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ABSTRACT

Magnesium is vital for bacterial survival, and its homeostasis is tightly regulated. Intracellular
pathogens like Mycobacterium tuberculosis (Mtb) often face host-mediated magnesium
limitation, which can be counteracted by upregulating the expression of Mg?* transporters.
This upregulation may be via Mg?*-sensing regulatory RNA such as the Bacillus subtilis ykoK
Mbox riboswitch, which acts as a transcriptional “OFF-switch” under high Mg?* conditions.
Mtb encodes two Mbox elements with strong similarity to the ykoK Mbox.

In the current study, we characterize the Mbox encoded upstream of the Mtb pe20 operon,
which is required for growth in low Mg?*/low pH. We show that this switch operates via a
translational expression platform and Rho-dependent transcription termination, which is the
first such case reported for an Mbox. Moreover, we show that the switch directly controls a
small ORF encoded upstream of pe20. We have annotated this highly conserved uORF
rvl1805A, but its role remains unclear. Interestingly, a homologous gene exists outside the
Mbox-regulated context, suggesting functional importance beyond magnesium stress.
Overall, this study uncovers a dual mechanism of riboswitch-regulation in Mtb, combining
translational control with Rho-mediated transcription termination. These findings expand our
understanding of RNA-based gene regulation in mycobacteria, with implications for

pathogenesis and stress adaptation.

INTRODUCTION

Magnesium is required for a wide range of cellular functions in all domains of life and the
most abundant divalent cation in living cells (Smith et al. 1998). In bacteria, these functions
include cell wall integrity, biofilm formation, macromolecular metabolism and -function,
making magnesium homeostasis essential (Thomas and Rice 2014; Subramani et al. 2016;
Yamagami et al. 2021; Chatterjee et al. 2024). This represents an extra challenge for
intracellular pathogens as host immune responses include mechanisms for restricting access
to magnesium in certain cellular compartments such as the phagosome (Forbes and Gros
2001; Pokorzynski and Groisman 2023). To counteract these defence mechanisms, pathogens
express an array of transporters to ensure adequate Mg?* uptake. At least four types of
magnesium channels and transporters regulate and maintain essential Mg?* levels in

prokaryotes: CorA, CorB/C, MgtA/B and MgtE (Franken et al. 2022). Mycobacterium
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tuberculosis (Mtb) encodes CorA (Rv1239) and MgtE (Rv0362) however, Mtb does not encode
homologues of MgtA/B, making the function of MgtC elusive (Alix and Blanc-Potard 2007).

Riboregulated, i.e. RNA-based, stress-responses are widespread in bacteria, with small
RNAs and riboswitches being the most prominent elements. Riboswitches are located in the
5’ leader regions of mRNAs regulating gene expression in cis; they are composed of a highly
structured ligand binding aptamer domain and an expression platform. The latter exerts gene
expression control by either modulating premature termination of RNA Polymerase (RNAP)
and/or restricting access of the ribosome to the Ribosome Binding Site (RBS) of the mRNA
(Salvail and Breaker 2023). Nonpermissive control mechanisms may involve the formation of
intrinsic terminators, unmasking of Rho-binding sites or occlusion of Shine-Dalgarno (SD)
sequence of the downstream Open Reading Frame (ORF). The latter may in addition be
associated with Rho-dependent termination of transcription within the ORF (Salvail and
Breaker 2023). Binding of the specific ligand can either allow (“ON-switch”) or inhibit (“OFF-
switch”) expression of the downstream gene (Breaker 2018; Kavita and Breaker 2023; Schwenk
and Arnvig 2018). The genes regulated by riboswitches are often, but not always, involved in
the metabolism or transport of the cognate ligand (Kavita and Breaker 2023; Roth and Breaker
2009; Sherlock and Breaker 2020). Riboswitch ligands range from sugars, amino acids,
nucleotides and cofactors to metal ions including Mg?* (Breaker 2022; Barrick et al. 2004; Dann
et al. 2007; Mccown et al. 2017). A magnesium-sensing riboswitch, referred to as Mbox, was
first discovered in the Bacillus subtilis ykoK gene encoding a MgtE-type magnesium transporter
(Barrick et al. 2004; Ramesh and Winkler 2010; Townsend et al. 1995). The Mbox is a
transcriptional ‘OFF-switch’; magnesium binding to the aptamer leads to conformational
changes of the RNA and the formation of an intrinsic terminator preventing ykoK expression.
At low Mg?* concentrations, the absence of the terminator is permissive to ykoK expression
which facilitates increased Mg?* uptake (Ramesh and Winkler 2010).

