage 2.4 [V]

Charging cut-off voltage 4.2 [V]
Cut-off current 0.1725 [A]

Experimental group Swaying B1 - B12 [-]
Control group Static B1 - B11 [-]

3) Microscopic mechanism test protocol: Firstly, EIS tests
are performed every 10 charge-discharge cycles to monitor
the battery impedance at 0% SOC. Upon retirement of the
LiBs due to aging, they are disassembled in a glove box.
Subsequently, the scanning electron microscope (SEM) is
employed for observing the internal characteristics, such as
SEI film thickness, pores, and particle cracks. Finally, the X-
ray diffraction (XRD) is performed on the anode materials to
observe the variation of their crystal structure.

B. Macroscopic effects of swaying on LiB aging
From a macroscopic perspective, the cyclic LiB aging

results are shown in Fig. 2 [37]. Wherein, SOH is defined
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as the remaining storable capacity, and it is commonly cal-
culated by dividing the current test capacity Creal by the
rated capacity C0 when SOH = Creal

C0
[38]. The black

dotted line represents the end-of-life, i.e., SOH=0.8. It can
be seen that the health degradation of LiBs is faster under
swaying conditions, especially when the discharge current rate
increases. However, under 0.5 C, only Swaying B2 ages more
rapidly, and the health degradation trend of Swaying B1 and
Swaying B3 is almost the same as that of Static B1 and Static
B2. Additionally, the occasional upward trends observed in
these health curves can be attributed to reversible structural
alterations that occur during the discharge process, including
the reorientation of electrode particles and the variations in
pore dimensions. Coupled with the uniform distribution of the
electrolyte, these factors may lead to a temporary increase in
the available capacity [39], [40].

Fig. 2: Effect of swaying on cyclic LiB aging.

Then, the IC curve serves as a qualitative analysis tool for
aging modes and can reflect the structural changes in electrode
materials as well as the loss of active substances during the
battery aging process, as shown in Fig. 3.

From Fig. 3, the IC curves feature three distinct peaks,
and each peak varies in response to the increasing number
of cycles. Under static conditions, from Fig. 3 (a1), (b1),
(c1), and (d1), the increase in the discharge current rate leads
to a narrowing of the voltage platform and a corresponding
increase in Peak 3. This suggests that the phase transformation
reactions of the materials significantly constrict the voltage
plateau and enhance the rate of change of the stored capacity.
The probable reason is that the high current rate degrades
the mechanical properties of the materials, making the active
particles more prone to cracking, which in turn results in a
rapid capacity fade of the LiB. Under swaying conditions, as
shown in Fig.3 (a1) and (a2), compared with the operational
conditions at 0.5 C and static conditions, Peak 3 gradually
shifts downward under swaying, while the trends of Peak 1 and

Fig. 3: Effect of swaying on IC curves: (a1) Static B3, 0.5 C;
(a2) Swaying B3, 0.5 C; (b1) Static B6, 1 C; (b2) Swaying
B6, 1 C; (c1) Static B9, 2 C; (c2) Swaying B9, 2 C; (d1)
Static B11, 3 C; (d2) Swaying B12, 3 C.

Peak 2 remain consistent. This is because swaying stress tends
to cause delamination between the active material and the
current collector, rather than directly affecting the mechanical
properties of the electrode materials as the high current rate
does. Meanwhile, the stress generated by swaying causes slight
cracking of the active material and the deposition of side
reaction products, resulting in a reduction of the stored energy
at the same voltage level. Then, from Fig. 3 (a2), (b2), (c2),
(d2), the IC curve has a tendency to move toward low voltage,
indicating that the increase in ohmic resistance exacerbates the
CL of LiBs. Furthermore, compared to static conditions, Peak
3 predominantly exhibits a downward trend, indicating that
LLI occurs under most conditions. Similarly, Peak 2 shifts
toward the lower left and eventually disappears as the LiB
ages, which can be attributed to the simultaneous occurrence
of LLI and LAM. Especially, the gradual decrease and leftward
shift of Peak 1 further illustrate the occurrence of LAM.

In conclusion, the stress generated by swaying can cause
the connections between internal components of the LiB to
become unstable. This instability is further exacerbated by the
rapid expansion and contraction of electrode materials under
high current rates. Under the combined effect of these two
factors, the electrode materials are more likely to detach. The
destruction of the internal structure of the battery accelerates,
leading to a rapid reduction in the stored capacity.

However, it is difficult to precisely analyze the effects
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of swaying based solely on IC curves due to the highly
complex degradation mechanisms within the LiBs. Therefore,
it is necessary to integrate more microscopic-scale mechanistic
analysis approaches to quantify the swaying effects.

C. Microscopic effects of swaying on LiB aging

From a microscopic perspective, the EIS test, SEM test, and
XRD test are accomplished, and the test results for Swaying
B3, B6, B9, and B12 are shown as follows.

Fig. 4: EIS test results under swaying conditions.

