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Distributed Robust model Predictive Control for
Partial Output Consensus of Multi-rate Chain
Interconnected Processes

Zidong Liu, Dongya Zhao, Member, IEEE and Sarah K. Spurgeon, Fellow, IEEE

Abstract—In this paper, partial output consensus (POC) based
on distributed robust model predictive control (DRMPC) is
investigated for multi-rate chain interconnected processes. To
accommodate potential differences in sensor sampling character-
istics, ‘Consensus’ and ‘Nonconsensus’ outputs (i.e. those outputs
with and without a consensus target) have different sampling
periods. A fusion estimation strategy (FES) is initially designed,
which can utilize multi-rate measured outputs to generate state
estimates in real time. Using the results of this FES, a DRMPC is
then proposed that can simultaneously stabilize all the outputs.
The POC cost function and consensus constraint can ensure that
all subsystems meet POC requirements. The effectiveness of the
proposed approach is shown to be guaranteed theoretically and
further demonstrated by simulations and experimental testing.

Index Terms—Partial output consensus, Chain interconnected
process, Multi-rate sampling, Fusion estimation strategy, Dis-
tributed robust model predictive control

I. INTRODUCTION

Non-condensable gas
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Fig. 1. Multistage flash distillation process for desalination with three grades.

A chain interconnected process is composed of subsystems
experiencing chained flow across material, energy and/or in-
formation interconnections. These are common in the chemical
industry [1] and production dispatching [2]. Optimization and
control of such chained, interconnected processes is complex
and varied resulting in the problem receiving wide attention in
the literature [3], [4]. As shown in Fig.1, the multistage flash
distillation process is chained. Its workflow is that materials
(sea water) go through multiple chambers (with progressively
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decreasing pressures), and the product (fresh water) can be ob-
tained through evaporation and condensation of water. Within
this process, the pressures should maintain a decreasing rela-
tion, which can be modelled using ‘Consensus’ outputs with a
consensus target. The temperatures should reach their own set-
points, which must be modelled as ‘Nonconsensus’ outputs.
This problem is called ‘partial output consensus’(POC) and it
is common in chain interconnected processes.

Regarding the POC problem, there have been many studies
presented in [5]-[9]. Previous work [5]-[7] investigated POC
control design, but ignored the stability of ‘Nonconsensus’
outputs and were only suitable for multi-agent systems without
interconnections. To address this, the authors of this paper
proposed a distributed robust POC control in [8] for chain
interconnected systems with uncertainties, which can stabi-
lize all outputs. Further, a distributed optimization method
was proposed in [9] to calculate the feasible set-points for
‘Consensus’ and ‘Nonconsensus’ outputs. Nevertheless, these
methods cannot meet some objectives, such as the satisfaction
of state/input constraints and optimal performance. In contrast,
distributed robust model predictive control (DRMPC) has
excellent robustness and optimality, it has bee extended to
consensus control [10], [11] and interconnected system control
[12], [13]. DRMPC is a potential method for POC, but it has
not been considered for addressing POC until now.

Due to the differences in sensors, subsystems employ multi-
rate sampling in practice. In Fig.1, all ‘Consensus’ and ‘Non-
consensus’ outputs are sampled asynchronously and there is
no measurement information available for the control update at
some times. For multi-rate sampling, the conventional method
(see for example [14], [15]) is to derive new state-space
models with a common rate for the control design. However,
the interconnection terms bring the coupling effects into the
time series and it can be challenging to find the desired
rate. Adopting a different methodology, the authors in [16]
proposed a DRMPC control based on distributed Kalman
filters for interconnected systems, where the filters can utilize
multi-rate outputs to generate the estimated states and DRMPC
can provide the stabilized control inputs. Nevertheless, the
cross-covariance calculation for the filters is too complex
and DRMPC lacks robust theoretical analysis. To reduce
the computation complexity, [17] presents distributed set-
membership observers that provide performance comparable
to the distributed Kalman filters, but this method is only
suitable for single-output systems. In summary, the multi-
rate sampling control has been widely investigated, but there
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are few available results on interconnected systems, let alone
addressing the POC problem.

Motivated by the problems and open questions mentioned
above, POC is studied for multi-rate chain interconnected sys-
tems in this paper. There are two challenges to be addressed.
Firstly, how to handle the influences of multi-rate sampling and
utilize measured ‘Consensus’ and ‘Nonconsensus’ outputs to
provide reliable real-time information for the control calcula-
tion. Secondly, how to design DRMPC controls for POC and
guarantee their robustness, feasibility and stability.

A POC control framework is developed using DRMPC and
the main contributions are as follows.

o The proposed fusion estimation strategy (FES) can esti-
mate in real-time zonotopes of states. The FES consists
of two multi-rate filters and a fusion module. By using
the ‘Consensus’ and ‘Nonconsensus’ measured outputs,
the filters can synchronously generate two pre-estimated
zonotopes of states. The fusion module then integrates
them to obtain a more precise estimated zonotope.

o Using the FES results as a basis, an effective DRMPC
for POC is proposed by formulating a distributed opti-
mization problem. To handle the chain interconnections,
‘shadow’ variables are defined to represent the dynamics
of neighboring subsystems. With the designed POC cost
function and consensus constraint, the control inputs can
ensure that subsystems meet POC requirements.

o The recursive feasibility and stability of the proposed
method are both analyzed.

Compared with [14], [15], multi-rate systems with intercon-
nections are considered in this paper. In contrast to [16], [17],
the proposed FES can simultaneously handle two-part outputs
with different sampling periods. Although the method in [17]
can also solve multi-rate POC, the method in this paper can
make full use of ‘Consensus’ and ‘nonconsensus’ measured
outputs to improve controller performance and robustness.

