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A B S T R A C T

The impact of amyloid-β (Aβ) accumulation on regional brain atrophy in preclinical Alzheimer’s disease (AD), 
and its interaction with risk factors like sex and APOE-ε4 carriership, remains unclear. In this study, we examined 
these associations in a population of older adults without dementia and evaluated the potential of Aβ-PET for risk 
stratification.

We included 1329 participants (56 % female) with an age of 68.2 ± 8.78 years from the prospective multi- 
center AMYPAD Prognostic and Natural History Study who underwent [18F]Flutemetamol or [18F]Florbetaben 
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Aβ-PET and T1-weighted MRI, with longitudinal data for 684 participants (median follow-up = 3.4 years). Linear 
mixed models assessed the effect of baseline Aβ burden through the Centiloid approach on longitudinal changes 
in regional gray matter volume and thickness. Sensitivity analyses were performed in cognitively normal only 
(CDR = 0) individuals and while correcting for CSF p-tau181 and t-tau. A second model investigated the effects 
of sex or APOE-ε4 carriership.

Baseline global Aβ was predictive of widespread atrophy in several brain regions, most strongly in the fusiform 
(βVolume = -0.006, βThickness = -0.009), hippocampus (βVolume = -0.005), posterior cingulate (βVolume = -0.006), 
and precuneus (βVolume = -0.004, βThickness = -0.007), also when investigating only in cognitively normal in
dividuals. Only fusiform atrophy (βp-tau = -0.011; βt-tau = -0.011) remained predicted by Aβ when correcting for 
p-tau181 or t-tau. Temporal atrophy was exacerbated in women, while frontal, lateral-temporal and hippo
campal atrophy was exacerbated by carriership of at least one APOE-ε4 allele, with volumetric loss more sen
sitive to sex effects and thinning more sensitive to APOE-ε4 effects.

Our findings suggest that in older adults with mostly preserved cognition, baseline Aβ-PET predicts future 
brain atrophy, with fusiform atrophy showing independence from tau pathology and Aβ-dependent atrophy 
being exacerbated in region-dependent manners in females and APOE-ε4 carriers. Regional cortical volume and 
thickness may serve as sensitive markers for early Aβ-related neurodegeneration and aid in stratifying risk in AD 
prevention trials.

1. Introduction

Brain atrophy is a key feature of neurodegenerative diseases and a 
common surrogate endpoint in Alzheimer’s disease (AD) clinical trials 
(Schwarz et al., 2019). In its clinical stage, AD-associated atrophy and 
cognitive decline are closely linked to tau deposition (Bejanin et al., 
2017). However, as the field of anti-amyloid therapy is shifting towards 
early intervention, there is a need to better understand the predictive 
value of early amyloid-beta (Aβ) accumulation on atrophy in the pre
clinical stages of the disease.

AD-associated atrophy has commonly been described first in medial- 
temporal areas, followed by more widespread involvement of the 
neocortex (Chételat et al., 2012; La Joie et al., 2020; Tosun et al., 2011). 
Evidence on the effect that early amyloid deposition exerts on regional 
atrophy are conflicting, however, with some highlighting frontoparietal 
rather than medial-temporal atrophy patterns (Martikainen et al., 2019; 
Mattsson et al., 2014), while others have reported no observed atrophy 
(Josephs et al., 2008) or even increased volumes (Chételat et al., 2010; 
Ingala et al., 2021). This conflicting evidence may be partially explained 
by the heterogeneity of the measures used to quantify atrophy, e.g. 
volume or thickness, and local, regional and global analyses as well as 
the investigated disease stages. In a recent study, CSF measures of 
amyloid-beta 42 were predictive of medial-temporal atrophy rates in 
individuals without dementia, suggesting that amyloid deposition may 
lead to atrophy independently of CSF p-tau (Cacciaglia et al., 2025). 
However, CSF shows an early plateau effect and is less effective in 
tracking the extent of amyloid pathology compared to amyloid positron 
emission tomography (PET), which can be substantial even in cogni
tively unimpaired individuals (Collij et al., 2021; Salvadó et al., 2019). 
Taken together, these results underscore the need to further characterize 
the possible relationship between PET measured cerebral amyloid 
deposition and neurodegenerative processes in the earliest stages of the 
disease, with the goal of informing early secondary or even primary 
prevention strategies.