1) EIS test results analysis: From Fig. 4 (a) and (b), as
the number of cycles increases, the intersection point with the
real axis gradually shifts to the right, and the diameter of the
first “arc 1” decreases, representing that, as the performance
degradation of LiBs, the ohmic resistance will increase and
the SEI film resistance will decrease. Contrary to expectations,
the second “arc 2” gradually decreases with aging, presenting
swaying facilitates the charge transfer, which is conducive to
accelerating the migration of lithium ions between the elec-
trodes and the electrolyte. The possible reason is that swaying
makes the active substances in the electrolyte more uniform.
This “wetting” effect impacts the polarization reaction, as
concluded in Reference [12].

To further investigate the above behaviors, a second-order
fractional-order equivalent circuit model (FOECM) with a
commercial parameter identification software ZView 3.1 is
employed to approximate the measured EIS curves, thereby
reflecting the parameter variations of the physical elements.
The results are shown in Fig. 5.

From Fig. 5(a), the ohmic resistance R0 increases signifi-
cantly with the number of cycles, increasing the CL. The main
reasons are as follows: 1) The anode SEI film is damaged
by the mechanical stress, which increases irregular pores and
reduces porosity in the lithium-ion transport channels, thereby
reducing the lithium-ion transport rate; 2) The damage to the
electrode material structure can reduce lithium-ion intercala-
tion efficiency. Furthermore, from Fig. 5(b) and (c), both the
SEI film resistance Rsei and the charge transfer resistance
Rct exhibit a decreasing trend. Because electrolyte convection

Fig. 5: Physical element parameters under swaying conditions

caused by swaying is enhanced, representing that the “wet-
ting” effect mitigates the impact of activation polarization,
which improves the transport efficiency of lithium-ion at the
electrode/electrolyte interface. From Fig. 5(d), the increase in
mass transfer resistance Rw indicates that the transfer rate of
active materials is slowed down due to the increases in LAM,
which can decrease the lithium diffusion efficiency.

2) SEM and XRD test results analysis: As shown in Fig.
6(a)-(e), based on the SEM testing, obvious morphological
features appear on the surface of the anode at different
current rates, including the SEI film growth, deposition of side
reaction products, irregular porosity generation, and particle
cracking. This indicates that under the long-term influence
of swaying stress effects, the degradation of electrode mate-
rials is inevitable, and these degradation mechanisms occur
concurrently. From Fig. 6 (f), the anode material’s crystal
structure and composition are analyzed using XRD, i.e., 1) The
presence of lithium compounds on the anodes under swaying
confirms that lithium-ions react with the active substances in
the electrolyte and deposit to form the SEI film. Especially,
the formation of inorganic compounds such as LiH , Li2CO3,
LiF enhances the conductivity of the electrode surface, cor-
roborating the conclusion that the SEI film resistance Rsei
depicted in Figure 5 (b) decreases with the number of cycle; 2)
Compared to the 1 C condition, there is one fewer diffraction
peak under the 3 C condition, and the remaining peaks are
broader, indicating structural collapse. Additionally, a peak
near 60° shifts, suggesting an unstable phase change, which
can cause severe damage to the crystal structure.

D. Dominant aging mode analysis of LiBs under swaying

Based on the above analysis, the swaying effects are de-
scribed as follows: 1) During the early aging stages (0-40 Cy-
cles), ohmic polarization is enhanced, and the “wetting” effect
reduces activation polarization and concentration polarization.
Swaying stress tends to cause delamination between the active
material and the current collector, exacerbating the deposition
of reaction products and the SEI layer growth, which reduce
the conductivity and increase in R0, making the rise in CL a
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Fig. 6: SEM and XRD test results under swaying conditions.

primary aging factor; 2) During the middle aging stage (40-
60 Cycles), the continuous thickening of the SEI film and the
accumulation of irreversible physical and chemical structural
damage intensify activation polarization and concentration
polarization. The degradation rate of Rsei and Rct significantly
slows down, and R0 continues to increase. Thus, the CL
still remains the dominant aging mode; 3) During the late
aging stage (after 60 Cycles), the rate of increase in ohmic
impedance R0 slows down, and the resistance of mass transfer
significantly increases and the LAM dominates, representing
the particle cracking limit the lithium-ion intercalation and
migration, which is more obvious in high current conditions.

III. PHYSICS-INFORMED DEGRADATION MECHANISM
MODELING UNDER SWAYING

A. The integration of physical characteristics under swaying

Based on a clear understanding of the underlying ag-
ing mechanisms, the aging mode of LiBs under swaying
can be identified. Then, the physical information about EIS
impedance obtained from the swaying tests can be utilized
to calibrate the essential parameters of numerical simulation
models, including: 1) the ohmic resistance R0 always be
employed to correct the terminal voltage variations across
different cycles [24]; 2) the SEI film resistance Rsei can be
used to revise the overpotential and energy loss caused by the
SEI layer growth [41]; 3) the charge transfer resistance Rct
can be used to correct the interface reaction current density of
electrode, i.e., the smaller the Rct, the faster the interfacial re-
action rate [42]; 4) Moreover, the mass transfer impedance Rw
alone cannot directly identify the mass transfer/diffusion rate
following the LiB aging, because the mass transfer process is
highly affected by the diffusivity, particle structure, electrolyte
concentration, etc.

Therefore, a coupled degradation mechanism should be
established to comprehensively reflect the health degradation
of LiBs under swaying effects.

