


# Journal Pre-proof

Data-driven detection of subclinical keratoconus via semi-supervised clustering of multi-dimensional corneal biomarkers

Lynn Kandakji, Shafi Balal, Aleksander Stupnicki, Siyin Liu, Marcello Leucci, Dan Gore, Bruce Allan, Nikolas Pontikos



PII: S2666-9145(25)00296-9

DOI: <https://doi.org/10.1016/j.xops.2025.100998>

Reference: XOPS 100998

To appear in: *Ophthalmology Science*

Received Date: 11 August 2025

Revised Date: 6 October 2025

Accepted Date: 17 October 2025

Please cite this article as: Kandakji L., Balal S., Stupnicki A., Liu S., Leucci M., Gore D., Allan B. & Pontikos N., Data-driven detection of subclinical keratoconus via semi-supervised clustering of multi-dimensional corneal biomarkers, *Ophthalmology Science* (2025), doi: <https://doi.org/10.1016/j.xops.2025.100998>.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Inc. on behalf of American Academy of Ophthalmology.

1 **Data-driven detection of subclinical keratoconus via semi-supervised clustering  
2 of multi-dimensional corneal biomarkers**

3 Lynn Kandakji<sup>1,2</sup>, Shafi Balal<sup>1,2</sup>, Aleksander Stupnicki<sup>3</sup>, Siyin Liu<sup>1,2</sup>, Marcello Leucci<sup>2</sup>,  
4 Dan Gore<sup>2</sup>, Bruce Allan<sup>1,2</sup>, Nikolas Pontikos<sup>1,2+</sup>

5 <sup>1</sup>University College London Institute of Ophthalmology, 11-43 Bath Street, London  
6 EC1V 9EL, United Kingdom

7 <sup>2</sup>Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom

8 <sup>3</sup>University College London Medical School, 74 Huntley St, London WC1E 6DE, United  
9 Kingdom

10 +Corresponding Author:

11 Nikolas Pontikos

12 Email: [n.pontikos@ucl.ac.uk](mailto:n.pontikos@ucl.ac.uk)

13 University College London, Institute of Ophthalmology,

14 11-43 Bath Street, London EC1V 9EL, UK

15 Financial Support: LK is funded by Moorfields Eye Charity PhD studentship (GR001147)  
16 and an Amazon Web Services Scholarship. SB is funded by a NIHR doctoral research  
17 fellowship (NIHR305630), ESCRS Digital Research Award and Frost Trust award. SL is  
18 funded by Medical Research Council/Fight for Sight Clinical Research Training  
19 Fellowship (MR/X006271/1). NP is funded by National Institute for Health Research  
20 (NIHR) AI Award (AI\_AWARD02488).

21 Conflict of Interest: no conflicting relationship exists for any author.

22 This article contains supplemental material, which includes Supplemental Figures A-F  
23 and Supplementary Tables A and B.

24 Keywords: Keratoconus, asymptomatic diseases, diagnosis, tomography, optical  
25 coherence, artificial intelligence, machine learning, cluster analysis

## 26 Abstract

27 **Purpose:** To objectively identify subclinical keratoconus (SKC) from a large sample of  
28 healthy and keratoconus (KC) patients via a data-driven framework on corneal imaging  
29 data from an anterior optical tomography (AS-OCT) device (MS-39, CSO Italia,  
30 Florence, Italy).

31 **Design:** Retrospective cohort study

32 **Subjects:** 25,816 corneal scans from 5,005 patients, including 3,605 with keratoconus  
33 and 1,400 healthy control patients, acquired between 2020 and 2024 at two sites within  
34 the Moorfields Eye Hospital network in London, UK.

35 **Methods:** Principal Component Analysis (PCA) followed by Gaussian Mixture Modeling  
36 (GMM) was applied to AS-OCT derived data, including 20 keratoconus indices and  
37 patient age, to identify SKC eyes which were then statistically compared against  
38 healthy, and KC eyes. SKC eyes were also validated against external systems including  
39 same-day Pentacam (Oculus Optikgeräte, Wetzlar, Germany) scans, Belin-Ambrosio's  
40 ABCD system, KC progression criteria determined by a panel of corneal specialists, and  
41 the Moorfields Corneal Cross-linking (CXL) Risk Calculator.

42 **Main Outcome Measures:** Detection of SKC and progression of these eyes to clinically  
43 diagnosable keratoconus over time

44 **Results:** The GMM identified 166 eyes from 161 patients with distinct structural  
45 differences to healthy and KC eyes. These eyes clustered in the morphometric  
46 transition zone in PCA space and were predominantly classified as ABCD Stage 0.  
47 However, they demonstrated asymmetry with their fellow eye, higher predicted CXL risk

48 at 1–4 years ( $p < 0.001$ ) and faster progression to KC (log-rank  $p < 0.0001$ ) compared  
49 to healthy eyes. Among SKC eyes with longitudinal data, 72.7% met Global Consensus  
50 criteria for progression.

51 **Conclusions:** SKC remains challenging to detect, and while classic staging such as  
52 ABCD retain clinical utility, they are insufficient for early disease detection. PCA  
53 followed by GMM classification on a multidimensional AS-OCT dataset identifies a  
54 distinct and high-risk subclinical keratoconus group. This semi-supervised framework  
55 offers a complementary tool for early risk stratification and can be applied to new  
56 patients via projection into the learned PCA space and computation of KC probability.  
57 Threshold values corresponding to the 25th and 75th percentiles of KC probability for  
58 each parameter may serve as clinical context for flagging eyes when multiple features  
59 fall in the atypical range.

60 Early detection of keratoconus (KC), a progressive ectatic corneal disease, is critical to  
61 preventing irreversible visual decline and mitigating the risks associated with corneal  
62 refractive surgery.<sup>1-3</sup> Missed or delayed diagnosis significantly increases the risk of post-  
63 operative iatrogenic keratectasia, a serious complication of corneal laser procedures.<sup>4,5</sup>  
64 In this context, detection is increasingly essential due to the rising global prevalence of  
65 visually significant myopia, which is predicted to exceed 50% in many countries by  
66 2050.<sup>6</sup> When KC is identified early, interventions such as corneal collagen cross-linking  
67 (CXL) can halt disease progression in over 90% of cases,<sup>7,8</sup> reducing the likelihood of  
68 corneal transplantation or future dependence on specialized contact lenses.<sup>9,10</sup>  
69 Subclinical KC (SKC) is believed to represent the earliest detectable stage of disease,  
70 marked by subtle deviations in corneal morphology that are not readily identified using  
71 standard clinical tools.<sup>11,12</sup>

72 Despite its clinical relevance, there is no consensus on the definition and diagnostic  
73 criteria for SKC.<sup>11</sup> The variability in use of terminology related to KC's earliest stage,  
74 such as forme fruste, subclinical, early-stage, asymmetric, and keratoconus suspect,  
75 has contributed to variability in diagnostic consistency and delayed intervention.<sup>3,13</sup> A  
76 2015 Delphi panel<sup>14</sup> concluded that posterior elevation abnormalities must be present to  
77 diagnose SKC, however their report did not provide specific data or references to  
78 support their agreement.<sup>15</sup> Subsequent literature review found that posterior corneal  
79 surface metrics performed worse than anterior corneal and thickness metrics in  
80 differentiating SKC from normal controls<sup>16</sup>. This ambiguity has led to circular logic in the  
81 validation of studies which use artificial intelligence (AI) methods to try and detect SKC.  
82 Researchers often define SKC using specific topographic or tomographic thresholds

83 and then train machine learning (ML) models to detect those same criteria, an approach  
84 that may undermine the objectivity and generalizability of model evaluation. As a result,  
85 morphologic features used to define the subclinical cohort differ markedly across  
86 studies, limiting opportunities to compare findings and develop a unified diagnostic  
87 framework.<sup>17</sup>

88 High-resolution corneal imaging platforms such as the MS-39 (CSO Italia, Florence,  
89 Italy), a combined Placido and anterior segment OCT (AS-OCT) tomographer, offer  
90 multimodal insights into corneal structure,<sup>18,19</sup> but threshold-based classification remains  
91 insufficiently sensitive for capturing early, heterogenous morphological changes.<sup>20</sup> While  
92 supervised ML approaches have strong performance in detecting clinical stages of  
93 keratoconus,<sup>21</sup> these eyes are already identifiable through clinical examination. The  
94 clinical challenge lies in flagging eyes at risk of developing KC before overt structural or  
95 functional deterioration in the cornea occurs.<sup>22</sup> In this study, we hypothesize that SKC  
96 represents a probabilistic intermediate state that can be identified between healthy and  
97 KC eyes through a data-driven approach without reliance on arbitrary thresholds.

## 98 Methods

### 99 Study Design and Ethics

100 This retrospective, observational study analyzed corneal imaging data collected during  
101 routine clinical care between 2020 and 2024 across two sites within the Moorfields Eye  
102 Hospital (MEH) network in London, UK.

103 Because this was an observational study using anonymized data collected in the course  
104 of routine clinical practice, individual patient consent was not required. This research  
105 was approved by the Institutional Review Board and the Ethics Committee of the UK  
106 Health Research Authority (HRA) (Ref: 22/PR/0249). The study protocol was reviewed  
107 and approved by the Clinical Audit Assessment Committee of MEH NHS Foundation  
108 Trust (reference CA17/CED/03). All research adhered to the tenets of the Declaration of  
109 Helsinki.

## 110 **Instrument and Feature Set**

111 All data was obtained using the MS-39 AS-OCT system (CSO Italia, Florence, Italy),  
112 which combines Placido-disk corneal topography with low-coherence (840 nm) AS-  
113 OCT.<sup>23</sup> The two are integrated via the proprietary Phoenix software (version 4.1.3) to  
114 produce comprehensive corneal maps, including curvature, elevation, and pachymetric  
115 measurements across both anterior and posterior corneal surfaces.<sup>18</sup>

116 Twenty device-derived corneal tomographic parameters relevant to keratoconus  
117 detection were extracted from each scan. They are described in Table 1, along with  
118 normal and KC thresholds which are provided to aid interpretation and should not be  
119 considered as definitive diagnostic cutoffs. Although none of these indices are  
120 diagnostic in isolation, they have demonstrated high reproducibility and discriminative  
121 performance across the KC disease spectrum<sup>23</sup> and were used as the primary input for  
122 all analyses. Raw device outputs were exported in structured CSV format for all scans,  
123 including the 20 KC indices and associated metadata. All analyses were performed  
124 using R version 4.3.1.