In addition, the individual vulnerability to AD-related neurodegen
erative processes due to demographic and genetic risk factors must be 
taken into account,(Kepp et al., 2023) Previous findings regarding the 
effect of APOE-ε4 carriership have reported either increased volume loss 
in lateral-temporal and superior-frontal regions in a cohort of amyloid- 
positive subjects with mild cognitive impairment (MCI)(Sauty and 
Durrleman, 2023) or widespread cortical thinning in prodromal AD 
APOE-ε4 non-carriers compared to carriers.(Mattsson et al., 2018) These 
discrepancies may have arisen from the isolated examination of gray 
matter volume and thickness, highlighting the necessity for concurrent 
analyses of these image-derived phenotypes (IDPs). Regarding sex dif
ferences, women show higher AD prevalence,(Gustavsson et al., 2023) 
faster accumulation of cortical tau as measured with PET(Wisch et al., 

2021) and greater cortical atrophy(Sauty and Durrleman, 2023) 
compared to males in clinical stages. In contrast, women in preclinical 
cohorts show a delayed and slower atrophy rate despite greater tau 
burden,(Buckley et al., 2019; Sauty and Durrleman, 2023) illustrating 
the complexity of this relationship. Hence, understanding the moder
ating effects of demographic and genetic risk factors on the association 
between Aβ burden and subsequent atrophy is crucial for informing 
clinical practice and patient selection/stratification in clinical trials.

The current study aims to determine the influence of global cortical 
amyloid burden on regional brain atrophy. To this end, we examined 
regional changes in brain volume and thickness in a large cohort 
composed of older adults without dementia from the Amyloid Imaging 
to Prevent Alzheimer’s Disease (AMYPAD) Prognostic Natural History 
Study (PNHS). We further investigated how the relationship between Aβ 
and atrophy is influenced by sex and APOE-ε4 carriership, and the ad
ditive predictive value of utilizing longitudinal amyloid-PET data.

2. Materials and methods

2.1. Participants

Data for this study were drawn from the AMYPAD PNHS v202306 (N 
= 1585).(García, 2023) The AMYPAD PNHS (EudraCT: 
2018-002277-22) is a multi-center cohort of non-demented participants 
to determine the value of amyloid PET in clinical- and research settings; 
the study design has been described in detail previously.(Collij et al., 
2022a; Lopes Alves et al., 2020) Briefly, eligibility criteria for inclusion 
in the AMYPAD PNHS were no history of dementia (clinical dementia 
rating (CDR) < 1), age above 50 years, and being able to undergo an 
amyloid-PET and MRI scan. The studies were reviewed and approved by 
Medical Ethical Committee of the University Medical Center Amster
dam, location VUmc and all local sites. The studies were conducted 
according to the principles of the Helsinki Declaration of 1975, as 
revised in 2008, and all human participants gave written informed 
consent. Median time difference between the MRI and PET acquisition 
was 50 days (IQR 99 days). A subset of 684 participants underwent at 
least one follow-up PET and MRI, at a median follow-up of 3.4 years (±
1.4 years) after baseline. None of the study participants participated in 
clinical trials of anti-amyloid therapy throughout the duration of the 
study.

2.2. Aβ-PET acquisition and Quantification

PET scans were acquired 90–110 min p.i. of 185 MBq (±10 %) for 
[18F]Flutemetamol and 350 MBq (±20 %) for [18F]Florbetaben, con
sisting of 4 frames of 5 min according to the standard protocol for each 
tracer.(Barthel et al., 2011; Curtis et al., 2015) Image analysis was 
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performed centrally using IXICO’s automated workflow. Briefly, PET 
frames were co-registered, averaged, and aligned to the corresponding 
MRI scan, which was parcellated using a subject-specific multi-atlas 
approach, i.e. the learning embeddings for atlas propagation (LEAP) 
parcellation procedure.(Wolz et al., 2010) SUVr images were obtained 
using LEAP parcellation masks using the whole cerebellum as a refer
ence region in native space. In order to pool Aβ-PET data across sites, 
SUVr values were transformed to Centiloids (CL) using the standard 
Global Alzheimer’s Association Interactive Network target region as a 
measure of global amyloid burden.(Klunk et al., 2015).

Participants were grouped in low (CL ≤ 20), intermediate (20 < CL 
≤ 40), and elevated (CL > 40) Aβ stages, corresponding to cut-points in 
current early secondary prevention trials(Rafii et al., 2023) and based on 
derived cut-offs to define reliable worsening and detection of amyloid 
plaques on neuropathology.(Jack et al., 2017; Villeneuve et al., 2015).