Successful infection by Mtb requires its sensing of, and adaptation to, multiple micro-
environments including different types of macrophages and their subcellular compartments
such as phagosomes(Chandra et al. 2022; Samuels et al. 2022; Sholeye et al. 2022). Mtb has
evolved mechanisms to either escape this organelle or to endure the hostile environment
within by a range of adaptive responses (Ehrt et al. 2018; Ernst 2012; Huang et al. 2019).
Riboswitches are likely to play a role in this adaptation by directly sensing host environments

via specific metabolites. Several Mtb riboswitches have been predicted (Rfam RF0O0380) and
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their expression validated by RNA-seq, Term-seq, inline probing and functional assays
(Nawrocki et al. 2015; Arnvig et al. 2011; D’Halluin et al. 2023; Kipkorir et al. 2024a; Kolbe et
al. 2020; Kipkorir et al. 2024b). These include two predicted Mbox aptamers upstream of
Rv1535 and Rv1806 (pe20 locus), respectively. Both loci are upregulated in low magnesium
(Walters et al. 2006), and in a recent study Kolbe et al. demonstrated that magnesium-
dependent control resides within the leader, not the promoter of pe20 (Kolbe et al. 2020).
Moreover, the two Mtb aptamers show a high level of structural similarity to the Bacillus
subtilis ykoK aptamer, although some results suggest that these interact differently with
divalent cations including Mg?* (Bahoua et al. 2021). The pe20 locus (encoding PE20, PPE31,
PPE32, PPE33 Rv1810 and MgtC) is associated with magnesium homeostasis and acid stress,
and PE20-PPE31 have been shown to be necessary for maintaining growth in a combination of
low Mg?* and low pH, conditions that mimic the phagosomal environment (Walters et al. 2006;
Wang et al. 2020). The function of Rv1535 remains unknown.

We recently mapped premature termination of transcription in Mtb at genome-scale and
identified hundreds of RNA leaders with an abundance of potential new riboswitches and
translated small upstream ORFs (UORFs) (D’Halluin et al. 2023). We validated predicted
riboswitches and demonstrated that both Mtb Mbox leaders were associated with premature,
Rho-dependent termination of transcription upstream of the annotated ORFs (D’Halluin et al.
2023).

Here, we show that pe-ppe associated Mboxes are widely conserved across Mycobacterium
and are co-transcribed with mgtC in Mtb. The Mtb Mbox upstream of pe20 is unusual as it
combines a translational expression platform with a Rho-dependent transcription terminator.
This is to our knowledge the first translational Mbox to be described. Using translational
reporter fusion constructs we show that a conserved uORF located between the Mbox and
pe20 is highly expressed. This peptide is highly conserved in the context of Mboxes across the
Mycobacterium genus. While its function remains opaque, a paralogue of this ORF is expressed
from an additional, Mbox-independent locus in Mtb, supporting the biological and regulatory

importance of this peptide.
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RESULTS
Conservation and genomic context of M. tuberculosis Mboxes

Two Mbox aptamers have been identified within the Mtb H37Rv genome (Rfam RF00380).
We used these sequences to predict their structures and compare these to the Mbox
consensus structure from Rfam. The results, shown in Figure 1A, indicate a high degree of
similarity between the two Mtb aptamers and the B. subtilis ykoK element, suggesting these
are functional Mg?*-sensing elements as reported in the case of rv1535 by (Bahoua et al. 2021).

Next, we investigated the conservation of the element and its context across the
Mycobacterium genus. Both elements have been shown to be associated with multiple uORFs,
and at least one of these is translated (u2, D’Halluin et al., 2023). Based on a phylogenetic
analysis of the two Mtb elements and Mboxes from other species, we identified four classes
of mycobacterial Mboxes, represented by pe20-type, manganese-type (Mn?*-type), rv1535-
type and mgtE-type elements, respectively; these classes are further supported by a
conserved gene synteny (Figure 1B).

The mgtE-type is the only Mbox found in the non-pathogenic M. smegmatis, and its
genomic neighbourhood shows that the genes immediately downstream encode predicted
metal transporters (MT) and/or associated proteins (e.g. MgtE), or proteins of unknown
function. The other three branches are seen across fast- and slow-growing pathogenic
mycobacteria.