## 125 Patient Cohorts

126 A total of 25,816 MS-39 scans were collected from 5,005 patients. Two cohorts were  
127 defined:

- 128 • **Keratoconus (KC) group:** 12,501 scans from 3,605 patients with clinician-  
129 assigned diagnosis of keratoconus. Patients were identified using an SQL-based  
130 query of the hospital's data warehouse, targeting structured diagnostic fields in  
131 the electronic medical record. Selected patients therefore had a clinical label of  
132 keratoconus that applied at the level of the patient rather than individual eyes.  
133 Post-operative cases (e.g., CXL, keratoplasty) were excluded at this stage  
134 through additional SQL filters. All patients in this group were acquired at MEH  
135 NHS Foundation Trust.
- 136 • **Control group:** 13,315 scans from 1,400 myopic individuals screened for  
137 refractive and lenticle extraction surgical screening. Eyes were deemed free of  
138 corneal pathology and ocular comorbidities following clinical evaluation by  
139 refractive surgeons. All patients in this group were acquired at Moorfields Private  
140 Hospital (MPH).

## 141 Data Quality Control

142 Scan fidelity was assessed using two device-derived metrics: Placido/OCT Coverage  
143 (OC) and Section Coverage (SC). These quantify the proportion of the corneal surface  
144 successfully captured by the Placido topography and AS-OCT subsystems,  
145 respectively,<sup>24</sup> and account for common acquisition artifacts such as tear film instability,  
146 motion blur, and misalignment. To determine appropriate thresholds for scan inclusion,

147 we evaluated the within-subject standard deviation (wSD) of the KC indices across  
148 different OC and SC coverage levels. This reflects measurement repeatability, where  
149 higher values indicate lower consistency across repeated scans. Minimum thresholds  
150 for OC and SC were determined to ensure acceptable repeatability. OC was used as  
151 the primary quality metric, with SC serving as a secondary criterion for inclusion when  
152 OC was suboptimal. When multiple scans per eye were acquired on the same day, the  
153 scan with the highest composite quality was selected.

154 Each KC index was also reviewed for errant values outside physiologically plausible  
155 ranges, including non-positive values for thickness parameters and keratometry  
156 readings, and negative values for root mean square error and distance metrics. A  
157 detailed summary of exclusion thresholds is provided in Supplemental Table A.  
158 Additionally, an Isolation Forest algorithm was applied to detect extreme multivariate  
159 outliers. This method constructs an ensemble of decision trees that isolate individual  
160 points based on recursive partitioning, allowing for efficient anomaly detection without  
161 parametric assumptions.<sup>25</sup>

## 162 **Semi-supervised Phenotype Classification**

163 We hypothesized that SKC eyes are an intermediate morphological phenotype  
164 positioned between KC and structurally normal corneas. Given the absence of reliable  
165 ground truth labeling, we implemented a semi-supervised framework to identify cases.

166 We leveraged our two labelled groups (Healthy and KC) to learn the morphological  
167 extremes of the disease spectrum. The KC group was randomly downsampled to match  
168 the size of the healthy group, with 1,400 patients each group. Downsampling the KC

169 group to match the healthy group mitigates the GMM implementation from inferring  
170 class priors from the sample sizes and reduces overrepresentation of KC cases which  
171 could reduce sensitivity to intermediate or borderline morphologies. For all included  
172 patients, only the earliest available scan per eye was retained to eliminate bias from  
173 disease progression. Dimensionality reduction was applied to the set of 20 corneal  
174 indices as well as patient age, for a total of 21 features. All features were z-score  
175 normalized. Principal Component Analysis (PCA) was used to decorrelate features and  
176 capture the dominant sources of variance and axis of diseases severity. PCA is a  
177 method to linearly combine, as a weighted sum, many correlated measurements into a  
178 few independent axes that capture the main patterns of variation in the data. Each axis,  
179 called a principal component (PC), represents a single direction of variation in the data,  
180 with PC1 capturing the largest source of variation, PC2 the next largest, and so on. The  
181 top two PCs were retained for downstream analysis.

182 Two single-component Gaussian Mixture Models (GMMs) were fitted separately to the  
183 healthy and KC cohorts in the PC1-PC2 space using the expectation-maximization  
184 algorithm, assuming equal class priors. The PC1-PC2 space refers to a two-  
185 dimensional plot of the first two principal components, where each axis represents a  
186 weighted sum of multiple corneal measurements, allowing overall patterns of variation  
187 between eyes to be visualized more clearly. This two-component formulation reflects  
188 the prevailing clinical dichotomy of healthy versus keratoconus. Models with more than  
189 two components were also tested but resulted in poorer overall fit and diverged from the  
190 data-driven intent of the analysis.

191 For any given eye  $x$ , the posterior probability of keratoconus,  $P(KC | x)$ , was computed  
192 using Bayes' rule. In Bayesian terms, the posterior refers to the updated probability of a  
193 hypothesis after considering the observed data (here, the probability that an eye  
194 belongs to the KC distribution given its corneal features). To avoid confusion with the  
195 clinical use of "posterior" referring to the posterior corneal surface, we will hereafter  
196 refer to posterior KC probability simply as KC probability. Since the model only includes  
197 two diagnostic classes, the probability of being healthy is defined as  $P(Healthy | x) =$   
198  $1 - P(KC | x)$ . For clinical interpretation, these continuous probabilities were then  
199 converted into categorical labels using post hoc confidence intervals:

200 • **Healthy:**  $P(KC | x) < 0.05$  (i.e.,  $P(Healthy | x) > 0.95$ )  
201 • **Keratoconus:**  $P(KC | x) > 0.95$   
202 • **Subclinical Keratoconus:**  $0.25 \leq P(KC | x) \leq 0.75$  (equivalently  $0.25 \leq$   
203  $P(Healthy | x) \leq 0.75$ , i.e., low confidence for either class)

204 Eyes outside the intermediate band but not exceeding 0.95 were assigned to the more  
205 likely class. Thus, SKC is not a third modeled cluster; it denotes cases near the decision  
206 boundary (where the Bayes factor is close to 1), reflecting ambiguity between healthy  
207 and KC. The 0.95 high-confidence threshold and the 0.25–0.75 intermediate band are  
208 standard, conservative probability thresholds used after density estimation to aid clinical  
209 interpretability without altering the fitted models.

210 **Batch Effects**

211 To assess the presence of batch effects resulting from the use of different clinical sites,  
212 of which there was no patient overlap, we conducted a targeted validation using a  
213 prospectively recruited cohort of nine healthy patients who underwent bilateral imaging  
214 at both locations. Informed consent was obtained from all participants prior to data  
215 acquisition. All individuals were imaged on the same MS-39 AS-OCT device model first  
216 at MEH NHS and then at MPH, with both scans performed within a 2-hour window. All  
217 imaging was conducted with identical calibration, positioning, lighting, and acquisition  
218 protocols to ensure that any observed differences were attributable solely to site or  
219 device related factors.

220 For each patient, paired scans from both sites were projected into PCA space using the  
221 transformation derived from the main cohort. We computed the Euclidean distances in  
222 PCA space between the two sites using PC1 and PC2, which served as a proxy for  
223 multivariate deviation in corneal metrics. To statistically evaluate whether these inter-  
224 site distances reflected systematic site differences, we performed a one-sample t-test  
225 comparing the distribution of distances to a null hypothesis of zero mean displacement.

## 226 **Clinical Validation and Utility**

227 To evaluate the validity and prognostic value of the SKC phenotype, we conducted a  
228 series of retrospective analyses. This included 7,658 scans from 1,827 patients with at  
229 least one follow-up spanning up to two years.

### 230 **1. Longitudinal changes in disease likelihood**

231 We applied the previously trained PCA-GMM model to eyes from follow-up visits that  
232 were not included in the initial model. PCA transformation was applied to follow-up  
233 scans using the loading matrix derived from the training set, and KC probability was  
234 computed using the fixed GMM model parameters, ensuring that longitudinal analyses  
235 reflected projection into the same morphological space.

236 Structural progression in SKC eyes was defined using the 2015 Global Consensus  
237 definition as change greater than expected measurement noise for the imaging device  
238 used in two or more parameters between visits. We derived the MS-39 thresholds  
239 based on Seiler et al<sup>26</sup>:

- 240 (A) Steepest anterior curvature radius decrease > 0.1 mm
- 241 (B) Steepest posterior curvature radius decrease > 0.05 mm
- 242 (C) Minimum pachymetry reduction  $\geq$  20  $\mu$ m

## 243 **2. CXL risk stratification**

244 To assess the clinical risk profile of eyes identified as SKC, we integrated structural  
245 imaging data with the Moorfield CXL Risk Calculator (<https://beta.moorfieldscxl.com>), a  
246 peer-reviewed external prognostic tool<sup>27</sup>. Risk scores were generated via batch  
247 submission to the calculator's backend API using age, Kmax, Front K1 and minimum  
248 pachymetry from MS-39 scans. The calculator outputs a probability score (0–1)  
249 indicating the likelihood that an eye will require CXL within a given time horizon, based  
250 on statistical patterns learned from demographic and serial Pentacam HR (Oculus  
251 Optikgeräte, Wetzlar, Germany) corneal tomography data from 8,701 eyes of 4,823  
252 patients with early to mild KC. When multiple eligible scans existed for a patient, the

253 earliest one where the patient was classed as SKC was used. Healthy eyes were  
254 matched similarly using their earliest available scan.

255 Predicted CXL risk probabilities after 1, 2, 3, and 4 years were extracted for each eye  
256 and SKC eyes were compared to healthy using pairwise Wilcoxon rank-sum tests. For  
257 eyes with at least one follow-up, we calculated the change in predicted risk between  
258 consecutive visits.

259 **3. Survival analysis of time to keratoconus conversion**

260 A Kaplan-Meier survival model was constructed to compare time to progression  
261 between SKC and healthy eyes. Progression was defined as a subsequent  
262 reclassification to keratoconus at any follow-up visit. Time-to-event was measured in  
263 days between the baseline visit to either the date of conversion or the last available  
264 follow-up. Right-censoring was applied to non-progressors. In these instances, eyes  
265 were considered “at risk” until their last follow-up, after which their subsequent clinical  
266 status remained unknown. This approach ensures unbiased risk estimation by  
267 incorporating both converted and non-converted eyes, rather than assuming non-  
268 conversion equates to permanent stability. Although the Kaplan-Meier method provides  
269 an unadjusted estimate and visualization of progression risk, to address potential  
270 confounding by age we performed 1:1 nearest-neighbor matching of healthy to SKC  
271 eyes on baseline age, without replacement, prior to survival analysis. This ensured that  
272 differences in progression risk were not attributable to baseline age imbalances.

273 **4. Cross-sectional agreement between GMM and ABCD Staging**

274 GMM labels were compared to ABCD staging scores calculated from Pentacam scans  
275 taken the same day. ABCD staging was computed using steepest anterior K value (A),  
276 steepest posterior K value (B), minimum pachymetry (C), and best-corrected visual  
277 acuity (D). A composite ABCD score was assigned based on the most frequent stage  
278 among components A–D.