2.3. MRI acquisition and Quantification

3D T1-weighted MR images were acquired on Philips (n = 1340), 
Siemens (n = 761) or GE HealthCare (n = 24) scanners, all of which had 
a field strength of 3 T. All longitudinal MRI were acquired on the same 
scanner model. Cortical segmentation was performed with FreeSurfer 
v7.1.1 (surfer.nmr.mgh.harvard.edu/), including motion correction, 
skull-stripping, brain parcellation and estimation of regional gray matter 
volume and thickness. The details of these procedures are described 
elsewhere.(Reuter et al., 2012) The final IDPs included estimated total 
intracranial volume (eTIV), volumes of six sub- and allocortical regions 
of interest encompassing the lateral ventricles, thalamus, caudate, pu
tamen, hippocampus and amygdala, as well as volume and thickness of 
34 bilateral cortical regions of interest covering the whole cerebral 
cortex defined using the Desikan-Killiany atlas.(Desikan et al., 2006) 
The parcellations were visually quality controlled following an adapted 
version (Bocancea et al., 2023) of a previously published protocol 
including assessment of regional boundaries (Raamana et al., 2022), 
resulting in the exclusion of 36 subjects due to segmentation errors; 
minor boundary misalignments were not manually corrected (McCarthy 
et al., 2015; Vahermaa et al., 2023). IDPs were harmonized using neu
roCombat v1.0.13 to remove batch effects, while preserving the 

biological effects of age, sex and global CDR scores (Supplementary 
Fig. 1).(Fortin et al., 2018) Median follow-up time was 3.40 years (±
1.4 years) with a median of one follow-up visit.

2.4. Statistical analysis

All analyses were carried out in R v4.3.0 (www.r-project.org/). 
Differences in demographics between Aβ groups were assessed using 
ANOVA and Chi-Square tests for continuous- and categorical variables, 
respectively.

To assess the effect of baseline global cortical Aβ burden on subse
quent regional neurodegeneration, linear mixed-effects models (LME) 
implemented via the R package “lme4” v1.1–35.3 with random slope 
and intercept were used. The main predictors included baseline amyloid 
burden (continuous CL), follow-up time, and their interaction while 
correcting for age and CDR at baseline, sex, APOE-ε4 status, years of 
education and eTIV; in R equation format: “GM Volume/Thickness ~ 1 
+ CentiloidBaseline + Time + CentiloidBaseline:Time + APOE-ε4 status +
Years of Education + AgeBaseline + Sex + eTIV + CDRBaseline + (1 + Time 
| Subject)”.(Dhamala et al., 2022). As a sensitivity analysis, these ana
lyses were repeated in the CDR = 0 subset (N = 1099).

To investigate whether baseline amyloid is predictive of atrophy 
independently of baseline CSF p-tau181 and t-tau levels, analyses were 
repeated in a subset of participants with available CSF biomarkers (N =
428; N = 808 visits). First, the same base model was run, followed by 
including baseline t-tau or baseline p-tau181 as an additional covariate.

To assess the added value of longitudinal Aβ-PET measurements in 
predicting subsequent atrophy, we also repeated the main analyses in 
the subset of participants with longitudinal PET (N = 684), in which we 
utilized time-varying Centiloid rather than baseline Centiloid. Cross- 
sectional-only (using baseline Centiloid) and longitudinal model fits 
were compared using the Akaike Information Criterion derived from 
ANOVA.

Finally, the effect of APOE-e4 carriership and sex on amyloid- 
atrophy relationships was assessed using one additional LME model 
with two added three-way interactions, namely amyloid*time*APOE 
and amyloid*time*sex.

All IDPs and CL values were z-scaled to obtain standardized 

Table 1 
Demographics and Clinical Characteristics at Baseline.

Overall 
(n = 1,329)a

Low Aβ 
(n = 952)a

Intermediate Aβ (n = 117)a Elevated Aβ 
(n = 260)a

p

Age, years 68.18 (8.78) 66.47 (8.21) 70.64 (8.30) 73.33 (8.80) <0.001b

Follow-Up, years 3.74 (1.87) 3.81 (1.88) 3.54 (1.91) 3.39 (1.75) 0.037b

(Missing) 585 355 58 172 ​
Sex, Female 741 (56 %) 545 (57 %) 63 (54 %) 133 (51 %) 0.2c

Education, years 14.56 (3.97) 14.71 (3.96) 14.47 (3.84) 14.05 (4.01) 0.075b

CDR ​ ​ ​ ​ <0.001c

0 − Normal 1,070 (81 %) 833 (88 %) 90 (77 %) 147 (57 %) ​
0.5 − Very mild 259 (19 %) 119 (13 %) 27 (23 %) 113 (43 %) ​
CDR at Follow-Up ​ ​ ​ ​ <0.001d

