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Abstract 26 

Purpose: To objectively identify subclinical keratoconus (SKC) from a large sample of 27 

healthy and keratoconus (KC) patients via a data-driven framework on corneal imaging 28 

data from an anterior optical tomography (AS-OCT) device (MS-39, CSO Italia, 29 

Florence, Italy). 30 

Design: Retrospective cohort study 31 

Subjects: 25,816 corneal scans from 5,005 patients, including 3,605 with keratoconus 32 

and 1,400 healthy control patients, acquired between 2020 and 2024 at two sites within 33 

the Moorfields Eye Hospital network in London, UK. 34 

Methods: Principal Component Analysis (PCA) followed by Gaussian Mixture Modeling 35 

(GMM) was applied to AS-OCT derived data, including 20 keratoconus indices and 36 

patient age, to identify SKC eyes which were then statistically compared against 37 

healthy, and KC eyes. SKC eyes were also validated against external systems including 38 

same-day Pentacam (Oculus Optikgeräte, Wetzlar, Germany) scans, Belin-Ambrosio’s 39 

ABCD system, KC progression criteria determined by a panel of corneal specialists, and 40 

the Moorfields Corneal Cross-linking (CXL) Risk Calculator. 41 

Main Outcome Measures: Detection of SKC and progression of these eyes to clinically 42 

diagnosable keratoconus over time 43 

Results: The GMM identified 166 eyes from 161 patients with distinct structural 44 

differences to healthy and KC eyes. These eyes clustered in the morphometric 45 

transition zone in PCA space and were predominantly classified as ABCD Stage 0. 46 

However, they demonstrated asymmetry with their fellow eye, higher predicted CXL risk 47 
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at 1–4 years (p < 0.001) and faster progression to KC (log-rank p < 0.0001) compared 48 

to healthy eyes. Among SKC eyes with longitudinal data, 72.7% met Global Consensus 49 

criteria for progression. 50 

Conclusions: SKC remains challenging to detect, and while classic staging such as 51 

ABCD retain clinical utility, they are insufficient for early disease detection. PCA 52 

followed by GMM classification on a multidimensional AS-OCT dataset identifies a 53 

distinct and high-risk subclinical keratoconus group. This semi-supervised framework 54 

offers a complementary tool for early risk stratification and can be applied to new 55 

patients via projection into the learned PCA space and computation of KC probability. 56 

Threshold values corresponding to the 25th and 75th percentiles of KC probability for 57 

each parameter may serve as clinical context for flagging eyes when multiple features 58 

fall in the atypical range.  59 
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Early detection of keratoconus (KC), a progressive ectatic corneal disease, is critical to 60 

preventing irreversible visual decline and mitigating the risks associated with corneal 61 

refractive surgery.1-3 Missed or delayed diagnosis significantly increases the risk of post-62 

operative iatrogenic keratectasia, a serious complication of corneal laser procedures.4,5 63 

In this context, detection is increasingly essential due to the rising global prevalence of 64 

visually significant myopia, which is predicted to exceed 50% in many countries by 65 

2050.6 When KC is identified early, interventions such as corneal collagen cross-linking 66 

(CXL) can halt disease progression in over 90% of cases,7,8 reducing the likelihood of 67 

corneal transplantation or future dependence on specialized contact lenses.9,10 68 

Subclinical KC (SKC) is believed to represent the earliest detectable stage of disease, 69 

marked by subtle deviations in corneal morphology that are not readily identified using 70 

standard clinical tools.11,12 71 

Despite its clinical relevance, there is no consensus on the definition and diagnostic 72 

criteria for SKC.11 The variability in use of terminology related to KC’s earliest stage, 73 

such as forme fruste, subclinical, early-stage, asymmetric, and keratoconus suspect, 74 

has contributed to variability in diagnostic consistency and delayed intervention.3,13 A 75 

2015 Delphi panel14 concluded that posterior elevation abnormalities must be present to 76 

diagnose SKC, however their report did not provide specific data or references to 77 

support their agreement.15 Subsequent literature review found that posterior corneal 78 

surface metrics performed worse than anterior corneal and thickness metrics in 79 

differentiating SKC from normal controls16. This ambiguity has led to circular logic in the 80 

validation of studies which use artificial intelligence (AI) methods to try and detect SKC. 81 

Researchers often define SKC using specific topographic or tomographic thresholds 82 
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and then train machine learning (ML) models to detect those same criteria, an approach 83 

that may undermine the objectivity and generalizability of model evaluation. As a result, 84 

morphologic features used to define the subclinical cohort differ markedly across 85 

studies, limiting opportunities to compare findings and develop a unified diagnostic 86 

framework.17 87 

High-resolution corneal imaging platforms such as the MS-39 (CSO Italia, Florence, 88 

Italy), a combined Placido and anterior segment OCT (AS-OCT) tomographer, offer 89 

multimodal insights into corneal structure,18,19 but threshold-based classification remains 90 

insufficiently sensitive for capturing early, heterogenous morphological changes.20 While 91 

supervised ML approaches have strong performance in detecting clinical stages of 92 

keratoconus,21 these eyes are already identifiable through clinical examination. The 93 

clinical challenge lies in flagging eyes at risk of developing KC before overt structural or 94 

functional deterioration in the cornea occurs.22 In this study, we hypothesize that SKC 95 

represents a probabilistic intermediate state that can be identified between healthy and 96 

KC eyes through a data-driven approach without reliance on arbitrary thresholds.  97 

Methods 98 

Study Design and Ethics 99 

This retrospective, observational study analyzed corneal imaging data collected during 100 

routine clinical care between 2020 and 2024 across two sites within the Moorfields Eye 101 

Hospital (MEH) network in London, UK.  102 
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Because this was an observational study using anonymized data collected in the course 103 

of routine clinical practice, individual patient consent was not required. This research 104 

was approved by the Institutional Review Board and the Ethics Committee of the UK 105 

Health Research Authority (HRA) (Ref: 22/PR/0249). The study protocol was reviewed 106 

and approved by the Clinical Audit Assessment Committee of MEH NHS Foundation 107 

Trust (reference CA17/CED/03). All research adhered to the tenets of the Declaration of 108 

