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Abstract 6 

Recent advancements in biomarkers have transformed Alzheimer’s disease (AD) diagnosis from 7 

being purely symptom-based to include biological criteria. With new treatments targeting AD’s 8 

core biology, understanding the timeline of biological changes is crucial as the disease 9 

progresses over decades. 10 

Longitudinal data from amyloid-beta (Aβ) PET and cognitive tests (MMSE and ADAS-cog) 11 

from the Alzheimer’s Disease Neuroimaging Initiative (n=1,448) and BioFINDER (n=2,088) 12 

were used to stage patients against an estimated continuous disease timeline (predicted time 13 

since Aβ-PET positivity). The estimated timeline was validated by comparing correlations with 14 

unseen biomarkers and cognitive measures against alternative staging approaches. Trajectories 15 

for plasma, CSF, MRI, and PET biomarkers, measuring Aβ, tau, and neurodegeneration, were 16 

mapped along this AD continuum. 17 

The proposed staging approach was found to produce stronger correlations with unseen cognitive 18 

measures and biomarkers compared to alternative staging methods, including amyloid and tau 19 

PET clocks (all pairwise p<0.05). Findings related to biomarker trajectories were highly 20 

consistent across cohorts. The period from Aβ-PET positivity to end-stage AD dementia (MMSE 21 

= 0) was estimated at 20-25 years, with a presymptomatic phase of 7-11 years. CSF Aβ42/40 22 

became abnormal about a year before Aβ-PET positivity, CSF p-tau231, p-tau217, and plasma 23 

p/np-tau217 1-3 years after, and tau-PET about 8 years after. Neurodegenerative biomarkers, 24 

such as hippocampal volume, became clearly abnormal in early dementia stages, 14-16 years 25 

after Aβ-PET positivity. 26 
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2 

The progression from initial biomarker abnormality to severe AD spans two decades. Disease 1 

progression modeling elucidates the evolution of AD biomarkers and cognition, highlighting the 2 

relative timing of biomarker abnormalities. These models can determine disease stages, aiding 3 

prognosis and evaluation for disease-modifying treatments. 4 
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Introduction  9 

Alzheimer’s disease (AD) is biologically defined by the abnormal presence of beta-amyloid (A) 10 

plaques and tau-containing neurofibrillary tangles in the brain. AD progresses slowly, starting 11 

with a preclinical (presymptomatic) phase where the pathological hallmarks are present with no 12 

objectively verified cognition symptoms. This preclinical phase has been suggested to last up to 13 

several decades.1 The preclinical phase is followed by a prodromal phase where cognitive 14 

symptoms emerge and increase in severity, followed by dementia where patients lose their ability 15 

to independently perform activities of daily living. 16 

Over the last decades, a wide range of biomarkers for AD have become available. These include 17 

assays to measure A and tau proteins in cerebrospinal fluid (CSF), positron emission 18 

tomography (PET) imaging of AD proteinopathies, volumetric magnetic resonance imaging 19 

(MRI), and accurate blood-based biomarkers reproducing CSF findings.2 Currently available 20 

biomarkers enable precise differential diagnosis of AD, and provide staging and prognostic 21 

information.2-6 Based on animal studies, neuropathology and longitudinal biomarker studies, a 22 

hypothetical biomarker cascade following the Alzheimer’s pathological cascade has been 23 

proposed.7 This model suggests that the prototypical disease trajectory is characterized by initial 24 

A plaque accumulation in the brain, followed by spreading of tau pathology and 25 

neurodegeneration which in combination leads to cognitive symptoms. This Alzheimer’s 26 

biomarker cascade has been largely validated and refined in many previous of studies.8,9 27 
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However, some key unknowns remain. The temporal aspects of AD in relation to biomarker 1 

changes has been underappreciated, with most studies either relating biomarkers to other 2 

biomarkers9 or relating them to coarse disease stages based on symptom severity evaluated at 3 

single time points.10 Typical groupings (cognitively unimpaired [CU], mild cognitive impairment 4 

[MCI], dementia) represent stages that can last many years with a large severity span within 5 

groups, with ambiguous differentiation between groups, and which can be influenced by co-6 

pathologies and premorbid cognitive capacity. Such staging does not reflect the continuous 7 

progressive nature of AD, and therefore there are still many unknowns around the fine-scale time 8 

evolution of AD.  9 

The current understanding of the evolution of AD in continuous time has relied heavily on 10 

studies in autosomal dominant AD. A key reason for this is that knowledge of a subject’s 11 

mutation type and other characteristics can be used to roughly predict age of symptom onset and 12 

progression pattern.11 This enables calculation of a subject-level disease time scale which in turn 13 

enable continuous-time population-level modeling of biomarker trajectories.12,13 This approach 14 

has been instrumental in understanding not only autosomal dominant disease, but also sporadic 15 

AD which has many pathophysiological similarities, but also some differences that hamper this 16 

extrapolation.14 17 

Several methods have been proposed to enable better modeling of biomarker trajectories in 18 

sporadic AD. Biologically-consistent estimates of biomarker trajectories along A or tau 19 

accumulation as measured by PET have been reported.9,15,16 To derive a continuous timeline, 20 

mimicking the time to symptom onset construct in autosomal dominant AD, amyloid and tau 21 

clocks that map PET signals to time and a range of alternative different latent-time disease 22 

progression models utilizing both biomarkers and clinical data have been proposed.17-23 As 23 

opposed to the estimated time to symptom onset in autosomal dominant AD, these approaches 24 

make use of patterns observed in longitudinal clinical and/or biomarker data to dynamically 25 

derive a new latent time scale on which the longitudinal observations are aligned.24  26 