B. Coupled degradation mechanisms modeling

Based on an advanced open-source mathematical modeling
framework PYBAMM [44], a universal P2D model is used
to describe the Li+ diffusion and migration in the electrode-
separator-positive electrode, as shown in the Table. II. Then,

as shown in Fig. 7, a coupled degradation mechanism is used
to describe the particle-level degradation [45], including: 1)
the growth of the SEI layer consumes available lithium ions,
solvent molecules, and other active substances, especially the
inorganic components produced by the reaction can increase
the conductivity and reduce film resistance, 2) the lithium
stripping and plating will inevitably form dead lithium and
increase LLI, 3) the particle cracking generates additional
SEI layer, especially in the extreme case of complete particle
detachment, where the binder further exacerbates LAM.

Fig. 7: Coupled degradation mechanism of LiBs.

1) SEI layer growth: The SEI layer may repeatedly fracture
and regrow under mechanical stress effects, thereby causing
porosity clogging to isolate active regions and restricting the
diffusion of solvent molecules. Based on the reference [8], the
SEI thickness variation can be formulated by equation (1).

∂lsei
∂t

= −1

2
NsolVsei =

csolDsolVsei
2lsei

(1)

where lsei is the thickness (m) of SEI layer; Vsei is the molar
volume of SEI layer (m3/mol); csol is the solute concentration
(mol/m2); Nsol is the lithium flux density (mol/m2· s). The
porosity is further formulated as ∂ε

∂t = −as,n ∂lSEI

∂t [46].
The solvent molecule can diffuse through the pore of the

SEI layer, and the dynamic diffusivity Dsol (m2/s) is a key
parameter that affects the diffusion capability, following Fick’s
law, which can be formulated by equation (2).


Nsol = −Dsol(T )

∂csol
∂l

,Dsol = 0.5Deε
3/2
e ε

csol = 0 at l = 0,

csol = csol,0 at l = lsei,

(2)

where, De and εe are the inherent diffusion coefficent (m2/s)
and volume fraction of the electrolyte, respectively [47]. csol,0
is the initial solute concentration (mol/m2).

Since the resistive nature of the SEI layer impedes the
interfacial current reactions, resulting in an associated energy
loss. According to Ohm’s law, which states that the voltage
drop is directly proportional to the current density. Therefore,
an overpotential ηsei (V) can be used to describe the energy
loss caused by the SEI layer growth. Without loss of generality,
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TABLE II: P2D electrochemical model equations for LiBs [43].

Description Conservation equations Boundary conditions

Mass conservation of solid phase ∂cs,i
∂t

=
D

eff
s,i

r2
∂
∂r

(r2
∂cs,i
∂r

)
∂cs,i
∂r
|r=0= 0, Deffs,i

∂cs,i
∂r
|r=R= − Iapp

as,iεs,iF
= − j

F

Charge conservation of solid phase ∂
∂x

(σeff
∂φs,i

∂x
) = j

σeff
∂φs,i

∂x
|x=0= σeff

∂φs,i

∂x
|x=L= Iapp

σeff
∂φs,i

∂x
|x=Lp= σeff

∂φs,i

∂x
|x=L−Ln= 0

Mass conservation of electrolyte phase εe
∂ce
∂t

= ∂
∂x

(Deffe
∂ce
∂x

) +
1−t+
F

j ∂ce
∂x
|x=0= ∂ce

∂x
|x=L= 0

Charge conservation of electrolyte phase ∂
∂x

(κeff ∂φe
∂x

) + ∂
∂x

(κeffD
∂lnce
∂x

) + j = 0 ∂φe
∂x
|x=0= φe |x=L= 0

Butler-Volmer kinetic j = 2as,ii0sinh( 0.5F
RgT

ηs,i) i0 = ki

√
ce(cmaxs − csurfs,i )csurfs,i , ki =

2RgT

FRct

complex factors such as the non-uniformity, multi-layer struc-
ture, and temperature variations of the SEI layer are neglected,
and a simplified overpotential model is formulated as follows

ηsei = −j lsei
ρseias,n

= −jlseiRsei (3)

where j is the interface reaction current density of the
anode (A/m2). ρsei is the ohmic resistivity of the SEI layer
(S/m), and as,n is the specific surface area of anode (m2). The
SEI film resistance Reis is obtained from the test impedance
spectroscopy, which can be used to update this model at
different cycles.

2) Lithium plating: Li+ can be stripped and deposited as
metallic lithium on the electrode surface, forming the “dead
Li”, which is formulated as equation (4) [41].

∂cs,n
∂t

= −as,nNs,n − γ(lsei)cs,n︸ ︷︷ ︸
Dead Li

LLI =
cmax,0s,n − cmaxs,n

cmax,0s,n

(4)

where γ(lsei) is the decay rate of dead lithium (s−1), which
is related to the SEI layer growth, i.e., γ(lsei) = γ0

lsei,0
lsei

, and
γ0 is an initial parameter; cmax,0s,n and cmaxs,n are the initial and
current maximum Li+ concentration (mol/m3), respectively;
Ns,n is the Li+ stripping flux of the anode (mol/m2· s).