Helsinki. 109 

Instrument and Feature Set 110 

All data was obtained using the MS-39 AS-OCT system (CSO Italia, Florence, Italy), 111 

which combines Placido-disk corneal topography with low-coherence (840 nm) AS-112 

OCT.23 The two are integrated via the proprietary Phoenix software (version 4.1.3) to 113 

produce comprehensive corneal maps, including curvature, elevation, and pachymetric 114 

measurements across both anterior and posterior corneal surfaces.18 115 

Twenty device-derived corneal tomographic parameters relevant to keratoconus 116 

detection were extracted from each scan. They are described in Table 1, along with 117 

normal and KC thresholds which are provided to aid interpretation and should not be 118 

considered as definitive diagnostic cutoffs. Although none of these indices are 119 

diagnostic in isolation, they have demonstrated high reproducibility and discriminative 120 

performance across the KC disease spectrum23 and were used as the primary input for 121 

all analyses. Raw device outputs were exported in structured CSV format for all scans, 122 

including the 20 KC indices and associated metadata. All analyses were performed 123 

using R version 4.3.1. 124 
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Patient Cohorts 125 

A total of 25,816 MS-39 scans were collected from 5,005 patients. Two cohorts were 126 

defined: 127 

• Keratoconus (KC) group: 12,501 scans from 3,605 patients with clinician-128 

assigned diagnosis of keratoconus. Patients were identified using an SQL-based 129 

query of the hospital’s data warehouse, targeting structured diagnostic fields in 130 

the electronic medical record. Selected patients therefore had a clinical label of 131 

keratoconus that applied at the level of the patient rather than individual eyes. 132 

Post-operative cases (e.g., CXL, keratoplasty) were excluded at this stage 133 

through additional SQL filters. All patients in this group were acquired at MEH 134 

NHS Foundation Trust.  135 

• Control group: 13,315 scans from 1,400 myopic individuals screened for 136 

refractive and lenticle extraction surgical screening. Eyes were deemed free of 137 

corneal pathology and ocular comorbidities following clinical evaluation by 138 

refractive surgeons. All patients in this group were acquired at Moorfields Private 139 

Hospital (MPH). 140 

Data Quality Control  141 

Scan fidelity was assessed using two device-derived metrics: Placido/OCT Coverage 142 

(OC) and Section Coverage (SC). These quantify the proportion of the corneal surface 143 

successfully captured by the Placido topography and AS-OCT subsystems, 144 

respectively,24 and account for common acquisition artifacts such as tear film instability, 145 

motion blur, and misalignment. To determine appropriate thresholds for scan inclusion, 146 
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we evaluated the within-subject standard deviation (wSD) of the KC indices across 147 

different OC and SC coverage levels. This reflects measurement repeatability, where 148 

higher values indicate lower consistency across repeated scans. Minimum thresholds 149 

for OC and SC were determined to ensure acceptable repeatability. OC was used as 150 

the primary quality metric, with SC serving as a secondary criterion for inclusion when 151 

OC was suboptimal. When multiple scans per eye were acquired on the same day, the 152 

scan with the highest composite quality was selected.  153 

Each KC index was also reviewed for errant values outside physiologically plausible 154 

ranges, including non-positive values for thickness parameters and keratometry 155 

readings, and negative values for root mean square error and distance metrics. A 156 

detailed summary of exclusion thresholds is provided in Supplemental Table A. 157 

Additionally, an Isolation Forest algorithm was applied to detect extreme multivariate 158 

outliers. This method constructs an ensemble of decision trees that isolate individual 159 

points based on recursive partitioning, allowing for efficient anomaly detection without 160 

parametric assumptions.25 161 

Semi-supervised Phenotype Classification 162 

We hypothesized that SKC eyes are an intermediate morphological phenotype 163 

positioned between KC and structurally normal corneas. Given the absence of reliable 164 

ground truth labeling, we implemented a semi-supervised framework to identify cases. 165 

We leveraged our two labelled groups (Healthy and KC) to learn the morphological 166 

extremes of the disease spectrum. The KC group was randomly downsampled to match 167 

the size of the healthy group, with 1,400 patients each group. Downsampling the KC 168 
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group to match the healthy group mitigates the GMM implementation from inferring 169 

class priors from the sample sizes and reduces overrepresentation of KC cases which 170 

could reduce sensitivity to intermediate or borderline morphologies. For all included 171 

patients, only the earliest available scan per eye was retained to eliminate bias from 172 

disease progression. Dimensionality reduction was applied to the set of 20 corneal 173 

indices as well as patient age, for a total of 21 features. All features were z-score 174 

normalized. Principal Component Analysis (PCA) was used to decorrelate features and 175 

capture the dominant sources of variance and axis of diseases severity. PCA is a 176 

method to linearly combine, as a weighted sum, many correlated measurements into a 177 

few independent axes that capture the main patterns of variation in the data. Each axis, 178 

called a principal component (PC), represents a single direction of variation in the data, 179 

with PC1 capturing the largest source of variation, PC2 the next largest, and so on. The 180 

top two PCs were retained for downstream analysis.  181 

Two single-component Gaussian Mixture Models (GMMs) were fitted separately to the 182 

healthy and KC cohorts in the PC1-PC2 space using the expectation-maximization 183 

algorithm, assuming equal class priors. The PC1–PC2 space refers to a two-184 

dimensional plot of the first two principal components, where each axis represents a 185 

weighted sum of multiple corneal measurements, allowing overall patterns of variation 186 

between eyes to be visualized more clearly. This two-component formulation reflects 187 

the prevailing clinical dichotomy of healthy versus keratoconus. Models with more than 188 

two components were also tested but resulted in poorer overall fit and diverged from the 189 

data-driven intent of the analysis. 190 
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For any given eye x, the posterior probability of keratoconus, P(KC | x), was computed 191 

using Bayes’ rule. In Bayesian terms, the posterior refers to the updated probability of a 192 

hypothesis after considering the observed data (here, the probability that an eye 193 

belongs to the KC distribution given its corneal features). To avoid confusion with the 194 

clinical use of “posterior” referring to the posterior corneal surface, we will hereafter 195 

refer to posterior KC probability simply as KC probability. Since the model only includes 196 

two diagnostic classes, the probability of being healthy is defined as P(Healthy | x)  =197 

