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Summary

Multimodal artificial intelligence (AI) is a powerful new technological advance, capable of simultaneously learning
from diverse data types, such as text, images, video, and audio. Because clinical decisions are usually based on in-
formation from multiple sources, multimodal AT has the potential to significantly improve clinical practice. However,
unlike most developed multimodal AI workflows, clinical medicine is both a dynamic and interventional process in
which the clinician continually learns about the patient’s health and acts accordingly as data is collected. In this article
we argue that multimodal clinical AI must be fully attuned to the particular challenges and constraints of the clinic,
and clinician involvement is needed throughout development—not just at clinical deployment. We propose ways that
clinician involvement can add value at each stage of the multimodal AI development pipeline, and argue for the
establishment of actively managed multidisciplinary communities to work collaboratively towards the shared goal of
improving the health of all.
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Introduction

Artificial Intelligence (Al) is a powerful, rapidly devel-
oping technology that is attracting increasing public
interest. The ability of Al tools to learn complex re-
lationships from data has raised hopes that they could
optimise clinical decision-making and dramatically
improve human health.

Among many notable recent advances, developments
in so-called multimodal AI (Glossary - Box 1) have been
hailed as initiating a new era for the technology.' Unlike
more established Al tools, which are typically limited to
one type of input data (such as text), multimodal AI can
learn from a range of qualitatively different data types at
the same time (such as text, images, and audio), thereby
assimilating different sources of information and
enabling better informed predictions. The free avail-
ability of vast quantities of online multimodal data (such
as subtitled films) has driven the development of
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multimodal AI tools for non-clinical purposes.”* In
recent years, large, clinical multimodal databases—that
link multiple medical data sources, such as genomics,
histopathology, and radiology’’—have entered the
public domain, raising hopes that advances in multi-
modal Al may soon translate to the clinic.*”

However, most state-of-the-art multimodal Al
models are not built with the clinical setting in mind'*"*
and so are not attuned to the particular challenges that
clinical decision-making presents.

Clinician involvement throughout the multimodal
clinical Al development pipeline is therefore essential—
to guide model design, construction, development,
deployment, and iterative refinement. However, clini-
cian involvement in the AI development loop is not
standard practice. Indeed, a recent systematic review of
Al tools that directly sought clinician input found that
just 22% of studies involved clinicians throughout
development, while the majority (82%) involved clini-
cians specifically in the deployment phase."

This lack of inclusion is important, because clinician
trust in Al is vital to its successful deployment' and
studies have shown that detachment of clinicians from
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Box 1.

Glossary of terms.

Artificial Intelligence (Al)—a general term used to describe computational models which can perform tasks normally associated with human intelligence, including
the ability to learn from data, recognise patterns, and make decisions.

Machine learning—the development and/or study of algorithms to learn from data. Machine learning algorithms are typically optimised on seen ‘training’ data to
identify salient patterns that generalise to unseen ‘test’ data. Machine learning methods are very varied and range from classical statistical techniques, such as linear or
logistic regression, that make basic assumptions concerning any patterns in the data, to modern data-intensive approaches, such as artificial neural networks, that can
flexibly learn patterns of arbitrary complexity without guidance.

Artificial neural network—a class of machine learning algorithm, loosely modelled on the human brain, in which signals are passed between nodes (representing
neurons) via edges (representing synapses). Signals are typically passed from an input layer of nodes (associated with the variables in the data) to an output layer
(associated with possible outcomes) via 'hidden’ layers of nodes.

Deep learning—the area of machine learning that makes use of artificial neural networks with many hidden layers. By encoding different patterns in each layer, deep
neural networks can learn complex, multi-scale, relationships between variables and can be used to address an extremely broad range of learning problems.

Data modality—a data type e.g., text or images or audio.

Multimodal Al—the area of Al concerned with developing tools that can combine and/or learn from data of multiple modalities (e.g., text and images and audio).
Feature—a distilled representation of the data that affects predicted outcomes. Features depend on both the data and the problem at hand. For example, raised white
blood cell count is a useful feature for diagnosing presence of an infection, but is less useful for distinguishing between different kinds of infection.
Training—the process by which a machine learning model is optimised to solve a specified problem, typically by tuning model parameters to learn the relationships
between data features and outcomes from a training dataset.

Generalisation—the ability of a trained machine learning model to make accurate predictions from data that it has not seen before.

Dataset drift—a gradual change over time in the distribution of a dataset and/or the relationships between data features and outcomes. Under dataset drift machine
learning models trained on old data may gradually provide less accurate or relevant predictions.

