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Surgical workflow recognition has the potential to accelerate training initiatives through the analysis of surgical
videos, improve intraoperative efficiency, and support preemptive postoperative care. Unlike well-explored
minimally invasive surgeries, where surgical workflows are consistent across patients, automating endoscopic
pituitary surgery workflow recognition is challenging. Pituitary surgery involves a large number of steps,
diverse sequences, optional steps, and frequent transitions, making it challenging for current state-of-the-art
(SOTA) methods, which struggle with transferability. Progress is largely limited by the lack of annotated data
that captures the complexity of pituitary surgery, and obtaining such annotations is both time-consuming and
resource-intensive. This paper presents SurgflowNet, a novel spatio-temporal model for consistent pituitary
workflow recognition leveraging unannotated data. We utilise a limited yet fully annotated dataset to infer
quasi-labels for unannotated videos and curate a balanced dataset to train a robust frame encoder using the
student-teacher framework. A spatio-temporal network that combines the resulting frame encoder and an LSTM
network is trained with a consistency loss to ensure stability in step predictions. With a 5% improvement in
macro F;-score and 13.4% in Edit Score over the SOTA, SurgflowNetdemonstrates a significant improvement
in workflow recognition for endoscopic pituitary surgery.

1. Introduction examples in Fig. 1). Many steps also look visually similar to each other,

which further complicates accurate step recognition. For instance, in

Pituitary adenomas are benign pituitary gland tumours that can
cause vision loss due to mass effect or changes in appearance and bodily
function from hormone imbalance, potentially leading to increased
mortality [1]. Most of these tumours can be effectively treated using the

the publicly available PitVis Challenge dataset [9], each video features
a unique step sequence, while across all videos there is an average of
71 + 34 step transitions, and the tumour excision step duration varies

eTSA, a minimally invasive surgery performed through the nostrils [2].
This skill is difficult to master, with many years of dedicated training re-
quired [1,3]. Breaking down surgery into phases and steps for analysis
has been shown to provide a framework for surgical coaching, im-
proving patient outcomes [3,4], and recent advancements in machine
learning have automated this process through intra-operative workflow
recognition [5-8]. Contrary to other minimally invasive surgeries such
as cholecystectomy, eTSA surgeries feature a large number of surgical
steps, defined as ‘sequence of activities used to achieve a surgical
objective [2], along with diverse step sequences and multiple optional
steps, leading to highly variable workflows and surgery durations.
Additionally, frequent interruptions due to the endoscope moving in
and out result in numerous step transitions within a single surgery (see

between 3 and 68 min. Training a robust step recognition model in a
fully supervised manner would therefore require an extensive volume
of comprehensively annotated video data, which is resource-intensive.
In the past, to overcome these challenges, eTSA workflow recognition
has either merged steps or omitted steps, leading to incomplete so-
lutions [6,8]. Instead, in this paper, we address the primary research
question of how to leverage unannotated video data to reduce reliance on
full supervision when developing a step recognition model for eTSA.

We propose a two-stage student-teacher framework for training an
endoscopic pituitary surgery step recognition model that leverages both
annotated and unannotated video data. Our key contributions are:
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Fig. 1. eTSA surgical workflow; top: surgical steps and out-of-patient example frames; bottom: three examples illustrate interlaced steps, diversity of step transitions

and variability in step and surgery durations.

+ a pipeline to curate a quasi-labelled dataset from annotated and
unannotated surgical video, mitigating class imbalance;

a two-step frame encoder training approach that applies semi-
supervised learning in a student-teacher framework;

a spatio-temporal model trained with a consistency loss to achieve
step prediction stability; and

a comprehensive evaluation in comparison to SOTA step recogni-
tion models, semi-supervised and self-supervised approaches, as
well as ablated variants.

To the best of our knowledge, this is one of the most fine-grained
step recognition frameworks to date for endoscopic pituitary surgery,
leveraging unannotated data to achieve consistent workflow recogni-
tion. SurgflowNet contributes to improving an array of clinical ap-
plications, including intraoperative guidance, surgical coaching, and
postoperative documentation. Intraoperatively, accurate step recogni-
tion can help surgeons identify critical points—such as the start of the
sella phase, where anatomy segmentation models can be activated to
provide decision support for safer opening [10]; and can also improve
estimates of remaining surgery duration for the anaesthetics team and
scheduling staff [11]. For surgical coaching, SurgflowNet will automate
the extraction of step sequences and durations, streamlining a process
that is currently performed manually, expanding the pool of videos
available for surgical trainees. Postoperative surgical note generation
will be more comprehensive, replacing our previous step recognition
model [12], and automatic detection of out-of-patient frames will allow
surgical videos to be anonymised before storage, protecting patient
privacy.

