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Abstract

Given the urgency of climate change and the need for an energy transition, global
coal power generation is rapidly declining. However, coal transition strategies
optimized for cost-benefit and aligned with climate targets remain underexplored. Here,
we develop a Plant-level Mixed-Integer Nonlinear Dynamic Optimization Model to
conduct a cost-benefit optimization analysis for India’s coal-fired power plants, through
which the study proposes differentiated phaseout roadmaps aligned with the 1.5°C and
2°C climate targets. Our findings suggest that ambitious climate targets can yield more
significant economic benefits, and more aggressive coal power retirement strategies are
economically feasible. For example, Chhattisgarh and Uttar Pradesh could achieve the
total net benefits of 171 and 110 billion US dollars in the 1.5°C and 2°C scenarios.
Furthermore, incorporating social benefits into the evaluation will enhance the

feasibility of the coal phaseout and reinforce India’s decarbonization commitments.
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Introduction

Economies worldwide are threatened by the losses and damages caused by climate
change, making climate mitigation a global concern. India, the third-largest carbon-
emitting country globally, derives more than half of its carbon dioxide (CO2) emissions
from coal power!™. Therefore, coal power plays a pivotal role in achieving emission
mitigation goals. For the world to have a chance of meeting the Paris Agreement’s
temperature target, India needs to transition away from fossil fuels quickly*®.

The phaseout of coal power will result in both positive and negative effects. From
one perspective, this transition may cause carbon-intensive assets to depreciate or retire
before their expected lifetimes, resulting in stranded assets’®. Studies have also found
that India faces a high risk of stranded assets®°. Additionally, the phaseout of power
plants will interrupt their profitability, leading to cumulative profit losses over their
expected lifespan. This interruption affects the financial stability of the power plant, as
the revenue streams expected during the remaining operational years are lost.
Furthermore, with the acceleration of the energy transition, the coal mining industry
and related sectors supporting coal-based power generation will lose market share and
employment opportunities, resulting in decreased tax revenues in coal-dependent
regions!!. From another perspective, this transition will generate social benefits by
avoiding carbon emissions and thereby mitigating current and future climate damages.
These avoided damages include impacts on agricultural production, reduced labor
productivity, property losses, increased frequency of disasters, and induced

migration'?*3, In addition, actions to reduce carbon emissions often decrease associated



63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

air pollutants, yielding co-benefits for air quality and public health!*>. Recent findings
suggest that the negative impacts of climate change are concentrated in developing
economies, commonly referred to as low- and middle-income economies according to
the World Bank’s classification!®. Among them, India bears the highest social cost of
carbon!”8, Hence, these developing economies will implement higher carbon taxes for
the nation’s benefit'®. Overall, these positive and negative effects, crucial for India’s
coal power transition, remain unclear. In future coal power planning, it is essential to
fully consider both benefits and losses to conduct a comprehensive assessment of
decisions.

The Indian government is actively accelerating the deployment of renewable
energy to achieve the target outlined in its updated Nationally Determined
Contributions (NDCs), aiming for 500 gigawatt (GW) of non-fossil fuel installed
capacity by 2030'°. As a result, India ranked fourth globally in renewable energy
capacity in 2023%. However, despite these efforts, the country remains heavily reliant
on coal. As of 2020, the total installed capacity of operational coal-fired power plants
was 233 GW, with an additional 53 GW of planned and under-construction units
expected to come online by 2030. Moreover, with approximately 20% of its coal
consumption reliant on imports, rising global coal prices are likely to intensify future
coal supply pressures, substantially driving up the cost of coal-fired power generation
and highlighting the urgent need to reduce India’s overreliance on coal?'??,

Global and regional studies have utilized unit-level data, considering the

heterogeneity of various factors and revealing the pathways for fossil fuel phaseout®®-
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2T However, most evaluations are based on the multi-criteria decision analysis method
for energy planning and scenario comparisons?®. These studies usually consider each
criterion and assign relative weights for decision aggregation, where the weights are
often subjective and preference-based. Moreover, investigations on stranded assets due

to coal power transition®293!

also generally believe that ambitious climate policies will
lead to more stranded assets, but largely ignore the economic benefits of carbon
emission reduction. A few studies have considered the carbon benefits of eliminating
coal power and conducting cost-effectiveness analysis®?, but the optimal solution has
yet to be provided. Although the cost-benefit analysis can provide a comprehensive

3, coal power transitions will

evaluation by converting all impacts into monetary terms
always be challenging regarding cost and benefit in the future. If the costs and benefits
are incorporated into comprehensive assessments of coal facilities’ retirement and new
construction, it will help promote coal power transition policies in developing countries
consistent with the Paris Agreement.

Despite substantial progress in renewable energy capacity expansion and a clearly
defined strategic intent to develop renewable energy over the next decade, the timeline
and pathway for India’s transition away from coal remain uncertain, particularly
regarding the specific retirement schedule of individual coal-fired power plants. To fill
this research gap, this study formulates a dynamic optimization problem to determine
the optimal retirement schedule for India’s coal-fired power plants under the national

carbon emission reduction pathway (CERP) established by the Intergovernmental Panel

