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Abstract—In this paper, we investigate the precoding design
based on the concept of constructive interference (CI) for
multiple-input multiple-output (MIMO) integrated sensing and
communication (ISAC) systems. In particular, we explore the CI-
based precoding in both symbol and block levels from a uniform
viewpoint, where the radar illumination power is maximized
under CI constraint to enhance the sensing performance with
guaranteed communication performance. The successive convex
approximation (SCA) method is leveraged to effectively solve
the formulated non-convex optimization problem. In specific
algorithm design, the total power constraint and per-antenna
power constraint are considered respectively in order to meet
different hardware requirements. Under the total power con-
straint, we formulate the dual problem of the convex subproblem
during SCA processing, which can be efficiently solved by Hooke-
Jeeves pattern search algorithm. Under the per-antenna power
constraint, we propose a light-weight parallel algorithm based on
the alternate direction multiplier method (ADMM). Simulation
results show the advantages of the CI-based precoding schemes in
enhancing ISAC performance. Under the total power constraint,
the proposed CI-based symbol-level precoding (CI-SLP) scheme
can achieve satisfactory ISAC performance with low complexity.
Under the per-antenna power constraint, the CI-SLP scheme
suffers performance loss due to the stringent power constraint,
while the performance advantage of the CI-based block-level
precoding (CI-BLP) scheme becomes prominent.

Index Terms—Integrated sensing and communication (ISAC),
constructive interference (CI), symbol-level precoding (SLP),
block-level precoding (BLP).

I. INTRODUCTION

The gradual integration of the physical and digital realms
is expected to materialize in the 6G era. This integration
spans various applications, from vehicles to drones, from
surveillance facilities in cities to agricultural tools in the
countryside. To achieve this vision, the wireless industry posits
that future networks must possess the ability to sense the
physical environment. This sensory capability stands as a
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unique feature of next-generation networks, moving beyond
traditional communication functions. This concept drives re-
searchers to reevaluate the current designs of communication
infrastructures and terminals [1]–[3]. Additionally, spectrum
resources are becoming increasingly scarce. Spectrum sharing
between communication and radar systems is consistent with
the idea of building a gradual integration of the physical and
digital worlds [4]–[7], which has triggered the recent research
area of integrated sensing and communications (ISAC). In
this framework, sensing and communication functionalities
are possibly jointly designed, optimized, and dispatched to
share resources or assist in each other. This integration allows
resource sharing and mutual assistance using a single hardware
platform, common spectrum, joint signal processing methods,
and even a unified control system. However, the differing per-
spectives regarding the information to be processed in sensing
and communication raise several challenges in ISAC systems,
particularly for signal processing and waveform design [7].

It is known that there are various kinds of radar and com-
munication performance metrics in ISAC system. In multiple-
input multiple-output (MIMO) ISAC systems, the transmit
precoding design under different radar and communication
performance metrics is the focus of many researchers [8]–[15].
Common radar performance metrics are the signal-to-noise
ratio (SNR) of the radar receiver [8], the similarity between the
designed and the reference beamformers of radar systems [9]–
[11], and the Cramer-Rao bound [12]. At the same time, the
widely used communication performance metrics include the
multi-user interference (MUI) [13], the signal-to-interference-
to-noise ratio (SINR) of communication users [11], and the
achievable communication rate [14]. Given the limited system
resources, radar performance and communication performance
need to be elaborately balanced during the precoding design
of ISAC systems under certain metrics, so as to achieve
satisfactory system performance.

The precoding designs mentioned above are all conventional
block-level precoding (BLP) under the ideal assumption of
sufficiently long block length, and their goal is to eliminate
inter-user interference. In fact, some existing works have
revealed that it is not necessary to completely eliminate inter-
user interference in the design of symbol-level precoding
(SLP) [16]–[20]. Actually SLP can benefit from interference
exploitation and further reduce the error-rate of communica-
tion system. The idea of constructive interference (CI) is first
mentioned in [16]. The authors of [17] propose a maximum
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ratio transmission (MRT) precoding scheme based on strict
phase-rotation CI metric. [18] and [19] show that it is enough
for the signal to be located in the constructive region. The
authors of [20] firstly proposed the symbol-scaling CI metric
and therefore extend the exploitation of CI from PSK modu-
lation to QAM modulation. Unlike the conventional BLP, CI-
based symbol-level precoding (CI-SLP) individually optimizes
the transmit signal in each time slot based on the specific
symbols to be sent, rather than simply eliminates the inter-user
interference [21]–[23]. From the communication perspective,
SLP can exploit CI to reduce the symbol error rate (SER)
and perform more reliable multi-user communications. From
the radar perspective, the instantaneous transmit beampattern
for each sample can be carefully designed and a well-formed
beampattern can be guaranteed with a limited number of wave-
form samples. Hence, the technique of CI-SLP has potentials
to enhance the ISAC performance, which has been investigated
in recent works [24].

In previous ISAC work [24], the transmit vectors for CI-SLP
are optimized to minimize the radar beampattern squared error,
subject to CI constraints for communications and power con-
straints. The simulation results show that the CI-SLP scheme
of ISAC system can achieve better instantaneous beampattern
and better SER performance than conventional BLP schemes.
However, due to the complicated processing of quartic func-
tion in the optimization objective and the need for thousands of
iterations, the computational complexity of this scheme is too
high to be accepted in practical systems. In [25], the authors
jointly optimize transmit signals and receive filters for MIMO-
ISAC by leveraging space-time adaptive processing (STAP)
and CI-SLP. In [26], the authors extend the framework to
wideband FTN-ISAC, formulating the corresponding CI-SLP
problem under faster-than-Nyquist signaling. A CI-SLP design
for OFDM-ISAC is proposed in [27], where the range-Doppler
integrated sidelobe level (ISL) of the ambiguity function is
minimized while target illumination power, communication
CI, and transmit power constraints are satisfied. Building on
the ISAC paradigm presented in [24], a deep-learning-based
framework is introduced in [28] to enable low-complexity
CI-SLP implementation. Nevertheless, this scheme exhibits a
modest performance loss compared with the scheme in [24]. In
[29], a low-complexity CI-SLP scheme based on communica-
tion CI and radar illumination power is proposed. This scheme
enhances the ISAC performance while significantly reducing
the computational complexity. However, this low-complexity
algorithm is only applicable to single-target scenarios under
the total power constraint. In this paper, we strive to develop
a low-complexity CI-SLP scheme for the multi-target ISAC
system, considering more practical power constraints.

Although CI-SLP can bring gains in ISAC performance
with instantaneous beampattern design, the symbol-by-symbol
optimization requires high real-time processing which may
induce significant burden to the signal processing units of
system hardware. In addition, the symbol-by-symbol power
constraints introduce additional limitations to the optimiza-
tion problem, thereby causing a certain performance loss,
especially under the per-antenna power constraint. In fact,
the radar beampattern normally need to be averaged after

several samples in practical systems, so it is not necessary to
strictly design the instantaneous beampattern for each sample.
Recently, the authors in [30] propose a CI-based BLP (CI-
BLP) in communication-only system for the first time, which
can offer an improved error-rate performance compared with
the CI-SLP approaches. Meanwhile, compared with the CI-
SLP schemes that optimize the transmit signals at the symbol
level, the CI-BLP schemes consider a block of symbols and
the optimization requires execution only once for each block
of symbol slots, which can greatly reduce the update frequency
of the transmit precoders [31]. Moreover, in the ISAC system,
the design philosophy and performance metrics of CI-SLP are
quite different from those of conventional BLP. Currently, no
research has compared symbol-level design and block-level
design from a unified perspective, so it remains unknown
which one is more suitable for the ISAC system. In this
paper, to fully investigate the ISAC performance of SLP and
BLP schemes and facilitate the design processing, we try to
design the CI-based precoding for ISAC systems in a uniform
viewpoint for both symbol level and block level.

In this paper, the design of CI-based precoding for MIMO
ISAC systems is investigated, where a multi-antenna ISAC
base station (BS) serves multiple single-antenna communi-
cation users while simultaneously detecting multiple targets
of interest. Specifically, the illumination power of radar is
maximized under communication CI constraint. Furthermore,
by extending the proposed precoding scheme from symbol
level to block level, a unified problem form can be obtained.
In the specific algorithm design, we consider the total power
constraint and the per-antenna power constraint respectively
to better meet different hardware requirements, and the algo-
rithms are separately designed. The main contributions of this
paper can be summarized as follows:

1) We propose the CI-based precoding design schemes for
the MIMO ISAC systems. Both the CI-SLP and CI-
BLP schemes are considered to enhance the ISAC perfor-
mance. The uniform problem formulations are achieved
for both precoding scenarios, under the total and per-
antenna power constrains, respectively. Since the opti-
mization objective function is not convex, we leverage
the successive convex approximation (SCA) method to
effectively solve the proposed optimization problems.

2) For the case of the total power constraint, we analyze
the Lagrangian function and Karush-Kuhn-Tucker (KKT)
conditions of the convex subproblem obtained through the
SCA method, and then formulate the corresponding dual
problem. It is easy to prove that the dual problem can be
more efficiently solved with Hooke-Jeeves pattern search
algorithm.

3) Further considering the hardware requirements, per-
antenna power constraints are more preferred in practical
ISAC systems. For the case with the per-antenna power
constraints, the dual problem of the subproblem is diffi-
cult to be expressed. To address this issue, we utilize a
simple parallel algorithm [32] and the alternate direction
multiplier method (ADMM) [33], which is proved with
significantly reduced computational complexity.
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4) Simulation results demonstrate that under the total power
constraint, the proposed CI-SLP scheme can achieve sat-
isfactory ISAC performance with low complexity. Under
the per-antenna power constraint, the CI-SLP scheme
suffers performance loss due to the stringent power
constraint, while the performance advantage of the CI-
BLP scheme becomes prominent. This work also provides
a reference for the selection between CI-SLP and CI-BLP
in practical systems.

We organize the rest of the paper as follows. The system
model, radar model and communication model are introduced
in Section II. The proposed CI-SLP and CI-BLP schemes
under total power constraint and per-antenna power constrainta
are presented in Sections III and IV, respectively. Simulation
results are demonstrated in Section V with thorough analysis,
and the final conclusions are provided in Section VI.

Notations: In this document, lowercase, bold lowercase, and
bold uppercase letters signify scalars, vectors, and matrices,
respectively. The symbols R and C represent the sets of
real and complex numbers. Superscripts T and H denote the
transpose and the conjugate transpose operations, respectively.
The operator ∥ · ∥2 indicates the 2-norm of a vector. The
expressions R {·} and I {·} extract the real and imaginary
components of the input, respectively. We define IN as the
identity matrix of size N ×N . Lastly, 1 and 0 represent the
all-one vector and the all-zero vector, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

In this paper, a MIMO ISAC system is considered, which
transmits a single waveform for both radar probing and com-
municating data symbols to downlink users simultaneously.
The ISAC BS utilizes a uniform linear array (ULA) com-
prising N antennas, serving Ku single-antenna users while
detecting Kt targets. Typically, conditions hold that Ku ≤ N
and Kt ≤ N . The identical antenna array facilitates both
transmission and reception through the time-division duplex
(TDD) protocol.