Dataset shift—a sharp change in the distribution of a dataset and/or the relationships between features and outcomes. Under dataset shift, a machine learning model
may suddenly provide less accurate or relevant predictions.

the development process is a driver of mistrust.”
Conversely, studies reporting high levels of clinician
involvement throughout development often benefit
from high clinician confidence in the deployed tool.’®

For reasons that we will articulate below, we contend
that clinician involvement in multimodal AI develop-
ment is particularly vital and will be essential for this
technology to achieve its full potential and have a major
impact on human health.

We first outline some of the main current ap-
proaches to multimodal AI that have been developed for
non-clinical applications but are starting to be repur-
posed to the clinical setting. We interpret these models
via parallels to clinical decision making and highlight
that to various degrees all are mismatched to the clinical
context. We argue that without careful clinician guid-
ance, repurposing of such tools will likely have limited
clinical application, and motivate the development of
more clinically attuned multimodal Al models. To meet
this challenge, we next provide an outline of the multi-
modal Al development pipeline, indicating the impor-
tant role of the clinician at each step. We close by
presenting some strategies to support clinician involve-
ment in multimodal Al development, and for fostering
and nurturing an integrated clinical AI community.

Multimodal clinical Al requires clinician input
throughout development

Clinical decisions are rarely made from consideration of
a single data modality. An initial clinical assessment
typically comprises a verbal history followed by physical
examination. Subsequent investigations vary and may

include relevant blood tests, radiological imaging,
pathological assessments and, increasingly, high
throughput molecular tests such as genomics.

Clinical medicine is thus fundamentally multimodal,
and though significant insights have been gained from
clinical Al models trained on a single data modality—such
as detecting abnormalities in chest X-rays'” or malignancy
in digital histopathology images'*—to maximise impact,
multimodal approaches to Al are needed.

Development of multimodal AI requires large
computational resources and significant funds, and
major breakthroughs are therefore often achieved by big
technology companies. Though some of these com-
panies have a dedicated clinical focus,” most leading
multimodal AI tools are developed for non-clinical
purposes, such as enhancing web searching® and
augmented reality.”® In recent years, largely due to
computational advances and the free availability of text,
image, and video data online, these approaches have
been advancing extraordinarily rapidly, and the leading
current Al models are now able to combine text, images,
and audio interchangeably."

Clinical data, however, are neither freely available
nor interchangeable. Rather, clinical data are obtained
via investigations performed in a specific order to pro-
vide distinct pieces of information, on a careful balance
of many variables. These include necessity, risk of harm,
suitability for the patient, patient preferences, system
pressures and increasingly, financial cost. This naturally
introduces a hierarchy and personalisation to clinical
data acquisition. Moreover, the dynamic process of
clinical investigation naturally leads to a shortening in
the range (or, statistically, a bias) of pathologies
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represented by later diagnostic investigations, as the
clinician homes in on the correct diagnosis.

To illustrate this point, consider two patients, both
presenting with weight loss but with significantly
different patient journeys (Fig. 1A). The first patient’s
weight loss is due to an underlying malignancy, neces-
sitating numerous often invasive investigations to di-
agnose and manage appropriately. The second patient’s
weight loss, however, is simply the result of increased
exercise and requires only the clinical history to manage
appropriately.

These contrasting examples emphasise the impor-
tance of personalisation in clinical data acquisition. For
multimodal Al to be relevant in the clinic, it must first
and foremost capture the inherently personal nature of
clinical decision-making and not only be able to guide
decisions about patient management, but also decisions
about which investigation should be performed next for
each particular patient. Multimodal Al must therefore
be able to support decisions in the absence of some data
modalities, and be attuned to the clinical, financial, and
patient specific constraints of data collection. Incorpo-
rating such information into clinical Al models will
require significant clinician input throughout develop-
ment, not only at deployment.

These examples also highlight that the foundation of
all clinical decisions is the patient history and exami-
nation, while the number and type of investigations
performed subsequently will likely correlate with the

presence of specific pathologies. This important fact
means that large linked multimodal clinical databases—
in which many investigations are performed for each
patient—will likely overrepresent patients with specific,
often serious, outcomes, and underrepresent patients
with either clear cut or very positive prognoses (Fig. 1B).
Training of multimodal models on these databases will
therefore require close collaboration with clinicians, to
identify and understand these biases and determine the
scope of their clinical utility.

Leading multimodal AI models are generally not
currently constructed with appreciation of such data
collection hierarchies or outcome biases in mind.
Indeed, different data modalities are typically combined
as though they were acquired simultaneously, via an
approach called data fusion. Broadly speaking, there are
three main types of data fusion—known as early, in-
termediate, and late fusion—all of which have been
applied to model development in clinical contexts.*”!
Although none explicitly account for clinical data collec-
tion hierarchies, all these techniques can be compared to
clinical decision-making, and show various degrees of
relevance to the clinical context (Fig. 2 & Box 2).

