

1

2

3

4

5 **A *Mycobacterium tuberculosis* Mbox controls a conserved, small
6 upstream ORF via a translational expression platform and Rho-
7 dependent termination of transcription**

8

9 Alexandre D'Halluin^{1, 2}, Terry Kipkorir^{1, 3}, Catherine Hubert¹, Declan Barker¹, Kristine Arnvig^{1*}

10 ¹ Structural and Molecular Biology, University College London, London WC1E 6BT U.K.

11 ² Current location: EGM CNRS, Université Paris-Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et
12 Marie Curie, 75005 Paris, France

13 ³ Current location: London School of Hygiene and Tropical Diseases, Department of Infection Biology, TB
14 Centre, London WC1E 7HT U.K.

15 * Corresponding author: k.arnvig@ucl.ac.uk

16

17 **ABSTRACT**

18 Magnesium is vital for bacterial survival, and its homeostasis is tightly regulated. Intracellular
19 pathogens like *Mycobacterium tuberculosis* (Mtb) often face host-mediated magnesium
20 limitation, which can be counteracted by upregulating the expression of Mg²⁺ transporters.
21 This upregulation may be via Mg²⁺-sensing regulatory RNA such as the *Bacillus subtilis* *ykoK*
22 Mbox riboswitch, which acts as a transcriptional “OFF-switch” under high Mg²⁺ conditions.
23 Mtb encodes two Mbox elements with strong similarity to the *ykoK* Mbox.
24 In the current study, we characterize the Mbox encoded upstream of the Mtb *pe20* operon,
25 which is required for growth in low Mg²⁺/low pH. We show that this switch operates via a
26 translational expression platform and Rho-dependent transcription termination, which is the
27 first such case reported for an Mbox. Moreover, we show that the switch directly controls a
28 small ORF encoded upstream of *pe20*. We have annotated this highly conserved uORF
29 *rv1805A*, but its role remains unclear. Interestingly, a homologous gene exists outside the
30 Mbox-regulated context, suggesting functional importance beyond magnesium stress.
31 Overall, this study uncovers a dual mechanism of riboswitch-regulation in Mtb, combining
32 translational control with Rho-mediated transcription termination. These findings expand our
33 understanding of RNA-based gene regulation in mycobacteria, with implications for
34 pathogenesis and stress adaptation.

35

36 **INTRODUCTION**

37 Magnesium is required for a wide range of cellular functions in all domains of life and the
38 most abundant divalent cation in living cells (Smith et al. 1998). In bacteria, these functions
39 include cell wall integrity, biofilm formation, macromolecular metabolism and -function,
40 making magnesium homeostasis essential (Thomas and Rice 2014; Subramani et al. 2016;
41 Yamagami et al. 2021; Chatterjee et al. 2024). This represents an extra challenge for
42 intracellular pathogens as host immune responses include mechanisms for restricting access
43 to magnesium in certain cellular compartments such as the phagosome (Forbes and Gros
44 2001; Pokorzynski and Groisman 2023). To counteract these defence mechanisms, pathogens
45 express an array of transporters to ensure adequate Mg²⁺ uptake. At least four types of
46 magnesium channels and transporters regulate and maintain essential Mg²⁺ levels in
47 prokaryotes: CorA, CorB/C, MgtA/B and MgtE (Franken et al. 2022). *Mycobacterium*

48 *tuberculosis* (Mtb) encodes CorA (Rv1239) and MgtE (Rv0362) however, Mtb does not encode
49 homologues of MgtA/B, making the function of MgtC elusive (Alix and Blanc-Potard 2007).

50 Riboregulated, i.e. RNA-based, stress-responses are widespread in bacteria, with small
51 RNAs and riboswitches being the most prominent elements. Riboswitches are located in the
52 5' leader regions of mRNAs regulating gene expression in *cis*; they are composed of a highly
53 structured ligand binding aptamer domain and an expression platform. The latter exerts gene
54 expression control by either modulating premature termination of RNA Polymerase (RNAP)
55 and/or restricting access of the ribosome to the Ribosome Binding Site (RBS) of the mRNA
56 (Salvail and Breaker 2023). Nonpermissive control mechanisms may involve the formation of
57 intrinsic terminators, unmasking of Rho-binding sites or occlusion of Shine-Dalgarno (SD)
58 sequence of the downstream Open Reading Frame (ORF). The latter may in addition be
59 associated with Rho-dependent termination of transcription within the ORF (Salvail and
60 Breaker 2023). Binding of the specific ligand can either allow ("ON-switch") or inhibit ("OFF-
61 switch") expression of the downstream gene (Breaker 2018; Kavita and Breaker 2023; Schwenk
62 and Arnvig 2018). The genes regulated by riboswitches are often, but not always, involved in
63 the metabolism or transport of the cognate ligand (Kavita and Breaker 2023; Roth and Breaker
64 2009; Sherlock and Breaker 2020). Riboswitch ligands range from sugars, amino acids,
65 nucleotides and cofactors to metal ions including Mg²⁺ (Breaker 2022; Barrick et al. 2004; Dann
66 et al. 2007; Mccown et al. 2017). A magnesium-sensing riboswitch, referred to as Mbox, was
67 first discovered in the *Bacillus subtilis* *ykoK* gene encoding a MgtE-type magnesium transporter
68 (Barrick et al. 2004; Ramesh and Winkler 2010; Townsend et al. 1995). The Mbox is a
69 transcriptional 'OFF-switch'; magnesium binding to the aptamer leads to conformational
70 changes of the RNA and the formation of an intrinsic terminator preventing *ykoK* expression.
71 At low Mg²⁺ concentrations, the absence of the terminator is permissive to *ykoK* expression
72 which facilitates increased Mg²⁺ uptake (Ramesh and Winkler 2010).

73 Successful infection by Mtb requires its sensing of, and adaptation to, multiple micro-
74 environments including different types of macrophages and their subcellular compartments
75 such as phagosomes(Chandra et al. 2022; Samuels et al. 2022; Sholey et al. 2022). Mtb has
76 evolved mechanisms to either escape this organelle or to endure the hostile environment
77 within by a range of adaptive responses (Ehrt et al. 2018; Ernst 2012; Huang et al. 2019).
78 Riboswitches are likely to play a role in this adaptation by directly sensing host environments
79 via specific metabolites. Several Mtb riboswitches have been predicted (Rfam RF00380) and

80 their expression validated by RNA-seq, Term-seq, inline probing and functional assays
81 (Nawrocki et al. 2015; Arnvig et al. 2011; D'Halluin et al. 2023; Kipkorir et al. 2024a; Kolbe et
82 al. 2020; Kipkorir et al. 2024b). These include two predicted Mbox aptamers upstream of
83 Rv1535 and Rv1806 (*pe20 locus*), respectively. Both *loci* are upregulated in low magnesium
84 (Walters et al. 2006), and in a recent study Kolbe et al. demonstrated that magnesium-
85 dependent control resides within the leader, not the promoter of *pe20* (Kolbe et al. 2020).
86 Moreover, the two Mtb aptamers show a high level of structural similarity to the *Bacillus*
87 *subtilis* *ykoK* aptamer, although some results suggest that these interact differently with
88 divalent cations including Mg²⁺ (Bahoua et al. 2021). The *pe20 locus* (encoding PE20, PPE31,
89 PPE32, PPE33 Rv1810 and MgtC) is associated with magnesium homeostasis and acid stress,
90 and PE20-PPE31 have been shown to be necessary for maintaining growth in a combination of
91 low Mg²⁺ and low pH, conditions that mimic the phagosomal environment (Walters et al. 2006;
92 Wang et al. 2020). The function of Rv1535 remains unknown.

93 We recently mapped premature termination of transcription in Mtb at genome-scale and
94 identified hundreds of RNA leaders with an abundance of potential new riboswitches and
95 translated small upstream ORFs (uORFs) (D'Halluin et al. 2023). We validated predicted
96 riboswitches and demonstrated that both Mtb Mbox leaders were associated with premature,
97 Rho-dependent termination of transcription upstream of the annotated ORFs (D'Halluin et al.
98 2023).

99 Here, we show that *pe-ppe* associated Mboxes are widely conserved across *Mycobacterium*
100 and are co-transcribed with *mgtC* in Mtb. The Mtb Mbox upstream of *pe20* is unusual as it
101 combines a translational expression platform with a Rho-dependent transcription terminator.
102 This is to our knowledge the first translational Mbox to be described. Using translational
103 reporter fusion constructs we show that a conserved uORF located between the Mbox and
104 *pe20* is highly expressed. This peptide is highly conserved in the context of Mboxes across the
105 *Mycobacterium* genus. While its function remains opaque, a parologue of this ORF is expressed
106 from an additional, Mbox-independent *locus* in Mtb, supporting the biological and regulatory
107 importance of this peptide.

108

109

110

111

112 **RESULTS**

113 **Conservation and genomic context of *M. tuberculosis* Mboxes**

114 Two Mbox aptamers have been identified within the Mtb H37Rv genome (Rfam RF00380).
115 We used these sequences to predict their structures and compare these to the Mbox
116 consensus structure from Rfam. The results, shown in Figure 1A, indicate a high degree of
117 similarity between the two Mtb aptamers and the *B. subtilis* *ykoK* element, suggesting these
118 are functional Mg²⁺-sensing elements as reported in the case of *rv1535* by (Bahoua et al. 2021).

119 Next, we investigated the conservation of the element and its context across the
120 *Mycobacterium* genus. Both elements have been shown to be associated with multiple uORFs,
121 and at least one of these is translated (u2, D'Halluin et al., 2023). Based on a phylogenetic
122 analysis of the two Mtb elements and Mboxes from other species, we identified four classes
123 of mycobacterial Mboxes, represented by *pe20*-type, manganese-type (Mn²⁺-type), *rv1535*-
124 type and *mgtE*-type elements, respectively; these classes are further supported by a
125 conserved gene synteny (Figure 1B).

126 The *mgtE*-type is the only Mbox found in the non-pathogenic *M. smegmatis*, and its
127 genomic neighbourhood shows that the genes immediately downstream encode predicted
128 metal transporters (MT) and/or associated proteins (e.g. MgtE), or proteins of unknown
129 function. The other three branches are seen across fast- and slow-growing pathogenic
130 mycobacteria.

131 The first branch, the *pe20*-type is almost exclusively found upstream of multiple *pe-ppe*
132 genes, which in Mtb, *M. ulcerans*, *M. marinum* and *M. kansasii* are followed by genes of
133 unknown function (GUF) and MT (as MgtC was originally annotated as a magnesium
134 transporter). The second Mn²⁺-type branch includes a cluster of manganese transporter-type
135 downstream of the riboswitch, a constellation that is not seen in Mtb. The third *rv1535*-type
136 branch is found upstream of GUF like *rv1535* but followed by a cluster of T-box/*ileS* elements
137 or various transferases. These results suggest the regulation of metal transporters by both
138 Mboxes is well-conserved across mycobacteria, while the the *pe-ppe* clusters and mosaic
139 appearance suggest insertion events may have taken place in pathogenic / slow growing
140 species.