The transmit signal matrix X = [x [1] ,x [2] , · · · ,x [L]] ∈
CN×L is used as the baseband representation of the ISAC
waveform for both radar and communication operations, and
L represents number of time slots within the considered block
which may be shorter than the coherence interval of the
channel. In this case, x [l] = [x1 [l] , x2 [l] , · · · , xN [l]]

T ∈
CN×1 is the corresponding ISAC waveform in the l-th
time slot with l ∈ L , {1, 2, · · · , L}. The data symbol
matrix is S = [s [1] , s [2] , · · · , s [L]] ∈ CKu×L and the
data symbol vector in the l-th time slot is represented as
s [l] = [s1 [l] , s2 [l] , · · · , sKu [l]]

T ∈ CKu×1, and its elements
are selected from a unit-norm PSK constellation. Unlike the
conventional BLP designs, the CI-SLP and CI-BLP optimize
x [l] or X directly according to the instantaneous data symbols
s [l] or S instead of optimizing the second-order statistic of X.

B. Radar Model

Under the assumption that the transmitted probing signals
are narrowband and that the propagation is non-dispersive, the

baseband signal at the kt-th target location in the l-th time slot
can be represented as

rkt
[l] = a (θkt)

H
x [l] , (1)

where a (θkt) =
[
1, ejsinθkt , · · · , ej(N−1)sinθkt

]T ∈ CN×1

represents the transmit steering vector of the ISAC BS towards
the target with θkt as the corresponding azimuth angle.

It follows from (1) that the illumination power [34] of the
probing signal x [l] at the kt-th target location is given by

P (θkt) = a (θkt)
H
x [l]xH [l]a (θkt) . (2)

By defining aE,kt ∈ C2N×1, bE,kt ∈ C2N×1 and xE,l ∈
R2N×1 as follows

aE,kt =
[
R
(
aT (θkt)

)
, I

(
aT (θkt)

)]T
, (3)

bE,kt =
[
−I

(
aT (θkt)

)
,R

(
aT (θkt)

)]T
, (4)

xE,l =
[
R
(
xT [l]

)
,I

(
xT [l]

)]
, (5)

the cumulated illumination power of all target locations can
be expressed as a standard quadratic form:

Pt =

Kt∑
kt=1

a (θkt)
H
x [l]xH [l]a (θkt)

=

Kt∑
kt=1

∣∣aTE,kt
xE,l

∣∣2 + Kt∑
kt=1

∣∣bT
E,kt

xE,l

∣∣2 = xT
E,lDxE,l,

(6)

where the matrix D ∈ R2N×2N is defined as:

D =

Kt∑
kt=1

aE,kta
T
E,kt

+

Kt∑
kt=1

bE,ktb
T
E,kt

. (7)

Note that the radar illumination power towards the target
is expected to be as high as possible to ensure the detection
probability (DP) of the targets [34], [35]. Therefore, we try
to maximize the radar illumination power through optimizing
the precoding vector xE,l, which can be expressed as

max
xE,l

xT
E,lDxE,l ⇒ min

xE,l

−xT
E,lDxE,l. (8)

C. Communication Model

As for communications, the received signal for the k-th user
in the l-th time slot can be written as

yk [l] = hT
k x [l] + nk [l] , (9)

where hk ∈ CN×1 is the channel between BS and the k-th
user, remaining constant throughout the considered block. In
addition, nk [l] ∼ CN

(
0, σ2

k

)
represents the additive white

Gaussian noise (AWGN) at the k-th user in the l-th slot.
In this paper, we adopt the symbol-scaling-based CI metric,

which is different from the commonly used phase-rotation-
based CI metric and it can be easily extended to QAM
modulation [36]. To demonstrate the symbol-scaling CI metric
proposed in [23], we display one quarter of a QPSK constella-
tion in Fig. 1 as an example. For brevity, we omit the time slot
index [l] in Fig. 1. Without loss of generality,

−→
OA represents

the nominal constellation point of the k-th user in the l-th slot,
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Fig. 1. Geometric diagram of the symbol-scaling CI metric for QPSK.

i.e.,
−→
OA = sk [l].

−−→
OB represents the corresponding noise-free

received signal with interference and
−−→
AB can be considered

as the sum of interference. Based on the geometry we obtain
−−→
OB =

−→
OA+

−−→
AB = hT

k x [l]

=
[
R (hk)

T
R (x [l])− I (hk)

T
I (x [l])

]
+ j ·

[
I (hk)

T
R (x [l]) +R (hk)

T
I (x [l])

]
. (10)

The idea of the symbol-scaling CI metric is that the signal
is decomposed along two decision boundaries, and then CI
is measured by the scaling factors obtained from the de-
composition. To be more specific, in Fig. 1,

−→
OA can be

decomposed along the two decision boundaries for QPSK
modulation as

−→
OA =

−−→
OC +

−−→
OD = sright

k [l] + sleft
k [l], where

sright
k [l] and sleft

k [l] represent the projections of the k-th user’s
nominal constellation point onto the two decision boundaries,
respectively. In a similar way, the received signal

−−→
OB can also

be decomposed as follows.
−−→
OB =

−−→
OE +

−−→
OF = αright

k [l] sright
k [l] + αleft

k [l] sleft
k [l]

= αright
k [l]

[
R
(
sright
k [l]

)
+ j · I

(
sright
k [l]

)]
+ αleft

k [l]
[
R
(
sleft
k [l]

)
+ j · I

(
sleft
k [l]

)]
=

[
αright
k [l]R

(
sright
k [l]

)
+ αleft

k [l]R
(
sleft
k [l]

)]
+ j ·

[
αright
k [l] I

(
sright
k [l]

)
+ αleft

k [l] I
(
sleft
k [l]

)]
, (11)

where αright
k [l] and αleft

k [l] represent the non-negative scaling
factors corresponding to the two decision boundaries, respec-
tively. The real and imaginary parts of

−−→
OB expressed in (10)

and (11) are equal respectively, and thus the following two
equations can be obtained:

R (hk)
T
R (x [l])− I (hk)

T
I (x [l])

= αright
k [l]R

(
sright
k [l]

)
+ αleft

k [l]R
(
sleft
k [l]

)
,

I (hk)
T
R (x [l]) +R (hk)

T
I (x [l])

= αright
k [l]I

(
sright
k [l]

)
+ αleft

k [l] I
(
sleft
k [l]

)
. (12)

Through simple mathematical operations from (12), a linear
relationship between each scaling factor and the transmit
signal can be obtained as:

αE,l = MlxE,l, (13)

so that each scaling factor can be directly represented by the
transmit signal. Here, xE,l ∈ R2N×1 has been defined in (5).
The scaling factors for all users are collected in vector αE,l ∈
R2Ku×1, which is defined as

αE,l =
[
αright
1 [l] , · · · , αright

Ku
[l] , αleft

1 [l] , · · · , αleft
Ku

[l]
]T

. (14)

In addition, the coefficient matrix Ml ∈ R2Ku×2N in (13) is
constructed as [37]:

Ml = [p1,p2, · · · ,pKu ,q1,q2, · · · ,qKu ]
T
, (15)

where pk ∈ R2N×1 and qk ∈ R2N×1 are given by

pk =

 I(sleft
k [l])R(hk)−R(sleft

k [l])I(hk)

R(sright
k [l])I(sleft

k [l])−I(sright
k [l])R(sleft

k [l])

− I(sleft
k [l])I(hk)+R(sleft

k [l])R(hk)

R(sright
k [l])I(sleft

k [l])−I(sright
k [l])R(sleft

k [l])

 , (16)

qk =

 R(sright
k [l])I(hk)−I(sright

k [l])R(hk)

R(sright
k [l])I(sleft

k [l])−I(sright
k [l])R(sleft

k [l])
R(sright

k [l])R(hk)+I(sright
k [l])I(hk)

R(sright
k [l])I(sleft

k [l])−I(sright
k [l])R(sleft

k [l])

 . (17)

Referring to Fig. 1, it can be observed that the values of
αright
k [l] and αleft

k [l] reflect the constructive effect. A greater
value of either αright

k [l] or αleft
k [l] indicates that the received

symbol moves further away from one of its decision bound-
aries. This movement facilitates symbol detection, thereby
enhancing the communication error-rate performance of ISAC
systems. Based on the above description, the communication
constraint with symbol-scaling CI metric can be formulated as

αE,l = MlxE,l ≥ t, (18)

where t = σmaxΓ is the lower bound of all scaling factors and
also represents the reliable distance between the constructive
region and the corresponding decision boundary. Here, σmax
is the maximum value in {σ1, · · · , σKu}, representing the
maximum noise power for all users, and Γ is the SINR
threshold. Note that the communication CI constraint can be
guaranteed through designing the precoding vector xE,l.

III. PRECODING DESIGN UNDER TOTAL POWER
CONSTRAINT

In this section, we design the transmit ISAC waveform
matrix X (which is equivalent to design xE,l,∀l ∈ L). The
radar illumination power towards targets is maximized under
total power constraint, while satisfying the communication
constraint with symbol-scaling CI metric. Next, we will for-
mulate the corresponding ISAC waveform design problems
with both SLP and BLP protocols and proposed a uniform
algorithm to solve the optimization problems.
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A. Problem Formulation with CI-SLP

In the l-th time slot, the CI-SLP optimization problem for
maximizing the illumination power of the ISAC system under
total power constraint can be formulated as

PCI-SLP-TPC
1 : min

xE,l

− xT
E,lDxE,l (19)

s.t. MlxE,l ≥ t, (19a)

∥xE,l∥22 ≤ p0, (19b)

where p0 represents the transmit power budget for the ISAC
BS within each symbol slot.

B. Problem Formulation with CI-BLP

For the entire considered block, the CI-BLP optimization
problem for maximizing the illumination power of the ISAC
system under total power constraint can be formulated as

PCI-BLP-TPC
1 : min

{xE,l}
−

L∑
l=1

xT
E,lDxE,l (20)

s.t. MlxE,l ≥ t, ∀l ∈ L, (20a)
L∑

l=1

∥xE,l∥22 ≤ Lp0. (20b)

In fact, PCI-BLP-TPC
1 can be equivalently re-expressed more

concisely as

PCI-BLP-TPC
2 : min

x̃E

− x̃T
ED̃x̃E (21)

s.t. M̃x̃E ≥ t, (21a)

∥x̃E∥22 ≤ Lp0, (21b)

where x̃E ∈ R2LN×1, D̃ ∈ R2LN×2LN and M̃ ∈ R2LKu×2LN

are respectively defined as:

x̃E =
[
xT
E,1, · · · ,xT

E,L

]T
, (22)

D̃ = IL ⊗D, M̃ = diag (M1,M2, · · · ,ML) . (23)

Here, ⊗ represents the Kronecker product and M̃ is a block
diagonal matrix, with each diagonal block being the coefficient
matrix Ml (l ∈ L) corresponding to each time slot in the
block.