## 279 **Results**

### 280 **Scan Repeatability and Quality Thresholds**

281 Within-subject standard deviation (wSD) of KC indices increases markedly when either  
282 OC or SC falls below 65% for PC and 85% for SC, indicating reduced measurement  
283 repeatability. Repeatability stabilized at OC values between 60–64% and remains  
284 consistent as coverage increases, as seen in Supplemental Figure A. In contrast, SC  
285 demonstrated greater variability across the coverage range, with acceptable  
286 repeatability only observed at 85–95%, and lower overall consistency compared to OC.  
287 These findings indicate that OC is a more reliable metric of scan quality than SC.  
288 Quality filtering was performed in a hierarchical manner: scans were included if OC >  
289 65%; if OC was below this threshold, inclusion was still permitted if SC > 85%.

290 Following exclusion of scans that failed this quality criteria and removal of same-day  
291 repeated scans, biologically implausible values, and multivariate outliers, 48.7% of the  
292 dataset was deemed of good quality for further analysis. The impact of each step is  
293 detailed in Figure 1.

### 294 **Dataset Demographics**

295 This study utilized two separate datasets for analyses. The majority of analyses used a  
296 large retrospective cohort, while analysis of batch effects used a small internal set of  
297 controls. Table 2 summarizes each dataset's characteristics. The age and sex  
298 distributions of the downsampled KC group were not significantly different from those of  
299 the full KC cohort.

### 300 **Dimensionality Reduction and Assessment of Inter-Site Variability**

301 PCA was conducted on 4,876 eyes from 3,278 patients. This comprised of 2,438 eyes  
302 labelled as healthy and 2,438 eyes labelled as KC. The first two PCs explained 78.0%  
303 of the total variance, with PC1 accounting for 71.7% and PC2 for 6.3%, as summarized  
304 in Supplemental Table B. Inspection of the scree plot (elbow method)<sup>28</sup> confirmed that  
305 variance contributions declined sharply after PC2 (Supplementary Figure B), with  
306 higher-order PCs each explaining less than 2% of variance and largely reflecting  
307 measurement noise or patient-specific variation.

308 Each scan pair clustered tightly and mapped to adjacent positions as seen in  
309 Supplemental Figure B, indicating high morphological concordance across sites. The  
310 mean Euclidean distance between site-paired scans was  $0.12 \pm 0.05$ , and no  
311 statistically significant difference from zero was detected (t-test,  $p=0.368$ ). Based on  
312 this, no batch correction was applied to the dataset.

### 313 **Keratoconus Severity Continuum**

314 PC1 represented a continuous axis of KC severity, with increasing positive coordinates  
315 corresponding to a higher probability of KC (Figure 2). High PC1 loadings were  
316 observed for anterior and posterior surface indices, elevation deviations, and curvature-

317 based parameters, whereas PC2 captured more localized variation, primarily reflecting  
318 age-related structural asymmetries and corneal thinning, as presented in Supplemental  
319 Figure C. Smoothed relationships between PC1 and each original parameter reveal  
320 inflection zones where subtle changes in certain indices, particularly stromal thickness,  
321 RMS, and elevation metrics, translate to sharp increases in KC probability (Figure 3).

### 322 **Subclinical Group Reclassification**

323 Using the KC probability derived from the two-component GMM, 166 eyes from 161  
324 patients were identified SKC from the PCA data. These included 50 eyes from the  
325 healthy cohort and 116 from the KC cohort. These eyes were not situated within the  
326 high-density cores of either group but overlapped with the low-probability tails of the  
327 healthy and KC distributions (Figure 4). When the probability thresholds were varied to  
328 0.30–0.70 and 0.20–0.80, the number of eyes classified as SKC shifted slightly, to 162  
329 and 168 eyes, respectively, corresponding to a relative change of less than 3%. Over  
330 96.8% of eyes retained their original classification across thresholds. Statistically  
331 significant differences were observed between SKC and both healthy and KC eyes for  
332 all parameters, except for age between SKC and KC (Table 3). SKC often presented  
333 unilaterally or asymmetrically, with only 9.6% of eyes showing bilateral SKC, whereas  
334 healthy (94.9%) and keratoconic (84.1%) eyes exhibited more symmetric fellow eye  
335 classifications. Subclinical keratoconus was commonly associated with either a  
336 keratoconic fellow eye (54.6%) or healthy fellow eye (42.5%).

### 337 **Subclinical Phenotype as a High-Risk Intermediate State**

338 Among 1,827 patients with at least one follow-up in a period of up to 800 days (approx.  
339 2 years), 437 contributed one eye and 1,390 contributed both, yielding 3,217 eyes  
340 included in the longitudinal analysis. Based on GMM-derived classifications, 250  
341 patients were consistently labelled as healthy, 1,246 as KC, and 12 as SKC. The  
342 remaining 319 patients received more than one classification across visits, 190 of which  
343 were classified as SKC during at least one visit. Follow-up intensity was similar between  
344 groups: healthy eyes had  $2.3 \pm 1.5$  visits per year, compared with  $3.2 \pm 1.3$  visits per  
345 year for SKC eyes ( $p = 0.344$  for visit count;  $p = 0.410$  for follow-up duration).

346 Transitions between states were summarized using a first-order Markov model (Figure  
347 5). Over 90% of healthy and KC eyes retain their initial classifications over time. In  
348 contrast, SKC eyes show instability, with only 56.2% retaining their classification and  
349 35.2% transitioning to KC within an average follow-up period of  $13 \pm 4.5$  months. Of the  
350 8.6% of eyes reclassified back to normal, this occurred within  $4.3 \pm 2.1$  months on  
351 average.

352 To further examine progression patterns, we visualized the longitudinal trajectory of KC  
353 component probabilities. Eyes initially classified as healthy exhibited minimal changes in  
354 KC probability over time, though a small subset showed sudden increases, as illustrated  
355 in Supplemental Figure D. In contrast, SKC eyes demonstrated a steady and gradual  
356 increase in KC probability across visits, supporting a progression toward disease  
357 conversion. This trajectory was primarily driven, in the following order, by thickness  
358 changes (minimum stromal thickness, minimum corneal thickness, percentage  
359 thickness index), maximum anterior and posterior elevation, anterior root mean square,  
360 mean radius of notable points, posterior symmetry index, and posterior ectasia index, as

361 shown in Table 4. These parameters were not used to define SKC at baseline; rather,  
362 they represent the structural features that significantly drove progression from SKC to  
363 KC. Changes in other indices over time were not statistically significant between groups.  
364 Although some of these metrics covary, as shown by Supplemental Figure E, it  
365 highlights the specific anatomy and parameters that are most sensitive to early disease  
366 changes.

367 These findings were corroborated against progression criteria outlined in an expert  
368 opinion piece authored by a panel of corneal specialists<sup>14</sup>. Among eyes classified as  
369 SKC, 72.7% showed evidence of progression. Of these, 54.4% met criterion A (anterior  
370 curvature), 67.0% met criterion B (posterior curvature), and 87.5% met criterion C  
371 (pachymetric thinning).

372 SKC eyes also exhibited significantly higher probability of requiring CXL in the future  
373 compared to healthy eyes ( $p < 0.001$ ; Figure 6A) with risk increasing by an average of  
374 10.2% for SKC eyes with follow-up and 4.06% for healthy eyes. Kaplan–Meier survival  
375 analysis, after age matching (mean baseline age  $31.9 \pm 12.1$  years in both groups,  $n =$   
376 337 per group), revealed that SKC eyes had a substantially lower KC-free survival rate  
377 than healthy eyes (log-rank  $p < 0.0001$ ). Approximately 500 days after the first visit, the  
378 probability of remaining KC-free had fallen below 50% for SKC eyes, whereas healthy  
379 eyes remained largely stable throughout follow-up (Figure 6B).

380 **GMM Captures Early Risk Patterns Missed by Belin-Ambrosio's ABCD**

381 For 2,857 patients in the healthy and KC groups with same-day Pentacam scans,  
382 98.1% of GMM-classified healthy eyes and 95.9% of SKC eyes were assigned Stage 0

383 on the ABCD grading system (Figure 7). KC eyes were predominantly distributed across  
384 ABCD Stages 2 to 4. Among the 185 SKC eyes with at least one follow-up visit, 96.2%  
385 (n=178) remained at Stage 0. Of the seven eyes that progressed, three advanced to  
386 Stage 1, three to Stage 2, and one to Stage 4. When disaggregated by individual ABCD  
387 components, progression was most frequently observed in parameter D (best-corrected  
388 visual acuity), followed by C, A, and B. Pachymetry was the most frequent structural  
389 progressors under ABCD criteria, aligning with Global Consensus thresholds.

## 390 Discussion

391 The identification of keratoconus at the earliest stage remains one of the most pressing  
392 challenges in corneal diagnostics. This difficulty stems not only from the subtlety of the  
393 phenotype but also from the absence of a universal standard definition. Across studies  
394 and populations, reported prevalence estimates for keratoconus range from under 0.1%  
395 to nearly 9%,<sup>29</sup> a disparity driven in part by different diagnostic cut-offs and whether  
396 subclinical cases are included. A recent systematic review on subclinical keratoconus  
397 by Randleman et al. found that many studies used subclinical group inclusion criteria  
398 that would not exclude clinical keratoconus eyes.<sup>16</sup> Even within a single cohort, the use  
399 of different cut-off values for diagnostic indices can dramatically shift classification.<sup>16,30</sup>  
400 To date, none have attempted to distinguish normal from early keratoconus without  
401 such assumptions.

402 The findings of this study directly address this gap by demonstrating that a semi-  
403 supervised machine learning approach using Gaussian Mixture Modelling in a reduced  
404 feature space can identify a subgroup of morphologically atypical eyes not captured by

405 traditional grading systems. Unlike fully unsupervised clustering, this approach ensures  
406 that the learned latent structure is anchored to clinically meaningful binary groups (0 =  
407 healthy, 1 = keratoconus). The strength of this approach is that the “subclinical” group  
408 emerges from a region of maximal overlap within a biologically plausible continuum,  
409 rather than through arbitrary cutoffs. Within a 0.25 to 0.75 confidence threshold, the  
410 subclinical phenotype presents within a narrow biometric window, with thickness  
411 differences under 65  $\mu$ m, radius differences under 0.5 mm, and elevation/ectasia index  
412 variations below 1.

413 Overall, the eyes in this group demonstrated:

414 1. Almost total agreement with Belin-Ambrosio’s ABCD Stage 0,  
415 2. Significant structural differences from healthy and KC eyes,  
416 3. Significant asymmetry with fellow contralateral eye and  
417 4. Consistent structural degradation over time

418 Although the ABCD display is the current standard for detecting keratoconus and  
419 monitoring disease progression, our results suggest that its sensitivity to the detection of  
420 early disease is limited. Healthy and SKC eyes are largely indistinguishable on this  
421 scale, with both typically classified as Stage 0 despite significant differences in  
422 structure. Progression is also not well predicted by ABCD staging but is reasonably  
423 predicted by the Gomes et al. criteria. Only 3.8% of SKC eyes had progressed and  
424 interestingly, this progression was mostly driven by functional decline (parameter D,  
425 visual acuity) rather than by anterior or posterior curvature or pachymetry (parameters  
426 A, B, C). This is markedly lower than the results of the Gomes et al. progression criteria,

427 which indicated that 70% of SKC eyes had progressed, aligning with previous studies  
428 on SKC progression rates<sup>31,32</sup>. Using GMM-derived KC probability, over 30% reached  
429 75% probability of KC within two years. SKC eyes also demonstrated higher risk of  
430 requiring CXL within 4 years and shorter keratoconus-free survival in Kaplan-Meier  
431 analysis.