141

142

143

144 **Rho-dependent premature termination of transcription within Mbox leaders**

145 TSS mapping and RNA-seq suggest that the *rv1535* mRNA is monocistronic, while the
146 *pe20* mRNA is polycistronic spanning *pe20* to *mgtC* (Arnvig et al. 2011; Cortes et al. 2013;
147 D'Halluin et al. 2023) (Supplementary figure 1). Importantly, the entire polycistronic *pe20*
148 operon is upregulated during growth in low magnesium controlled by the Mbox (Walters et
149 al., 2006).

150 We recently mapped premature transcription termination (TTS) in Mtb genome-wide and
151 identified two dominant TTS associated with the Mbox leaders (D'Halluin et al. 2023). TTS1062
152 is located ~210 nucleotides downstream of the *rv1535* TSS and 40 nucleotides downstream of
153 the aptamer. TTS1209 is located ~185 nucleotides downstream of the *pe20* TSS and 10
154 nucleotides downstream of the aptamer (Figure 2A).

155 In both *loci*, multiple smaller peaks are flanking the TTS, suggesting a degree of flexibility in
156 the TTS. Both TTS were located a significant distance (>200 nucleotides) upstream of their
157 annotated ORFs, revealing the premature termination of transcription within the two leader
158 regions, and neither were associated with canonical intrinsic terminator structures.

159 In our Mtb TTS mapping we predicted and validated Rho-dependent termination using
160 RhoTermPredict (Di Salvo et al. 2019) and depletion of Rho using the Rho-DUC strain (Botella
161 et al. 2017; D'Halluin et al. 2023). Two Rho-binding (*rut*) sites were predicted in each Mbox
162 leader; one in each aptamer (T5468 and T6425) and one between aptamers and annotated
163 ORFs (T5469 and T6426), while the mapped TTS1209 and TTS1062 are located between these
164 (Table 1; Figure 2A). The calculated readthrough (RT) scores for the mapped TTS after
165 Anhydrous Tetracyclin (ATc) induced depletion of Rho validated that transcription termination
166 was in fact due to Rho (D'Halluin et al. 2023). To further confirm Rho-dependent, premature
167 termination of transcription, we performed Northern Blotting on RNA from H37Rv and from
168 Rho-depleted cultures probing for both Mboxes.

169 The homology between the Mbox aptamers from *rv1535* and *pe20* made it impossible to
170 design a 5' probe that could distinguish between the two transcripts. To ensure that the signals
171 were specific for either *pe20* or *rv1535*, we used a probe that was located 180 nucleotides into
172 the transcripts beyond the homologous regions (supplementary figure 2) and as a result,
173 transcripts shorter than this could not be detected.

174 Several strong signals between 200 and 300 nucleotides roughly corresponding to the TTS
175 mapping suggesting multiple points of premature termination of transcription within both

176 leaders (Figure 2B). In H37Rv and in Rho-DUC time 0, we observed limited readthrough beyond
177 300 nucleotides for *pe20*, while *rv1535* displayed multiple larger signals primarily around 400
178 nucleotides consistent with the TTS pattern. Depletion of Rho led to an increase in larger
179 transcripts for *pe20* suggesting increased readthrough i.e. reduced termination. In contrast,
180 the *rv1535* termination pattern changed only marginally over the Rho depletion time course,
181 suggesting that Rho plays a greater role for *pe20* regulation as compared to *rv1535*.

182

183 **The regions downstream of the Mbox aptamers harbour multiple uORFs**

184 Ribosome profiling demonstrates that the regions between the Mbox aptamers and the
185 two annotated open reading frames (ORF)s (*rv1535* and *pe20*, respectively) are bound by
186 ribosomes in agreement with on-going translation upstream of the annotated genes (D'Halluin
187 et al. 2023; Smith et al. 2022; Sawyer and Cortes 2022). Sequence alignment of *rv1535* and
188 *pe20* leaders with other *pe20*-type leaders indicated several regions of conservation including
189 near-identical SD sequences located at the end of the aptamer (SD1) and a second, highly
190 conserved SD (SD2) further downstream. The ORF downstream of SD1 (upstream
191 ORF1/uORF1) shows poor conservation, while the uORF downstream of SD2 (uORF2) is highly
192 conserved (Supplementary figure 2). Moreover, we have previously shown that uORF2 from
193 both loci is expressed (D'Halluin et al. 2023).

194 To characterize the relationship between the *pe20* Mbox and the two uORFs, we first
195 investigated expression using translational *lacZ*-fusions. All constructs included the 5' leader
196 from the TSS and were gradually extended downstream to the end of uORF1 (Mbox-*uORF1-*
197 *lacZ*); the end of uORF2 (Mbox-*uORF2-lacZ*), or the start codon of *pe20* ORF (Mbox-*pe20::lacZ*),
198 respectively. All were fused in-frame to *lacZ*, expressed from a heterologous, constitutive
199 promoter and integrated into the *M. smegmatis* genome in single copy (Figure 3). Next, we
200 performed β -galactosidase (β -gal) assays, which showed that Mbox-*uORF2-lacZ* expression
201 was >10 fold higher than Mbox-*pe20::lacZ* (~650 Miller Units compared to 60 Miller Units),
202 while Mbox-*uORF1-lacZ* was only slightly higher than the background (Figure 3B). To validate
203 the start codons of the two uORFs, we mutated each to non-start codons (GTG to GTC and ATG
204 to ACG for *uORF1* and *uORF2*, respectively. This reduced β -gal activity significantly in both
205 constructs, suggesting reduced expression in support of the annotated translation start sites,
206 although Mbox-*uORF2-lacZ* expression was still higher than Mbox-*pe20::lacZ* expression
207 (Supplementary figure 3).

208 As the translation initiation region (TIR) for uORF1 and uORF2 (i.e. SD1 and SD2 and their
209 distances to the start codons) were almost identical, and we had not observed any premature
210 TTS in the region, we reasoned that the coding region of uORF1 was responsible for the lower
211 β-gal activity. To explore this possibility, we deleted the majority of uORF1 from the Mbox-
212 *uORF1-lacZ* construct except the first two codons (Mbox- *uORF1Δ-lacZ*) and measured *lacZ*
213 expression.

214 The results, shown in Figure 3B indicate that expression of this truncated uORF1 was 2.5-
215 fold higher than that of the full-length uORF1, suggesting that the uORF1 coding region did
216 indeed suppress β-gal activity. As uORF1 contains several rare ($\leq 5/1000$) codons, i.e. TGC, CCT,
217 TGC, TGT, TGT, AGG, AGG (Figure 3C), we assume that this was due to poor translation
218 elongation, but alternative explanations such as the uORF1 peptide interfering with β-gal
219 activity cannot be ruled out at this stage.

220

221 **The *pe20* Mbox operates via a translational expression platform**

222 In conjunction, the Rho-dependent premature termination of transcription, the highly
223 conserved SDs at the end of the aptamer, located upstream of a well-expressed conserved
224 uORF made us speculate that the *pe20* Mbox operates via a translational expression platform.

225 A functional translational expression platform requires the potential for the SD to be
226 masked, e.g. by a pyrimidine-rich region (an αSD) that in turn can be sequestered by an ααSD
227 under different conditions.

228 We identified such a region approximately halfway between SD1 and SD2. This αSD and its
229 flanking regions have the potential to pair with the entire translation initiation region (TIR) of
230 uORF2 (shown in blue in Figure 4) or alternatively, with the aptamer-associated SD1 and its
231 flanks (yellow in Figure 4).

232 To explore this hypothesis further, we measured uORF2 expression after introducing
233 mutations that could interfere with the proposed interactions. One was the abolishing the
234 uORF1 start codon, the rationale being that this would partially unmask SD1 thereby favouring
235 the SD1-αSD interaction, leading to an increase in uORF2-*lacZ* expression

236 Similarly, deleting the αSD should also lead to higher expression of uORF2, as SD2 would no
237 longer be sequestered. The results, shown in Figure 5A indicate a moderate (~1.3-fold), but
238 significant increase in expression, when the start codon of uORF1 was changed (Mbox-
239 *uORF2^{G184C}-lacZ*) and a larger (~2-fold) increase in expression, when the αSD was deleted

240 (Mbox- Δ α SD-*uORF2-lacZ*). Combining the two mutations did not result in an additive effect,
241 suggesting they involved the same mechanism (Figure 5A).

242 These results support a model in which SD1 ($\alpha\alpha$ SD), α SD and SD2 interact to control the
243 expression of *uORF2-lacZ*.

244 To further validate this model, we assessed the contribution of each element by gradually
245 extending the region between *uORF2* and the Mbox in *uORF2-lacZ* fusions (Figure 5B). The
246 SD2-*uORF2* construct displayed β -gal expression levels of ~500 Miller Units, and the addition
247 of the α SD motif reduced the β -gal expression by ~35%. However, a further extension including
248 the $\alpha\alpha$ SD motif led to a substantial increase in *uORF2* expression. This is likely due to the
249 unmasking of SD2 and corroborates our model of a translational expression platform
250 controlling *uORF2* expression.

251 Our results support a model in which *uORF2* is controlled by a translational Mbox riboswitch
252 combined with Rho-dependent termination of transcription. Based on sequence homology,
253 we propose that the *rv1535* Mbox likewise operates via a translational expression platform. To
254 the best of our knowledge, these are the first examples of an Mbox translational expression
255 platform and Rho-dependent termination of transcription.

256

257 **An Mbox-independent homologue of *uORF2* encoded in a separate *Mtb* locus**

258 Considering the high conservation between *uORF2* in the *rv1535* and *pe20* loci, we carried
259 out deeper sequence searches and identified a third homologue of the *uORF2* region including
260 its SD downstream of the *gca-gmhA-gmhB-hddA* operon. This locus has been acquired by
261 horizontal gene transfer (Becq et al. 2007) and the *uORF2* homologue annotated as Rv0115A
262 (Figure 6A).

263 We identified two TSS and associated promoter motifs within this locus. The first drives the
264 transcription of the *gca-hddA* operon, which terminates downstream of *hddA* (D'Halluin et al.
265 2023). The second drives the transcription of *rv0115A*, and potentially also a second ORF,
266 *rv0115B*. The *gca* and *rv0115A* promoters have similar unusual motifs in the form of an
267 AANCAT -10 hexamer, an extended -10 motif (TGN), a perfect -35 hexamer and in the case of
268 *cga*, a Cytidine TSS (Figure 6B).