Remark 1: Obviously, the CI-SLP scheme in each time slot
is a special case of the CI-BLP scheme when L = 1. Therefore,
the subsequent algorithm is designed for CI-BLP which is also
applicable to CI-SLP. For the convenience of expression, we
simplify PCI-BLP-TPC

2 as PTPC
2 , which is a general optimization

problem form for both the cases of CI-SLP and CI-BLP.

C. Algorithm Design with SCA Transformation

It is easy to note that the problem PTPC
2 given in (21) is non-

convex because of the concave objective function. In order to
effectively solve the non-convex optimization problem PTPC

2 ,
we adopt the SCA method. First, let us denote the objective
function as

f (x̃E) = −x̃T
ED̃x̃E, x̃E ∈ QTPC, (24)

and we define QTPC as the feasible region of PTPC
2 constrained

by (21a) and (21b), which is a convex set of x̃E. In the m-th
iteration of the SCA process, the objective function can be
approximated by its upper bound achieved from its first-order
Taylor expansion near the point obtained in (m−1)-th iteration
given as x̃m−1

E ∈ QTPC. Hence, we have

f (x̃E) ≤ f
(
x̃m−1
E

)
+▽f

(
x̃m−1
E

)T (
x̃E − x̃m−1

E

)
, f̂ (x̃E) ,

(25)

where ▽f (·) denotes the gradient of f (·) versus x̃E and

▽f
(
x̃m−1
E

)
= −2D̃x̃m−1

E . (26)

Note that only ▽f
(
x̃m−1
E

)T
x̃E is related to x̃E in the

objective f̂ (x̃E), and the other constant terms in (25) can be
ignored. Therefore, we can equivalently solve the following
optimization problem at the m-th iteration of the SCA method:

PTPC
3 : min

x̃E

dTx̃E (27)

s.t. M̃x̃E ≥ t, (27a)

∥x̃E∥22 ≤ Lp0, (27b)

where d = −D̃x̃m−1
E . PTPC

3 is convex and it can be solved
directly by the exiting softwares such as CVX. By solving
problem PTPC

3 , we can obtain the point in the m-th iteration
of the SCA method denoted as x̃m

E . The SCA solver iterates
until it converges and then the transmit ISAC waveform matrix
X can be re-constructed according to (5) and (22).

D. Dual Problem of PTPC
3

Although the CVX tool can be used to directly solve the
formulated problem PTPC

3 , the computational efficiency of
the scheme can be further improved considering the iterative
property. In the remainder of this section we derive the dual
problem of PTPC

3 , which can be solved more efficiently.
The Lagrangian dual function of PTPC

3 is given by

L (x̃E,µ, ν)

= dTx̃E + µT
(
t · 1− M̃x̃E

)
+ ν

(
∥x̃E∥22 − Lp0

)
, (28)

where µ ∈ R2LKu×1 and ν are non-negative dual variables
corresponding to inequality constraints (27a) and (27b), re-
spectively. The corresponding KKT conditions can be formu-
lated as

∂L
∂x̃E

= d− M̃Tµ+ 2νx̃E = 0, (29a)

µT
(
t · 1− M̃x̃E

)
= 0, µk ≥ 0, ∀k ≤ 2LKu, (29b)

ν
(
∥x̃E∥22 − p0

)
= 0. ν ≥ 0. (29c)

According to the KKT conditions, we can deduce that ν > 0.
If ν = 0, then no vector µ can satisfy (29a), which has been
proved in Appendix A. This indicates that the total power
constraint is active at the point of optimality, i.e.,

∥x̃E∥22 = Lp0. (30)
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By transforming (29a), we can obtain the expression for the
optimal x̃E with respect to Lagrange multipliers:

x̃E =
1

2ν

(
M̃Tµ− d

)
. (31)

Note that PTPC
3 is convex and satisfies the Slater’s condition

[38]. Therefore, the optimal solution of PTPC
3 can be obtained

by solving its dual problem, with the corresponding objective
function as follows:

max
µ,ν

min
x̃E

L (x̃E,µ, ν) . (32)

By incorporating the active total power constraint (30) along-
side the optimal structure of x̃E in (31) into (32), we can
simplify the objective of the dual problem as

max
µ,ν

min
x̃E

L (x̃E,µ, ν)

=max
µ,ν

min
x̃E

dTx̃E + µT
(
t · 1− M̃x̃E

)
+ ν

(
∥x̃E∥22 − Lp0

)
=min

µ,ν

1

2ν

∥∥∥M̃Tµ− d
∥∥∥2
2
− t · 1Tµ. (33)

Furthermore, by substituting (31) into (30), the total power
constraint is equivalent to

1

4ν2

∥∥∥M̃Tµ− d
∥∥∥2
2
= Lp0, (34)

from which we can obtain the following expression for ν only
with respect to µ:

ν =

∥∥∥M̃Tµ− d
∥∥∥
2

2
√
Lp0

. (35)

Hence, we can refine the objective of the dual problem
into an optimization only concerning µ by substituting the
aforementioned expression for ν into (33), which is given as

min
µ,ν

1

2ν

∥∥∥M̃Tµ− d
∥∥∥2
2
− t · 1Tµ

=min
µ

√
Lp0

∥∥∥M̃Tµ− d
∥∥∥
2
− t · 1Tµ. (36)

Considering that all the elements in µ are non-negative, the
dual problem of PTPC

3 can finally be formulated as follows

PTPC
4 : min

µ
F (µ) =

√
Lp0

∥∥∥M̃Tµ− d
∥∥∥
2
− t · 1Tµ (37)

s.t. µk ≥ 0, ∀k ∈ {1, · · · , 2LKu} . (37a)

Note that the problem PTPC
4 can be more efficiently solved

than the problem PTPC
3 via the Hooke-Jeeves pattern search

algorithm [39]. The Hooke-Jeeves pattern search algorithm
is an iterative derivative-free method. At each iteration, we
first probe the vector µ along each dimension with a fixed
step size to detect the most favorable descent direction. If no
further improvement can be achieved, the step size is halved.
It can be observed that the problem PTPC

4 has extremely simple
constraints, which allows it to be solved by the Hooke-Jeeves
pattern search algorithm with markedly reduced computational
complexity. After solving the dual problem PTPC

4 , we can
obtain µ∗ and then we can obtain x̃∗

E of PTPC
3 via (31).

In conclusion, the uniform CI-based precoding design for
both symbol level and block level under the total power

constraint can be summarized in Algorithm 1. Here, we
define Nmax1 as the upper limit of iterations and ϵth1 as the
convergence condition threshold.

Algorithm 1 CI-based Precoding Design under Total Power
Constraint

1: Input: S = [s [1] , · · · , s [L]], H = [h1, · · · ,hKu ]
T,

a (θ1) , · · · ,a (θKt), σmax, Γ, p0, ϵth1 , Nmax1

2: Initialization: x̃0
E ∈ QTPC, M̃, D̃, t, m = 1

3: repeat
4: Calculate the gradient ▽f

(
x̃m−1
E

)
by (26);

5: Obtain µ∗ by Hooke-Jeeves pattern search algorithm;
6: Calculate x̃m

E by (31);
7: m = m+ 1;
8: until

∣∣f (
x̃m−1
E

)
− f

(
x̃m−2
E

)∣∣ < ϵth1 or m > Nmax1 .
9: Calculate X from x̃m

E according to (5) and (22).
10: Output: X = [x [1] , · · · ,x [L]]

E. Analysis on Complexity and Convergence

Under the total power constraint, the computational com-
plexity of the CI-based precoding design mainly comes from
solving the optimization problem PTPC

3 .
Firstly, we analyze the computational complexity of prob-

lem PTPC
3 with CVX. Since problem PTPC

3 is a convex op-
timization problem and involves only linear matrix inequality
(LMI) and second-order cone (SOC) constraints, it can be
solved by a standard interior-point method (IPM) embedded
in CVX. Generally, the computational complexity of the IPM
consists of two parts: (1) iteration complexity and (2) per-
iteration computation cost [40]. The total number of decision
variables in the optimization problem PTPC

3 is n = 2LN , and
problem PTPC

3 includes 2LKu LMI constraints of size 1 as
well as one SOC constraint of size 2LN . Given an accuracy
threshold ϵ, the number of iterations required to reach an ϵ-
optimal solution is on the order of

√
φ (K) · ln (1/ϵ), where

φ (K) = 2LKu + 2 is the so-called barrier parameter. In
each iteration, the required computational complexity is on the
order of

[
n (2LKu) + n2 (2LKu) + n (2LN)

2
+ n3

]
, which

can be written as O
(
L3N3

)
. Therefore, the computational

complexity of solving problem PTPC
3 with CVX can be

expressed as ln (1/ϵ) ·
√
2LKu + 2 · O

(
L3N3

)
.

Next, we analyze the computational complexity of solving
the dual problem PTPC

4 by the Hooke-Jeeves pattern search
method. In Hooke-Jeeves pattern search method, the maxi-
mum number of iterations is set as Imax1 . In each iteration,
we need to calculate the objective function F (µ) 4LKu

times, and each time with computational complexity order of
(2LKu) (2LN). Therefore, the computational complexity of
solving problem PTPC

4 by the Hooke-Jeeves pattern search
algorithm is Imax1 · O

(
L3NK2

u

)
, which is much lower than

that solved by problem PTPC
3 with CVX.

Although iterative method is employed in Algorithm 1,
it is easy to verify that the convergence of the proposed
iterative algorithm is always guaranteed. With the help of
the SCA method, we can always find a solution that is not
worse than the one from the previous iteration. Therefore, the
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objective function value of the optimization problem PTPC
2 is

monotonically non-decreasing with the increase in the number
of iterations. Moreover, the convergence of the proposed
algorithm will be further demonstrated through simulation
results in Section V.

IV. PRECODING DESIGN UNDER PER-ANTENNA POWER
CONSTRAINT

In practical systems, each transmit antenna is usually e-
quipped with its dedicated power amplifier. Therefore, it is
more realistic to design ISAC precoding approaches that
incorporate the per-antenna power constraint [41]–[43]. In this
section we design the transmit ISAC waveform matrix X under
per-antenna power constraint.