 1 −  P(KC | x). For clinical interpretation, these continuous probabilities were then 198 

converted into categorical labels using post hoc confidence intervals: 199 

• Healthy: 𝑃(𝐾𝐶 | 𝑥)  < 0.05 (i.e., 𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦 | 𝑥)  > 0.95) 200 

• Keratoconus: 𝑃(𝐾𝐶 | 𝑥)  > 0.95 201 

• Subclinical Keratoconus: 0.25 ≤ 𝑃(𝐾𝐶 | 𝑥)  ≤ 0.75 (equivalently 0.25 ≤202 

𝑃(𝐻𝑒𝑎𝑙𝑡ℎ𝑦 | 𝑥)  ≤ 0.75, i.e., low confidence for either class) 203 

Eyes outside the intermediate band but not exceeding 0.95 were assigned to the more 204 

likely class. Thus, SKC is not a third modeled cluster; it denotes cases near the decision 205 

boundary (where the Bayes factor is close to 1), reflecting ambiguity between healthy 206 

and KC. The 0.95 high‑confidence threshold and the 0.25–0.75 intermediate band are 207 

standard, conservative probability thresholds used after density estimation to aid clinical 208 

interpretability without altering the fitted models. 209 

Batch Effects 210 
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To assess the presence of batch effects resulting from the use of different clinical sites, 211 

of which there was no patient overlap, we conducted a targeted validation using a 212 

prospectively recruited cohort of nine healthy patients who underwent bilateral imaging 213 

at both locations. Informed consent was obtained from all participants prior to data 214 

acquisition. All individuals were imaged on the same MS-39 AS-OCT device model first 215 

at MEH NHS and then at MPH, with both scans performed within a 2-hour window. All 216 

imaging was conducted with identical calibration, positioning, lighting, and acquisition 217 

protocols to ensure that any observed differences were attributable solely to site or 218 

device related factors. 219 

For each patient, paired scans from both sites were projected into PCA space using the 220 

transformation derived from the main cohort. We computed the Euclidean distances in 221 

PCA space between the two sites using PC1 and PC2, which served as a proxy for 222 

multivariate deviation in corneal metrics. To statistically evaluate whether these inter-223 

site distances reflected systematic site differences, we performed a one-sample t-test 224 

comparing the distribution of distances to a null hypothesis of zero mean displacement.  225 

Clinical Validation and Utility 226 

To evaluate the validity and prognostic value of the SKC phenotype, we conducted a 227 

series of retrospective analyses. This included 7,658 scans from 1,827 patients with at 228 

least one follow-up spanning up to two years.  229 

1. Longitudinal changes in disease likelihood 230 
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We applied the previously trained PCA-GMM model to eyes from follow-up visits that 231 

were not included in the initial model. PCA transformation was applied to follow-up 232 

scans using the loading matrix derived from the training set, and KC probability was 233 

computed using the fixed GMM model parameters, ensuring that longitudinal analyses 234 

reflected projection into the same morphological space.  235 

Structural progression in SKC eyes was defined using the 2015 Global Consensus 236 

definition as change greater than expected measurement noise for the imaging device 237 

used in two or more parameters between visits. We derived the MS-39 thresholds 238 

based on Seiler et al26: 239 

(A) Steepest anterior curvature radius decrease > 0.1 mm 240 

(B) Steepest posterior curvature radius decrease > 0.05 mm 241 

(C) Minimum pachymetry reduction ≥ 20 μm 242 

2. CXL risk stratification  243 

To assess the clinical risk profile of eyes identified as SKC, we integrated structural 244 

imaging data with the Moorfield CXL Risk Calculator (https://beta.moorfieldscxl.com), a 245 

peer-reviewed external prognostic tool27. Risk scores were generated via batch 246 

submission to the calculator’s backend API using age, Kmax, Front K1 and minimum 247 

pachymetry from MS-39 scans. The calculator outputs a probability score (0–1) 248 

indicating the likelihood that an eye will require CXL within a given time horizon, based 249 

on statistical patterns learned from demographic and serial Pentacam HR (Oculus 250 

Optikgeräte, Wetzlar, Germany) corneal tomography data from 8,701 eyes of 4,823 251 

patients with early to mild KC. When multiple eligible scans existed for a patient, the 252 
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earliest one where the patient was classed as SKC was used. Healthy eyes were 253 

matched similarly using their earliest available scan. 254 

Predicted CXL risk probabilities after 1, 2, 3, and 4 years were extracted for each eye 255 

and SKC eyes were compared to healthy using pairwise Wilcoxon rank-sum tests. For 256 

eyes with at least one follow-up, we calculated the change in predicted risk between 257 

consecutive visits. 258 

3. Survival analysis of time to keratoconus conversion 259 

A Kaplan-Meier survival model was constructed to compare time to progression 260 

between SKC and healthy eyes. Progression was defined as a subsequent 261 

reclassification to keratoconus at any follow-up visit. Time-to-event was measured in 262 

days between the baseline visit to either the date of conversion or the last available 263 

follow-up. Right-censoring was applied to non-progressors. In these instances, eyes 264 

were considered “at risk” until their last follow-up, after which their subsequent clinical 265 

status remained unknown. This approach ensures unbiased risk estimation by 266 

incorporating both converted and non-converted eyes, rather than assuming non-267 

conversion equates to permanent stability. Although the Kaplan–Meier method provides 268 

an unadjusted estimate and visualization of progression risk, to address potential 269 

confounding by age we performed 1:1 nearest-neighbor matching of healthy to SKC 270 

eyes on baseline age, without replacement, prior to survival analysis. This ensured that 271 

differences in progression risk were not attributable to baseline age imbalances. 272 

4. Cross-sectional agreement between GMM and ABCD Staging 273 
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GMM labels were compared to ABCD staging scores calculated from Pentacam scans 274 

taken the same day. ABCD staging was computed using steepest anterior K value (A), 275 

steepest posterior K value (B), minimum pachymetry (C), and best-corrected visual 276 

acuity (D). A composite ABCD score was assigned based on the most frequent stage 277 

among components A–D.  278 

Results 279 

Scan Repeatability and Quality Thresholds 280 

Within-subject standard deviation (wSD) of KC indices increases markedly when either 281 

