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Type | IFN drives neutrophil swarming, impeding
lung T cell-macrophage interactions and TB control

William J. Branchett'®, Evangelos Stavropoulos'®, Jessica Shields'®, Alaa Al-Dibouni'®, Marcos Cardoso’®, Ana Isabel Fernandes>*®,
Ldcia Moreira-Teixeira'®, Hubert Slawinski*®, Anna Mikolajczak°®, Angela Rodgers®®, Margarida Saraiva?®, and Anne O’Garra'!®

The early immune mechanisms determining Mycobacterium tuberculosis infection outcome are unclear. Using bulk and scRNA-
seq over the first weeks of infection, we describe an unexpected, higher early pulmonary type I IFN response in relatively
resistant C57BL/6 as compared with highly TB-susceptible C3HeB/Fe] mice. C57BL/6 mice showed pronounced early
monocyte-derived macrophage (MDM) accumulation and extensive CD4* T cell-MDM interactions in lung lesions,
accompanied by high expression of T cell-attractant chemokines by MDMs. Conversely, lesions in C3HeB/Fe) mice were
dominated by neutrophils with high expression of pro-inflammatory chemokines, from which CD4* T cells were spatially
segregated. Early type I IFN signaling blockade reduced bacterial load and neutrophil swarming within early TB lesions while
increasing CD4* T cell numbers in both C57BL/6 and C3HeB/Fe] mice, with later more pronounced effects on bacterial load in
C3HeB/Fe) mice. These data suggest that early type | IFN signaling during M. tuberculosis infection favors neutrophil
accumulation and limits CD4* T cell infiltration into developing lesions.

Introduction

Tuberculosis (TB) contributes to over a million deaths annually
(Geneva: World Health Organization, 2024), yet only a small
minority of individuals infected with Mycobacterium tuberculosis
progress to active TB, mostly doing so within 2 years of infection
(Behr et al., 2024). This highlights the importance of under-
standing the host immune response resulting in protection or
progression to TB disease. Despite this, the mechanisms of op-
timal initiation, localization, and regulation of the immune re-
sponse to M. tuberculosis are not well understood (Bloom, 2023;
Cohen et al., 2022; O’Garra et al., 2013).

Mouse models form an important part of TB research, al-
lowing experimental manipulation of cells and pathways in an
intact mammalian system at considerably higher throughput
and lower cost than in nonhuman primates. Most inbred labo-
ratory mouse strains, including C57BL/6, are relatively TB re-
sistant, controlling M. tuberculosis infection for several months
and failing to develop the necrotic lung lesions observed in hu-
man TB (Flynn, 2006; Fortin et al., 2007). However, genetic or
pharmacological perturbations on this relatively resistant
background of mice have been instrumental in identifying
pathways and cells essential for protection against M. tubercu-
losis, including IL-12, IFN-y, CD4* T cells, and TNF-a (Cooper and

Khader, 2008; Flynn, 2006; Fortin et al., 2007; Kramnik and
Beamer, 2016), the importance of which have all subsequently
been verified as protective in humans (Fortin et al., 2007; Keane
et al., 2001).

Some laboratory mouse strains demonstrate variable, ge-
netically determined susceptibility to TB (Kramnik and Beamer,
2016; Meade and Smith, 2025). The TB-susceptible C3HeB/Fe]
strain develops high lung bacterial burdens and necrotic lesions
with progressive disease resembling human TB pathology (Irwin
et al., 2015; Kramnik et al., 2000). Intense research activity was
triggered upon identification of a neutrophil-driven type I IFN-
inducible signature in the whole blood of active TB patients
(Berry et al., 2010; O’Garra et al., 2013), which we have recently
reported to be recapitulated in the blood of M. tuberculosis-in-
fected C3HeB/Fe] mice (Moreira-Teixeira et al., 2020b). We have
subsequently shown that sustained type I IFN signaling resulted
in increased bacterial growth and disease severity in these
highly TB-susceptible mice (Moreira-Teixeira et al., 2020a).
C57BL/6 mice bearing a susceptibility locus from C3HeB/Fe]
mice also displayed type I IFN-dependent increases in lung pa-
thology and bacterial loads (Ji et al., 2019), as did mice with a
knockout targeting the Spl40 gene, which lies within this locus
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(Ji et al,, 2021). A further report demonstrated that recruited
monocyte-derived macrophages (MDMs) are both major pro-
ducers of—and responders to—type I IFNs in Sp140~/~ C57BL/6
mice, at a time point by which extensive lung pathology had
developed (Kotov et al., 2023). In contrast, little to no effect of
IFNap receptor (IFNAR) deletion in wild-type C57BL/6 mice has
been reported during aerosol M. tuberculosis infection (Desvignes
et al.,, 2012; Ji et al., 2019; Mayer-Barber et al., 2011; Moreira-
Teixeira et al., 2017; Moreira-Teixeira et al., 2016; Ordway et al.,
2007).

The neutrophil-driven type I IFN-dependent blood signature,
which correlates with disease severity in human TB (Berry et al.,
2010), along with the observation of increased airway neu-
trophils in more advanced TB (Condos et al., 1998), have impli-
cated both type I IFN and neutrophils in TB pathogenesis.
Moreover, pulmonary neutrophilic inflammation is observed
during established TB in multiple susceptible mouse models, in
which disease can be ameliorated by neutrophil depletion (Keller
et al., 2006; Kimmey et al., 2015; Moreira-Teixeira et al., 2020a;
Nandi and Behar, 2011), consistent with a pathogenic role for
neutrophils in the context of failed immune control of M. tu-
berculosis. Neutrophils are highly permissive to M. tuberculosis
replication (Lovewell et al., 2021) and are the most abundant
infected cells in respiratory samples from active human TB (Eum
et al., 2010). However, the mechanisms by which neutrophils
promote TB pathogenesis over the course of infection are in-
completely understood. Type I IFN-induced neutrophil extra-
cellular trap (NET) formation in vivo in M. tuberculosis-infected
C3HeB/Fe] mice (Moreira-Teixeira et al., 2020a) and type I IFN-
induced NET release induction of M. tuberculosis replication in
neutrophils in vitro (Sur Chowdhury et al., 2024) have been
reported. However, whether type I IFN more broadly affects
neutrophil recruitment, activation, and cell-cell interactions or
spatial organization in TB lesions is unclear.

We report here using bulk and single-cell RNA-sequencing
(scRNA-seq) that C57BL/6 mice unexpectedly display higher
expression of type I IFN-inducible genes in lungs as compared
with highly susceptible C3HeB/Fe] mice at early time points
after M. tuberculosis infection. This was accompanied by in-
creased early bacterial loads and lesion formation in infected
C57BL/6 mice, prior to the accumulation of large numbers of
effector CD4* T cells in lung lesions and their eventual superior
control of infection. Analyses of scRNA-seq data revealed in-
creased early numbers of MDMs and Ifng-expressing CD4*
T cells in lungs of M. tuberculosis-infected C57BL/6 mice,
whereas C3HeB/Fe] mice had delayed MDM accumulation ac-
companied by large numbers of inflammatory neutrophils.
Using multiplex immunofluorescence, we identify an inverse
relationship between CD4* T cells and neutrophils within lung
lesions that is dynamic over the first weeks of infection and
dependent on early type I IFN signaling in both C57BL/6 and
C3HeB/Fe] mice. Suppression of type I IFN-dependent neutro-
phil responses facilitated CD4* T cell accumulation within TB
lesions, with type I IFN signaling impeding early M. tuberculosis
control in both mouse strains. This study provides a valuable
resource for understanding the establishment of protective and
failed immune responses to M. tuberculosis and highlights the
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importance of understanding neutrophil and T cell dynamics
and the effects of type I IFN on neutrophils and macrophage-
CD4* T cell interactions in the lung at early stages of infection.

Bulk and scRNA-seq gene expression datasets presented here
on potential pathways of protection and pathogenesis in ex-
perimental mouse TB models are easily accessible as a re-
source using an online web app: https://ogarra.shinyapps.io/
earlymousetb/.

Results

Earlier immune response following M. tuberculosis infection in
C57BL/6 compared with TB-susceptible C3HeB/FeJ mice

The primary aim of this study was to identify early differences in
the immune response to M. tuberculosis infection, preceding
distinct disease outcomes and immune responses previously
observed during established disease (Moreira-Teixeira et al.,
2020b). To this end, relatively TB-resistant C57BL/6 and highly
susceptible C3HeB/Fe] mice were analyzed over the first weeks
of infection with the highly virulent lineage 2 W/Beijing strain of
M. tuberculosis HN878, based on our previous report that the
blood signature of active TB is recapitulated in C3HeB/Fe], but
not C57BL/6, mice infected with this M. tuberculosis strain
(Moreira-Teixeira et al., 2020b). C57BL/6 mice displayed an
initial spike in lung bacterial burden by 21 days after infection,
followed by partial control, while, as expected, TB-susceptible
C3HeB/Fe] mice failed to control HN878 infection by the later
day 26 time point (Moreira-Teixeira et al., 2020a) (Fig. 1 a; and
Fig. S1, a and b). Unexpectedly, higher lung bacterial loads were
observed in C57BL/6 as compared with C3HeB/Fe] mice at
14 days after infection (Fig. 1 b), which were not accounted for by
differential M. tuberculosis uptake during aerosol infection (Fig.
S1, a and b), instead suggestive of differences in the very early
response to infection between these mouse strains. To verify
that this result was not specific to HN878 infection, we addi-
tionally infected C57BL/6 and C3HeB/Fe] mice with two lineage 4
isolates, 6C4 and 412, known to cause severe and mild TB, re-
spectively, in humans (Sousa et al., 2020). Lower lung bacterial
burdens were detected in C3HeB/Fe] than C57BL/6 mice at
14 days after infection with both 6C4 and 412 (Fig. 1b). The mild
412 isolate showed the most modest difference in day 14 CFU
between mouse strains, suggesting that the magnitude of early
differences in lung bacterial burden between C57BL/6 and
C3HeB/Fe] mice may be influenced to some extent by the M.
tuberculosis strain.

To broadly examine the early pulmonary immune response
to M. tuberculosis infection in C57BL/6 and C3HeB/FeJ mice, bulk
RNA-seq was performed on whole lung tissue and total bron-
choalveolar lavage (BAL) cells at 14 and 21 days after infection
with HN878 and compared with respective uninfected controls.
Globally, both lung and BAL analyses revealed a much more
pronounced early transcriptional response of immune activa-
tion in C57BL/6 than C3HeB/Fe] mice (Fig. 1, c-f), with only
minor changes in gene expression compared with uninfected
controls in C3HeB/Fe] mice at 14 days after infection. Using
k-means clustering to reveal patterns of differential gene ex-
pression changes over time in infected mice, we observed that
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Figure 1. Increased M. tuberculosis load and earlier immune response in C57BL/6 as compared with TB-susceptible C3HeB/Fe}-infected mice. (a and
b) C57BL/6 and C3HeB/Fe) mice were aerosol infected with the indicated M. tuberculosis strains, and M. tuberculosis CFUs in lung tissue were determined at the
indicated time points. Data in a and b are from single experiments with N = 5 mice per group and are representative of a minimum of two independent ex-
periments. Statistical analysis: (a) two-way ANOVA with Holm-Sidak post hoc test; (b) unpaired t test for HN878 and 6C4, unpaired t test with Welch’s
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correction for 412; *, P < 0.05; ***, P < 0.001; ****, P < 0.0001. (c-f) Bulk RNA-seq was performed on whole lung tissue and whole BAL cell pellets from mice
infected with HN878 at the indicated time points, as compared with uninfected controls. (c and e) Principal component analysis of all protein-coding, im-
munoglobulin, and T cell-receptor genes in bulk RNA-seq data from whole lung tissue and whole BAL cell pellets. (d and f) All DEGs in whole lung and BAL at
any time point compared with the respective uninfected controls were subjected to k-means clustering. Clusters are annotated based on representative
hallmark genes and pathways. Data in c-f are from a single bulk RNA-seq experiment with N = 5 mice per group. See also Fig. S1, a and b.

clusters of enriched genes related to macrophage activation, pro-
inflammatory cytokine signaling, and antigen presentation were
increased from day 14 in C57BL/6 mice, but not until the later day
21 time point in C3HeB/Fe] mice (Fig. 1 d, clusters 7 and 5). Ex-
pression of genes associated with effector T cells, including Ifng,
Cd4 or Cd3g and Cxcr3, as well as some type I IFN-stimulated
genes (ISGs), was increased earlier and to a greater degree in
C57BL/6 than in C3HeB/Fe] mice (Fig. 1, d and f). Conversely,
gene clusters showing the highest expression in C3HeB/FeJ] mice
were only substantially increased by 21 days after infection and
were dominated by neutrophil and inflammatory myeloid-
associated genes such as Ly6g, Cxcr2, S100a8, and S100a9
(Fig. 1d, cluster 6; Fig. 1f, cluster 5). Together, our initial analysis
indicated that C57BL/6 mount a more rapid pulmonary immune
response to M. tuberculosis infection than C3HeB/Fe], with a
greater contribution from effector T cells and activated
macrophages.