The first branch, the pe20-type is almost exclusively found upstream of multiple pe-ppe
genes, which in Mtb, M. ulcerans, M. marinum and M. kansasii are followed by genes of
unknown function (GUF) and MT (as MgtC was originally annotated as a magnesium
transporter). The second Mn?*-type branch includes a cluster of manganese transporter-type
downstream of the riboswitch, a constellation that is not seen in Mtb. The third rv1535-type
branch is found upstream of GUF like rv1535 but followed by a cluster of T-box/ileS elements
or various transferases. These results suggest the regulation of metal transporters by both
Mboxes is well-conserved across mycobacteria, while the the pe-ppe clusters and mosaic
appearance suggest insertion events may have taken place in pathogenic / slow growing

species.
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Rho-dependent premature termination of transcription within Mbox leaders

TSS mapping and RNA-seq suggest that the rv1535 mRNA is monocistronic, while the
pe20 mRNA is polycistronic spanning pe20 to mgtC (Arnvig et al. 2011; Cortes et al. 2013;
D’Halluin et al. 2023) (Supplementary figure 1). Importantly, the entire polycistronic pe20
operon is upregulated during growth in low magnesium controlled by the Mbox (Walters et
al., 2006).

We recently mapped premature transcription termination (TTS) in Mtb genome-wide and
identified two dominant TTS associated with the Mbox leaders (D’Halluin et al. 2023). TTS1062
is located ~210 nucleotides downstream of the rv1535 TSS and 40 nucleotides downstream of
the aptamer. TTS1209 is located ~185 nucleotides downstream of the pe20 TSS and 10
nucleotides downstream of the aptamer (Figure 2A).

In both loci, multiple smaller peaks are flanking the TTS, suggesting a degree of flexibility in
the TTS. Both TTS were located a significant distance (>200 nucleotides) upstream of their
annotated ORFs, revealing the premature termination of transcription within the two leader
regions, and neither were associated with canonical intrinsic terminator structures.

In our Mtb TTS mapping we predicted and validated Rho-dependent termination using
RhoTermPredict (Di Salvo et al. 2019) and depletion of Rho using the Rho-DUC strain (Botella
et al. 2017; D’Halluin et al. 2023). Two Rho-binding (rut) sites were predicted in each Mbox
leader; one in each aptamer (T5468 and T6425) and one between aptamers and annotated
ORFs (T5469 and T6426), while the mapped TTS1209 and TTS1062 are located between these
(Table 1; Figure 2A). The calculated readthrough (RT) scores for the mapped TTS after
Anhydrous Tetracyclin (ATc) induced depletion of Rho validated that transcription termination
was in fact due to Rho (D’Halluin et al. 2023). To further confirm Rho-dependent, premature
termination of transcription, we performed Northern Blotting on RNA from H37Rv and from
Rho-depleted cultures probing for both Mboxes.

The homology between the Mbox aptamers from rv1535 and pe20 made it impossible to
design a 5’ probe that could distinguish between the two transcripts. To ensure that the signals
were specific for either pe20 or rv1535, we used a probe that was located 180 nucleotides into
the transcripts beyond the homologous regions (supplementary figure 2) and as a result,
transcripts shorter than this could not be detected.

Several strong signals between 200 and 300 nucleotides roughly corresponding to the TTS

mapping suggesting multiple points of premature termination of transcription within both
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leaders (Figure 2B). In H37Rv and in Rho-DUC time 0, we observed limited readthrough beyond
300 nucleotides for pe20, while rv1535 displayed multiple larger signals primarily around 400
nucleotides consistent with the TTS pattern. Depletion of Rho led to an increase in larger
transcripts for pe20 suggesting increased readthrough i.e. reduced termination. In contrast,
the rv1535 termination pattern changed only marginally over the Rho depletion time course,

suggesting that Rho plays a greater role for pe20 regulation as compared to rv1535.