0 − Normal 572 (88 %) 486 (92 %) 40 (78 %) 46 (68 %) ​
0.5 − Very mild 76 (12 %) 45 (8 %) 11 (22 %) 20 (29 %) ​
1 − Mild 2 (0 %) 0 (0 %) 0 (0 %) 2 (3 %) ​
(Missing) 679 421 66 192 ​
MMSE 28.82 (1.54) 29.06 (1.27) 28.68 (1.52) 27.91 (2.08) <0.001b

(Missing) 108 61 8 39 ​
APOE-ε4 carriership (% carriers) 517 (40 %) 300 (32 %) 58 (51 %) 159 (66 %) <0.001c

(Missing) 40 17 3 20 ​
Amyloid PET, Centiloid 19.51 (32.33) 2.81 (8.37) 28.55 (6.05) 76.58 (27.48) <0.001b

est. Total Intracranial Volume, cmc 1477.71 (178.43) 1476.68 (177.60) 1477.94 (196.79) 1481.38 (173.41) 0.7b

Abbreviations: Aβ, amyloid β; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination; PET, Positron Emission Tomography; Amyloid stages are defined 
based on a Centiloid value of under 20 for low, over 40 for elevated Aβ and a subsequent intermediate Aβ between 20 and 40CL.

a Mean (SD); n / N (%).
b Kruskal-Wallis rank sum test.
c Pearson’s Chi-squared test.
d Fisher’s exact test.
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regression coefficients. The significance level was set at α < 0.05 after 
applying the Benjamini-Hochberg procedure to correct for a false dis
covery rate within imaging phenotype, i.e. separately for thickness and 
volume.(Benjamini and Hochberg, 1995).

3. Results

Baseline demographics can be found in Table 1. The majority of in
dividuals were cognitively unimpaired (CDR = 0:N = 1070, 81 %), with 
an overall average MMSE score of 28.82 (±1.54). Mean age was 68.18 
(±8.78) years, 741 (56 %) were female, and 117/260 (8.8 %/19.6 %) 
were considered to have intermediate and elevated Aβ, respectively. 
Carriership of at least one allele of APOE-ε4 was 40 % overall, with 
stepwise increases in carriership in the amyloid groups with 300/58/ 
159 (32 %/51 %/66 %) APOE-ε4 carriers in low, elevated and elevated 
Aβ participants, respectively. Follow-up time did not differ across am
yloid groups with an overall median follow-up time of 3.4 (MD = 1.40) 
years, although overall availability of follow-up data differed between 
amyloid groups with more longitudinal data available for subjects with 
low Aβ (Supplementary Fig. 2). Individuals with elevated Aβ more 
frequently had a CDR = 0.5, lower MMSE scores, and a higher frequency 
of APOE-ε4 carriership compared to low Aβ individuals. Only two in
dividuals converted to CDR = 1 at follow-up, both of which had elevated 
Aβ at baseline. Sex- and APOE-stratified demographic characterizations 
can be found in Supplementary Table 1 and Supplementary Table 2, 
respectively. Male participants were older (68.81 years compared to 
67.68 years), had higher educational level, and a larger proportion of 
very mild cognitive impairment (24 % compared to 16 %), but without 
any difference in MMSE or Aβ burden. People with one or more APOE-ε4 
allele were younger (66.56 years compared to 69.02 years), had higher 
proportion of very mild cognitive impairment (23 % compared to 16 %), 
lower MMSE (28.67 compared to 28.99), and higher Aβ burden 
(29.57CL compared to 11.33CL). Regional baseline SUVR and yearly 

rates of change in Aβ groups as well as contrasted between sex and 
APOE-ε4 are illustratively visualized in Supplementary Fig. 3, whereas 
regionalized atrophy rates (z/year) for these same subgroups are illus
trated in Supplementary Fig. 4.

3.1. Effects of baseline Aβ burden on regional atrophy

LME results of the main models can be found in Supplementary 
Table 3 and are visualized in Fig. 1. Besides one significant positive 
effect of time on temporal pole volume, there was a significant negative 
main effect of time on all investigated cortical and subcortical gray 
matter volumes, suggesting widespread atrophy due to ageing-related 
neurodegeneration. This effect was most apparent in temporal and pa
rietal regions as well as hippocampus and amygdala. Similar results 
were observed for cortical thickness, although posterior and anterior 
cingulate cortices showed thickening over time (Fig. 1A). All effects 
remained significant with comparable effect sizes in the CDR = 0 subset 
(Fig. 1D).

Higher baseline cortical amyloid burden was associated with lower 
baseline volumes at baseline in widespread AD signature regions, 
comprising lateral-temporal lobes, precuneus, posterior cingulate, 
amygdala, and hippocampus. These main effects and patterns also 
emerged for cortical thickness but were more distributed and stronger 
compared to volumes (Fig. 1B). These effects were largely absent in the 
CDR = 0 subset (Fig. 1E).