269 A further alignment of the promoter regions from -120 to a few basepairs downstream of
270 the mapped TSS, had a remarkable similarity more than 100 basepairs upstream of the TSS
271 suggestive of a gene duplication event (Figure 6B). There are no Mbox elements associated

272 with the leaders of these genes, but according to TBDB
273 (http://tbdb.bu.edu/tbdb_sysbio/MultiHome.html) both promoters include a binding site for
274 PhoP, linking expression to pH stress (Abramovitch et al. 2011).

275 Alignment of uORF2 peptide homologues including Rv0115A across mycobacterial species
276 reveals a well-conserved N-terminal region, including a universally conserved Proline residue
277 (Figure 7). This peptide is specific for mycobacteria, which indicates that uORF2 peptides and
278 their homologues have functions uniquely associated with this genus. Based on this finding,
279 we suggest renaming uORF2 from the *pe20* operon Rv1805A.

280

281 **No evident role for Rv1805A in biofilm formation during magnesium stress**

282 Realising the ubiquitous presence of Rv1805A homologues, we sought to find a role for this
283 peptide. PE20 and PPE31 are necessary for Mtb growth in conditions of low Mg²⁺ combined
284 with low pH (Wang et al. 2020). To probe a potential role of uORF2 in this process, we exploited
285 the fact that magnesium is required for biofilm formation in mycobacteria (Chatterjee et al.
286 2024) and leveraged the trick that *Mycobacterium smegmatis*, a closely related species, has
287 no homolog of *pe20* locus.

288 In agreement with literature, the growth and biofilm formation of *M. smegmatis* were
289 compromised in low Mg²⁺, and that this phenotype was exacerbated at acidic pH values (Figure
290 8). We tested whether the expression of *pe20-ppe31* or *rv1805A-pe20-ppe31* might rescue this
291 phenotype by transforming *M. smegmatis* with plasmids expressing the cognate genes. The
292 results in figure 8 indicate no visible difference between strains expressing *pe20-ppe31* with
293 or without *rv1805A* or *rv0115A*; further investigations are required to identify a role of this
294 peptide and its homologues in mycobacterial biology.

295

296 **DISCUSSION**

297 In the current study we have revealed a novel complex riboregulatory system which controls
298 *pe20* gene expression in Mtb. Our results show that premature termination occurring in the
299 5' leader of *pe20* (and *rv1535*) relies on Rho-dependent termination of transcription (D'Halluin
300 et al. 2023). Moreover, the *pe20* Mbox contributes a translational expression platform, where
301 the translation initiation region including the SD of the first gene in the operon can be
302 sequestered by an αSD motif. This is also, to the best of our knowledge, the first example of a
303 translationally controlled Mbox. This type of control is consistent with the scarcity of intrinsic

304 terminators in Mtb, and it echoes the finding that a mycobacterial T-box is the only known T-
305 box with a translational expression platform (Sherwood et al. 2018) Finally, we identified a
306 highly conserved uORF (*rv1805A*), which is the primary regulated ORF within the *pe20* operon
307 and, based on homology, likely also in the *rv1535* operon.

308 Expression of the *pe20* operon is suppressed *via* its leader by high Mg²⁺ concentrations
309 similar to the Mbox controlled *ykoK* gene in *B. subtilis* (Walters et al. 2006; Ramesh and Winkler
310 2010; Kolbe et al. 2020). *pe20* and *ppe31* are critical for magnesium uptake in low-pH/low-
311 magnesium conditions suggesting that the gene products form (part of) a magnesium
312 transporter (Feng et al. 2021; Wang et al. 2020). We propose that the Mbox–*rv1805A* module
313 acts as the key regulatory gate, enabling expression of the magnesium-responsive PE/PPE
314 transporter complex only under specific environmental conditions, such as low Mg²⁺ and acidic
315 pH.

316 The structure of the *pe20* operon, including the presence of *mgtC* raises questions about
317 its ancestry. Given what is known about *pe-ppe* gene expansion (Fishbein et al. 2015) and what
318 we have observed in other riboswitch-controlled *pe/ppe* loci (*i.e.* the *Cbl-ppe2-cobQ* locus, and
319 the PE-containing uORF recently identified downstream of the Mtb glycine riboswitch
320 (D’Halluin et al. 2023; Kipkorir et al. 2024a), it is tempting to speculate that an early *pe(-ppe)*
321 element invaded the current *pe20* locus and subsequently expanded whereby Rv1805A
322 became the first gene in this operon.

323 A recent study suggests that the *rv1535* Mbox, and by extension likely also the *pe20* Mbox
324 associates with other divalent cations in addition to Mg²⁺ (Bahoua et al. 2021), while Kolbe et
325 al. have demonstrated strong Mg²⁺-dependent control of *pe20* expression via its leader (Kolbe
326 et al. 2020). Regardless of the identity of the cognate ligand, our results suggest an ability to
327 alternate between two structures: a non-permissive (ligand-bound) structure that sequesters
328 SD1, allowing αSD/αTIR to pair with SD2/TIR thereby preventing translation of
329 uORF2/Rv1805A. This could in turn lead Rho-dependent termination of transcription, which
330 will affect the entire operon (Hao et al. 2021; Molodtsov et al. 2023). We note, however, that
331 according to Term-seq results, the primary TTS is located upstream of *rv1805A*, suggesting that
332 Rho-dependent termination does not depend on translation of this ORF. An alternative
333 explanation of our results could therefore be that the pyrimidine-rich region that we have
334 annotated as αSD, might act as a Rho-binding (*rut*) site that would be masked by translation
335 of uORF1. Deleting this region increased expression 2.5-fold, likely due to reduced termination

336 of transcription or by unmasking of SD2 or both. The marginal increase in the expression of
337 uORF2 in the context of an untranslated uORF1 (Mbox-*rv1805A*^{G184C}-*lacZ*, Figure 5) and the
338 conservation of the α SD- α SD interaction, suggests a functional interaction. The two models
339 are not mutually exclusive, and further experiments will elucidate the structural and
340 mechanistic basis underlying the regulation. Along the same lines, we note that expression of
341 uORF1 might affect the activity of LacZ, although this is unlikely to affect the overall
342 conclusions.

343 What is the function of Rv1805A and its homologues? Given its conservation and position
344 upstream of *pe20*, we hypothesize that Rv1805A may act as a regulatory peptide modulating
345 the activity or assembly of the PE20–PPE31 complex. Alternatively, it may serve as a structural
346 component of a magnesium-responsive transporter. Conservation between Rv1805A, the
347 Rv1535 uORF2 (Rv1535A) and Rv0115A, and their associations with magnesium and pH stress
348 suggests important roles for these peptides during infection. Future work will focus on
349 identifying interaction partners of Rv1805A and assessing its role in magnesium uptake and
350 stress responses.

351 In conclusion, our findings reveal a previously unrecognized mode of riboswitch control in
352 Mtb, where a translational Mbox integrates with Rho-dependent termination to regulate a
353 conserved uORF. This multilayered modus operandi underscores the sophistication of RNA-
354 based regulation in Mtb stress adaptation.

355

356 MATERIAL AND METHODS

357 Strains and cultures

358 Strains used in this study are listed in Supplementary Table 1. *M. tuberculosis* H37Rv and
359 *M. smegmatis* MC² 155 were cultured on solid media Middlebrook agar 7H11 supplemented
360 with 10% OADC (Sigma), 0.5% Glycerol and 50 μ g/ml hygromycin if appropriate. Liquid cultures
361 were done in Middlebrook 7H9 supplemented with 10% ADC (Sigma), 0.5% Glycerol, 0.05%
362 Tween 80 and 50 μ g/ml hygromycin where appropriate. Cultures were harvested at an OD_{600nm}
363 ~0.6 for mid-log phase.

364 Mtb RhoDUC strain, a gift obtained from Professor Dirk Schnapppinger, was grown as
365 previously described with 50 μ g/ml hygromycin, 20 μ g/ml Kanamycin and 50 μ g/ml zeocin
366 (Botella et al. 2017; D'Halluin et al. 2023). When the cultures reached an OD_{600nm}~0.6,

367 depletion of Rho was induced using 500 ng/ml of anhydrotetracycline. Cells were harvested
368 after 0, 1.5, 3 and 4.5 hours.

369 *Escherichia coli* DH5 α was used for cloning the *lacZ* fusion reporters and were cultured on
370 solid LB 1.5% agar supplemented with 50 μ M of 5-bromo-4-chloro-3-indolyl- β -D-
371 galactopyranoside (X-gal) or in liquid LB supplemented with 250 μ g/ml Hygromycin.

372

373 **Plasmids constructions and primers**

374 Plasmids and primers used in this study are listed in Supplementary Table 1 and 2. pIRATE
375 plasmids, describe in D'Halluin *et al.*, 2023, were used for *lacZ* translational fusion reporters
376 and for Beta-galactosidase assay. Reporters were constructed using Gibson assemblies with
377 oligos (Sigma) or geneBlocks (IDT) listed in Table 3 between HindIII and Ncol sites. Point
378 mutations and deletions were generated using the Q5 Site-Directed Mutagenesis Kit (New
379 England Biolabs). Plasmids were cloned in *E. coli* DH5 α , extracted and sequenced by Sanger
380 sequencing. Plasmids were transformed into *M. smegmatis* by electroporation and selected
381 on Middlebrook 7H11 agar plates containing 50 μ g/ml Hygromycin.

382

383 **RNA extraction and Northern Blotting**

384 *M. tuberculosis* H37Rv were stopped using 37.5% of cold ice and centrifuge 10min at 5000
385 rpm 4°C. Total RNA was extracted as previously described using the FastRNA Pro Blue kit (MP
386 Biomedicals) according to the manufacturer's protocol (D'Halluin *et al.* 2023; Arnvig *et al.*
387 2011). RNA concentration and purity was assessed using the Nanodrop 2000 (ThermoFisher),
388 residual genomic DNA removed using Turbo DNase (ThermoFisher) and RNA integrity assessed
389 with 2100 Bioanalyzer (Agilent). 10 μ g of total RNA were separated on a denaturing 8%
390 acrylamide: bis-acrylamide (19:1) gel and transfer to a nylon membrane. An RNA probe was
391 synthetized using the mirVana miRNA probe synthesis kit (Ambion) to reveal the *pe20* and
392 *rv1535* Mbox transcripts and labelled with 3 μ M final concentration of 32 P α -UTP
393 (3000Ci/mmol; Hartmann AnalyticGmbH). Northern blots were revealed using radiosensitive
394 screens and visualized on a Typhoon FLA 9500 phosphoimager (GEHealthcare).