The rest of the paper is organised as follows: Section 2 reviews
related work, followed by the details of the proposed method in Sec-
tion 3. Section 4 presents the evaluation and implementation details.
Comparative results, ablation study and the qualitative evidence are
presented in Section 5 followed by a discussion on limitations of this
work. Finally, Section 6 concludes with a summary of findings and
future directions.

2. Related work

Surgical workflow analysis seeks to systematically break down sur-
gical procedures into discrete clinically meaningful units of procedures

and errors [2]. This is a hierarchical process where procedures are
broken down into phases, defined as ‘major events occurring during
a surgical procedure’ each composed of a series of steps, generating
unique workflows [13]. During each step (e.g. nasal corridor cre-
ation), surgical instruments (e.g. Freer elevator) are used to perform
manoeuvres via a series of gestures [2].

Surgical phase recognition is one of the most explored workflow
analysis tasks in surgical vision [14]. The most prevalent approaches
employ a spatio-temporal neural network trained in a supervised man-
ner, utilising labelled data. Earlier networks relied heavily on a fine-
tuned ResNet50 encoder for feature extraction [15-18], and more
recently, ConvNeXt and ViT encoders are used [19,20]. Temporal de-
pendencies are learned with Long Short-Term Memory (LSTM) [15],
Temporal Convolutional Network (TCN) [16] or Transformers [17,
21,22]. One of the latest comparative studies by Rivoir et al. re-
vealed that the state-of-the-art approach for laparoscopic and robotic
surgeries is a ConvNeXt-LSTM architecture trained end-to-end with a
partially frozen encoder [19]. It outperformed several other commonly
used architectures and training strategies, including TeCNO [16] and
Trans-SVNet [23].

In endoscopic pituitary surgery, workflow analysis focuses on recog-
nising surgical steps, providing greater granularity needed in clinical
applications. Step recognition in endoscopic pituitary surgery is a sig-
nificantly challenging yet developing research area [5,6,24]. The PitVis
Challenge made significant contributions in the step recognition task,
achieving 0.611 + 0.106 macro F;-score and 0.647 + 0.101 edit-score
over 12 surgical steps (video-level) [8]. However, these networks are
limited by the insufficient training data to robustly recognise rare
surgical steps, including when the endoscope is outside the patient.

Self-supervised learning strategies have been employed in surgical
vision to address the limitations of annotated data and to develop
foundational models for various downstream tasks, including surgical
phase recognition. Earlier works have utilised contrastive learning [18,
25,26], knowledge distillation [20,27], mask reconstruction [28] and
student-teacher framework [29,30] techniques for training networks
used in phase recognition in cholecystectomy and cataract surg-
eries. Evidence from the computer vision research has shown that
self-distillation methods, such as BYOL [31] and DINOv2 [32], are
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Fig. 2. Workflow of Pit-X curation and SurgflowNet training; Frames with coloured borders are annotated (Pit-20 and part of Pit-53); white borders are
unannotated (Pit-101); dashed coloured borders indicate quasi-labelled frames (Pit-X).

computationally efficient compared to contrastive learning approaches
like SimCLR [33] and MoCo [34]. Additionally, DINOv2 [32] and
LEMON [27] have demonstrated the effectiveness of curated datasets
for self-supervision, resulting in enhanced representation learning.

Building on these insights, our approach to distilling pituitary surgi-
cal workflow knowledge from raw video data begins with the curation
of a diverse pre-training dataset through a tailored filtering pipeline.
In contrast to the literature, our pipeline focuses on identifying cases
where current SOTA methods fail, such as frames around a step tran-
sition. We adopt a student-teacher framework for training the frame
encoder, as it enables effective utilisation of both unannotated and an-
notated data (both ground truth and quasi-labelled) by combining self-
supervision with semi-supervision. Therefore, we contrast with prior
works that rely solely on full supervision [6,19] and address unique
challenges in eTSA by adapting recent advances in self-supervision to
leverage unannotated video.

3. Methods

SurgflowNet is a spatio-temporal neural network trained in two
stages for consistent step recognition. We first curate the Pit-X dataset
by leveraging both annotated and unannotated data focused on identi-
fying ambiguous or challenging cases (Section 3.1.2). Stage A trains
a frame-level ConvNeXt encoder on the curated Pit-X dataset via a
student-teacher framework applying semi-supervised learning over two
steps (Section 3.2). In Stage B, the encoder-LSTM network is fine-
tuned end-to-end for consistent step recognition (Section 3.3). Overall
workflow is illustrated in Fig. 2.

