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Abstract

A central challenge in movement neuroscience is developing methods for non-invasive
spatiotemporal imaging of brain activity during natural, whole-body movement. We test
the utility of a new brain imaging modality, optically pumped magnetoencephalography
(OP-MEG), as an instrument to study the spatiotemporal dynamics of human walking.
Specifically, we ask whether known physiological signals can be recovered during discrete
steps involving large-scale, whole-body translation. Our findings show that by using
OP-MEG, we can image the brain during large-scale, natural movements. We provide
proof-of-principle evidence for movement-related changes in beta band activity during
stepping vs. standing, which are source-localized to the sensorimotor cortex. This work
supports the significant potential of the OP-MEG modality for addressing fundamental
questions in human gait research relevant to both the physiological and pathological
mechanisms of walking.

Keywords: OP-MEG; sensorimotor control; naturalistic neuroimaging

1. Introduction

Capturing high-fidelity brain activity during large-scale, natural movements presents
significant methodological challenges. Traditional neuroimaging techniques, such as func-
tional magnetic resonance imaging (fMRI) and cryogenic magnetoencephalography (MEG),
require participants to remain still, which limits their ability to capture neural dynamics
in natural settings. Electroencephalography (EEG) has been instrumental in advancing
research in this field [1-6], but its sensitivity to muscle artifacts [7] can pose challenges
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for movement-related paradigms, and distortions from tissue conductivity can limit its
spatial resolution.

Optically pumped magnetometer-based magnetoencephalography (OP-MEG) is a
promising alternative for studying brain activity in natural settings [8-12]. Unlike tradi-
tional MEG, OPM sensors do not require cryogenic cooling, allowing them to be placed
close to the scalp [13] in wearable arrays [14], thereby improving signal strength. The
method also benefits from MEG’s advantage of reduced sensitivity to muscle artifacts
compared to EEG [7].

However, recording neural activity during movement with OPMs is not without
challenges [15,16]. Sensor motion within the ambient magnetic field generates large low-
frequency artifacts, which can obscure neural activity or exceed the dynamic range of the
sensors. Recent advances in technology and analytical methods [17-22] now make it possi-
ble mitigate these artifacts significantly. This allows us to shift our perspective from treating
movement as a confound [15] to leveraging OPMs for studying the neurophysiology of
natural behaviors [23].

One such behavior is walking; a fundamental motor function shared across species
that plays a key role in interacting with the environment. While rhythmic walking patterns
are partly governed by a spinal network known as the central pattern generator [24,25],
human locomotion is more dependent on input from the brain compared to quadrupedal
animals [26]. Investigating the neural mechanisms of walking in ecologically valid condi-
tions is critical for understanding both typical and pathological gait, e.g., in individuals
with Parkinson’s Disease [27]. By applying OP-MEG to study the cortical control of walking,
we can explore how the brain orchestrates locomotion in natural settings.

In this work, we test the utility of this modality to study the spatiotemporal dynamics
of human walking using a stepping paradigm. We evaluate whether we can recapitulate
neurophysiological signatures of the movement as described with other modalities, aiming
to provide physiological proof-of-principle for this methodology as a new instrument
available to study large-scale natural movements in humans.

We focus on the movement-related modulation of beta band rhythmicity [28,29],
which is known to undergo changes during the planning, initiation, and execution of
movement [30]. Our goal is to compare beta band activity during stepping vs. standing
and to source localize this activity, leveraging the temporal and spatial resolution offered
by OPMs. We hypothesized that beta band activity would decrease during steps compared
to standing, with this modulation localized to the sensorimotor cortex, showcasing the
capability of OPMs as an imaging modality that can be applied to natural movement.

2. Materials and Methods
2.1. Participants

We recruited three healthy male participants (Age 55, 33, and 30 years) who pro-
vided written, informed consent. The study was approved by the University College
London Research Ethics Committee and was conducted in accordance with the Declaration
of Helsinki.