432 This was driven specifically by corneal thickness changes, especially in the stroma, and  
433 by subtle elevations and irregularities in the anterior and posterior curvature. These  
434 changes, while not always sufficient to shift ABCD staging, may signal early  
435 biomechanical instability and help explain why some SKC eyes progress despite  
436 appearing clinically normal. Progression in anterior and posterior Kmax was not found  
437 statistically significant between healthy and SKC eyes and explained only 50-60% of  
438 eyes meeting the Global Consensus criteria, highlighting the limitations of traditional KC  
439 metrics in detecting early stages of the disease. Thickness changes were observed in  
440 over 80% of SKC eyes, particularly at the stroma level. This supports prior findings that  
441 stromal metrics are more effective than epithelial metrics – which were not found  
442 significant in our cohort - in distinguishing SKC from healthy eyes.<sup>2,33</sup> Some of these  
443 significant parameters have previously been linked to SKC in earlier studies.<sup>16</sup> Our  
444 findings expand this understanding by showing that these features not only differ at  
445 baseline but are also associated with longitudinal progression.

446 The concept of subclinical keratoconus as an intermediate state between healthy and  
447 KC has long informed topographic indices such as KISA%<sup>34</sup> and CLMI/CLMI.X<sup>35</sup>. While  
448 these indices reliably distinguish manifest keratoconus from normal eyes, their  
449 performance in subclinical or suspect eyes has been weaker, owing to several factors.

450 KISA% relied on only four anterior topographic parameters and applied rigid thresholds  
451 ( $\geq 100\%$ ), leading to substantial overlap between normal and keratoconus-suspects.  
452 CLMI.X incorporated cone location and magnitude, as well as pachymetric features, but  
453 still categorized eyes via fixed cut-offs. Although the recent CLMIX-AI<sup>36</sup> adaptation  
454 leverages machine learning, published evaluations show that sensitivity and specificity  
455 remain consistently lower for keratoconus suspects than for manifest keratoconus.

456 Our framework differs in three critical ways. First, it uses a broad multidimensional  
457 feature set (20 tomographic indices plus age) encompassing anterior, posterior,  
458 elevation, and thickness parameters. Second, it models classification probabilistically:  
459 Gaussian mixture modeling yields a KC probability, with an explicit “grey zone” (0.25–  
460 0.75) rather than a binary or trinary cut-off. This reflects diagnostic uncertainty rather  
461 than masking it. Third, we benchmarked the subclinical group against external  
462 validators (ABCD staging, Gomes et al. progression criteria, Pentacam tomography,  
463 and the Moorfields CXL Risk Calculator) and demonstrated longitudinal predictive  
464 value (higher CXL risk and faster conversion). These results show that the intermediate  
465 group identified is not an artifact of thresholding but represents a clinically meaningful  
466 high-risk state.

467 However, there are some limitations. The thresholds proposed in the 2015 article by  
468 Gomes et al. remain insufficiently validated. The ABCD grading system was introduced,  
469 in part, in response to this consensus and provided 95% confidence limits for the true  
470 change in these parameters based on data from 252 normal ('early keratoconus') and  
471 keratoconus ('established disease') patients. Further work should integrate adaptive  
472 thresholding for progression<sup>37</sup> and investigate the metrics highlighted here to further

473 refine early disease progression, which may be distinct from those needed for initial  
474 detection. Adaptive thresholding may also help mitigate measurement variability near  
475 the threshold of detectability – reflected by a small subset of SKC eyes that were  
476 reclassified as healthy within a short follow-up period. Although KM models provide  
477 unadjusted estimates of progression risk and cannot simultaneously account for multiple  
478 baseline covariates (e.g., pachymetry or inter-eye asymmetry), we minimized the  
479 influence of age by matching SKC and healthy groups on baseline age prior to analysis.  
480 The results should therefore be interpreted descriptively. The consistency of KM  
481 findings with independent validation further supports that the elevated risk observed in  
482 SKC eyes reflects a true biological signal rather than an artifact of unadjusted modeling.  
483 Moreover, our findings can only be applied directly to MS-39 corneal tomography.  
484 Although the indices used are broadly comparable across devices and were validated  
485 with same-day Pentacam scans, further external validation will be essential before  
486 generalizing this approach.  
487 A further consideration is the proportion of scans excluded during quality control. In  
488 total, 48.7% of acquisitions were excluded. Of these, 94.5% were repeated same-day  
489 scans from the same eye and 0.06% were removed due to acquisition failures such as  
490 incomplete Placido/OCT coverage, motion artefacts, or implausible device-derived  
491 values. These exclusions reflect technical artifacts rather than biological variation and  
492 are not systematically related to disease severity. Outliers (0.05% of excluded scans)  
493 identified by the isolation forest were predominantly morphologically extreme eyes that  
494 appeared as strong deviations in multiple indices, representing mislabeled scans (e.g.  
495 post-operative cases) and cases of highly abnormal corneal structure (e.g., corneal

496 edema or infection) rather than borderline subclinical cases. Importantly, in routine  
497 clinical workflows, it is common practice to obtain multiple scans and rely on the best-  
498 quality image for interpretation, while discarding suboptimal acquisitions. Our exclusion  
499 strategy therefore mirrors this process, suggesting minimal risk of systematic bias and  
500 limited impact on the generalizability of our findings.

501 Although the probability thresholds used in this study reflect standard confidence  
502 intervals<sup>38</sup>, clinicians may calibrate decision boundaries based on clinical capacity or  
503 acceptable false positive rates. In our cohort, shifting the thresholds  $\pm 5\%$  changed the  
504 number of eyes classified as SKC only modestly ( $\pm 2\text{--}3\%$ ) and preserved  $>96\%$   
505 classification overlap, indicating that the SKC group is stable across reasonable  
506 threshold choices. By flagging eyes that do not meet standard diagnostic thresholds but  
507 are structurally atypical in several dimensions, this system has the potential to shift  
508 keratoconus management from reactive treatment of overt disease to proactive  
509 surveillance and early intervention. Such an approach offers a path toward reconciling  
510 longstanding inconsistencies in the early detection of keratoconus.

## 511 References

512 1. Toprak I, Vega A, Alio Del Barrio JL, Espla E, Cavas F, Alio JL. Diagnostic Value  
513 of Corneal Epithelial and Stromal Thickness Distribution Profiles in Forme Fruste  
514 Keratoconus and Subclinical Keratoconus. *Cornea*. Jan 2021;40(1):61-72.  
515 doi:10.1097/ICO.0000000000002435

516 2. Dutra BAL, Hammoud B, Susanna BN, et al. Epithelial Mapping Efficacy for  
517 Subclinical Keratoconus Identification. *Am J Ophthalmol.* Mar 6 2025;274:209-220.  
518 doi:10.1016/j.ajo.2025.02.042

519 3. Santodomingo-Rubido J, Carracedo G, Suzuki A, Villa-Collar C, Vincent SJ,  
520 Wolffsohn JS. Keratoconus: An updated review. *Cont Lens Anterior Eye.* Jun  
521 2022;45(3):101559. doi:10.1016/j.clae.2021.101559

522 4. Zhao L, Yin Y, Hu T, et al. Comprehensive management of post-LASIK ectasia:  
523 From prevention to treatment. *Acta Ophthalmol.* Aug 2023;101(5):485-503.  
524 doi:10.1111/aos.15636

525 5. Ortega-Usobiaga J, Rocha-de-Lossada C, Llovet-Rausell A, Llovet-Osuna F.  
526 Update on contraindications in laser corneal refractive surgery. *Arch Soc Esp Oftalmol*  
527 (Engl Ed). Feb 2023;98(2):105-111. doi:10.1016/j.oftale.2022.07.003

528 6. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high  
529 myopia and temporal trends from 2000 through 2050. *Ophthalmology.*  
530 2016;123(5):1036-1042.

531 7. Knutsson KA, Genovese PN, Paganoni G, et al. Safety and efficacy of corneal  
532 cross-linking in patients affected by keratoconus: long-term results. *Medical Sciences.*  
533 2023;11(2):43.

534 8. Wittig-Silva C, Chan E, Islam FMA, Wu T, Whiting M, Snibson GR. A  
535 Randomized, Controlled Trial of Corneal Collagen Cross-Linking in Progressive  
536 Keratoconus: Three-Year Results. *Ophthalmology.* 2014;121(4):812-821.  
537 doi:10.1016/j.ophtha.2013.10.028

538 9. Fernandez Perez J, Valero Marcos A, Martinez Pena FJ. Early diagnosis of  
539 keratoconus: what difference is it making? *Br J Ophthalmol.* Nov 2014;98(11):1465-6.  
540 doi:10.1136/bjophthalmol-2014-305120

541 10. Gore DM, Leucci MT, Koay S-y, et al. Accelerated Pulsed High-Fluence Corneal  
542 Cross-Linking for Progressive Keratoconus. *American Journal of Ophthalmology.*  
543 2021;221:9-16. doi:10.1016/j.ajo.2020.08.021

544 11. Henriquez MA, Hadid M, Izquierdo L, Jr. A Systematic Review of Subclinical  
545 Keratoconus and Forme Fruste Keratoconus. *J Refract Surg.* Apr 1 2020;36(4):270-279.  
546 doi:10.3928/1081597X-20200212-03

547 12. Arbelaez MC, Versaci F, Vestri G, Barboni P, Savini G. Use of a support vector  
548 machine for keratoconus and subclinical keratoconus detection by topographic and  
549 tomographic data. *Ophthalmology.* Nov 2012;119(11):2231-8.  
550 doi:10.1016/j.ophtha.2012.06.005

551 13. Bui AD, Truong A, Pasricha ND, Indaram M. Keratoconus Diagnosis and  
552 Treatment: Recent Advances and Future Directions. *Clin Ophthalmol.* 2023;17:2705-  
553 2718. doi:10.2147/OPTH.S392665

554 14. Gomes JA, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and  
555 ectatic diseases. *Cornea.* 2015;34(4):359-369.

556 15. Saad A, Gatinel D. Screening for keratoconus: lack of a scientific base regarding  
557 the global consensus? *Cornea.* 2015;34(11):e33-e35.

558 16. Randleman JB, Susanna BN, Hammoud B, et al. Evaluating the Global  
559 Consensus on Keratoconus and Ectatic Diseases Agreements Reached on Subclinical

560 Keratoconus. *American Journal of Ophthalmology*. 2025/07/01/ 2025;275:27-35.

561 doi:<https://doi.org/10.1016/j.ajo.2025.03.013>

562 17. Henriquez MA, Hadid M, Izquierdo Jr L. A systematic review of subclinical

563 keratoconus and forme fruste keratoconus. *Journal of Refractive Surgery*.