395

396 **Beta-galactosidase activity**

397 *M. smegmatis* carrying the *lacZ* reporter fusions were cultured at OD_{600nm} ~0.6 and
398 centrifuge 10min 5000 rpm. Pellets were washed four times in Z-buffer composed of 60mM

399 Na_2HPO_4 , 40mM NaH_2PO_4 , 10mM KCl, 1mM MgSO_4 and lysed using beads with the FastPrep
400 bio-pulveriser (MP Biomedicals). The supernatant was kept after centrifugation and the
401 protein level assessed using a Bradford yield with the BCA kit (ThermoFisher) following the
402 manufacturer's recommendations. Beta-galactosidase were done using the Beta-galactosidase
403 assay kit (ThermoFisher) following manufacturer's protocol. Proteins were pre-incubated for
404 5min at 28°C before addition of ONPG.

405

406 **Biofilm formation**

407 *M. smegmatis* expressing *pe20-ppe31*, *rv1805A-pe20-ppe31* or *rv0115A+pe20-ppe31* was
408 grown to mid-log phase, washed in Mg^{2+} -free medium, resuspended in 1 mL of the indicated
409 medium at OD 0.01 and seeded in 24-well plates. Plates were sealed in plastic bags and left
410 for static incubation at 37°C for a week. Biofilm formation was monitored every day for a week.

411

412 **Folding, sequence conservation and distribution across mycobacteria**

413 Representative genomes of several mycobacteria were selected for sequences
414 conservation: *Mycobacterium tuberculosis* H37Rv (NB_000962), *Mycobacterium leprae* TN
415 (AL450380), *Mycobacterium avium* K10 (NZ_CP106873), *Mycobacterium kansasii* Kuro I
416 (AP023343), *Mycobacterium ulcerans* ATCC33728 (NZ_AP017624), *Mycobacterium marinum*
417 M (CP000854), *Mycobacterium abscessus* ATCC19977 (NC_010397), *Mycobacterium*
418 *haemophilum* DSM 44634 (CP011883) and *Mycobacterium smegmatis* MC²155
419 (NZ_CP009494).

420 The aptamer sequences of the Mboxes were extracted from RFam database (Rfam
421 RF00380) (Nawrocki et al. 2015) and extended to the next annotated ORF. DNA and peptidic
422 sequences were aligned using ClustalW (Thompson et al. 1994), and alignment strengthen
423 using T-coffee (Notredame et al. 2000). The conservation of uORF2 across mycobacteria was
424 determined using Blast (Altschul et al. 1990) and amino acid sequences aligned using ClustalW
425 (Thompson et al. 1994) and Chimera (Meng et al. 2006). The phylogenetic tree was generated
426 by Clustal Omega using the sequences from the aptamer sequence to the start codon of the
427 next in frame annotated ORF (Sievers et al. 2011). Aptamer secondary structures were
428 predicted using the RNAstructure Web Server for RNA Secondary Structure Prediction (Reuter

429 and Mathews 2010). The resulting Connectivity Table (CT) file was then uploaded to
430 RNACanvas (Johnson and Simon 2023) for visualization and structural editing

431

432 **FUNDING**

433 KBA was funded by The UK Medical Research Council grants MR/S009647/1 and
434 MR/X009211/1. TK was funded by The Newton International Fellowship grants
435 (NIF\R1\180833 & NIF\R5A\0035), the Wellcome Institutional Strategic Support Fund grant
436 (204841/Z/16/Z), and the Wellcome Early Career Award (225605/Z/22/Z). The views
437 expressed are those of the author(s) and not necessarily those of the funders. The funders
438 had no role in study design, data collection, and interpretation, or the decision to submit the
439 work for publication.

440

441 **AUTHOR CONTRIBUTIONS**

442 AD, TK, KBA designed the study. AD, TK, CH, KBA performed experiments. AD, TK, KBA
443 performed data analysis and wrote the manuscript.

444

445 **ACKNOWLEDGEMENTS**

446 We are grateful for Finn Werner's comments on the manuscript

447

448 **REFERENCES**

449 Abramovitch, R. B., Rohde, K. H., Hsu, F. F., & Russell, D. G. (2011). aprABC: a *Mycobacterium*
450 tuberculosis complex-specific locus that modulates pH-driven adaptation to the
451 macrophage phagosome. *Molecular microbiology*, 80(3), 678–694.
452 <https://doi.org/10.1111/j.1365-2958.2011.07601.x>

453 Alix, E., & Blanc-Potard, A. B. (2007). MgtC: a key player in intramacrophage survival. *Trends in*
454 *Microbiology*, 15(6), 252–256. <https://doi.org/10.1016/j.tim.2007.03.007>

455 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment
456 search tool. *Journal of Molecular Biology*, 215(3), 403–410.
457 [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)

458 Arnvig, K. B., Comas, I., Thomson, N. R., Houghton, J., Boshoff, H. I., Croucher, N. J., Rose, G.,
459 Perkins, T. T., Parkhill, J., Dougan, G., & Young, D. B. (2011). Sequence-based analysis
460 uncovers an abundance of non-coding RNA in the total transcriptome of *Mycobacterium*
461 tuberculosis. *PLoS pathogens*, 7(11). <https://doi.org/10.1371/journal.ppat.1002342>

462 Bahoua, B., Sevdalis, S. E., & Soto, A. M. (2021). Effect of Sequence on the Interactions of
463 Divalent Cations with M-Box Riboswitches from *Mycobacterium tuberculosis* and *Bacillus*
464 *subtilis*. *Biochemistry*, 60(37), 2781–2794.
465 <https://doi.org/10.1021/ACS.BIOCHEM.1C00371>

466 Barrick, J. E., Corbino, K. A., Winkler, W. C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A.,
467 Sudarsan, N., Jona, I., Wickiser, J. K., & Breaker, R. R. (2004). New RNA motifs suggest an
468 expanded scope for riboswitches in bacterial genetic control. *Proceedings of the National
469 Academy of Sciences of the United States of America*, 101(17), 6421.
470 <https://doi.org/10.1073/PNAS.0308014101>

471 Becq, J., Gutierrez, M. C., Rosas-Magallanes, V., Rauzier, J., Gicquel, B., Neyrolles, O., &
472 Deschavanne, P. (2007). Contribution of horizontally acquired genomic islands to the
473 evolution of the tubercle bacilli. *Molecular Biology and Evolution*, 24(8), 1861–1871.
474 <https://doi.org/10.1093/MOLBEV/MSM111>,

475 Botella, L., Vaubourgeix, J., Livny, J., & Schnappinger, D. (2017). Depleting *Mycobacterium*
476 tuberculosis of the transcription termination factor Rho causes pervasive transcription
477 and rapid death. *Nature Communications*. <https://doi.org/10.1038/ncomms14731>

478 Breaker, R. R. (2018). Riboswitches and Translation Control. *Cold Spring Harbor Perspectives in
479 Biology*, 10(11). <https://doi.org/10.1101/CSHPERSPECT.A032797>

480 Breaker, R. R. (2022). The Biochemical Landscape of Riboswitch Ligands. *Biochemistry*, 61(3),
481 137–149. <https://doi.org/10.1021/ACS.BIOCHEM.1C00765>,

482 Chandra, P., Coullon, H., Agarwal, M., Goss, C. W., & Philips, J. A. (2022). Macrophage global
483 metabolomics identifies cholestenone as host/pathogen cometabolite present in human
484 *Mycobacterium* tuberculosis infection. *Journal of Clinical Investigation*, 132(3).
485 <https://doi.org/10.1172/JCI152509>,

486 Chatterjee, D., Daya Manasi, A. R., Rastogi, S. K., Panda, A. P., Biju, B., Bhattacharyya, D., &
487 Ghosh, A. S. (2024). Involvement of CorA of *Mycobacterium smegmatis* in exerting
488 intrinsic resistance towards structurally unrelated antibiotics. *Journal of Applied
489 Microbiology*, 135(12). <https://doi.org/10.1093/JAMBIO/LXAE298>,

490 Cortes, T., Schubert, O. T., Rose, G., Arnvig, K. B., Comas, I., Aebersold, R., & Young, D. B. (2013).
491 Genome-wide mapping of transcriptional start sites defines an extensive leaderless
492 transcriptome in *Mycobacterium* tuberculosis. *Cell reports*, 5(4), 1121–1131.
493 <https://doi.org/10.1016/j.celrep.2013.10.031>

494 Dann, C. E., Wakeman, C. A., Sieling, C. L., Baker, S. C., Irnov, I., & Winkler, W. C. (2007).
495 Structure and mechanism of a metal-sensing regulatory RNA. *Cell*, 130(5), 878–892.
496 <https://doi.org/10.1016/J.CELL.2007.06.051>

497 D'Halluin, A., Polgar, P., Kipkorir, T., Patel, Z., Cortes, T., & Arnvig, K. B. (2023). Premature
498 termination of transcription is shaped by Rho and translated uORFs in *Mycobacterium*
499 tuberculosis. *iScience*, 26(4). <https://doi.org/10.1016/J.ISCI.2023.106465>

500 Di Salvo, M., Puccio, S., Peano, C., Lacour, S., & Alifano, P. (2019). RhoTermPredict: An algorithm
501 for predicting Rho-dependent transcription terminators based on *Escherichia coli*,
502 *Bacillus subtilis* and *Salmonella enterica* databases. *BMC Bioinformatics*, 20(1), 1–11.
503 <https://doi.org/10.1186/S12859-019-2704-X/TABLES/5>

504 Ehrt, S., Schnappinger, D., & Rhee, K. Y. (2018). Metabolic principles of persistence and
505 pathogenicity in *Mycobacterium* tuberculosis. *Nature Reviews Microbiology*, 16(8), 496–
506 507. <https://doi.org/10.1038/S41579-018-0013-4>,

507 Ernst, J. D. (2012). The immunological life cycle of tuberculosis. *Nature Reviews Immunology*,
508 12(8), 581–591. <https://doi.org/10.1038/NRI3259>,

509 Feng, S., Hong, Z., Zhang, G., Li, J., Tian, G. B., Zhou, H., & Huang, X. (2021). *Mycobacterium*
510 PPE31 Contributes to Host Cell Death. *Frontiers in Cellular and Infection Microbiology*, 11.
511 <https://doi.org/10.3389/FCIMB.2021.629836/FULL>

512 Fishbein, S., van Wyk, N., Warren, R. M., & Sampson, S. L. (2015). Phylogeny to function:
513 PE/PPE protein evolution and impact on *Mycobacterium tuberculosis* pathogenicity.
514 *Molecular Microbiology*, 96(5), 901–916. <https://doi.org/10.1111/MMI.12981>,