More recently, new approaches to multimodal Al
model design have been developed, which combine data
modalities in a sequential manner.** By introducing a
natural order (e.g., by invasiveness or risk of patient
harm) these approaches—which go by many names
including gradual intermediate data fusion®*—may
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Fig. 1: Clinical data collection is a hierarchical, patient-personalised process. A. Clinical data acquisition differs for two patients with the
same presentation, highlighting the importance of clinical context to data acquired. B. Patients about whom significant multimodal clinical data

is collected are likely to have significant underlying pathologies.
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Fig. 2: Multimodal data fusion: Al and clinical perspectives. A comparison of Al perspectives and clinical interpretation is provided for the
three most common multimodal data fusion approaches: A. Early fusion, B. Late fusion, C. Intermediate fusion.

provide a more clinically relevant way to combine data
from different sources. However, typically, the choice of
data ordering in these models must be defined a priori
and is fixed for all individuals (i.e., decided at the pop-
ulation, rather than individual patient level). Thus, while
they provide more flexibility than standard approaches,
they do not fully capture the personalised nature of
clinical decision-making. There is a need for clinician-
informed ways of building multimodal Al that allow
clinical data types to be fused in a personalised way that
mirrors the uniqueness of each individual patient’s
journey.

Collectively these issues highlight the need for
new approaches to clinically attuned multimodal AL
Importantly, such tools cannot be designed by AI
developers alone. To be effective they will require deeply
embedded clinician input throughout the full develop-
ment pipeline—from the earliest stages of model plan-
ning and design, through training and testing phases, to
their deployment in the clinic. Doing so, will ensure that
models are selected based on their relevance to the
clinical setting, rather than their general open-source
availability.

Involving clinicians in multimodal Al
development

Al development is a multi-step process that involves six
main stages which iterate to form a cycle.”” They are: (1)
data collection, (2) data labelling, (3) data processing, (4)

model selection, (5) model training and validation, and
(6) testing and deployment (Fig. 3). As noted above,
clinician involvement is often limited to the final testing
and deployment stage. However, because clinical med-
icine is a dynamic, interventional process that involves
collection of multiple data modalities, we believe that to
be truly effective, clinicians must be involved
throughout the multimodal AI development loop—not
only as advisors but as codevelopers who ensure that
tools are well matched to the clinical context and are
addressing genuine clinical needs.

Data collection

In this first stage of Al development, the data needed to
train the AI model are acquired. For clinical applications
these data correspond to the outcomes of medical in-
vestigations and are acquired either directly from pa-
tients or indirectly via large databases. Regardless of
how the data are acquired, they are almost always pri-
marily obtained by a clinician. The data may be complex
and/or require specific expertise to interpret, often
related to knowledge of wider contextual issues. Clini-
cians are therefore vital to advise on the quality and
factors that affect the reliability, meaning or biases
inherent in the data.

This must include advice on technical issues, ob-
tained from experience of handling or interpreting the
data. For instance, knowledge that iatrogenic haemolysis
during venepuncture occurs in association with specific
pathologies* will condition the interpretation of blood
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Box 2.

Clinical parallels to current multimodal Al approaches.

A key part of multimodal Al development is a step called data fusion, which defines how distinct data modalities are combined during the learning and decision-
making processes. There are three major data fusion approaches: early, late, and intermediate (all with an ever-growing set of variations). These names relate to the
point during the learning or decision-making process when the data modalities are first combined. Though decision making by multimodal Al tools differs from
clinician decision-making, these three broad approaches can be viewed from both an Al and a clinical perspective and have different levels of clinical relevance.

Early data fusion

Al perspective

Features are extracted from each data modality and summarised in a way that makes all modalities compatible with one-another. A single Al model is then trained on
the combined feature set. Because only compatible features are included in the combined feature set, important information may be discarded. This approach
generally results in the simplest Al model of the three data fusion approaches, requiring the least data and computational resources (Fig. 2A).

Clinical perspective

Consider the following case study. A clinical team is provided with three types of data—blood test results, radiology images, and histopathology slides—once they
have been collected, without knowledge of the order of acquisition or information about the clinical question they are expected to answer. Lacking this context, the
clinical team ‘extract features’ from the clinical data which they hope will be relevant to the patient—e.g., the white cells count is elevated, there is a mass in the right
upper lobe of the lung, there are numerous intra-epithelial neutrophils present in the biopsy. After extracting these features, the raw data is taken away from the
clinical team and they are presented with the clinical question, which they must answer only with reference to their extracted clinical features.