A. Problem Formulation

The CI-SLP and the CI-BLP optimization problem for ISAC
system under per-antenna power constraint can be uniformly
formulated as

PPAPC
1 : min

{xE,l}
−

L∑
l=1

xT
E,lDxE,l (38)

s.t. MlxE,l ≥ t, ∀l ∈ {1, · · · , L} , (38a)
L∑

l=1

(
|xn,l|2 + |xn+N,l|2

)
≤ Lp0

N
, ∀n ∈ N ,

(38b)

where xn,l represents the n-th element in xE,l and N =
{1, 2, · · · , N}. The per-antenna power constraint (38b) in
PPAPC
1 is a convex constraint. Similarly, PPAPC

1 can be ex-
pressed more concisely as

PPAPC
2 : min

x̃E

− x̃T
ED̃x̃E (39)

s.t. M̃x̃E ≥ t, (39a)

x̃T
EẼnx̃E ≤ Lp0

N
, ∀n ∈ N , (39b)

where x̃E, D̃ and M̃ have been defined in (22) and (23). In
addition, Ẽn is defined as

Ẽn = IL ⊗En, (40)

where

En = ∆T
1 ene

T
n∆1 +∆T

2 ene
T
n∆2,

∆1 =

[
IN 0
0 IN

]
,∆2 =

[
0 IN
IN 0

]
, (41)

and en ∈ R2N is a vector where its n-th entry is 1 and the
other elements are 0.

B. Algorithm Design with SCA Transformation

Problem PPAPC
2 is also a non-convex problem because of the

non-convex objective function. In this section, we solve the
non-convex problem PPAPC

2 by leveraging the SCA procedure
similar to Section III-C.

First, we define QPAPC as the feasible region of PPAPC
2

constrained by (39a) and (39b), which is a convex set of

x̃E. The optimization problem we need to solve in the m-th
iteration of the SCA solver can be expressed as

PPAPC
3 : min

x̃E

dTx̃E (42)

s.t. M̃x̃E ≥ t, (42a)
x̃E ∈ X , (42b)

where X ⊆ R2LN is a convex set and it is defined as

X =

{
x̃E|x̃T

EẼnx̃E ≤ Lp0
N

, ∀n ∈ N
}
. (43)

Since PPAPC
3 is a convex optimization problem, it can be solved

directly by CVX. Through solving problem PPAPC
3 , we can

obtain x̃m
E . After the convergence of the SCA solver, the

transmit ISAC waveform matrix X can be obtained according
to (5) and (22).

C. Simple Parallel Algorithm for PPAPC
3

The efficient algorithm for solving the dual problem of PTPC
3

in Section III-D is designed for the total power constraint
which cannot be directly applied to PPAPC

3 for system with
per-antenna power constraint, and the specific reasons have
been analyzed in Appendix B.

Hence, we adopt a simple parallel algorithm in [32] to
solve the optimization problem PPAPC

3 . This simple parallel
algorithm is similar to the classical dual subgradient algorithm
with primal averaging, which deals with the objective and
constraints parallelly. However, this simple parallel algorithm
can perform a faster convergence rate than the dual sub-
gradient algorithm, which has been proved in [32].

In order to solve problem PPAPC
3 in a parallel way, we first

define the inequality constraint function (42a) in PPAPC
3 as

g (x̃E) = t · 1− M̃x̃E. (44)

In addition, we define the primal variables as vectors x̂ (i)
and the virtual queues as vectors Q (i). Q (i) are called as
virtual queues because they update like queueing equations
and can be viewed as dual variables because they have a close
connection to Lagrange multipliers.

In the i-th iteration of the simple parallel algorithm, the
vector x̂ (i) ∈ X can be updated as

x̂ (i) = argmin
x̂∈X

dTx̂+ [Q (i) + g (x̂ (i− 1))]
T
g (x̂)

+α ∥x̂− x̂ (i− 1)∥2 . (45)

It is easy to note that the structure of the objective function in
(45) is different from that of the general Lagrange function.
Here, g (x̂ (i− 1)) obtained in the previous iteration is added
to Q (i), and g (x̂ (i− 1)) is multiplied by the constraint func-
tion g (x̂), producing a new cross-product term. This cross-
product term together with another newly introduced quadratic
term α ∥x̂− x̂ (i− 1)∥2 can leads to a faster convergence
rate. Note that x̂ (i− 1) is the primal variable obtained in the
previous iteration, and α > 0 is the coefficient of the newly
introduced quadratic term. Then, we update Q (i+ 1) via

Q (i+ 1) = max {−g (x̂ (i)) ,Q (i) + g (x̂ (i))} . (46)
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Here is an important difference from the classical dual sub-
gradient algorithm. The traditional update rule is Q (i+ 1) =
max {0,Q (i) + g (x̂ (i))} [44], while in the simple parallel
algorithm, the update equation for Q is modified to take a
max with −g (x̂ (i)), rather than simply project onto the non-
negative real numbers.

Next, the average result over the first (i+ 1) iterations can
be expressed as

x̄ (i+ 1) =
1

i+ 1

i∑
τ=0

x̂ (τ) = x̄ (i)
i

i+ 1
+ x̂ (i)

1

i+ 1
. (47)

We average the results of all the primal variables from the
iterations, and the vector x̄ (i) obtained at convergence can
closely approximate the optimal solution to PPAPC

3 [32].
In the simple parallel algorithm, we use an initial vector

represented as x̂ (−1) which is chosen as any vector in X
that satisfying the per-antenna power constraint. In addition,
we further define a vector Q (0) = max {0,−g (x̂ (−1))}
as initialization. The designed simple parallel algorithm for
solving PPAPC

3 can be summarized in Algorithm 2, where
Imax2 is the upper limit of iterations and ϵth2 represents the
convergence condition threshold.

Algorithm 2 Simple Parallel Algorithm

1: Input: M̃, d, L, N , p0, Imax2 , ϵth2

2: Initialization: x̂ (−1) ∈ X , x̄ (−1) ∈ X , Q (0) =
max {0,−g (x̂ (−1))}, i = 0

3: while i ≤ Imax2 do
4: Update x̂ (i) by solving problem (45);
5: Update Q (i+ 1) by (46);
6: Update x̄ (i+ 1) by (47);
7: i = i+ 1;
8: if ∥x̄ (i)− x̄ (i− 1)∥22 ≤ ϵth2 then
9: Go to 12;

10: end if
11: end while
12: x̃∗

E = x̄ (i).
13: Output: x̃∗

E

D. ADMM Algorithm for Updating x̂ (i)

One essential step in Algorithm 2 is for solving the problem
(45) to update the vector x̂ (i). Here, we try to leverage the
ADMM algorithm to develop an efficient solution for updating
x̂ (i). In the ADMM framework, first of all, it is necessary to
introduce a new variable z and an indicator function as

IX (z) =

{
0, if z ∈ X ,

∞, otherwise.
(48)

Then we further define the objective function in (45) as:

h (x̂) = dTx̂+ [Q (i) + g (x̂ (i− 1))]
T
g (x̂)

+ α ∥x̂− x̂ (i− 1)∥2

= dTx̂+ q̂T
(
t · 1− M̃x̂

)
+ α ∥x̂− x̂ (i− 1)∥2 , (49)

where q̂ = Q (i) + g (x̂ (i− 1)). Hence, the optimization
problem in (45) can be equivalently written as a consensus
form:

PPAPC
4 : min

x̂,z
h (x̂) + IX (z)

s.t. x̂− z = 0, (50)

where IX (z) is utilized as a penality and it approaches infinity
if z does not in X . The augmented Lagrange function for the
optimization problem PPAPC

4 can be expressed as

Lρ (x̂, z,y)

= h (x̂) + IX (z) + yT (x̂− z) +
ρ

2
∥x̂− z∥22

= dTx̂+ q̂T
(
t · 1− M̃x̃E

)
+ α ∥x̂− x̂ (i− 1)∥2

+ IX (z) + yT (x̂− z) +
ρ

2
∥x̂− z∥22 . (51)

Here, the elements in y ∈ R2LN×1 are dual variables, and
ρ > 0 is the penalty parameter for guaranteeing the equality
constraint in PPAPC

4 . The update process for x̂, z, and yis as
follows

x̂loop+1 = argmin
x̂

Lρ

(
x̂, zloop,yloop

)
, (52)

zloop+1 = argmin
z

Lρ

(
x̂loop+1, z,yloop

)
, (53)

yloop+1 = yloop + ρ
(
x̂loop+1 − zloop+1

)
. (54)

Specifically, the subproblem for updating x̂ can be written as

min
x̂

dTx̂− q̂TM̃x̂+ α ∥x̂− x̂ (i− 1)∥2 + yTx̂

+
ρ

2
∥x̂− z∥22 . (55)

where the objective is convex versus x̂. Hence, we can obtain
the optimal x̂ by letting the derivative of the objective function
in (55) with respect to x̂ be zero as given below

d− M̃Tq̂+ 2α (x̂− x̂ (i− 1)) + y + ρ (x̂− z) = 0

⇒x̂ =
1

2α+ ρ

(
M̃Tq̂− d+ 2αx̂ (i− 1)− y + ρz

)
. (56)

In addition, the subproblem for updating z can be written as

min
z

IX (z)− yTz+
ρ

2
∥x̂− z∥22 . (57)

By letting the derivative of the objective function in (57) with
respect to z be zero, the optimal z can be obtained:

∂IX (z)− y − ρ (x̂− z) = 0

⇒z = ΠX

(
x̂+

y

ρ

)
. (58)

where ΠX (·) is a projection operator, and ΠX (ẑ) denotes the
projection of the vector ẑ onto the set X . For any ẑ ∈ R2LN×1,
ΠX (ẑ) can be implemented in a closed form as (59) on the
top of the next page.

According to the above analysis, the corresponding ADMM
algorithm is summarized in Algorithm 3. Here, Imax3 and ϵth3

represent the upper limit of iterations and the convergence
condition threshold, respectively.
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(
ΠX (ẑn) ,ΠX (ẑn+N ) , · · · ,ΠX

(
ẑn+(2L−1)N

))
=


(
ẑn, ẑn+N , · · · , ẑn+(2L−1)N

)
, if

∑2L−1

l̂=0
ẑ2
n+(2l̂−1)N

≤ Lp0

N ,
√
Lp0√

N
∑2L−1

l̂=0
ẑ2
n+(2l̂−1)N

(
ẑn, ẑn+N , · · · , ẑn+(2L−1)N

)
, otherwise. (59)

Algorithm 3 ADMM Algorithm

1: Input: d, q̂, M̃, α, ρ, L, N , p0, Imax3 , ϵth3

2: Initialization: z1 ∈ X , y1 = 0, loop = 1
3: while loop ≤ Imax3 do
4: Compute x̂loop+1 by (56);
5: Compute zloop+1 by (58);
6: Update yloop+1 by (54);
7: loop = loop+ 1;
8: if

∥∥zloop+1 − zloop
∥∥2
2
≤ ϵth3 then

9: Go to 12;
10: end if
11: end while
12: x̂ (i) = zloop.
13: Output: x̂ (i)

In conclusion, the uniform CI-based precoding design for
both symbol and block levels under per-antenna power con-
straint can be summarized in Algorithm 4 with Nmax4 and ϵth4

being the maximum iteration and the convergence threshold.