Longitudinally (Centiloid*Time), higher baseline cortical amyloid 
burden was related to a widespread decrease of volume and thickness at 
follow-up across regions, with the strongest interaction effects observed 
in the posterior cingulate, fusiform and parahippocampal gyri (Fig. 1C). 
Subcortically, this effect was most pronounced in the hippocampus and 
amygdala, followed by the putamen. Lateral ventricles showed pro
gressive widening in relation to cortical amyloid burden. Except for 
hippocampal volume changes, most interaction effects were Aβ stage- 

Fig. 1. Main & interaction effects of time & amyloid at baseline on regional volumes & thicknesses, in all participants and cognitively unimpaired (CDR 
¼ 0). Cortical mid-surface projections of FDR-thresholded LME main effects on cortical thickness, cortical volume and subcortical volume, of time (A) in all par
ticipants and (D) cognitively unimpaired (CDR = 0), main effect of baseline cortical Aβ (B) in all participants and (E) cognitively unimpaired (CDR = 0), and 
interaction effect of time and Aβ (C) in all participants and (F) cognitively unimpaired (CDR = 0). Surface projections show the lateral and medial cortex respectively, 
representative of averaged bilateral effects. Aβ, amyloid β; CDR, Clinical Dementia Rating.
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dependent, with low and elevated Aβ groups showing significantly 
different slopes, but not low and intermediate Aβ groups. 
(Supplementary Fig. 5). In the CDR = 0 subset, most effects remained 
significant with slightly lower effect sizes (Fig. 1F).

In the CSF availability subset (N = 428), fewer Centiloid*Time in
teractions remained significant after FDR-correction, albeit with the 
same patterns (Supplementary Table 4). When correcting for t-tau or p- 
tau181, only fusiform volume atrophy remained significant (t-tau: β =
-0.011, SE = 0.003, pFDR = 0.017; (p-tau: β = -0.011, SE = 0.003, pFDR =

0.017). Stratifying for amyloid status rather than continuous Centiloids, 
faster fusiform atrophy rates were found in participants with elevated- 
compared to low Aβ burden (β = -0.054, SE = 0.017, pFDR = 0.006), but 

not for participants with intermediate- compared to low Aβ (β = -0.012, 
SE = 0.019, pFDR = 0.801; Fig. 2).

3.2. Stratification by sex & APOE-ε4 carriership

To investigate the effect of sex and APOE-ε4 carriership, the LME 
models were expanded with three-way interactions (i.e., amyloid*ti
me*sex and amyloid*time*APOE). Interaction effects between APOE-ε4 
and time, sex and time, and APOE-ε4, sex and time are visualized in 
supplementary Fig. 4B and 4C. Over time, men had stronger loss of 
thickness in the superior temporal, inferior and superior parietal, and 
cuneus, as well as increased loss of volume in the caudate nucleus and 

Fig. 2. Spaghetti plot of LME model effects of follow-up time on fusiform gyrus volume, stratified by amyloid status. Fusiform volume (z-scaled, residuals 
after correcting for age, sex, intracranial volume, CDR and p-tau181) is plotted against time (in years) since baseline amyloid-PET and MRI, stratified in low (<20CL), 
intermediate (20–40CL) and elevated Aβ (>40CL) groups. Fusiform atrophy is larger in participants with elevated Aβ compared to participants with low Aβ, in
dependent of p-tau181. Aβ, amyloid β; CDR, Clinical Dementia Rating; PET, Positron Emission Tomography.

Fig. 3. Three-way interaction effects of time, Aβ burden at baseline and Sex or APOE-ε4 carriership on regional volumes & thicknesses. Cortical mid-surface 
projections of FDR-thresholded LME interaction effect t-values for cortical thickness, cortical volume and subcortical volume, of (A) time*Aβ*sex, showing increased 
lateral and medial temporal atrophy for female compare to male participants with increases in Aβ, and (B) time*Aβ*APOE-ε4, showing exacerbated atrophy for 
APOE-ε4 carriers in frontal and temporal regions. Surface projections show the lateral and medial cortex respectively, representative of averaged bilateral effects. Aβ, 
amyloid β.
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faster increase of lateral ventricle size. Women only had stronger atro
phy in the caudal anterior cingulate gyrus. APOE-ε4 carriers had 
decreased growth of lateral ventricle volume, and lower atrophy rates of 
entorhinal, temporal pole and frontal pole volume, as well as lower loss 
of frontal pole thickness. Effects of sex on the relationship between 
amyloid and brain atrophy were widespread (Fig. 3A). Women showed a 
generally exacerbated effect of Aβ on atrophy compared to men, espe
cially in lateral temporal regions and hippocampal volume (β = 0.006), 
with relatively less Aβ-related atrophy only in the caudate nucleus (β =
-0.007), pericalcarine volume (β = -0.004) and posterior cingulate 
thickness (β = -0.008). For APOE-ε4-carriers, more severe cortical 
thinning and loss of volume as a result of amyloid increase was observed 
compared to non-carriers (Fig. 3B) especially in frontal and lateral 
temporal regions as well as the hippocampus (β = -0.007).