The structure of this paper is as follows. Section II formu-
lates POC for a multi-rate chain interconnected process and
presents the ‘Consensus’ and ‘Nonconsensus’ filters. Then,
FES and DRMPC for POC is developed in Section III,
including the design and analysis of the proposed method. The
results of numerical simulations and experiments are shown in
Section IV. Finally, the conclusion is presented in Section V.

Notation 1: R and Z respectively represent the set of real
numbers and integers, and Z; refers to the set {i,7 + 1,--- ,j}
with ¢ < j € Z. Note P’ and rank(P) denote the transpose
and rank of P, respectively. (), 0,, and 0,,, represent the
empty set, n-dimensional zero vector and n X m dimensional
zero matrix. The matrix diag[S;]y denotes the diagonal
block matrix composed of Si,S%,---,Sy. The quadratic
norm with respect to a positive definite matrix P = P’
is denoted by H:c||2P =a'Pz. ||z|| and |[z| represent the
2-norm and oco-norm of x respectively. The eigenvalues of
P are denote by A(P). Given two sets X,) C R" and
matrix A € R™*", AX = {Az|r € X}. The Minkowski
set addition is defined by X ® Y = {zx +ylx € X,y € Y}
and the Minkowski (Pontryagin) set difference is defined by
XoY={zcR"z®Y C X}. A zonotope x is denoted as

(¢, E) := {x € R"|x = ¢+ Eu, |Ju|lcc <1}, where ¢ € R"
and £ € R™*" are the center and generator matrix of .

II. PROBLEM FORMULATION

In this paper, the considered chain interconnected process
is composed of N subsystems, which are shown in Fig.2.
Subsystems have chain interconnections which refer to the
couplings in mass and energy. The information can be ex-
changed among subsystems by the communication network.
Each subsystem has two types of output, the ‘Consensus’ out-
put y.; and the ‘Nonconsensus’ output ¥, ;. Due to differences
in the sensors, these outputs have different sampling periods.
The goal of POC is to make all y. ;,7 € V achieve consensus
and converge to the ‘Consensus’ set-point ¥4 con, While y,, ;
is stable and converges to the ‘Nonconsensus’ set-point yg,;
respectively. Note that, ¥4, con 1S only assigned to subsystem 1
and yg4,; is assigned to subsystem <.

Yd,con Yaa Ya,2
Subsy 1 Subsvetem?
|)’c,1 | Yn1 |J’c,z | Yn2 Ve | Yn3 Yen YN
o] | | [o=] =
v v v v v

<> Communication Network —>  Chain Interconnection

Yaz3 Yan

| ] | <] o <>
— Y — Subsystem3 — + — SubsystemN
— fe—r — -«

Sensor Sensor Sensor Sensor Sensor Sensor

Fig. 2. Multi-rate chain interconnected process.

The subsystems can be formulated as

JENC,i

Ye,i(k) =Ceixi(k) + ve,i(k),

Yn,i(k) =Chizi(k) + vy i(k), 0
wherei € V = ZN 2, € X; CR" and u; € U; C R™ are the
state and input, y.; € RP¢, y,,; € RP» are the ‘Consensus’
and ‘Nonconsensus’ outputs, A;;, A;; € R"*", B; € R"*™,
Cei € RPe*™ and C,,; € RP»*"™ are known matrices. The
state and input are constrained, and A, U; are convex, compact
polytopes whose interiors are not empty. w; € W; C R™ is
the disturbance, where W; := (0,7 1,) and n,,; > 0.
Vei € Vei € R, vy, €V, € R are the measurement
noises, where Ve ; = (0g,,0cilq.)s Vi = (0q,,Mm,ilq, )
and ¢4, M, > 0. ./V'm- refers to subsystem ¢’s neighbor set,

{2},i=1
i—1,i+1},ie Z2N°1,
2
{N-1},i=N

and the chained interconnection satisfies

Nc,i =

>, Aijz; € Vi,
JENC,i
where V;; = ®j€Nc,iAinj‘

The following Assumption is required.

Assumption 1: Suppose that the parameters in (1) satisfy

I,n —A B
rank C. 0p. N xmN
Ch 0,, NxmN
= (n+pe+pn) N,
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where A = [Aij]NXN» B = diag[Bi]N, Cc = diag[Cc,i]N
and Cn = diag[Cn,i]N.

Remark 1: Assumption 1 is made to ensure that all sub-
systems can attain appropriate steady-states and inputs cor-
responding to the desired set-points. Similar assumptions are
also made in tracking DMPC [18].

Multi-rate sampling is common in process industries. When
this occurs, inputs and/or outputs of different subsystems may
have different sampling periods. Fig. 3 presents several multi-
rate sampling mechanisms. In Fig. 3(a), [15] outputs have a
larger sampling period than the inputs, but the subsystems
are sampled synchronously. Fig. 3(b) describes the multi-
rate sampling in [16], where only the outputs have different
sampling periods. Fig. 3(c) describes the sampling scenario
considered in this paper, where each subsystem has two
output elements which have different sampling periods. Not
only that, subsystems are sampled asynchronously and outputs
have larger sampling periods than the inputs. Clearly the
case considered in this paper is more difficult than the cases
conisdered in [15], [16]. Further the control design should
consider how best to utilize ‘Consensus’ and ‘Nonconsensus’
outputs to provide reliable information for real-time feedback.

For convenience, let d.. ;, 0, ; represent the sampling periods
of Yc.i, Yn,i and d,, represent the control period. It is assumed
that 6.;,0,,; > 6,. The measured ‘Consensus’ output 1. ;
and the ‘Nonconsensus’ output v, ; are denoted as . ;(I1) =
ycz(lz(S(’l), Q/Jnl(l;) = Unl(l%(snl), where lé, Z;L S ZOOO

The objective of this paper is then to develop a DRMPC-
based control method, which can utilize . ;(I%) and v, ;(I%)
to complete the following POC targets, i.e.

lim ||yc,1(k) - yd,con” So'c,la (2a)
k— o0
im [|yn,i(k) = ya,ill <oni, (2b)
k—o00
k;li{go ||y071(k) - yc,](k)” Soc,iaj € Nc,i' (2C)

where o ;,0,,; > 0 are constants.