The regions downstream of the Mbox aptamers harbour multiple uORFs

Ribosome profiling demonstrates that the regions between the Mbox aptamers and the
two annotated open reading frames (ORF)s (rv1535 and pe20, respectively) are bound by
ribosomes in agreement with on-going translation upstream of the annotated genes (D’Halluin
et al. 2023; Smith et al. 2022; Sawyer and Cortes 2022). Sequence alignment of rv1535 and
pe20 leaders with other pe20-type leaders indicated several regions of conservation including
near-identical SD sequences located at the end of the aptamer (SD1) and a second, highly
conserved SD (SD2) further downstream. The ORF downstream of SD1 (upstream
ORF1/uORF1) shows poor conservation, while the uORF downstream of SD2 (UORF2) is highly
conserved (Supplementary figure 2). Moreover, we have previously shown that uORF2 from
both loci is expressed (D’Halluin et al. 2023).
To characterize the relationship between the pe20 Mbox and the two uORFs, we first
investigated expression using translational lacZ-fusions. All constructs included the 5’ leader
from the TSS and were gradually extended downstream to the end of uORF1 (Mbox-uORF1-
lacZ); the end of UORF2 (Mbox-uORF2-lacZ), or the start codon of pe20 ORF (Mbox-pe20::lacZ),
respectively. All were fused in-frame to lacZ, expressed from a heterologous, constitutive
promoter and integrated into the M. smegmatis genome in single copy (Figure 3). Next, we
performed [B-galactosidase (B-gal) assays, which showed that Mbox-uORF2-lacZ expression
was >10 fold higher than Mbox-pe20::lacZ (~650 Miller Units compared to 60 Miller Units),
while Mbox-uORF1-lacZ was only slightly higher than the background (Figure 3B). To validate
the start codons of the two uORFs, we mutated each to non-start codons (GTG to GTC and ATG
to ACG for uORF1 and uORF2, respectively. This reduced B-gal activity significantly in both
constructs, suggesting reduced expression in support of the annotated translation start sites,
although Mbox-uORF2-lacZ expression was still higher than Mbox-pe20::lacZ expression

(Supplementary figure 3).
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As the translation initiation region (TIR) for uORF1 and uORF2 (i.e. SD1 and SD2 and their
distances to the start codons) were almost identical, and we had not observed any premature
TTS in the region, we reasoned that the coding region of uORF1 was responsible for the lower
[B-gal activity. To explore this possibility, we deleted the majority of uORF1 from the Mbox-
UORF1-lacZ construct except the first two codons (Mbox- UORF1A-lacZ ) and measured lacZ
expression.

The results, shown in Figure 3B indicate that expression of this truncated uORF1 was 2.5-
fold higher than that of the full-length uORF1, suggesting that the uORF1 coding region did
indeed suppress -gal activity. As uORF1 contains several rare (<5/1000) codons, i.e. TGC, CCT,
TGC, TGT, TGT, AGG, AGG (Figure 3C), we assume that this was due to poor translation
elongation, but alternative explanations such as the uORF1 peptide interfering with [-gal

activity cannot be ruled out at this stage.

The pe20 Mbox operates via a translational expression platform

In conjunction, the Rho-dependent premature termination of transcription, the highly
conserved SDs at the end of the aptamer, located upstream of a well-expressed conserved
UORF made us speculate that the pe20 Mbox operates via a translational expression platform.

A functional translational expression platform requires the potential for the SD to be
masked, e.g. by a pyrimidine-rich region (an aSD) that in turn can be sequestered by an aaSD
under different conditions.

We identified such a region approximately halfway between SD1 and SD2. This aSD and its
flanking regions have the potential to pair with the entire translation initiation region (TIR) of
UORF2 (shown in blue in Figure 4) or alternatively, with the aptamer-associated SD1 and its
flanks (yellow in Figure 4).

To explore this hypothesis further, we measured uORF2 expression after introducing
mutations that could interfere with the proposed interactions. One was the abolishing the
UORF1 start codon, the rationale being that this would partially unmask SD1 thereby favouring
the SD1-aSD interaction, leading to an increase in uUORF2-/acZ expression

Similarly, deleting the aSD should also lead to higher expression of uUORF2, as SD2 would no
longer be sequestered. The results, shown in Figure 5A indicate a moderate (~1.3-fold), but
significant increase in expression, when the start codon of uORF1 was changed (Mbox-

UORF26184_|gcZ) and a larger (~2-fold) increase in expression, when the aSD was deleted
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(Mbox-AaSD-uORF2-lacZ). Combining the two mutations did not result in an additive effect,
suggesting they involved the same mechanism (Figure 5A).

These results support a model in which SD1 (axaSD), aSD and SD2 interact to control the
expression of uUORF2-lacZ.

To further validate this model, we assessed the contribution of each element by gradually
extending the region between uORF2 and the Mbox in UORF2-lacZ fusions (Figure 5B). The
SD2-uORF2 construct displayed B-gal expression levels of ~500 Miller Units, and the addition
of the aSD motif reduced the 3-gal expression by ~35%. However, a further extension including
the aaSD motif led to a substantial increase in UORF2 expression. This is likely due to the
unmasking of SD2 and corroborates our model of a translational expression platform
controlling uORF2 expression.

Our results support a model in which uORF2 is controlled by a translational Mbox riboswitch
combined with Rho-dependent termination of transcription. Based on sequence homology,
we propose that the rv1535 Mbox likewise operates via a translational expression platform. To
the best of our knowledge, these are the first examples of an Mbox translational expression

platform and Rho-dependent termination of transcription.