3.3. Follow-Up Aβ-PET data does not improve brain atrophy predictions

LME results of the data subset (N = 684) with available longitudinal 
Aβ-PET are shown in Supplementary Fig. 6A. Including follow-up PET 
scans generally did not improve predictions of volumetric or thickness 
measures, with significant improvements only in the prediction of vol
ume of the posterior cingulate (ΔAIC = − 9.55), caudal-anterior cingu
late (ΔAIC = − 4.97) and superior-frontal cortices (ΔAIC = − 2.75; 
Supplementary Fig. 6B).

4. Discussion

In this longitudinal prospective pan-European cohort study, we 
investigated the effect of baseline cortical Aβ burden on subsequent 
cortical and subcortical brain atrophy in a large cohort of older adults 
with mostly preserved cognition. We showed that baseline Aβ was pre
dictive of widespread atrophy in several regions, most notably the 
medial-temporal lobes, fusiform, cingulate, and precuneus cortices. 
When correcting for p-tau or t-tau in a subset with available CSF data, 
only fusiform volume reductions were predicted by Aβ. Further, we 
demonstrated that amyloid-induced atrophy is exacerbated in women 
and with APOE-ε4 carriership.

The observed widespread atrophy suggests an early effect of Aβ on 
brain volume and thickness, and corroborates the importance of early 
intervention to prevent subsequent atrophy (Aisen et al., 2020). 
Amyloid-related longitudinal changes were observed at a comparable 
scale between volume and thickness, with the latter most prominently 
observed in the fusiform, precuneus, and superior temporal cortices, 
matching those ROI’s previously selected in a cortical thickness meta- 
ROI to distinguish MCI/AD from healthy controls (Schwarz et al., 2016). 
In contrast, previous whole-brain investigations of the relationship be
tween Aβ and atrophy in preclinical or prodromal AD cohorts have 
largely focused on volume (Chételat et al., 2012; Tosun et al., 2011). 
These studies revealed similar affected regions, such as the precuneus, 
medial and lateral-temporal cortices, and posterior and middle cingu
late. Clinical anti-amyloid trials mostly use global, lateral ventricle or 
hippocampal volumes as secondary outcomes (Rafii et al., 2023), and 
our results support the use of lateral ventricular and hippocampal vol
ume to be potential surrogate outcomes in secondary prevention trials 
for subjects with elevated, but not intermediate levels of Aβ burden. 
Importantly, baseline Aβ remained predictive of fusiform atrophy after 
correcting for CSF p-tau181 or t-tau concentrations. Corroborating these 
results, a greater atrophy rate in the left fusiform independent of CSF p- 
tau181 was also previously found when comparing A-T- participants 
with normal cognition to A+T- participants, with this effect absent in 
A+T+ individuals compared to either group (Cacciaglia et al., 2025). 
Taken together, these results are suggestive of a potential route of Aβ- 
related atrophy independent of concurrent neurofibrillary tangles spe
cifically in the fusiform gyrus, although other previous findings have 
found Aβ-related fusiform atrophy to be exacerbated by tau presence 
without being completely independent of it (Nosheny et al., 2019). In 

line, future fusiform tau deposition has previously been found to be 
predicted by Aβ measured with Centiloid in both A+T- and A+T+ in
dividuals (Cai et al., 2023), suggesting that increased Aβ burden at 
baseline may lead to worse tau aggregation, which in turn would worsen 
atrophy, independently of baseline tau levels. The fusiform gyrus also 
being sensitive to general aging (Nosheny et al., 2019; Shah et al., 2021) 
and being among the first neocortical regions to atrophy in AD (Convit 
et al., 2000), the complex interplay between fusiform atrophy with 
aging, Aβ and neurofibrillary tangles needs to be studied further. 
Conversely, the effect of Aβ on regional atrophy was lost for all other 
regions when correcting for p-tau181 or t-tau, indicating that even in 
this early cohort, most of our observed atrophy is probably driven by the 
presence of fibrillary tau. A caveat of these sensitivity analyses is that p- 
tau181 is not only representative of neurofibrillary tangles, but also 
related to Aβ burden itself (Salvadó et al., 2023), whilst t-tau is related to 
acute neuronal damage (Blennow and Zetterberg, 2018; Skillbäck et al., 
2014); hence using these CSF markers as covariates may result in 
overcorrection. Novel CSF markers such as MTBR-tau243 have been 
found to be more specifically representative of neurofibrillary tangles 
and strongly linked to tau-PET burden (Horie et al., 2023). Future work 
should investigate the predictive value of Aβ-PET for subsequent atro
phy after correcting for MTBR-tau243.