on Climate Change (IPCC). In this context, this study develops the Plant-level Mixed-
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Integer Nonlinear Dynamic Optimization Model (MIND-Plant). The model
incorporates the evolution of the power system under 1.5°C and 2°C climate target
scenarios, balancing environmental benefits (carbon emission reductions and avoided
health risks), economic costs (profitability losses and stranded asset risks), and social
risks (employment impacts). The optimization is performed iteratively using the Gurobi
Optimizer version 10.0.3 to generate a progressive power plant retirement schedule,
designing a gradual coal phaseout pathway aligned with India’s energy transition goals.
Specifically, the model assigns a binary decision variable to each power unit, indicating
whether it should retire in a given year. It then calculates the cumulative impacts across
four dimensions from the retirement year until the end of its expected lifespan. The
optimization process maximizes overall benefits and minimizes total costs, balancing
these impacts to determine the optimal retirement year for each unit, ultimately solving
the global optimum of this nonlinear problem. This study applies the optimization
framework to analyze India’s coal power transition, and the results revealed optimal
coal phaseout pathways from 2020 to 2060 under different climate targets. The findings
indicated that to achieve the 1.5°C and 2°C climate goals, the average operational
lifespan of India’s coal-fired power plants will be reduced by 12 years and 5 years,
respectively. The plant-level coal phaseout roadmap developed in this study could guide
the orderly retirement of India’s coal power plants and contribute to achieving India’s
carbon reduction commitment under the 2030 NDC, providing a scientific basis for

power transition pathways and policy formulation.
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130  Characteristics and retirement pathways of India’s coal power units
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132 Fig. 1 | Characteristics of India’s coal power units and climate target pathways. a
133 Geographic locations and the installed capacities of individual operating units in India.
134  The map is based on factual evidence and displays the non-disputed areas under actual
135  control. b Total installed capacity and age structure of operating units in each state (the
136 baseline year is 2020), as well as the capacity of units under construction or planned
137  (Pipeline). Capacity is expressed in megawatts (MW) at the unit level and in gigawatts
138 (GW) at the state level. ¢, d India’s coal power capacity pathways consistent with

139 limiting warming to 1.5°C and 2°C. The dark lines indicate median pathways, with

7



140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

shaded areas representing the 5th—95th percentile range (light shading) and the 25th—
75th percentile range (dark shading). The raw scenario data is sourced from the Sixth
Assessment Report (AR6) Scenario Database3*. The base map was obtained from Esri
ArcGIS 10.8. Map images © Esri and its licensors. Used under license.

The spatial distribution of coal-fired power plants in India is illustrated in Fig. 1a.
Coal power units are located across 21 states, with a total installed capacity of 233 GW
as of 2020, primarily concentrated in the western and eastern regions. The top three
states in terms of capacity are Chhattisgarh, Maharashtra, and Uttar Pradesh, with
installed capacities of 27 GW, 25 GW, and 24 GW, respectively, accounting for 33% of
the national total. Figure 1b illustrates the age structure of operating units, with 57%
commissioned between 2000 and 2020, indicating a relatively young fleet. Additionally,
approximately 53 GW of capacity is under construction or planned, and it is expected
to come online within the next decade, with Uttar Pradesh leading with about 10 GW.

The climate target pathways used in this study (Fig. 1¢, d) show the projected trend
in India’s coal power capacity, which is expected to peak between 2020 and 2030. The
median pathway suggests that to limit warming to 1.5°C, coal capacity will gradually
phase out by around 2045, while for a 2°C target, it will phase out by around 2055.
Under stricter climate goals, coal retirement will accelerate to achieve higher emissions

reduction targets.
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Multidimensional effects of coal power phaseout based on cost-benefit analysis
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Fig. 2 | Cost-benefit analysis of coal power units. a, b Total costs and benefits of all
units under the 1.5°C and 2°C scenarios, showing the cumulative values from early
retirement to the end of the assumed lifetime. The shaded areas represent the range of
uncertainty. ¢, d The cumulative values for each unit across four dimensions, with units
sorted from left to right in increasing order. The bar colors represent the installed
capacity of each unit (in gigawatt, GW). The four dimensions include carbon benefits,
health benefits, plant losses, and tax & employment losses, all measured in billion US
dollars (USD). The results include both operational and pipeline units.

We conducted a cost-benefit analysis using a dynamic optimization approach,
incorporating environmental, economic, and social dimensions. Carbon and health
benefits reflect the advantage dimension, while tax & employment and plant losses

correspond to the cost aspect. The model determined the optimal retirement year for
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each unit and the optimal values for each objective. Figure 2a, b illustrate the trade-offs
in cost-benefit for operating and pipeline coal units under the 1.5°C and 2°C climate
targets. The blue solid lines represent the results for each dimension under the assumed
lifetime of 40 years. The shaded areas indicate the uncertainty range results, accounting
for an expanded assumed lifetime of 3545 years, as well as variations in other
parameters (see the uncertainty analysis section in Methods). Stricter climate targets
result in higher plant losses and tax & employment losses, amounting to 516 billion US
dollars (USD) (range: 377—723) under the 1.5°C scenario, and 253 billion USD (range:
171-415) under the 2°C scenario. However, these stricter targets also yield
substantially higher carbon and health benefits, reaching 1,879 billion USD (range:
1,218-2,946) for 1.5°C, and 1,055 billion USD (range: 589-1,906) for 2°C. This
highlights the economic advantages of pursuing ambitious temperature goals. Figure
2c, d presents the results for individual units across dimensions, with the black line
representing the value assumed for the 40-year lifetime. Significant variation exists
between different units in all scenarios. Generally, large-capacity units, especially those
exceeding 600 megawatts (MW), have a more substantial impact on carbon benefits
and losses, consistent with their high emissions and energy consumption. This
highlights the critical role of larger plants in impacting overall metrics and guiding
decision-making. Additionally, health impacts are influenced by the regional
background characterization factors of local pollutants, as measured per disability