2.2. Stepping Task

The participants performed a visually guided stepping task in a magnetically shielded
room (MSR) (Figure 1). We have previously used this task to study functional connectivity
during stepping [4]. The raw OPM data has been published and is freely available for
download [31] and the code is available on Github (https://github.com/meaghanspedden/
stepping_opm_data (accessed on 29 June 2025)).
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Figure 1. Schematic of the visually guided stepping task. We recorded OP-MEG while participants
took single steps forward with the right leg, aiming to hit virtual targets (magenta square). The foot
position was tracked using infrared cameras and retro-reflective markers and projected onto the
screen as a blue circle. The participants were instructed to adjust their step length to hit the center of
the target as precisely as possible.

Participants were instructed to take single steps with their right leg, aiming for virtual
stepping targets (magenta squares) displayed on a screen in front of them. The position of
the stepping foot was tracked using six infrared cameras operating at 120 Hz (Optitrack,
Flex 3, Natural Point, Inc., Corvallis, OR, USA), along with retro-reflective markers on the
right foot. Foot position data was streamed to MATLAB (version R2023a) via the Motive
software (Natural Point, Inc.; NatNet SDK), and visualized on the screen as a blue circle.
MATLARB controlled the stimulus presentation and sent a synchronization trigger to the
OPM acquisition system when the target was presented. The target distance was randomly
selected from three fixed values: the participants’ preferred step length, 5 cm longer than
their preferred step length, and 5 cm shorter than their preferred step length. The target
position varied only in the anterior—posterior direction. We used three different step lengths
to ensure that participants used visual guidance for their steps, and to prevent repetition of
the same stepping movement. Before the MEG recording began, participants were given
time (approximately 5 min) to practice the task and familiarize themselves with how their
foot movements controlled the blue circle on the screen. Participants became proficient in
the task quickly, and thus, learning effects during recordings are expected to be minimal.

Each trial lasted approximately 10 s. The trial began when the target appeared on the
screen. Participants were instructed to initiate their step with the right foot upon hearing
a beep, which served as the go signal. After stepping forward with the right foot, they
then brought the left foot forward to place it next to the right foot. The trial ended at
that point, and the participant returned to the starting position, which was marked by
an open circle on the screen. A total of 5-6 blocks of 30 steps each were recorded, with
5 blocks for participants 1 and 2, and 6 blocks for participant 3. All blocks were recorded
on the same day within a single session, and data from each block were concatenated and
analyzed together.
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2.3. Optically Pumped Magnetoencephalography (OP-MEG)

The experiments were conducted in an MSR (Magnetic Shields, Ltd., Staplehurst,
UK; internal dimensions: 3 x 4 x 2.2 m), which was degaussed before the start of the
experiment. Supplementary Figure S1 shows an example of time and frequency domain
empty room data to illustrate the recording environment. The field gradients at the center
of our MSR are approximately 1 nT/m and the variation over its cubic meter volume is
around 2-3 nT [32]. At standing height (about 1.7 m), we measured the gradient variations
over this volume to be approximately 1.2-3.5 nT/m.

Dual-axis and triaxial OP-MEG sensors (QuSpin Inc., Louisville, CO, USA) were
mounted in sockets within a custom-built rigid scanner-cast constructed from each partici-
pant’s structural MRI. Participant 1 had 30 dual-axis sensors, participant 2 had 27 dual-axis
sensors, and participant 3 had 47 triaxial sensors. The number and type of sensor varied
based on operational status. Sensor cables were securely attached to the cast. This setup
ensures precise co-registration, optimal signal acquisition for any head size, and minimal
sensor and cable movement relative to the head. Figure 2 shows the sensor placement for
each participant.
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Figure 2. Sensor positions for each participant. The blue circles correspond to OPM sensors. Par-
ticipant 1 had 30 dual-axis sensors, participant 2 had 27 dual-axis sensors, and participant 3 had
47 triaxial sensors.