III. MAIN RESULTS

This section presents a POC control framework as shown
in Fig. 4, for multi-rate chain interconnected systems. The
framework includes both FES and DRMPC where the main
principles can be described as follows.

e The FES contains two filters and a fusion module, and
can provide the estimated state ; and zonotope x; for
the control calculation.

o With the results from the FES, DRMPC can provide the
control input u;(k), which can ensure that subsystems
meet the POC requirements.

A. FES for Multi-rate Outputs
For each subsystem in (1), the FES is designed as follows

. _ <<Pl(k)7 (I)l(k»v mOd(kv 50,1') 7£ 07
xalk) = { (G (12), i (12)), k= 1.0c, %)
s _ <901(k)7 D, (k)>a mOd(ka 671,1) 7£ 07

k) = e (k) N k) 1= (& k), Rik)) . Go)

gﬁg Previous san:pling OA¢ Future sampling
1
yi h——h—h

O0A¢

0AO OA© Future sampling

Previous sampling

OAd
s OAY

Previous sampling OA® Future sampling

O O
A\ 04 A\ 54

A A A A

Now

(©)

Fig. 3. The common multi-rate sampling mechanisms.

lT Information Exchanges
u; (k)

Yd,con» Yd,i . .
v Distributed Model Predictive Ve,i (k) yn,i (k)

Control (DRMPC) for POC

(®;(k), %:(F))
I_Tusion ”

k), 4 e anens’ Estimator |<-
@), 2:()) g N
[“Nonc

Subsystem 7

Wei(lE)
Pni(h)

Sensor

‘" Estimator |(-

Fusion Estimation Strategy (FES) ”

Fig. 4. The POC control framework for multi-rate systems.

where x;,x; € R"™ are the pre-estimated zonotopes accord-
ing to ‘Consensus’ and ‘Nonconsensus’ measured outputs,
respectively. ¢, fi, 51 are the pre-estimated values of x;(k) at
different times, and P;, éi, Ei are the corresponding generator
matrices. Z; € R" represents the estimated value of z;(k) and
Xi € R™ is a zonotope with z; as the center and ]A%Z € RMxT
as the generator matrix. The superscript represents the time
index.
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The above variables can be updated by the following steps

pi(k) =Auz;(k — 1)+ Bju;(k — 1)

+ > Aydlk—1), (4a)

JENC:
O, (k) =[AuRi(k — 1), [Ay R;(k = V)]jen. .l (4b)
il =epi(k) + Ki(IL) (e (12) — cm(k)) (4c)
2i(18) =1 = Ki(1)C) (), —ne, K (12), (4d)
51(1;1) =i(k )+K1(l )(1/)71 Z(l:z)_ nzwz(k)) (4e)
i (1) =T = Ki(13)Con i) i (k), =, i K (13)], (4f)

where K, (1) € R™*P¢ and K;(I},) € R"*Pr are the filtering
gains, and [A;; R;(k — 1)]; € N, is formulated as

[Aij R (k — ,
ARy (k — 1),i=1,
[Ai)i_lf‘zi_l(k — 1), Az,i+1Ri+1 (k — 1)],2 € Zévil,
Any1Ry 1(k—1),i=N.

The proposed FES consists of the following parts:

o Equations (3a) and (3b) define ‘Consensus’ and ‘Non-
consensus’ filters. Under multi-rate sampling, they can
generate the estimated states at every instant. Their input
signals are . /v, ; and the output signals are the pre-
estimated states ;/x; and zonotopes X;/Xi-

o Equation (3c) defines a fusion module, which is employed
to integrate y; and y; in order to obtain a more precise
zonotope X; of less size. Its input signals are x; and x;
and its output signal is the estimated state X;.

Considering minimizing ||Z;(I%)]|% and ||Z;(1%)|2, the

optimal ‘Consensus’ and ‘Nonconsensus’ filtering gains are
derived as

K1) :@i(k)(Cc,ﬁI%(k))’
K;(11) Z@i(k)(cn,iq)i(k))l

(Cri®i(k)(Cr,i®i(k)) 175 )7

Lemma 1: Assume that z;(0) € x;(0) holds for all i € V,
then x;(k) calculated by (3) satisfies \;(k) # 0 and z;(k) €
Xi(k) for k € Z¢{°.
Proof. According to the principle of induction, this Lemma
can be proven by showing that z;(k — 1) € x;(k — 1) =
i(k) € (k).

(i) When mod(k, d.;) # 0, using the subsystem dynamics
in (1), it follows that

zi(k) €Aixi(k — 1) @JGN Aijx(k = 1)
so that x; (k) € {(p;(k), ®;(k)).

(i) When k = %6, ;, consider the dynamics of . ;(I%). T
follows that

wi(k) =z (k) + Ki(I2) (e (IL) — Ceizi(k) —
(I - Ki(I)Ce i) (pi(k), ®i(k))
® (—Ki(l)Vei) ® Ki(12) (e (11), 0),

ve,i(K))

so that z;(k) € (&(11), Z;(1)).

Based on (i) and (ii), it follows that z;(k) € x.(k).
Similarly, it can be inferred that x;(k) € x;(k) also holds for
all k. According to the convexity of x;(k) and x;(k), it can be
concluded that x;(k) in (3¢) is non-empty and z;(k) € x;(k)
holds for all k. Then, z;(k—1) € xi(k—1) = x;(k) € x:(k)
can be proven. Since z;(0) € x;(0) is satisfied by hypothesis,
Lemma 1 can be proven. |

Lemma 1 demonstrates that the zonotope y;(k) can always
contain the real state z;(k). Based on this, x;(k) can be
utilized as reliable information for the control calculation.