Neutrophils are recruited to lungs of both C57BL/6 and C3HeB/
FeJ mice following M. tuberculosis infection, while MDM and
CD4* T cell accumulation is delayed in C3HeB/Fe) mice

To verify our bulk RNA-seq findings at the cellular level, we
performed flow cytometry analysis of major leukocyte pop-
ulations in lungs from C57BL/6 and C3HeB/Fe] mice at early time
points following HN878 infection (Fig. S1, c-e). Total lung neu-
trophil numbers were increased to a comparable degree by
21days after infection in both mouse strains early during HN878
infection (Fig. 2 a, left), which was unexpected in light of the
established pathogenic role of neutrophils in TB-susceptible
mice, including C3HeB/Fe], at the peak of disease (Keller et al.,
2006; Kimmey et al., 2015; Moreira-Teixeira et al., 2020a; Nandi
and Behar, 2011). In contrast, C57BL/6 mice displayed greater
early accumulation of Siglec F- CD11b* MDMs than C3HeB/Fe]
mice, which was particularly pronounced for the MHC-II* subset
(Fig. 2 a, central two panels; Fig. S1 c), likely representing more
mature and/or activated cells. It is likely that the MHC-II- Ly6C*
subset of MDMs includes differentiating recruited monocytes
that have upregulated macrophage markers. This was accom-
panied by far greater early increases in total (Fig. S1f) and CD44*
CD62L- CD4* T cells (Fig. 2 a, right panel) in C57BL/6 mice. The
limited early pulmonary CD4* T cell response in C3HeB/Fe] mice
was not due to an absence of live M. tuberculosis in lung-draining
lymph nodes for T cell priming, since viable M. tuberculosis was
detectable in both C57BL/6 and C3HeB/Fe] mice at 14 days after
infection with HN878 (Fig. Sl g). However, an earlier immune
response in lung-draining lymph nodes—as measured by total
cellularity and CD44* CD62L- CD4* T cell numbers— was ap-
parent at 14 days after infection in C57BL/6 than in C3HeB/Fe]
mice, with similar responses detectable in both mouse strains by
day 20 (Fig. S1, h and i).
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Comparable results were observed in confirmatory infection
experiments with the lineage 4 clinical isolates 6C4 and 4I2
(Fig. 2, b and c). Both C57BL/6 and C3HeB/FeJ mice accumulated
lung neutrophils by 28 days after infection, with greater neu-
trophil numbers in C3HeB/Fe] than C57BL/6 mice following 412
infection (Fig. 2, b and c, left panels). The greater early accu-
mulation of total and MHC-II* MDMs in C57BL/6 mice was re-
capitulated in these models (although identified using a distinct
gating strategy from HN878, Fig. S1 d) from days 21 and 28 for
the 6C4 and 412 infections, respectively (Fig. 2, b and c, central
two panels). This was accompanied by markedly increased total
(Fig. S1 f) and CD44* CD62L- CD4* T cell (Fig. 2, b and c, right
panels) numbers in lungs of C57BL/6 than C3HeB/Fe] mice by
28 days after infection with 6C4 or 412.

Thus, independently of the infecting M. tuberculosis strain,
both C57BL/6 and C3HeB/Fe] mice recruit neutrophils to the
lung in the first weeks after infection. However, the eventual
superior control of M. tuberculosis infection in C57BL/6 mice is
preceded by earlier accumulation of lung MDMs and a more
rapid and pronounced CD4* T cell response than in C3HeB/
Fe] mice.

scRNA-seq reveals clusters of MDMs and IFN-y-expressing
effector CD4* T cells that accumulate early following M.
tuberculosis infection in C57BL/6 mice

We next interrogated the precise cellular sources of the distinct
early transcriptional responses observed in C57BL/6 and C3HeB/
FeJ] mice by performing scRNA-seq on enriched CD45* lung
leukocytes over the key early window of 14-20 days after in-
fection, as compared with uninfected controls. A total 0f197,530
cells was obtained from all samples after filtering, from which a
total of 20 leukocyte clusters were derived (Fig. 3 a and Fig. S1j)
and annotated using the clustifyr package, with additional
manual annotation guided by published literature.

Two clusters of alveolar macrophages were annotated, the
smaller of which had a signature of proliferation and increased
modestly in relative abundance with infection in both C57BL/6
and C3HeB/Fe] (Fig. 3, a and ¢; and Fig. S1, j and k). The non-
proliferating alveolar macrophage cluster decreased in relative
abundance during infection, reflecting the influx of recruited
leukocytes, with a significant decrease in these cells in C57BL/6
mice by day 20 (Fig. 3 c; and Fig. S1, j and k). Three further
clusters with monocyte and macrophage transcriptional profiles
were identified, likely comprising both monocytes and MDMs
(Fig. 3, a and c; and Fig. S1, j and k). Consistent with flow cy-
tometry data, the relative abundance of these “macrophage/
monocyte” clusters was more markedly increased at 14 days
after infection in C57BL/6 as compared with C3HeB/FeJ mice,
with scRNA-seq further revealing the macrophage/monocyte
1 and, to a lesser extent, macrophage/monocyte 2 cluster, to

Journal of Experimental Medicine
https://doi.org/10.1084/jem.20250466

4 0f 28



e

2 ]EM
D
03'-

| M. tuberculosis HN878 infection |

a MDM (MerTK* CD64" CD11b* Siglec F’)
Neutrophils Total MHC-II* CD44* CD62L" C57BLI/6
o 81 s 12+ sokok 10+ Kk 10+ CD4* T cells QO Uninfected
=  p— 1 skdkokk  kkkok
5 . ns of HHEE bk ol sk Ak O @ Infected
=7 } . 11 ns C3HeB/FeJ
2 6 © 6 6} [Juninfected
2 4 L B e ® - ) 4] ° M infected
z o ' 8 i —1 8 * S 009
8 o4 =g B 3
€ 29 u B 21 e 2 o
AR LR v T |
© 0-Yy @? T a rT— O- 0- l 0-
Days post-Un.7 1421 Un.71421  Un.71421 Un.71421  Un.71421 Un.7 1421 Un.7 14 21 Un.7 14 21
infection
| M. tuberculosis 6C4 infection |
MDM (F4/80" CD11b* Siglec F’)
b Neutrophils Total MHC-II* cD44* cpe2L” CS57BLI6
o5 10- *kokk 8- 10~ CcD4* T cells QO Uninfected
8 ok *okokok *%%k% @ Infected
Qo . 8-
> s 89 Hdokk 6- * 0.07 C3HeB/FeJ
21 e [ sk - 8 KkkK 6 sekokek [Juninfected
e ’_\ = 8 4 ® Ol M infected
- 4
x H 47 0.11
2957 % 1] LI L g 0.09 §
S logs® fE 2 U et |
00 O Os” 0- 8 0- : . 0-
Days post- Un 14 2126 Un.14 2138 Un14 2128 Unt4 2128 Un 142128 Un142128  Un. 142128 Un142128
infection
| M. tuberculosis 412 infection |
C MDM (F4/80* CD11b* Siglec F") CD44* CD62L"
1 5m Neutrophlls 8 Total 6 MHC_"+ 8- CD4* T cells C57BLI/6
2 Kk QO Uninfected
s Fekkk © Infected
o i ST Akokk 6 sokokok
51.0- ] 4+ I~ C3HeB/FeJ
= B o ;
g ok g 4 4 g |:|Un|nfected
=< u ol .Infected
=05 o O 9 24 *
£ o8 |u o Al oo [
5 o 88 Q0 l o o)
8 Ell 88 B
0.0 0"$—|—|—|—E“-|— 0' 0-
Days post- Un142128 Un142128  Un142128 Un142128  Un142128 Un142128  Un142128 Un142128
infection

Figure 2. Neutrophils are recruited to lungs of both C57BL/6 and C3HeB/Fe) mice, while macrophage and CD4* T cell accumulation is delayed in TB-
susceptible C3HeB/FeJ mice. (a-c) C57BL/6 and C3HeB/Fe] mice were aerosol infected with (a) HN878, (b) 6C4, or (c) 412 M. tuberculosis strains, and numbers
of neutrophils (Ly6GMCD11bMCD45"), total and MHC-II* MDMs (HN878: Siglec F~ Ly6G~ CD11b*CD64*MerTK*CD45*; 6C4/412: Siglec F~ Ly6G- CD11b*F4/
80*CD45"), and CD44*CD62L- CD4* T cells (CD3e*CD45") in lung tissue were determined by flow cytometry. Flow cytometry gating was performed as
represented in Fig. S1, c—e. Points show individual replicate mice with lines at the mean. Statistical testing: two-way ANOVA with Holm-Sidak post hoc test;
actual adjusted P value are shown or: ¥, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant. Data shown are from a single experiment per
M. tuberculosis strain with N = 3-5 mice per group and are representative of a minimum of two independent experiments. See also Fig. S1, c-i.

underpin the earlier increase in C57BL/6 mice (Fig. 3 c and Fig. monocyte transcriptomes, respectively (Fig. S1 m), suggesting
S1, j-1). Comparison of our scRNA-seq clusters to InmGen lung  that these clusters represent monocytes, which may have mi-
macrophage and blood monocyte signatures (Gautier etal., 2012)  grated into the lung, and/or less mature MDMs.

indicated that the macrophage/monocyte 1 cluster had the Two distinct neutrophil clusters were identified, which dif-
greatest similarity to steady-state lung CD11b* macrophages, as  fered in their expression of several marker genes, suggestive of
well as similarity to Ly6C*MHC-II* blood monocytes (Fig. Sim), different populations or functional states (Fig. 3, a and b). Both
consistent with these representing the most mature and/or ac- neutrophil clusters increased in abundance as infection pro-
tivated MDMs in our dataset. The macrophage/monocyte2and 3  gressed in both strains of mice (Fig. 3 ¢; and Fig. S, j and k),
clusters showed the greatest similarity to Ly6C* and Ly6C-blood  recapitulating flow cytometry results (Fig. 2 a). The neutrophil
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Figure 3. scRNA-seq reveals earlier increases in monocyte-derived cell and effector CD4* T cell subsets in relatively TB-resistant C57BL/6 mice.
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from uninfected controls, fixed, cryo-preserved, and subsequently pooled for scRNA-seq. (a) UMAP of integrated and clustered data from all experimental
groups (N = 3 per group); cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell. (b) Dot plots showing relative expression of selected marker genes
in two neutrophil scRNA-seq clusters. Circle sizes represent the abundance of cells expressing the marker gene, as a percentage of all cells in the cluster within
all samples in the analysis. Circle color is proportional to the mean expression of the gene within all cells in the cluster. (c and d) Differential abundance analysis
of (c) myeloid cell clusters and (d) T and NK cell clusters in the different conditions in C57BL/6 and C3HeB/Fe] mice, compared with their respective uninfected
controls, as determined by Dirichlet-multinomial regression. *, P < 0.05; **, P < 0.001. Points show individual replicate mice with bars at the mean + standard
error. Data shown are from a single scRNA-seq experiment with N = 3 mice per group. See also Fig. S1, j-n.

1 cluster was similarly abundant in C57BL/6 and C3HeB/Fe] mice
at 14 days after infection but then increased further in C3HeB/
Fe] mice by day 20 (Fig. 3 c and Fig. SI, j-1). In contrast, the
neutrophil 2 cluster was more abundant in C57BL/6 than C3HeB/
Fe] mice at day 14 but then strikingly increased to represent a
greater proportion of lung leukocytes in C3HeB/FeJ mice by day
20 (Fig. 3 c and Fig. S1, j-1), suggesting that this cluster is asso-
ciated with progression toward more severe TB disease. Ac-
cordingly, neutrophil 2 expressed higher levels of cytokine and
chemokine genes, such as Cxcl2, Ccl3, Ccl4, and Tnf, but slightly
lower expression of hallmark neutrophil marker genes Mmp9,
Lyég, S100a8, and S100a9 than neutrophil 1 (Fig. 3 b), consistent
with a more pro-inflammatory and potentially pathogenic neu-
trophil population.

Seven major T and natural killer (NK) cell clusters were
identified (Fig. 3 a and Fig. S1j), including a population resem-
bling naive, circulating CD4* T cells (T cell CD4 Ccr7; Fig. S1 n)
that decreased in frequency as infection progressed in both
mouse strains, albeit earlier in C57BL/6 mice (Fig. 3 d; and Fig.
S1, j and k). In contrast, the T cell CD4 Ifng and T/NK Prolif
clusters increased in frequency earlier and to a greater degree
during infection in C57BL/6 than C3HeB/FeJ mice (Fig. 3 d and
Fig. S1, j-1). We observed these populations to have the highest
Ifng expression among T cell clusters, consistent with effector
CD4 T cell identity (Fig. S1 n), although the T/NK Prolif cluster,
which had a clear signature of proliferation (Fig. S1 n), also en-
compassed a small proportion of cells clustering with NK cells
(Fig. 3 a). No clear differences in the changes in relative abun-
dance during infection were observed between mouse strains for
the small Il17a-expressing T cell 1117 cluster; the T cell CD4 Foxp3
cluster, likely reflecting regulatory T cells; or the CD8 T cell and
NK/ILC1 clusters (Fig. 3 d; and Fig. S1, j, k, and n).

Thus, our initial scRNA-seq analysis showed that the en-
hanced early immune response to M. tuberculosis in relatively
TB-resistant C57BL/6 mice is distinguished by accumulation of
mature/activated MDMs and IFN-y-producing effector T cells,
with limited progression of the pro-inflammatory neutrophil
response, while neutrophil activation is exacerbated as infection
progresses in C3HeB/FeJ mice.

Chemokine signals favoring neutrophil, rather than T cell,
recruitment dominate lungs of TB-susceptible mice early in
infection

We next leveraged our scRNA-seq dataset to predict cell-to-cell
interactions occurring in resistant and susceptible mice at early
time points after infection, using the R package CellChat, which
infers active cell-to-cell interactions based on ligand and re-
ceptor gene expression (Jin et al., 2021). CellChat predicted al-
veolar macrophages and B cells as the most likely sources of cell-
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cell interaction signals in naive lungs from both C57BL/6 and
C3HeB/Fe] mice (Fig. 4 a), reflecting the relative abundance of
these cell populations in lungs prior to infection (Fig. 3 c; and Fig.
S1, j and k). By 14 days after infection in C57BL/6 mice, sub-
stantial interaction activity was predicted from the macrophage/
monocyte 1 and 2 clusters, signaling toward neutrophil and
T cell populations (Fig. 4 a). The strength of these inferred
macrophage-T cell interactions was further increased in C57BL/
6 mice by 20 days after infection, while inferred macrophage-
neutrophil interactions remained comparable with day 14 (Fig. 4
a). Inferred cell-cell interactions in C3HeB/Fe] mice at 14 days
after infection were similar to those in uninfected controls,
consistent with their limited early pulmonary immune re-
sponse, although inferred signaling from alveolar macrophages
to the neutrophil 1 and macrophage/monocyte 2 and 3 clusters of
monocyte-like cells was modestly increased, suggestive of an
early innate response to infection (Fig. 4 a). Inferred interaction
strength in C3HeB/Fe] mice increased substantially by 20 days
after infection but was dominated by predicted signaling of
macrophage/monocyte 1 and 2 and alveolar macrophage clusters
to neutrophils, including the pro-inflammatory neutrophil 2
cluster, as well as interactions within these cell clusters, with
relatively little signaling to T cells predicted compared with
C57BL/6 mice (Fig. 4 a).