3.1. Pit-X dataset curation

3.1.1. Source datasets

We utilise three eTSA video datasets with varying levels of anno-
tations, fully annotated, partially annotated and unannotated. They
are referred to as Pit-20, Pit-53 and Pit-101 where the numbers in-
dicate the number of videos. Pit-20 comprised 20 out of 25 videos
publicly available from the PitVis challenge [9]. Pit-20 videos are
annotated for 14 surgical steps (8 core and 6 optional), with the out-of-
patient frames representing a 15th class. Pit-53 dataset is only partially
annotated — each out-of-patient frame is labelled as the preceding
surgical step, which exaggerates the frame count for each surgical
step. The surgical videos were annotated by two trainee neurosurgeons,
with discrepancies resolved through discussion and mutual agreement,
and a consultant neurosurgeon subsequently verified all annotations.
Videos in Pit-101 are not annotated. To the best of our knowledge,
this represents the largest surgical video collection used to date in
eTSA workflow analysis. Figs. 3 and 4 summarises the data distribution
statistics across the three datasets.

The videos were collected from surgeries performed by three lead
surgeons at a single centre, National Hospital for Neurology and Neu-
rosurgery (NHNN), London, UK, between 2018 and 2024. A high-
definition endoscope (Hopkins Telescope, Karl Storz Endoscopy) was
used to record the videos. The data collection and subsequent use
for research purposes received ethical approval from the Institutional
Review Board at University College London (UCL) (17819/011), and
informed consent was obtained. All videos were uploaded and analysed
using Touch Surgery Ecosystem, an Al-powered surgical video man-
agement and analytics platform provided by Medtronic.! Using their
internal software, all images outside of the patient were blurred to de-
identify the patient and surgical team. The videos were then reduced
to 720p (1280 x 720) resolution at 24-frames per second (FPS) using
the publicly available software handbrake,” and stored as mp4 files.
Images were sampled from the videos at 1-frames per second (FPS);
centre cropped to 720 x 720 to remove the excessive black borders;
resized to 256 x 256; and stored in PNG format.

3.1.2. Pit-X dataset curation pipeline

The curation pipeline serves two objectives: (1) mitigating severe
class imbalance; and (2) identifying frames that current step recogni-
tion models find challenging or ambiguous to enhance the robustness of
the frame encoder and consistency of step recognition. The limited but
fully annotated dataset, Pit-20, is used to train a SOTA step recognition
model (we selected the best-performing model from Rivoir et al. [19]),
which is then used to obtain step predictions for all three datasets.
To understand where SOTA models struggle with pituitary workflow
recognition, we analyse the confidence of these predictions.

We identify frames with low step prediction confidence as those
where the difference between the predicted probabilities (after soft-
max) of the most likely class and the second-most likely class falls
below a predefined threshold, ¢. The threshold ¢, defines the confidence
gap where it is considered uncertain. In this work, we have set ¢ = 0.9,
which has been selected considering the balance between the number
of low confidence frames chosen for each step class (a higher e returns
more frames, and a lower ¢ returns fewer frames). When the preceding
and succeeding frames have confident and matching step predictions,
we use this consistency to infer a quasi-label for a low-confidence
frame.

From all available frames, we select a stratified subset of 116,491
frames across the three datasets, capping 10,000 instances per step
class, to form Pit-X. For each step, the low-confidence frames with
their quasi-labels are prioritised over confident frames, encouraging
the model to learn from uncertain examples during self-supervised and
semi-supervised training. The final composition of Pit-X across source
datasets and steps is presented in Fig. 5.

1 https://www.medtronic.com/covidien/en-gb/products/touch-surgery.
html
2 https://handbrake.fr/
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Fig. 3. Distribution of step durations shown as box plots, indicating the minimum, 25th percentile, median, 75th percentile, and maximum for: (a) the Pit-25
dataset — comprising the Pit-20 videos and the validation set; and (b) the Pit-53 dataset — where out-of-patient frames are annotated with the preceding surgical

step. Distribution for Pit-101 is unavailable as it is fully unannotated.
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3.2. Stage A: Encoder training

Stage A training is performed in two steps, utilising the Pit-X
dataset. We select Bootstrap Your Own Latent (BYOL) [31] student—
teacher framework for Stage A training due to its effective adaptability
for both self-supervised and semi-supervised learning (Fig. 6). The
online network in Blue consists of a ConvNeXt encoder, initialised with
ImageNet pre-trained weights, 2 fully connected layers as the projector
and two prediction heads. The target network in Green consists of an
encoder and a projector that are architecturally identical to those on the
online network. ConvNeXt [35] was selected empirically as the encoder
architecture over ResNet50 [16], ResNet50-GN [19] and Swin-ViT [36].
During training, the online network is updated via gradient descent
and the target network is updated with the exponential moving average
(ema) of the online network.