Algorithm 4 CI-based Precoding Design under Per-Antenna
Power Constraint

1: Input: S = [s [1] , · · · , s [L]], H = [h1, · · · ,hKu ]
T,

a (θ1) , · · · ,a (θKt), σmax, Γ, p0, Nmax4 , ϵth4

2: Initialization: Initial x̃0
E ∈ QPAPC, M̃, D̃, t, m = 1

3: repeat
4: Calculate the gradient ▽f

(
x̃m−1
E

)
by (26);

5: Obtain x̃m
E by Algorithm 2.

6: m = m+ 1.
7: until

∣∣f (
x̃m−1
E

)
− f

(
x̃m−2
E

)∣∣ < ϵth4 or m > Nmax4 .
8: Calculate X from x̃m

E according to (5) and (22).
9: Output: X = [x [1] , · · · ,x [L]]

E. Analysis on Complexity and Convergence

Under the per-antenna power constraint, the computational
complexity of the CI-based precoding design mainly comes
from solving the optimization problem PPAPC

3 .
Firstly, we analyze the computational complexity of prob-

lem PPAPC
3 with CVX. Since problem PPAPC

3 is also a
convex optimization problem and involves only LMI and SOC
constraints, it can be solved by the IPM embedded in CVX.
The total number of decision variables in the optimization
problem PPAPC

3 is n = 2LN , and problem PPAPC
3 includes

2LKu LMI constraints of size 1 as well as one SOC constraint
of size 2LN . The number of iterations required to reach an
ϵ-optimal solution is on the order of

√
φ (K)·ln (1/ϵ). In each

iteration, the required computational complexity is on the order

of
[
n (2LKu) + n2 (2LKu) + nN (2LN)

2
+ n3

]
, which can

be written as O
(
L3N4

)
. Therefore, the computational com-

plexity of solving problem PPAPC
3 with CVX can be expressed

as ln (1/ϵ) ·
√
2LKu + 2N · O

(
L3N4

)
.

Next, we analyze the computational complexity of solving
PPAPC
3 with the designed simple parallel algorithm. In the

designed simple parallel algorithm, the maximum number of
iterations is set as Imax2 . In each iteration, the computational
complexity mainly arises from solving the problem (45) via
the ADMM algorithm, and the computational complexity
required for ADMM is on the order of Imax3 (2LN) (2LKu).
Therefore, the computational complexity of solving prob-
lem PPAPC

3 with the designed simple parallel algorithm
is Imax2Imax3O

(
L2NKu

)
, which is much lower than that

solved by CVX.
The convergence of the simple parallel algorithm and the

ADMM algorithm is proven in [32] and [31], respectively.
Similar to Algorithm 1, with the help of the SCA method, we
can always find a solution that is not worse than the one from
the previous iteration. Therefore, the objective function value
of the optimization problem PPAPC

2 is also monotonically
non-decreasing with the increase in the number of iterations.
The convergence of the proposed algorithm will be further
demonstrated through simulation results in Section V.

V. SIMULATION RESULTS

In this section, numerical results are provided to validate the
aforementioned derivations, and demonstrate the superiority
of the proposed algorithms for CI-SLP and CI-BLP schemes
in enhancing ISAC performance. This section first presents
the convergence behavior of the proposed algorithms, and the
remaining content can be divided into two parts: simulation
results under total power constraint and simulation results
under per-antenna power constraint. The proposed schemes
are compared with the the previous scheme in terms of
SER performance, transmit beampattern, tradeoff between
communication SER and radar DP, and execution time. In
this section, standard Rayleigh fading channels are employed
for communications, while line-of-sight path is considered for
radar illumination. The simulation results of radar beampattern
are the average of multiple samples, which is commonly
used in practical systems and can well smooth away the
undesired instantaneous sidelobes. The simulation results of
the execution time are obtained from Matlab 2023 installed in
a Windows 11 Desktop with CPU i5-12400.

The abbreviations of the considered precoding schemes in
the simulation are as follows:

1) IC-BLP with SDR: SDR in [10], which is a conventional
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BLP scheme for ISAC, and it aims at interference can-
cellation (IC) rather than interference exploitation.

2) Proposed CI-SLP: The proposed CI-SLP scheme for
ISAC system.

3) Proposed CI-BLP: The proposed CI-BLP scheme for
ISAC system.

Throughout the simulations, the transmit power budget per
symbol slot is set as p0 = 30dBm, and QPSK modulation
is employed. The length of the considered block for CI-BLP
scheme is L = 6. We calculate the radar DP based on [45,
eq. (69)] and the false-alarm probability for radar is PFA =
10−7. Without specific statements, we set σmax = 20dBm and
Γ = 4dB. The given desired beampattern mainlobe width for
IC-BLP with SDR scheme is ∆d = 10◦.
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Fig. 2. Illumination power versus the iterations, N = 10, Ku = 3, Kt = 1,
Γ = 4dB, p0 = 30dBm, QPSK.

The convergence behavior of the proposed iterative algo-
rithms are shown in Fig. 2. The simulation results indicate
that the illumination power obtained by the algorithms exhibits
a monotonically non-decreasing behavior with the increase
in iterations. Moreover, the proposed algorithms can rapidly
converge to a stable value within tens of iterations. Therefore,
the convergence of the proposed algorithms is verified.

A. Simulation Results under Total Power Constraint

Fig. 3 depicts the SER performance of different schemes
when N = 10 and Ku = 3. In Fig. 3, the SER performance
of IC-BLP with SDR scheme is significantly worse than
that of other schemes, which indicates the communication
performance advantages of CI-based schemes. It is observed
that the proposed CI-SLP scheme and the proposed CI-BLP
scheme show almost the same SER performance, which re-
flects that the CI constraints can always be satisfied. This also
demonstrates the effectiveness of the proposed algorithm in
solving the optimization problem under total power constraint.

Fig. 4 depicts the transmit beampatterns of different
schemes with multiple targets, and their locations are θ1 =
−40◦, θ2 = 0◦, and θ3 = 40◦, respectively. It can be seen that
the illumination power of the proposed CI-SLP scheme and the
proposed CI-BLP scheme in the target direction is significantly
greater than that of IC-BLP with SDR scheme. The sidelobes

between the two target directions of the proposed CI-SLP and
CI-BLP schemes are also significantly lower than IC-BLP with
SDR scheme. This indicates the advantages of the proposed
CI-based precoding schemes.

Fig. 5 shows the transmit beampatterns of different schemes
with a single target at the location θ1 = 0◦. The transmit
beampatterns of different schemes for single target detection
can be compared more clearly than multi-target detection. The
CI-SLP scheme and the CI-BLP scheme proposed in this paper
have better transmit beampatterns than IC-BLP with SDR
scheme. In addition, the proposed CI-BLP scheme has the best
transmit beampattern, due to the fact that CI-BLP scheme has
a more relaxed power allocation constraint compared with CI-
SLP scheme.

Fig. 6 plots the trade-off between communication SER and
radar sensing DP for different schemes as the communication
SINR threshold Γ varies from 1dB to 8dB. We set SNR
= 15dB for the SER calculation and SNRr = 10dBm for
the DP calculation. It can be seen that at the same SER
performance, the DP results of the proposed CI-SLP scheme
and CI-BLP scheme are better, which more clearly reflects
the ISAC performance advantages of the proposed CI-based
precoding schemes. This not only benefits from the gain
in communication performance achieved by the CI-based
precoding, but also benefits from the fact that we directly
maximize the illumination power in the target direction, which
determines the detection probability directly.
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Fig. 6. Tradeoff between the communication SER and radar DP, N = 10,
Ku = 3, Kt = 1, SNR = 15dB, SNRr = 10dBm, p0 = 30dBm, QPSK.

Fig. 7 shows the complexity of different schemes in terms
of the execution time under total power constraint, with
the number of transmit antennas N ranging from 10 to
20. With the increase of the number of transmit antennas,
the computational complexity of each scheme will increase
correspondingly, because the number of optimization variables
in the optimization problem increases. As can be seen, the
execution time of the proposed CI-SLP scheme and CI-BLP
scheme is even less than that of the IC-BLP with SDR scheme,
thanks to the designed low-complexity algorithm. In addition,
we can observe that the complexity of CI-SLP scheme is lower
than that of CI-BLP scheme because of the smaller size of the
optimization problem.
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Fig. 3. SER performance, N = 10, Ku = 3,
Γ = 4dB, p0 = 30dBm, QPSK.
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Fig. 4. Transmit beampatterns, N = 10, Ku = 3,
Kt = 3, Γ = 4dB, p0 = 30dBm, QPSK.
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Fig. 5. Transmit beampatterns, N = 10, Ku = 3,
Kt = 1, Γ = 4dB, p0 = 30dBm, QPSK.
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Fig. 7. Execution time of different schemes, Ku = 3, Kt = 1, Γ = 4dB,
p0 = 30dBm, QPSK.

In addition to the above simulation results, it is interesting
to find that when the number of transmit antennas is increased
to N = 20, the beampattern mainlobe width of the IC-BLP
with SDR scheme depends on the given desired beampattern
mainlobe width ∆d, since it is optimized to minimize the
beampattern MSE. In Fig. 8(a), when ∆d = 10, the beampat-
tern mainlobe of the IC-BLP with SDR scheme is wider than
that of the proposed schemes, and the mainlobe is seriously
distorted. In Fig. 8(b), when ∆d = 6, the mainlobe of the
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(b)
Fig. 8. Transmit beampatterns of different schemes, N = 20, Ku = 3,
Kt = 1, Γ = 4dB, p0 = 30dBm, QPSK. (a) Mainlobe desired beam width
∆d = 10◦. (b) Mainlobe desired beam width ∆d = 6◦.

IC-BLP with SDR scheme becomes narrower, but the peak
height is still significantly lower than that of the proposed
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Fig. 9. SER performance, N = 10, Ku = 3,
Γ = 4dB, p0 = 30dBm, QPSK.
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Fig. 10. Transmit beampatterns, N = 10, Ku =
3, Kt = 3, Γ = 4dB, p0 = 30dBm, QPSK.
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Fig. 11. Transmit beampatterns, N = 10, Ku =
3, Kt = 1, Γ = 4dB, p0 = 30dBm, QPSK.
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schemes. This means that the proposed schemes based on
target illumination power are more flexible and stable for
providing satisfactory beampatterns.

B. Simulation Results under Per-Antenna Power Constraint

Fig. 9 depicts the SER performance of different schemes
under per-antenna power constraint when N = 10 and
Ku = 3. Compared with the SER results under the total power
constraint shown in Fig. 3, we notice that the SER results of
the CI-based precoding scheme remain unchanged under the
per-antenna power constraint, which verifies the effectiveness
of the proposed algorithm under the per-antenna power con-
straint. However, at this time, the SER results of the IC-BLP
with SDR scheme deteriorate. This is because the conventional
BLP design is based on the ideal assumption that the block
length is sufficiently long. In the simulation, we consider the
more practical case with finite-length blocks, where the IC-
BLP with SDR scheme inevitably suffers performance loss.