adjusted life years (DALYSs) (Supplementary Fig. 5).
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Phaseout roadmap for coal power units
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Fig. 3 | Phaseout roadmap of coal power units and their actual lifetimes under
climate goals scenarios across periods. a, b The retirement year of individual coal
power units. Operating units refer to those still in operation in the baseline year 2020,
while pipeline represents units that are planned or currently under construction. The
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benefit outcomes for each state under two scenarios, ranked in descending order by net
value from top to bottom. The benefits include carbon and health benefits, while the
costs encompass plant loss and tax & employment loss. The base maps were obtained
from Esri ArcGIS 10.8. Map images © Esri and its licensors. Used under license.
Based on the optimization, we developed an optimized retirement schedule for
each unit and mapped it spatially. Panels a and b of Figure 3 show the spatial
distribution of operating and pipeline units in different states across four time periods
(2020-2030, 2030-2040, 20402050, 2050-2060) under the 1.5°C and 2°C scenarios.
Grey or red dots represent operational units that continue operating or retire within each
period. In contrast, green or yellow dots indicate new pipeline units that start operation
or quit shortly after. The 1.5°C target requires higher retirement rates, with 484
operation units (105 GW) and 36 pipeline units (24 GW) phased out between 2020 and
2030, even for larger plants, especially in the Eastern Coal Belt. This trend continues
to increase between 2030 and 2040 (gradually increasing numbers of red and yellow
dots). New units are also expected to retire before 2050, thereby increasing the risk of
stranded assets. In contrast, the 2°C target allows for a more gradual retirement process,
with more early retirements concentrated after 2030 (represented by more red dots).
Moreover, the units have average lifetimes shortened to 28 and 35 years (Fig. 3¢). These
results highlight that achieving the 1.5°C target demands faster emissions reductions
and large-scale early retirements, while the 2°C target allows more time for adjustment.
From a state-level perspective (Fig. 3d, e), our retirement strategy reveals that

Chhattisgarh could achieve the net benefits of 171 billion USD in the 1.5°C scenario,
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retiring 83% of its installed capacity (25 GW) between 2030 and 2040. Similarly, Uttar
Pradesh demonstrates the net benefits of 110 billion USD in the 2°C scenario, retiring
48% of its installed capacity (15 GW) between 2040 and 2050. In addition, Maharashtra
yields the most significant benefits in both scenarios but also incurs the highest costs.
Specifically, under the 2°C scenario, plant losses, and tax & employment losses are
estimated at 83 and 31 billion USD, respectively, increasing to 110 and 42 billion USD
under the 1.5°C scenario (the results for each state are summarized in Supplementary
Table 8 and Fig. 6). These findings underscore the need for each region to adopt a
flexible and tailored transition plan to effectively manage the risks associated with the
transition to a low-carbon economy.

National and state-level environmental benefits
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Fig. 4 | Annual avoided carbon emissions and health impacts. a, b National results.
¢, d Results for the top 14 states ranked by installed capacity. The solid lines show
results under the 40-year lifetime assumption, while the shaded areas indicate the range
across lifetime scenarios (35—45 years). CO; emissions are expressed in gigatonnes (Gt)
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at the national level and in million tonnes (Mt) at the state level. Health impacts are
measured by disability-adjusted life years (DALYs).

We developed unit-level retirement pathways based on climate target constraints
and cost-benefit optimization. Annual avoided CO- emissions and health impacts were
calculated for each coal unit under the retirement strategy, with results aggregated at
the state level. On a national scale (Fig. 4a, b), the more ambitious 1.5°C scenario
achieves significantly higher cumulative avoided CO: emissions of 26 Gt (range: 20—
33) and health impacts of 1.3 million DALYs (range: 1.0—1.6) compared to the 2°C
scenario, which achieves 15 Gt (range: 10-21) and 0.71 million DALYs (range: 0.4—
1.0) by the latter half of the Century. Additionally, the 1.5°C scenario achieves a faster
emission reduction rate, with the gap between the two scenarios widening over time,
highlighting the long-term benefits of more stringent climate goals. Peak annual
avoided CO: emissions are projected at 1.09 Gt (range: 1.02—1.13) by 2043 (range:
2040-2044) under the 1.5°C scenario and 0.74 Gt (range: 0.57-0.95) by 2048 (range:
2045-2054) under the 2°C scenario. Beyond these peaks, scenarios assuming a 45-year
operational lifetime yield more significant cumulative avoided CO: emissions and
health impacts than those considering a 35-year operational lifetime, due to the
extended service time of coal units, leading to more substantial cumulative reductions.

At the state level, the 14 states shown in the figure account for 95% of India’s total
installed capacity (Supplementary Fig. 4), with notable regional differences in benefits
and losses. States with higher capacities, such as Uttar Pradesh, Madhya Pradesh,

Chhattisgarh, and Maharashtra (23.7 GW, 22.8 GW, 27.5 GW, and 25 GW in 2020,
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respectively), show more significant reduction potential, with cumulative avoided CO-
emissions projected to reach 4.6-9.3 Gt (2°C) and 8.4-13.6 Gt (1.5°C) by 2080. In
contrast, northern states like Punjab, Haryana, and Rajasthan have lower capacities,
resulting in smaller avoided emissions. Additionally, an estimated 53 GW of new
capacity expected by 2030 is likely to accelerate emissions reductions across most
states thereafter. Avoided health impacts vary with location, population density, and
baseline pollution levels. West Bengal, for example, has the highest regional particulate
matter health impact factors (Supplementary Fig. 5) and thus the most significant
cumulative avoided health impacts, estimated at 182 (range: 116-261) and 65 (range:
36—113) thousand DALY's under the 1.5°C and 2°C scenarios, respectively.
Discussion

The low-carbon transition of the power industry is crucial for mitigating climate
change. This study demonstrates that, under both the 1.5°C and 2°C scenarios, the
benefits of carbon emissions reduction and health improvements generally outweigh
the losses in tax revenue, employment, and power units’ profitability, with more
ambitious climate targets proving to be more cost-beneficial. Based on the MIND-Plant
model, the study further proposed the unit-level optimized retirement plan, revealing
regional disparities under different climate targets: under the 1.5°C scenario, more units
need to be retired between 2020 and 2030, concentrated in the north, west, and east;
under the 2°C scenario, the retirement process is more gradual. These regional
differences highlight the need for developing differentiated regional policies that
provide adequate support and forward-looking planning for the more affected regions
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during the transition process, thereby mitigating potential resistance.