We further interrogated our CellChat results by pathway
analysis, identifying pathways with predicted differential ac-
tivity in C57BL/6 and C3HeB/Fe] mice at each time point. Several
pathways identified reflected differential expression of ligand
genes in macrophage populations between the mouse strains
across all time points, suggestive of genetically determined di-
versity (Data SI a). These included Apolipoprotein E, with
broadly higher Apoe expression observed in C57BL/6 mice,
whereas expression of ligand genes for the SPP1, sialoadhesin,
and annexin pathways was higher in C3HeB/Fe] mice, including
within alveolar macrophages (Data S1, a-d). Focusing on path-
ways with predicted differential activity during infection, the
CXCL chemokine CellChat pathway was of particular interest,
with higher predicted activity in C57BL/6 mice at day 14 and,
subsequently, higher activity in C3HeB/FeJ mice at day 20 (Data
S1 a), which was driven predominantly by four receptor/ligand
pairs (Fig. S2 a). Signaling of CXCL9 and CXCL10 via CXCR3, a
well-established axis in T cell recruitment, particularly Thi cells
(Karin, 2020), was predicted to be elevated earlier and to a
greater degree in C57BL/6 than C3HeB/FeJ mice (Fig. 4 b and Fig.
S2 a). Similar results were inferred for the CXCL16-CXCR6 axis
(Fig. 4 b and Fig. S2 a), which is involved in localization of T cells,
particularly T-resident memory cells, within tissues (Mabrouk
etal., 2022). Predicted signaling for both pathways was strongest
from the macrophage/monocyte 1 MDM cluster to the T cell
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Figure 4. Myeloid-T cell chemokine interactions dominate lungs of C57BL/6 mice, while neutrophil recruitment is favored in TB-susceptible C3HeB/
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is proportional to cell type/cluster abundance. (b) Bar plots showing the relative contribution of the indicated receptor/ligand pairs to total inferred interaction
activity in each group. (c) DESeq2-normalized expression values of the indicated chemokine genes from bulk RNA-seq analysis of whole lung tissue. Points
show individual replicate mice with lines at the mean. Statistical analysis: two-way ANOVA with Holm-Sidak post hoc test; ¥, P < 0.05; ***, P < 0.001; ****, P <
0.0001. (d) Dot plots showing expression of the indicated genes in myeloid cell populations in scRNA-seq data. Circle sizes represent the abundance of cells
expressing the gene, as a percentage of total cells. Circle color is proportional to the mean expression of the gene within all cells in the cluster. Data in panels a,
b, and d are from a single scRNA-seq experiment, with plots showing combined data from cells from N = 3 mice per group. Data in panel c are from a single bulk

RNA-seq experiment with N = 5 mice per group. See also Data S1 and Fig. S2.

CD4 IFN-y cluster (Fig. S2 a), supporting a role in mediating
protective MDM-CD4* T cell interactions in relatively TB-
resistant mice. Accordingly, expression of Cxcl9, Cxcll0, and
Cxcll6 was increased earlier, at 14 days after infection in lungs of
C57BL/6 compared with C3HeB/Fe] mice (Fig. 4 c), with ex-
pression most pronounced in macrophages, conventional den-
dritic cells (cDCs), and, in the case of Cxcl10, neutrophils (Fig. 4 d
and Fig. S2 b). CellChat-predicted pathway activity is in part
influenced by abundance of sending and receiving cell pop-
ulations. However, we also found the average expression of Cxcl9
and Cxcll0 to be higher in macrophage clusters from C57BL/6
compared with C3HeB/Fe] mice (Fig. S2 b), suggesting that both
MDM abundance and the relative expression of these chemo-
kines by MDMs contribute to greater potential for MDM-T cell
interactions in the resistant mice.

While early activity of the key neutrophil-attractant CXCL2-
CXCR2 axis was predicted in C57BL/6 mice, predicted activity
did not increase further between 14 and 20 days after infection
(Fig. 4b). In contrast, inferred activity of this pathway increased
starkly to become dominant in C3HeB/FeJ] mice at 20 days after
infection (Fig. 4 b), driven by high predicted signaling activity of
Cxcl2 between neutrophils, as well as from the macrophage/
monocyte 1 and 2 clusters to neutrophils (Fig. S2 a). Expression
of Cxcl2 in whole lung tissue mirrored this trend, and scRNA-seq
confirmed the highest Cxcl2 expression to be in the inflamma-
tory neutrophil 2 cluster, although high expression was ob-
served across all monocyte, macrophage, and neutrophil clusters
(Fig. 4, c and d; and Fig. S2 b).

Increased early predicted chemokine signaling activity in
C57BL/6 mice was also predicted for the CCL pathway (Data
Sl a). Specifically, an earlier increase in the monocyte-
attractant CCL2-CCR2 axis was predicted in C57BL/6 than
C3HeB/Fe] mice (Fig. S2 c), consistent with their earlier
accumulation of MDMs during infection (Fig. 2 a and Fig. 3 c).
Greater CCL5 activity was predicted in C57BL/6 mice at
20 days after infection, whereas predicted activity of the
chemokines CCL6, CCL9, CCL3, and CCL4 was highest in
C3HeB/Fe] mice by 20 days after infection (Fig. S2 c). Ac-
cordingly, we observed Ccl3 and Ccl4 to be highly expressed
in the pro-inflammatory neutrophil 2 cluster (Fig. 3 b) that
is highly abundant in C3HeB/Fe] mice at this time point
(Fig. 3 c and Fig. S1, j-1). Kinetics of expression of CCL
chemokines in whole lung tissue was consistent with these
differential findings in C57BL/6 and C3HeB/Fe] mice (Fig.
S2d).

Collectively, using bulk and scRNA-seq data, we have shown
dynamic and distinct lung chemokine expression in C57BL/6 and
C3HeB/Fe] mice in the first weeks of infection. While C57BL/6
mice expressed Cxcl9, Cxcll0, and Cxcll6, favoring T cell
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recruitment, C3HeB/FeJ mice expressed late and higher levels
of pro-inflammatory chemokines Cxcl2, Ccl3, and Ccl4, corre-
sponding to their sharp increase in inflammatory neutrophils.

Neutrophils are spatially segregated from CD4* T cells in TB
lesions and dominate early lesions in TB-susceptible mice

The observation that MDMs and neutrophils displayed distinct
early chemokine expression in M. tuberculosis-infected C57BL/6
and C3HeB/Fe] mice prompted us to investigate leukocyte in-
filtration into the developing lung lesions. Using multiparameter
immunofluorescence staining, we first examined the overall
distribution of pathology across lung tissue, identifying TB le-
sions as clusters of CD68* macrophages in lung parenchyma. By
14 days after infection, we observed large numbers of early le-
sions in C57BL/6 mice, but far fewer lesions in C3HeB/Fe] mice
(Fig. 5, a and b; and Fig. S3 a), consistent with the increased
MDM numbers observed at this time point in C57BL/6 in whole
lungs (Fig. 2 a and Fig. 3 c). Despite their reduced frequency in
C3HeB/Fe] mice, the median size of lesions detected at day 14
was similar in both mouse strains (Fig. 5, c and d). By 21 days
after infection, comparable lesion numbers were observed in
both mouse strains, with generally larger lesions observed in
C3HeB/FeJ mice (Fig. 5, a-c and Fig. S3 a).

We next assessed leukocyte composition of early TB lesions,
using Ly6G as a marker of neutrophils and CD4, CD8a, and B220
as markers of CD4"* T cells, CD8* T cells, and B cells, respectively
(Fig. 5 d and Fig. S3 b). Even at the early day 14 time point, we
observed greater density of lymphocytes within TB lesions of
C57BL/6 than C3HeB/FeJ mice (Fig. 5, d and e). By day 21, there
was a much more pronounced increase in CD4* T cells in C57BL/
6 mice (Fig. 5, d and e). Greater CD4* T cell abundance was ob-
served across whole lung tissue of infected C57BL/6 mice, as well
as in TB lesions (Fig. S3 c). The greater CD4* T cell density in
early C57BL/6 lesions resulted in more extensive interactions
between CD4* T cells and CD68* macrophages (Fig. 5 f), con-
sistent with increased potential for protective immune cell in-
teractions in the C57BL/6 lesions.

We observed heterogeneity in the degree of Ly6G staining
coverage between lesions within individual mice at these early
time points. Most C57BL/6 mouse lesions displayed relatively
low coverage with Ly6G staining, whereas almost all C3HeB/Fe]
lesions had intermediate to high Ly6G coverage, suggestive of
large aggregates or swarms of neutrophils, by 21 days after in-
fection (Fig. 5, d and h) during their progression to severe dis-
ease. CD4" T cells showed minimal co-localization with areas of
extensive Ly6G staining within lesions (Fig. 5, d, h, and i). Ac-
cordingly, a clear inverse relationship was observed in lesions
from C57BL/6 mice, with higher CD4* T cells numbers observed
in Ly6G-low lesions than in the minority with high Ly6G
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time points. (a) Representative low-power images of lung lobes, showing distribution of lesions. White boxes indicate areas at days 14 and 21 shown at greater
magnification in panel d. The images from days 14 and 21 are reproduced in Fig. S3 a, along with those from the other replicate mice at these time points. Scale
bars = 1 mm. (b) Quantification of numbers of lesions in whole lungs, normalized for tissue area. (c) Median area of lesions detected per mouse. (d) Rep-
resentative images of lesions at 14 and 21 days after infection, showing allimmune cell markers. Images are shown at different scales to aid visualization (day 14
scale = 20 um; day 21 scale = 50 um). (e) Number of cells positive for the indicated markers within lesions, normalized for the total area of all lesions.
(f) Numbers of CD4* T cells in contact with a macrophage annotation (<0 um distance), normalized for the total area of all lesions. (g) Stacked bar plots showing
percentages of lesions across whole lungs falling into low (<20%), intermediate (Int, >20% <40%), or high (Hi, >40) bins for coverage with Ly6G staining. Data
shown are means + standard error of all mice with detectable lesions (N = 3 for day 14 C3HeB/FeJ; N = 4 for others). (h) Representative images showing the
relative distribution of CD4* T cells and Ly6G staining in lesions with low and high Ly6G coverage. Scale bar = 50 pm. (i) Number of CD4* T cells within lesions in
the different Ly6G coverage bins at 21 days after infection, normalized for the total area of lesions analyzed per bin. Plots in b, ¢, e, f, and i show points
representing all individual replicate mice with detectable lesions, with lines at the mean. Data shown are from a single experiment with N = 4 mice per group and
are representative of two independent experiments. Statistical analysis: b, ¢, and e, two-way ANOVA with Holm-Sidak post hoc test; f, unpaired t test; g,
Dirichlet-multinomial regression, with the indicated P values corresponding to the mouse strain effect on frequency of Ly6G-high lesions; i, one-way ANOVA

with Holm-Sidak post hoc test. Actual adjusted P values are shown or: ¥, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. See also: Fig. S3, a-c.

coverage (Fig. 5, h and i). CD4* T cell numbers were lower in all
lesion classes from C3HeB/Fe] than from C57BL/6 mice, but
higher CD4* T cell density was observed in the minority of
smaller lesions with low Ly6G coverage compared with Ly6G-hi
lesions (Fig. 5, h and i). Together, our spatial analysis revealed
that CD4* T cells are underrepresented in neutrophil-dense le-
sion areas and that the low effector CD4* T cell numbers ob-
served in lungs of M. tuberculosis-infected C3HeB/Fe] mice is
reflected in the rapid domination of lesions by neutrophil-dense
pathology, with a marked failure to accumulate CD4* T cells in
the vicinity of infected cells.

Neutrophils limit macrophage activation and CD4* T cell
accumulation in lungs of TB-susceptible mice

Given the relative paucity of CD4* T cells in lung lesion areas
high in neutrophils, we next asked whether the absence of
neutrophils would allow greater CD4* T cell infiltration of le-
sions and activation of macrophages in C3HeB/Fe] mice. To
address this, we administered anti-Ly6G or isotype control
antibodies from around the point of early lesion formation in
C3HeB/Fe] mice, with neutrophil depletion confirmed by
marked reduction of SI00A9* cells in lungs (Fig. 6, a and b).
Consistent with previous data (Moreira-Teixeira et al., 2020a),
anti-Ly6G treatment substantially reduced lung bacterial burden
at the peak of disease at 26 days after infection, and we addi-
tionally observed an earlier reduction at 20 days after infection
in the neutrophil-depleted mice (Fig. 6 c). Protection of anti-
Ly6G-treated mice was accompanied by an increase in total
MDM numbers at 20 and 26 days after infection (Fig. 6 d). MDMs
with aless mature, inflammatory monocyte-like, Ly6C* MHC-II-
surface phenotype were increased at day 20 but decreased at day
26 in anti-Ly6G-treated compared with control antibody-treated
mice, whereas MHC-II* MDMs were more abundant at both time
points (Fig. 6 d), suggestive of increased activation of incoming
MDMs to an MHC-II* phenotype with time during infection in
the context of neutrophil depletion.

Increased MDM activation coincided with significantly in-
creased numbers of CD44*CD62L-CD4* T cells in lungs of anti-
Ly6G-treated mice compared with isotype controls by 26 days
after infection (Fig. 6 e) and increased frequency of CD4" T cells
within lung lesions as early as 20 days after infection, which was
greatly augmented by day 26 (Fig. 6, f and g). Total lung CD4*
T cell numbers were also increased in whole lung with
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neutrophil depletion, but this occurred later than in the lesions,
increasing with neutrophil depletion at day 26 but not day 20
(Fig. S3 d). The number of CD4* T cell-macrophage contacts were
also increased at day 26 in lesions of anti-Ly6G-treated mice
(Fig. 6 h). Thus, in the absence of neutrophils, C3HeB/Fe] mice
form more extensive CD4* T cell-macrophage interactions in
lesions and show evidence of increased MDM activation.