Step 1 utilises Pit-X in a self-supervised manner to progressively
match the online latent predictions with the target projections using

cosine distance loss, £1. Minimising #1 encourages similarity in feature
space while remaining invariant to transformations. Step 2 introduces a
step prediction head to the online network and utilises Pit-X in a semi-
supervised manner. The combined losses from latent representation
matching and cross-entropy loss, €2 calculated between step predictions
and quasi-labels further train the online network to discern between
surgical steps. During step 2, #1 and #2 losses are given equal weights.
At the end of Stage A, all network components are discarded except the
ConvNeXt encoder of the online network, which is referred to as the
pituitary encoder or E”.

3.3. Stage B: Spatio-temporal network fine-tuning

The spatio-temporal network for step recognition consists of the
pituitary encoder and an LSTM network. It is trained end-to-end in a
supervised manner using the limited but fully annotated Pit-20 dataset,
with the encoder partially frozen to retain the distilled knowledge from
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Fig. 6. Two stage training of the SurgflowNet for consistent step recognition; Stage A trains a frame-level ConvNeXt encoder on the curated Pit-X dataset using
self-supervision and semi-supervision; Stage B trains a spatio-temporal network using cross-entropy and consistency losses for accurate and stable step prediction.

Stage A while allowing task-specific fine-tuning. In addition to cross-
entropy loss (£2) for improving step prediction accuracy, we introduce
a Smooth L1 loss, ¢3, to enforce step prediction consistency. Given p|
and p;_l are prediction probabilities for class i at time 7 and -1, #3 for
a sequence of length S is calculated as follows, where C is the number
of classes.
s C
t -1

3= CESIETe 1) c tz ; SmoothL1(p!, p'™") @
?3 loss reduces prediction volatility by minimising the difference in
step predictions between consecutive frames. Stage B is trained on a
weighted combination of #2 and #3, (¢2 + «#3). To find the balance
between step prediction accuracy and consistency, the most optimal
weight « € R* is determined via a hyper-parameter search.

4. Evaluation
4.1. Evaluation methodology

The proposed SurgflowNet is compared with the following existing
SOTA models. Their implementations were adapted from respective
publications and GitHub repositories.

» Supervised step recognition models: ConvNeXt-LSTM [19]
and EndoViT-TCN [28] are the SOTA for cholecystectomy work-
flow recognition, outperforming previously well-known meth-
ods [19] such as TeCNO [16] and Trans-SVNet [23]. ResNet50-
LSTM-TSF [6] from the pituitary workflow domain proposed a
post-processing temporal smoothing function (TSF) to improve
step prediction consistency.

Semi-supervised methods: SRC_MT [37] and ABCL [38] are
SOTA semi-supervised learning methods for medical image classi-
fication. While both follow the well-known mean-teacher frame-
work [39], ABCL further considers the imbalance of training
data via an adaptive consistency loss. Both methods were ap-
plied to ConvNeXt encoders. To ensure fairness with models that
leverage temporal context, we extract frame-level features after
semi-supervised learning and train an LSTM network following
the 2-stage approach from Rivoir et al. [19].

+ Self-supervised encoders: DINOv2 [32] from the public domain
and EndoViT [28] from the surgical vision domain are SOTA
self-supervised image encoders. For fairness, we fine-tune the
encoder, extract frame-level features and train an LSTM network
following the 2-stage approach from Rivoir et al. [19]. Including
these encoder networks enables us to compare our approach
against SOTA feature representation learning methods.

We also conduct an ablation study with the following variants:

No Stage A: Stage B uses a partially frozen ConvNeXt encoder
initialised with ImageNet pre-trained weights;

Stage A self-supervised: E’ is trained only on Step 1 with #1
loss;

Stage A semi-supervised: E? is trained in a semi-supervised
manner — #1 loss is calculated for all instances and #2 loss is
calculated only for instances with ground-truth;

No Pit-X curation Stage A 2-step training utilises all available
data with quasi-labels;

No partial freeze Stage B trained end to end without partially
freezing E?;

No #3 loss: Stage B trained only on #2 loss; and

No #3 loss+TSF [6]: Stage B trained only on #2 loss and TSF [6]
applied in post-processing.