515 Forbes, J. R., & Gros, P. (2001). Divalent-metal transport by NRAMP proteins at the interface of
516 host-pathogen interactions. *Trends in Microbiology*, 9(8), 397–403.
517 [https://doi.org/10.1016/S0966-842X\(01\)02098-4](https://doi.org/10.1016/S0966-842X(01)02098-4)

518 Franken, G. A. C., Huynen, M. A., Martínez-Cruz, L. A., Bindels, R. J. M., & de Baaij, J. H. F.
519 (2022). Structural and functional comparison of magnesium transporters throughout
520 evolution. *Cellular and Molecular Life Sciences*, 79(8), 1–17.
521 <https://doi.org/10.1007/S00018-022-04442-8/FIGURES/7>

522 Hao, Z., Svetlov, V., & Nudler, E. (2021). Rho-dependent transcription termination: a revisionist
523 view. *Transcription*, 12(4), 171–181. <https://doi.org/10.1080/21541264.2021.1991773>

524 Huang, L., Nazarova, E. V., & Russell, D. G. (2019). *Mycobacterium tuberculosis* : Bacterial
525 Fitness within the Host Macrophage . *Microbiology Spectrum*, 7(2).
526 <https://doi.org/10.1128/MICROBIOLSPEC.BAI-0001-2019>,

527 Johnson, P. Z., & Simon, A. E. (2023). RNACanvas: Interactive drawing and exploration of nucleic
528 acid structures. *Nucleic Acids Research*, 51(W1), W501–W508.
529 <https://doi.org/10.1093/NAR/GKAD302>,

530 Kavita, K., & Breaker, R. R. (2023). Discovering riboswitches: the past and the future. *Trends in
531 Biochemical Sciences*, 48(2), 119–141. <https://doi.org/10.1016/j.tibs.2022.08.009>

532 Kipkorir, T., Polgar, P., Barker, D., D'Halluin, A., Patel, Z., & Arnvig, K. B. (2024). A novel
533 regulatory interplay between atypical B12 riboswitches and uORF translation in
534 *Mycobacterium tuberculosis*. *Nucleic Acids Research*, 52(13), 7876.
535 <https://doi.org/10.1093/NAR/GKAE338>

536 Kipkorir, T., Polgar, P., D'Halluin, A., Gap-Gaupool, B., Makarov, V. A., Mukamolova, G. V., &
537 Arnvig, K. B. (2024). The RpfB switch is a novel B12-sensing riboswitch regulating (non-
538 replicating) persistence in *Mycobacterium tuberculosis*. *bioRxiv*, 2024.07.19.603033.
539 <https://doi.org/10.1101/2024.07.19.603033>

540 Kolbe, K., Bell, A. C., Prosser, G. A., Assmann, M., Yang, H. J., Forbes, H. E., Gallucci, S., Mayer-
541 Barber, K. D., Boshoff, H. I., & Barry, C. E. (2020). Development and Optimization of
542 Chromosomally-Integrated Fluorescent *Mycobacterium tuberculosis* Reporter
543 Constructs. *Frontiers in Microbiology*, 11, 591866.
544 <https://doi.org/10.3389/FMICB.2020.591866/BIBTEX>

545 Mccown, P. J., Corbino, K. A., Stav, S., Sherlock, M. E., & Breaker, R. R. (2017). Riboswitch
546 diversity and distribution. *RNA*, 23(7), 995–1011.
547 <https://doi.org/10.1261/RNA.061234.117/-/DC1>

548 Meng, E. C., Pettersen, E. F., Couch, G. S., Huang, C. C., & Ferrin, T. E. (2006). Tools for integrated
549 sequence-structure analysis with UCSF Chimera. *BMC Bioinformatics*, 7.
550 <https://doi.org/10.1186/1471-2105-7-339>,

551 Molodtsov, V., Wang, C., Firlar, E., Kaelber, J. T., & Ebright, R. H. (2023). Structural basis of Rho-
552 dependent transcription termination. *Nature*, 614(7947), 367–374.
553 <https://doi.org/10.1038/S41586-022-05658-1>

554 Nawrocki, E. P., Burge, S. W., Bateman, A., Daub, J., Eberhardt, R. Y., Eddy, S. R., Floden, E. W.,
555 Gardner, P. P., Jones, T. A., Tate, J., & Finn, R. D. (2015). Rfam 12.0: Updates to the RNA
556 families database. *Nucleic Acids Research*, 43(D1), D130–D137.
557 <https://doi.org/10.1093/NAR/GKU1063>,

558 Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-coffee: A novel method for fast and
559 accurate multiple sequence alignment. *Journal of Molecular Biology*, 302(1), 205–217.
560 <https://doi.org/10.1006/jmbi.2000.4042>

561 Pokorzynski, N. D., & Groisman, E. A. (2023). How Bacterial Pathogens Coordinate Appetite
562 with Virulence. *Microbiology and Molecular Biology Reviews*, 87(3).
563 <https://doi.org/10.1128/MMBR.00198-22>,

564 Ramesh, A., & Winkler, W. C. (2010). Magnesium-sensing riboswitches in bacteria. *RNA
565 Biology*, 7(1), 77–83. <https://doi.org/10.4161/RNA.7.1.10490>

566 Reuter, J. S., & Mathews, D. H. (2010). RNAstructure: Software for RNA secondary structure
567 prediction and analysis. *BMC Bioinformatics*, 11. [https://doi.org/10.1186/1471-2105-11-129](https://doi.org/10.1186/1471-2105-11-
568 129),

569 Roth, A., & Breaker, R. R. (2009). The structural and functional diversity of metabolite-binding
570 riboswitches. *Annual review of biochemistry*, 78, 305–334.
571 <https://doi.org/10.1146/ANNUREV.BIOCHEM.78.070507.135656>

572 Salvail, H., & Breaker, R. R. (2023). Riboswitches. *Current Biology*, 33(9), R343–R348.
573 <https://doi.org/10.1016/j.cub.2023.03.069>

574 Samuels, A. N., Wang, E. R., Harrison, G. A., Valenta, J. C., & Stallings, C. L. (2022).
575 Understanding the contribution of metabolism to *Mycobacterium tuberculosis* drug
576 tolerance. *Frontiers in Cellular and Infection Microbiology*, 12.
577 <https://doi.org/10.3389/FCIMB.2022.958555/PDF>

578 Sawyer, E. B., & Cortes, T. (2022). Ribosome profiling enhances understanding of mycobacterial
579 translation. *Frontiers in Microbiology*, 13. <https://doi.org/10.3389/FMICB.2022.976550>,

580 Schwenk, S., & Arnvig, K. B. (2018). Regulatory RNA in *Mycobacterium tuberculosis*, back to
581 basics. *Pathogens and Disease*, 76(4). <https://doi.org/10.1093/femspd/fty035>

582 Sherlock, M. E., & Breaker, R. R. (2020). Former orphan riboswitches reveal unexplored areas
583 of bacterial metabolism, signaling, and gene control processes. *RNA*, 26(6), 675–693.
584 <https://doi.org/10.1261/RNA.074997.120>,

585 Sherwood, A. V., Frandsen, J. K., Grundy, F. J., & Henkin, T. M. (2018). New tRNA contacts
586 facilitate ligand binding in a *Mycobacterium smegmatis* T box riboswitch. *Proceedings of
587 the National Academy of Sciences of the United States of America*, 115(15), 3894–3899.
588 <https://doi.org/10.1073/PNAS.1721254115>,

589 Sholey, A. R., Williams, A. A., Loots, D. T., Tutu van Furth, A. M., van der Kuip, M., & Mason,
590 S. (2022). Tuberculous Granuloma: Emerging Insights From Proteomics and
591 Metabolomics. *Frontiers in Neurology*, 13, 804838.
592 <https://doi.org/10.3389/FNEUR.2022.804838>

593 Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H.,
594 Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable
595 generation of high-quality protein multiple sequence alignments using Clustal Omega.
596 *Molecular systems biology*, 7. <https://doi.org/10.1038/MSB.2011.75>

597 Smith, C., Canestrari, J. G., Wang, A. J., Champion, M. M., Derbyshire, K. M., Gray, T. A., & Wade,
598 J. T. (2022). Pervasive translation in *Mycobacterium tuberculosis*. *eLife*, 11.
599 <https://doi.org/10.7554/ELIFE.73980>

600 Smith, R. L., Kaczmarek, M. T., Kucharski, L. M., & Maguire, M. E. (1998). Magnesium transport
601 in *Salmonella typhimurium*: Regulation of mgtA and mgtCB during invasion of epithelial
602 and macrophage cells. *Microbiology*, 144(7), 1835–1843.
603 <https://doi.org/10.1099/00221287-144-7-1835/CITE/REFWORKS>

604 Subramani, S., Perdreau-Dahl, H., & Morth, J. P. (2016). The magnesium transporter A is
 605 activated by cardiolipin and is highly sensitive to free magnesium in vitro. *eLife*, 5.
 606 <https://doi.org/10.7554/ELIFE.11407>

607 Thomas, K. J., & Rice, C. V. (2014). Revised model of calcium and magnesium binding to the
 608 bacterial cell wall. *BioMetals*, 27(6), 1361–1370. [https://doi.org/10.1007/S10534-014-9797-5/METRICS](https://doi.org/10.1007/S10534-014-9797-5)

610 Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of
 611 progressive multiple sequence alignment through sequence weighting, position-specific
 612 gap penalties and weight matrix choice. *Nucleic Acids Research*, 22(22), 4673–4680.
 613 <https://doi.org/10.1093/NAR/22.22.4673>,

614 Townsend, D. E., Esenwine, A. J., George, J., Bross, D., Maguire, M. E., & Smith, R. L. (1995).
 615 Cloning of the mgtE Mg²⁺ transporter from *Providencia stuartii* and the distribution of
 616 mgtE in gram-negative and gram-positive bacteria. *Journal of Bacteriology*, 177(18),
 617 5350–5354. <https://doi.org/10.1128/JB.177.18.5350-5354.1995>,

618 Walters, S. B., Dubnau, E., Kolesnikova, I., Laval, F., Daffe, M., & Smith, I. (2006). The
 619 *Mycobacterium tuberculosis* PhoPR two-component system regulates genes essential for
 620 virulence and complex lipid biosynthesis. *Molecular Microbiology*, 60(2), 312–330.
 621 <https://doi.org/10.1111/J.1365-2958.2006.05102.X>

622 Wang, Q., Boshoff, H. I. M., Harrison, J. R., Ray, P. C., Green, S. R., Wyatt, P. G., & Barry, C. E.
 623 (2020). PE/PPE proteins mediate nutrient transport across the outer membrane of
 624 *Mycobacterium tuberculosis*. *Science*, 367(6482), 1147–1151.
 625 <https://doi.org/10.1126/SCIENCE.AAX3072>

626 Yamagami, R., Sieg, J. P., & Bevilacqua, P. C. (2021). Functional Roles of Chelated Magnesium
 627 Ions in RNA Folding and Function. *Biochemistry*, 60(31), 2374–2386.
 628 <https://doi.org/10.1021/ACS.BIOCHEM.1C00012>,

629
 630 **TABLES**

632

M-Box gene	Mapped TTS	RTP number*	rut site start	rut site end	Distance from TSS***	Distance to annotated ORF***
rv1535	1735718	T5468	1735526	1735604	17	-372
		T5469	1735816	1735894	307	-82
pe20	2047779	T6425	2047633	2047711	38	-361
		T6426	2047887	2047965	292	-107

633 Table 1: Mapped transcription termination sites (TTS), predicted Rho-dependent terminators (RTP) and
 634 their locations according to (D'Halluin et al. 2023).