C57BL/6 mice display a higher early lung type I IFN response
signature than C3HeB/Fe) mice during M. tuberculosis
infection, accompanying that of protective cytokines
To identify possible pathways underpinning the earlier and
more pronounced protective immune response in C57BL/6 mice,
we examined known protective cytokine pathways in our bulk
and scRNA-seq data. Our CellChat pathway analysis predicted
much stronger TNF pathway signaling at 14 days after infection
in C57BL/6 compared with C3HeB/Fe] mice, with comparable
signaling strength predicted in the two strains by day 20 (Data S1
a). Accordingly, Tnf expression in whole lung was increased
earlier in C57BL/6 mice but reached similar levels by 3 wk after
infection, a pattern also observed for the protective cytokine Illb
(Fig. 7 a). However, predicted sources of TNF differed greatly
between mouse strains, with the pro-inflammatory neutrophil
2 cluster dominating in C3HeB/FeJ mice, whereas Tnf expression
in C57BL/6 mice derived from a combination of neutrophil 2,
macrophage/monocyte 1, and T cell CD4 Ifng effector T cells
(Fig. 7 b; and Fig. S4, a and b). Thus, TNF-a signaling likely op-
erates distinctly in the contexts of protection and pathogenesis.
Significantly higher activity of the type II IFN (IFN-y) path-
way was inferred from scRNA-seq data in C57BL/6 than C3HeB/
FeJ] mice from 14 days after infection (Data Sl a). This was re-
flected in Ifng gene expression in lung tissue, which was in-
creased at day 14 in C57BL/6, but not C3HeB/Fe], mice and
remained higher in C57BL/6 even at 21 days after infection (Fig. 7
a). Effector CD4 T cell populations expressing IFN-y accumu-
lated at day 20 in C57BL/6 (Fig. 3 d, Fig. S, j-1, Fig. 7 b, and Fig.
S4 d) and were predicted to provide IFN-y signaling predomi-
nantly to the macrophage/monocyte 1 and 2 clusters (Fig. S4 c).
Average expression of Ifng within the T cell CD4 Ifng cluster was
also superior in C57BL/6 compared with C3HeB/FeJ mice (Fig. S4
e). We observed only very low expression of IlI7a mRNA in lungs
in all conditions analyzed, with modest induction observed at
day 21 only in C57BL/6 mice (Fig. 7 a).
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Figure 6. Neutrophil depletion increases macrophage activation and CD4* T cell numbers in lung lesions in TB-susceptible C3HeB/FeJ mice.
(a) C3HeB/Fe] mice were aerosol infected with M. tuberculosis HN878 and received intraperitoneal injection of either anti-Ly6G (aLy6G) or isotype control three
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times per week between days 12 and 25. Tissues were analyzed at 20 and 26 days after infection. (b) Representative images of SI00A9 immunohistochemistry
in lung sections at 20 days after infection, confirming neutrophil depletion in aly6G-treated mice. Scale bars = 100 pm. (c) Lung M. tuberculosis CFU counts.
(d) Numbers of total, Ly6C*MHC-II- and MHC-II* MDMs (Siglec F~ Ly6G~ CD11b*CD64*MerTK*CD45*) in lung tissue as determined by flow cytometry.
(e) Numbers of CD44* CD62" CD4* T cells (CD3e*CD45") in lung tissue as determined by flow cytometry. (f) Representative images of lung lesions showing
macrophage (CD68, magenta), CD4* T cells (CD4, green), and neutrophil (Ly6G, white) staining at 20 and 26 days after infection. Scale bars = 100 um.
(g) Number of CD4* T cells within lung lesions, normalized for the total area of all lesions across whole left lungs. (h) Numbers of CD4* T cells in contact with a
macrophage annotation (<0 pm distance), normalized for the total area of all lesions across whole left lungs. Points show individual replicate mice with lines at
the mean. Data shown are from a single experiment with N = 5 mice per group, representative of two independent experiments. Statistical analysis: (c-e) two-
way ANOVA with Holm-Sidak post hoc test; (g and h) unpaired t-test: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant. See also: Fig.

S3d.

Unexpectedly, we also observed greater expression of ISGs in
C57BL/6 mice compared with C3HeB/Fe] mice at 14 days after
infection, with a limited further increase by day 21, by which
point expression in C3HeB/Fe] had increased sharply to reach
comparable levels (Fig. 7 c). ISG expression was observed widely
across myeloid cell populations (Fig. 7 d and Fig. S5 a). Higher
early expression in C57BL/6 mice was largely due to expression
by MDMs and neutrophils, with these populations also repre-
senting the dominant ISG-expressing cells in TB-susceptible
C3HeB/Fe] mice but only at the later day 20 time point
(Fig. 7 d and Fig. S5 a). At this time point, ISG expression in
C3HeB/Fe] mice was particularly pronounced in the pro-
inflammatory neutrophil 2 cluster (Fig. 7 d and Fig. S5 a).
Thus, in contrast to the later, high and sustained type I IFN re-
sponse observed in C3HeB/Fe] mice (Moreira-Teixeira et al.,
2020b), relatively TB-resistant C57BL/6 mice display a higher
early ISG response that plateaus around the time of increased
accumulation of effector T cells in the lung at 3 wk after
infection.

Type | IFN signaling limits early M. tuberculosis control in both
C57BL/6 and C3HeB/Fe) mice, although effects in C57BL/6 mice
wane at later time points

We questioned whether the early lung type I IFN signaling ob-
served in C57BL/6 mice, preceding substantial accumulation of
CD4* T cells in the lung, could contribute to disease progression,
as in susceptible mice (Ji et al., 2019; Moreira-Teixeira et al.,
2020a), or to initiation of a protective immune response to M.
tuberculosis. Supporting a potential protective role, the type I
IFN-inducible gene Isgl5, which showed much greater induction
of expression in C57BL/6 than C3HeB/Fe] mice at 14 days after
infection (Fig. 7, c and d; and Fig. S5 a), has been implicated
in promoting the protective IFN-y response to mycobacteria
(Bogunovic et al., 2012), and type I IFN signaling offers protec-
tion against M. tuberculosis in mice lacking IFN-y signaling
(Moreira-Teixeira et al., 2016). To test whether type I IFN con-
tributed to early disease progression or protection in C57BL/6
mice, we performed transient IFNAR antibody blockade in
C57BL/6 mice over the first 2 wk of infection (t in Fig. 8 a).
Surprisingly, early IFNAR blockade was protective in C57BL/6
mice, substantially reducing lung bacterial loads at 20 days after
infection (Fig. 8 b). This protective effect was time point de-
pendent, since a much more modest reduction of lung CFU was
apparent at 28 days after infection (Fig. 8 b), even after blocking
IFNAR throughout the infection (4 in Fig. 8, aand c). Early IFNAR
blockade resulted in a reduction in lung neutrophil numbers in
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C57BL/6 mice but did not impact total numbers of MDMs or
CD44*CD62L-CD4* T cells in lungs (Fig. 8 d). However, the
Ly6C-MHC-II* subpopulation of MDMs was specifically en-
riched in the anti-IFNAR-treated C57BL/6 mice at 20 days after
infection (Fig. 8 d), suggestive of increased maturation and ac-
tivation of lung MDMs, when early type I IFN signaling is
blocked.

We previously reported that continuous IFNAR blockade of
TB-susceptible C3HeB/Fe] mice offers partial protection at the
peak of disease at 26 days after infection (Moreira-Teixeira et al.,
2020a). However, whether type I IFN signaling contributes to
susceptibility of these mice at earlier time points was unknown.
We therefore performed IFNAR blockade up to 18 days after
infection in C3HeB/Fe] mice (Fig. 8 e). Early IFNAR blockade was
sufficient to reduce lung bacterial burden at 20 days after in-
fection in C3HeB/Fe] mice, and protection was even more pro-
nounced at day 26 (Fig. 8 f), similar to previous observations
when anti-IFNAR was administered throughout infection
(Moreira-Teixeira et al., 2020a). Early IFNAR blockade did not
significantly affect total numbers of neutrophils, total MDMs, or
CD44*CD62LCD4* T cells in lungs, but LyeC-MHC-II* MDM
numbers were increased at 20 days after infection (Fig. 8 g),
mirroring results in C57BL/6 mice.

Overall, we unexpectedly observed that early type I IFN sig-
naling early during M. tuberculosis infection contributed to dis-
ease progression in relatively resistant C57BL/6 mice as well as
in highly TB-susceptible mice, although C57BL/6 mice overcome
this later in infection as the CD4* T cell response increases.
However, more pronounced, sustained, detrimental effects of
type I IFN signaling are observed at later time points in C3HeB/
FeJ mice than in C57BL/6 mice.

Type | IFN signaling promotes neutrophil swarming and
restricts CD4* T cell accumulation in TB lesions of both
relatively resistant and highly TB-susceptible mice

Given that early type I IFN signaling favored M. tuberculosis
replication and restricted accumulation of Ly6C-MHC-II* MDMs
and CD4* T cell infiltration of TB lesions, we asked whether early
IFNAR blockade allowed greater CD4* T cell infiltration of TB
lesions that could facilitate protective T cell-macrophage inter-
actions and MDM activation. Although most TB lesions in
C57BL/6 mice at 20 days after infection had low Ly6G coverage,
this was further increased to nearly 100% of lesions by early
IFNAR blockade, with very few areas of continuous Ly6G
staining apparent (Fig. 9, a and b). This is consistent with neu-
trophil swarming in early lesions being type I IFN dependent in
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Figure 7. Early lung type I IFN response signature is higher in C57BL/6 than in susceptible C3HeB/Fe) mice. Bulk and single cell lung RNA-seq data were
interrogated for expression of cytokine and cytokine response genes. (a) DESeq2-normalized expression values of the indicated cytokine genes in whole lung
bulk RNA-seq data. (b) Dot plots showing expression of Tnf and Ifng in the indicated cell populations in scRNA-seq data. (c) DESeq2-normalized expression
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response signature (Kotov et al.,, 2023) in myeloid cell populations in scRNA-seq data. Data shown in panels a and c are from a single bulk RNA-seq experiment
with N = 5 mice per group. Points represent individual replicate mice as points with lines at the mean. Statistical analysis: two-way ANOVA with Holm-Sidak
post hoc test: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant. Data in panels b and d are from a single scRNA-seq experiment, and
plots show combined data from cells from N = 3 mice per group. Circle sizes represent the abundance of cells expressing the gene, as a percentage of total cells.
Circle color is proportional to the mean expression of the gene or signature within all cells in the cluster. See also Fig S4 and Fig. S5 a.

these mice. Conversely, the abundance of CD4* T cells within
lesions was increased in anti-IFNAR-treated mice, resulting in a
greater number of CD4* T cell-macrophage interactions (Fig. 9,
a, ¢, and d). Generally higher CD4* T cell numbers were also
observed across whole lung tissue in anti-IFNAR-treated in-
fected C57BL/6 mice compared with those receiving isotype
control, but this effect was less pronounced than in the lesions
(Fig. S5 b).

Applying this analysis to highly susceptible C3HeB/Fe]
mice, we found early anti-IFNAR treatment to increase the
proportion of Ly6G!°% lesions from 20 days after infection,
with a more marked effect at the peak of disease at day 26
(Fig. 9, e and f). Abundance of CD4* T cells and CD4* T cell-
macrophage contacts within lesions was also increased at
26 days after infection in anti-IFNAR-treated C3HeB/Fe]
mice (Fig. 9, g and h), concurrent with the high degree of
protection observed at this time point (Fig. 8 f). Total lung
CD4* T cells were also increased in anti-IFNAR-treated
C3HeB/Fe] at day 26 (Fig. S5 c); however, the magnitude of
increased CD4* T cell abundance in lesions exceeded that
observed in non-lesional lung tissue (Fig. S5 d), suggesting
that the effect of anti-IFNAR on CD4* T cell accumulation is
most pronounced in the lesions.

Having previously published that type I IFN drives NET
formation in TB-susceptible mice at the peak of disease
(Moreira-Teixeira et al., 2020a), we reasoned that type I IFN-
dependent neutrophil NETosis could impede T cell access to
infected macrophages. Quantification of NETs by immunofluo-
rescence staining of citrullinated histone H3 (CitH3), alongside
immune cell markers, confirmed our previous findings
(Moreira-Teixeira et al., 2020a) that C3HeB/Fe] mice display
extensive NET accumulation in lung lesions, which was largely
ablated by early IFNAR blockade at 26 days after infection, with
minimal effects at day 20 after infection (Fig. 9, i and j; and Fig.
S5, e-g). In contrast, minimal NET accumulation was detected in
lesions of C57BL/6 mice at day 20 after infection (Fig. 9, k and J;
and Fig. S5 g), despite the marked effects of IFNAR blockade on
lesion Ly6G coverage and CD4* T cell accumulation at this time
point in C57BL/6 mice (Fig. 9, a-d). These data indicate that
NETosis cannot be the sole mechanism of type I IFN restriction of
CD4* T cell accumulation in TB lesions.