564 2020;36(4):270-279.

565 18. Vestri G, Versaci F, Savini G. CSO MS-39: Principles and Applications. In:

566 Aramberri J, Hoffer KJ, Olsen T, Savini G, Shammas HJ, eds. *Intraocular Lens*

567 *Calculations*. Springer International Publishing; 2024:431-442.

568 19. Sridhar U, Tripathy K. Corneal Topography. *StatPearls*. 2025.

569 20. Lavric A. Detecting Keratoconus From Corneal Imaging Data Using Machine

570 Learning. *IEEE Access*. 2020;8:149113-149121. doi:10.1109/ACCESS.2020.3016060

571 21. Cao K, Verspoor K, Sahebjada S, Baird PN. Accuracy of Machine Learning

572 Assisted Detection of Keratoconus: A Systematic Review and Meta-Analysis. *J Clin*

573 *Med*. Jan 18 2022;11(3)doi:10.3390/jcm11030478

574 22. Maile H, Li JO, Gore D, et al. Machine Learning Algorithms to Detect Subclinical

575 Keratoconus: Systematic Review. *JMIR Med Inform*. Dec 13 2021;9(12):e27363.

576 doi:10.2196/27363

577 23. Elkitkat RS, Rifay Y, Gharieb HM, Ziada HEA. Accuracy of the indices of MS-39

578 anterior segment optical coherence tomography in the diagnosis of keratoconic

579 corneas. *Eur J Ophthalmol*. Jul 2022;32(4):2116-2124.

580 doi:10.1177/11206721211063720

581 24. Alio Del Barrio JL, Eldanasoury AM, Arbelaez J, Faini S, Versaci F. Artificial

582 Neural Network for Automated Keratoconus Detection Using a Combined Placido Disc

583 and Anterior Segment Optical Coherence Tomography Topographer. *Transl Vis Sci*  
584 *Technol.* Apr 2 2024;13(4):13. doi:10.1167/tvst.13.4.13

585 25. Liu FT. Isolation Forest. *Eighth IEEE International Conference on Data Mining.*  
586 2008:413-422. doi:10.1109/ICDM.2008.17

587 26. Seiler TG, Mueller M, Mendes Baiao T. Repeatability and Comparison of Corneal  
588 Tomography in Mild to Severe Keratoconus Between the Anterior Segment OCT MS-39  
589 and Pentacam HR. *J Refract Surg.* Apr 2022;38(4):250-255. doi:10.3928/1081597x-  
590 20220114-02

591 27. Maile HP, Li JO, Fortune MD, et al. Personalized Model to Predict Keratoconus  
592 Progression From Demographic, Topographic, and Genetic Data. *Am J Ophthalmol.*  
593 Aug 2022;240:321-329. doi:10.1016/j.ajo.2022.04.004

594 28. Cattell RB. The Scree Test For The Number Of Factors. *Multivariate Behavioral*  
595 *Research.* 1966/04/01 1966;1(2):245-276. doi:10.1207/s15327906mbr0102\_10

596 29. Hashemi H, Heydarian S, Hooshmand E, et al. The Prevalence and Risk Factors  
597 for Keratoconus: A Systematic Review and Meta-Analysis. *Cornea.* Feb  
598 2020;39(2):263-270. doi:10.1097/ICO.0000000000002150

599 30. Song P, Ren S, Liu Y, Li P, Zeng Q. Detection of subclinical keratoconus using a  
600 novel combined tomographic and biomechanical model based on an automated  
601 decision tree. *Scientific Reports.* 2022/03/29 2022;12(1):5316. doi:10.1038/s41598-022-  
602 09160-6

603 31. Choi JA, Kim M-S. Progression of Keratoconus by Longitudinal Assessment with  
604 Corneal Topography. *Investigative Ophthalmology & Visual Science.* 2012;53(2):927-  
605 935. doi:10.1167/iovs.11-8118

606 32. Li X, Yang H, Rabinowitz YS. Keratoconus: classification scheme based on  
607 videokeratography and clinical signs. *J Cataract Refract Surg*. Sep 2009;35(9):1597-  
608 603. doi:10.1016/j.jcrs.2009.03.050

609 33. Yang Y, Pavlatos E, Chamberlain W, Huang D, Li Y. Keratoconus detection  
610 using OCT corneal and epithelial thickness map parameters and patterns. *Journal of*  
611 *Cataract & Refractive Surgery*. 2021;47(6):759-766.

612 34. Rabinowitz YS, Rasheed K. KISA% index: a quantitative videokeratography  
613 algorithm embodying minimal topographic criteria for diagnosing keratoconus. *J*  
614 *Cataract Refract Surg*. Oct 1999;25(10):1327-35. doi:10.1016/s0886-3350(99)00195-9

615 35. Mahmoud AM, Nuñez MX, Blanco C, et al. Expanding the cone location and  
616 magnitude index to include corneal thickness and posterior surface information for the  
617 detection of keratoconus. *Am J Ophthalmol*. Dec 2013;156(6):1102-11.  
618 doi:10.1016/j.ajo.2013.07.018

619 36. Hammoud B, Wehbi Z, Assaf JF, Roberts CJ, Awwad ST. From CLMI.X to  
620 CLMIX-AI: A Machine Learning&#x2013;Based Upgrade of the Cone Location and  
621 Magnitude Index Expanded to Detect Keratoconus Suspects. *Ophthalmology Science*.  
622 2025;5(6)doi:10.1016/j.xops.2025.100895

623 37. Balal DS, Cai DY, Kandakji ML, et al. Establishing the ground truth for  
624 keratoconus progression: combining repeated measures and adapting precision limits to  
625 disease severity in tomography. *J Cataract Refract Surg*. Jul 2  
626 2025;doi:10.1097/j.jcrs.0000000000001692

627 38. Phillips MR, Wykoff CC, Thabane L, et al. The clinician's guide to p values,  
628 confidence intervals, and magnitude of effects. *Eye*. 2022/02/01 2022;36(2):341-342.  
629 doi:10.1038/s41433-021-01863-w

## 630 Legend for Print Figures

631 Figure 1. Flowchart illustrating dataset clean-up with the results of each pre-processing  
632 step

633 Figure 2. Gaussian Mixture Model (GMM)–derived probability of keratoconus  
634 [P(Keratoconus)] plotted against the first principal component (PC1). There is a strong  
635 relationship observed between PC1 and P(Keratoconus), with increasing values along  
636 the x-axis (PC1) corresponding to greater disease severity. Each point represents a  
637 single eye, and the red curve indicates the fitted logarithmic trend line. The clear  
638 association between PC1 and keratoconus probability highlights that subtle corneal  
639 shape variations captured by unsupervised analysis align closely with disease severity.

640 Figure 3. Smoothed curves showing how individual tomographic parameters relate to  
641 the Gaussian Mixture Model-derived probability of keratoconus. Each panel  
642 corresponds to one tomographic feature. Red dotted vertical lines mark the parameter  
643 values associated with 25% and 75% probability of keratoconus, with annotations  
644 indicating the exact values. These parameter–probability curves identify threshold  
645 ranges where subtle tomographic changes signal elevated keratoconus risk.

646 Figure 4. Classification of subclinical keratoconus using a two-component Gaussian  
647 Mixture Model (GMM). Each point represents a single eye plotted according to a  
648 reduced set of 21 tomographic features using principal component analysis. The  
649 shaded grey ellipses indicate the regions where healthy eyes (light grey) and

650 keratoconus eyes (dark grey) are most likely to be located, with boundaries drawn at  
651 50%, 75%, 90%, and 95% confidence levels. Eyes shown in orange fall outside the  
652 high-confidence regions of both groups and are labelled as subclinical keratoconus. The  
653 model isolates eyes with ambiguous morphology, highlighting cases that may warrant  
654 closer monitoring despite not fitting cleanly into healthy or diseased categories.

655 Figure 5. State diagram showing how eyes changed classification over time, across  
656 follow-up visits spanning up to 800 days after the first visit. Circles (nodes) represent the  
657 three disease states: healthy (H), subclinical keratoconus (S), and keratoconus (K).  
658 Arrows (edges) indicate observed transitions between states, with thicker arrows  
659 corresponding to higher transition probabilities. Most progression occurred from  
660 subclinical keratoconus to keratoconus, while direct transitions from healthy to  
661 keratoconus were rare.

662 Figure 6. (A) Boxplots showing the predicted probability of requiring corneal crosslinking  
663 (CXL) at years 1 through 4, stratified by baseline classification using the Gaussian  
664 Mixture Model (GMM) into healthy, subclinical keratoconus, and keratoconus groups.  
665 Asterisks denote statistically significant differences (\*\*p < 0.0001). (B) Kaplan–Meier  
666 survival curves estimating the probability of remaining keratoconus-free over time for  
667 eyes classified at baseline as subclinical keratoconus (orange) or healthy (blue).  
668 Shaded regions show 95% confidence intervals, and vertical tick marks indicate  
669 censored observations (eyes lost to follow-up). The red dashed line marks the 50%  
670 probability threshold. Eyes classified as subclinical keratoconus at baseline had

671 significantly higher predicted CXL risk and a steeper decline in keratoconus-free  
672 survival compared to healthy eyes.

673 Figure 7. Distribution of ABCD keratoconus stages at baseline, stratified by Gaussian  
674 Mixture Model (GMM)-based classification into healthy, subclinical keratoconus, and  
675 keratoconus groups. Bars show the proportion of eyes in each ABCD stage (0–IV)  
676 within each group. Eyes classified as healthy were almost entirely stage 0, subclinical  
677 keratoconus eyes clustered in stages 0–I, and keratoconus eyes spanned the full  
678 spectrum up to stage IV, confirming that the GMM groupings aligned with increasing  
679 clinical disease severity.