Based on the potential balance, the potential difference
describes the variation in potential as lithium-ions de-embed
from the solid electrode and migrate into the electrolyte,
including both the direct potential difference between the solid
and liquid phases and the potential difference across the SEI
layer. Therefore, the generated overpotential of the anode
lithium-ion plating ηli (V) can be formulated by equation (5).
This model is based on the assumption of an ideal electrode,
i.e., the potential of the solid electrode depends solely on its
surface state, and the electrode surface is smooth, and the
charge distribution inside the electrode is uniform [41].

ηli = φs,n − φe − ηsei (5)

where φs,n and φe are the potential (V) of the anode and
electrolyte, respectively.

3) Particle cracking: Affected by mechanical stress effects,
frequent volume expansion and contraction of the anode
may cause particle crack propagation and material fatigue.
Subsequently, new surfaces are exposed to the cracks, thereby
accelerating SEI layer growth. In this mode, a verified stress

model of the particle can be used to describe the above
processes [48], including radial stress σr (N), tangential stress
σt (N), and resultant static stress σh = (σr + 2σt)/3 (N).
Then, the crack length is further formulated by equation (6).

∂lcr
∂Ns,n

=
kcr
t

(σtbcr
√
πlcr)

mcr, σt > 0 (6)

where lcr, t, and bcr are the crack length (m), the operating
time (s), and the stress intensity factor, respectively; kcr is
the cracking rate of particle, and mcr is a constant. Then, the
change rate of the specific surface area ∂as,n

∂t = 2πρcrwcr

t0
∂lcr
∂Ns,n

and the change rate of the particle radius ∂R
∂t = VnR

3 cavg
can be further described. Wherein, ρcr and wcr are the crack
number and the crack wide (m), respectively; Vn and cavg are
the molar volume (m3/mol) and the average Li+ concentration
(mol/m3), respectively.

Then, the additional SEI layer thickness on cracks lsei,cr
(m) is formulated by equation (7), which will be feedback
into equation (1) and (4) to update the SEI film thickness.

∂lsei,cr
∂t

=
∂lsei
∂t
− ∂lcr

∂t

lsei,cr(t)− lsei,cr(0)

lcr
(7)

Furthermore, the variations in the volume fraction of the
anode and the LAM are formulated by equation (8) [49].


∂εn
∂t

= α1(
σh
σyield

)α2

LAM = (ε0s,n − εs,n)/ε0s,n

(8)

where α1 is the deacy rate of the volume fraction, and α2

is a constant; σyield is the yield strength of the anode; εn,0 is
the initial volume fraction.

Finally, the terminal voltage Ubat, the SOC SOCbat, and
the electrode capacity Cbat is calculated by equation (9).


Ubat = (φs,p + ηp)|x−L − (φs,n + ηn)|x−0 −R0Iapp

SOCbat = csurfs,n /cmaxs,n =
3

R

∫ R

0

cs,n(r)r2dr |r=R /cmaxs,n

Cbat = as,nLεs,n(cmaxs,n − cmins,n )
(9)

Based on the above processes, the particle-level degrada-
tion behaviors of LiBs can be quantified, thereby effectively
capturing the impact of swaying on LiB characteristics.
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C. Aging parameter identification

Based on the above model, various parameters should be
accurately identified, especially the aging parameters that
directly characterize the degradation behaviors of LiBs, in-
cluding the decay rate of dead lithium γ0, the cracking rate
kcr, the decay rate of the volume fraction α1, the maxium
lithium concentration cmaxs,i , the volume fraction of electrode
εs,i and electrolyte εe, etc. Drawing on the existing work [50],
an optimization problem is formulated to minimize the voltage
error between the measurements Ureal and the model output
Ubat at different cyclic numbers, as shown in Fig. 8.

Fig. 8: The parameter identification framework.

The identification is conducted at the N=[1,20,40,60-th]
cycles to validate the adaptability of this work under different
health levels. A validated particle swarm optimization (PSO)
method is used to resolve the optimization problem, and
the genetic algorithm (GA) and empirical calibration (EC)
methods are used for comparative analysis, with the general
mean absolute error (MAE) measuring the accuracy of the
results. Note that the knowledge of the EC method is primarily
derived from existing studies [47], [48], [51]. As for the PSO
method, the swarm size is set to 200, and the function tolerance
is set to 1e− 6. Finally, the identification results are shown in
Fig. 9 and Table. III.

Fig. 9: The identification result of macro parameters.

Generally, the time cost of the PSO method is lower than
that of the GA and EC method, which performs better in
searching for the global optimum. Although the identification
errors of the voltage and SOC increase gradually with the
health degradation of LiBs, their absolute value generally

TABLE III: The comparsion between different methods.