Although India’s coal capacity pipeline, including announced, pre-licensed, and
licensed projects, has declined by 85% since 2014 (from 250 GW to 36 GW)?%, some
regions remain heavily reliant on coal for economic development, employment, and
fiscal revenue, particularly in the Eastern Coal Belt!!®3, These areas are therefore
more vulnerable to the risk associated with the coal phaseout. For instance, under the
1.5°C and 2°C scenarios, Maharashtra is projected to incur combined losses in power
plant assets, tax revenues, and employment amounting to 152 and 114 billion USD,
respectively (Fig. 3d, e). To ensure a just and sustainable energy transition, the
government should prioritize targeted financial compensation, workforce retraining,
and employment support for the regions most affected by the transition.

Regional transition strategies are not only determined by spatial deployment, but
also by the timing of interventions. Energy infrastructure, once established, tends to
create long-term dependence on pathways. Hence, delayed decisions can reduce the
flexibility of the power system and constrain future transition options?. India’s current
operating coal power plants are relatively young, with an average age of 17 years. To
align with the 1.5°C and 2°C climate targets, the average retirement age would be
brought forward to 28 and 35 years, respectively. Our analysis outlined a structured
coal transition pathway that includes the gradual phaseout of existing coal power plants
starting in 2020 and the cessation of new coal power construction after 2030. Without
such interventions, India’s coal capacity is projected to continue expanding. Emissions
from these plants could undermine India’s NDC target and impede effective long-term
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climate mitigation. If the power sector continues along its current trajectory, more
costly measures, such as the deployment of carbon capture and storage or large-scale
carbon dioxide removal technologies, will be required to offset rising emissions®’.
Moreover, the construction of proposed coal plants will result in resource lock-in and
miss opportunities for potential investment in renewable energy>®. Hence, cancelling
planned coal power projects should be prioritized to prevent carbon lock-in, while
simultaneously pursuing a strategic and regionally tailored phaseout of existing coal
power plants. This strategy can also promote future technological innovation and policy
development, ultimately contributing to the achievement of global climate mitigation
goals.

Reducing the environmental risks associated with coal power expansion is
essential for sustainable development. The continued growth of coal power capacity
poses serious threats to environmental quality, including increasing greenhouse gas
emissions, worsening air pollution, and depletion of water resources. An early transition
away from coal, in line with ambitious climate targets, can substantially mitigate these
risks. Increasing urban air pollution and public health issues in India have become
important drivers for reducing coal power3®40. If the phaseout strategy in this study is
implemented, an estimated 1.0—1.6 million DALY (1.5°C) and 0.4—1.0 million DALY's
(2°C) can be avoided. At the same time, cumulative carbon emissions of 1.9-2.3 Gt
(1.5°C) and 0.9-1 Gt (2°C) can be reduced by 2030. This strategy will help India
achieve its NDC target of reducing carbon emissions by 1 Gt by 2030. As India prepares
to update its 2035 NDC, the findings will also help mobilize international support for a
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more ambitious and actionable decarbonization roadmap, thereby avoiding a lock-in to
a high-carbon development trajectory.

India has introduced policies such as the Production Linked Incentive scheme to
support the renewable energy goals*!. In parallel, the country aims for non-fossil fuel
sources to account for approximately 50% of total power generation, meeting half of
its energy demand by 2030 and reinforcing its commitment to net-zero emissions by
2070. Among them, wind and solar power exhibit high scalability, maturity, and
commercial viability in India*?, with solar power capacity reaching 92 GW in 2024,
While these low-cost renewable energy sources are expected to meet future energy
demand, the transition to renewable energy still faces challenges in technology, finance,
and infrastructure.

This study primarily focuses on the transition and retirement pathways of coal-
fired power units, along with their associated environmental and socioeconomic
impacts, while broader topics such as energy security and renewable energy substitution
are beyond the scope of this paper. It is essential to note that although the model outlines
an framework for coal power retirement, the implementation in the real world is subject
to multiple uncertainties, including renewable energy potential, grid flexibility, social
acceptance, and political will. In particular, regions with weak regulatory capacity or
high fiscal dependence on coal may face stronger political resistance, which could
potentially delay the transition process. These potential barriers and critical
uncertainties suggest that, while this study represents a exploration of power transition,
the actual decarbonization pathway is likely to be more complex than model projections
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indicate. Future research should adopt interdisciplinary approaches, integrate external
variables such as electricity market fluctuations and policy dynamics, and
systematically assess the technological potential and feasibility of renewable energy
alternatives to provide more comprehensive support for a fair and sustainable power
transition.
Methods
Optimization framework