Relevance to the clinical context

This approach may be sufficient for common, broad, clinical questions, such as ‘Does the patient have an infection?, especially when the data shows gross abnormalities.
However, for more specific questions, such as ‘What chemotherapy should be prescribed?, the context is needed to guide extraction of relevant features from the data to
answer the question, and early fusion will likely underperform. This form of data fusion is also not modular, and for patients where some data modalities are not collected
(e.g., due to patient preferences or financial constraints) early fusion models cannot provide predictions, without significant adjustment (for instance, to impute the missing
data). Importantly, extraction of information from clinical data without consideration of the wider clinical context, would be considered poor practice if done by a clinician.

Late data fusion

Al perspective

A separate Al model is trained for each data modality, and the outcomes of each model are then combined to give a consensus recommendation (Fig. 2B).
Clinical perspective

Consider the following case study. Three clinicians are asked a clinical question, without being allowed to confer. One is provided only blood test results, another only radiology
images and the third only histopathology slides; none are informed about the order of tests. Each clinician provides a recommendation based on the limited evidence they have
seen. The dlinicians then reconvene to provide a collective answer to the question but are not allowed to bring the raw data to this meeting, only their overall recommendation
and their certainty thereof. If one data type is not collected (e.g., the patient was not sent for biopsy) then the relevant clinician is excluded from the discussion.

Relevance to the clinical context

This approach has parallels to clinical decision making by a multidisciplinary team, a common paradigm in complex clinical settings, such as oncology. Unlike early
fusion, late fusion is modular, and decisions can still be made for patients when some data are missing (e.g., due to patient preferences or risk of harm). However, in
contrast to a clinical multidisciplinary meeting, where the full data are presented and discussed, in late fusion only the model predictions are discussed, and therefore
the underlying data cannot be considered in their wider context. This restriction clearly has important clinical ramifications. For example, in the context of diagnosing
metastatic cancer, knowledge of primary tumour site (e.g., breast, lung etc.) is vital to determining the appropriate treatment course and prognosis. In this setting,
radiology imaging may show masses at multiple sites, but to minimise patient risk only one biopsy is performed from an accessible site. Without knowledge of the
presence of multiple masses and their locations provided by radiology, the histopathologist will be significantly hampered in their ability to provide an accurate
primary site for the tumour and the team will be compromised in their ability to treat the patient effectively.

Intermediate data fusion

Al perspective

A single model is trained using all available data simultaneously, and features are determined by a specified learning objective. This approach typically requires the
most complex Al model and therefore the most training data and the most computational resource (Fig. 2C).

Clinical perspective

Consider the following case study. A clinical team is provided with three types of data—blood test results, radiology images, and histopathology slides—once all have
been collected and without knowledge about the order of acquisition. The team then considers all the data in the context of the clinical question. Discussion between
clinicians is permitted, to facilitate an optimal decision.

Relevance to the clinical context

By allowing the data to be examined with reference to one another in the context of the clinical question, this approach most closely mirrors the clinical decision-
making process. However, like early fusion, intermediate data fusion is not modular and so cannot provide predictions when one data modality is missing, without
significant adjustment (for instance to impute the missing data).

These three broad approaches to data fusion clearly have varying relevance to the clinic. However—and importantly—clinical medicine is a both a dynamic and
interventional process in which the clinician continually learns about the patient’s health state, for instance by requesting relevant tests in a well-considered order and
responds appropriately to improve that state (for instance by prescribing treatments). None of these methods accounts for such personal and interventional dy-
namics, and so do not fully reflect the richness of the clinical process.
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Fig. 3: Clinicians in the loop of multimodal Al development. Barriers to translation of multimodal Al can arise at any point in model
development and clinician involvement is required throughout this loop to ensure that the Al tool is matched to its clinical context.

test results; knowledge that biopsies processed in
different pathology laboratories often have different
staining intensities,”” will similarly condition the proper
interpretation of histopathology images. Clinicians are
also more aware of a wide variety of demographic factors
that impact data collection—for instance, that ante-
roposterior chest X-rays are more commonly performed
on frail patients than posterioanterior chest X-rays, or
that more ultrasounds but fewer fluoroscopies are per-
formed on women than men by the UK National Health
Service.** This understanding enables better interpreta-
tion of the distribution of collected data types.