Fig. 10 depicts the transmit beampatterns of different
schemes under per-antenna power constraint with multiple
targets. Fig. 11 depicts the transmit beampatterns of different
schemes under per-antenna power constraint with a single
target. It can be seen from Fig. 10 and Fig. 11 that the transmit
beampattern of the CI-BLP scheme proposed in this paper
is still the best, in terms of the mainlobe and the sidelobe.
Compared with the transmit beampattern under the total power
constraint in Fig. 4 and Fig. 5, under the per-antenna power
constraint, the transmit beampatterns of all precoding schemes
deteriorates, among which the transmit beampattern of CI-SLP
scheme deteriorates more significantly. This is because the per-
antenna power constraint is more stringent than the total power
constraint, however.
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Fig. 12. Tradeoff between the communication SER and radar DP, N = 10,
Ku = 3, Kt = 1, SNR = 15dB, SNRr = 10dBm, p0 = 30dBm, QPSK.

Fig. 12 plots the trade-off between communication SER
and radar sensing DP for different schemes under per-antenna
power constraint. The communication SINR threshold Γ varies
from 1dB to 8dB. We set SNR = 15dB for the SER calculation
and SNRr = 10dBm for the DP calculation. At the same SER
performance, the DP results of all schemes deteriorated under
the per-antenna power constraint, compared with the total
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Fig. 13. Execution time of different schemes, Ku = 3, Kt = 1, Γ = 4dB,
p0 = 30dBm, QPSK.

power constraint. It can be seen that the ISAC performance
of the CI-SLP scheme deteriorates severely, while the BLP
scheme, especially the CI-BLP scheme, is relatively less
affected. This benefits from the fact that BLP schemes can
optimize the intra-block power allocation to compensate for
the performance loss due to more stringent power constraint.
In Fig. 12, the communication performance loss of the IC-
BLP with SDR scheme is significant. This is because we
consider the more practical case with finite-length blocks in
the simulation, where the performance loss caused by the per-
antenna power constraint within each block is inevitable.

Fig. 13 depicts the complexity of different schemes in terms
of the execution time under per-antenna power constraint. As
can be seen, the execution time of all schemes under the per-
antenna power constraint is longer than that under the total
power constraint, because the optimization problem becomes
more complex. The execution time of CI-SLP is still less than
that of CI-BLP. The execution time of the IC-BLP with SDR
scheme does not change significantly, because different power
constraints have little effect on the execution time of SDR.

VI. CONCLUSIONS

In this paper, we propose the CI-based precoding methods
for MIMO ISAC systems from a uniform viewpoint for
precoding with symbol level and block level. The illumina-
tion power of radar is maximized under communication CI
constraint for ISAC performance enhancement. Specifically,
the SCA and efficient algorithms are respectively designed
for different power constraints. The simulation results show
that the proposed CI-BLP scheme has significant advantages,
compared with CI-SLP schemes in ISAC system considering
the relaxed power allocation in a block level. While the com-
putational complexity of CI-SLP is lower than that of CI-BLP
because of the smaller size of the optimization problem. This
indicates that the choice of CI-SLP and CI-BLP depends on
the trade-off between performance and complexity in practical
ISAC systems. Motivated by this work, more complicated
ISAC CI-BLP schemes deserve further investigation. In ad-
dition to the target illumination power, this study can expand
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to incorporate alternative radar metrics. These metrics may
include beampattern squared error, the Cramer-Rao bound,
and mutual information. Such exploration could yield further
insights into the performance enhancements in ISAC systems
with the aid of CI-BLP.

APPENDIX A
PROOF FOR ν > 0

Assuming ν = 0, µ must satisfy (29a), as follows

M̃Tµ = d. (60)

Based on the constructions of M̃ and d, we know that the
matrix M̃ depends on the channel between the ISAC BS
and users while the vector d depends on the target directions
and the result obtained in the previous iteration. Hence, d
is linearly independent with the columns in M̃T in practice
considering the unrelated users and targets. Then considering
N ≥ Ku, we have

rank
(
M̃T

)
= min {2LN, 2LKu} = 2LKu,

rank
([
M̃T d

])
= min {2LN, 2LKu + 1} = 2LKu + 1,

(61)

which means there is no solution for µ. Thus we can obtain
ν > 0, which completes the proof.

APPENDIX B
ANALYSIS OF PROBLEM PPAPC

3

The Lagrangian dual function of PPAPC
3 is given as below

L (x̃E,µ,ν) =dTx̃E + µT
(
t · 1− M̃x̃E

)
+

N∑
n=1

νn

(
x̃T
EẼnx̃E − Lp0

N

)
, (62)

where µ ∈ R2LKu×1 and ν ∈ RN×1 are the non-negative dual
variables. The KKT conditions for the optimality of PPAPC

3 are
expressed as follows.

∂L
∂x̃E

= d− M̃Tµ+ 2
N∑

n=1

νnẼnx̃E = 0, (63a)

µT
(
t · 1− M̃x̃E

)
= 0, µk ≥ 0, ∀k ≤ 2Ku, (63b)

νn

(
x̃T
EẼnx̃E − Lp0

N

)
= 0, νn ≥ 0, ∀n ∈ N . (63c)

Based on (63a), we can obtain:

2

N∑
n=1

νnẼnx̃E = M̃Tµ− d. (64)

It is important to note that there exists the possibility that νn =
0 for n ∈ N and thus

∑N
n=1 νnẼn may be a rank-deficient

matrix. In this case, it is difficult to obtain an optimal closed-
form structure for x̃E. This also means that it is challenging to
get a simple form of the dual problem of PPAPC

3 , and therefore
PPAPC
3 can not be solved by the efficient algorithm proposed

in Section III-D under total power constraint.
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reviewed the latest CI-SLP designs in ISAC systems and summarized them 

in the Introduction. 

2. Recommended by Reviewer 2 and Reviewer 3, we have provided some 

description of the Hooke-Jeeves pattern search algorithm in Section III-D 

of this paper. 



3. Recommended by Reviewer 1 and Reviewer 2, we have provided a 

detailed explanation of the rank computation in Eq. (61) in the revised 

version. 

 

Below is the list of all the modifications made as per the Reviewers’ 

recommendations. All alterations made due to the comments are in blue lettering 

in the revised manuscript to ease further revision. Within this report, the 

Reviewers’ comments appear in italic form, and our responses are interleaved in 

plain text.  

 

Sincerely, 

The Authors 

  



Reviewer 1:  

Reviewer: This paper proposes the CI-SLP and CI-BLP designs for ISAC systems 

and designs efficient algorithms for precoding schemes under total power 

constraints and per-antenna power constraints, respectively. The simulation results 

show that CI-BLP has a more significant performance advantage compared to 

CI-SLP, especially under per-antenna power constraints. The motivation of this 

paper is clear, and the structure is well-organized. The reviewer has the following 

comments. 

Authors: We thank the Reviewer for the summary of our work and the positive 

comments. Below we address your remaining concerns one by one. 

 

(1) Reviewer: Fig. 1 only represents a specific case for a particular user. Can the 

optimization problem formulated in the paper guarantee that the symbol of 

each user is pushed away from its decision boundaries? 

Authors: Regarding the Reviewer’s concern, we kindly note that it is true 

that the optimization problem formulated in the paper can guarantee that the 

symbol of each user is pushed away from its decision boundaries. This is 

because, by constraining all CI scaling factors, we can guarantee that the 

noise-free received signal of each user remains at least a prescribed distance 

away from both of its decision boundaries. As an illustrative example, below 

we depict the constellation diagram of the proposed ISAC CI-BLP scheme 

under QPSK modulation, including the received signals of all users. 



 

Fig. A Constellation diagram of the proposed ISAC CI-BLP scheme, 𝑁 = 10,  𝐾u = 3,  𝐾t =

3,  Γ = 4dB,  𝐿 = 6, QPSK. 

 

In Fig. A, solid red circles represent nominal constellation points, hollow blue 

circles represent received signals, and dashed lines represent decision 

boundaries. It can be seen that the received signals of all users are pushed 

away from their decision boundaries and thus fall into the constructive 

region. 

 

(2) Reviewer: This paper contributes to the uniform viewpoint for ISAC 

precoding scheme for symbol level and block level. Please explain the uniform 

policy. 

Authors: Regarding the Reviewer’s concern on the uniform policy, firstly, 

conventional block-level ISAC precoding schemes optimize the second-order 

statistics of the transmit signal under the assumption of a large number of 

samples, whereas symbol-level ISAC precoding schemes exploit 

instantaneous data symbols and CSI to optimize the transmit signal 

slot-by-slot based on CI. Consequently, the two families differ in design 

philosophy and performance metrics. To enable a fair comparison, we 



propose a CI-based block-level ISAC precoding scheme which shares identical 

performance metrics with symbol-level ISAC precoding scheme. Leveraging a 

matrix-based formulation, we further derive a unified problem description 

that encompasses both symbol-level and block-level schemes. This unified 

framework allows us to compare the ISAC performance of symbol-level and 

block-level precoding schemes under various power constraints from a 

unified perspective.  

 

(3) Reviewer: The authors should provide more references to illustrate the 

application of per-antenna power constraints in practical systems.  

Authors: We thank the Reviewer for the valuable suggestion regarding the 

references. Most existing works on precoding consider the total power 

constraint, while in practical systems, each transmit antenna is usually 

equipped with its dedicated power amplifier. Therefore, it is more realistic to 

design precoding approaches that incorporate the per-antenna power 

constraint. In [R1], the authors investigate the conventional block-level 

precoding under the per-antenna power constraint in ISAC systems, while in 

[R2] and [R3], the authors focus on symbol-level precoding design under the 

per-antenna power constraint in communication-only systems. 

 

In this revision, we have included the relevant references and added the 

following statement at the beginning of Section IV: 

“In practical systems, each transmit antenna is usually equipped with its 

dedicated power amplifier. Therefore, it is more realistic to design ISAC 

precoding approaches that incorporate the per-antenna power constraint 

[41]-[43]. In this section we design the transmit ISAC waveform matrix 𝐗 

under per-antenna power constraint.” 

 

[R1] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward Dual-functional 



Radar-Communication Systems: Optimal Waveform Design,” IEEE Trans. Signal Process., vol. 66, no. 16, 

pp. 4264–4279, 2018. 

[R2] Y. Wen, H. Wang, A. Li, X. Liao, and C. Masouros, “Low-Complexity Interference Exploitation MISO 

Precoding Under Per-Antenna Power Constraint,” IEEE Trans. Wireless Commun., vol. 23, no. 8, pp. 

9943–9957, 2024. 

[R3] Y. Wen, J. Yang, A. Li, X. Liao, and C. Masouros, “Parallel Solution for Per-Antenna Power 

Constrained Symbol-Level MU-MISO Precoding,” IEEE Trans. Commun., pp. 1–1, 2025. 

 

(4) Reviewer: The reviewer suggests that providing the dimensions of the 

variables in Eq. 22 and Eq. 23 would enhance the readability of the paper. 