Cycles Metrics PSO GA EC

1
Optimization time 11.35 s 13.52 s -
MAE of voltage 1.01% 1.03% 2.81%
MAE of SOC 0.95% 0.92% 3.97%

20
Optimization time 10.99 s 12.76 s -
MAE of voltage 1.35% 1.65% 3.73%
MAE of SOC 0.93% 0.93% 2.63%

40
Optimization time 9.86 s 13.36 s -
MAE of voltage 1.69% 1.77% 4.72%
MAE of SOC 1.26% 1.32% 5.29%

60
Optimization time 9.93 s 14.72 s -
MAE of voltage 3.2% 3.9% 7.72%
MAE of SOC 1.82% 1.99% 7.33%

meets the requirement, i.e., smaller than 5%. Therefore, the
PSO is selected because of the trade-off between computation
complexity and accuracy. Finally, the key parameters of NCR
18650GA LiBs are shown in the Table. IV.

TABLE IV: The electrochemical parameters.

Parameters Value Units Source
Rs,n 5.86e-06 [m] Ref [48]
Rs,p 5.22e-06 [m] Ref [48]
L 0.065 [m] Ref [48]
as,i 0.00531 [m2] Ref [48]
R0 [R1

0, R
2
0, ..., R

N
0 ] [Ω] EIS testing

Rsei [R1
sei, R

2
sei, ..., R

N
sei] [Ω] EIS testing

ki
2RgT

FRct
[-] EIS testing

lsei,0 5e-9 [m] Ref [47]
Vsei 9.585e-05 [m] Ref [47]
t+ 0.363 [-] Ref [51]
bcr 1.12 [-] Ref [47]
mcr 2.2 [-] Ref [47]
α2 2 [-] Ref [47]
σyield 6e7 [-] Ref [47]

Aging parameters Value Units Source
γ0 1e-6 [-] Optimization
kcr 1.9e-20 [-] Optimization
α1 8.05e-5 [-] Optimization
cmax,0s,n 2.89e4 [mol/m3] Optimization
cmax,0s,p 7.69e4 [mol/m3] Optimization
cmin,0s,n 1.295e4 [mol/m3] Optimization
cmin,0s,p 5.53e4 [mol/m3] Optimization
ε0s,n 0.609 [-] Optimization
ε0s,p 0.322 [-] Optimization
ε0e 0.3 [-] Optimization

Based on the above identified parameters, the electrode
capacity losses at different operating conditions are calculated,
as shown in Fig. 10, i.e., Closs = C0

bat − Cbat. The proposed
model that integrates aging parameters across diverse oper-
ating conditions closely aligns with the degradation curves
observed under both swaying and static conditions. These
results verified that the coupled degradation mechanisms can
faithfully replicate the actual health degradation of LiBs and
mirror their capacity decay trends.

However, there are still some potential degradation factors
that the model struggles to capture, leading to deviations in
capacity loss at high current rates. For example, the error is
0.034 Ah under swaying conditions and 0.26 Ah under static
conditions. Moreover, the large number of PDE equations in-
creases the computational complexity of the model. Therefore,
it is necessary to introduce more efficient methods to enhance
the model’s accuracy and computational efficiency.
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Fig. 10: The electrode capacity loss at different conditions.

IV. ENHANCED PHYSICS-INFORMED AGING MODEL

In this section, an enhanced PIBM framework that integrates
coupled degradation mechanisms is investigated to estimate the
health degradation of LiBs from the particle to the cell level,
while balancing accuracy and efficiency, as shown in Fig. 11.

Fig. 11: PIBM with coupled degradation mechanisms.

1) The electrochemical model is used to acquire input
features for the data-driven part: Based on the developed
P2D model in Section III, the applied current Iapp collected
in real time is used as the input of the modified P2D model
to calculate the lithium-ion concentration csurfs,n of the anode
surface, the overpotential ηsei and ηli, the volume fraction of
the anode εs,n, the interface reaction current density j, and the
electrode capacity Cbat in current discharging/charging cycle.
These results are stored in the form of a time series in the
data log and are extracted through a sliding window sampling
method with N-step samples. This method can avoid the high
computational cost caused by full data input while retaining
the recent state change trend of the LiB.

2) The data-driven part is used to calculate the gradients
and minimize the loss function value: Based on the obtained
six key electrochemical features, they are utilized as scrolling
inputs for the data-driven part to continuously update the
neural network. Then, a physical residual related to Fick’s
second law is incorporated as a component of the loss function,
which strictly restrains the physical behaviors. In this mode,
a classic neural network such as back-propagation learning
machine (BPLM) adheres to the chain rule of forward propa-
gation and backpropagation to calculate the gradients, thereby
updating the network’s weights and biases. Subsequently, it

completes the training until the loss function converges to a
predefined minimum value. The SOH in the current charge-
discharge cycle can be obtained, and the maximum lithium-ion
concentration cmax∗s,n derived from the SOH is returned to the
P2D model to calibrate the aging state of the P2D model for
the next charge-discharge cycle.