OC or SC falls below 65% for PC and 85% for SC, indicating reduced measurement 282 

repeatability. Repeatability stabilized at OC values between 60–64% and remains 283 

consistent as coverage increases, as seen in Supplemental Figure A. In contrast, SC 284 

demonstrated greater variability across the coverage range, with acceptable 285 

repeatability only observed at 85–95%, and lower overall consistency compared to OC. 286 

These findings indicate that OC is a more reliable metric of scan quality than SC. 287 

Quality filtering was performed in a hierarchical manner: scans were included if OC > 288 

65%; if OC was below this threshold, inclusion was still permitted if SC > 85%.  289 

Following exclusion of scans that failed this quality criteria and removal of same-day 290 

repeated scans, biologically implausible values, and multivariate outliers, 48.7% of the 291 

dataset was deemed of good quality for further analysis. The impact of each step is 292 

detailed in Figure 1. 293 

Dataset Demographics 294 
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This study utilized two separate datasets for analyses. The majority of analyses used a 295 

large retrospective cohort, while analysis of batch effects used a small internal set of 296 

controls. Table 2 summarizes each dataset’s characteristics. The age and sex 297 

distributions of the downsampled KC group were not significantly different from those of 298 

the full KC cohort. 299 

Dimensionality Reduction and Assessment of Inter-Site Variability 300 

PCA was conducted on 4,876 eyes from 3,278 patients. This comprised of 2,438 eyes 301 

labelled as healthy and 2,438 eyes labelled as KC. The first two PCs explained 78.0% 302 

of the total variance, with PC1 accounting for 71.7% and PC2 for 6.3%, as summarized 303 

in Supplemental Table B. Inspection of the scree plot (elbow method)28 confirmed that 304 

variance contributions declined sharply after PC2 (Supplementary Figure B), with 305 

higher-order PCs each explaining less than 2% of variance and largely reflecting 306 

measurement noise or patient-specific variation. 307 

Each scan pair clustered tightly and mapped to adjacent positions as seen in 308 

Supplemental Figure B, indicating high morphological concordance across sites. The 309 

mean Euclidean distance between site-paired scans was 0.12 ± 0.05, and no 310 

statistically significant difference from zero was detected (t-test, p=0.368). Based on 311 

this, no batch correction was applied to the dataset. 312 

Keratoconus Severity Continuum 313 

PC1 represented a continuous axis of KC severity, with increasing positive coordinates 314 

corresponding to a higher probability of KC (Figure 2). High PC1 loadings were 315 

observed for anterior and posterior surface indices, elevation deviations, and curvature-316 
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based parameters, whereas PC2 captured more localized variation, primarily reflecting 317 

age-related structural asymmetries and corneal thinning, as presented in Supplemental 318 

Figure C. Smoothed relationships between PC1 and each original parameter reveal 319 

inflection zones where subtle changes in certain indices, particularly stromal thickness, 320 

RMS, and elevation metrics, translate to sharp increases in KC probability (Figure 3).  321 

Subclinical Group Reclassification 322 

Using the KC probability derived from the two-component GMM, 166 eyes from 161 323 

patients were identified SKC from the PCA data. These included 50 eyes from the 324 

healthy cohort and 116 from the KC cohort. These eyes were not situated within the 325 

high-density cores of either group but overlapped with the low-probability tails of the 326 

healthy and KC distributions (Figure 4). When the probability thresholds were varied to 327 

0.30–0.70 and 0.20–0.80, the number of eyes classified as SKC shifted slightly, to 162 328 

and 168 eyes, respectively, corresponding to a relative change of less than 3%. Over 329 

96.8% of eyes retained their original classification across thresholds. Statistically 330 

significant differences were observed between SKC and both healthy and KC eyes for 331 

all parameters, except for age between SKC and KC (Table 3). SKC often presented 332 

unilaterally or asymmetrically, with only 9.6% of eyes showing bilateral SKC, whereas 333 

healthy (94.9%) and keratoconic (84.1%) eyes exhibited more symmetric fellow eye 334 

classifications. Subclinical keratoconus was commonly associated with either a 335 

keratoconic fellow eye (54.6%) or healthy fellow eye (42.5%). 336 

Subclinical Phenotype as a High-Risk Intermediate State 337 
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Among 1,827 patients with at least one follow-up in a period of up to 800 days (approx. 338 

2 years), 437 contributed one eye and 1,390 contributed both, yielding 3,217 eyes 339 

included in the longitudinal analysis. Based on GMM-derived classifications, 250 340 

patients were consistently labelled as healthy, 1,246 as KC, and 12 as SKC. The 341 

remaining 319 patients received more than one classification across visits, 190 of which 342 

were classified as SKC during at least one visit. Follow-up intensity was similar between 343 

groups: healthy eyes had 2.3 ± 1.5 visits per year, compared with 3.2 ± 1.3 visits per 344 

year for SKC eyes (p = 0.344 for visit count; p = 0.410 for follow-up duration). 345 

Transitions between states were summarized using a first-order Markov model (Figure 346 

5). Over 90% of healthy and KC eyes retain their initial classifications over time. In 347 

contrast, SKC eyes shows instability, with only 56.2% retaining their classification and 348 

35.2% transitioning to KC within an average follow-up period of 13 ± 4.5 months. Of the 349 

8.6% of eyes reclassified back to normal, this occurred within 4.3 ± 2.1 months on 350 

average. 351 

To further examine progression patterns, we visualized the longitudinal trajectory of KC 352 

component probabilities. Eyes initially classified as healthy exhibited minimal changes in 353 

KC probability over time, though a small subset showed sudden increases, as illustrated 354 

in Supplemental Figure D. In contrast, SKC eyes demonstrated a steady and gradual 355 

increase in KC probability across visits, supporting a progression toward disease 356 

conversion. This trajectory was primarily driven, in the following order, by thickness 357 

changes (minimum stromal thickness, minimum corneal thickness, percentage 358 

thickness index), maximum anterior and posterior elevation, anterior root mean square, 359 

mean radius of notable points, posterior symmetry index, and posterior ectasia index, as 360 
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shown in Table 4. These parameters were not used to define SKC at baseline; rather, 361 

they represent the structural features that significantly drove progression from SKC to 362 