Denote two error sets xei(k) = x;(k) © 2;(k) and
)_(e,i(k) = AuXe,z(k) @jeNc,i Aine,j(k) D Wl ACCOI‘dil’lg
to (3), Xe,i(k) C Xe.i(k) holds for all k. The proposed FES
can provide Z;(k), Xi(k), Xe,i(k) and X i(k) for DRMPC at
every instant.

Remark 2: The steps (3c) can be implemented by the
zonotope calculation method in [19], or by using the MPT3
toolbox.

B. DRMPC for POC

The prediction horizon is denoted by N,,. For clarity, all the
variables in the DRMPC optimization problem are presented:
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x;(k+1|k)  the predicted value of z;(k + 1) at instant k
xij(k+1k) x;(k+ k) estimated by subsystem j at instant k
u;(k +1k)  the predicted value of u;(k + ) at instant k
u;(k|k) the sequence of w;(k +I|k), [ € ZéVp

Ys,c,i the steady-state ‘Consensus’ output

Ys,ni the steady-state ‘Nonconsensus’ output

Tsi the steady-state value of z;

Ts,i,j Zs,; estimated by subsystem j

Ug,i the steady-state value of w;

Note that x; ;j(k + l|k) and x,,, are called ‘shadow’
variables, which can replace x;(k) and x; in subsystem 4
for decoupling the chain interconnections. ¥s c.i, Ys.n,i» Ts,is
Zs,,; and u,; are steady-state variables, which satisfy

Tsi = Aii%si + Biugi + Z AijTs i,
je-/\/c,i
(6)

Ys,ci = Oc,ixs,iv

Ysn,i = Cn,ixs,i-

Denote d;(k) = (z;(k|k), w;(k|k), zs,:, us ;) as the decision
variable for subsystem ¢, which contains the initial predicted
state, the sequence of the predicted inputs and the steady-

state outputs. Following [20], a parameterized control input
u; applied to subsystem ¢ is designed as

i(k) = zi(k|k)), @

where F; € R™*™ is a gain matrix, which satisfies ||As ;|| =
[|Aii + B Fi|| < 1.
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According to (2), POC cost function can be designed as

Np—1
=Voi+ Vet L), ®)

where V), ; is the POC cost, which is composed of the
quadratic-norm differences between steady-state outputs and
set-points. V,,; is the terminal cost and I! is the stage cost,
which are common in MPC design and can guarantee the
stability and optimality of systems. They are formulated as

Ji(di(k))

V. — [Ys,e,i — ydycon”% + 1Ys,m,i — yd,il\?pm, =1,
P s, = Yaill,, ,» i #1,
Vi = (b + Nylk) = sl .
I} = |lzi(k + k) — 2aillyy, + luik + k) — we il

where Py; € R™™ is the terminal weight matrix, 7. €
RPeXPe T, ;€ RPr*Pr Q; € R™™™ and R, € R™*™ are
weight matrices, which are positive definite symmetric.

Assumption 2: [21]Suppose that there exists a gain matrix
F; € R™*™ for the subsystems (1) such that:

o X, = {a|||a||?7f <oy, q; > 0} is a positive invariant

set for x; — Ts, i ie., .Lz(k + 1) — T € Xf,i, Vil‘z(k) —
T, € Xp 4, wi(k) = 0.

o AlP;A, — Py < —Q — K'RK holds, where A, =
A+ BF, F = dldg[ ]N, Pj = dldg[Pj Z]N’ Q =
diag|Q;|n, R = diag[R;]n-

Assumption 2 is common in MPC design. Similar assump-
tions are also adopted in [18] and [22]. Although the inequality
is centralized, it can be solved using the distributed method in
[8]. Then, F; can be obtained.

The DRMPC optimization problem can be formulated as

mnin Ji(di(k))
s.t.  (6) and
xi(k+ 1+ 1|k) = Az (k + 1k) + Biui(k + k)
+ 3 Ayagalk+ilk),le 2577
GENei
(9a)
zi(k|k) € Xi(k), (9b)
xi(k+1|k) € X; © Sy:(1|k), (9¢)
wi(k +1k) €Uy © FiS,i(llk),l € Z*7', (9d)
ik + NyJk) — 25 € Xy, (9e)
Tsi € Xy, Uss € Us i, (91)
Ysieyi = Ys,ej = 0,7 € Neyi %)
zi(k+ k) — 2 (k+1|k) = 0,1 € 27, (9h)
Tsi— Tsij =0,7€Nes. (91)
where
2Xe,i(k), =0,
Ay Szl — 1|k
Seallh) = 4 o s, 10
@B Fixe,i(k) & W;
Xe.i(K), l=0,
Su,i(l|k) = AiiSui(l = 1K) 1>0.

DjeN. i AijSu,i(l — 1|k) ® Wy’

XsiZX‘@Swi(N |/€)@Xfi,
Us i =U,; @FSUl( —1|/€)@FXfl

Sg.i(l|k) and S, ;(I|k) are the tube constraints, which can
ensure that z;(k) and u;(k) always belong to X; and U;.
Xpi = a|||a||2Pf’i <0, >0
a; > 0 is a constant. At every instant, S, ;(I|k) and S, ;(I|k)
can be calculated based on . (k) which is generated by the
FES. After that, (9) can be solved.