For participants 1 and 2, OP-MEG data were recorded using a National Instruments
acquisition system with a custom LABVIEW program, operating at a sampling frequency
of 6000 Hz. A 500 Hz low-pass FIR filter (60th order, combined with a Kaiser window) was
applied before the data were downsampled offline to 2 kHz. The sensors have a dynamic
range of £ 4.5 nT. For participant 3, data were acquired using the Neuro-1 system (QuSpin
Inc., Louisville, CO, USA), which exclusively used triaxial sensors in an open-loop mode
(i.e., no negative feedback applied to the sensors to cancel interference) and operated at a
sampling frequency of 1500 Hz. Both acquisition systems had an intrinsic bandwidth of
approximately (depending on the vapor temperature and pressure) 0-150 Hz. Additionally,
the Neuro-1 system incorporated a high-order digital low-pass FIR filter with a —3 dB
cutoff at 150 Hz. Note that the two acquisition systems have been compared, and that
results demonstrate both temporal and spatial congruence [18].

2.4. Electromyography

EMG from the right tibialis anterior was recorded using two 2 cm electrodes (~2 cm
apart; Natus Neurology, Inc., Middleton, WI, USA) and a ground on the right lateral malle-
olus. In this study, it was used solely to monitor step timing. Cables were routed through
waveguides to avoid OPM interference, with signals amplified (x1000), filtered (3-100 Hz,
50 Hz notch), and digitized (1000 Hz) outside the MSR (D-360 amplifier, 1401 unit; Cam-
bridge Electronic Design, Cambridge, UK). Data were acquired in Spike2 (v10.05).
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2.5. Analysis

Data analysis was performed in MATLAB (R2021b) and the code is available on
GitHub (https://github.com/meaghanspedden/stepping_opm_data (accessed on 29 June
2025)). We used the development version of Statistical Parametric Mapping (SPM; https:
//github.com/spm (accessed on 30 May 2025)) [33] to perform the source imaging of
movement-related beta power.

2.5.1. Preprocessing

The OPM data were imported into SPM and resampled to 1000 Hz. The OPM power
spectra were then visually inspected for bad channels (i.e., large deviations from median
power and /or manufacturer’s noise floor). For participants 1, 2, and 3, respectively, the
final number of channels included was 56, 57, and 162 (i.e., after excluding bad channels).

Harmonic models, i.e., homogenous field correction (HFC) or adaptive multipole
models (AMMs), were applied to the OPM data for interference suppression [17,34] de-
pending on the number of OPM channels. HFC was applied to data from participant 1
and 2 (number of channels < 120), whereas AMMs were applied to data from participant 3
(number of channels > 120). For AMMs we also used temporal extension (correlation limit
0.98) [17]. HFC models the interference as a spatially constant field and can substantially
reduce environmental noise over a broad range of frequencies [16]. AMMs make not only a
model of the external interference, but also the fields arising within the head and a third
partition of signal that does not conform to either model; this adds further immunity
against magnetic sources of interference [17].

The OPM data were high pass filtered at 5 Hz, then low pass filtered at 45 Hz, and
finally, notch filtered at 49-51 Hz to remove residual line noise.

Initially, the OPM and EMG data were epoched into single trials (i.e., each step) based
on triggers indicating the appearance of the stepping target. The standing period was
defined as —1.9 to —1.4 s before target presentation for all participants. The EMG signals in
this interval were visually inspected to confirm that the participants were standing still.
The stepping period was defined individually for each participant based on the timing
of the first EMG burst, which indicated the swing phase of the step (visual inspection).
This period was from 1.5 to 2 s after the go signal for participant 1, from 1.6 to 2.1 s for
participant 2, and from 2 to 2.5 s for participant 3. The 500 ms duration was chosen to avoid
artifacts related to the heel strike during the stepping period [4].

2.5.2. Source Imaging

We used the DAISS toolbox for SPM to perform a source analysis of the OPM data
during stepping compared with standing, using beamforming [35]. Time windows for
standing were —1.9 to —1.4 s before target presentation for all participants. Time windows
for stepping differed based on EMG-defined swing phases (see 2.4.1): 1.5-2 s for participant
1,1.6-2.1 s for participant 2, and 2.0-2.5 s for participant 3 following the go cue.