KC. Changes in other indices over time were not statistically significant between groups. 363 

Although some of these metrics covary, as shown by Supplemental Figure E, it 364 

highlights the specific anatomy and parameters that are most sensitive to early disease 365 

changes. 366 

These findings were corroborated against progression criteria outlined in an expert 367 

opinion piece authored by a panel of corneal specialists14. Among eyes classified as 368 

SKC, 72.7% showed evidence of progression. Of these, 54.4% met criterion A (anterior 369 

curvature), 67.0% met criterion B (posterior curvature), and 87.5% met criterion C 370 

(pachymetric thinning). 371 

SKC eyes also exhibited significantly higher probability of requiring CXL in the future 372 

compared to healthy eyes (p < 0.001; Figure 6A) with risk increasing by an average of 373 

10.2% for SKC eyes with follow-up and 4.06% for healthy eyes. Kaplan–Meier survival 374 

analysis, after age matching (mean baseline age 31.9 ± 12.1 years in both groups, n = 375 

337 per group), revealed that SKC eyes had a substantially lower KC-free survival rate 376 

than healthy eyes (log-rank p < 0.0001). Approximately 500 days after the first visit, the 377 

probability of remaining KC-free had fallen below 50% for SKC eyes, whereas healthy 378 

eyes remained largely stable throughout follow-up (Figure 6B). 379 

GMM Captures Early Risk Patterns Missed by Belin-Ambrosio’s ABCD 380 

For 2,857 patients in the healthy and KC groups with same-day Pentacam scans, 381 

98.1% of GMM-classified healthy eyes and 95.9% of SKC eyes were assigned Stage 0 382 

Jo
urn

al 
Pre-

pro
of



Data-driven Detection of Subclinical Keratoconus 

 18 

on the ABCD grading system (Figure 7). KC eyes were predominantly distributed across 383 

ABCD Stages 2 to 4. Among the 185 SKC eyes with at least one follow-up visit, 96.2% 384 

(n=178) remained at Stage 0. Of the seven eyes that progressed, three advanced to 385 

Stage 1, three to Stage 2, and one to Stage 4. When disaggregated by individual ABCD 386 

components, progression was most frequently observed in parameter D (best-corrected 387 

visual acuity), followed by C, A, and B. Pachymetry was the most frequent structural 388 

progressors under ABCD criteria, aligning with Global Consensus thresholds.  389 

Discussion 390 

The identification of keratoconus at the earliest stage remains one of the most pressing 391 

challenges in corneal diagnostics. This difficulty stems not only from the subtlety of the 392 

phenotype but also from the absence of a universal standard definition. Across studies 393 

and populations, reported prevalence estimates for keratoconus range from under 0.1% 394 

to nearly 9%,29 a disparity driven in part by different diagnostic cut-offs and whether 395 

subclinical cases are included. A recent systematic review on subclinical keratoconus 396 

by Randleman et al. found that many studies used subclinical group inclusion criteria 397 

that would not exclude clinical keratoconus eyes.16 Even within a single cohort, the use 398 

of different cut-off values for diagnostic indices can dramatically shift classification.16,30 399 

To date, none have attempted to distinguish normal from early keratoconus without 400 

such assumptions. 401 

The findings of this study directly address this gap by demonstrating that a semi-402 

supervised machine learning approach using Gaussian Mixture Modelling in a reduced 403 

feature space can identify a subgroup of morphologically atypical eyes not captured by 404 
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traditional grading systems. Unlike fully unsupervised clustering, this approach ensures 405 

that the learned latent structure is anchored to clinically meaningful binary groups (0 = 406 

healthy, 1 = keratoconus). The strength of this approach is that the “subclinical” group 407 

emerges from a region of maximal overlap within a biologically plausible continuum, 408 

rather than through arbitrary cutoffs. Within a 0.25 to 0.75 confidence threshold, the 409 

subclinical phenotype presents within a narrow biometric window, with thickness 410 

differences under 65 µm, radius differences under 0.5 mm, and elevation/ectasia index 411 

variations below 1. 412 

Overall, the eyes in this group demonstrated: 413 

1. Almost total agreement with Belin-Ambrosio’s ABCD Stage 0, 414 

2. Significant structural differences from healthy and KC eyes, 415 

3. Significant asymmetry with fellow contralateral eye and 416 

4. Consistent structural degradation over time 417 

Although the ABCD display is the current standard for detecting keratoconus and 418 

monitoring disease progression, our results suggest that its sensitivity to the detection of 419 

early disease is limited. Healthy and SKC eyes are largely indistinguishable on this 420 

scale, with both typically classified as Stage 0 despite significant differences in 421 

structure. Progression is also not well predicted by ABCD staging but is reasonably 422 

predicted by the Gomes et al. criteria. Only 3.8% of SKC eyes had progressed and 423 

interestingly, this progression was mostly driven by functional decline (parameter D, 424 

visual acuity) rather than by anterior or posterior curvature or pachymetry (parameters 425 

A, B, C). This is markedly lower than the results of the Gomes et al. progression criteria, 426 
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which indicated that 70% of SKC eyes had progressed, aligning with previous studies 427 

on SKC progression rates31,32. Using GMM-derived KC probability, over 30% reached 428 

75% probability of KC within two years. SKC eyes also demonstrated higher risk of 429 

requiring CXL within 4 years and shorter keratoconus-free survival in Kaplan-Meier 430 

analysis.  431 

This was driven specifically by corneal thickness changes, especially in the stroma, and 432 

by subtle elevations and irregularities in the anterior and posterior curvature. These 433 

changes, while not always sufficient to shift ABCD staging, may signal early 434 

biomechanical instability and help explain why some SKC eyes progress despite 435 

appearing clinically normal. Progression in anterior and posterior Kmax was not found 436 

statistically significant between healthy and SKC eyes and explained only 50-60% of 437 

eyes meeting the Global Consensus criteria, highlighting the limitations of traditional KC 438 

metrics in detecting early stages of the disease. Thickness changes were observed in 439 

over 80% of SKC eyes, particularly at the stroma level. This supports prior findings that 440 

stromal metrics are more effective than epithelial metrics – which were not found 441 

significant in our cohort - in distinguishing SKC from healthy eyes.2,33 Some of these 442 

significant parameters have previously been linked to SKC in earlier studies.16 Our 443 

findings expand this understanding by showing that these features not only differ at 444 

baseline but are also associated with longitudinal progression.  445 

The concept of subclinical keratoconus as an intermediate state between healthy and 446 