A. Feature selection

1) Overpotential: Overpotential ηsei and ηli can reflect
the impact of swaying-induced mechanical stress on the SEI
layer growth and lithium plating. As shown in Fig. 12 (a1)-
(d1), the overpotential increases during charging and then
decreases to a negative value during discharging. Because the
polarization effect is limited at the beginning of discharge.
Meanwhile, the ion transmission resistance is small, and the
ηsei tends to decrease. Then, under various current conditions,
the generated overpotential ηsei affected by swaying effects
is always higher than that under static conditions. From Fig.
12 (e1), the electrode material structure begins to accumulate
damage due to lithium ion deintercalation and other side
reactions, leading to a significant increase in ηsei as the cycle
number increases. From Fig. 12 (a2)-(d2), at low current rates,
swaying results in less polarization during lithium plating,
bringing a smaller overpotential ηli. However, as the discharge
rate increases, the overpotential under swaying conditions
becomes larger compared to static conditions, since swaying
conditions exacerbate the polarization effect. From Fig. 12
(e2), with increasing cycle numbers, the breakdown of the
electrode structure leads to reaction inhomogeneity, thereby
gradually decreasing the lithium stripping and plating reaction,
and the growth of the SEI film is dominant. The above results
indicate that swaying intensifies the polarization effect.

2) Other side reaction features: The volume fraction εn
and interfacial current density j can describe the particle
cracking effects and electrochemical activity. Additionally, the
lithium-ion concentration csurfs,n can be used to describe the
non-uniform lithium-ion transport rate affected by mechanical
stresses. Moreover, the estimated electrode capacity Cbat can
be used to supply the assement of the cell health level.

B. Physics-informed task generative model

The nonlinear relationship between input features and out-
puts is calculated by automatic differentiation within physical
constraints. Using the central difference, the discrete physics
loss is formulated by the equation (10) and equation (11).

LPDE =
1

N

N∑
k=1

‖ ∂cs,n
∂t
−
Deff
s,n

r2

∂

∂r
(r2 ∂cs,n

∂r
) ‖2︸ ︷︷ ︸

Physics residual based on Fick’s second law

,

=
1

N

N∑
k=1

∥∥∥∥∥∆cts,n −
Deff
s,n

r2
k

(r2
k+1∆crs,n)− (r2

k−1∆cr−1
s,n )

2∆r

∥∥∥∥∥
2

(10)
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Fig. 12: (a1-d1) SEI layer overpotential at different conditions; (a2-d2) Lithium plating overpotential at different conditions.
(e1) SEI layer overpotential under swaying and different cycles. (e2) Lithium overpotential under swaying and different cycles.



cs,n ∈ [0, cmaxs,n ],∆cts,n =
ct+∆t
s,n − cts,n

∆t

∆crs,n =
c
rk+1
s,n − crks,n

∆r
,∆cr−1

s,n =
crks,n − c

rk−1
s,n

∆r
∂cs,n
∂r

∣∣∣∣
r=0

= 0, Deff
s,n

∂cs,n
∂r

∣∣∣∣
r=R

= −j − jsei
F

(11)

Ldata is used to formulate consistency between the pre-
dicted model output and the test data, as follows:

Ldata =
1

N

N∑
k=1

{β1 ‖
csurfs,n

cmaxs,n

−
−
∫ t
t−N Iapp(k)dt

3600Creal
) ‖2︸ ︷︷ ︸

SOC residual

+ β2 ‖ SOH − SOHreal ‖2︸ ︷︷ ︸
SOH residual

}+ β3 ‖ Ucell − Ureal ‖2︸ ︷︷ ︸
Voltage residual

},

(12)
where SOHreal is the real health state, and Ureal is the

tested terminal voltage under a discharging stage.
Furthermore, the total loss function is formulated as follows:

minL = λpLPDE + λdLdata (13)

where λ(λp = ∂L
∂LPDE

, λd = ∂L
∂Ld

) is the global loss weight.
Furthermore, by minimizing the total loss function, the

training process is summarized in Algorithm 1.
Finally, the developed PIBM is established in the Python

3.12 and PYBAMM environment equipped with NVIDIA
GeForce RTX 2060Ti with 24 GB of memory. The hyperpa-
rameter is selected by manual adjustment, as shown in Table V.
Then, the first 50% of the data from the Swaying B1, B4, B7,
and B12 experimental groups and the Static B3, B6, B9, B11
are used for training, while the remaining 50% is utilized for
validation. Moreover, for testing and generalization analysis,
we employ data from the Swaying groups B3, B6, B9, and
B10, along with the Static groups B1, B4, B8, and B10.

Algorithm 1 Training processes of the proposed PIBM.

Input: The applied current and impedance information
[Iapp, R0, Rsei, Rct]
Output: The cell health state, SOH
1: Aging parameter identification.
2: for epoch=1,2,· · · do:
3: Calculating the electrochemical model:
4: [ki, ηsei, ηli, Ubat, SOCbat, Cbat]← Aging mechanisms
5: [ηsei, ηli, c

surf
s,n , εs,n, j]← Obtain features

6: Computing the data-driven model:
7: [SOH∗]← 5w,b L
8: LPDE(c∗s,n, D

eff
s,n )← Compute physcis loss (10)

9: csurfs,n (c∗s,n, R)← Update the surface concentration
10: Ldata(SOH∗)← Compute data loss (12)
11: Ltotal ← Back-propagate and update λ (13)
12: [cmaxs,n ]← Feedback update the P2D model
13: end

TABLE V: The hyperparameter of the data-driven model.