When looking at the interacting effect of common candidate strati
fication factors in clinical trials, we found widespread sex-dependent 
effects with stronger amyloid-related atrophy in women, especially in 
medial and lateral temporal regions. Sauty and Durrleman (2023) pre
viously found near-identical patterns of faster pace of atrophy in women 
in people with clinical diagnoses of AD, but not in MCI or cognitively 
unimpaired individuals, suggesting such an interaction effect to be 
predominant in late disease stages. Our present findings stem from a 
predominantly cognitively normal population, suggesting that clinical 
status may not drive accelerated atrophy in women as much as elevated 
pathological burden of at least Aβ, but likely also neurofibrillary tau: at 
comparable prevalence rates of tau-PET positivity between men and 
women (Ossenkoppele et al., 2025), women have been found to have 
larger quantities of neurofibrillary tangles in temporoparietal regions 
(Pereira et al., 2020) and faster rate of accumulation in inferior temporal 
and fusiform regions (Coughlan et al., 2025), suggesting that equal 
levels of Aβ may lead to more neurofibrillary tau in women, leading 
subsequently to increased atrophy. We further observed that Aβ-related 
atrophy is accelerated in APOE-ε4 carriers, predominantly in frontal and 
temporal regions. Such APOE-ε4-related atrophy exacerbation has also 
been found in patients with AD, and in the superior temporal cortex also 
in people with MCI (Sauty and Durrleman, 2023). APOE-ε4 predomi
nance has also previously been reported in an AD frontal subtype of Aβ 
accumulation (L. E. Collij et al., 2022); which, in light of our findings, 
could be suggestive of a spatial association between Aβ deposition and 
downstream atrophy. In addition, given the increasingly established role 
of APOE-ε4 in cerebrovascular (dys-)function (Tai et al., 2016) as well as 
a predominantly frontal pattern of vascular-related atrophy evident both 
independently of Aβ and in Aβ-positive participants (Heinen et al., 
2020), underlying cerebrovascular pathology could well explain exac
erbation of Aβ-related atrophy in APOE-ε4 carriers. How APOE-ε4 im
pacts the potentially synergistic effect of amyloid- and cerebrovascular 
pathology needs to be studied further. Similarly, the subtle positive ef
fects of APOE-ε4 status after correction for Aβ levels on entorhinal, 
temporal pole and frontal pole volumes as well as lateral ventricular 
volume we observed, although not intuitive, may reflect Aβ-independent 
APOE-ε4 mechanisms such as microglial activation (Ferrari-Souza et al., 
2023), blood–brain barrier disruption (Montagne et al., 2020), or 
altered energy metabolism (Jackson et al., 2024), potentially leading to 
subtle cortical swelling due to neuroinflammation rather than true 
volume increases. Importantly, as phenotypes of macrostructural 
cortical changes, cortical volume is defined by both thickness and sur
face area, each with their own genetic underpinnings and cellular 
mechanisms (Panizzon et al., 2009). Aβ-related volumetric change was 
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more diffusely exacerbated than thickness in women compared to men, 
warranting future research into changes of surface area, while Aβ- 
related cortical thinning was more exacerbated than volumetric loss in 
APOE-ε4 carriers, suggesting these two phenotypes to be differently 
sensitive to AD risk factors and potentially reflecting slightly different 
neurodegenerative processes.

The observed cingulate thickening over time in our largely cogni
tively unimpaired, highly educated cohort may reflect a higher density 
of Von Economo neurons, which are especially concentrated in the 
cingulate gyrus and associated with well-maintained cognitive func
tioning.(Allman et al., 2011; Gefen et al., 2018) This interpretation 
aligns with previous findings showing that greater cingulate thickness 
relates to a younger cognitive age and better cognitive performance 
(Pezzoli et al., 2024).