To determine the optimal retirement schedule for coal-fired power plants in India
under the CERP set by the IPCC, this study develops the MIND-Plant model to conduct
a cost-benefit analysis of both operational and pipeline coal-fired power plants. The
Gurobi Optimizer version 10.0.3 is employed as the solver to achieve dynamic
optimization through iterative computation. Specifically, the model assumes that a unit
retires before the end of its assumed lifetime, and the avoided carbon emissions and
PM3 s-related health impacts from the retirement year to the end of its assumed lifetime
are considered benefits. However, such early retirement also results in profit loss,
stranded assets, tax, and employment losses caused by the premature closure of the unit,
which is defined as costs. These costs, together with the avoided carbon emissions and
health impacts, constitute the optimization objectives of the model. We monetize the
benefits of avoided carbon emissions and health impacts, compare them with the cost,
and aggregate these objectives into a single objective function, allowing the model to

optimize and solve for the final result.
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Based on these objectives, the model incorporates capacity constraints aligned
with climate targets and balances the impacts across multiple dimensions to maximize
benefits and minimize costs for all units. During the optimization process, a binary
decision variable is assigned to each power unit for each year, indicating whether it
should retire. It then iteratively calculates cumulative impacts across the four
dimensions, spanning from the retirement year to the unit’s assumed end of its lifetime.
Through this process, the model aims to maximize the system’s cost-benefit and
identify the global optimum for this complex nonlinear problem. Ultimately, the model
determines the optimal retirement year for each unit, deriving the optimal value for each
dimension, and provides the optimal retirement schedule for each power plant.

The objective functions are as follows:

Maximize > Y ™ +"fe“me( t><(xi’t+xj’t)) (1)

t trellre

iel, jed
Maximize 3 > +I'fe“me( tX(Xi,t+Xj,t)) )
iel, jed feire
Minimize 3 > ”'fe“me( ’tx(xi’t+x“)) 3)
iel,jed freire
Minimize Z ZY *I'fet'me(PLi,j,tX(Xi,t +Xj,t)) (4)
iel,jed frete

Where X, and X;, are binary decision variables indicating whether the
operational unit i or pipeline unit ] retires in year t. The decision variables X;,
=1 or X;,=1 if operation unit i or pipeline unit ] begins retire in year t, and it

takes the value of 0 otherwise. CB HB. .., TJ

NE it and PL; , represent the

ijto
cumulative carbon benefit, health benefit, tax & employment loss, and plant loss of unit

i and ] from retirement year (t_. ) to the end of the assumed lifetime year
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(Y, ; +lifetime ), respectively. Y,; denotes the online year of the operation unit i and
the commission of unit |, respectively. lifetime is the assumed lifespan of 40 years,
and we conduct an uncertainty analysis by extending the assumed lifetime range to 35—
45 years. These benefits or losses occur after the unit retires. | and J represent the
fleets in operation and commission, respectively.
Set up constraints

For each year t, the total capacity of all non-retired units aligns with the capacity

pathway for the 1.5°C or 2°C targets. Each unit may be phased out once during the

planning period.

anpi (1_ Z:iﬂifetime X, ) N anpj (C”j (1_ Z:l:+lifetime X, )) <C +€ )
i i

]

z::ﬂifetime Xi‘t Sl vi c | (6)
YJ+Iifetime

ZYJ X <1 Vel (7)
Yj+lifetime

2 ¢ <1 V;el (3)

)

Where Cap, and Cap; are capacity of unit i and J , respectively. ¢ i, is the
binary decision variable indicating whether the pipeline unit | is commissioned in the
year Y;. C, is the capacity pathway under the climate targets. €, is a non-negative
slack variable introduced to allow a certain degree of exceedance. In addition to
capacity constraints, it is also necessary to meet assumed lifetime constraints (lifetime ),
meaning units that have operated for their designated lifetime must be retired. Formulas
(6) and (7) indicate that each unit in operation and pipeline can only be retired once
during its lifetime, respectively. Formula (8) suggests that each pipeline unit can only

come online once. Under the capacity constraints consistent with climate targets, the
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model iteratively solves to determine the optimal retirement year for each unit that
achieves the maximum cost-benefit. The cumulative impacts across all dimensions
from the optimal retirement year to the end of the assumed lifetime can also be obtained.
Carbon benefit

In our study, we use the avoided CO> emissions from coal units to estimate social
benefits, which are calculated in terms of the social cost of carbon (SCC). The SCC
represents the economic cost associated with climate damage caused by emitting an
additional tonne of carbon dioxide*. SCC provides a monetary estimate of the marginal

damages of climate change.

The cumulative carbon benefits of coal power units are as follows:

CB, ;= Zi,jztxi,j,t (ZYiﬁlifetime(SCC‘ B )) ©)

t*tretire

SCC, = SCCx((1+9)/ (1+dy, )™ (10)
Where SCC, is the social cost of carbon in year t, adjusted for growth rate and

discount rate. E;;, 'is CO> emissions of unit i and ] in year t, measured in

tonnes. The base SCC in 2020 is fixed at 86 USD tCO!, with an annual growth-

adjusted rate (g) of 2.2%""*8. The carbon benefit is discounted (d__ ) at a rate of 3%’
t, represents the base year, 2020.

The CO2 emissions from coal power units primarily depend on the capacity,
capacity factor, and the type of coal used. Referring to the calculation methods from ref.
45, the annual CO; emissions (tCO> year™") for each power unit are calculated as follows:

E.,. = G, xHR xEF  xc (11)

i,],t

Among them, G, ;, is the electricity generation of unit i1 and ] in year t,
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calculated by unit-level capacity (MW), capacity factor (%), and operating hours. We
compiled the electricity generation data from each power plant in India using Central
Electricity Authority (CEA) Monthly Generation Reports 2020, including annual
generation and capacity factor. We matched it with our power unit dataset and used the
state average value from the CEA reports for power units that lacked capacity factor

data (Supplementary Table 2). HR;; denotes the heat rate in British thermal unit per
kilowatt-hour (Btu kWh™)*' (Supplementary Table 3), and EF ; represents the

emission factor in kilogram CO, per terajoule (kgCO> TJ "), dependent on coal type*®
(Supplementary Table 4). C is a unit conversion constant, equal to 9.2427 x 10
Health benefit

As air pollution is a major global cause of premature death, its associated human
health impacts have garnered extensive attention®®*°. Air pollution from coal power
generation contributes to approximately 80—112 thousand premature deaths annually in
India, resulting in substantial economic losses'>*1°2, Therefore, we further incorporate
the avoided health impacts related to air pollution in our assessment, quantifying them

as economic benefits.