4.2. Performance metrics

Comparative analysis results are reported using the following met-
rics. All metrics are calculated per video and averaged to report
mean+margin of error (moe) corresponding to a 95% confidence inter-
val. Statistical significance is evaluated for the performance metrics of
each method compared with those of the best- performing method. The
moe is derived from the t-distribution (7g75,_;X—F; s: sample standard
deviation; n: number of videos) and statistical 51gn1f1cance is assessed
using the Wilcoxon signed-rank test, both accounting for the limited
number of test samples and potential non-normality of the metrics.

* Macro F,-score is the unweighted mean of Fl-scores across all
step classes, without being influenced by class imbalance.
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- Balanced Accuracy is the unweighted mean of recall across all
step classes. Compared to accuracy, recall captures the perfor-
mance across both common and rare step classes.

Edit Score is the normalised Levenshtein distance between the
sequences of ground truth and step predictions, measuring the
minimal edits needed to match them. A higher score indicates bet-
ter alignment, effectively penalising misclassifications and over-
segmentation in step predictions [8].

Combined Score calculates the arithmetic mean of macro
F;-score and Edit score [8].

4.3. Implementation details

At Stage A, the data loader randomly applied colour jitter, greyscale,
horizontal flip, Gaussian blur, and resized cropping in addition to Im-
ageNet normalisation. The optimal output dimension for the projector
and latent predictor was empirically determined as 256 over 128 and
512. Each step in Stage A was trained for 100 epochs using Stochas-
tic gradient descent (SGD) optimiser with a learning rate (Ir)=1e-2,
weight decay=1e-5 and batch size=64. The target decay rate, r for
ema was updated using cosine annealing, starting at 0.99 and reaching
1.00 over the 100 epochs.

At Stage B, the first 55% parameters of EP were frozen, and the
network was trained in a supervised manner for a maximum of 200
epochs with SGD optimiser (Ir=1e—4, weight decay=1e—2) with se-
quence length 128. For Stage B training, a hyper-parameter search was
performed by fixing the #2 loss weight and varying the #3 loss weight
a from 0.0 to 1.5 in steps of 0.1. The best performance (combined score)
was achieved with a = 1.0, corresponding to equal weights for #2 and
?3. The details of the hyperparameter search are included in Appendix
A.

The limited but fully annotated Pit-20 dataset was used to train
Stage B. Five videos, held out from the PitVis public dataset, were
used as a validation set for early stopping. Training was halted if
the macro F;-score score on the validation set did not improve for 5
consecutive epochs. For consistency and comparability with prior work,
we intentionally used the same PitVis challenge test set, comprising 8
videos excluded from all source datasets (Pit-20, Pit-53, and Pit-101),
as our test set. These test videos were used to report the final step
recognition performance.

4.3.1. Code and resource usage

The code was written in PyTorch, and the repository will be avail-
able on GitHub.> A 32 GB NVIDIA Tesla V100 Tensor Core GPU was
used for training both stage A and B. In Stage A, one epoch took
2619.20 + 26.42 s for Step 1 and 1802.46 + 1.66 s for Step 2, requiring
up to 2 GB of GPU memory. In Stage B, an epoch took on average
516.27 + 1.39 s and utilised up to 8 GB of GPU memory. SurgflowNet
PyTorch model achieved a 110.42 + 3.24 FPS on GPU, indicating
potential for real-time deployment, though further optimisation may
be required for fully real-time performance in clinical settings.

5. Results and discussion
5.1. Comparative study

Table 1 summarises the performance of the proposed SurgflowNet
against selected baselines. SurgflowNet outperformed all seven base-
lines, exceeding the second best ConvNeXt-LSTM [19] by 5.5% in
macro F;-score and ResNet-LSTM-TSF [6] by 13.4% in Edit Score.
SurgflowNet achieved the best combined score of 0.545 and was statis-
tically significant over the second-best method ConvNeXt-LSTM [19].
Additional significant testing results with Wilcoxon signed-rank test

3 https://github.com/anjanaw/pit-surgflownet.git

Artificial Intelligence In Medicine 172 (2026) 103309

p-values are included in Appendix C. Semi-supervised methods that
also utilised unannotated data in encoder training failed to surpass
SurgflowNet or supervised SOTA baselines. However, ABCL outper-
forming SRC_MT suggests that mitigating class imbalance improves
representation learning for surgical workflow analysis. Applying TSF
in ResNet-LSTM-TSF [6] yielded the second-highest Edit Score, yet
did not surpass SurgflowNet, while all other methods performed sig-
nificantly poorly in step prediction consistency. A class-wise break-
down of SurgflowNet performance and comparison with the second-
best performing ConvNeXt-LSTM [19] showed significant improve-
ments on steps 1(+16%), 3(+20%), 5(+15%), and 12(+35%); minor
gains on steps 8(+5%), 9(+4%), and 10(+1%); and slight decreases on
steps —1(—4%), 2(—4%), 4(—4%), 6(—4%), and 7(—6%). The detailed
confusion matrix is included in Appendix B.