An Mbox-independent homologue of uUORF2 encoded in a separate Mtb locus

Considering the high conservation between uORF2 in the rv1535 and pe20 loci, we carried
out deeper sequence searches and identified a third homologue of the uORF2 region including
its SD downstream of the gca-gmhA-gmhB-hddA operon. This locus has been acquired by
horizontal gene transfer (Becq et al. 2007) and the uORF2 homologue annotated as RvO115A
(Figure 6A).

We identified two TSS and associated promoter motifs within this locus. The first drives the
transcription of the gca-hddA operon, which terminates downstream of hddA (D’Halluin et al.
2023). The second drives the transcription of rv0115A, and potentially also a second ORF,
rv0115B. The gca and rvO115A promoters have similar unusual motifs in the form of an
AANCAT -10 hexamer, an extended -10 motif (TGN), a perfect -35 hexamer and in the case of
cga, a Cytidine TSS (Figure 6B).

A further alignment of the promoter regions from -120 to a few basepairs downstream of
the mapped TSS, had a remarkable similarity more than 100 basepairs upstream of the TSS

suggestive of a gene duplication event (Figure 6B). There are no Mbox elements associated
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with the leaders of these genes, but according to TBDB
(http://tbdb.bu.edu/tbdb_sysbio/MultiHome.html) both promoters include a binding site for
PhoP, linking expression to pH stress (Abramovitch et al. 2011).

Alignment of UORF2 peptide homologues including RvO115A across mycobacterial species
reveals a well-conserved N-terminal region, including a universally conserved Proline residue
(Figure 7). This peptide is specific for mycobacteria, which indicates that uORF2 peptides and
their homologues have functions uniquely associated with this genus. Based on this finding,

we suggest renaming uORF2 from the pe20 operon Rv1805A.

No evident role for Rv1805A in biofilm formation during magnesium stress

Realising the ubiquitous presence of Rv1805A homologues, we sought to find a role for this
peptide. PE20 and PPE31 are necessary for Mtb growth in conditions of low Mg?* combined
with low pH (Wang et al. 2020). To probe a potential role of uUORF2 in this process, we exploited
the fact that magnesium is required for biofilm formation in mycobacteria (Chatterjee et al.
2024) and leveraged the trick that Mycobacterium smegmatis, a closely related species, has
no homolog of pe20 locus.

In agreement with literature, the growth and biofilm formation of M. smegmatis were
compromised in low Mg?*, and that this phenotype was exacerbated at acidic pH values (Figure
8). We tested whether the expression of pe20-ppe31 or rv1805A-pe20-ppe31 might rescue this
phenotype by transforming M. smegmatis with plasmids expressing the cognate genes. The
results in figure 8 indicate no visible difference between strains expressing pe20-ppe31 with
or without rv1805A or rv0115A; further investigations are required to identify a role of this

peptide and its homologues in mycobacterial biology.

DISCUSSION

In the current study we have revealed a novel complex riboregulatory system which controls
pe20 gene expression in Mtb. Our results show that premature termination occurring in the
5’ leader of pe20 (and rv1535) relies on Rho-dependent termination of transcription (D’Halluin
et al. 2023). Moreover, the pe20 Mbox contributes a translational expression platform, where
the translation initiation region including the SD of the first gene in the operon can be
sequestered by an aSD motif. This is also, to the best of our knowledge, the first example of a

translationally controlled Mbox. This type of control is consistent with the scarcity of intrinsic

10
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terminators in Mtb, and it echoes the finding that a mycobacterial T-box is the only known T-
box with a translational expression platform (Sherwood et al. 2018) Finally, we identified a
highly conserved uORF (rv1805A), which is the primary regulated ORF within the pe20 operon
and, based on homology, likely also in the rv1535 operon.

Expression of the pe20 operon is suppressed via its leader by high Mg?* concentrations
similar to the Mbox controlled ykoK gene in B. subtilis (Walters et al. 2006; Ramesh and Winkler
2010; Kolbe et al. 2020). pe20 and ppe31 are critical for magnesium uptake in low-pH/low-
magnesium conditions suggesting that the gene products form (part of) a magnesium
transporter (Feng et al. 2021; Wang et al. 2020). We propose that the Mbox—rv1805A module
acts as the key regulatory gate, enabling expression of the magnesium-responsive PE/PPE
transporter complex only under specific environmental conditions, such as low Mg?* and acidic
pH.