We spatially model the health burden and related economic impact caused by
primary air pollutant emissions, including sulfur dioxide (SO2), nitrogen oxides (NOx),
and fine particulate matter (PMas). Specifically, we estimate the health burden from
primary PMas pollution at each facility location using the methods described by
Oberschelp et al.>3. We then characterize this burden in terms of DALY's, which measure
both the years of life lost due to premature mortality and the years lived in less than full
health®*. We then refer to the methods from Rauner et al.>® to monetize health effects

using willingness-to-pay valuation, thereby converting the health impacts associated
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with air pollution into monetary terms.

DALY, Si,j,t ><C‘I:SOz,i,j,t + Ni,j,t foNOX,i,Jt + PI jit fPM25,i,j,t (12)

ijt

_Z Zf ”I(ZY +sz£!1mc(DALY VDALY Ol)/(l-l-dhb)(’_r”)) (13)

I( tire

Where HB, ;, isthe avoided economic loss in health benefits due to avoiding air
pollutant emissions for unit i and unit j in year t. DALY, i ;¢ 18 the disability-

adjusted life year caused by exposure to primary PMas. S. . N...,and P

ijt> ijt o> i,jt
represent the annual primary emissions of SOz, NOx, and PM2s at the unit level,

measured in kg. cf Cfyox » and cf,,, . are the regional characterization factors for

SO2°
each pollutant emission per DALY, derived from high-resolution global
characterization factor maps (Supplementary Fig. 5) with a spatial resolution of
0.25°x0.25°. These maps are developed using atmospheric transport and chemical

models for several major air pollutants® reflects the amount willing to be paid

p VDALY
to mitigate the risk of premature death and non-optimal health for one year of life,
valued at 118,421 USD per DALY®. a is the regional adjustment factor for India
(Supplementary Table 5). Economic impacts due to health impacts are discounted at a
rate of 5% (d,, )%,
SiioNijoP =G xHR ;xef, xc (14)
G, ;; is the electricity generation of each power unit, measured in kWh; ef, is the
emission factors for pollutant class Kk , measured in grams per kWh (g kWh')
(Supplementary Table 6). Regional emission factors come from the
ECLIPSE V6b CLE base emission scenario dataset developed by the GAINS model®’.

c is the constant for converting energy units from Btu to TJ, equal to 1.055x107°.
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Tax and employment loss

Transition away from coal power is likely to have adverse impacts on government
tax revenues and local employment. Therefore, tax (T; ;,) and employment losses are
incorporated into the optimization model.

In this study, the taxes for coal-fired power plants include direct taxes (Typecri ;¢ )»
indirect taxes (Tggr ; ), and coal taxes (Tosr compensation cess i j )- 1 he direct taxes primarily
consist of income tax, corporate tax, capital gains tax, and securities transaction tax,
accounting for 30% of net income. If revenue exceeds Indian Rupee (INR) 10 million,
an additional surcharge of 2% is also levied>®. The indirect taxes consist of Goods and
Service Tax (GST), which has replaced the previous State Value-Added Tax, Central
Sales Tax, and Service Tax on Transportation®®. The coal tax is an implicit carbon tax
levied on mined coal, also known as the Clean Energy Cess or Clean Environment Cess.
Since the introduction of the coal tax, the price of coal has increased from INR 50 per
tonne in 2010 to INR 400 per tonne in 2016°°. With the introduction of GST in India in
July 2017, the Taxation Laws Amendment Act 2017 abolished the Clean Energy Cess.
In its place, the GST Compensation Cess was introduced at a rate of 400 INR per

60

tonne™.

The formulas for calculating tax revenue are as follows:

T . Y; j+lifetime (Tdirect,i,j,t +TGST,i,j,t +TGST Compensation Cess,i,j,t) 15
it~ Zi,thXi»jthtﬁ[reme 1+d (tt) (15)
(1+dy,)

T —NP xr

direct,i, j,t ijt direct (16)

Tasrs =G, X HR/LHV xCypy o X5% (17)

coal ,cost
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T

GST Compensation Cess,t

=G, xHR/LHV xr, (18)

cess

Where, T, is total tax. Iy, represents the income tax rate (the value is 32% if

irect

NP

ijt

=>=1INR 10 million, else 30%, assuming 1 USD =74 INR in 2020). N ;, is the

net profit of the unit. r___ represents the GST Compensation Cess rate, which is INR

cess

400 per tonne. LHV is the lower heat value, measured in kilocalories per kg (kcal kg’
147, The tax revenue is discounted at a rate of 10% (d,_ ).

To assess the losses incurred by India from the gradual phaseout of coal power,
the impacts on unemployment are calculated by applying the corresponding
employment factors to the installed capacity and electricity generation. The total
number of jobs is estimated by multiplying the installed coal capacity by the
employment multiplier for the operation and maintenance sector, expressed in jobs per
MW?®2. We use the average real wages in the Indian power sector, as reported by the
International Labour Organization, to represent the wages of coal power plant workers®.
Employment losses are then monetized and discounted at a rate of 3%’. This section
mainly focuses on the direct employment losses resulting from the shutdown of coal
power plants, specifically the unemployment of operation and maintenance workers. It
excludes jobs in construction, installation, manufacturing, coal mining, and

transportation®*

. Although the retirement of power plants may generate new
employment opportunities, this aspect is not considered in this study.