Authors: We thank the Reviewer for the valuable suggestion on improving 

the readability of our paper. In Eq. (22) and Eq. (23), we have 𝐱̃E ∈ ℝ2LN×1, 

𝐃̃ ∈ ℝ2𝐿𝑁×2𝐿𝑁 and 𝐌̃ ∈ ℝ2𝐿𝐾𝑢×2𝐿𝑁. 

 

In this version, we have revised the statement above Eq. (22) and Eq. (23) as 

follows: 

“… where 𝐱̃E ∈ ℝ2LN×1 , 𝐃̃ ∈ ℝ2𝐿𝑁×2𝐿𝑁  and 𝐌̃ ∈ ℝ2𝐿𝐾𝑢×2𝐿𝑁  are 

respectively defined as: …”  

 

(5) Reviewer: The authors should add a description of the function Π in Eq. 58. 

Authors: We thank the Reviewer for the valuable suggestion on improving 

the readability of our paper. In Eq. (58), Π𝒳(∙) is a projection operator, and 

Π𝒳(𝐳̂) denotes the projection of the vector 𝐳̂ onto the set 𝒳. 

 

In this version, we have revised the statement below Eq. (58) into 

“… where Π𝒳(∙)  is a projection operator, and Π𝒳(𝐳̂)  denotes the 

projection of the vector 𝐳̂ onto the set 𝒳. For any 𝐳̂ ∈ ℝ2𝐿𝑁×1, Π𝒳(𝐳̂) can 

be implemented in a closed form as (59) on the top of the next page.” 



(6) Reviewer: The authors should provide the method for calculating the rank 

in Equation (61). 

Authors: We thank the Reviewer for the careful reading of our paper. In Eq. 

(60), based on the constructions of 𝐌̃ and 𝐝, we know that the matrix 𝐌̃ 

depends on the channel between the ISAC BS and users while the vector 𝐝 

depends on the target directions and the result obtained in the previous 

iteration. Hence, 𝐝  is linearly independent with the columns in 𝐌̃T  in 

practice considering the unrelated users and targets. Then considering 𝑁 ≥

 𝐾u, we can obtain the rank in Eq. (61) of this paper.  

 

In this revision, we have included the statement below Eq. (60) as follows: 

“Based on the constructions of 𝐌̃ and 𝐝, we know that the matrix 𝐌̃ 

depends on the channel between the ISAC BS and users while the vector 𝐝 

depends on the target directions and the result obtained in the previous 

iteration. Hence, 𝐝  is linearly independent with the columns in 𝐌̃T  in 

practice considering the unrelated users and targets. Then considering 𝑁 ≥

 𝐾u, we have  

 rank(𝐌̃T) =  min{2𝐿𝑁, 2𝐿𝐾u} = 2𝐿𝐾u, 

 rank([𝐌̃T    𝐝]) = min{2𝐿𝑁, 2𝐿𝐾u + 1} = 2𝐿𝐾u + 1, 

which means there is no solution for 𝝁. …” 

 

  



Reviewer 2:  

Reviewer: In this paper, the authors investigate the precoding scheme based on 

interference exploitation in ISAC systems. Building upon the CI-SLP scheme, the 

CI-BLP scheme is further proposed. Simulation results validate the advantages of 

the CI-based precoding schemes in terms of ISAC performance. This paper is 

generally well-written with novel ideas, and the reviewer has the following 

concerns. 

Authors: We thank the Reviewer for the summary of our work and the positive 

comments. Below we address your remaining concerns one by one. 

 

(1) Reviewer: It would be better if the authors could include more related work 

on CI-SLP in ISAC systems in the Introduction. 

Authors: We thank the Reviewer for the valuable suggestion. Besides [24] 

and [25] ([29] in this version), some other works also investigate CI-SLP 

design in ISAC systems. In [R4] (cited as [25] in the revised paper), the 

authors jointly optimize transmit signals and receive filters for MIMO-ISAC by 

leveraging space-time adaptive processing (STAP) and CI-SLP. In [R5] (cited 

as [26] in the revised paper), the authors extend the framework to wideband 

FTN-ISAC, formulating the corresponding CI-SLP problem under 

faster-than-Nyquist signaling. A CI-SLP design for OFDM-ISAC is proposed in 

[R6] (cited as [27] in the revised paper), where the range-Doppler integrated 

sidelobe level (ISL) of the ambiguity function is minimized while target 

illumination power, communication CI, and transmit power constraints are 

satisfied. Building on the ISAC paradigm presented in [24], a 

deep-learning-based framework is introduced in [R7] (cited as [28] in the 

revised paper) to enable low-complexity CI-SLP implementation. 

Nevertheless, this scheme exhibits a modest performance loss compared with 

the scheme in [24]. 



Following the Reviewer’s suggestion, we have further included these works 

in our paper and added the statement in Paragraph 4 of the Introduction as 

follows: 

“… However, due to the complicated processing of quartic function in the 

optimization objective and the need for thousands of iterations, the 

computational complexity of this scheme is too high to be accepted in 

practical systems. In [25], the authors jointly optimize transmit signals and 

receive filters for MIMO-ISAC by leveraging space-time adaptive processing 

(STAP) and CI-SLP. In [26], the authors extend the framework to wideband 

FTN-ISAC, formulating the corresponding CI-SLP problem under 

faster-than-Nyquist signaling. A CI-SLP design for OFDM-ISAC is proposed in 

[27], where the range-Doppler integrated sidelobe level (ISL) of the 

ambiguity function is minimized while target illumination power, 

communication CI, and transmit power constraints are satisfied. Building on 

the ISAC paradigm presented in [24], a deep-learning-based framework is 

introduced in [28] to enable low-complexity CI-SLP implementation. 

Nevertheless, this scheme exhibits a modest performance loss compared with 

the scheme in [24]. In [29], a low-complexity CI-SLP scheme based on 

communication CI and radar illumination power is proposed. …” 

 

[R4] R. Liu, M. Li, Q. Liu, and A. L. Swindlehurst, “Joint Waveform and Filter Designs for STAP-SLP-Based 

MIMO-DFRC Systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1918–1931, 2022. 

[R5] Z. Liao, F. Liu, A. Li, and C. Masouros, “Faster-Than-Nyquist Symbol-Level Precoding for Wideband 

Integrated Sensing and Communications,” IEEE Trans. Wireless Commun., vol. 23, no. 8, pp. 10 445–10 

458, 2024. 

[R6] P. Li, M. Li, R. Liu, Q. Liu, and A. Lee Swindlehurst, “MIMO-OFDM ISAC Waveform Design for 

Range-Doppler Sidelobe Suppression,” IEEE Trans. Wireless Commun., vol. 24, no. 2, pp. 1001–1015, 

2025. 

[R7] P. Jiang, M. Li, R. Liu, W. Wang, and Q. Liu, “SLP-Based Dual-Functional Waveform Design for ISAC 

Systems: A Deep Learning Approach,” IEEE Trans. Veh. Technol., pp. 1–15, 2025. 



(2) Reviewer: The paper uses CI constraints to guarantee communication SER 

performance. Why not directly constrain the SER? 

Authors: We thank the Reviewer for the careful reading of our paper. 

Firstly, we adopt CI constraints because CI constraints guarantee that each 

noiseless received signal falls within the CI region and is pushed as far as 

possible from its corresponding decision boundaries. From the perspective of 

geometric analysis, CI constraints ensure a low average SER for the ISAC 

system. However, after a more in-depth literature review, we agree with the 

Reviewer that the CI constraints is not the exact SER expression, which may 

lead to a slightly degraded SER performance in some cases. For high-order 

QAM modulation in the communication-only system, [R8] gives the 

expression of SER with respect to the transmit signal and the rescaling factor 

based on the noise distribution, and constructs the optimization problem to 

minimize SER. Since the objective function based on the SER expression is not 

convex, alternate optimization, Riemannian manifold algorithm and gradient 

descent method are adopted to solve it. Simulation results show that for 

high-order QAM modulation, the SER of the scheme based on SER expression 

is better than that of the scheme based on CI, as expected. However, the 

complexity of this scheme is relatively high, especially when the number of 

transmit antennas is larger than the number of users. 

 

In this paper, we strive to develop a low-complexity CI-SLP scheme for the 

multi-target ISAC system. Therefore, we hope the Reviewer condones our 

choice to adopt CI constraints, rather than directly constraining the SER, in 

the design of the ISAC precoding scheme. 

 

[R8] Y. Wang, H. Hou, W. Wang, and X. Yi, “Symbol-Level Precoding for Average SER Minimization in 

Multiuser MISO Systems,” IEEE Wireless Communications Letters, vol. 13, no. 4, pp. 1103–1107, 2024 

 



(3) Reviewer: The authors should provide some description of the utilized 

Hooke-Jeeves pattern search algorithm. 

Authors: We thank the Reviewer for the valuable suggestion. The 

Hooke-Jeeves pattern search algorithm is an iterative derivative-free method. 

At each iteration, we first probe the vector 𝝁 along each dimension with a 

fixed step size to detect the most favorable descent direction. If no further 

improvement can be achieved, the step size is halved. It can be observed that 

the optimization problem in Eq. (37) has extremely simple constraints, which 

allows it to be solved by the Hooke-Jeeves pattern search algorithm with 

markedly reduced computational complexity.  

 

In this revision, we have included the statement below Eq. (37) as follows: 

“Note that the problem 𝒫4
TPC can be more efficiently solved than the 

problem 𝒫3
TPC  via the Hooke-Jeeves pattern search algorithm [39]. The 

Hooke-Jeeves pattern search algorithm is an iterative derivative-free method. 

At each iteration, we first probe the vector 𝝁 along each dimension with a 

fixed step size to detect the most favorable descent direction. If no further 

improvement can be achieved, the step size is halved. It can be observed that 

the problem 𝒫4
TPC has extremely simple constraints, which allows it to be 

solved by the Hooke-Jeeves pattern search algorithm with markedly reduced 

computational complexity. After solving the dual problem 𝒫4
TPC , we can 

obtain 𝝁∗ and then we can obtain 𝐱̃E
∗  of 𝒫3

TPC via (31).” 

 

(4) Reviewer: The simulation results show that the CI-BLP scheme has higher 

computational complexity. What are the advantages of the CI-BLP scheme over 

the CI-SLP scheme? 

Authors: Regarding the Reviewer’s concern on the advantages of the 

CI-BLP scheme, the advantages of CI-BLP over CI-SLP are summarized as 



follows: 

1) Compared with the CI-SLP scheme that optimizes the transmit signals at 

the symbol level, the CI-BLP scheme considers a block of symbols and the 

optimization requires execution only once for each block, which can 

greatly reduce the update frequency of the transmit precoders. 

2) CI-BLP scheme optimization enables block-level power allocation and 

further improves ISAC performance compared to CI-SLP scheme. This is 

because relaxed power constraint in CI-BLP optimization allows more 

freedom to power allocation among different symbol slots. 