Beamformer weights were constructed from the pooled covariance for both conditions
(stepping and standing; 500 ms windows), i.e., a common filter, for the beta band (15-30 Hz).
The source space comprised a 3D grid covering the whole brain volume (bounded by the
inner skull) with 10 mm resolution and a single shell volume conductor [36]. Sensor
locations and orientations were innately in the MRI space because each scanner cast was
constructed from the participant’s MRI. Source orientation was optimized for maximal
power [37]. A volumetric beta power image was printed for each trial and condition. Data
were transformed into the MINI space in SPM for consistency and ease of interpretation.
The transformation was achieved with an affine transformation between fiducials in the
native and MNI space. Standing and stepping were compared (within-participant) using a
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paired t-test in SPM with the contrast standing > stepping. Note that stepping data were
pooled over different step lengths (preferred step length £+ 5 cm. The resulting images
were thresholded using the Random Field Theory correction [38] with a significance level
of p < 0.05 and family-wise error correction.

We also present a spectrogram showing time-frequency responses averaged across
participants. To construct this, we extracted the source time series from the coordinate with
the maximal t-statistic for the standing vs. stepping contrast in each participant.

2.5.3. Relationships Between Brain Activity and Behavior

To evaluate whether beta band brain activity was related to participant behavior, we
performed two exploratory analyses. First, we asked whether the source reconstructed
beta band power from the source with maximal t-statistic for the standing vs. stepping
contrast in each participant was correlated with the log-transformed step error. We reported
correlation coefficients and p-values for this analysis.

Second, we examined whole-brain beta band activity by performing a t-test for each
participant, comparing low-error and high-error trials ([1 —1]) based on a median split.
Statistical images were corrected for multiple comparisons using the same approach as for
the stepping vs. standing contrast.

3. Results

We investigated whether known physiological signals could be reliably recovered
during discrete stepping movements involving large-scale, whole-body translation. The
mean anterior-posterior distance traveled per step was 0.5 £ 0.05 m across participants.
Figure 3 illustrates the median translation trajectory for each participant as well as the
distribution of distances for a single exemplar participant.
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Figure 3. Description of movement during stepping. (A) Median trajectory in the anterior—posterior
(forward—backward) direction for each participant across steps. (B) Distribution of step distances for
an exemplar participant (Participant 3). The ‘go’ cue for the stepisatt=1s.

Next, we evaluated the impact of our preprocessing pipelines on the OPM time series.
Figure 4 presents the preprocessing pipeline at different stages for a single participant
(participant 3).
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Figure 4. Effect of preprocessing methods on OPM time series and power spectra. The left column
shows time series and right column power spectral densities. (A,B) show raw data. (C,D) show data
after band-pass (545 Hz) and notch (49-51 Hz) filtering; (E,F) show data after band-pass and notch
filtering and adaptive multipole modeling (AMM). Data are from participant 3. Arrows (left column)
show the movement onset, i.e., four steps are shown. Dotted black horizonal lines show the noise
floor and solid black lines show the median values for spectral power (right column) across sensors.
Note that the axis scaling in (A) is different from (C,E) as the field magnitude for the raw data was
much greater than for the preprocessed data. Similarly, the scale for (B) is larger than for (D,F) to
show all data features.

The Supplementary Material contains additional figures to further illustrate the effects
of preprocessing. Supplementary Figure 52 shows the preprocessed channel time-locked
to the ‘go’ signal to demonstrate the resulting sensor-level data. Supplementary Figure S3
shows the sensor-level beta band envelope time-locked to the ‘go” signal for raw and
preprocessed data and illustrates that the step-related decrease in beta band power first
becomes clear after preprocessing.