Description Setting
Number of neurons [512 256 128 128 3]

Maximum number of iterations 1000
Learning rate 0.001

Training function Adaptive Moment Estimation(ADM)
Regularization L2=0.001

Initial weight change 0.07
Training batch size 32

V. RESULTS AND DISCUSSION

In this section, the developed physics-informed modeling
framework is used to estimate the health degradation of LiBs
under swaying. Then, a BPLM without physical processes
and a general OLHM are used as the reference to verify
the proposed PIBM. The characteristics of these methods are
summarized in the Table. VI.

A. Computational complexity analysis of methods

The training and validation processes of different data-
driven methods are shown in Fig. 13. The curves represent
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TABLE VI: The characteristics of the reference methods.

Methods Input features Characteristics
BPLM • OCV, dV/dQ, dQ/dV,

Differential voltage,
self-discharging rate.

• Without physical modeling pro-
cesses.

OLHM • ηn, c
surf
s,n , εs,n, Cbat, j. • Without integrating the tested

physical information and the
physical constraints.

PIBM •
ηsei, ηli, c

surf
s,n , εs,n, Cbat, j.

• Integrating the tested physical in-
formation and the physical con-
straints.

loss, and the shaded areas represent confidence intervals.
Narrower confidence bounds indicate a more stable numerical
computation process and better model performance, which
provides insights into the model’s stability and generalization
during training and validation. As for BPLM, due to the
absence of detailed electrochemical degradation features, the
BPLM exhibits relatively slow convergence, characterized by
higher training loss and lower training accuracy, as shown in
Fig. 13 (a) and (b). Then, the OLHM can utilize more de-
tailed degradation features to approximate the training object,
thereby obtaining less training and validation losses. However,
due to the lack of physical constraints related to lithium-
ion dynamics, the method exhibits significant oscillations in
the validation curve after epoch = 200, as shown in Fig.
13 (c) and (d), easily resulting in the model overfitting. In
contrast, the proposed PIBM can achieve the convergence
faster and with narrower confidence intervals, indicating better
performance stability. Although the validation accuracy curve
displays notable oscillations during the early stages of training,
the model ultimately achieves satisfactory validation accuracy.

Fig. 13: Training and validation processes.

Furthermore, the calculation complexity of different meth-
ods is shown in Fig. 14.

From Fig. 14 (a), the convergence paths of the methods
are given, with the proposed PIBM demonstrating a faster
gradient descent path. This efficiency is attributed to the
use of fully connected layers to replace the complex PDEs
associated with the calculation of Li+ concentration, thereby
rapidly approaching the target function value. From Fig. 14
(b), the computational time represents the required solving
time for different methods in each cycle. The computational

Fig. 14: Calculation complexity of methods.

complexities of the P2D and the BPLM are the highest (245.50
s) and lowest (8.64 s), respectively. The former requires real-
time solving of a large number of PDEs, while the latter does
not involve any physical processes and can quickly predict
the model state using only the pre-trained fully connected
layer. Then, the OLHM employs a rolling time window to
calculate the electrochemical parameters and uses them as
input features of the neural network. This approach avoids
additional computational resource consumption of real-time
solutions, with the total time required being 160.50 s. Within
the proposed PIBM, the PDE related to Li+ concentration
diffusion is replaced by a neural network to reduce the model’s
complexity, with the final computation time being 119.60 s,
and can be reduced by 25.48% compared to OLHM.

B. Estimation effects of health degradation

1) Particle-level analysis of LLI and LAM under swaying:
The loss of lithium inventory and active material is calculated
based on equations (4) and (8), as shown in Fig. 15.

Fig. 15: The LLI and LAM under different conditions.

From Fig. 15 (a1)-(d1), swaying raises LLI by 0.29%
compared to static conditions under 0.5 C. This is because
electrochemical reactions at the electrode interface are slower
at low current rates, making the lithium-ion insertion and
extraction processes more sensitive to mechanical stresses.
In contrast, under conditions above 1 C, swaying leads to a
more uniform distribution of the electrolyte and more complete
reactions, resulting in relatively lower LLI compared to static
conditions. From Fig. 15 (a2)-(d2), the rate of change in
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LAM is faster under swaying than under static conditions
due to external mechanical stress on battery materials and
structure. With increasing discharge current rates, LAM rises
notably. Specifically, it jumps by 1.02% at a 3 C discharge rate
compared to static conditions. This indicates that the stress
from swaying and high current rates combine to intensify
particle structure degradation.

2) Cell-level health estimation under swaying: The esti-
mated SOH of different methods under swaying conditions
is shown in Fig. 16. The performance is evaluated using root
mean square error (RMSE) and mean absolute percentage error
(MAPE), as shown in Fig. 17 and Table. VII.

Fig. 16: Estimation effects of SOH under swaying.

Fig. 17: Estimated errors of different methods.

TABLE VII: Estimated SOH errors under swaying conditions.