KC has long informed topographic indices such as KISA%34 and CLMI/CLMI.X35. While 447 

these indices reliably distinguish manifest keratoconus from normal eyes, their 448 

performance in subclinical or suspect eyes has been weaker, owing to several factors. 449 
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KISA% relied on only four anterior topographic parameters and applied rigid thresholds 450 

(≥100%), leading to substantial overlap between normal and keratoconus-suspects. 451 

CLMI.X incorporated cone location and magnitude, as well as pachymetric features, but 452 

still categorized eyes via fixed cut-offs. Although the recent CLMIX-AI36 adaptation 453 

leverages machine learning, published evaluations show that sensitivity and specificity 454 

remain consistently lower for keratoconus suspects than for manifest keratoconus. 455 

Our framework differs in three critical ways. First, it uses a broad multidimensional 456 

feature set (20 tomographic indices plus age) encompassing anterior, posterior, 457 

elevation, and thickness parameters. Second, it models classification probabilistically: 458 

Gaussian mixture modeling yields a KC probability, with an explicit “grey zone” (0.25–459 

0.75) rather than a binary or trinary cut-off. This reflects diagnostic uncertainty rather 460 

than masking it. Third, we benchmarked the subclinical group against external 461 

validators (ABCD staging, Gomes et al. progression criteria, Pentacam tomography, 462 

and the Moorfields CXL Risk Calculator) and demonstrated longitudinal predictive 463 

value (higher CXL risk and faster conversion). These results show that the intermediate 464 

group identified is not an artifact of thresholding but represents a clinically meaningful 465 

high-risk state. 466 

However, there are some limitations. The thresholds proposed in the 2015 article by 467 

Gomes et al. remain insufficiently validated. The ABCD grading system was introduced, 468 

in part, in response to this consensus and provided 95% confidence limits for the true 469 

change in these parameters based on data from 252 normal (‘early keratoconus’) and 470 

keratoconus (‘established disease’) patients. Further work should integrate adaptive 471 

thresholding for progression37 and investigate the metrics highlighted here to further 472 
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refine early disease progression, which may be distinct from those needed for initial 473 

detection. Adaptive thresholding may also help mitigate measurement variability near 474 

the threshold of detectability – reflected by a small subset of SKC eyes that were 475 

reclassified as healthy within a short follow-up period. Although KM models provide 476 

unadjusted estimates of progression risk and cannot simultaneously account for multiple 477 

baseline covariates (e.g., pachymetry or inter-eye asymmetry), we minimized the 478 

influence of age by matching SKC and healthy groups on baseline age prior to analysis. 479 

The results should therefore be interpreted descriptively. The consistency of KM 480 

findings with independent validation further supports that the elevated risk observed in 481 

SKC eyes reflects a true biological signal rather than an artifact of unadjusted modeling. 482 

Moreover, our findings can only be applied directly to MS-39 corneal tomography. 483 

Although the indices used are broadly comparable across devices and were validated 484 

with same-day Pentacam scans, further external validation will be essential before 485 

generalizing this approach.  486 

A further consideration is the proportion of scans excluded during quality control. In 487 

total, 48.7% of acquisitions were excluded. Of these, 94.5% were repeated same-day 488 

scans from the same eye and 0.06% were removed due to acquisition failures such as 489 

incomplete Placido/OCT coverage, motion artefacts, or implausible device-derived 490 

values. These exclusions reflect technical artifacts rather than biological variation and 491 

are not systematically related to disease severity. Outliers (0.05% of excluded scans) 492 

identified by the isolation forest were predominantly morphologically extreme eyes that 493 

appeared as strong deviations in multiple indices, representing mislabeled scans (e.g 494 

post-operative cases) and cases of highly abnormal corneal structure (e.g., corneal 495 
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edema or infection) rather than borderline subclinical cases. Importantly, in routine 496 

clinical workflows, it is common practice to obtain multiple scans and rely on the best-497 

quality image for interpretation, while discarding suboptimal acquisitions. Our exclusion 498 

strategy therefore mirrors this process, suggesting minimal risk of systematic bias and 499 

limited impact on the generalizability of our findings. 500 

Although the probability thresholds used in this study reflect standard confidence 501 

intervals38, clinicians may calibrate decision boundaries based on clinical capacity or 502 

acceptable false positive rates. In our cohort, shifting the thresholds ±5% changed the 503 

number of eyes classified as SKC only modestly (± 2–3%) and preserved >96% 504 

classification overlap, indicating that the SKC group is stable across reasonable 505 

threshold choices. By flagging eyes that do not meet standard diagnostic thresholds but 506 

are structurally atypical in several dimensions, this system has the potential to shift 507 

keratoconus management from reactive treatment of overt disease to proactive 508 

surveillance and early intervention. Such an approach offers a path toward reconciling 509 

longstanding inconsistencies in the early detection of keratoconus. 510 
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Legend for Print Figures 630 

Figure 1. Flowchart illustrating dataset clean-up with the results of each pre-processing 631 

step 632 

Figure 2. Gaussian Mixture Model (GMM)–derived probability of keratoconus 633 

[P(Keratoconus)] plotted against the first principal component (PC1). There is a strong 634 

relationship observed between PC1 and P(Keratoconus), with increasing values along 635 

the x-axis (PC1) corresponding to greater disease severity. Each point represents a 636 

single eye, and the red curve indicates the fitted logarithmic trend line. The clear 637 

association between PC1 and keratoconus probability highlights that subtle corneal 638 

shape variations captured by unsupervised analysis align closely with disease severity. 639 