635

636 **FIGURE LEGENDS**

637

638 **Figure 1: Conservation of Mbox elements.** A) Mbox aptamer structures from *Bacillus subtilis*
 639 *ykoK* and the two *M. tuberculosis* aptamers from *rv1535* and *pe20* (*rv1806*). Structures were
 640 predicted using RNAstructure Web Server (Reuter & Mathews, 2010) and drawn by extracting
 641 the bracket-dot plot to RNACanvas (Johnson & Simons, 2023). B) Distribution of Mboxes and

642 their associated genes in *Mycobacteria*. These can be split into the four types indicated, based
643 on the aptamer and their downstream sequences. Notably, the two *M. tuberculosis* elements
644 fall into different groups.

645

646 **Figure 2: Premature termination of transcription within Mtb Mbox loci.** A) The two Mbox-
647 associated genes, *rv1535* and *pe20* are shown with their respective leaders. TSS from (Cortes
648 *et al.*, 2013), Term-seq data and Transcription termination sites (TTS) from (D'Halluin *et al.*,
649 2023). Distances from TSS to dominant TTS peaks and further to the start codons of have been
650 indicated. B) Northern blot with log-phase total RNA from Mtb H37Rv and from RhoDUC
651 (Botella *et al.*, 2017) following depletion of Rho. Total RNA was separated on an 8% acrylamide
652 gel, electroblotted and probed for leader sequences distinct for the two genes, approximately
653 180 nucleotides downstream of the TSS. The 5S RNA was probed as a loading control.

654

655 **Figure 3: Expression of *pe20* uORFs.** To ascertain expression of uORF1 and uORF2 from the
656 *pe20* operon, we made translational *lacZ*-fusions and measured β -galactosidase (β gal) activity
657 of the different constructs. Experiments were done in triplicates and differences of expression
658 tested with a t-test (p-val<0.01). A) Genomic context of *pe20* and the uORFs associated (green)
659 including SD1 (yellow box) and SD2 (blue box); B) Schematic showing each reporter constructs
660 (left) and their expression in Miller units (right). uORF1D refers to a truncated version of uORF1
661 encoding only its first two codons. C) uORF1 sequence with amino acids and their codons. Start
662 codon is shown in green and rare codons (<5/1000 frequency) are shown in red.

663

664 **Figure 4: Model for a translational expression platform.** The figure shows how the translation
665 initiation region (TIR, blue) can be sequestered by base-pairing with the α TIR (orange), which
666 in turn can base-pair with the $\alpha\alpha$ TIR (yellow), depending on the conformation of the aptamer.
667 Structure of the aptamer is shown on the left with part of the $\alpha\alpha$ TIR shown in yellow.

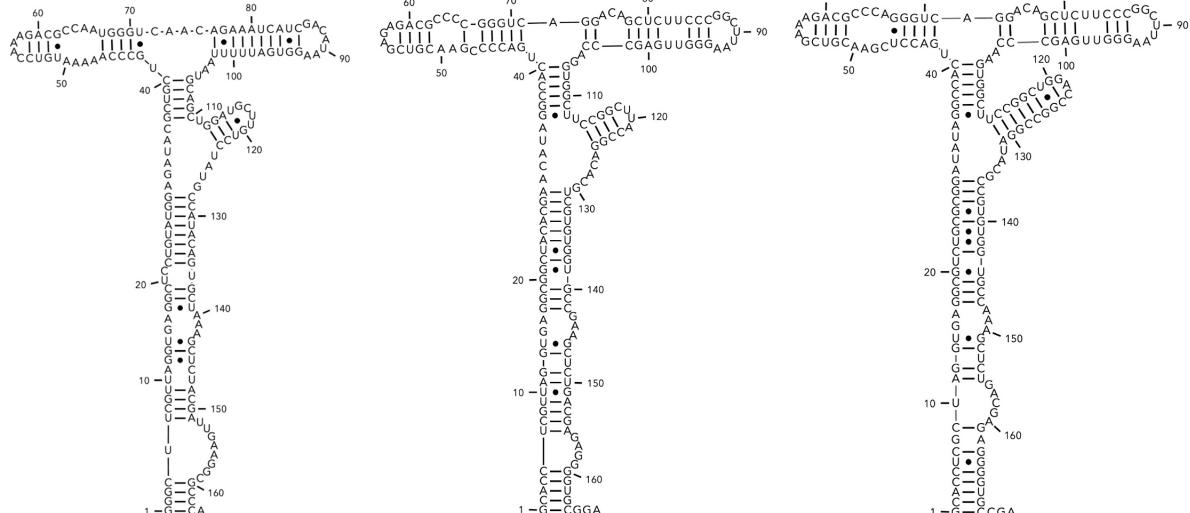
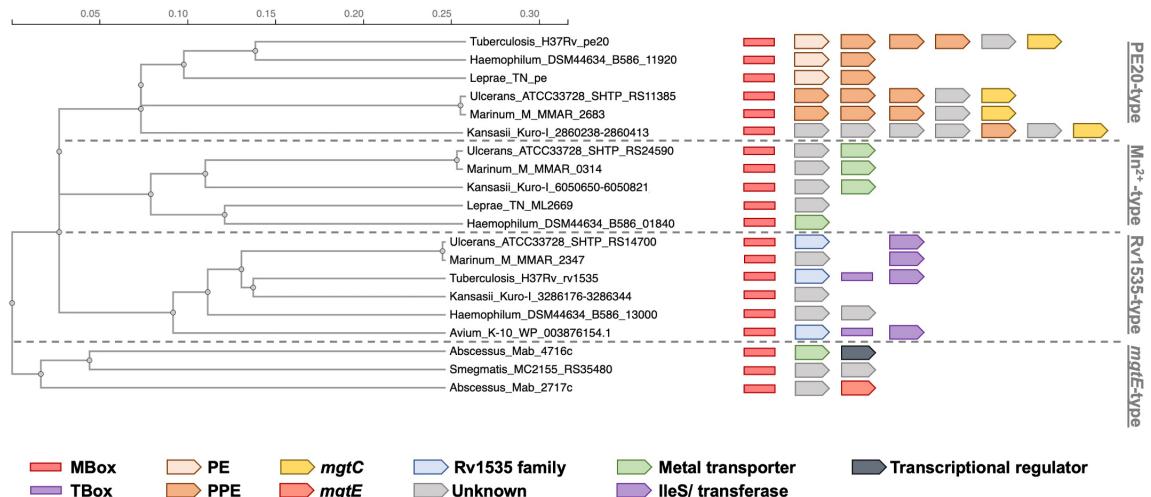
668

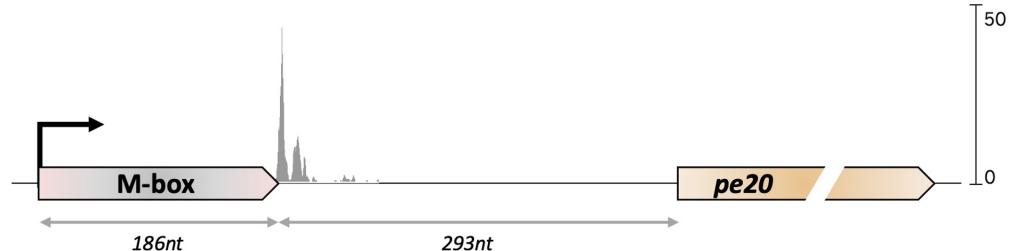
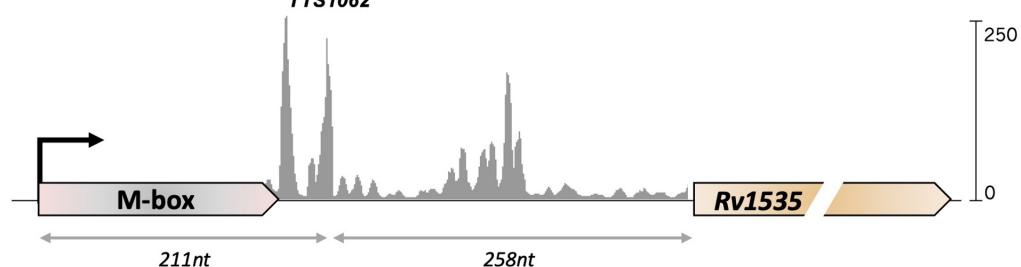
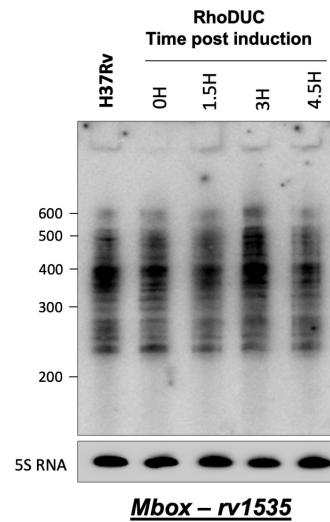
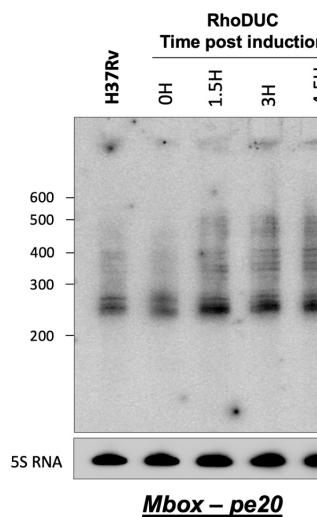
669 **Figure 5: Testing the model for a translational expression platform.** A) Reporter constructs
670 assessing the effect of uORF1 changes on uORF2 expression; changing the start codon of
671 uORF1 to a no-start (G184C), deleting the proposed α SD, which is part of uORF1 or a
672 combination of the two. B) Effect of gradual extension of region upstream of uORF2.
673 Expression decreases, when α SD is included and increases again, when SD1 ($\alpha\alpha$ SD) is included.