Such insights into the data collection process can be
highly nuanced, yet are essential to properly understand
clinical data, assess issues of bias, set the scope of
clinical questions that can reasonably be asked of
training data, and determine the patient populations
that predicted outcomes might reasonably relate to. In
the case of multimodal data, the order in which in-
vestigations are performed and the time between them
is also vital and is itself a form of clinical information
that must be interpreted by clinicians—for instance, to
provide insight into the rarity and severity of any pa-
thologies observed.

Data labelling

Once it has been collected, each raw datapoint (i.e., the
data associated with a unique patient) is typically
assigned an appropriate clinical label, usually by an

expert clinician. These labels allow clinical Al models
to learn associations between the data features that are
predictive of the label of interest (such learning is said
to be supervised; there are other important forms of Al
that do not rely on such labelling which we will not
discuss here). Depending on the problem at hand these
labels can be very diverse and are often both data and
problem dependent. Examples include diagnoses
associated with electronic health records,” fracture
sites associated with radiological images,” and tumour
regions associated with histopathology slides.”® In the
setting of multimodal AI, many labels can be associ-
ated with each datapoint to reflect the fact that several
clinically important outcomes—such as treatment
response, survival time, side effects, etc.—may be
deduced from the combined dataset. Clearly these la-
bels will often be related and will require clinical
expertise to interpret. Clinician input is therefore
essential to guide the most appropriate ways to label
multimodal clinical data and specify the tasks for
which AI tools can provide the most useful support.
Depending on the clinical need, these tasks may
accelerate time-consuming clinical processes—for
instance, by triaging large volumes of data—and/or
supporting complex clinical decisions.

In many Al applications, such as the classic com-
puter vision task of discerning pictures of cats from
dogs, it is reasonable assume that the training labels
(here ‘cat’ or ‘dog’) assigned to a data point (here an
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image) represent ground truths that will not change over
time. In the complex world of the clinic, decisions are
often not so clear cut. Two issues are particularly rele-
vant. First, some clinical decisions are made on judge-
ment, and can therefore vary by practitioner. A
significant example is histopathological assessment of
tumour grade, which has notoriously large inter-
clinician variability, especially for intermediate grade
categories.” This fact, and the clinical settings under
which inter-clinician variability is most prevalent or
problematic, must be accounted for in the design of
clinical Al tools (see Model selection). Second, clinical
guidelines that define standards of best practice are
regularly updated in light of new knowledge—for
instance as better medications, surgical procedures, and
biomarkers are developed. In consequence, a clinical
decision that accorded with best practice a year ago may
not do so today (indeed, it has been estimated that 50%
of clinical guidelines are out of date within 5.8 years*).
It is important that AI tools keep abreast of evolving
guidelines and doing so requires ongoing clinical
engagement.

When providing an appropriate data label, say of a
diagnosis, a clinician must often consider a large
amount of temporal data and extract relevant context to
guide the labelling process, applying causal reasoning
often over long periods of time. For example, a diag-
nosis of haemophilus influenza B in an adult may be
deduced through knowledge of the patient’s childhood
vaccination history, which could be decades old. In a
multimodal setting, radiological imaging of a patient’s
lungs may be labelled as asbestosis via knowledge of an
occupational exposure to asbestos 25 years earlier.”!
Though Al has achieved human level performance in
many areas, current leading Al models have mixed
performance on interpreting context in longer data in-
puts, such as a patient’s entire electronic health record.
For many large language models, even those designed to
receive long context inputs, context association is found
to be strong at the beginning and end of the data input,
but context relevance is often ‘lost in the middle’ of the
data input.”? Recent advances have been made in
addressing this problem, such as Google’s Gemini 1.5"
and retrieval-augmented generation models,** however
they still significantly underperform compared to hu-
man long context gap retrieval. In a recent assessment
humans were found to be over 10% more accurate in
the detection of relevant context in large data inputs
than state-of-the-art models.** The consequence of
misattribution of context in a clinical setting may be
dire, including widening healthcare inequalities, inap-
propriate public health measures or research into flawed
treatments. A key role of the clinician in current Al
development is thus to interpret the long context in
clinical data and provide accurate, long context gap as-
sociation labels. Such labelling tasks are essential if we
are to close the gap between AI and human
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performance and develop translatable multimodal long
context gap models.