Power plant loss

To meet climate targets, coal-fired power plants are expected to retire early,

resulting in plant losses that include foregone profit opportunities (PL; ;) and stranded
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assets (SA ;). We first assess the profitability of each unit. Annual profit is estimated

as the difference between annual revenues and costs. Revenues are calculated based on

electricity prices and the electricity generation of units.

PL”’t ZZivjtii,j,t(ZYLH“fetimeNPi’j’t /(1+dnp )(t—to)) (19)

=tretive
NPi,j,t = EPXGi,j,t _Ci,j,t (20)

In this context, NP

i+ 18 the annual net profit of unit 7 and unit j in year 7, which

is calculated by revenue minus cost (C, ;). Revenue is measured by electricity prices

(EP) and electricity generation (G, ), and the value of EP in each state as

referenced in the reports published by each State Electricity Regulatory Commission®®.

C include fuel delivery costs (C USD per tonne), variable operating and

ij.t coal *

maintenance costs (Coy yariane » USD kWh™), fixed operating and maintenance costs

(Co. fixea » USD kW), The units’ profit is depreciated at a discount rate d,, which is
10244761

it = Cooatirjt T Com, fixed it + Com ariables ji (21)

Cooatii.t = Cooat cost XGij¢ X HR, j / LHV (22)

Where the coal cost is measured by the delivered coal price C., ., Which

includes purchase and transportation costs. Coy fiequnitary @04 Com variable unitary  2T€
referenced from the research of Mallah et al.®

Com, fixed = Cowm, fixed unitary < Capacity (23)

Com variabte = Com variabte unitary X G jit (24)

Second, we explore the risk of stranded assets for units under climate scenarios

and consider this as a loss. Unrecovered capital costs are used as a measure of stranded
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assets. The abandonment value of power plants retired prematurely is calculated as the
total capital of the assets multiplied by the portion of the expected lifespan that is
abandoned due to early retirement’. Stranded Assets are calculated using the following
formula®®:
SA ;. =(OCCxCap, ;x(L-RL ;) /L)/(1+d, )™ (25)

In the formula, SA ;, is stranded assets for unit i1 and unit;jinyear t; Cap,
represents capacity; L denotes the assumed lifetime; RL; j stands for retirement age;
and OCC represents the overnight capital cost for each power unit (measured in USD
per kW), which is estimated based on the research conducted by Dulong et al.? And the
stranded assets are discounted by 5% to the base year (d_, )*°’. The retirement of units
that have operated beyond their fixed lifespan will not result in any stranded assets, as
the initial capital cost has been fully paid®®. Therefore, we only consider units with
L > RL, ;, otherwise, the stranded assets are zero.
Scenario description

We conducted a bottom-up assessment of environmental emissions and economic
characteristics for each coal power unit, while retirement decisions were guided by top-
down climate target trajectories. Phaseout strategies consistent with 1.5°C and 2°C
pathways were designed to evaluate the cost-benefit of coal power units.

We compared the future pathways of coal power capacity under the 1.5°C and 2°C
targets with the actual operational capacity for each year. This process identifies the
surplus capacity exceeding the climate target, which is then sequentially deducted from

the actual operational capacity based on cost-benefit maximization decisions. This step
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is repeated iteratively to ensure that the operational capacity aligns with climate-
compatible targets for specific years. The raw data in climate scenarios were obtained
from the IPCC Sixth Assessment Report (AR6) Working Group III (WGIII) Scenario
Database, hosted by the International Institute for Applied Systems Analysis®**, which
provided coal power capacity pathways under 1.5°C and 2°C scenarios. We use
categories C1 (no or limited overshoot) and C2 (high overshoot) for 1.5°C consistent
pathways, and Categories C3 (likely below 2°C) and C4 (below 2°C) for 2°C pathways
(see Supplementary Table 1 for descriptions). Power scenarios from seven major
integrated assessment models (GCAM, AIM/CGE, MESSAGE-GLOBIOM, IMAGE,
REMIND, WITCH, and POLES) were employed to analyze coal power pathways
across 379 recent scenarios, encompassing trajectories aimed at limiting average global
warming to 1.5°C and 2°C by the end of the Century. Since each model generates
parameter outputs at 5- or 10-year intervals, we employed second-order polynomial
interpolation to derive annual data. The median and range of the results are presented
in Fig. Ic, d. We assumed the current operational and pipeline coal fleet would not
transition to units equipped with Carbon Capture, Utilization, and Storage, biomass
energy, or natural gas.

Additionally, India’s coal power units are relatively new, with an average
operational lifetime of about 17 years. We adopt a typical coal power plant assumed

lifetime of 40 years'¢%°

, and conduct an uncertainty analysis by extending the assumed
lifetime range to 35—45 years. The analysis encompassed the operational capacity in the

baseline year of 2020 and the pipeline capacities for the years after that.
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Characteristics of coal plants

We utilized unit-level data from the World Electric Power Plants (WEPP) database
by S&P Global Platts™, which was cross-validated with the Global Energy Monitor
database’?, to analyze currently operational coal-fired power plants in India. The unit-
level information includes the vintage year, installed capacity, coal type, and location.
For units without online years, we estimate the median value of all fleets. Since the
WEPP database does not include latitude and longitude information for power plants,
we used Google Earth to map each unit’s location based on the physical addresses
provided in the WEPP database (Supplementary Fig. 2). And for a few small units that
were not visible on satellite imagery, we approximated their location using the
geographical coordinates of the respective administrative district. Besides, our unit-
level inventory includes 1,305 operations (operating in the baseline year of 2020) and
113 pipelines (planned or under construction before 2030) in India, with a combined
installed capacity of 233 GW and 53 GW, respectively (Supplementary Fig. 3).
Uncertainty analysis