The constraints in (9) are explained as follows. (9a) is
the prediction equation of subsystem ¢ with x;(k + [|k) and
xji(k + l|k). (9b) ensures that x;(k|k) belongs to x;(k) for
approximating z; (k). (9¢) and (9d) are the state and input
constraints, which can guarantee x;(k) € X; and u;(k) € U;.
(9e) is the terminal constraint and X ; is a positive invariant
set. Pr; and F; can be obtained by solving the linear matrix
inequality in Assumption 2. (6), (9f) and (9g) form the
constraints for steady-state variables. Note that, POC cost
combined with (9g) can ensure that ys.; and ys, ; meet
POC requirements. (9h) and (91) can ensure the consistency
of the ‘shadow’ variables to guarantee the effectiveness of the
solution.

The optimization problem (9) can be directly solved
using the distributed optimization methods in [23], [24]
and its optimal solution at k is represented by dj(k) =
(w7 (kI w; (k[R), %4 (k), u? (k).

is the terminal set and

C. Theoretical Analysis

Algorithm 1: DRMPC for POC of multi-rate chain
interconnected process
IHPUt: Kmax7 N7 Np7 5c,i; 571,1'; Thw,is Ois Yd,cons Yd,is
{EZ(O), jl(o)v RZ(O)v Qi, R, T, Tn i
Output: The responses of y. (k) and y, (k).
Initialization: calculate Py ;, F; and let k = 1.

while k£ < K,,,,. do
Subsystems exchange

(@i (k= 1), Ri(k — 1), Xi(k — 1)).
Calculate o;(k), ®;(k) by (4a) and (4b).
if k = 1.6, then
Measure ‘Consensus’ output and obtain
1/’6,1' (l}:) ,
Calculate &;(k), ul( ) by (4c) and (4d).

end

if k=116, ; then

Measure ‘Nononsensus’ output and obtain
wn,i(l:z)' . .

Calculate &;(k),Z;(k) by (4e) and (4f).

end

Calculate #;(k), x:(k) by (3), and calculate
Se.i(lk), Su.i(l|k).

Solve (9) and obtain the optimal input u} (k|k).

Calculate w;(k) in (7) and apply it.

Let k=Fk+ 1.

end
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This subsection completes the proof of the recursive feasi-
bility and the stability. Before that, the computation procedures
for the proposed method can be summarized by Algorithm 1.

Theorem 1: (Recursive feasibility) Suppose that Assump-
tions 1 and 2 hold. For each subsystem, provided that x;(0) €
Xi(0) holds and (9) has a feasible solution at k& = 1, if there
exists P; > 0, F; satisfying

Als,iPiAs,i — Al,PiA; <0, (10)

then Algorithm 1 remains feasible at all times.

The proof of Theorem 1 can be found in Appendix. A.

Theorem 2: (Stability) Suppose that Assumptions 1 and
2 hold and consider the given set-points Yq .con and
Y1, ,Ya,n- For any initial state x;(0) € A, all subsystems
in (1) deploying Algorithm 1 are stable and can achieve POC
in (2) with xl(k) € X; and ’U,Z(k) € U;.

The proof of Theorem 2 can be found in Appendix. B.

Remark 3: Compared with the single-filter method in [17],
the proposed FES has less conservatism, meaning that it can
tighten the boundaries of x;(k) to make the size of x;(k)
as small as possible. Then, the DRMPC can approximate the
dynamics of the real process and achieve good performance.
This feature will be demonstrated in the following simulation
results.

IV. NUMERICAL SIMULATIONS AND EXPERIMENTS
A. Numerical Simulations

To validate the effectiveness of the proposed method, the
numerical experiments for five subsystems are presented. The
parameters of the subsystems are A;; = [0.8,0.2; —0.34 0.1 %
i,0.9], B; = [1.0,0;0,1.0 + 0.1 x 4], C..; = [1,0], Cp; =
[—0.1,0.5], . = 0.05, nc; = Np,i = 0.01 and the state and
input constraints are X; = {z;||z;| < 10}, U; = {a;||ui| < 5}.

The sampling periods of all outputs are: 0.1 = 25, d¢ 2 =
3s, 0c3 = 25, 0ca = 48, 0c5 = 38, 0,1 = 35, dp2 = 4s,
57173 = 38, 57174 = 28, 57175 = 2s.

For the ‘Consensus’ and ‘Nonconsensus’ filters,
the initial values are set as #1(0) = (0.06,—0.94),
2(0) = (0.92,-045), @5(0) = (2.08,-0.01),
24(0) = (2.91,0.45), i5(0) = (4.05,0.91) and

R1(0) = R2(0) = R3(0) = R4(0) = R5(0) = 0.1 % I.

The set-points are piecewise constants, for k& € [0,20],
Yd,con = 2.3, Ya1 = 1.0, Yd2 = 1.5, Yd,3 = 2.0, Yda = 2.5
and Yd,5 = 3.0. For k € (21,40], Yd,con = 1.2, Ya,1 = 0,
Y2 = 0.5, ya3 = 1.5, yg4a = 1.0 and y45 = 2.0. For
k € (41,60], Yd,con = 1.8, Y41 = 0.5, ya,2 = 1.0, yq 3 = 1.0,
Yda = 2.0 and Yd,5 = 2.5.

In this section, the following two methods are considered:
(a) the single-filter method in [17] and (b) the proposed
method. The single-filter method estimates the states by 9 ;
and then calculates a DRMPC control. For the sake of impar-
tiality in the results, the parameters for the two methods are
set identically. For DRMPC, set IV, = 10, a; = 0.2, Q; = I,
Ri = IQ and TC = Tn,i =70.