Overall, we show that blockade of early type I IFN sig-
naling increases the ratio of CD4* T cells to neutrophils in
TB lesions of both C57BL/6 and C3HeB/Fe] mice, suggesting
that early induction of type I IFN signaling during M. tu-
berculosis infection acts to favor neutrophil accumulation
and limit CD4* T cell infiltration into developing granu-
lomatous lesions, with the timing and magnitude of this
common mechanism differing on susceptible and resistant

backgrounds.
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Gene expression signatures of severe TB in C3HeB/FeJ mice are
partially ameliorated by type | IFN receptor blockade

Finally, we examined the wider impact of the later, sustained
type I IFN response in TB-susceptible C3HeB/Fe] mice on the
lung gene expression signature observed at the peak of disease
by RNA-seq of lung tissue at 26 days after infection, with and
without continuous IFNAR blockade (Fig. 10 a). Clustering
analysis of differentially expressed genes (DEGs) revealed a
reduction in expression of genes relating to nonimmune cell
function upon infection without any effects of IFNAR blockade
(Fig. 10 b, clusters 4 and 6), likely reflecting loss of steady-state
lung structure and function resulting from M. tuberculosis in-
fection. Of the clusters that increased during infection, cluster 3
contained subsets of type I IFN-inducible and inflammatory
myeloid-related genes that were only modestly reduced by anti-
IFNAR treatment, including Acodi, Ifit2, and Retnla (Fig. 10, b and
c). In contrast, two clusters were most greatly diminished in
expression in anti-IFNAR-treated compared with infected con-
trol mice (Fig. 10, b and c, clusters 2 and 7). One of these clusters
was dominated by ISGs, such as Oas3, Irf7, and Ifit3, as well as
genes related to cytotoxic lymphocyte function, such as Gzmb
(Fig. 10, b and ¢, cluster 2). The other included a large subset of
neutrophil-related genes, including the chemokines Cxcl2, Ccl3,
and Ccl4 (Fig. 10, b and c, cluster 7), which we had determined to
be enriched in the pro-inflammatory neutrophil 2 cluster from
our scRNA-seq data that increased with progressive disease in
C3HeB/FeJ mice (Fig. 3, b and c; and Fig. S1, j-1), consistent with
exacerbation of neutrophil activation by type I IFNs. Deeper
interrogation of this cluster also highlighted previously un-
identified type I IFN-dependent genes in TB-susceptible C3HeB/
Fe] mice, including I136g, encoding IL-36y, a cytokine implicated
in mucosal inflammatory responses (Yuan et al., 2019), and
Slfnd, encoding Schlafen 4 (Fig. 10, b and c), previously identified
as a marker of myeloid cells with immune-suppressive function
in a gastric metaplasia model (Ding et al., 2016). Consistent with
an association of these genes with progression toward severe TB,
we observed a more pronounced increase in I136g and Slfn4 ex-
pression in lungs of C3HeB/Fe] compared with C57BL/6 mice at
21 days after infection, and Slfn4 expression was most highly
enriched in the disease-associated, pro-inflammatory neutro-
phil 2 scRNA-seq cluster (Fig. S5, h and i).

We conversely observed increased expression of genes re-
lated to antigen presentation and T cell responses, including
H2-Ab1, Cd28, Cxcl9, Cxcr3, and Il12rb2 with IFNAR blockade com-
pared with control-infected mice (Fig. 10, band c, clusters 1and 5).
These findings suggest that type I IFN signaling contributes
substantially to the pro-inflammatory neutrophil response in
TB-susceptible C3HeB/Fe] mice, including the elevation of pro-
inflammatory chemokines Ccl3, Ccl4, and Cxcl2, as well as limited
expression of the effector T cell-attractant chemokine Cxcl9
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Figure 8. Type I IFN signaling impairs early M. tuberculosis control in both C57BL/6 and highly TB-susceptible C3HeB/FeJ mice. (a) C57BL/6 mice were
aerosol infected with M. tuberculosis HN878 and received intraperitoneal injection of either anti-IFNAR (alFNAR) or isotype control three times per week either
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between days -1and 13 (1) or days -1and 27 (#). (b and c) CFU counts in lung tissue from either the (b) early (1) or (c) continuous () alFNAR treatment regimen.
(d) Numbers of neutrophils (Ly6GMCD11b"CD45*), total and Ly6C-MHC-II* MDMs (Siglec F~ Ly6G~ CD11b*CD64*MerTK*CD45*), and CD44+ CD62- CD4*
T cells (CD3e*CD45%) in lung tissue, as determined by flow cytometry. (e) C3HeB/Fe] mice were aerosol infected with M. tuberculosis HN878 and received
intraperitoneal injection of either alFNAR or isotype control three times per week between days -1 and 18. (f) CFU counts in lung tissue. (g) Numbers of
neutrophils, total and Ly6C~ MHC-II* MDMs, and CD44*CD62- CD4* T cells in lung tissue, as determined by flow cytometry. Points represent individual
replicate mice with lines at the mean. Data are from single experiments with N = 4-5 mice per group and are representative of two independent experiments.
Statistical analysis for CFU counts at day 26-28: unpaired t test. All other statistical analysis: two-way ANOVA with Holm-Sidak post hoc test. Actual adjusted P
values are shown or: ¥, P < 0.05; **, P < 0.01; ****, P < 0.0001; ns, not significant.

observed during disease progression in these mice, in accor-
dance with the improved CD4* T cell accumulation in TB lesions
observed with IFNAR blockade.

Discussion

Immune cells and cytokines are likely to have context-
dependent functions at different stages of M. tuberculosis infec-
tion or in hosts differing in their genetic susceptibility to TB or
presence of comorbidities. Laboratory mouse strains markedly
differ in their susceptibility to TB (Kramnik and Beamer, 2016;
Meade and Smith, 2025), with more resistant strains allowing
dissection of protective immune pathways and highly suscepti-
ble strains offering models of pathogenesis relevant to human
disease. While we have previously characterized the local and
systemic immune response in resistant and susceptible mouse
strains during established TB disease (Moreira-Teixeira et al.,
2020b), the early stages of infection preceding the distinct out-
comes in these mouse models have not been described. Here, we
combined bulk and scRNA-seq with flow cytometry, spatial
immunofluorescence analysis, and in vivo cell and cytokine
disruption to dissect the early immune response to M. tubercu-
losis infection in relatively TB-resistant C57BL/6 mice and highly
TB-susceptible C3HeB/Fe] mice. We observed a more pro-
nounced early immune response in C57BL/6 compared with
C3HeB/Fe] mice, which was accompanied by a higher early
pulmonary type IIFN response. We demonstrate that early type
IFN signaling drives common pathogenic mechanisms in C57BL/
6 as well as C3HeB/FeJ mice, but that major sustained pathogenic
effects are limited to TB-susceptible mice.

Our observation of higher expression of ISGs early in M. tu-
berculosis infection in C57BL/6 than C3HeB/Fe] mice was unex-
pected, given that high and sustained type I IFN responses are
known to contribute to susceptibility of C3HeB/Fe] mice and in
C57BL/6 mice bearing the C3HeB/Fe] SstI* susceptibility locus at
later time points during established disease (Ji et al., 2019;
Moreira-Teixeira et al., 2020a). Moreover, blood tran-
scriptomics work has strongly implicated type I IFN signaling in
human TB pathogenesis and progression (Berry et al., 2010;
Scriba et al., 2017; Tabone et al., 2021; Zak et al., 2016). We
considered that the early spike in type I IFN signaling in C57BL/6
mice could contribute to host protection, as had been suggested
by some previous reports (Bogunovic et al., 2012; Moreira-
Teixeira et al., 2016), and since type I IFN can activate various
immune cells important for infection control (McNab et al.,
2015; Moreira-Teixeira et al., 2018). However, early IFNAR
blockade unexpectedly showed similar protective effects on
bacterial load, neutrophil swarming, and lesion CD4* T cell-
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macrophage interactions in both resistant and susceptible
mouse strains.

These common pathogenic effects differed principally in
their timing. We observed the most pronounced protective effect
of early IFNAR blockade in C57BL/6 mice at 20 days after in-
fection, when the lung CD4* T cell response is still in its early
stages, with only modest reductions in lung CFU observed when
analyzed at the later 28-day time point, the latter in keeping with
past reports (Ji et al., 2019; Mayer-Barber et al., 2011; Moreira-
Teixeira et al., 2017; Moreira-Teixeira et al., 2016). Conversely,
in C3HeB/Fe] mice, which we show to mount a delayed and
limited CD4* T cell response to M. tuberculosis infection, pro-
tective effects of early IFNAR blockade were maintained at the
peak of disease, consistent with our previously reported study
using continuous IFNAR blockade (Moreira-Teixeira et al.,
2020a). Further study will be required to determine whether the
observed effects of IFNAR blockade during HN878 infection also
occur with less virulent M. tuberculosis strains. Collectively,
these data support a model in which the protective effector CD4*
T cell response mounted in C57BL/6 mice helps overcome dis-
ease progression in lung lesions, limiting the pathogenic effects
of type I IFN. In contrast, delayed early immune activation, to-
gether with the defect in type I IFN regulation conferred by the
Sstr* locus (Ji et al., 2019), allows sustained pathogenic effects of
type I IFNs in C3HeB/Fe] mice.

How exactly type I IFN signaling promotes early M. tubercu-
losis infection in both resistant and susceptible mice remains to
be elucidated. Our flow cytometry data suggest a role for im-
paired MDM maturation and activation that is ameliorated by
IFNAR blockade. Accordingly, we observed strong transcrip-
tional signatures of type I IFN response in MDMs of both C57BL/
6 and C3HeB/Fe] mice that correlated with those detected in
whole lungs, consistent with results from Spl40-/~ mice (Kotov
et al., 2023). Our scRNA-seq analysis identified MDMs as major
contributors to the highly distinct chemokine expression pro-
files of C57BL/6 and C3HeB/FeJ mice early in infection, and we
additionally showed the excessive pro-inflammatory chemokine
expression in C3HeB/Fe] mice to be type I [FN dependent, likely
at least in part reflecting an effect on MDMs. Lung macrophages
differ in their ability to control M. tuberculosis infection de-
pending on both their ontogeny, activation state, and metabo-
lism (Huang et al., 2018; Lai et al., 2024; Pisu et al., 2024; Zheng
etal., 2024), and so cell-intrinsic effects of type I IFN signaling on
the ability of MDMs to control infection are likely to contribute
to susceptibility.

Excessive accumulation of neutrophils is associated with
failed M. tuberculosis control in mouse models (Keller et al., 2006;
Kimmey et al., 2015; Moreira-Teixeira et al., 2020a; Moreira-
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Figure 9. Early type I IFN signaling promotes neutrophil swarming and limits CD4* T cell numbers in TB lesions of both relatively resistant and highly
TB-susceptible mice. Lung sections from experiments described in Fig. 8 were analyzed by multiparameter immunofluorescence. (a) Images of representative
lesions from C57BL/6 mice treated with either early anti-IFNAR (alFNAR) or isotype control, at 20 days after infection. Individual fluorescent channels and
merged images are shown. (b) Stacked bar plots showing percentages of lesions across whole left lungs falling into low (<20%), intermediate (Int, >20% <40%),
or high (Hi, >40) bins for coverage with Ly6G staining. (c and d) Numbers of total CD4* T cells (c) and CD4* T cells in contact with a macrophage annotation (<0
um distance, d) within lung lesions at 20 days after infection, normalized for the total area of all lesions across whole left lungs. (e) Images of representative
lesions from C3HeB/Fe] mice treated with either early anti-IFNAR (alFNAR) or isotype control at 26 days after infection. Individual fluorescent channels and
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merged images are shown. (f) Stacked bar plots showing percentages of lesions across whole left lungs falling into low (<20%), intermediate (Int, >20% <40%),
or high (Hi, >40) bins for coverage with Ly6G staining. (g and h) Number of total CD4* T cells (g) and CD4* T cells in contact with a macrophage annotation (<0
um distance, h) within lung lesions at the indicated time points, normalized for the total area of all lesions across whole left lungs. (i-1) Immunofluorescence
staining for CitH3 and Ly6G to detect NETs in lung lesions at the indicated time points. (i and k) Representative images showing all merged channels (top) or
CitH3 and DAPI alone (bottom) in C3HeB/Fe] (i) and C57BL/6 (k) mice. (jand L) Quantification of CitH3 NET staining relative to Ly6G staining in lung lesions. Data
shown in b and f are means + standard error of N = 5 per group. Statistical analysis shown in b and f is Dirichlet-multinomial regression analysis of the effect of
alFNAR treatment on lesion composition. Symbols indicate significant differences in the proportion of Ly6G-low lesions. Plotsin ¢, d, g h, j, and | show individual
replicate mice as points with lines at the mean or median (h). Statistical analysis in b and g: unpaired t test. Statistical analysis in h: Mann-Whitney test.
Statistical analysis in j and : unpaired t test with Welch’s correction. Actual P values are shown or: ¥, P < 0.05; **, P < 0.01; ****, P < 0.0001; ns, not significant.
Data shown are from single experiments with N = 5 mice per group that are representative of two independent experiments. Scale bars in a and e = 100 um;

scale bars in i and k = 50 pm. See also: Fig. S5, b-g.

Teixeira et al., 2020b; Nandi and Behar, 2011) and advanced TB
disease in humans (Condos et al., 1998). Our current study shows
that neutrophils, particularly an inflammatory population ex-
pressing Cxcl2, Ccl3, Ccl4, and Slfn4, increase in line with the type
1 IFN response in both C57BL/6 and C3HeB/Fe] mice. These in-
flammatory neutrophils expressed high levels of ISGs, and their
accumulation was more sustained and pronounced in C3HeB/Fe]
mice. Expression of the signature genes of this population was
diminished by IFNAR blockade in C3HeB/Fe] mice, accom-
panying reduced Ly6G coverage, suggestive of neutrophil
swarming, in lesions of these mice. Collectively, these data
support sustained, as opposed to transient, type I IFN activation
of neutrophils as a driver of TB susceptibility in C3HeB/FeJ mice.

We observed increased pulmonary CD4* T cell responses
from early time points after infection in C57BL/6 mice compared
with C3HeB/Fe] mice that were independent of the infecting M.
tuberculosis strain. Our scRNA-seq analysis suggested more ex-
tensive early MDM-CD4* T cell interactions in C57BL/6 than
C3HeB/Fe] mice, including superior predicted signaling via the
protective cytokines IFN-y and TNF-a and increased expression
of T cell-attractant chemokine genes, Cxcl9 and Cxcli0, by MDMs.
We did not observe substantial Il17a expression in lungs of mice
at the early time points analyzed here, nor was the IlI7-
expressing T cell cluster observed in our scRNA-seq data dif-
ferentially abundant in the two mouse strains during infection.
IL-17 responses have been implicated both in protection and
pathogenesis during M. tuberculosis infection. Peripheral blood
Th17-like T cell phenotypes have been associated with latently
infected individuals compared with those progressing to TB
(Scriba et al., 2017), as well as individuals who “resist” M. tu-
berculosis infection without developing a peripheral IFN-y re-
sponse (Sun et al., 2024). Conversely, IL-17A is enriched in skin
recall responses of active TB patients (Pollara et al., 2021). IL-17A
hasbeen shown to contribute to protection of C57BL/6 mice from
HN878 infection from 30 days after infection (Gopal et al., 2014);
however, our data suggest that it is unlikely to mediate the very
early differences observed in the pulmonary immune response
in our study. Natural killer cells and CD8a* T cells have also been
implicated in early protection against M. tuberculosis infection
(Roy Chowdhury et al., 2018; Winchell et al., 2023) but did not
show clear association with protection in our analysis.