The structure of the pe20 operon, including the presence of mgtC raises questions about
its ancestry. Given what is known about pe-ppe gene expansion (Fishbein et al. 2015) and what
we have observed in other riboswitch-controlled pe/ppe loci (i.e. the Cbl-ppe2-cobQ locus, and
the PE-containing uORF recently identified downstream of the Mtb glycine riboswitch
(D’Halluin et al. 2023; Kipkorir et al. 2024a), it is tempting to speculate that an early pe(-ppe)
element invaded the current pe20 locus and subsequently expanded whereby Rv1805A
became the first gene in this operon.

A recent study suggests that the rv1535 Mbox, and by extension likely also the pe20 Mbox
associates with other divalent cations in addition to Mg?* (Bahoua et al. 2021), while Kolbe et
al. have demonstrated strong Mg?*-dependent control of pe20 expression via its leader (Kolbe
et al. 2020). Regardless of the identity of the cognate ligand, our results suggest an ability to
alternate between two structures: a non-permissive (ligand-bound) structure that sequesters
SD1, allowing oSD/aTIR to pair with SD2/TIR thereby preventing translation of
UORF2/Rv1805A. This could in turn lead Rho-dependent termination of transcription, which
will affect the entire operon (Hao et al. 2021; Molodtsov et al. 2023). We note, however, that
according to Term-seq results, the primary TTS is located upstream of rv1805A, suggesting that
Rho-dependent termination does not depend on translation of this ORF. An alternative
explanation of our results could therefore be that the pyrimidine-rich region that we have
annotated as aSD, might act as a Rho-binding (rut) site that would be masked by translation

of UORF1. Deleting this region increased expression 2.5-fold, likely due to reduced termination

11
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of transcription or by unmasking of SD2 or both. The marginal increase in the expression of
uORF2 in the context of an untranslated uORF1 (Mbox-rv1805A¢184¢-lacZ, Figure 5) and the
conservation of the a.aSD-a.SD interaction, suggests a functional interaction. The two models
are not mutually exclusive, and further experiments will elucidate the structural and
mechanistic basis underlying the regulation. Along the same lines, we note that expression of
UORF1 might affect the activity of LacZ, although this is unlikely to affect the overall
conclusions.

What is the function of Rv1805A and its homologues? Given its conservation and position
upstream of pe20, we hypothesize that Rv1805A may act as a regulatory peptide modulating
the activity or assembly of the PE20—PPE31 complex. Alternatively, it may serve as a structural
component of a magnesium-responsive transporter. Conservation between Rv1805A, the
Rv1535 uORF2 (Rv1535A) and Rv0115A, and their associations with magnesium and pH stress
suggests important roles for these peptides during infection. Future work will focus on
identifying interaction partners of Rv1805A and assessing its role in magnesium uptake and
stress responses.

In conclusion, our findings reveal a previously unrecognized mode of riboswitch control in
Mtb, where a translational Mbox integrates with Rho-dependent termination to regulate a
conserved uORF. This multilayered modus operandi underscores the sophistication of RNA-

based regulation in Mtb stress adaptation.

MATERIAL AND METHODS
Strains and cultures

Strains used in this study are listed in Supplementary Table 1. M. tuberculosis H37Rv and
M. smegmatis MC? 155 were cultured on solid media Middlebrook agar 7H11 supplemented
with 10% OADC (Sigma), 0.5% Glycerol and 50 ug/ml hygromycin if appropriate. Liquid cultures
were done in Middlebrook 7H9 supplemented with 10% ADC (Sigma), 0.5% Glycerol, 0.05%
Tween 80 and 50 pg/ml hygromycin where appropriate. Cultures were harvested at an ODggonm
~0.6 for mid-log phase.

Mtb RhoDUC strain, a gift obtained from Professor Dirk Schnappinger, was grown as
previously described with 50 pg/ml hygromycin, 20 pg/ml Kanamycin and 50 pg/ml zeocin
(Botella et al. 2017; D’Halluin et al. 2023). When the cultures reached an ODeoonm™0.6,
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depletion of Rho was induced using 500 ng/ml of anhydrotetracycline. Cells were harvested
after 0, 1.5, 3 and 4.5 hours.

Escherichia coli DH5a was used for cloning the lacZ fusion reporters and were cultured on
solid LB 1.5% agar supplemented with 50 uM of 5-bromo-4-chloro-3-indolyl-B-D-
galactopyranoside (X-gal) or in liquid LB supplemented with 250 pug/ml Hygromycin.