We then established the validity of our OPM data by demonstrating movement-related
modulations of beta band power while stepping relative to standing. Beta band activity ex-
hibits well-characterized modulations time-locked to the planning, initiation, and execution
of movement [30,39] and is a robust effect [28,29] occurring in the sensorimotor cortex.
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A significant decrease in beta band power was observed in the sensorimotor cortex
across all three participants (Figure 5). The decrease was observed bilaterally for all partici-
pants, which is unsurprising given the involvement of both the standing and swinging leg
in the step. Maximal t-statistics were localized to MNI: -34, 4, 70 mm for participant 1; 18,
—10, 68 for participant 2; and —42, —12, 54 for participant 3.
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T-statistic
-

3.9 55 9.2 18.4

__ 35|
N —
aoj o
> 30| E
Q -
0
c o
gy :
T-statistic g o
.
- s L 29|
9.5 19.0
)

Time (s)

Figure 5. Movement-related beta band modulations. Contrast of stepping vs. standing ([1 —1]) in the
beta band (15-30 Hz), quantified as a t-statistic for participants 1, 2, and 3, respectively (A-C). All
significant voxels (FWE < 0.05), which are also above 50% of the maximum t-statistics, are displayed.
Stepping data were pooled over different step lengths. Time—frequency spectrum averaged across the
three participants for source time series (D). The target is presented at t = 0 and the go signal at t = 1.

To assess the impact of preprocessing on the source analysis, we repeated the same
procedure using data filtered with only the band-pass and notch filters, excluding AMM:s.
These findings are summarized in Supplementary Figure S4, which illustrates that while
similar source patterns emerge without AMMs, the initial de-noising stage does give rise to
a larger peak t-statistic at the source level.

We also considered whether similar results could be achieved with fewer trials. We
repeated the analysis using four iterations of a 30-trial block for a single participant. Each
iteration revealed consistent suprathreshold activation in the sensorimotor cortex (see
Supplementary Figure S5), supporting the robustness of our findings and utility of the
paradigm for patient populations.

We then explored possible relationships between brain activity and step error. The
correlational analysis suggested the lack of a significant association between step error and



Sensors 2025, 25, 4160

90f13

beta band activity in the motor cortex, at least for the source where the standing—stepping
contrast was maximal (participant 1: r = 0.41, participant 2: r = 0.40, participant 3: r = 0.35;
all p > 0.05).

The whole-brain contrast between trials with low and high error revealed a significant
difference in participant 1, while no activity surpassed the FWE-corrected threshold in
participants 2 or 3. The MNI coordinates corresponding to the peak t-statistics are shown
in Supplementary Figure S7. For participants 1 and 2, peak activation was located near the
central sulcus (MNI: 16, 0, 52 and 50, —4, 40, respectively), whereas for participant 3, it was
found in the superior frontal gyrus (MNI: 4, 58, 44).

4. Discussion

We found that all three participants exhibited significant decreases in beta band power
localized to the sensorimotor cortex during stepping. These results align with the exist-
ing literature demonstrating the robust and well-described phenomenon of beta band
event-related desynchronization in the sensorimotor cortex during movement compared to
rest [40]. The observed bilateral effect is likely attributable to the nature of the whole-body
movement, where the stance leg pushes off while the other leg swings forward. These re-
sults demonstrate the utility of using OP-MEG as a sensitive tool to study the neural control
of human walking. The current study represents a significant advance, demonstrating that
it is feasible to obtain meaningful brain-imaging results during whole body movement at
the single-participant level using OP-MEG. Single-subject capability is particularly relevant
for clinical applications, where cases must often be assessed individually.

In one of the three participants, we also found a significant difference between high
and low error steps localized to the sensorimotor cortex. This finding is encouraging,
particularly given the limitations of single-subject analyses and the relatively low number
of trials per condition due to the median split. This preliminary result suggests that there
may be participant-level sensitivity to step precision and warrants further investigation
with larger datasets.

Currently, EEG is the most commonly used method for studying brain activity during
large-scale movements [41]. The temporal resolution provided by EEG is superior to our
current OP-MEG system (which has an intrinsic bandwidth of ~150 Hz (https://quspin.
com/products-qzfm/ (accessed on 29 June 2025)). However, because the MEG-forward
models depend on fewer conductivity and structural parameters than EEG, MEG models
generally provide more robust spatial information [42]. Also, EEG is more susceptible to
muscle [7] and head movement artifacts in sensor signals [43]. Consequently, OP-MEG
may allow for fundamental improvements in the precision and quality of brain activity
recordings attainable during large-scale movement.