Our data support CD4* T cell abundance and frequency of
CD4* T cell-macrophage contacts in TB lesions as a correlate of
the protection offered by IFNAR blockade in both resistant and
susceptible mice; however, the mechanism linking early type I
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IFN signaling to limitation of CD4* T cell numbers in lesions
remains to be elucidated. A potential explanation is local in-
hibitory effects of lesion neutrophils on CD4* T cells. We observe
an inverse relationship between pulmonary neutrophils and
CD4* T cells during M. tuberculosis infection and found IFNAR
blockade to limit neutrophil clustering and increase CD4* ac-
cumulation in lesions of both C57BL/6 and C3HeB/Fe] mice.
Further studies will be required to determine how neutrophils
could restrict CD4* T cell accumulation in TB lesions. One pos-
sibility is direct immunosuppressive function of neutrophils. We
observed high, type I IFN-dependent, expression of Slfn4 in
lungs of C3HeB/Fe] mice and found this gene to be particularly
enriched in the pro-inflammatory, neutrophil population that
increased with disease progression in these mice. Slfn4 is also
highly expressed during severe TB in Nos2~/~ mice (Beisiegel
et al., 2009) and is a marker gene for suppressive myeloid
cells in gastric metaplasia (Ding et al., 2016). Whether Sifn4-
expressing neutrophils have immunosuppressive function in
TB remains to be determined. Type I IFN-induced NET forma-
tion is associated with TB susceptibility of C3HeB/Fe] mice at the
peak of disease (Moreira-Teixeira et al., 2020a) and has been
recently reported to promote M. tuberculosis replication in neu-
trophils in vitro (Sur Chowdhury et al., 2024). NETs induced by
CXCR1/2 agonists have been shown to impede cytotoxic lym-
phocyte interactions with tumor cells in mouse cancer models
and in vitro systems (Teijeira et al., 2020). However, we only
observed type IFN-dependent NET accumulation in C3HeB/Fe]
mice and not in C57BL/6 mice, indicating that NETs cannot
solely explain the type I IFN-activated neutrophil interference
with CD4* T cell-macrophage interactions in developing TB
lesions.

Increased lesion CD4* T cell numbers are not sufficient to
explain the reduced lung M. tuberculosis burdens resulting from
IFNAR blockade in our models, since we observed a significant
reduction in lung bacterial burden in C3HeB/Fe] mice before any
increase in CD4"* T cells upon IFNAR blockade. Indeed, type I IFN
is likely to operate via several interacting pathogenic mech-
anisms, including macrophage necrosis (Dorhoi et al., 2014;
Zhang et al., 2021), recruitment of permissive mononuclear
phagocytes (Antonelli et al., 2010), NET production (Moreira-
Teixeira et al., 2020a; Sur Chowdhury et al., 2024), and sup-
pression of protective IL-1signaling (Ji et al., 2019; Mayer-Barber
et al., 2014). Nonetheless, increased CD4* T cell-macrophage
interactions following IFNAR blockade likely contribute to sus-
tained protection. Diminished IFN-y response signatures and
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Figure 10. Type I IFN blockade abrogates the inflammatory neutrophil gene signature in TB-susceptible mice and increases expression of genes
associated with a T cell response. Bulk RNA-seq was performed on lung tissue from C3HeB/Fe) mice aerosol infected with HN878 while being treated with
either anti-IFNAR (alFNAR, N = 4) or isotype control (N = 3) three times per week from day -1 to day 25, as compared with uninfected mice receiving isotype
control antibody (N = 3). (a) Experimental scheme outline. Analysis was performed at the peak of disease at 26 days after infection. (b) All DEGs in either
infected group compared with uninfected controls were subjected to k-means clustering. Clusters are annotated based on hallmark genes and pathways.

Branchett et al.

Type | IFN-activated neutrophils in TB lesions

Journal of Experimental Medicine
https://doi.org/10.1084/jem.20250466

20 of 28



22 JEM
QD D
03'-

(c) DESeq2-normalized expression values of representative genes from k-means clusters. Data shown represent individual replicate mice as points with lines at
the mean. Data are from a single bulk RNA-seq experiment. Statistical analysis: two-way ANOVA with Holm-Sidak post hoc test. Actual adjusted P values are

shown or: ¥, P < 0.05; **, P < 0.01; ***, P < 0.001. See also: Fig. S5, h and i.

IFNGR expression have been demonstrated in MDMs with a high
type I IFN response signature in M. tuberculosis-infected Sp140~/~
mice (Kotov et al., 2023). Although this could partially reflect cell
intrinsic cross-regulation of type I and II IFNs, our data suggest
that limited CD4* T cell-macrophage cross talk due to distinct
lesion organization also contributes to limited IFN-y responses
in macrophages and impaired M. tuberculosis control in the
context of type I IFN-dependent TB susceptibility.

IFNAR blockade did not completely protect C57BL/6 and
C3HeB/Fe] mice, consistent with there being type I IFN-
dependent and -independent components to TB susceptibility
of these mice. Indeed, although the C3HeB/FeJ Ssti® allele is
sufficient to confer type I IFN-dependent TB susceptibility in
C57BL/6 mice (Ji et al., 2019), these mice still remain less sus-
ceptible than C3HeB/Fe] (Pichugin et al., 2009). The delayed
early MDM and CD4* T cell response that we report in C3HeB/Fe]
mice was not corrected by IFNAR blockade, suggesting that this
delay is type I IFN independent. This is in contrast to the recently
reported TB susceptibility phenotype in C57BL/6 mice carrying a
deletion in the IFN-y-inducible GTPase gene Irgml (Rai et al.,
2023), which display impaired CD4* T cell response initiation
dependent on excessive type I IFN production (Naik et al., 2024).
We did not observe deficiency in Irgml expression in lungs of
C3HeB/FeJ] mice (data available at: https://ogarra.shinyapps.io/
earlymousetb/).

The delayed and limited CD4* T cell response in C3HeB/Fe]
mice is likely due in part to differences in MHC alleles from
C57BL/6 (Kramnik and Beamer, 2016). While delayed dissemi-
nation of M. tuberculosis Erdman strain to lung-draining lymph
nodes has been reported in C3H/He] mice (Chackerian et al.,
2002), this was not apparent in our experiments where
C3HeB/Fe] mice were infected with the M. tuberculosis strain
HNB878. It remains possible that the increased early M. tubercu-
losis bacterial load observed at 2 wk after infection in C57BL/6
compared with C3HeB/Fe] mice drives the earlier MDM and
T cell responses in C57BL/6 mice, although the interplay be-
tween very early bacterial load and immune response initiation
is challenging to unpick. Early lung macrophage dynamics have
been reported to affect T cell priming following infection of
C3HeB/Fe] mice with particular clinical M. tuberculosis isolates
(Lovey et al., 2022). Thus, mechanisms linking the limited early
MDM and CD4* T cell responses in C3HeB/Fe] mice warrant
further investigation. Our scRNA-seq analysis highlighted in-
trinsic differences in expression of notable ligand genes in
macrophage populations between C3HeB/Fe] and C57BL/6 mice
prior to and during infection, including higher expression of
Sppl and Siglecl (CD169) by C3HeB/Fe] mice and higher expres-
sion of Apoe by several populations, particularly MDMs, in
C57BL/6 mice. Apoe™/~ mice on a C57BL/6 background are hy-
persusceptible to TB when fed a high-cholesterol diet (Martens
et al., 2008) and develop severe disease dependent on type I IFN
signaling and ameliorated by an inhibitor of PAD4-dependent
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NETosis (Liu et al., 2025). Determining whether lung MDM-
derived ApoE plays a role in protection against M. tuberculosis
will require further study.

We were unable to use intravascular CD45 labeling prior to
generation of single-cell suspensions, so we could not discrim-
inate parenchymal leukocytes from those remaining in the lung
vasculature after perfusion. This could impact the relative
abundance of leukocyte subsets analyzed in single-cell suspen-
sions between conditions, particularly if there is a difference in
lung vascular leukocyte retention between C57BL/6 and C3HeB/
Fe] mice, which is not known. However, our key findings from
scRNA-seq and flow cytometry were validated by microscopy of
lung lesions, which overcomes this limitation. Although it would
have been of interest to precisely localize infected cells in our
immunofluorescence analysis using M. tuberculosis fluorescent
reporter strains, the signal at early time points following low-
dose aerosol infection may limit this approach.

In conclusion, we characterized the early cellular interactions
preceding initial control of M. tuberculosis infection in C57BL/6
mice as compared with failed immune control in highly TB-
susceptible C3HeB/Fe] mice. We show that type IFN drives
common early pathogenic effects in C57BL/6 and C3HeB/FeJ
mice, increasing lung bacterial burden and limiting macrophage-
CD4* T cell interactions, with more pronounced later effects on
inflammatory neutrophil activation observed in the context of
high, sustained type I IFN signaling on a TB-susceptible genetic
background.

Materials and methods

Mice and ethics

C57BL/6 and C3HeB/Fe] mice were either bred and housed in
specific pathogen-free facilities at The Francis Crick Institute,
London, UK (for M. tuberculosis HN878 infection experiments),
or purchased from Charles River Laboratories and housed in
specific pathogen-free facilities at Instituto de Investigagdo e
Inovagiio em Saude (i3S) (for M. tuberculosis 6C4 and 4I2 ex-
periments). Experiments with HN878 were performed in the UK
in accordance with Home Office (UK) requirements and the
Animal Scientific Procedures Act, 1986, under the specific Pro-
ject License PP3881464. Experiments with 6C4 and 412 were
performed in Portugal with recommendations of the European
Union Directive 2010/63/EU and approved by the Portuguese
National Authority for Animal Health—Direcdio Geral de Ali-
mentagio e Veterindria (DGAV-Ref. #018413/2021-11-24). Mice
were kept under specific pathogen-free conditions, at controlled
temperature (20-24°C), humidity (45-65%), and light cycle (12 h
light/dark). Mice were maintained with ad libitum access to food
and water. Female mice were used for HN878 experiments. Male
and female mice were used, in equal proportions, for 6C4 and 412
experiments. Mice were euthanized humanely by intraperito-
neal injection with an overdose of anesthetic.
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M. tuberculosis strains

Three strains were used in this study: the highly virulent clinical
isolate HN878 and additional clinical isolates determined to
cause either severe (6C4 strain) or mild (4I2 strain) in humans
(Sousa et al., 2020). Strains were grown to mid-logarithmic
phases in Middlebrook 7H9 broth, supplemented with 10%
Middlebrook oleic acid albumin dextrose complex (OADC, BD)
0.05% Tween-80 and 0.5% glycerol and stored in aliquots at
-80°C.

Experimental infections

Mice were infected via the aerosol route using an inhalation
exposure system (Glas-Col), calibrated to deliver 150-350
(HN878 and 6C4 strains) or 500-1000 (412 strain) CFUs to the
lungs of each mouse. M. tuberculosis uptake was confirmed in
each experiment by euthanizing three to five mice immediately
after infection and determining lung bacterial load. For HN878
experiments, C57BL/6 and C3HeB/Fe] mice were infected in
separate infection runs due to space constraints. Comparable
HN878 uptake was determined over multiple infections in
C57BL/6 and C3HeB/Fe] mice, as detailed in Fig. S1. The confir-
matory experiments using 6C4 and 412 strains at i3S, Porto,
Portugal, were performed with all mice in the same infection
run. Mice were euthanized at predetermined time points after
infection, as indicated in the respective figures, by intraperito-
neal injection with an overdose of anesthetic. A previously de-
termined maximum endpoint of 26 days after infection was used
for C3HeB/Fe] mice infected with HN878, since excessive clinical
severity can occur after this point, while immune signatures and
lung pathology at later time points remain comparable with
those observed at day 26 (Moreira-Teixeira et al., 2020a;
Moreira-Teixeira et al., 2020b). Age- and sex-matched un-
infected control mice, housed in the same room but isolated
from infected animals, were included in experiments.

In vivo Neutrophil depletion and type | IFN receptor blockade
For neutrophil depletion, mice received 0.2 mg of rat anti-mouse
Ly6G (clone 1A8; Bio X Cell) or rat IgG,, isotype control (clone
2A3; Bio X Cell) in 0.2 ml volume of sterile PBS by intraperitoneal
injection. Mice were injected three times per week starting on
day 12 after infection, and treatment continued until day 25 after
infection. For type I IFN receptor blockade, mice received 0.5 mg
of mouse anti-mouse IFNAR (clone MARI1-5A3; Leinco Tech-
nologies) or mouse IgG, isotype control (clone HKSP; Leinco
Technologies) in 0.2 ml volume of sterile PBS by intraperitoneal
injection. Mice were injected three times per week starting 1 day
prior to infection, and treatment continued for the required
duration, as indicated in the relevant figures.

Organ bacterial burden quantification

Organs were collected into sterile PBS and disrupted by gently
pressing through 70-uM cell strainers. Serial dilutions of organ
homogenates were plated on Middlebrook 7H11 agar supple-
mented with 10% Middlebrook OADC plus MGIT PANTA an-
tibiotic cocktail (BD) to prevent contamination with other
bacteria. Homogenates were prepared from single lung-draining
mediastinal lymph nodes and either both lungs or the right lung
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only, as indicated in the relevant figures. Plates were incubated
for 3 wk at 37°C before enumerating colonies and determining
CFUs per organ.