Figure 3. Smoothed curves showing how individual tomographic parameters relate to 640 

the Gaussian Mixture Model-derived probability of keratoconus. Each panel 641 

corresponds to one tomographic feature. Red dotted vertical lines mark the parameter 642 

values associated with 25% and 75% probability of keratoconus, with annotations 643 

indicating the exact values. These parameter–probability curves identify threshold 644 

ranges where subtle tomographic changes signal elevated keratoconus risk.  645 

Figure 4. Classification of subclinical keratoconus using a two-component Gaussian 646 

Mixture Model (GMM). Each point represents a single eye plotted according to a 647 

reduced set of 21 tomographic features using principal component analysis. The 648 

shaded grey ellipses indicate the regions where healthy eyes (light grey) and 649 
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keratoconus eyes (dark grey) are most likely to be located, with boundaries drawn at 650 

50%, 75%, 90%, and 95% confidence levels. Eyes shown in orange fall outside the 651 

high-confidence regions of both groups and are labelled as subclinical keratoconus. The 652 

model isolates eyes with ambiguous morphology, highlighting cases that may warrant 653 

closer monitoring despite not fitting cleanly into healthy or diseased categories. 654 

Figure 5. State diagram showing how eyes changed classification over time, across 655 

follow-up visits spanning up to 800 days after the first visit. Circles (nodes) represent the 656 

three disease states: healthy (H), subclinical keratoconus (S), and keratoconus (K). 657 

Arrows (edges) indicate observed transitions between states, with thicker arrows 658 

corresponding to higher transition probabilities. Most progression occurred from 659 

subclinical keratoconus to keratoconus, while direct transitions from healthy to 660 

keratoconus were rare. 661 

Figure 6. (A) Boxplots showing the predicted probability of requiring corneal crosslinking 662 

(CXL) at years 1 through 4, stratified by baseline classification using the Gaussian 663 

Mixture Model (GMM) into healthy, subclinical keratoconus, and keratoconus groups. 664 

Asterisks denote statistically significant differences (***p < 0.0001). (B) Kaplan–Meier 665 

survival curves estimating the probability of remaining keratoconus-free over time for 666 

eyes classified at baseline as subclinical keratoconus (orange) or healthy (blue). 667 

Shaded regions show 95% confidence intervals, and vertical tick marks indicate 668 

censored observations (eyes lost to follow-up). The red dashed line marks the 50% 669 

probability threshold. Eyes classified as subclinical keratoconus at baseline had 670 
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significantly higher predicted CXL risk and a steeper decline in keratoconus-free 671 

survival compared to healthy eyes. 672 

Figure 7. Distribution of ABCD keratoconus stages at baseline, stratified by Gaussian 673 

Mixture Model (GMM)–based classification into healthy, subclinical keratoconus, and 674 

keratoconus groups. Bars show the proportion of eyes in each ABCD stage (0–IV) 675 

within each group. Eyes classified as healthy were almost entirely stage 0, subclinical 676 

keratoconus eyes clustered in stages 0–I, and keratoconus eyes spanned the full 677 

spectrum up to stage IV, confirming that the GMM groupings aligned with increasing 678 

clinical disease severity. 679 
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Table 1. Summary and definitions of the 20 MS-39 anterior-segment optical coherence 
tomography-derived corneal features investigated 

Feature Unit Definition 
Normal 
Range 

Symmetry 
index (SI) 

mm Difference in curvature or elevation between the 
superior and inferior cornea 

± 0.1 

Centre-
surround index 
(CSI) 

mm Difference in curvature or elevation at the apex 
vs the surrounding annular region 

± 0.1 

Ectasia index 
(EI) 

mm Multi-quadratic composite score of significant 
Zernike coefficients for corneal surface 

0-0.5 

Root mean 
square (RMS) 

mm Deviation between the corneal surface and a 
best-fit reference surface 

≤ 0.02 

Maximum 
keratometry 
(Kmax) 

mm Maximum Gaussian curvature (steepest point) of 
corneal surface 

7.70-7.90 

Delta Z 
(Δzmax) 

μm Maximum height of the bulging zone from the 
elevation vs normality map 

0-20 

Notable Points 
Radius 
(NotablePtsR) 

mm Mean radial distance between seven notable 
points on the cornea from their respective 
barycentre. These include the locations of 
minimum epithelial, stromal, and total corneal 
thickness, maximum anterior and posterior 
corneal curvature; and maximum anterior and 
posterior elevation. 

> 0.6 

Thickness 
symmetry index 
(TSI) 

% Difference in corneal thickness between two 
symmetric hemi-corneas, usually across the 
vertical meridian 

± 10 

Pattern 
deviation of TSI 
(PD-TSI) 

% Compares the actual TSI distribution of the 
patient to a reference population of normal eyes 

± 10 

% thickness 
index of the full 
cornea (PTI) 

% Expresses the proportion of the total corneal 
volume occupied by tissue thinner than the 
average 

45-55 

% epithelial 
thickness index 
(PEpiTI) 

% Relative contribution of the epithelial thickness to 
the total corneal thickness across the corneal 
surface and reflects epithelial 
compensation/remodelling 

10 

Minimum 
pachymetry 
(ThkMin) 

μm Value of the point with minimum total corneal 
thickness 

500-600 

Minimum 
stromal 
pachymetry 
(StrThkMin) 

Μm Value of the point with minimum total stromal 
thickness. The stromal thickness is less prone to 
remodelling than the epithelium and thus is a 
more stable indicator of true corneal structure. 

470-550 
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Minimum 
epithelial 
pachymetry 
(EpiThkMin) 

Μm Value of the point with minimum total epithelial 
thickness 

50 
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Table 2. Summary of demographic characteristics for the retrospective and prospective 
cohorts. Percentages are reported at the patient level. 

 Retrospective Dataset Prospective Dataset 

Total eyes (n) 12579 18 

Total patients (n) 4541 9 

Healthy (%) 28.4 100 

Keratoconus (%) 71.6 0 

Age (years) 33.6 ± 11.7 (range: 6-97) 27.2 ± 4.3 (range: 20-34)  

Males (%)  60.9 44.4 

Reported Ethnicity (%) 34.7 100 

- White 31.0 44.4 

- Middle Eastern 24.0 11.1 

- South Asian 21.0 11.1 

- Black 15.3 0 

- East Asian 6.5 33.4 

- Mixed 2.2 0 
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Table 3. Comparison of 21 features across Gaussian Mixture Model-defined groups of healthy (pKC<0.25), subclinical 

keratoconus (0.25<pKC<0.75), and keratoconus (pKC>0.75) groups. P-value is calculated between adjacent column 

groups. 