Plasmids constructions and primers

Plasmids and primers used in this study are listed in Supplementary Table 1 and 2. pIRATE
plasmids, describe in D’Halluin et al., 2023, were used for lacZ translational fusion reporters
and for Beta-galactosidase assay. Reporters were constructed using Gibson assemblies with
oligos (Sigma) or geneBlocks (IDT) listed in Table 3 between Hindlll and Ncol sites. Point
mutations and deletions were generated using the Q5 Site-Directed Mutagenesis Kit (New
England Biolabs). Plasmids were cloned in E. coli DH5q, extracted and sequenced by Sanger
sequencing. Plasmids were transformed into M. smegmatis by electroporation and selected

on Middlebrook 7H11 agar plates containing 50 pug/ml Hygromycin.

RNA extraction and Northern Blotting

M. tuberculosis H37Rv were stopped using 37.5% of cold ice and centrifuge 10min at 5000
rpm 4°C. Total RNA was extracted as previously described using the FastRNA Pro Blue kit (MP
Biomedicals) according to the manufacturer’s protocol (D’Halluin et al. 2023; Arnvig et al.
2011). RNA concentration and purity was assessed using the Nanodrop 2000 (ThermoFisher),
residual genomic DNA removed using Turbo DNase (ThermoFisher) and RNA integrity assessed
with 2100 Bioanalyzer (Agilent). 10 pg of total RNA were separated on a denaturing 8%
acrylamide:bis-acrylamide (19:1) gel and transfer to a nylon membrane. An RNA probe was
synthetized using the mirVana miRNA probe synthesis kit (Ambion) to reveal the pe20 and
rvl535 Mbox transcripts and labelled with 3uM final concentration of 32P «-UTP
(3000Ci/mmol; Hartmann AnalyticGmbH). Northern blots were revealed using radiosensitive

screens and visualized on a Typhoon FLA 9500 phosphoimager (GEHealthcare).

Beta-galactosidase activity
M. smegmatis carrying the lacZ reporter fusions were cultured at ODeoorm ~0.6 and

centrifuge 10min 5000 rpm. Pellets were washed four times in Z-buffer composed of 60mM
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NaxHPO4, 40mM NaH;P04, 10mM KCI, 1mM MgS04 and lysed using beads with the FastPrep
bio-pulveriser (MP Biomedicals). The supernatant was kept after centrifugation and the
protein level assessed using a Bradford yield with the BCA kit (ThermoFisher) following the
manufacturer’s recommendations. Beta-galactosidase were done using the Beta-galactosidase
assay kit (ThermoFisher) following manufacturer’s protocol. Proteins were pre-incubated for

5min at 28°C before addition of ONPG.

Biofilm formation

M. smegmatis expressing pe20-ppe31, rvl805A-pe20-ppe31 or rv0115A+pe20-ppe31 was
grown to mid-log phase, washed in Mg?*-free medium, resuspended in 1 mL of the indicated
medium at OD 0.01 and seeded in 24-well plates. Plates were sealed in plastic bags and left

for static incubation at 37C for a week. Biofilm formation was monitored every day for a week.

Folding, sequence conservation and distribution across mycobacteria

Representative genomes of several mycobacteria were selected for sequences
conservation: Mycobacterium tuberculosis H37Rv (NB_000962), Mycobacterium leprae TN
(AL450380), Mycobacterium avium K10 (NZ_CP106873), Mycobacterium kansasii Kuro |
(AP023343), Mycobacterium ulcerans ATCC33728 (NZ_AP017624), Mycobacterium marinum
M (CP000854), Mycobacterium abscessus ATCC19977 (NC_010397), Mpycobacterium
haemophilum DSM 44634 (CP011883) and Mycobacterium smegmatis MC?155
(NZ_CP009494).

The aptamer sequences of the Mboxes were extracted from RFam database (Rfam
RF00380) (Nawrocki et al. 2015) and extended to the next annotated ORF. DNA and peptidic
sequences were aligned using ClustalW (Thompson et al. 1994), and alignment strengthen
using T-coffee (Notredame et al. 2000). The conservation of uUORF2 across mycobacteria was
determined using Blast (Altschul et al. 1990) and amino acid sequences aligned using ClustalW
(Thompson et al. 1994) and Chimera (Meng et al. 2006). The phylogenetic tree was generated
by Clustal Omega using the sequences from the aptamer sequence to the start codon of the
next in frame annotated ORF (Sievers et al. 2011). Aptamer secondary structures were

predicted using the RNAstructure Web Server for RNA Secondary Structure Prediction (Reuter
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and Mathews 2010). The resulting Connectivity Table (CT) file was then uploaded to

RNAcanvas (Johnson and Simon 2023) for visualization and structural editing
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TABLES
M-Box Mapped RTP rut site  rut site Distance from Distance to
__gene TTS number* start end TSS*** annotated ORF***
T5468 1735526 1735604 17 -372
rv1535 1735718
T5469 1735816 1735894 307 -82
T6425 2047633 2047711 38 -361
pe20 2047779
T6426 2047887 2047965 292 -107

Table 1: Mapped transcription termination sites (TTS), predicted Rho-dependent terminators (RTP) and

their locations according to (D’Halluin et al. 2023).