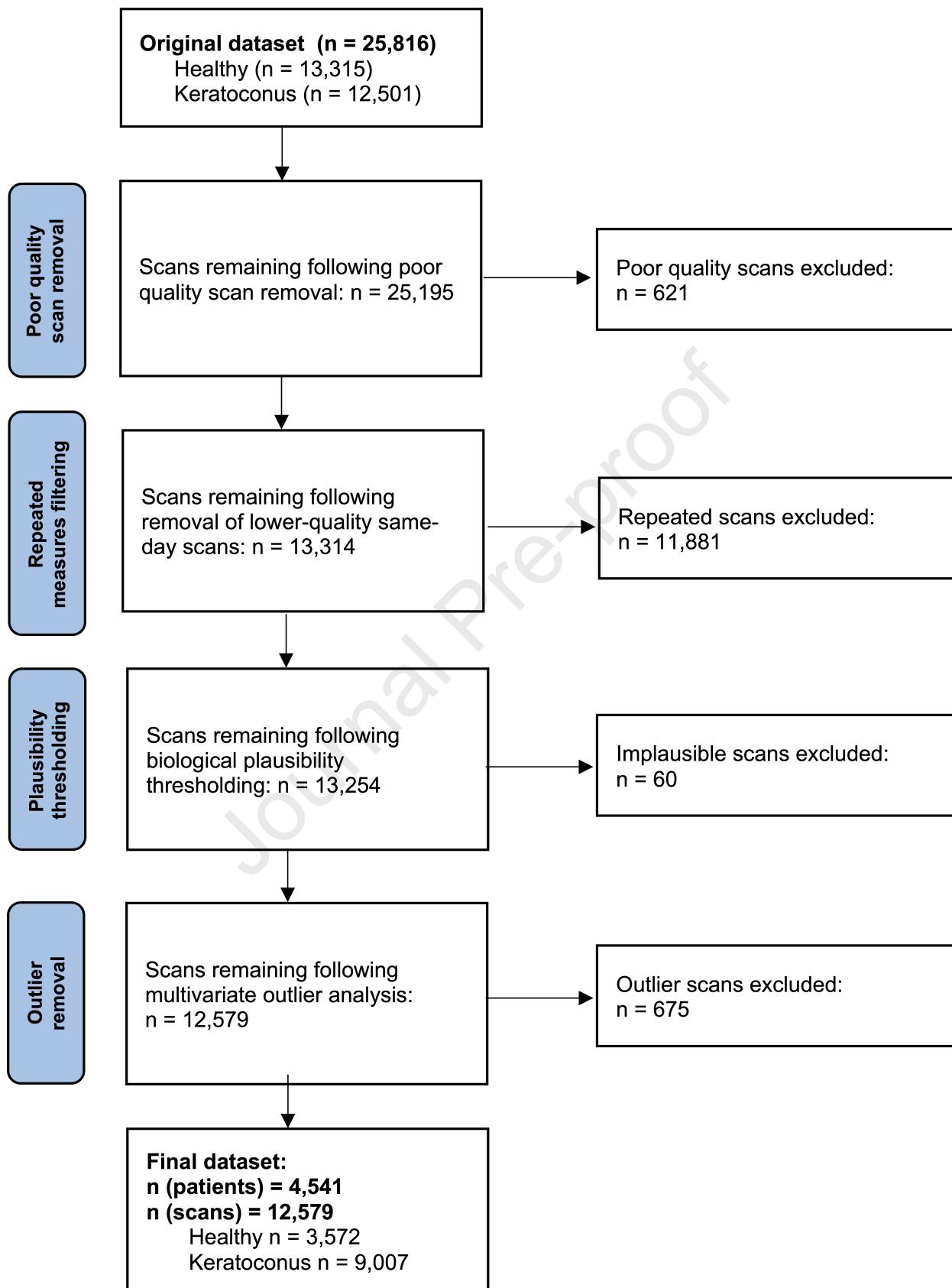
**Table 1.** Summary and definitions of the 20 MS-39 anterior-segment optical coherence tomography-derived corneal features investigated

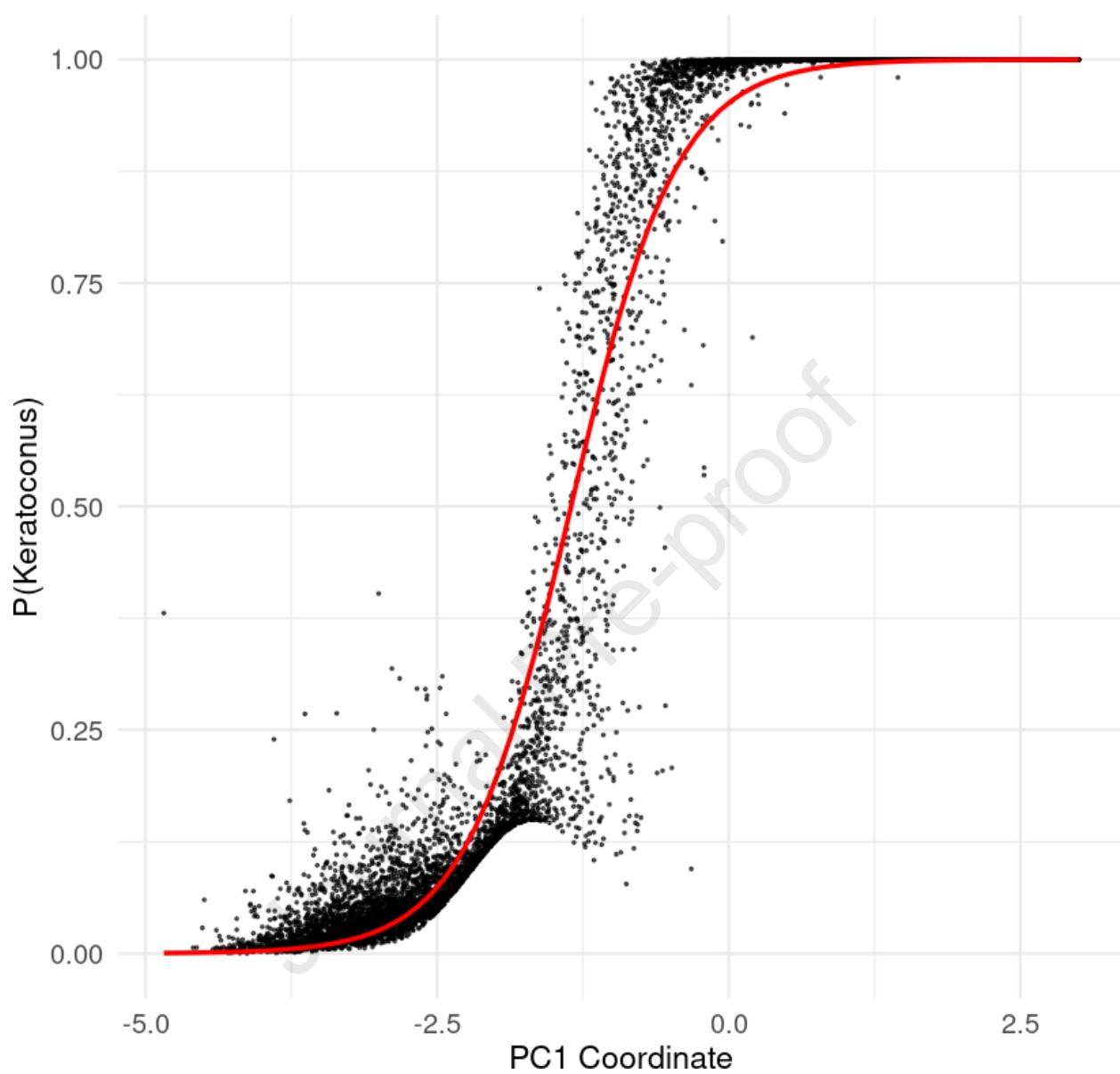
| Feature                                    | Unit          | Definition                                                                                                                                                                                                                                                                                 | Normal Range |
|--------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Symmetry index (SI)                        | mm            | Difference in curvature or elevation between the superior and inferior cornea                                                                                                                                                                                                              | $\pm 0.1$    |
| Centre-surround index (CSI)                | mm            | Difference in curvature or elevation at the apex vs the surrounding annular region                                                                                                                                                                                                         | $\pm 0.1$    |
| Ectasia index (EI)                         | mm            | Multi-quadratic composite score of significant Zernike coefficients for corneal surface                                                                                                                                                                                                    | 0-0.5        |
| Root mean square (RMS)                     | mm            | Deviation between the corneal surface and a best-fit reference surface                                                                                                                                                                                                                     | $\leq 0.02$  |
| Maximum keratometry (Kmax)                 | mm            | Maximum Gaussian curvature (steepest point) of corneal surface                                                                                                                                                                                                                             | 7.70-7.90    |
| Delta Z ( $\Delta z_{\text{max}}$ )        | $\mu\text{m}$ | Maximum height of the bulging zone from the elevation vs normality map                                                                                                                                                                                                                     | 0-20         |
| Notable Points Radius (NotablePtsR)        | mm            | Mean radial distance between seven notable points on the cornea from their respective barycentre. These include the locations of minimum epithelial, stromal, and total corneal thickness, maximum anterior and posterior corneal curvature; and maximum anterior and posterior elevation. | $> 0.6$      |
| Thickness symmetry index (TSI)             | %             | Difference in corneal thickness between two symmetric hemi-corneas, usually across the vertical meridian                                                                                                                                                                                   | $\pm 10$     |
| Pattern deviation of TSI (PD-TSI)          | %             | Compares the actual TSI distribution of the patient to a reference population of normal eyes                                                                                                                                                                                               | $\pm 10$     |
| % thickness index of the full cornea (PTI) | %             | Expresses the proportion of the total corneal volume occupied by tissue thinner than the average                                                                                                                                                                                           | 45-55        |
| % epithelial thickness index (PEpiTI)      | %             | Relative contribution of the epithelial thickness to the total corneal thickness across the corneal surface and reflects epithelial compensation/remodelling                                                                                                                               | 10           |
| Minimum pachymetry (ThkMin)                | $\mu\text{m}$ | Value of the point with minimum total corneal thickness                                                                                                                                                                                                                                    | 500-600      |
| Minimum stromal pachymetry (StrThkMin)     | Mm            | Value of the point with minimum total stromal thickness. The stromal thickness is less prone to remodelling than the epithelium and thus is a more stable indicator of true corneal structure.                                                                                             | 470-550      |

|                                           |    |                                                            |    |
|-------------------------------------------|----|------------------------------------------------------------|----|
| Minimum epithelial pachymetry (EpiThkMin) | Mm | Value of the point with minimum total epithelial thickness | 50 |
|-------------------------------------------|----|------------------------------------------------------------|----|