Data processing

Data processing refers to the conversion of raw data into
a format that can be efficiently and reliably parsed by a
model. There are many facets to data processing,
including standardisation (particularly if data is ac-
quired from many different sources), removal of noisy
features, dealing with missing data (for instance by
imputation or excision), and feature weighting (to pri-
oritise those aspects of the data that are most informa-
tive). All these steps rely on assumptions concerning the
data itself and/or the problem at hand, and clinician
involvement is vital to ensure that these assumptions
are appropriate. For example, in digital pathology,
image-size reduction is often used to exclude irrelevant
parts of an image and enable efficient model training.
Al models for characterising malignancy often do this
by employing a ‘white-space’ filter, to remove regions of
a digital H&E slide that do not contain dark-staining
tumour material.* In this case, the white space is
excluded since it is not relevant to the problem at hand.
But this is not always the case. For instance, the same
white-space filter can be used to detect adipocytes in
biopsies of non-alcoholic fatty liver disease, since adi-
pocytes do not take up colour stains from H&E.* In this
case, the white space is clinically informative. Clinician
involvement in data processing is needed to ensure that
assumptions account for such nuances. This issue is
relevant for clinical Al generally but is particularly
important when considering multimodal clinical Al,
since false assumptions concerning one data modality
can propagate and become embedded in the larger
model workflows in opaque ways.

Model selection

Once training data has been obtained, labelled, and
processed, a model must be constructed to associate
data with clinical outcome(s). There are a very wide va-
riety of ways of constructing such models, from tradi-
tional statistical methods such as logistic regression, to
decision trees, ensemble methods, and deep neural
networks.” Multimodal models additionally require a
so-called data fusion step in which data of different
modes are combined for learning (see Box 2). In gen-
eral, while there is freedom in the selection of model
architecture, the choice of data fusion approach can have
significant impact on the model’s clinical utility and the
extent to which it is trusted by clinicians. Because no
current data fusion methodologies adequately mirror
the dynamic personalised nature of patient journeys, it
is perhaps here that clinician involvement in the
multimodal Al development pipeline is most needed.
To adequately mirror clinical workflows, data fusion
must be highly flexible, able to accommodate missing
data modalities and identify which added modalities will
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be most informative to guide decision making, given
clinical constraints and in a patient specific manner.
Development of new tools that can dynamically update
model predictions in light of new evidence, taking ac-
count of clinical constraints, will require very deep
engagement between data scientists and clinicians.
Indeed, because the challenges are both technical and
clinical, addressing them will, we believe, require pro-
active community building and training of a new gen-
eration of clinician-scientists that have both
computational and clinical expertise.

Model training and validation

Model training and validation refers to the process by
which labelled data is used to train the chosen model
(i-e., tune its parameters to suit the problem of interest)
and test its robustness and/or generalisability. As
described above, these processes can be confounded by
evolving clinical definitions and best practices. Simi-
larly, the training data itself may also evolve, a process
known as dataset drift or shift. Such data changes can
occur gradually—for example, due to public health
strategies aimed at modifying behaviours, like smoking,
diet, and exercise’***—in which case they are known as
dataset drift; or can occur suddenly—for example, after
widespread challenges, as during the COVID-19
pandemic, or among refugees experiencing traumatic
displacement”*'—in which case they are known as
dataset shift. Models trained on out-of-date data are
naturally less accurate, and such accuracy degradation
due to dataset drift or shift is likely in the clinical
setting.*

Detecting dataset shift/drift is classically considered
a problem for data scientists, rather than clinicians and
is typically achieved by collecting an additional dataset
after model training, testing for distributional differ-
ences between this new data and the training data, and
assessing the impact of these differences on model
performance. There are a number of practical questions
which must be considered in this process, including: (1)
When should one collect the new dataset and pause
model use (continual data collection would be highly
expensive)? (2) How much data should one collect
before testing for shift/drift (even large datasets may be
underpowered to detect small but significant shifts)? (3)
What kind of data should be used to retrain the model to
account for shift/drift, can any historical data be reused?
While these practical concerns appear on first glance
considerations for data scientists alone, clinicians can
provide important guidance to help address each,
allowing detection and correction for dataset shift/drift
efficiently and safely.

For example, consider a model used to guide clinical
decisions in practice, under emerging legislation, such
as the EU Al Act, model performance must be moni-
tored, allowing the overseeing clinician to understand
the level of confidence they should have in the model

prediction® (Testing and deployment). These metrics
(unlike full datasets) are cheap to collect and store, and
can be autonomously assessed for real time shifts in
model performance. Once a shift in model performance
over time is detected (by overseeing data scientists), this
can be discussed with clinicians to determine its clinical
relevance. It may be that a small drop in model perfor-
mance is acceptable for Al assisting with very low risk
clinical tasks, and the cost of taking the model offline to
adjust for shift/drift would be more detrimental to the
patient population than continuing its use. For higher
risk clinical tasks, however, this may not be the case and
the clinician-data scientist team may decide that it is
appropriate to pause model use, and collect data to
assess shift/drift, addressing the above concern (1).