FIGURE LEGENDS

Figure 1: Conservation of Mbox elements. A) Mbox aptamer structures from Bacillus subtilis
ykoK and the two M. tuberculosis aptamers from rv1535 and pe20 (rv1806). Structures were
predicted using RNAstructure Web Server (Reuteur & Mathews, 2010) and drawn by extracting
the bracket-dot plot to RNAcanvas (Johnson & Simons, 2023). B) Distribution of Mboxes and
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their associated genes in Mycobacteria. These can be split into the four types indicated, based
on the aptamer and their downstream sequences. Notably, the two M. tuberculosis elements

fall into different groups.

Figure 2: Premature termination of transcription within Mtb Mbox loci. A) The two Mbox-
associated genes, rv1535 and pe20 are shown with their respective leaders. TSS from (Cortes
et al., 2013), Term-seq data and Transcription termination sites (TTS) from (D’Halluin et al.,
2023). Distances from TSS to dominant TTS peaks and further to the start codons of have been
indicated. B) Northern blot with log-phase total RNA from Mtb H37Rv and from RhoDUC
(Botella et al., 2017) following depletion of Rho. Total RNA was separated on an 8% acrylamide
gel, electroblotted and probed for leader sequences distinct for the two genes, approximately

180 nucleotides downstream of the TSS. The 55 RNA was probed as a loading control.

Figure 3: Expression of pe20 uORFs. To ascertain expression of UORF1 and uORF2 from the
pe20 operon, we made translational lacZ-fusions and measured -galactosidase (fgal) activity
of the different constructs. Experiments were done in triplicates and differences of expression
tested with a t-test (p-val<0.01). A) Genomic context of pe20 and the uORFs associated (green)
including SD1 (yellow box) and SD2 (blue box); B) Schematic showing each reporter constructs
(left) and their expression in Miller units (right). uORF1D refers to a truncated version of uORF1
encoding only its first two codons. C) uORF1 sequence with amino acids and their codons. Start

codon is shown in green and rare codons (<5/1000 frequency) are shown in red.

Figure 4: Model for a translational expression platform. The figure shows how the translation
initiation region (TIR, blue) can be sequestered by base-pairing with the aTIR (orange), which
in turn can base-pair with the aaTIR (yellow), depending on the conformation of the aptamer.

Structure of the aptamer is shown on the left with part of the aaTIR shown in yellow.

Figure 5: Testing the model for a translational expression platform. A) Reporter constructs
assessing the effect of UORF1 changes on uORF2 expression; changing the start codon of
UORF1 to a no-start (G184C), deleting the proposed oSD, which is part of uORF1 or a
combination of the two. B) Effect of gradual extension of region upstream of uORF2.

Expression decreases, when aSD is included and increases again, when SD1 (aaSD) is included.
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C) Structures indicating how the reporter constructs relate to the model proposed in Figure 4.
Experiments were done in triplicates and differences of expression tested with a t-test (p-

val<0.01).

Figure 6: The Rv0115A locus. BLAST identified RvO115A to be a homologue of Rv1805A. A)
Rv0115A (green) is encoded downstream of the gca operon (golden) but transcribed from its
own promoter. B) Alignment of the promoter regions of gca and rv0115A show very high
degree of similarity, suggesting a duplication event. The blue arrow indicates hddA coding
sequence upstream of rv0115A. The promoter elements, -35, extended -10 and -10 are
highlighted in grey. PhoP binding regions, according to TBDB, are shown in orange and purple

with their respective centres boxed in same colour.

Figure 7: Conservation of uORF2 within Mycobacteria. Alignment of Mbox associated uORF2
extracted from Figure 1B and Mtb Rv0115A peptides showed high conservation of several
residues mainly at the N-terminal sequence, including 100% conservation of a proline at
position 7 in most peptides. Consensus sequence and amino acid conservation were assessed

using Chimera (Meng et al., 2006).

Figure 8: Biofilm formation in M. smegmatis during Mg2+-depletion and acid stress. Cultures
of Mycobacterium smegmatis were grown to mid-log phase, washed in Mg2+-free medium,
resuspended in 1 mL of indicated medium at OD 0.01. Plates were sealed in plastic bags and
left for static incubation at 37°C for a week. Plates shown are representative of three

independent experiments.
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