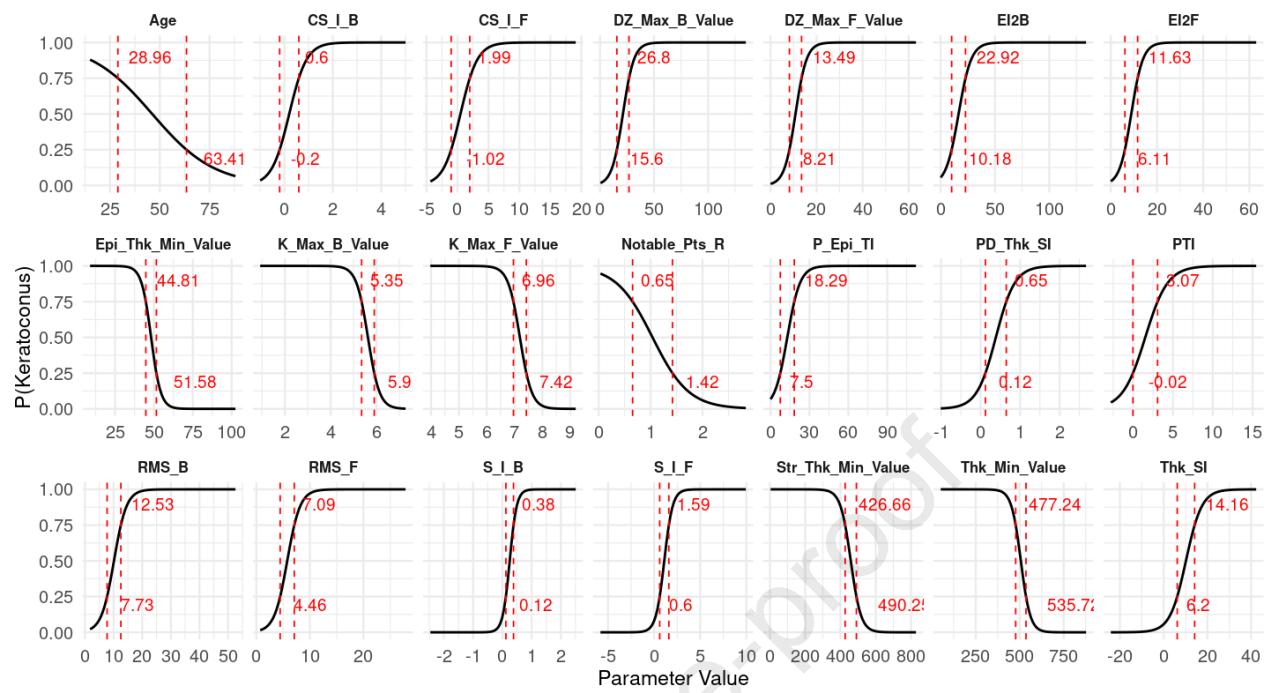
Journal Pre-proof

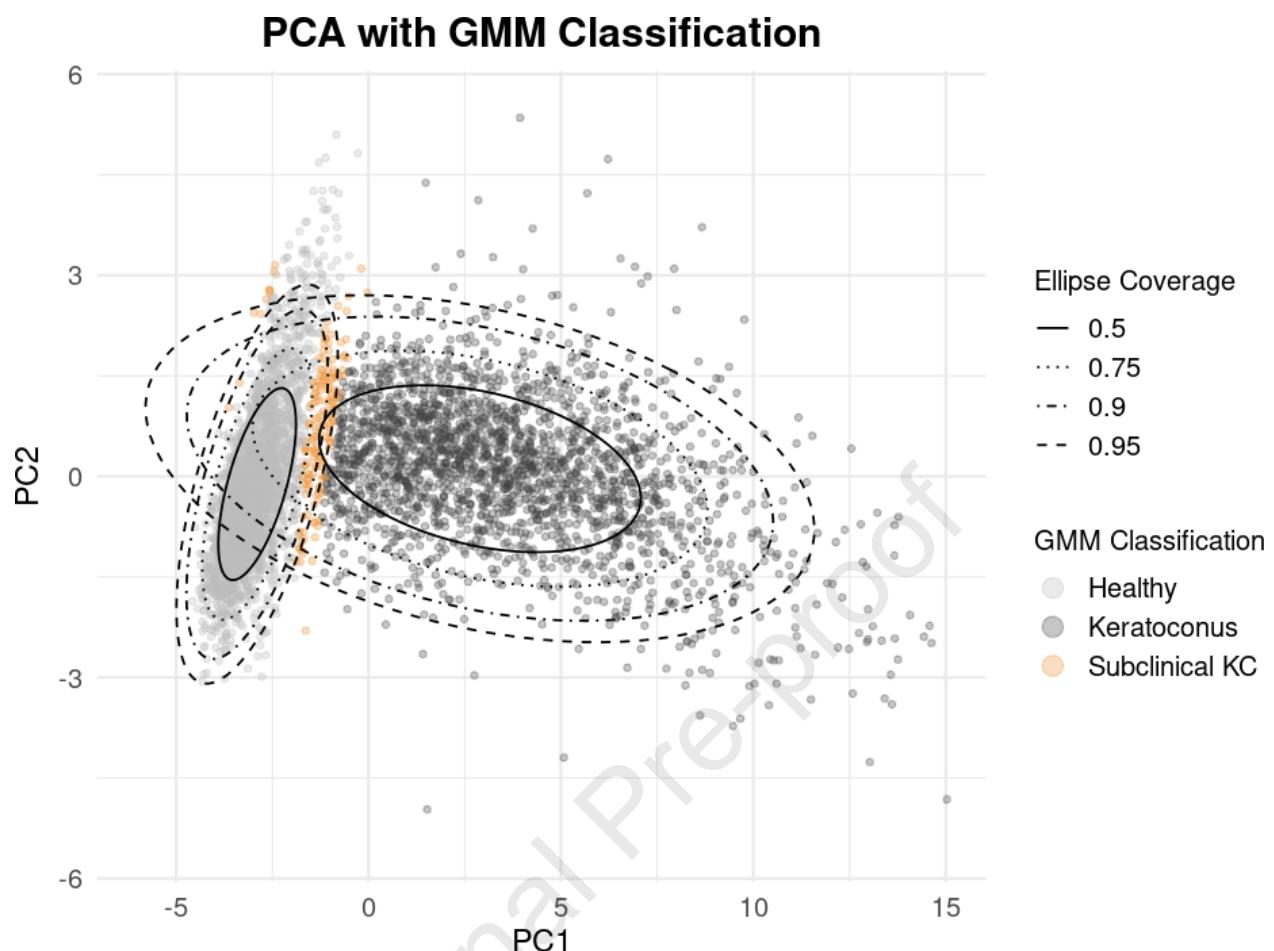
**Table 2.** Summary of demographic characteristics for the retrospective and prospective cohorts. Percentages are reported at the patient level.

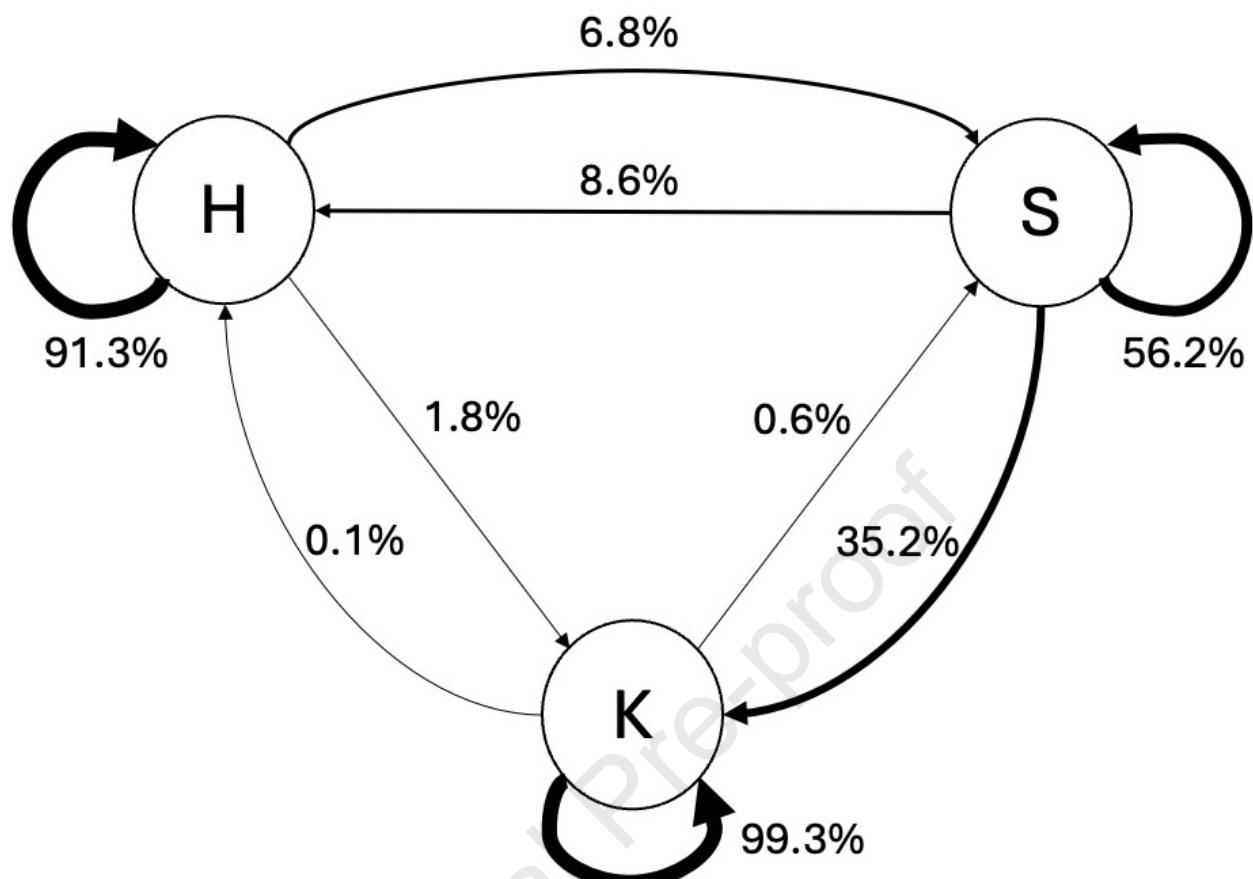

|                               | <b>Retrospective Dataset</b>  | <b>Prospective Dataset</b>    |
|-------------------------------|-------------------------------|-------------------------------|
| <b>Total eyes (n)</b>         | 12579                         | 18                            |
| <b>Total patients (n)</b>     | 4541                          | 9                             |
| <b>Healthy (%)</b>            | 28.4                          | 100                           |
| <b>Keratoconus (%)</b>        | 71.6                          | 0                             |
| <b>Age (years)</b>            | $33.6 \pm 11.7$ (range: 6-97) | $27.2 \pm 4.3$ (range: 20-34) |
| <b>Males (%)</b>              | 60.9                          | 44.4                          |
| <b>Reported Ethnicity (%)</b> | 34.7                          | 100                           |
| - White                       | 31.0                          | 44.4                          |
| - Middle Eastern              | 24.0                          | 11.1                          |
| - South Asian                 | 21.0                          | 11.1                          |
| - Black                       | 15.3                          | 0                             |
| - East Asian                  | 6.5                           | 33.4                          |
| - Mixed                       | 2.2                           | 0                             |