674 C) Structures indicating how the reporter constructs relate to the model proposed in Figure 4.
675 Experiments were done in triplicates and differences of expression tested with a t-test (p-
676 val<0.01).

677

678 **Figure 6: The Rv0115A locus.** BLAST identified Rv0115A to be a homologue of Rv1805A. A)
679 Rv0115A (green) is encoded downstream of the *gca* operon (golden) but transcribed from its
680 own promoter. B) Alignment of the promoter regions of *gca* and *rv0115A* show very high
681 degree of similarity, suggesting a duplication event. The blue arrow indicates *hddA* coding
682 sequence upstream of *rv0115A*. The promoter elements, -35, extended -10 and -10 are
683 highlighted in grey. PhoP binding regions, according to TBDB, are shown in orange and purple
684 with their respective centres boxed in same colour.

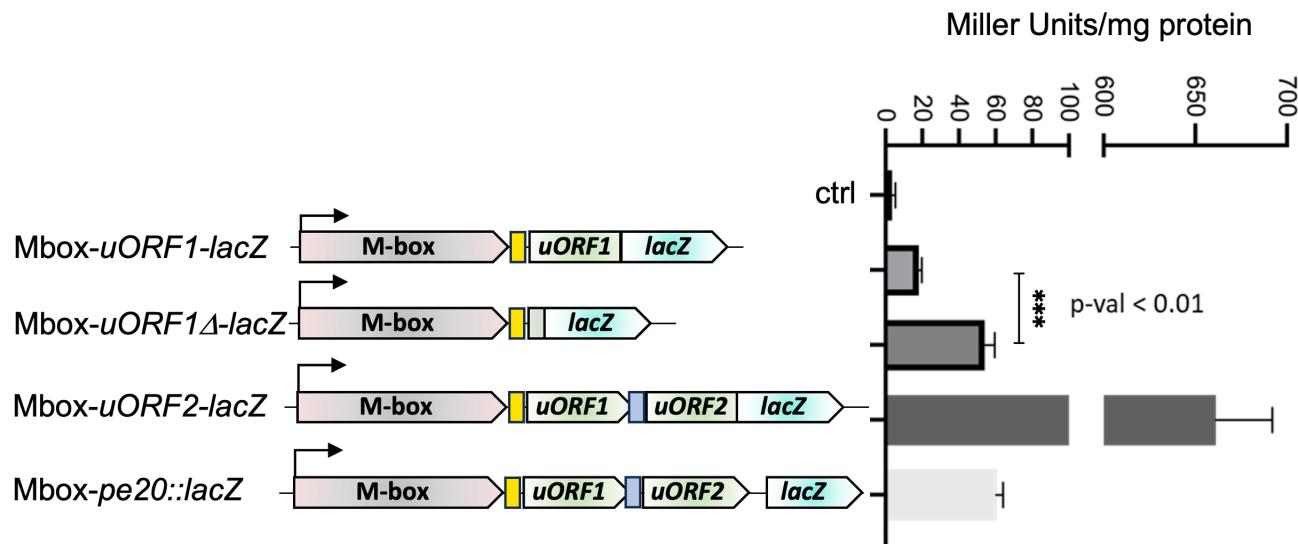


685





686 **Figure 7: Conservation of uORF2 within Mycobacteria.** Alignment of Mbox associated uORF2
687 extracted from Figure 1B and Mtb Rv0115A peptides showed high conservation of several
688 residues mainly at the N-terminal sequence, including 100% conservation of a proline at
689 position 7 in most peptides. Consensus sequence and amino acid conservation were assessed
690 using Chimera (Meng *et al.*, 2006).

691

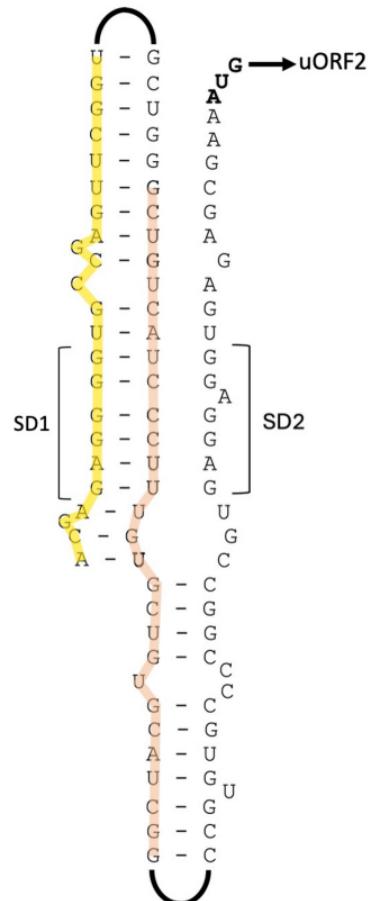
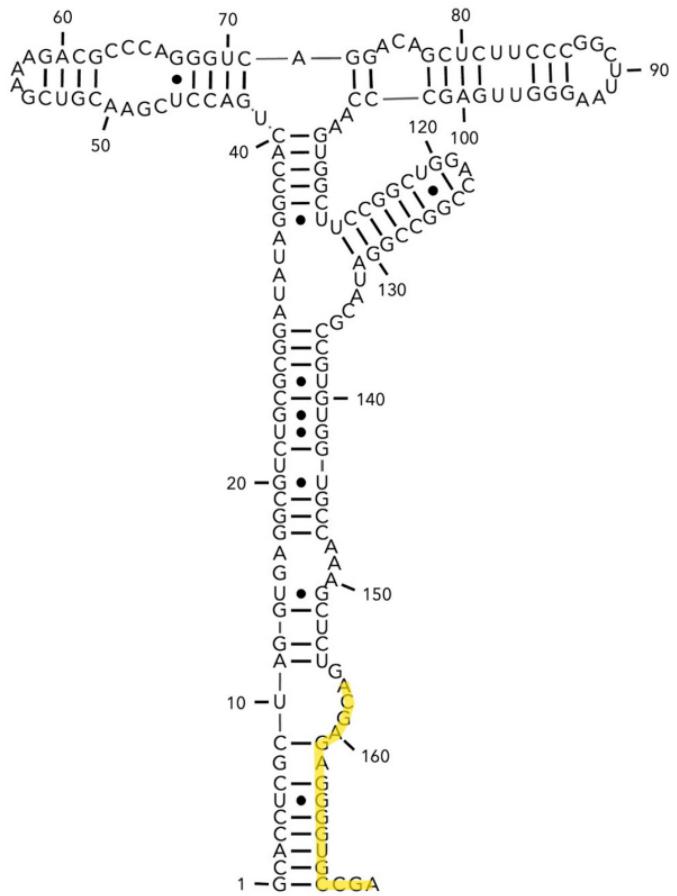
692 **Figure 8: Biofilm formation in *M. smegmatis* during Mg²⁺-depletion and acid stress.** Cultures
693 of *Mycobacterium smegmatis* were grown to mid-log phase, washed in Mg²⁺-free medium,
694 resuspended in 1 mL of indicated medium at OD 0.01. Plates were sealed in plastic bags and
695 left for static incubation at 37°C for a week. Plates shown are representative of three
696 independent experiments.

697

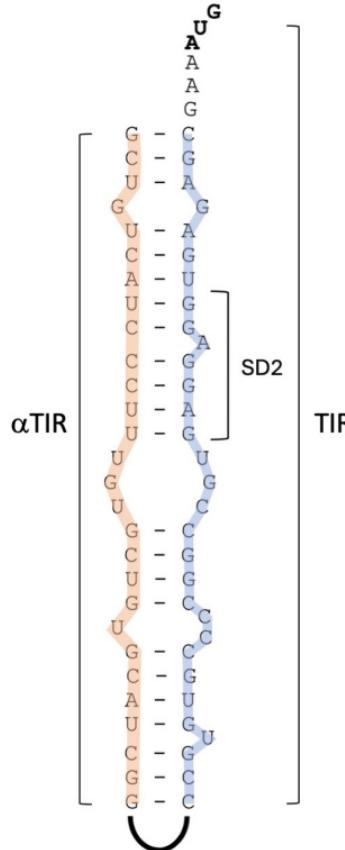

A**B**

A**TTS1209****TTS1062****B**

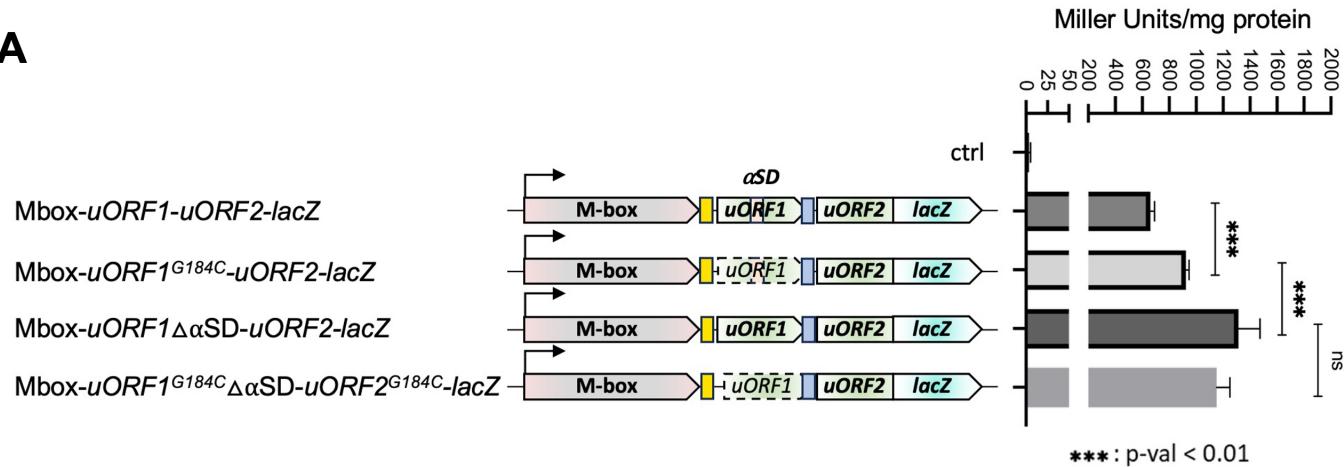
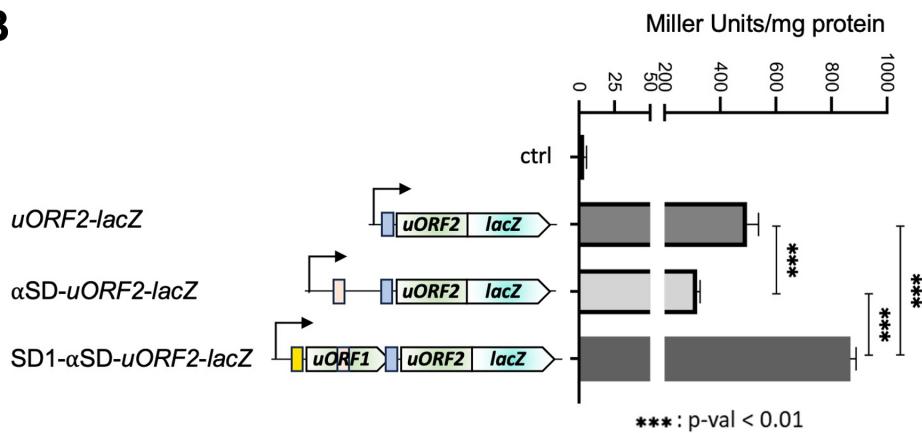
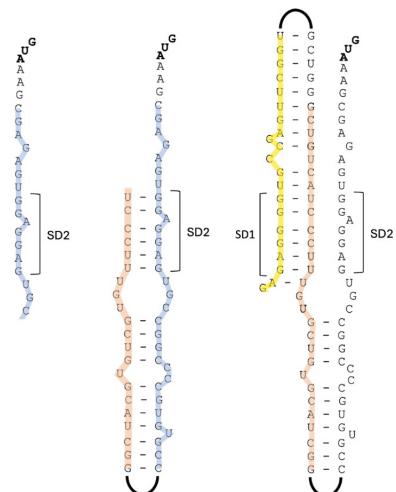
A Genomic context