5.2. Ablation study

In Table 2, SurgflowNet performance is compared against the ab-
lated variants. The #3 loss—ablated variant outperformed SurgflowNet
across all metrics except the Edit Score. SurgflowNet achieved the
highest Edit Score, emphasising the role of #3 loss in reducing step
prediction volatility. Both #3 loss and TSF affected step recognition
performance, but TSF [6] had a more severe impact, unlike in the 7-step
task, where TSF improved step recognition accuracy [6]. This makes #3
loss a more generalisable solution towards achieving step prediction
consistency.

Fig. 7 presents the surgical workflow of two test videos, comparing
ground truth with #3 loss ablated variant and SurgflowNet step predic-
tions. When #3 loss is ablated, predictions are volatile, allowing quick
step transitions, either correct or incorrect, as highlighted by Orange
markers. In contrast, the lack of quick transitions in SurgflowNet has
impacted the ability to swiftly correct step predictions as highlighted by
Purple markers. These observations correlate with the Combined Scores
in Table 2 highlighting that SurgflowNet finds the balance between
consistency and accuracy.

5.3. Comparison with the PitVis challenge

The PitVis challenge focused on a 12-step recognition task. ‘Out of
patient’ was not considered as a class and steps 11 and 13 were not
evaluated due to insufficient representative data in the training set.
To compare SurgflowNet with PitVis challenge submissions, we adopt
a similar evaluation methodology and compare the results against
those reported in Das et al. [8]. We updated the labels of Pit-20, the
validation set and the test set to emulate the 12-step workflow and train
SurgflowNet Stage B for the 12-step classification task while Stage A
remained unchanged. SurgflowNet outperformed PitVis challenge best-
performing model in macro Fl-score achieving 0.682 + 0.11, a 7.1%
increase. SurgflowNet was the second best overall with an Edit Score
of 0.555 + 0.10 and a Combined Score of 0.619 + 0.07.

5.4. Discussion

With these results, we have shown that SurgflowNet consistently
outperformed all seven baselines on macro F;-score and Edit Score,
demonstrating strong overall performance and step prediction con-
sistency. The ablation study highlighted the performance gain from
each component in the two-stage approach and the importance of
the #3 loss as a more generalisable approach to enhancing temporal
consistency. When adapted to the 12-step classification task used in the
PitVis challenge, SurgflowNet achieved a 7.1% improvement in macro
F;-score over the challenge’s top submission. In qualitative evidence,
we have shown that, while SurgflowNet reduces prediction volatility,
it sometimes delays the correction of misclassifications.

While SurgflowNet demonstrates strong performance, we note the
following implications. First, as described in Section 3.1.2, our ap-
proach can select low-confidence frames that are misclassified. We
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Table 1
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Performance comparison with SOTA baselines; Methods where a temporal network was added for fair comparison
are indicated by split columns Spatial and Temporal. Each value is mean+moe; the best performance is in bold;
second-best is marked'; asterisk (*) indicates statistical significance over the second best with p < 0.05. B-Accuracy
stands for Balanced Accuracy; SurgflowNet achieved the best performance across every metrics.

Model Metric
Spatial Temporal  macro F,-scoret  B-Accuracy? Edit Scoret Combined Scoret
ResNet-LSTM-TSF [6] 0.364 + 0.04 0.421 + 0.06  0.365 + 0.06 0.365 + 0.05
Supervised EndoViT-TCN [28] 0.343 + 0.06 0.428 + 0.08  0.154 + 0.05 0.249 + 0.04
ConvNeXt-LSTM [19] 0.536 + 0.09" 0.597 + 0.07F 0.253 + 0.06 0.394 + 0.06"
Semi-supervised SRC-MT [37] LSTM 0.370 + 0.05 0.467 + 0.05  0.177 + 0.04 0.273 + 0.04
P ABCL [38] LSTM 0.469 + 0.08 0.542 + 0.07  0.161 + 0.04 0.315 + 0.04
Self-supervised DINOv2 [32] LSTM 0.491 + 0.12 0.559 + 0.10  0.105 + 0.04 0.298 + 0.07
P EndoViT [28] LSTM 0.380 + 0.05 0.469 + 0.07  0.219 + 0.04 0.299 + 0.04
Proposed SurgflowNet 0.591 + 0.12 0.647 + 0.12 0.499 + 0.07* 0.545 + 0.09*

Table 2

Performance comparison with ablated variants; SurgflowNet with the #3 loss achieved the best Combined Score,

balancing between accuracy and consistency.