Deciding on the amount of data one must collect to
detect shift/drift (concern (2)) again will benefit from
clinician input. This requires a ‘power calculation’,
which data scientists employ to estimate the amount of
data needed to detect shift/drift. This calculation re-
quires knowledge of the expected size of the shift/drift
and an acceptable false negative rate, which the data
scientist must choose. Generally speaking the smaller
the size of the shift/drift and the smaller the false
negative rate, the more data is required for detection.
However, it is clinicians who have the strongest insight
into both of these free parameters. For example, a
pathologist might notice a roughly 10% increase of
tumour infiltrating lymphocytes in biopsies treated with
a given immunotherapy—providing an estimate for drift
size. The acceptable false negative rate for shift/drift
detection will also be determined by clinical concerns.
For example, when detecting a drift in the number of
metastatic deposits for a given tumour type, clinicians
will likely request a smaller acceptable false negative
rate, than detecting a drift in vitamin D levels in healthy
individuals.

Once drift/shift is detected, clinicians are again
required, to advise as to the reason for the dataset drift/
shift, using their domain expertise. Drift/shift may be
due to new public health measures, new treatments,
updated clinical guidelines, new pathogens etc., or the
reason may be less clear. Regardless, the clinicians’
insight can guide collection of the most appropriate
dataset for efficient retraining (concern (3) above). For
example, if the shift is due to a new treatment, data
collection should be biased towards patients receiving
this treatment; if the shift is due to guideline changes,
historical data may be re-used for model retraining
following modification of outcome labels to reflect the
latest guidelines.

Because data changes can occur in many ways,
dataset shift/drift is likely to be exacerbated when
learning from multimodal data, and model re-training
will likely be necessary if multimodal clinical AI is
ever to have stable clinical utility. Yet, retraining is (at
least currently) a highly expensive process, requiring not
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only costly computational resources, but also updated
data collection and labelling. In order to address this
problem in the safest and most efficient manner, clini-
cians and data scientists must work closely together.

Testing and deployment

Once a model has been trained, it must be deployed into
clinical practice. A clinician’s working day is typically a
busy one, and seamless introduction of a new technology
is challenging. Previous efforts to embed Al into clinical
practice have often failed. Interestingly, lack of consid-
eration for the clinical user is often a more important
factor than model performance.** Clinician involvement
is thus essential in the earliest planning stages of clinical
Al deployment, both to ensure that tools are easy to use
and meeting genuine clinical needs, as well as to educate
users of the benefits. Importantly, it has been shown that
clinician seniority is negatively related to the number of
diagnostic investigations performed (i.e., senior clini-
cians tend to order fewer investigations) yet positively
associated with improved outcomes,” suggesting that
clinicians with different levels of experience may engage
with multimodal Al in different ways. This highlights the
importance of consulting a wide range of clinicians in the
deployment of multimodal Al

As regulation over the use of high risk AI tools
emerges, such as the EU Al Act,” it is apparent that
clinical AI will require human oversight measures built
in to their design. These measures are required to
provide the overseeing clinician an understanding of the
confidence they can place in Al model predictions, as
well as an insight into the rationale behind Al recom-
mendations. Developing these measures is currently the
domain of data scientists, using tools from the fields of
personalised uncertainty quantification” and explain-
able AI* respectively. However, these fields are vast and
there are many approaches, most of which have been
developed for AI applied to non-clinical domains. Cli-
nicians, as the overseers of clinical Al and the users of
these measures, must be involved in their development,
to ensure they are fit for purpose. Clinician-data scien-
tist teams have recently identified conformal predic-
tion* as a personalised uncertainty quantification tool
and concept level explainable AI*® as oversight measures
well suited to clinical Al models.

A two-way collaboration between a diverse team of
clinical end users and developers is thus needed to
ensure that multimodal AI is useful to the full clinical
team, who know to expect improved outcomes and/or
increased efficiency and can feedback to the developers
to facilitate model improvements and ongoing integra-
tion of Al into clinical practice.”

Building multidisciplinary communities
We have argued that the production of translatable,
multimodal clinical AI requires clinician involvement
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throughout development. However, such engagement is
not yet standard practice."

At present, the most common approach to clinical Al
development separates tool building (the first 5 steps in
Fig. 3) in which clinicians are rarely involved in an in-
tegrated sense, from tool deployment (step 6) in which
clinician involvement often occurs by default, yet may
be too late for impact. This not only fails to leverage the
domain knowledge of clinicians in Al development,*
but may foster mistrust of Al in the clinical commu-
nity.”! Currently, most clinician involvement in Al also
relies on interview, questionnaire, and survey feed-
back.” Though these techniques provide an easy means
for developers to collect information, a dynamic dia-
logue between the clinician and developer is rarely
achieved, preventing the clinician from being an active
stakeholder.