Since the model includes multiple key parameters, we conducted a quantitative
uncertainty analysis of them and their impacts on multidimensional outcomes,
including assumed lifetime, SCC, capacity factor, and discount rate. The assumed
lifetime range was extended to 35—45 years, and the capacity factor was conducted with
a 5% variation. Discount rates were applied to convert future benefits and costs into
present values, enabling comparability of cost-benefit outcomes over time. In our model,
the discount rate applies to multiple dimensions, including carbon benefits, health
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benefits, taxes, employment, plant profits, and stranded assets. By defining parameter
ranges and performing iterative simulations, we explored the extent to which variations
in assumptions influence the results. The specific ranges for each parameter are
provided in Supplementary Table 9. Additionally, we performed a comprehensive
assessment based on the assumed lifetime range of 35-45 years, incorporating the
uncertainty of various parameters. The results of the uncertainty analysis are presented
in Supplementary Figs. 9—12.
Data Availability

The unit-level data are collected from the World Electric Power Plants database
(https://www.spglobal.com/marketintelligence/en/)’! and the Global Energy Monitor
database (https://globalenergymonitor.org/zh-CN/projects/global-coal-plant-tracker/)’?.
Raw data for climate scenarios are from the IPCC AR6 WGIII Scenarios Database>*.
The base maps used in this study were generated using Esri-standardized datasets
within ArcGIS 10.8. All geospatial processing and visualization were performed by the
authors. Map images © Esri and its licensors. Used under license. Source data are
provided with this paper. The data that support the other findings within this article can
be obtained from the author upon request.

Code Availability

The code used to process all modeling results and create all related images is
publicly available on Zenodo: https://doi.org/10.5281/zenodo.1422951073. The model
was written in Python (version 3.11.7), and optimization modeling was performed using

the Gurobi solver (Version 10.0.3): https://www.gurobi.com/. Spatial data analysis was
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carried out using the Geopandas package (Version 0.14.3):

https://geopandas.org/en/v0.14.3/.
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Figure Legends

Fig. 1 | Characteristics of India’s coal power units and climate target pathways. a
Geographic locations and the installed capacities of individual operating units in India.
The map is based on factual evidence and displays the non-disputed areas under actual
control. b Total installed capacity and age structure of operating units in each state (the
baseline year is 2020), as well as the capacity of units under construction or planned
(Pipeline). Capacity is expressed in megawatts (MW) at the unit level and in gigawatts
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(GW) at the state level. ¢, d India’s coal power capacity pathways consistent with
limiting warming to 1.5°C and 2°C. The dark lines indicate median pathways, with
shaded areas representing the 5th-95th percentile range (light shading) and the 25th—
75th percentile range (dark shading). The raw scenario data is sourced from the Sixth
Assessment Report (AR6) Scenario Database*. The base map was obtained from Esri
ArcGIS 10.8. Map images © Esri and its licensors. Used under license.

Fig. 2 | Cost-benefit analysis of coal power units. a, b Total costs and benefits of all
units under the 1.5°C and 2°C scenarios, showing the cumulative values from early
retirement to the end of the assumed lifetime. The shaded areas represent the range of
uncertainty. ¢, d The cumulative values for each unit across four dimensions, with units
sorted from left to right in increasing order. The bar colors represent the installed
capacity of each unit (in gigawatt, GW). The four dimensions include carbon benefits,
health benefits, plant losses, and tax & employment losses, all measured in billion US
dollars (USD). The results include both operational and pipeline units.

Fig. 3 | Phaseout roadmap of coal power units and their actual lifetimes under
climate goals scenarios across periods. a, b The retirement year of individual coal
power units. Operating units refer to those still in operation in the baseline year 2020,
while pipeline represents units that are planned or currently under construction. The
grey, red, green, and yellow dots represent operation units that have not yet been retired,
operation units that have retired, commissioned pipeline units that have not yet been
retired, and retired pipeline units, respectively. The size of the circles indicates the
installed capacity (in megawatt, MW). The labels in the upper-right corner of each map

40



861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

indicate the number of retired units by type and their total capacity (in gigawatt, GW).
The map is based on factual evidence and displays the non-disputed areas under actual
control. ¢ The actual lifetime of each unit under the 1.5°C and 2°C scenarios. d, e Cost-
benefit outcomes for each state under two scenarios, ranked in descending order by net
value from top to bottom. The benefits include carbon and health benefits, while the
costs encompass plant loss and tax & employment loss. The base maps were obtained
from Esri ArcGIS 10.8. Map images © Esri and its licensors. Used under license.

Fig. 4 | Annual avoided carbon emissions and health impacts. a, b National results.
¢, d Results for the top 14 states ranked by installed capacity. The solid lines show
results under the 40-year lifetime assumption, while the shaded areas indicate the range
across lifetime scenarios (35—45 years). CO> emissions are expressed in gigatonnes (Gt)
at the national level and in million tonnes (Mt) at the state level. Health impacts are

measured by disability-adjusted life years (DALY's).
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Editorial Summary:

This study develops a plant-level dynamic optimization model outlining India’s coal power
phaseout pathways aligned with climate targets. The results show that ambitious goals are
more cost-beneficial, and social benefits can enhance the feasibility of the transition.
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