Ablation macro F,-scoret B-Accuracyt Edit Scoret Combined Scoret A vs SurgflowNet
(Combined Score %)
No Stage A 0.527 + 0.08 0.597 + 0.07 0.252 + 0.04 0.389 + 0.05 -15.6
Stage A self-supervised 0.457 + 0.10 0.530 + 0.08 0.491 + 0.08 0.474 + 0.06 -7.1
Stage A semi-supervised 0.482 + 0.08 0.555 + 0.08 0.256 + 0.05 0.369 + 0.04 -17.6
No PitX curation 0.505 + 0.09 0.575 + 0.09 0.390 + 0.08 0.448 + 0.06 -9.7
No partial freeze 0.557 + 0.11 0.614 + 0.12 0.380 + 0.10 0.469 + 0.08 -7.6
No #3 loss 0.608 + 0.10 0.656 + 0.10 0.230 + 0.04 0.419 + 0.06 -12.6
No #3 loss + TSF [6] 0.581 + 0.09 0.620 + 0.09 0.496 + 0.06 0.538 + 0.06 -0.7
SurgflowNet 0.591 + 0.12° 0.647 + 0.12F 0.499 + 0.07 0.545 + 0.09 -
Step -1 1 2 3 4 5 6 7 8 9 10 12 14

Ground Truth
23 Loss Ablated

SurgflowNet

Ground Truth
23 Loss Ablated

SurgflowNet

Fig. 7. Workflow prediction sequence comparison between SurgflowNet and ¢3 loss ablated variant; Purple markers highlight instances where SurgflowNet fails
to swiftly correct step predictions due to #3 loss; Orange markers highlight volatile step transitions made by the #3 loss ablated variant.

mitigate this by checking for consistency with preceding and succeed-
ing frames; nonetheless, a few frames may still be mislabelled and
affect Stage A Step 2 training. Second, model performance is sensitive
to hyperparameter choices, particularly the weighting between loss
terms (see Appendix A). We recommend exploring optimal « when
applying SurgflowNet to other datasets or clinical domains to achieve
the best balance between accuracy and consistency. Thirdly, the pro-
posed data curation pipeline and SurgflowNet training depend on a
small, fully annotated dataset, such as Pit-20.

The current experiments are based on data collected from three lead
surgeons at a single centre (NHNN, London). Accordingly, the findings
presented in this work are limited to a specific surgical protocol [40].
However, to the best of our knowledge, this is the first instance of a
pituitary surgery dataset of this scale being used in any surgical Al task
for pituitary surgery. Extending to multi-centre datasets is a natural
next step, which we are actively working towards. However, these

efforts face practical challenges, including ethics approvals, ensuring
patient privacy, and complying with data-sharing restrictions, which
have limited timely access to surgical video data.

As detailed in Section 1, SurgflowNet contributes to improving and
automating several clinical applications. While some of these applica-
tions, such as intraoperative guidance [41] and surgical note genera-
tion [12], have demonstrated effectiveness in prior studies, others, such
as the use of remaining surgery duration, are currently undergoing pre-
clinical validation with target clinical user groups. Ongoing work will
validate these applications and establish the utility of SurgflowNet to
improve the clinical workflows.

6. Conclusion

This paper presented SurgflowNet- a novel spatio-temporal network
for consistent step recognition in endoscopic pituitary surgery. The pro-
posed combination of self-supervision and semi-supervision, leveraging
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Table A.3
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Hyper-parameter search for «; each value is mean+moe. The best for each metric is highlighted
in bold text. The best combined score is achieved at « = 1.0.