Organ single-cell suspensions

Lungs were lightly perfused by injection of PBS via the right
ventricle of the heart, prior to dissecting out organs. In some
experiments, single-cell suspensions were prepared from three
lobes of the right lung, rather than all five lung lobes. These data
are reported as “per lung prep,” rather than “per pair lungs”
in the relevant figures. Lungs and lung-draining mediastinal
lymph nodes were cut into small pieces with scissors and col-
lected into serum-free RPMI, supplemented with 5% penicillin
and streptomycin. Tissue was incubated in 1 ml total volume
with 25 pg/ml DNase I (Sigma-Aldrich) and either 250 pg/ml
(lung) or 48 pg/ml (lymph node) Liberase TM (Sigma-Aldrich) in
serum-free RPMI at 37°C for 30 min with regular agitation.
EDTA in PBS was added to a final concentration of 9.1 mM to stop
digestion, and samples were placed on ice. Tissue was gently
pressed through 70-um strainers and flushed with RPMI sup-
plemented with 10% fetal bovine serum and 5% penicillin and
streptomycin. For some experiments, BAL was obtained by
flushing lungs three times with 1 ml of PBS via the trachea
using blunted 19G needles secured with suture thread. Red
blood cells were lysed in all samples by suspending pellets in
ammonium chloride lysis buffer for 4 min at room tempera-
ture before resuspending in supplemented RPMI. All samples
were counted using a hemocytometer and Trypan blue ex-
clusion to determine live and total cell numbers.

Flow cytometry

Cells were washed in PBS before staining with Fixable Live/Dead
Blue dye (Thermo Fisher Scientific, HN878 experiments) or
Zombie Aqua dye (6C4 and 412 experiments; BioLegend). Cells
were stained with combinations of the following fluorophore-
conjugated antibodies, in PBS supplemented with 2% fetal bo-
vine serum and 1 mM EDTA, in the presence of anti-mouse CD16/
CD32 antibody (clone 2.4G2, Harlan for HN878 experiments;
clone 93; BioLegend for 6C4 and 4I2 experiments) to block
nonspecific binding to Fc receptors: CD11b-FITC (clone M1/70;
BioLegend), XCR1-PERCP/Cy5.5 (clone ZET; BioLegend), Siglec
F-Brilliant Violet 421 (clone E50-2440; BD), Ly6C-Brilliant Violet
510 (clone HK1.4; BioLegend), CX3CR1-Brilliant Violet 650 (clone
SAO11F11; BioLegend), MerTK-Brilliant Violet 711 (clone 108928;
BD), I-A/I-E-Brilliant Violet 785 (clone M5/114.15.2; BioLegend),
CD64-PE (clone X54-5-7.1; BioLegend), Ly6G-PE/Dazzle 595
(clone 1A8; BioLegend), CD26-PE/Cy7 (clone H194-112; Bio-
Legend), CD5-APC (53-7.3; BioLegend), NKp46-APC (29A1.4; Bio-
Legend), TER-119- APC (clone TER-119; BioLegend), CD19-APC
(clone 6D5; BioLegend), Thyl.2-APC (clone 53-2.1; BioLegend),
CD3e-APC (clone 145-2C11; BioLegend), CDIlc-APC/Cy7 (clone
N418; BioLegend), Ly6G-APC/Cy7 (clone 1A8; BioLegend), CD3e-
APC/Cy?7 (clone 145-2C11; BioLegend), CD19-APC/Cy?7 (clone 6D9;
BioLegend), Siglec F-Brilliant Violet 786 (clone E50-2440; BD),
CDI1c-PE/Cy7 (clone N418; BioLegend), I-A/I-E-Brilliant Violet
650 (clone M5/114.15.2; BioLegend), Ly6C-Brilliant Violet 421
(clone HK1.4; BioLegend), Ly6G-APC/Cy?7 (clone 1A8; BioLegend),
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F4/80-Alexa Fluor 488 (clone BMS; BioLegend), TER-119- Alexa
Fluor 488 (clone TER-119; BioLegend), Siglec F- Alexa Fluor 488
(clone E50-2440; BD), CD19-PERCP/Cy5.5 (clone 6D5; BioLegend),
CD3e-Brilliant Violet 421 (clone 145-2C11; BioLegend), CD4-
Brilliant Violet 650 (clone RM4-5; BioLegend), CD103-Brilliant
Violet 711 (clone 2E7; BioLegend), CD62L-Brilliant Violet 785
(clone MEL-14; BioLegend), GL7-PE (clone GL7; BioLegend),
NKp46-PE/Dazzle 594 (clone 29A1.4; BioLegend), CD38/PE/Cy7
(clone 90; BioLegend), CD69-APC (clone H1.2F3; BioLegend),
CD45-Alexa Fluor 700 (clone 30-F11; BioLegend), CD44-APC/Cy7
(clone IM7; BioLegend), CD8a-Brilliant UV 737 (clone 53-6.7; BD),
CD103-APC (clone 2E7; BioLegend), CD62L-PE (clone MEL-14;
BioLegend), CD69-Brilliant Violet 650 (clone H1.2F3, BioLegend),
CD8a-Brilliant Violet 605 (clone 53-6.7; BD), and CD4-Brilliant
Violet 785 (clone GKL.5; BioLegend).

Data were acquired on either an X20 (HN878 experiments) or
LSR Fortessa (6C4 and 412 experiments) flow cytometer (both
BD). Data were analyzed using FlowJo v10 (BD) using hierar-
chical gating, as shown in Fig. S1.

scRNA-seq
Lung cells in single-cell suspension were enriched for CD45*
leukocytes using the magnetic bead-based mouse CD45 positive
selection kit from Stem Cell Technologies as per the manu-
facturer’s instructions, which yielded >70% live, CD45.2* cells per
sample. Cells were fixed using the Fixation Kit from 10X Genomics
as the per manufacturer’s instructions, made up to a final con-
centration of 4% formaldehyde with molecular biology grade
formaldehyde (Sigma-Aldrich). Cells were fixed for 22 h at 4°C
before quenching as the per manufacturer’s instructions and
storing, supplemented with molecular biology grade glycerol
(Sigma-Aldrich, 10% final concentration), at ~80°C until analysis.
Cells were thawed and hybridized for 22 h to probes from the
Mouse 16-Plex Fixed RNA Profiling kit (10X Genomics), as per
the manufacturer’s instructions. All samples were split in two
and hybridized to two different barcoded probe sets to increase
cell recovery, except for two out of three uninfected control
samples from each mouse strain. This resulted in a total of 18
biological samples run across two 16-Plex pools. Cells from
C57BL/6 and C3HeB/Fe] mice were combined in equal numbers
per barcode into individual pools, which were washed, con-
centrated, and loaded on 10x chip Q, where the fixed and probe-
hybridized single-cell suspensions were partitioned into
nanoliter-scale Gel Beads-in-Emulsion (GEMs). A pool of
~737,000 10x GEM Barcodes was sampled separately to index
the contents of each partition. Inside the GEMs, probes were
ligated, and the 10x GEM Barcode was added. Barcoded and
ligated probes were then pre-amplified in bulk, after which
gene expression libraries were generated and sequenced on a
NovaSeq 6000 instrument (Illumina) using sequencing read
configuration: 28-10-10-90. Raw and processed scRNA-seq
data are deposited in the GEO at accession GSE298787.

scRNA-seq data processing and analysis

Cell Ranger v7.0.1 filtered matrices, aligned to the mm10 2020-A
mouse genome (official 10X mouse pre-built reference), were
processed in R v4.3.2 using Seurat v4.4.0 (with SeuratObject
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v4.1.4). DecontX (Yang et al., 2020) (R package celda v1.18.2) was
used to model ambient RNA contamination and remove ambient
RNA. Low-quality cells with <1,000 unique molecular identifier
counts or <500 unique genes after ambient RNA removal, or
with >5% mitochondrial genes, were filtered out. Scrublet
(Wolock et al., 2019) was used to mark and remove likely
doublet cells.

Integration, clustering, and marker gene identification
were implemented using the Seurat functions FindInte-
grationAnchors(), IntegrateData(), FindClusters(), and FindAll-
Markers(), using the top 2,000 variable features, the first 40
principal components, resolution of 0.3 to give a total of 31
clusters, and the robust principal component analysis method of
integration. Five minor clusters were manually removed from
integrated data due to (1) containing poorly defined cells with
high similarity to cells removed following DecontX clean-up (one
cluster, 2165 cells), (2) containing residual doublets due to ex-
pression of incompatible marker genes of distinct cell lineages
(three clusters, <200 cells total), and (3) containing only two
cells. A final annotation was assigned to the resultant 26 clusters,
based on manual inspection of marker gene lists and a cluster-
level annotation assigned by R package clustifyr v1.5.1 (Fu et al.,
2020) using the Mouse Cell Atlas (Han et al., 2018), Tabula Muris
10X and SmartSeq2 (Schaum et al., 2018), and ImmGen (Gautier
et al,, 2012; Heng et al., 2008) as reference datasets. Six clusters
were determined to represent low numbers of contaminant ep-
ithelial, endothelial, and stromal cells (grey clusters in Fig. 3 a)
and were not analyzed further.

Differential abundance analysis of scRNA-seq data

A Dirichlet-multinomial regression model was used to test for
changes in cell abundance between conditions to account for the
compositional nature of cell count data. This regression model
was calculated using the DirichReg() function from the Diri-
chletReg R package (Maier, 2014). When statistically testing for
differences in cell abundance between mouse strains at specific
time points, a generalized linear model was fit using the quasi-
likelihood F test to account for overdispersion between models,
implemented using the glmQLFit() function within the edgeR R
package (Chen et al., 2024, Preprint).

Inference of cell-to-cell communication from scRNA-seq data
Cell-to-cell interactions were inferred using the R package
CellChat v1.1.3, with default parameters (Jin et al., 2021). The
“population.size” parameter was set to TRUE when computing
the inferred interaction between cell subsets. Relative predicted
signaling contribution of different ligand-receptor pairs and cell
types was quantified as indicated in the relevant figures.

Gene signature evaluation in scRNA-seq clusters

Expression of a published in vitro-derived type I IFN-response
signature (Kotov et al., 2023) was scored in cells using the Seurat
function AddModuleScore().

Bulk RNA extraction and RNA-seq
Lung tissue was homogenized in TRI reagent using a FastPrep-24
homogenizer and Lysing Matrix D tubes (MP Biomedicals)
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before centrifuging at 10,000 x g for 10 min at 4°C to pellet de-
bris. Whole lung sets (five lobes) were used for comparisons
between C57BL/6 and C3HeB/Fe] mice. Bottom right lung lobes
were used for the anti-IFNAR experiment in C3HeB/Fe] mice
described in Fig. 10. This was previously unused tissue from
experiments reported in our previous work (Moreira-Teixeira
etal.,, 2020a). RNA was extracted from lung homogenates using
the DirectZol Mini Kit with on-column DNase I digestion
(Zymo), as per the manufacturer’s instructions. BAL cell pellets
were resuspended in TRI reagent and vortexed at high speed for
210 s to lyse. RNA was extracted from BAL lysates using the
DirectZol Mini Kit with on-column DNase I digestion (Zymo), as
per the manufacturer’s instructions. RNA integrity of all samples
was determined to range from 5.7-9.4 (median 7.9).

All bulk RNA-seq libraries were prepared using total RNA
stranded library preparation kits as appropriate for input RNA
quantity. RNA-seq libraries from whole lungs of HN878-infected
C57BL/6 and C3HeB/Fe] mice were prepared using the KAPA
total RNA library preparation kit with RiboErase (Illumina).
RNA-seq libraries from whole BAL of HN878-infected C57BL/6
and C3HeB/FeJ] mice and from lung tissue samples obtained from
anti-IFNAR-treated HN878-infected C3HeB/Fe] mice were pre-
pared using the total RNA library prep kit with Polaris ribosomal
RNA depletion (Watchmaker Genomics). Libraries were se-
quenced on an Illumina NovaSeq 6000 or NovaSeq X (for anti-
IFNAR experiment) sequencer platform generating ~25 million
100-bp paired end reads per sample. Raw and processed bulk
RNA-seq data are deposited in the GEO at accession GSE298786.

Bulk RNA-seq analysis
RNA-seq data were processed and aligned to the mm10 genome
using the default nf-core/rnaseq pipeline v3.16.1, built with
Nextflow. Briefly, this runs Trim Galore, STAR, and Salmon for
trimming, alignment, and transcript count quantification,
among additional quality controls. An in-depth description of
the pipeline can be found at https://nf-co.re/rnaseq/3.16.1/.
Differential gene expression was performed using DESeq2
v1.42.1. Expression values were normalized by rlog transfor-
mation and Wald’s test implemented to test for differential
expression, as compared with respective uninfected control
samples. Genes were determined to be differentially expressed
with a fold change of 21.5 and Benjamini-Hochberg-adjusted P
value of <0.05. Total DEGs were clustered based on their nor-
malized expression profile across all groups, using k-means
clustering. Optimal k was determined by iterating through a k
from 5 to 15 and manually selecting the number of clusters that
best captured the observed expression pattern.

Visualization of RNA-seq data

All data were visualized using ggplot2 in R. R packages scCus-
tomize and ggh4x were used to customize Seurat native plotting
functions for scRNA-seq data visualization.

Lung tissue immunostaining

Lungs were lightly perfused and inflated in situ by injection of
PBS via the right ventricle of the heart. Lung tissue was fixed in
freshly prepared methanol-free 4% formaldehyde in PBS for48 h
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before processing to wax blocks using a Tissue-Tek VIP 6 Al
processor. All immunostaining was performed automatically
using the BondRx (Leica Biosystems) using 3-pm formaldehyde-
fixed, paraffin-embedded sections.

For S100A9 immunohistochemistry, sections were baked for
1h at 60°C prior to automated staining with antibody clone 2B10
(The Francis Crick Institute Cell Services), using Protease 1 an-
tigen retrieval, DISCOVERY OmniMap anti-Rat HRP, and DIS-
COVERY ChromoMap DAB Kit on a Ventana Discovery Ultra
autostainer (all Roche). Bright-field imaging of whole slides was
performed on the Axio Scan Z1 slide scanner (Zeiss).