Methods 0.5 C 1 C
BPLM RMSE: 0.74%, MAPE: 1.26% RMSE: 1.94%, MAPE: 1.61%
OLHM RMSE: 1.70%, MAPE: 1.38% RMSE: 2.26%, MAPE: 1.88%
PIBM RMSE: 1.10%, MAPE: 1.06% RMSE: 1.62%, MAPE: 1.32%
Methods 2 C 3 C
BPLM RMSE: 2.44%, MAPE: 2.25% RMSE: 2.48%, MAPE: 2.41%
OLHM RMSE: 2.36%, MAPE: 2.15% RMSE: 2.38%, MAPE: 2.29%
PIBM RMSE: 2.02%, MAPE: 1.94% RMSE: 1.68%, MAPE: 1.61%

The BPLM offers high computational efficiency and excel-
lent estimation accuracy under 0.5 C, with RMSE at 0.74%
and MAPE at 1.26%. However, its performance under higher
current rates is less satisfactory. Based on the electrochemical

model, the OLHM uses overall degradation characteristics
to formulate the health degradation of LiBs. Since these
features are mostly extracted from raw data, they may lack
the precision of direct measurements like OCV and IC curves,
resulting in lower accuracy than the BPLM method. Addition-
ally, the lack of consideration for physical behavior constraints
contributes to higher estimation errors. Furthermore, the pro-
posed PIBM can obtain more accurate estimation results under
swaying and different current rate conditions. This demon-
strates that incorporating coupled degradation mechanisms
and physical constraints can effectively improve the model’s
applicability. Compared with the conventional OLHM method,
the PIBM can reduce the SOH estimation error by 28.3%
RMSE at most (such as 1C condition).

To further describe the model performance in estimating LiB
life trajectories under different initial health states, different
SOH estimation results were conducted at different initial
cycle counts, and the estimation result is shown in Fig. 18, and
the estimation error is shown in Fig. 19. The error represents
the difference between the estimated value and the real value.

Fig. 18: Estimated results at different initial health states.

Fig. 19: Estimated errors at different initial health states.

From Fig.18 and Fig. 19, under different initial health
states, the proposed model is capable of capturing real health
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degradation trajectories. Although the error in health estima-
tion gradually increases with the decrease of initial SOH, the
proposed model still obtains a high accuracy in estimating the
subsequent health degradation trajectory, with the estimation
error not exceeding 4%. The primary reason is that the
proposed model scheme consists of two steps, i.e., electro-
chemical parameter identification and health state estimation.
Specifically, 1) the parameter identification part (Fig. 8) can
extract aging information from the collected current, voltage,
and impedance to identify chemical parameters, thereby ap-
proximating the real electrochemical performance of the LiB
at different initial health states; 2) the state estimation part
(Fig. 11) calculates accurate electrochemical behavior, which
serves as the input for the data-driven model, and accurately
corrects the estimation result of the health state.

3) Validation of model generalization: To further describe
the generalization capability of the proposed PIBM, the es-
timation results of SOH under static conditions are shown
in Fig. 20 and Table. VIII, which is not affected by marine
transport swaying conditions. It can be seen that the proposed
model can achieve accurate SOH estimation under variable
operating conditions. Although the internal stress in the LiBs
is relatively low under static conditions, the proposed modeling
framework, which adheres to physical laws, can still accurately
describe the internal electrochemical behavior, especially the
polarization reactions that increase with current rate.

Fig. 20: Estimation effects of SOH under static conditions.

TABLE VIII: Estimated SOH errors under static conditions.

Methods 0.5 C 1 C
BPLM RMSE: 2.02%, MAPE: 1.78% RMSE: 1.08%, MAPE: 1.10%
OLHM RMSE: 1.44%, MAPE: 1.52% RMSE: 1.50%, MAPE: 1.42%
PIBM RMSE: 1.60%, MAPE: 1.61% RMSE: 1.06%, MAPE: 1.21%

Methods 2 C 3 C
BPLM RMSE: 2.04%, MAPE: 1.99% RMSE: 2.16%, MAPE: 2.05%
OLHM RMSE: 3.24%, MAPE: 3.20% RMSE: 2.64%, MAPE: 2.66%
PIBM RMSE: 1.90%, MAPE: 1.83% RMSE: 2.04%, MAPE: 1.86%

VI. CONCLUSION

To efficiently capture the unpredictable health degradation
of LiBs under marine transport swaying conditions, a physics-
informed battery aging model framework is proposed. The
main conclusions are as follows:

1) Based on cyclic LiB testing experiments, this study
demonstrates that swaying-induced mechanical stresses
accelerate the health degradation of LIBs, including the
capacity and voltage decay. The detailed test results
demonstrate that the loss of conductivity is a primary
aging factor at the early aging stages, and the loss of
active material caused by the particle cracking dominates
during the late aging stage.

2) The proposed model can quantitatively analyze a
particle-level state degradation. The results show that
swaying intensify the growth of the SEI layer compared
to static conditions, increasing its reaction overpotential.
Moreover, the “wetting” effect ensures a more uniform
electrolyte distribution and enhanced interface reactions,
thus suppressing lithium plating through swaying. How-
ever, the mechanical stress caused by swaying damages
the particle structure, increasing LAM by 1.02% com-
pared to static conditions.

3) The proposed model can further quantify the cell-level
health degradation. Compared with the conventional
hybrid data-driven modeling framework, the proposed
method reduces computation time by 25.48% and de-
creases the SOH estimation error by 28.3% at most.
Additionally, by integrating the physical behavior con-
straints, the proposed method still exhibits robust gen-
eralization capabilities under static conditions.
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