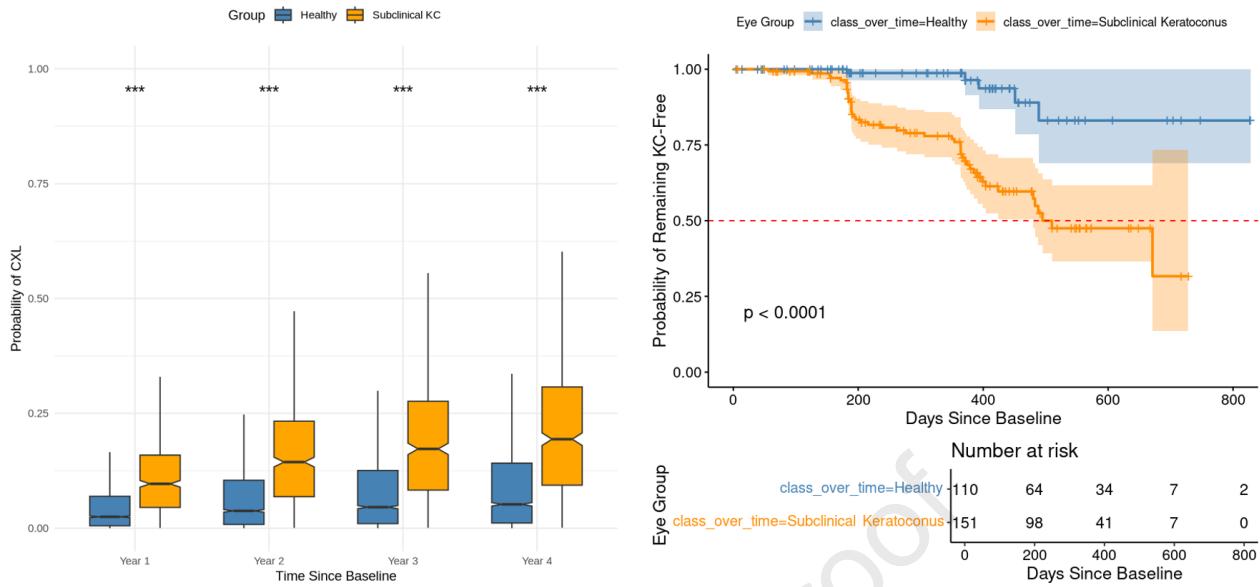

**Table 3.** Comparison of 21 features across Gaussian Mixture Model-defined groups of healthy ( $p_{\text{KC}} < 0.25$ ), subclinical keratoconus ( $0.25 < p_{\text{KC}} < 0.75$ ), and keratoconus ( $p_{\text{KC}} > 0.75$ ) groups. P-value is calculated between adjacent column groups.

| Metric<br>(B = Posterior<br>F = Anterior) | Healthy |          | p-value  | Subclinical Keratoconus |          | p-value  | Keratoconus |          |
|-------------------------------------------|---------|----------|----------|-------------------------|----------|----------|-------------|----------|
|                                           | Mean    | Std. Dev |          | Mean                    | Std. Dev |          | Mean        | Std. Dev |
|                                           | Mean    | Std. Dev |          | Mean                    | Std. Dev |          | Mean        | Std. Dev |
| Age                                       | 40.18   | 25.58    | 1.4e-35  | 31.39                   | 11.07    | 0.299    | 30.76       | 7.99     |
| SI B                                      | 0.03    | 0.12     | 4.3e-21  | 0.23                    | 0.19     | 8.3e-122 | 1.34        | 0.76     |
| SI F                                      | 0.30    | 0.49     | 1.9e-08  | 0.98                    | 0.66     | 9.7e-120 | 5.10        | 3.07     |
| CSI B                                     | 0.18    | 0.13     | 4.3e-191 | 0.25                    | 0.26     | 4.9e-290 | 1.11        | 0.99     |
| CSI F                                     | 0.51    | 0.77     | 8.0e-146 | 0.69                    | 0.97     | 5.3e-275 | 3.57        | 3.50     |
| EI B                                      | 4.19    | 4.45     | 2.9e-182 | 15.93                   | 7.81     | 2.6e-289 | 75.45       | 38.23    |
| EI F                                      | 3.60    | 2.66     | 2.2e-139 | 8.21                    | 3.78     | 2.3e-282 | 34.55       | 18.32    |
| RMS B                                     | 5.86    | 2.69     | 2.3e-17  | 10.14                   | 5.47     | 2.4e-163 | 30.28       | 31.80    |
| RMS F                                     | 3.63    | 1.63     | 3.5e-129 | 5.52                    | 1.83     | 4.3e-229 | 15.77       | 7.62     |
| KMax B                                    | 6.11    | 0.39     | 5.6e-71  | 5.59                    | 0.57     | 1.3e-220 | 4.41        | 0.68     |
| KMax F                                    | 7.52    | 0.34     | 5.3e-84  | 7.21                    | 0.40     | 1.3e-120 | 6.26        | 0.62     |
| Δzmax B                                   | 9.61    | 4.88     | 2.6e-96  | 20.59                   | 10.46    | 7.8e-110 | 77.97       | 57.25    |
| Δzmax F                                   | 5.91    | 3.04     | 1.7e-94  | 10.38                   | 3.86     | 5.7e-224 | 35.16       | 18.05    |
| NotablePtsR                               | 1.34    | 0.53     | 2.9e-23  | 0.82                    | 0.60     | 4.4e-217 | 0.37        | 0.37     |
| TSI                                       | 5.94    | 4.68     | 8.0e-150 | 10.76                   | 5.04     | 8.2e-263 | 24.96       | 11.48    |
| PD-TSI                                    | 0.18    | 0.38     | 7.2e-120 | 0.55                    | 0.33     | 3.5e-263 | 1.03        | 0.49     |
| PTI                                       | 0.18    | 2.48     | 1.6e-146 | 1.53                    | 2.00     | 3.0e-267 | 5.87        | 2.78     |
| PEpiTI                                    | 8.85    | 5.92     | 2.5e-124 | 11.82                   | 9.46     | 1.7e-265 | 34.42       | 21.67    |
| ThkMin                                    | 519.73  | 42.62    | 5.0e-58  | 488.46                  | 34.90    | 3.5e-66  | 450.82      | 41.46    |
| StrThkMin                                 | 465.79  | 43.23    | 7.1e-66  | 436.95                  | 35.12    | 1.6e-88  | 405.58      | 40.41    |
| EpiThkMin                                 | 49.56   | 3.91     | 5.5e-95  | 48.30                   | 4.77     | 3.6e-196 | 41.24       | 5.44     |


**Table 4.** Statistical significance of MS-39 indices associated with early keratoconus progression, defined as transition from Gaussian Mixture Model (GMM)-classified subclinical keratoconus ( $0.25 < p_{KC} < 0.75$ ) to keratoconus ( $p_{KC} > 0.75$ ). Effect size is reported as log fold-change (progressors vs non-progressors) with 95% CI. Metrics are ranked by ascending p-value, with smaller values indicating stronger discriminatory power. Bolded rows indicate statistically significant parameters for progression. D=direction of effect ( $\downarrow$ =decreasing,  $\uparrow$ =increasing).  $\log_2 FC$ =log of fold change.


| Metric                                                    | D            | $\log_2 FC$ (95% CI)                | p-value                                 |
|-----------------------------------------------------------|--------------|-------------------------------------|-----------------------------------------|
| <b>Minimum stromal pachymetry (StrThkMin)</b>             | $\downarrow$ | <b>-0.45 (95% CI: -0.60, -0.30)</b> | <b><math>3.7 \times 10^{-11}</math></b> |
| <b>Minimum pachymetry (ThkMin)</b>                        | $\downarrow$ | <b>-0.40 (95% CI: -0.55, -0.25)</b> | <b><math>1.7 \times 10^{-8}</math></b>  |
| <b>Anterior delta Z (<math>\Delta z_{max\_F}</math>)</b>  | $\uparrow$   | <b>0.80 (95% CI: 0.60, 1.00)</b>    | <b><math>7.9 \times 10^{-7}</math></b>  |
| <b>% thickness index of the full cornea (PTI)</b>         | $\uparrow$   | <b>0.35 (95% CI: 0.20, 0.50)</b>    | <b><math>3.5 \times 10^{-6}</math></b>  |
| <b>Anterior root mean square (RMS_F)</b>                  | $\uparrow$   | <b>0.65 (95% CI: 0.45, 0.85)</b>    | <b><math>5.0 \times 10^{-5}</math></b>  |
| <b>Notable Points Radius (NotablePtsR)</b>                | $\downarrow$ | <b>-0.30 (95% CI: -0.45, -0.15)</b> | <b><math>2.0 \times 10^{-4}</math></b>  |
| <b>Posterior symmetry index (SI_B)</b>                    | $\uparrow$   | <b>0.25 (95% CI: 0.10, 0.40)</b>    | <b><math>1.5 \times 10^{-3}</math></b>  |
| <b>Posterior ectasia index (EI_B)</b>                     | $\uparrow$   | <b>0.50 (95% CI: 0.30, 0.70)</b>    | <b><math>2.4 \times 10^{-3}</math></b>  |
| <b>Posterior delta Z (<math>\Delta z_{max\_B}</math>)</b> | $\uparrow$   | <b>0.75 (95% CI: 0.50, 1.00)</b>    | <b><math>3.7 \times 10^{-3}</math></b>  |
| <b>Pattern deviation of TSI (PD-TSI)</b>                  | $\uparrow$   | <b>0.30 (95% CI: 0.15, 0.45)</b>    | <b><math>3.8 \times 10^{-3}</math></b>  |
| <b>Anterior centre-surround index (CSI_F)</b>             | $\uparrow$   | 0.20 (95% CI: 0.05, 0.35)           | $2.1 \times 10^{-2}$                    |
| <b>% epithelial thickness index (PEpiTI)</b>              | $\uparrow$   | 0.40 (95% CI: 0.20, 0.60)           | $6.7 \times 10^{-2}$                    |
| <b>Thickness symmetry index (TSI)</b>                     | $\downarrow$ | -0.00 (95% CI: -0.01, 0.01)         | $7.4 \times 10^{-2}$                    |
| <b>Posterior centre-surround index (CSI_B)</b>            | $\uparrow$   | 0.01 (95% CI: 0.00, 0.02)           | $1.4 \times 10^{-1}$                    |
| <b>Posterior root mean square (RMS_B)</b>                 | $\downarrow$ | -0.01 (95% CI: -0.05, 0.01)         | $2.2 \times 10^{-1}$                    |
| <b>Minimum epithelial pachymetry (EpiThkMin)</b>          | $\downarrow$ | -0.00 (95% CI: -0.01, 0.01)         | $5.2 \times 10^{-1}$                    |
| <b>Anterior symmetry index (SI_F)</b>                     | $\downarrow$ | -0.07 (95% CI: -0.10, -0.04)        | $6.2 \times 10^{-1}$                    |
| <b>Anterior maximum keratometry (Kmax_F)</b>              | $\uparrow$   | 0.00 (95% CI: -0.01, 0.01)          | $6.5 \times 10^{-1}$                    |
| <b>Posterior maximum keratometry (Kmax_B)</b>             | $\downarrow$ | -0.02 (95% CI: -0.02, -0.02)        | $6.9 \times 10^{-1}$                    |
| <b>Anterior ectasia index (EI_F)</b>                      | $\downarrow$ | -0.02 (95% CI: -0.10, 0.02)         | $7.6 \times 10^{-1}$                    |





**PC1 vs P(Keratoconus)**

## Original Parameters vs P(Keratoconus)











A data-driven statistical approach identified a distinct, high-risk early keratoconus group with subtle corneal changes, enabling detection before conventional thresholds and providing a framework for earlier clinical monitoring and intervention

Journal Pre-proof