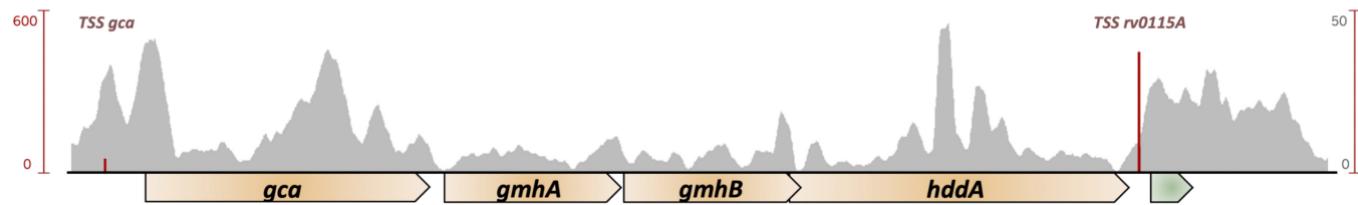
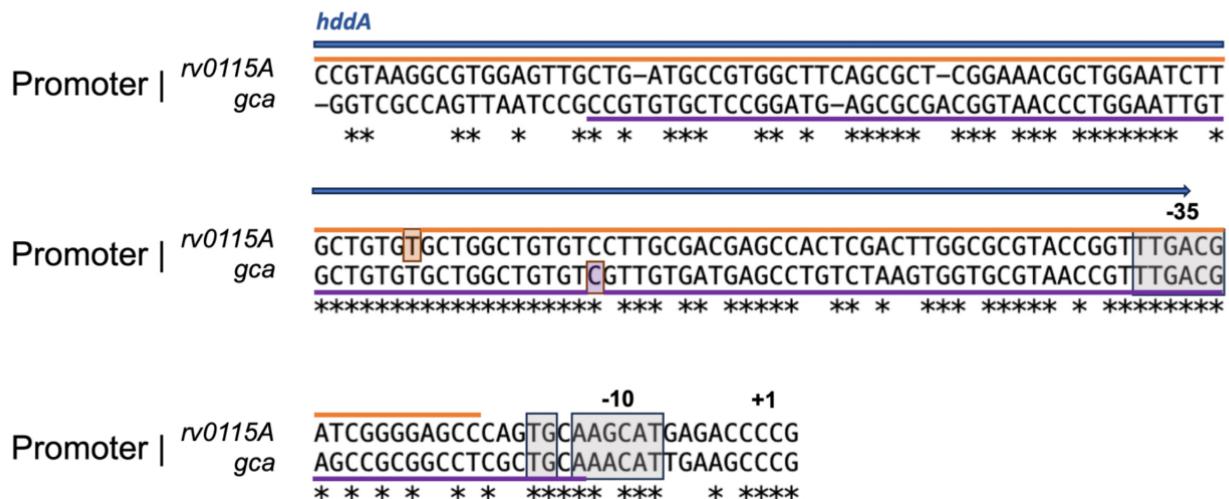



B Expression



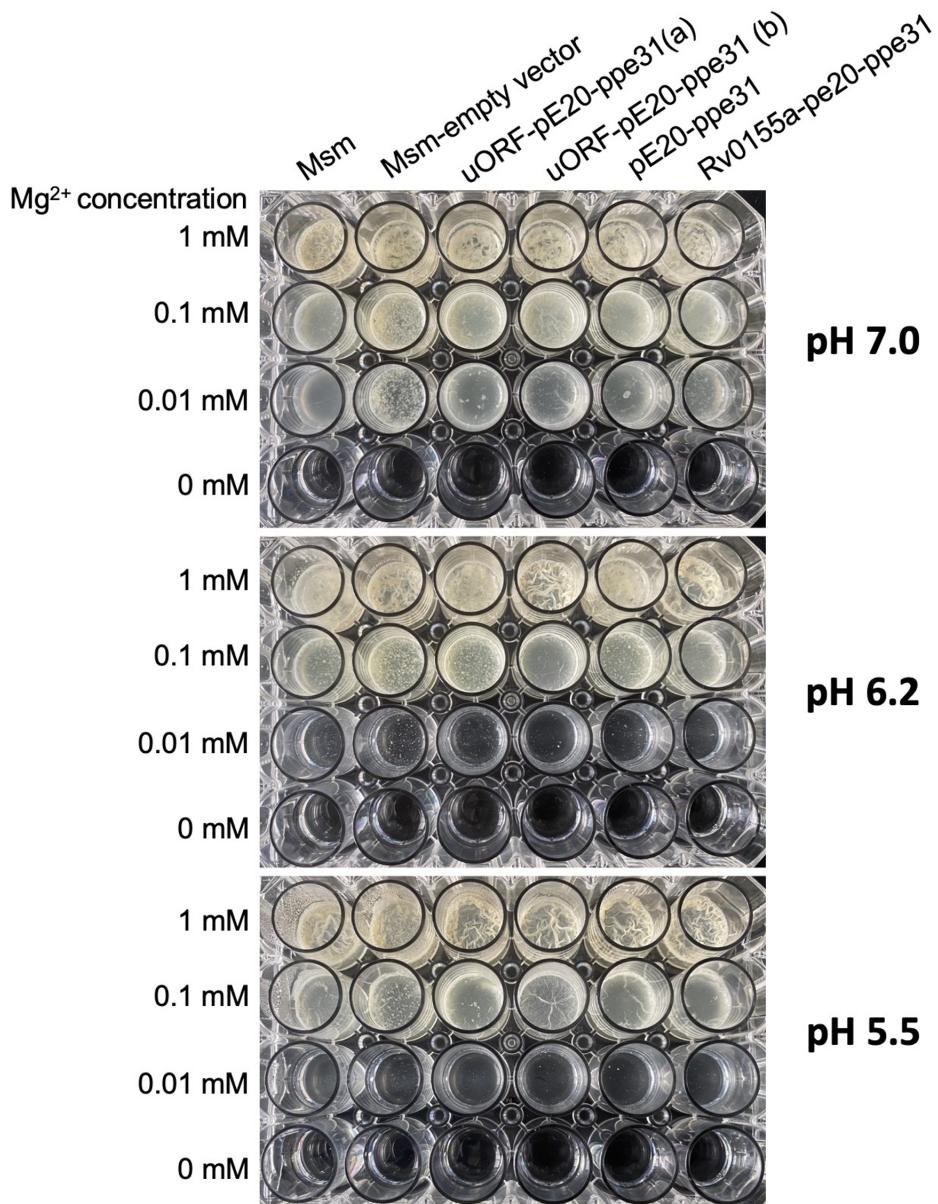
C uORF1 sequence




Amino Acid	M	V	C	W	A	V	I	P	L	C	C	A	C	A	S	P	C	A	P	A	V	R	R
Codon	GTG	GTC	TGC	TGG	GCT	GTC	ATC	CCT	TTG	TGC	TGT	GCA	TCG	GCA	TCC	CCG	TGT	GCC	CCG	GCC	GTG	AGG	AGG

Translation on

Translation off


A**B****C**

A**B**

Consensus Conservatio

Abscessus_Mab_2717c
Haemophilum_DSM44634_B586_13000
Avium_K-10_WP_003876154.1
Ulcerans_ATCC33728_SHTP_RS14700
Marinum_M_MMAR_2347
Tuberculosis_H37Rv_rv1535
Kansasii_Kuro-I_3286176-3286344
Tuberculosis_H37Rv_Rv0115A
Kansasii_Kuro-I_6050650-6050821_NII
Ulcerans_ATCC33728_SHTP_RS24590
Marinum_M_MMAR_0314
Leprae_TN_ML2669
Haemophilum_DSM44634_B586_01840
Smegmatis_MC2155_RS35480
Abscessus_Mab_4716c
Leprae_TN_pe8
Haemophilum_DSM44634_B586_11920
Tuberculosis_H37Rv_pe20
Kansasii_Kuro-I_2860238-2860413
Ulcerans_ATCC33728_SHTP_RS11385
Marinum_M_MMAR_2683

Sequence logo showing the conservation of amino acids at positions 1, 11, 21, and 31 across 20 different sequences. The logo uses a grayscale gradient where darker shades represent higher conservation. The sequences are color-coded by residue: M (black), S (dark gray), P (light gray), G (yellow), D (orange), E (red), A (green), T (light green), C (blue), and F (purple).

A *Mycobacterium tuberculosis* Mbox controls a conserved, small upstream ORF via a translational expression platform and rho-dependent termination of transcription

Alexandre D'Halluin, Terry Kipkorir, Catherine Hubert, et al.

RNA published online November 21, 2025

Supplemental Material <http://rnajournal.cshlp.org/content/suppl/2025/11/21/rna.080735.125.DC1>

P<P Published online November 21, 2025 in advance of the print journal.

Accepted Manuscript Peer-reviewed and accepted for publication but not copyedited or typeset; accepted manuscript is likely to differ from the final, published version.

Open Access Freely available online through the *RNA* Open Access option.

Creative Commons License This article, published in *RNA*, is available under a Creative Commons License (Attribution 4.0 International), as described at <http://creativecommons.org/licenses/by/4.0/>.

Email Alerting Service Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](#).

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To subscribe to *RNA* go to:
<http://rnajournal.cshlp.org/subscriptions>