For multiplex immunofluorescence staining, sections were
baked for 1h before blocking in 3% hydrogen peroxide, followed
by 0.1% bovine serum albumin in PBS-Tween. Antigen retrieval
and stripping was performed between each antibody incubation
step by incubating with Epitope Retrieval Solution 1 (Leica Bio-
systems) at pH 9 for 20 min at 95°C. Antibodies for two staining
panels were applied with Opal pairings (all Akoya Biosciences)
in the orders listed here. For the macrophage, neutrophil, and T
and B cell panel: biotinylated B220 (clone RA3-6B2; BD) with
Opal 620, CD8a (clone EPR21769; Abcam) with Opal 690, Ly6G
(clone E6Z1T; Cell Signaling Technology) with Opal 570, CD31
(clone EPR17259; Abcam) with Opal 480, CD4 (clone EPR19514;
Abcam) with Opal 520, and CD68 (clone EPR23917-164; Abcam)
with Opal 780. For the NET panel: myeloperoxidase (AF3667;
R&D Bio-Techne) at 1:400 with Opal 570 at 1:300, CitH3 (ab5103;
Abcam) at 1:500 with Opal 620 at 1:300, Ly6G (87048S; CST) at 1:
100 with Opal 520 at 1:300, CD4 (ab183685; Abcam) at 1:750 with
Opal 690 at 1:150, and CD68 (ab283654; Abcam) at 1:2,500 with
Opal 780 at 1:100 & 1:25. Streptavidin-HRP (Agilent Technolo-
gies) was used as a secondary reagent for biotinylated B220
antibody; HRP Horse Anti-Goat IgG Polymer Detection Kit
(MP-7405; Vector Laboratories) was used as secondary for the
myeloperoxidase antibody, which was raised in goat; Bond
Anti-Rabbit Polymer (Leica Biosystems) was used for the other
antibodies, which were raised in rabbit. Slides were counter-
stained with DAPI and mounted with ProLong; Gold Antifade
reagent (both Thermo Fisher Scientific). Slides were imaged
using the Phenolmager HT slide scanner (Akoya Biosciences) at
20X using MOTIF scanning mode. Spectral unmixing and re-
moval of tissue immunofluorescence for the macrophage, neu-
trophil, and T and B cell panels was performed using Phenochart
1.1.0 and InForm 2.6.0 software (Akoya Biosciences), and for the
NET panel was performed using the integrated spectral un-
mixing feature within the PhenoIlmager HT 2.1 software.

Analysis of multiplex immunofluorescence images

Exported.QPTIFF files from InForm 2.6.0 were imported into
QuPath v0.5.1 software (Bankhead et al., 2017) and stitched
digitally to generate whole tissue scans. Cell segmentation was
performed based on the DAPI signal, using the Stardist extension
for QuPath (Schmidt et al., 2018, Preprint), using parameters
determined on representative training images from all infection
time points in both C57BL/6 and C3HeB/Fe] mice. Lesions were
identified as areas of dense CD68 macrophage staining, initially
by training a random trees pixel classifier using the DAPI, CD68,
and Ly6G channels, followed by manual adjustment of annotated
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lesions to exclude perivascular or peribronchiolar leukocyte
aggregates and filtering of small cellular aggregates <12,000
pm?. All detected lesions were annotated in each section, either
in whole lung (data in Figs. 5 and S3) or on left lungs (all other
analysis). Cell detection for lymphocytes (CD4*, CD8a*, or B220*
cells) was performed in QuPath using a random trees object
classifier trained on staining for CD4, CD8a, and B220 markers.
As Ly6G staining was observed both in discrete cells and in
myeloid aggregates in lesions, Ly6G staining was quantified by
pixel classification, rather than performing cell segmentation
and object classification, by training a random trees pixel clas-
sifier on the DAPI and Ly6G channels. Macrophage and NET
annotations were identified by pixel classification using ma-
chine training methods based on DAPI, as well as CD68 and
CitH3 signal, respectively. In some analyses, lesions were binned
into those with low (<20%), intermediate (220% <40%), or high
(240%) area coverage with Ly6G* pixel classifications, or low
(ratio <0.2), intermediate (ratio 0.2 <0.4), or high (ratio >0.4)
CitH3" relative to Ly6G* pixel classifications. In some analyses,
total CD4* T cells across whole lung tissue were enumerated,
including those in lesions, perivascular infiltrates, peribron-
chiolar infiltrates, and non-lesional lung parenchyma. In other
analyses, frequency of CD4* T cells in non-lesional lung paren-
chyma was quantified by determining the number of CD4*
T cells per um? across three to eight equal-sized regions per
mouse lacking any signs of inflammation, for comparison to
lesional tissue from the same mouse. Distance analysis of CD4*
T cells relative to macrophages in lesions was performed using
the signed distance to annotation tool in QuPath to calculate the
distance of CD4* T cells to the edge of the nearest CD68* mac-
rophage annotation.

Visualization and statistical analysis for non-transcriptomic
data

Statistical tests selected were appropriate for the number of
groups compared, variables assessed, and distribution of data, as
indicated in the relevant figure legends. Aligned rank transform
analysis for nonparametric two-way ANOVA analysis and
downstream post hoc analysis were performed when required
using the ARTool R package (Elkin et al., 2021; Wobbrock et al.,
2011). Comparisons of inter-related lesion composition param-
eters between groups were performed using the DirichReg()
function from the DirichletReg R package (Maier, 2014). All
other statistical analyses and data graphing were performed in
Prism v10 (GraphPad).

Online supplemental material

Fig. S1 shows the additional bacterial CFU, flow cytometry,
and scRNA-seq data in support of Figs. 1, 2, and 3. Fig. S2
shows the additional bulk and scRNA-seq analysis in support
of Fig. 4. Fig. S3 shows the additional lung multiplex im-
munofluorescence images and analysis in support of Figs. 5
and 6. Fig. S4 shows the additional scRNA-seq analysis in
support of Fig. 7. Fig. S5 shows the additional bulk and
scRNA-seq analysis and lung multiplex immunofluores-
cence images and analysis in support of Figs. 7, 9, and 10.
Data Sl contains the additional results of CellChat pathway
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analysis of scRNA-seq data from lung leukocytes from M.
tuberculosis HN878-infected C57BL/6 and C3HeB/FeJ mice.

Data availability

Raw and processed RNA-seq data shown throughout the figures
are deposited in the GEO at accessions GSE298786 (bulk RNA-
seq) and GSE298787 (scRNA-seq). All code for the analysis from
raw data to final figures is available at https://github.com/
ogarralab/workflowr, with the specific release available through
Zenodo https://doi.org/10.5281/zenodo.16894788. The bulk and
scRNA-seq data generated in this work are also available for access
in an interactive and accessible format via a web app: https://
ogarra.shinyapps.io/earlymousetb/.
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Figure S1.  Analysis of lung and lymph node early during M. tuberculosis infection. C57BL/6 and C3HeB/Fe) mice were aerosol infected with M. tuberculosis
HN878, 6C4, or 412, and infection and immune parameters were assessed. (a) Lung CFU counts taken immediately after infection of C57BL/6 and C3HeB/Fe)
mice with HN878 in five independent experiments. (b) Lung CFU counts at different time points after HN878 infection, represented as fold increases from the
mean CFU in the respective age-, sex-, and strain-matched mice analyzed immediately after infection. Panels a and b show data from three to five independent
experiments with N = 5 mice per group are overlaid per time point with lines at the grand mean. Statistical analysis in a and b shows mouse strain effects across
pooled experiments as determined by two-way ANOVA. (c-e) Representative flow cytometry dot plots showing the gating strategies used to identify: (c)
myeloid cell populations; (d) MDMs specifically in 6C4 and 412 experiments; (e) T cell populations. (f) Numbers of total CD4* T cells (CD3g*CD45") in lung tissue
as determined by flow cytometry. Points show individual mice with lines at the mean. Data are from single experiments with three to five mice per group that
are representative of two independent experiments. (g) CFU counts in lung-draining lymph node (LN) tissue. Data are from a single experiment with five mice
per group, showing individual points with lines at the mean. Data are representative of two independent experiments. Statistical analysis in f and g: two-way
ANOVA with Holm-Sidak post hoc test. (h) Total live cells in lung-draining lymph nodes. (i) Numbers of CD44*CD62L- CD4* T cells (CD3e*CD45") in lung-
draining lymph nodes as determined by flow cytometry. Panels h and i show points from N = 5 mice per group from a single experiment with lines at the median.
Data are representative of three independent experiments. Statistical analysis in h and i: aligned ranks transformation two-way ANOVA analysis, with post hoc
comparisons between groups shown following Holm’s correction. (j) UMAP (Uniform Manifold Approximation and Projection) of integrated and clustered lung
leukocyte scRNA-seq data as shown in Fig. 3 a, broken down into individual experimental groups (N = 3 per group); cDC, conventional dendritic cell; pDC,
plasmacytoid dendritic cell. (k) Stacked bar plots showing the relative abundance of each scRNA-seq cluster in each mouse, grouped by broad cell types, with
major groups of clusters highlighted. (1) Differences in relative abundance of key scRNA-seq clusters between C57BL/6 and C3HeB/Fe] mice at the two infection
time points. Differential abundance with false discovery rate <0.1 was taken as statistically significant. (m) Reference-based analysis of macrophage and
monocyte scRNA-seq clusters against references from the ImmGen database for lung macrophages and blood monocytes. ImmGen contributing investigators
for each reference are listed by surname. (n) Dot plots showing relative expression of selected marker genes in T and NK cell scRNA-seq clusters. Circle sizes
represent the abundance of cells expressing the marker gene, as a percentage of all cells in the cluster within all samples in the analysis. Circle color is
proportional to the mean expression of the gene within all cells in the cluster. Panels j-n show data from a single scRNA-seq experiment, and plots show
combined data from cells from N = 3 mice per group, except for panel k, which shows data from individual mice. Actual or adjusted P values are shown or: *, P <
0.05; **, P < 0.0L; ***, P < 0.001; ****, P < 0.0001; ns, not significant.
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Figure S2. Distinct early chemokine expression in lungs of C57BL/6 and C3HeB/Fe] mice. (a) Chord plots showing inferred interaction strength via the
indicated receptor-ligand pairs between cell populations in the different conditions. Outer circle and arrow colors indicate the predicted sending population,
and the inner circle colors indicate the predicted receiving populations. Arrow thickness indicates the overall signaling contribution. (b) Dot plots showing
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expression of the indicated genes in myeloid cell populations in scRNA-seq data. Circle sizes represent the abundance of cells expressing the gene, as a
percentage of cells within the cluster. Circle color is proportional to the mean expression of the gene within all cells in the cluster. (c) Bar plots showing the
relative contribution of the indicated receptor/ligand interactions to total inferred interaction activity in each group. Data in a-c are from a single scRNA-seq
experiment, and plots show combined data from cells from N = 3 mice per group. (d) DESeq2-normalized expression values of the indicated chemokine genes in
whole lung. Data shown are from individual mice from a single bulk RNA-seq experiment with N = 5 mice per group and lines at the mean. Statistical analysis:
two-way ANOVA with Holm-Sidak post hoc test: *, P < 0.05; ***, P < 0.001; ****, P < 0.0001; ns, not significant.
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Statistical analysis: unpaired t test; ****, P < 0.0001.
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Figure S4. Hallmark protective cytokines in lung leukocytes of C57BL/6 and C3HeB/Fe] mice. (a and c) Chord plots showing the CellChat predicted
relative interaction contributions of TNF-a and IFN-y signaling to total interaction activity in each group. Outer circle and arrow colors indicate the predicted
sending population, and the inner circle colors indicate the predicted receiving populations. Arrow thickness indicates the overall signaling contribution. (b and
d) Dot plots showing expression of the indicated genes in scRNA-seq data. Circle sizes represent the abundance of cells expressing the gene, as a percentage of
cells within the cluster. Circle color is proportional to the mean expression of the gene within all cells in the cluster. (e) Violin plot showing expression of Ifng
within all cells in the T cell CD4 Ifng cluster at 20 days after infection, with a dot at the mean. Data shown are from a single scRNA-seq experiment, and plots
show combined data from cells from N = 3 mice per group.
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Figure S5. Type I IFN-inducible gene expression and NETs in lungs of C57BL/6 and C3HeB/Fe] mice. (a) Dot plots showing expression of individual
representative ISGs or a 37-gene type | IFN-response signature (Kotov et al., 2023) in myeloid cell populations in scRNA-seq data. (b-g) Analysis of lung
multiplex immunofluorescence in HN878-infected mice with and without IFNAR blockade in the experiments described in Figs. 8 and 9. (b and ) Numbers of
total CD4* T cells in whole left lungs normalized for tissue area. (d) Abundance of CD4* T cells in lung lesions expressed relative to that in non-lesional lung.
Statistical analysis: unpaired t test, with Welch’s correction applied in b. (e) Representative images showing all merged channels for NET staining (top) and
CitH3 and DAPI alone (bottom) in C3HeB/Fe] mice at 20 days after infection. Scale bar = 50 um. (f) Quantification of CitH3 NET staining relative to Ly6G staining
in lung lesions. Statistical analysis: unpaired t test. (g) Percentage of lung lesions with low (CitH3/Ly6G < 0.2), intermediate (CitH3/Ly6G 0.2-0.4), or high
(CitH3/Ly6G > 0.4) NET burden. Data shown are means + standard error. Statistical analysis shown is Dirichlet-multinomial regression analysis of the effect of
alFNAR treatment on lesion NET status. Symbols indicate significant differences in the proportion of NET-low lesions. Data in b-g are from single experiments
with N = 5 mice per group and are representative of two independent experiments. (h) DESeq2-normalized expression values of genes of interest as identified in
Fig. 10 in whole lungs early in infection with HN878. Data shown are from a single bulk RNA-seq experiment with N = 5 mice per group and represent individual
replicate mice as points with lines at the mean. Statistical analysis: two-way ANOVA with Holm-Sidak post hoc test. (i) Dot plot showing expression of Slfn4 in
scRNA-seq clusters. Data in a and i are from a single scRNA-seq experiment, and plots show combined data from cells from N = 3 mice per group. Circle sizes
represent the abundance of cells expressing the gene, as a percentage of either cells in the cluster (a) or within total cells (i). Circle color is proportional to the
mean expression of the gene within all cells in the cluster. Actual P values are shown or: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not
significant.
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Provided online is Data S1. Data S1 shows the predicted early ligand-receptor interactions in lungs of C57BL/6 and C3HeB/Fe] mice.
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