3) CI-BLP can be seen as a generalization of CI-SLP. The flexible tradeoff 

between ISAC performance and computational complexity can be 

achieved by modifying the length of the considered block. In other words, 

CI-BLP scheme can achieve better ISAC performance and lower update 

frequency than CI-SLP scheme if the computational complexity allows. 

 

(5) Reviewer: In Appendix A, directly providing the ranks of the matrices is not 

rigorous. The authors should supplement the detailed derivations of Eq. 61. 

Authors: We thank the Reviewer for the careful reading of our paper. In Eq. 

(60), based on the constructions of 𝐌̃ and 𝐝, we know that the matrix 𝐌̃ 

depends on the channel between the ISAC BS and users while the vector 𝐝 

depends on the target directions and the result obtained in the previous 

iteration. Hence, 𝐝  is linearly independent with the columns in 𝐌̃T  in 

practice considering the unrelated users and targets. Then considering 𝑁 ≥

 𝐾u, we can obtain the rank in Eq. (61) of this paper.  

 

In this revision, we have included the statement below Eq. (60) as follows: 

“Based on the constructions of 𝐌̃ and 𝐝, we know that the matrix 𝐌̃ 

depends on the channel between the ISAC BS and users while the vector 𝐝 

depends on the target directions and the result obtained in the previous 



iteration. Hence, 𝐝  is linearly independent with the columns in 𝐌̃T  in 

practice considering the unrelated users and targets. Then considering 𝑁 ≥

 𝐾u, we have  

 rank(𝐌̃𝑇) =  min{2𝐿𝑁, 2𝐿𝐾u} = 2𝐿𝐾u, 

 rank([𝐌̃𝑇    𝐝]) = min{2𝐿𝑁, 2𝐿𝐾u + 1} = 2𝐿𝐾u + 1, 

which means there is no solution for 𝝁. …” 

 

(6) Reviewer: The authors should provide additional descriptions of the matrix 

𝐌̃ in Equation (23). 

Authors: We thank the Reviewer for the valuable suggestion on improving 

the readability of our paper. In Eq. (23), 𝐌̃ is a block diagonal matrix, with 

each diagonal block being the coefficient matrix 𝐌𝑙  (𝑙 ∈ ℒ) corresponding to 

each time slot in the block. 

 

In this revision, we have included the statement below Eq. (23) as follows: 

“Here, ⊗ represents the Kronecker product and 𝐌̃ is a block diagonal 

matrix, with each diagonal block being the coefficient matrix 𝐌𝑙  (𝑙 ∈ ℒ) 

corresponding to each time slot in the block.” 

 

(7) Reviewer: The authors should provide the dimensions of the dual variables 

in Equations (28) and (62). 

Authors: We thank the Reviewer for the valuable suggestion on improving 

the readability of our paper. In Eq. (28), the dual variable 𝝁 ∈ ℝ2𝐿𝐾u×1 and 

the dual variable 𝜐 is a scalar. In Eq. (62), the dual variable 𝝁 ∈ ℝ2𝐿𝐾u×1 

and the dual variable 𝝊 ∈ ℝ𝑁×1. 

 

In this revision, we have updated the statement below Eq. (28) as 

“… where 𝝁 ∈ ℝ2𝐿𝐾u×1  and 𝜐  are non-negative dual variables 



corresponding to inequality constraints (27a) and (27b), respectively. …” 

and the statement below Eq. (62) as 

“… where 𝝁 ∈ ℝ2𝐿𝐾u×1  and 𝝊 ∈ ℝ𝑁×1  are the non-negative dual 

variables. …” 

  



Reviewer 3:  

Reviewer: This paper proposes a novel precoding scheme for ISAC systems based 

on interference exploitation, which significantly improves the communication SER 

performance and target illumination power. The reviewer believes that the 

motivation and contributions of this paper are clear. However, before formal 

publication, the reviewer has the following suggestions. 

Authors: We thank the Reviewer for the summary of our work and the positive 

comments. Below we address your remaining concerns one by one. 

 

(1) Reviewer: This paper seems to only consider the QPSK modulation scheme. 

Can the proposed scheme be extended to higher-order modulation schemes? 

Authors: Regarding the Reviewer’s concern on the modulation scheme, 

firstly, the proposed ISAC CI-BLP scheme can be easily extended to 

higher-order modulation schemes by tailoring the CI regions to the specific 

modulation scheme. As an example, for 8PSK modulation, the SER 

performance and transmit beampattern of the proposed ISAC CI-BLP scheme 

under the total-power constraint are presented below. 

 

Fig. B SER performance, 𝑁 = 10,  𝐾u = 3,  𝐾t = 1,  Γ = 4dB,  𝑝0 = 30dB, 8PSK. 



 

Fig. C Transmit beampatterns, 𝑁 = 10,  𝐾u = 3,  𝐾t = 1,  Γ = 4dB,  𝑝0 = 30dB, 8PSK. 

 

Compared with Fig. 3 and Fig. 5 in the paper, it can be seen that the higher 

modulation order leads to degraded SER performance for all ISAC precoding 

schemes, while the transmit beampatterns remain almost unchanged. 

 

(2) Reviewer: In Algorithm 1, the authors use the Hooke-Jeeves pattern search 

algorithm to solve the optimization problem in Equation (37). The authors 

should explain the reason for choosing the Hooke-Jeeves pattern search 

algorithm. 

Authors: Regarding the Reviewers' concern on the reason for choosing 

Hooke-Jeeves pattern search algorithm, firstly the purpose of choosing 

Hooke-Jeeves pattern search algorithm to solve the optimization problem in 

Eq. (37) is to reduce the computational complexity. The Hooke-Jeeves pattern 

search algorithm is an iterative derivative-free method. At each iteration, we 

first probe the vector 𝝁 along each dimension with a fixed step size to detect 

the most favorable descent direction. If no further improvement can be 

achieved, the step size is halved. It can be observed that the optimization 

problem in Eq. (37) has extremely simple constraints, which allows it to be 

solved by the Hooke-Jeeves pattern search algorithm with markedly reduced 



computational complexity.  

 

In this revision, we have included the statement below Eq. (37) as follows: 

“Note that the problem 𝒫4
TPC can be more efficiently solved than the 

problem 𝒫3
TPC  via the Hooke-Jeeves pattern search algorithm [39]. The 

Hooke-Jeeves pattern search algorithm is an iterative derivative-free method. 

At each iteration, we first probe the vector 𝝁 along each dimension with a 

fixed step size to detect the most favorable descent direction. If no further 

improvement can be achieved, the step size is halved. It can be observed that 

the problem 𝒫4
TPC has extremely simple constraints, which allows it to be 

solved by the Hooke-Jeeves pattern search algorithm with markedly reduced 

computational complexity. After solving the dual problem 𝒫4
TPC , we can 

obtain 𝝁∗ and then we can obtain 𝐱̃E
∗  of 𝒫3

TPC via (31).” 

 

(3) Reviewer: At the beginning of Section IV, the authors should provide some 

references to support the research on per-antenna power constraints. 

Authors: We thank the Reviewer for the valuable suggestion regarding the 

references. Most existing works on precoding consider the total power 

constraint, while in practical systems, each transmit antenna is usually 

equipped with its dedicated power amplifier. Therefore, it is more realistic to 

design precoding approaches that incorporate the per-antenna power 

constraint. In [R1], the authors investigate the conventional block-level 

precoding under the per-antenna power constraint in ISAC systems, while in 

[R2] and [R3], the authors focus on symbol-level precoding design under the 

per-antenna power constraint in communication-only systems. 

 

In this revision, we have included the relevant references and added the 

following statement at the beginning of Section IV: 

“In practical systems, each transmit antenna is usually equipped with its 



dedicated power amplifier. Therefore, it is more realistic to design ISAC 

precoding approaches that incorporate the per-antenna power constraint 

[41]-[43]. In this section we design the transmit ISAC waveform matrix 𝐗 

under per-antenna power constraint.” 

 

[R1] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward Dual-functional 

Radar-Communication Systems: Optimal Waveform Design,” IEEE Trans. Signal Process., vol. 66, no. 16, 

pp. 4264–4279, 2018. 

[R2] Y. Wen, H. Wang, A. Li, X. Liao, and C. Masouros, “Low-Complexity Interference Exploitation MISO 

Precoding Under Per-Antenna Power Constraint,” IEEE Trans. Wireless Commun., vol. 23, no. 8, pp. 

9943–9957, 2024. 

[R3] Y. Wen, J. Yang, A. Li, X. Liao, and C. Masouros, “Parallel Solution for Per-Antenna Power 

Constrained Symbol-Level MU-MISO Precoding,” IEEE Trans. Commun., pp. 1–1, 2025. 

  

(4) Reviewer: In the description of Figure 1, the authors should add 

explanations for s𝑘
right

 and  s𝑘
 left. 

Authors: We thank the Reviewer for the valuable suggestion on improving 

the readability of our paper. In Fig 1, s𝑘
right

= 𝑂𝐶⃗⃗⃗⃗  ⃗ and  s𝑘
 left = 𝑂𝐷⃗⃗⃗⃗⃗⃗ ，which 

represent the projections of the k-th user’s nominal constellation point onto 

the two decision boundaries, respectively.  

 

In this revision, we have updated the statement above Eq. (11) as follows: 

“… To be more specific, in Fig. 1, 𝑂𝐴⃗⃗⃗⃗  ⃗ can be decomposed along the two 

decision boundaries for QPSK modulation as 𝑂𝐴⃗⃗⃗⃗  ⃗ = 𝑂𝐶⃗⃗⃗⃗  ⃗ + 𝑂𝐷⃗⃗⃗⃗⃗⃗ = 𝑠𝑘
right

[𝑙] +

𝑠𝑘
 left[𝑙], where 𝑠𝑘

right
[𝑙] and 𝑠𝑘

 left[𝑙] represent the projections of the 𝑘-th 

user’s nominal constellation point onto the two decision boundaries, 

respectively. In a similar way, the received signal 𝑂𝐵⃗⃗ ⃗⃗  ⃗  can also be 



decomposed as follows.” 

 

(5) Reviewer: Using 𝑘  as the iteration index variable in Algorithm 3 is 

confusing. Please explain and correct it if necessary. 

Authors: We thank the Reviewer for the careful reading of our paper. We 

apologize for our oversight and have updated Algorithm 3 in Section IV-D. In 

Algorithm 3, the iteration index is represented by the variable 𝑙𝑜𝑜𝑝 to avoid 

any confusion. In addition, we have updated Eq. (52), Eq. (53) and Eq. (54) 

accordingly. 

 

(6) Reviewer: In the simulation results, the authors are advised to adjust the 

font size in the figures to make the content clear. 

Authors: We thank the Reviewer for the careful reading of our paper. 

Following the Reviewer’s suggestion, we have adjusted the font sizes in all 

the figures of Section V. 
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