The responses of the ‘Consensus’ outputs with both methods
are shown in Fig. 5. All y.; can achieve consensus and reach
a neighborhood of ¥4 on. Note that, with the single-filter

(a) Single-filter method

4.0

Time k

40 (b) The proposed method

=== = Yieon =y —t— Y1
—O— a1 Yes —H—Yes
1

0 20 40 60
Time k

Fig. 5. The responses of ‘Consensus’ outputs.

method, y. ; in Fig.5(a) can reach [y4 con—0.2, Ya,con+0.2]. In
contrast, y.,; in Fig. 5(b) can converge smoothly to a smaller
neighborhood of ¥4 con. This difference is more evident in the
responses of the ‘Nonconsensus’ outputs, which are presented
in Fig. 6. To quantify the performance, the Integral of Time-
weighted Square Errors (ITSEs) are adopted here and are
presented in Table I. Obviously, the proposed method has
improved performance when compared with the single-filter
method.

TABLE I
THE ITSES OF y¢,; AND yp,,; UNDER TWO METHODS

Single-filter method ~ The proposed method

Yo 841.92 84425
Yn,1 606.24 593.16
Ye.o 719.21 676.40
Yn,2 652.89 643.36
Ye.s 705.57 662.68
Yn,3 1442.01 1427.40
Yeu 812.58 808.89
Yn,4 1529.62 1534.41
Ye,5 1096.43 1049.50
Yn,5 720.41 703.36

To illustrate the advantages of FES, Fig. 7 shows x;(k) at
k = 2s and 6s, where the black and dark grey areas are X;
and Yy, the light gray area is x;, “*’ and ‘+’ are the real state
and estimated state. Based on (3b), the size of x;(k) can be
significantly reduced. In this way, DRMPC can approximate
the dynamics of real subsystems well and hence achieve good
performance.

The proposed method also achieves robustness to the vary-
ing sensor sampling periods. To verify this, five groups of
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Fig. 6. The responses of ‘Nonconsensus’ outputs.

(a) k=2s (b) k=6s

* o
34 38 + :i
-X’H
e
20 37 s
& &
29 36
28 35
20 21 ?.2 23 24 22 ?.3 24 25
e .
Fig. 7. The zonotope Xx3(k) at k = 2s and 6s.
20s simulation tests with 0.4 = 3s,4s,5s,6s and 7s are

developed. Other sampling periods are the same as before. To
avoid randomness, each group is repeated ten times, and the
average sum of ITSEs is taken as a reference, which is shown
in Table II. The performance of the single-filter method is
negatively correlated with d.4 and subsystems are divergent
when 6. 4 = 7s. The proposed method is robust to changes in
d¢c,a and the sum of ITSEs remains around 6.75e3 — 6.80e3.
Therefore, the effectiveness and robustness of the proposed
method is further demonstrated.

B. Experimental Testing

To further verify the effectiveness of the proposed method,
an NaOH solution proportioning experiment is presented here,

7
TABLE II
THE SUM OF ITSES UNDER DIFFERENT 66,4
Oc,4 3s 4s 5s 6s Ts
Single-filter method 7.19e3  7.12e3 7.28e3 7.26e3 7.44e3
The proposed method 6.76e3  6.76e3  6.76e3  6.74e3  6.79e3

Fig. 8. The two tanks platform.

which is carried out using the platform in Fig.8. For clarity,
the flow chart is shown in Fig.9 and it can be explained
by listing the following major elements of equipment. Tank
R-101 and R-102 are used for producing the desired NaOH
solution. They are connected by a pipe (red line), which can
transfer the solution from R-101 to R-102. Therefore, they can
be considered as two subsystems with chain interconnections.
Tank V'-111 and V-112 are the material tanks containing water
and NaOH solution, respectively.Tank V-113 is a hot-water
tank and the hot water (at about 55°C') can be transferred to
the jackets of R-101 and R-102 for heating.

]

o @
Fovo

140 140

Y

Wt

TiC103-0ut

Fig. 9. The flow chart of the solution proportioning experiment.

The objective of this experiment is to ensure that R-101
and R-102 can product the NaOH solution with different
temperatures and the same concentration. The temperature and
concentration can be respectively modelled as ‘Consensus’ and
‘Nonconsensus’ outputs. The partial output consensus problem
with multi-rate sampling can be formulated as follows.
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o Controlled variables: the temperatures 77, 75 and the
concentrations C7, Cs for R-101 and R-102.

e Manipulated variables: the flow rates vy 1, vy 2 of hot
water and the flow rates vy, 1, vy,2 Of water for R-101
and R-102. Their ranges are 0 — 25.0L/h.

o ‘Consensus’ and ‘Nonconsensus’ set-points: the ‘Consen-
sus’ set-points is set as Cy = 3.0 kmol/m3, i.e. the
concentration set-point. The ‘Nonconsensus’ set-points
are set as 42°C and 38°C, i.e. the temperature set-points.

o Constraints: T, Ty cannot exceed 45°C' and C;, Cy
cannot exceed 10.0 kmol/m?>.

o Multi-rate sampling: the sampling periods are o7, = 2s,
o1, =38, 6c, = 3s and ¢, = 4s.

o Disturbance and measurement noise: they are stochastic
and the bounds are 7,, ; = 0.01,7.; = 1,; = 0.005.

Denote z; = col(T;, C;), the model parameters are Ay =
[0.548,0.006; —0.001,0.735], By = [0.531,0.001;0,0.465],
C,y = [1,0], Ay = [0.732,—0.004; —0.002,0.628],
By = [0.409,—0.001; —0.001,0.423], Cy = [0,1], A12 =
[0.001,—0.009; 0,0.001], Ay; = [—0.002,0; 0, —0.001].

To highlight the advantages of the proposed method, the
single-filter method in [17] is chosen for comparison. Both
methods use the same parameters, which are listed in Table III.
The solver for the DMPC is CasADi from the MPT3 toolbox.
The control inputs are calculated and transmitted to the lower
computer via OLE for Process Control (OPC).