Facilitating the clinician as an active participant in
multimodal Al development is a problem without a
simple solution, and will require a range of long-term
approaches. These include strategies to encourage cli-
nicians into Al research, such as academic funding
bodies stipulating an expectation of clinician involve-
ment throughout AI development. Complementarily, Al
developers should be incorporated as observing mem-
bers of the clinical multidisciplinary team to deepen
their understanding of clinical workflows. This strategy,
in particular, is a recognised but as yet unrealised goal of
Health Education England.”” In addition, wider educa-
tion of healthcare professionals about Al, via large scale
targeted programs such as PathLAKE for computational
pathology,” can reduce mistrust and direct clinicians
towards active involvement in AI development,
encouraging them to help fix the issues with Al that they
see.

Whilst these strategies are important, it remains a
fact that the AI developer community and the clinical
community are culturally distinct. At present, the two
groups have different philosophies, speak different
languages, and have different goals. Fostering integra-
tion of these distinct groups cannot therefore be a task-
specific process, focused on the technical challenge of
model development or the practical challenge of model
deployment. Instead, formal structures are needed to
develop an integrated community of clinicians and Al
developers, with common philosophy and shared chal-
lenges. The development and fostering of these groups
cannot be a passive process and will require application
of stakeholder management techniques, to ensure that
clinicians are fully integrated throughout multimodal Al
development.™* The role of Research Community Man-
agers (RCM) is growing in popularity and recognition
and they are well placed to enact this. RCMs broad set of
skills encompass communication, engagement, strategic
planning, and technical expertise through activities such
as participation guidelines for projects, stakeholder
mapping, organising knowledge sharing events and
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workshops, and maintaining and supporting technical
documentation.”” RCMs can therefore play a leading role
in fostering collaboration, transparency, and community-
based approaches in interdisciplinary projects between
data scientists and clinicians, ensuring these projects and
groups can function as a strongly connected ecosystem
and achieve improved outcomes and innovation in a
healthcare environment.

One such example of an initiative that has commu-
nity management coordination is The Alan Turing In-
stitute’s Clinical Al Interest Group.”® The 3 main aims
of the group are:

+ Sharing: providing an incubator space for clinicians
and data scientists to share expertise in the design
and methodology of clinical Al

Educating: the current focus of this aspect is around

developing a curriculum and core training which

educates the health sector in Clinical AT to a baseline
level.

» Pooling: drawing together the community. Most
recently this has been through supra-interest groups
that bring together clinicians and AI experts in a
focused manner in different clinical specialities.

Other examples of multidisciplinary programmes
that unite clinicians and data scientists are the DEMON
Network and the InSilico UK network. DEMON focuses
on dementia research and provides a range of training,
networking opportunities, seminars, and workshops, as
well as coordinated engagement with industry for real-
world impact. The InSilico UK network was co-created
with the Royal Academy of Engineering, the British
Standards Institute, the Association of British Health-
Tech Industries, the Association of the British Phar-
maceutical Industry, techUK and Avicenna Alliance.
This network also has a regulatory focus and brings
together a community to deliver an ecosystem for
medical products. Fostering and actively managing
these interdisciplinary communities is essential to
ensure integrated clinician-data scientist teams guiding
the development of translatable multimodal clinical Al.

Conclusion

The current pace of Al development, across a range of
diverse applications, has been exceptional. Recent ad-
vances in multimodal AI are allowing us to harness
information from disparate sources in ways which were
not previously possible, such as developing ‘co-pilots’
for pathology”’ and radiology*® reporting, as well as
multimodal diagnostic tools.” In the clinic, where data
comes in many varieties, multimodal Al has the po-
tential to provide profound advancements in our un-
derstanding of disease and best practice for patient care.
Most multimodal Al tools, however, are not designed
with the clinical setting in mind, and the high cost of

developing this technology means that repurposing of
models is commonplace.

Yet, clinical data is acquired in both a temporal and
highly individual way that reflects each patient’s per-
sonal clinical journey. The clinical setting accordingly
provides distinct challenges to multimodal AI de-
velopers and there is a need for new approaches to
multimodal AI that are attuned to these challenges. The
involvement of clinicians throughout the multimodal Al
development pipeline is therefore essential, but this
endeavour is no trivial undertaking. Long term strate-
gies, including active community management, are
needed to unify the culturally distinct communities of
Al developers and front-line clinicians, enabling us to
work together towards the common goal of improving
the health of all.
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