Despite these advantages of OP-MEG over EEG, OP-MEG recordings face the challenge
of background interference. In order to keep the sensors operating within their range (where
the gain is linear), the ambient magnetic field needs to be controlled. In this study, we
were able to keep the sensors in range (4.5 nT) during translations of ~0.5 m through the
combination of a high-quality MSR, on-board sensor nulling, and degaussing procedure
that strongly decreased the remnant field prior to recordings.

Even in the linear range of sensor operation, interference remains prominent. We
addressed this using harmonic models of OPM data [17,34] which used spatial or spatiotem-
poral models of interference and brain signal to minimize the impact of environmental
noise. In practice, these methods have been shown to provide robust, broadband inter-
ference suppression [16,44]. The spatial filtering given by the beamformer also provided
additional noise immunity. Beamforming theoretically reduces large common artifacts
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based on the idea that they cannot be explained by local brain sources, an effect which has
also been demonstrated experimentally [45].

Taken together, this work supports the utility of OP-MEG in studying the neural
control of human walking from both a spatial and temporal perspective. We detected
and reproduced known neural markers of movement, providing physiological proof-of-
principle supporting the use of this method as a new instrument for studying natural
movement dynamics.

Fully realizing the benefits of OP-MEG in naturalistic movement contexts requires
a multifaceted approach, combining both technological innovations and methodological
frameworks. Movement compensation can be addressed analytically, and current spatial
and spatiotemporal filtering approaches have proven effective in mitigating movement-
related artifacts and preserving signal fidelity [2-4]. However, these techniques depend on
maintaining sensor operation within their linear gain range, which can be compromised
during large or rapid movements.

This can be addressed through two ambient magnetic field control strategies. Dynamic
nulling using dedicated coil systems [5,6] enables real-time suppression of environmen-
tal magnetic interference and helps maintain sensor linearity by canceling the ambient
field. Closed-loop operation approaches [7] further improve this capability by continu-
ously adapting to changes in the ambient field, expanding the effective dynamic range of
the system.

Together, these technological and methodological advances form a complementary
framework that positions OP-MEG as a powerful tool for capturing high-fidelity brain
activity in naturalistic and dynamic environments, providing new possibilities for cognitive
and clinical neuroscience research.

The prospect of recording MEG during human walking has exciting implications
for basic research and clinical applications in the field of sensorimotor control. MEG
is particularly well-suited to characterize spatiotemporal dynamics of brain networks,
which is key because how brain regions and their neuronal populations interact to govern
movement remains an open question [46]. For example, this method may help us to
understand key questions such as how gait is adapted to environmental demands, which
mechanisms mediate the recovery of walking function after neurological injury such
as stroke or Cerebral Palsy, and gait problems in neurodegenerative disorders such as
Parkinson’s disease. Further, this technique may allow exploration of the neural basis of
individual variability in walking patterns and ability. A particularly useful application may
be to understand how spinal cord networks interact with cerebral control to coordinate
walking. Recent work showing concurrent recordings of the brain and spinal cord activity
using OPMs [47] suggests that this method has the potential to begin addressing such
fundamental questions in human gait research and lead to transformative insights into the
physiological and pathological mechanisms of walking.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/s25134160/s1, Figure S1: raw time domain (A) and fre-
quency domain (B) empty room data acquired prior to recording from participant 1. Figure S2:
Single-trial time-domain data time-locked to target presentation. Figure S3:Beta envelope for a single
sensor for participant 3 over the left sensorimotor region for raw and processed data. Figure S4:
Source reconstruction for participant 3 following band-pass and notch filtering and following the
full preprocessing pipeline. Figure S5: Suprathreshold t-statistics (FWE-corrected) for four iterations
of 1 block. Figure S6: The influence of different thresholding techniques and bi- vs. triaxial arrays.
Figure S7: Locations of peak t-statistics for the contrast of steps with low- and high-error trials for
each participant.
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