TABLE III
THE PARAMETERS OF FES AND DRMPC

reached about 37°C and 34°C. The initial values of C7 and Cy
are 1.2 kmol/m3 and 1.3 kmol/m3. With the two methods,
Ty and T, can reach neighborhoods of their own set-points,
C7 and C5 can achieve consensus at a neighborhood of 3.0
kmol /m3. In TABLE 1V, ITSE, overshoot and convergence
time are presented. It can be seem that the proposed method
has improved performance when compared to the single-filter
method. This is particularly notable in the response of C}
where with the benefit of FES, C; exhibits low overshoot and
rapid convergence speed. Therefore, the effectiveness of the
proposed method is further validated.

TABLE IV
THE SIMULATION RESULTS OF TWO METHODS

Index Single-filter method  The proposed method
ITSE of T} 3.82¢e6 3.43e6
ITSE of T5 4.65€6 3.85e6
ITSE of C4 2.0led 1.49€5
ITSE of C2 2.13e6 4.96e5
Overshoot of Cy 23.78% 12.96%

Convergence time of C about 5000s about 3400s

V. CONCLUSION

In this paper, a novel POC framework is developed for
multi-rate chain interconnected processes. This is composed of
FES and DRMPC. The designed FES can generate estimated
states in real-time using ‘Consensus’ and ‘Nonconsensus’
filters and a fusion module. Based on the output of the FES, a

novel DRMPC is developed for POC, which can drive subsys-

tems to meet POC requirements. The recursive feasibility and
stability are proven. Compared to previous methods, DRMPC
with FES can achieve better performance and robustness to
multi-rate sampling. Finally, some numerical simulations and

Term Value Term  Value Term Value Term Value
Nyp 10 Ry 5x Iy T1(0) 37.0 R1(0) 0.05x% I
a 0.6 Ro 5% I T(0) 34.0 R2(0)  0.05% I
Q1 10 * I Te 100 C1(0) 1.2
Q2 10 * I Th 100 C2(0) 1.3
45.0 E 407
g 3
ool = £
=3 c
© k]
“é- %2-0 --c, Acgc,
. g 1.0 ]
0 1500 3000 4500 6000 O 0 1500 3000 4500 6000
Time(s) Time(s)

Fig. 10. The results of the single-filter method.
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Fig. 11. The results of the proposed method.

The total time is 6000s, and the results are presented in
Fig.10 and Fig.11. After preheating, 77 and 7% respectively

experiments are presented to validate the effectiveness of the
proposed method.

VI. APPENDIX
A. Proof of Theorem 1

Based on the solution at k, the feasible solution of (9) for
k+1 can be formulated as d; (k+1) = (2; (k+1|k+1), u;(k+
Hk+1), 2% ;(k), u ;(k)), where ;(k+1[k+1) = z} (k+1[k)
and w;(k+1k+1) = (uf(k+ 1|k), - ,uf (k+ Nplk),Ry).
Note that, 7y ; = u (k) + F;(Zi(k + Nplk + 1) — 2% (k).

The feasible state trajectory can be derived as

i (k+1lk+1) =

at(k +1)k), le zZ,
AyZi(k+1—1k+1) 4+ Biky,

JENC:

According to the feasibility of df(k), it can be easily
concluded that d;(k + 1) can satisfy the equality constraints
(9a) and (91)-(91). Due the complexity of the particular fusion
strategy, the feasibility for (9b)-(9e) cannot be directly proven,
and the analysis is presented as follows.
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(i) The satisfaction of the constraint (9b):

Denote &;(k) and @;(k) as the centers of x;(k) and x;(k)

respectively Consider the ‘Consensus’ filter. There are two
cases for T, FHURL that need to be considered.
Case 1: while & #115.:, then Zi(k + 1|k +1) —4;(k+1) €
L;(k+1), where Ty (k+1) = Ay ixe.i(k) @jen..; AijXe; (k).
The error between z;(k 4+ 1) and &;(k + 1) is azz(k +1) -
Lf)l(k-i- 1) € ﬂl(k'i‘ 1), where ﬂl(k'i‘ 1) = AiiXe,i(k) @je,/\/cj
AijXe,j(k) © Wi }

Similarly, when k # [ 6, ;, it follows that

Fi(k+1k+1) — (b +1) € Ti(k + 1),
zi(k+1) — i (k+1) € I(k + 1),

where I';(k+1) = I';(k+1) and with IT;(k+1) = IT;(k+1).

Due to || A ;|| < 1, it can be easily inferred that I';(k+1) C

I0;(k +1) and T';(k + 1) C TLi(k + 1).
Case 2: while k = [.5., then z;(k + 1|k + 1) —di(k +
1) € Ti(k + 1), where Ty(k + 1) = (Kqi(l)Ai +
BiFi)Xe,i(k) DBjen.. Ka,i(le)Aijxe,i(k) © K; (le)Vi and
Kai(l)) = I — K;(I))C...

The error between azz(k + 1) and &;(k + 1) satisfies
zi(k + 1) — &i(k + 1) € T(k + 1), where ITi(k + 1) =
Kai(l) Aiixe.i(k) ©jen., Kailll)Aixe (k) & KaiWi @
Kch,i-

Similarly, while k # [%§,, ;, then

(1)

fi(k+1|k+1)—i\ﬂi(k+1)el\z‘i(k—Fl), 12
ik +1) — ik + 1) € I (k + 1),
where
Di(k 4+ 1) = (Kai(13) Aii + BiFi)xe.i(k)
Djen. Kai(lh)Aijxe (k) @ Ki(lh)Ve,i,
I (k + 1) = Ka,i(13) AiiXe,i(k) @jen, Kai(lh)Ayxe; (k)

&) Kdl(l;)wz &) Kz(l;)ch
Based on the above analysis, it follows that
Ti(k+1k+1) € xi(k+1)
=(di(k +1) @ Ti(k + 1) N (2:(k + 1) @ Ty(k + 1)), 03
zi(k+1) € xi(k+1)

=(#;(k+1) @I (k+ 1)) N (&:(k + 1) & IL;(k + 1)).