73 loss weight () macro F,-scoret

B-Accuracy?t

Edit Scoret Combined Scoret

0.0 0.608 + 0.10 0.656 + 0.10 0.230 + 0.04 0.419 + 0.06
0.1 0.530 + 0.13 0.594 + 0.12 0.407 + 0.14 0.469 + 0.12
0.2 0.628 + 0.11 0.679 + 0.10 0.333 + 0.07 0.481 + 0.08
0.3 0.593 + 0.13 0.653 + 0.12 0.351 + 0.13 0.472 + 0.11
0.4 0.640 + 0.09 0.668 + 0.09 0.326 + 0.07 0.483 + 0.06
0.5 0.627 + 0.11 0.679 + 0.11 0.400 + 0.11 0.514 + 0.09
0.6 0.616 + 0.09 0.671 + 0.07 0.384 + 0.07 0.500 + 0.06
0.7 0.618 + 0.13 0.673 + 0.12 0.419 + 0.11 0.519 + 0.09
0.8 0.599 + 0.12 0.653 + 0.10 0.414 + 0.06 0.507 + 0.08
0.9 0.625 + 0.12 0.664 + 0.10 0.392 + 0.12 0.508 + 0.08
1.0 0.591 + 0.13 0.647 + 0.13 0.499 + 0.08 0.545 + 0.10
1.1 0.623 + 0.13 0.666 + 0.11 0.447 + 0.10 0.535 + 0.09
1.2 0.599 + 0.09 0.661 + 0.09 0.402 + 0.10 0.501 + 0.07
1.3 0.607 + 0.09 0.665 + 0.09 0.395 + 0.11 0.501 + 0.09
1.4 0.624 + 0.08 0.674 + 0.09 0.433 + 0.08 0.528 + 0.06
1.5 0.596 + 0.13 0.670 + 0.11 0.362 + 0.14 0.479 + 0.10

the quasi-labelled Pit-X dataset, achieved SOTA performance compared
to existing step recognition methods, with a notable 5.5% improvement
in macro F;-score. To the best of our knowledge, this is the first instance
leveraging unannotated data for granular step recognition in eTSA. The
consistency loss introduced for spatio-temporal training improved the
Edit Score by 13.4%, demonstrating greater step prediction consistency.
SurgflowNet presents a significant advancement in eTSA workflow
recognition to date, accelerating the development of tools for surgical
skill development, improving intra-operative efficiency and supporting
post-operative reporting and decision-making.
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Appendix A. Hyper-parameter search for «

Table A.3 presents the results of the hyper-parameter search for
a. With a lower « SurgflowNet achieve better precision indicated by
higher macro F;-score and balanced accuracy scores. However, increas-
ing @ does not improve consistency indicated by lower edit scores
when 1.1 <« < 1.5. The balance between precision and consistency is
achieved at a = 1, indicated by the best combined score. Accordingly,
we set « = 1 for Stage B training of SurgflowNet.

Appendix B. SurgflowNet performance by surgical step

Fig. B.8 presents the performance of SurgflowNet for each step
class as a confusion matrix. Each cell shows the row-normalised pro-
portion of frames with true class i predicted as class j. Values are
reported as mean+margin of error (95% confidence interval), com-
puted using the normal approximation to the binomial distribution
for each class. Several surgical steps, such as 13 and 14, are often
misclassified as step 8 (haemostasis). Row 11 is empty due to step 11
(gasket seal construct) not being present in the test set. Compared to
the second-best performing model, ConvNeXt-LSTM [19], SurgflowNet
shows significant improvements on steps 1(+16%), 3(+20%), 5(+15%),
and 12(+35%); minor gains on steps 8(+5%), 9(+4%), and 10(+1%);
and slight decreases on steps —1(—4%), 2(—4%), 4(—4%), 6(—4%), and
7(—6%).

Appendix C. Comparative study statistical significance test results

Statistical significance testing results (p-values) for the comparative
study are included in Table C.4.
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Fig. B.8. Normalised confusion matrix with margin of error.

Table C.4

Statistical significance testing results. Wilcoxon signed-rank test p-value of each method when compared with the best-
performing SurgflowNet for statistically significant performance difference; p < 0.05 indicates statistical significance with
95% confidence interval; underlined instances are where statistical significance was not achieved.

Model Metric
Spatial Temporal macro F,-scoret B-Accuracyt Edit Scoret Combined Scoret
ResNet-LSTM-TSF [6] 0.0078 0.0078 0.0156 0.0078
Supervised EndoViT-TCN [28] 0.0078 0.0078 0.0078 0.0078
ConvNeXt-LSTM [19] 0.2500 0.1953 0.0078 0.0078
Semi-supervised SRC-MT [37] LSTM 0.0156 0.0156 0.0078 0.0078
P ABCL [38] LSTM 0.0781 0.0547 0.0078 0.0078
Self-supervised DINOv2 [32] LSTM 0.0156 0.0234 0.0078 0.0078
P EndoViT [28] LSTM 0.0078 0.0078 0.0078 0.0078
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