In the context of clinical trials, while a reduction of region-specific 
atrophy, namely hippocampal and lateral ventricular volume loss and 
fusiform thickness, could theoretically be the most detectable in patients 
with elevated Aβ levels over 40CL, existing successful anti-amyloid trials 
have reported either insignificant or accelerated volume decreases 
(Alves et al., 2023). These unexpected findings might be caused by off- 
target reduction of inflammatory responses, resulting in “pseudo-atro
phy” (Barkhof and Knopman, 2023), with later discussions observing 
that such findings majorly occur in otherwise successful trials, desig
nating it more specifically as “amyloid-removal related pseudo-atrophy” 
(Belder et al., 2024). While our findings highlight the importance of 
early anti-amyloid treatment to prevent detectable atrophy, atrophy it
self would therefore likely not be a good outcome measure in anti- 
amyloid trials.

4.1. Limitations and future directions

Our findings represent the largest population to date to address the 
relationship between Aβ and atrophy in preclinical AD, enabling the 
inclusion of relevant covariates and stratification analyses such as the 
concurrent investigation of regional cortical volume and thickness. 
However, several methodological limitations need to be considered. 
First, the lack of a direct marker for neurofibrillary tangles, more closely 
related to patterns of atrophy in clinical AD than cortical Aβ (Gordon 
et al., 2018), did not allow us to disentangle the individual contributions 
of these pathological factors to brain atrophy. However, the observed 
associations in the CSF p-tau181 and t-tau sensitivity analyses as well as 
CDR = 0 subset analyses with a presumably relatively lower tau burden 
advocate for a partially independent effect of Aβ on neurodegeneration. 
The previously observed additive effect of vascular risk to the associa
tion between Aβ and atrophy was also not taken into account in this 
work and warrants future research (Rabin et al., 2022). Thirdly, we did 
not perform manual segmentation corrections of our FreeSurfer-derived 
cortical segmentations. While generally not altering region averages of 
the imaging phenotypes we investigated (McCarthy et al., 2015; 
Vahermaa et al., 2023), slight boundary errors have previously been 
found to be more prevalent in male participants, thus potentially 
introducing biases in our results (Vahermaa et al., 2023). Finally, the 
availability of follow-up data was skewed towards low Aβ burden par
ticipants, with over 80% of follow-up data coming from the low Aβ 
group at baseline (Supplementary Fig. 2). This bias may explain the 
overall lack of model improvement when including longitudinal PET 
data, as previous studies have highlighted the benefits of using follow-up 
PET data (Jagust et al., 2021). While the acquired data originated from 
17 European sites and was acquired with different MRI scanners and Aβ- 
PET radiotracers, possible batch effects were minimized by utilizing 
state-of-the-art harmonization techniques (Fortin et al., 2018; Klunk 
et al., 2015).

In the present study, we investigated regional differences through 
the gyral based Desikan-Killiany atlas; future research could focus on 
more fine-grained parcellations such as hippocampal subfields, with 
more focal CA1, presubiculum and subiculum atrophy having been 

shown to occur before other subfields in the amyloid cascade (Göschel 
et al., 2023; Zilioli et al., 2025). Additionally, as the global Centiloid 
metric is a robust measure (Shekari et al., 2024), commonly used in 
previous and ongoing trials and fully captures all early accumulating 
regions, we did not investigate regional measures of Aβ burden. How
ever, evidence exists regarding the presence of different amyloid-PET 
spatial–temporal subtypes (L. E. Collij et al., 2022). It would be of in
terest to investigate whether regional amyloid-PET quantifications 
further improve atrophy prediction models, especially across more 
advanced disease stages. Beyond these aspects, rather than assuming a 
single pattern of atrophy due to Aβ, subtypes of atrophy (Risacher et al., 
2017) in relation to Aβ accumulation alongside atrophy-related changes 
in cognitive functioning could be investigated.

4.2. Conclusions

We demonstrated the influence of cortical Aβ on brain atrophy in 
several regions in a population of older adults without dementia. 
Importantly, this influence was already exerted in cognitively unim
paired individuals and was exacerbated in women and APOE ε4 carriers. 
Our results highlight cortical thickness and volume as differentially 
affected biomarkers of macroscale atrophy. Overall, our findings 
emphasize the importance of early intervention strategies to mitigate 
Aβ-related neurodegeneration, with implications for the design and 
interpretation of clinical trials aimed at preventing AD.
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Niñerola-Baizán, A., Perissinotti, A., Scheltens, P., Ikonomovic, M.D., Smith, A.P.L., 
Farrar, G., Molinuevo, J.L., Barkhof, F., Buckley, C.J., van Berckel, B.N.M., 
Gispert, J.D., 2021. ALFA study, AMYPAD consortium, Visual assessment of [18F] 
flutemetamol PET images can detect early amyloid pathology and grade its extent. 
Eur. J. Nucl. Med. Mol. Imaging 48, 2169–2182. https://doi.org/10.1007/s00259- 
020-05174-2.
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