Metric 

(B = Posterior 

F = Anterior) 

Healthy 

p-value 

Subclinical Keratoconus 

p-value 

Keratoconus 

Mean Std. Dev Mean Std. Dev Mean Std. Dev 

Age  40.18 25.58 1.4e-35 31.39 11.07 0.299 30.76 7.99 

SI B  0.03 0.12 4.3e-21 0.23 0.19 8.3e-122 1.34 0.76 

SI F  0.30 0.49 1.9e-08 0.98 0.66 9.7e-120 5.10 3.07 

CSI B  0.18 0.13 4.3e-191 0.25 0.26 4.9e-290 1.11 0.99 

CSI F  0.51 0.77 8.0e-146 0.69 0.97 5.3e-275 3.57 3.50 

EI B  4.19 4.45 2.9e-182 15.93 7.81 2.6e-289 75.45 38.23 

EI F  3.60 2.66 2.2e-139 8.21 3.78 2.3e-282 34.55 18.32 

RMS B  5.86 2.69 2.3e-17 10.14 5.47 2.4e-163 30.28 31.80 

RMS F  3.63 1.63 3.5e-129 5.52 1.83 4.3e-229 15.77 7.62 

KMax B  6.11 0.39 5.6e-71 5.59 0.57 1.3e-220 4.41 0.68 

KMax F 7.52 0.34 5.3e-84 7.21 0.40 1.3e-120 6.26 0.62 

Δzmax B  9.61 4.88 2.6e-96 20.59 10.46 7.8e-110 77.97 57.25 

Δzmax F  5.91 3.04 1.7e-94 10.38 3.86 5.7e-224 35.16 18.05 

NotablePtsR  1.34 0.53 2.9e-23 0.82 0.60 4.4e-217 0.37 0.37 

TSI  5.94 4.68 8.0e-150 10.76 5.04 8.2e-263 24.96 11.48 

PD-TSI  0.18 0.38 7.2e-120 0.55 0.33 3.5e-263 1.03 0.49 

PTI  0.18 2.48 1.6e-146 1.53 2.00 3.0e-267 5.87 2.78 

PEpiTI  8.85 5.92 2.5e-124 11.82 9.46 1.7e-265 34.42 21.67 

ThkMin 519.73 42.62 5.0e-58 488.46 34.90 3.5e-66 450.82 41.46 

StrThkMin 465.79 43.23 7.1e-66 436.95 35.12 1.6e-88 405.58 40.41 

EpiThkMin 49.56 3.91 5.5e-95 48.30 4.77 3.6e-196 41.24 5.44 
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Table 4. Statistical significance of MS-39 indices associated with early keratoconus 
progression, defined as transition from Gaussian Mixture Model (GMM)-classified 
subclinical keratoconus (0.25<pKC<0.75) to keratoconus (pKC>0.75). Effect size is 
reported as log fold-change (progressors vs non-progressors) with 95% CI. Metrics are 
ranked by ascending p-value, with smaller values indicating stronger discriminatory 
power. Bolded rows indicate statistically significant parameters for progression. 
D=direction of effect (↓=decreasing, ↑=increasing). log2FC=log of fold change. 
Metric D log2FC (95% CI) p-value 

Minimum stromal pachymetry (StrThkMin) ↓ -0.45 (95% CI: -0.60, -0.30) 3.7×10-11 

Minimum pachymetry (ThkMin) ↓ -0.40 (95% CI: -0.55, -0.25) 1.7×10-8 

Anterior delta Z (Δzmax_F) ↑ 0.80 (95% CI: 0.60, 1.00) 7.9×10-7 

% thickness index of the full cornea (PTI) ↑ 0.35 (95% CI: 0.20, 0.50) 3.5×10-6 

Anterior root mean square (RMS_F) ↑ 0.65 (95% CI: 0.45, 0.85) 5.0×10-5 

Notable Points Radius (NotablePtsR) ↓ -0.30 (95% CI: -0.45, -0.15) 2.0×10-4 

Posterior symmetry index (SI_B) ↑ 0.25 (95% CI: 0.10, 0.40) 1.5×10-3 

Posterior ectasia index (EI_B) ↑ 0.50 (95% CI: 0.30, 0.70) 2.4×10-3 

Posterior delta Z (Δzmax_B) ↑ 0.75 (95% CI: 0.50, 1.00) 3.7×10-3 

Pattern deviation of TSI (PD-TSI) ↑ 0.30 (95% CI: 0.15, 0.45) 3.8×10-3 

Anterior centre-surround index (CSI_F) ↑ 0.20 (95% CI: 0.05, 0.35) 2.1×10-2 

% epithelial thickness index (PEpiTI) ↑ 0.40 (95% CI: 0.20, 0.60) 6.7×10-2 

Thickness symmetry index (TSI) ↓ -0.00 (95% CI: -0.01, 0.01) 7.4×10-2 

Posterior centre-surround index (CSI_B) ↑ 0.01 (95% CI: 0.00, 0.02) 1.4×10-1 

Posterior root mean square (RMS_B) ↓ -0.01 (95% CI: -0.05, 0.01) 2.2×10-1 

Minimum epithelial pachymetry (EpiThkMin) ↓ -0.00 (95% CI: -0.01, 0.01) 5.2×10-1 

Anterior symmetry index (SI_F) ↓ -0.07 (95% CI: -0.10, -0.04) 6.2×10-1 

Anterior maximum keratometry (Kmax_F) ↑ 0.00 (95% CI: -0.01, 0.01) 6.5×10-1 

Posterior maximum keratometry (Kmax_B) ↓ -0.02 (95% CI: -0.02, -0.02) 6.9×10-1 

Anterior ectasia index (EI_F) ↓ -0.02 (95% CI: -0.10, 0.02) 7.6×10-1 
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A data-driven statistical approach identified a distinct, high-risk early keratoconus group 

with subtle corneal changes, enabling detection before conventional thresholds and 

providing a framework for earlier clinical monitoring and intervention 
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