If (10) holds, then I'; (k+1) C II;(k+1) holds for k = I, ;
and I';(k + 1) C 1I;(k + 1) holds for k = [%,6,, ;. Further, the
following conditions are satisfied for all time,

(£i(k + 1) ®Ti(k + 1)) C (¢(k + 1) @ IT;(k + 1)),
ik +1) @ik +1)) C (@i(k + 1) @ IL;(k + 1)).

According to (13), it can be concluded that x;(k + 1) C
Xi(k+1) and 7;(k + 1|k +1) € X;(k + 1). Using Lemma 1,
Xi(k+ 1) is not empty. Then, it can be proven that d;(k + 1)
satisfies (9b).

(i) The satisfaction of the tight constraint (9¢)-(9d):

Due to Z; (k+1|k+1),2;(k+1) € x;(k+1) and z;(k+1) €
X;, then Z;(k + 1|k + 1) € 2x.(k + 1) holds. For z;(k +
2|k+1), then Z;(k+2|k+1) =z (k+2|k) € X, © 5,.:(2|k).

According to (3), it follows that x.;(k + 1) C Xei(k + 1).

Then, S, ;(0lk + 1) C S, ,(1]k) holds. By induction, 1t can

be inferred that S”k“ C S,.i(1 + 1|k) holds for I € Z,'* .

Therefore, z;(k + l|k +1) e X;©8,;,:(1 —1k+1) can be

proven for [ € Zl . For I = Ny, due to z (k) © Xy, €

X 65’1 i(Np|k), it follows that z; (k+N, |k) = z} (k+N,|k) €
2i(k) ® Xpi C X O Spi(Ny — 1|k +1).

Because uf(k + llk) € U; © F;S,:(llk) and x. (k) C
Xe,i(k), it follows that S, ;(l|k + 1) C Sy (I + 1|k). Then,
wj(k+1+1k+1) € U; © F;S; ;(I|k + 1) holds. Therefore,
Ji(k + 1) satisfies the constraint (9¢)-(9d).

(iii) The satisfaction of the terminal constraint (9¢):

According to Assumption 2, it can be inferred that |z (k+
Np+1k+1) =2l (k)5 < [|2i(k+Nplk+1) =27 (k)13 -
Due to Z;(k + N plk+1) =% (k) € Xf;, then xl(k—i— N, +
1lk+1) - ;v;i(k) € Xy, can be proven.

From the analysis above, d;(k + 1) is a feasible solution
for (9) at k + 1. Therefore, it can be deduced that if (9) has
a solution at the initial time, then it remains feasible for all
time. u

B. Proof of Theorem 2

For the given set-points ¥4 con and yq,1, -+ ,Yd,N, an opti-
mization problem for s . i, Ysn,; can be formulated as

(yicw yl.n,i) = arg min Z V}),i (y.s‘,c,i7 Ys,n,is yd,i)
=A%
s.t.  (6),(9f) and (9g).

(14)

The optimal solution of (14) satisfies yl_c_l = ... =
T —
ys,c,N -

that is,
(uf . szI n.i) meets the requirements of POC. Therefore, if

Yd,con and 7/]L ;= Ydi, © € V,

s,1,1

the systems (1) can track (z) z,ui’i) corresponding to yfu
yln ;» then the POC targets are attained. According to Lemma

1 in [25], if Assumption 1 holds, suppose that the optimal

solution of (9) is such that klim |lwi(k|k) — x5l = 0,
— 00
there is lim J(df (k) = Vpi(yl,pul,:) = 0. that is
o :

T

* * T
(z3,:(k),us ;(k)) can converge to (x| ;,u ;).

For subsystem ¢, the Lyapunov function is designed as

Wi(zi(k|k)) = Ji(2i (k|k), w; (k[k)) —

and (15) is the standard form in MPC, which satisfies

Pl(us c, Z7US n, z)
(15)

ao(|zi(klk) = =l ;) < Wilzi(klk)) < aw (Jzi(klk) — 2] )),
(16)

where aq, ay : R — R are both suitable K, functions [25].
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The difference of W = Y W is

S

AW (k) <> (Ji(@i(k + 1k + 1), ik + 1|k + 1), 27, (K))

(%
= Ji(z; (k|k), ui (k|k), 25 ;(k)))

= (|zi(k + Np+ 1k + 1) — 23, (B)|[3, ,
%
— |l (k + Nplk) — 2%, (k)| 5, ,
+ [z (k + Nplk + 1) — 2%, ()13,
+ [l pi — ul i (B)1R, — oy (k|k) — 2%, (R,
— [lu; (klk) = ul;(F)|I%,)

<Dl (k1) = 22, (R,

icV

There are W > 0 and AW < 0, then it can be obtained that
lim W(k) = 0. Combined lim ||Zs;(k+1)—z%,|| =0
k—o0 k—o0 ?
and (16), it follows that lim (| (k|k) — al) =0, ie
lim ||z} (k[k) — 2l ,[| = 0, lim [uf(klk) —ul,| = 0 and
k—o0 ’ k—o0 ’

Ye,i» Yn,i can reach yq con, Ya,; respectively.

According to z;(k) — x;(k|k) € 2xe,i(k), the real outputs
can achieve the objectives in (2) and reach the neighborhoods
of the set points, whose bounds are o.; < \/§HC“RZ(I€)H
and o,,; < ﬁHCnlf%l(k)H In addition, because of the
satisfaction of (9¢) and (9d), z;(k) and w;(k) can always
satisfy the state and input constraint sets. Theorem 2 is
proven. |
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