In this paper, we propose a disease progression model that utilizes both clinical and A PET data 27 

to model the time-course of AD over a latent time scale that represents predicted time since A-28 

PET positivity. We apply the model in well-characterized participants who are either A-29 

negative CU or have biomarker-confirmed AD (all disease stages) in two large cohorts: the 30 
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Swedish BioFINDER study. 1 

Based on the modeling, continuous-time disease stages representing time since A PET 2 

positivity were predicted for all subjects, which allowed continuous and time-consistent 3 

modeling of biomarker trajectories along the Alzheimer’s continuum. We report trajectories for a 4 

wide selection of biomarkers measuring aspects of amyloidosis, tauopathy, neurodegeneration 5 

and inflammation along predicted time since A positivity, including CSF A42/40 and A 6 

PET, tau PET, various p-tau species in CSF and plasma, CSF/plasma neurofilament light (NfL) 7 

and volumetric MRI, plasma glial fibrillary acidic protein (GFAP) and CSF sTREM2. These 8 

findings shed new light on the fine-scale time evolution of AD. 9 

Materials and methods  10 

Participants 11 

This study included participants from the North American Alzheimer’s Disease Neuroimaging 12 

Initiative (ADNI) that were recruited under protocols 1, GO, 2 and 3 (NCT00106899, 13 

NCT01078636, NCT01231971, and NCT02854033) and participants from the Swedish 14 

BioFINDER Study that were recruited under protocols 1 and 2 (NCT01208675 and 15 

NCT03174938). All participants in both studies provided written informed consent and the 16 

studies were approved by the appropriate ethical review authorities.  17 

ADNI is a multi-site study launched in 2003 as a public-private partnership. The primary goal of 18 

ADNI has been to test whether serial MRI, PET, other biological markers, and clinical and 19 

neuropsychological assessment can be combined to measure the progression of MCI and early 20 

AD. For up-to-date information, see www.adni-info.org. 21 

BioFINDER-1 followed CU, MCI, and dementia participants recruited between 2009 and 2014 22 

for up to 10 years. BioFINDER-2 is an ongoing longitudinal study including participants across 23 

the full spectrum of AD, which started in 2017.  24 

The current study used ADNI data collected from 2005 and up to 24 August 2023, all 25 

BioFINDER-1 data from 2009 to 12 December 2023 and BioFINDER-2 data collected from 26 

2017 to 24 January 2024.  27 
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Inclusion criteria 1 

The inclusion and exclusion criteria for ADNI are described in the study protocols available on 2 

the ADNI webpage, and inclusion and exclusion criteria for the BioFINDER studies have been 3 

previously described (NCT01208675 and NCT03174938).25-27 Briefly summarized, in the 4 

BioFINDER studies, cognitively unimpaired participants did not fulfill the NIA-AA critiera for 5 

MCI or dementia28 (performed within normal ranges on a large cognitive test battery) and were 6 

between 40 and 100 years old. Cognitively impaired participants had been referred to the 7 

participating memory clinics at Skåne University Hospital or Ängelholm Hospital in Sweden. 8 

Participants with MCI did not fulfil the DSM-5 criteria for major cognitive disorder29 and 9 

performed below normal ranges in at least one cognitive domain as previously described for 10 

BioFINDER-130 and for BioFINDER-227. All participants understood Swedish to the extent that 11 

an interpreter was not necessary.  12 

For the present study, we included participants who at baseline were at least 50 years of age, and 13 

had a valid assessment of their cognitive status (ADNI: unimpaired, significant memory concern, 14 

early MCI, late MCI, dementia; BioFINDER: unimpaired, subjective cognitive decline [SCD], 15 

MCI, dementia), a valid assessment of A status (see details below), and at least one 16 

measurement of A PET, MMSE or ADAS-cog. 17 

In BioFINDER, symptomatic participants with an established primary etiology other than AD 18 

were excluded. Etiology was assessed based on a thorough longitudinal clinical evaluation, 19 

biomarker information, and in some cases genetic information. These clinical evaluation criteria 20 

has been described previously.25 Patients were only excluded based on the clinically established 21 

primary etiology, meaning that no effort was done to exclude AD patients with co-pathologies.  22 

CU A-negative (A-) and A-positive (A+) participants were included. Since the goal was to 23 

estimate AD-specific trajectories, participants were excluded if they had negative A biomarkers 24 

at visits where they showed of objective cognitive impairment (diagnosis of MCI or dementia or 25 

CDR global score > 0 or MMSE < 26).  26 
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A  status 1 

A status (A+/A-) was determined using CSF or PET at every visit where either was 2 

available. For CSF, A-positivity was assessed by the Aβ42/40 ratio. In ADNI, Aβ42 and Aβ40 3 

levels were measured on a cobas e 601 analyzer using Roche Elecsys immunoassays (Aβ42/40 4 

positivity cutoff <0.0666) or by 2D-UPLC tandem mass spectrometry31 (Aβ42/40 positivity 5 

cutoff <0.138). In BioFINDER, Aβ42 and Aβ40 were analyzed on a cobas e 601 analyzer using 6 

the Roche NeuroToolKit and the cutoff for A-positivity was <0.066 in BioFINDER-132 and 7 

<0.080 in BioFINDER-2.33 The PET tracers [18F]florbetapir, [18F]florbetaben and 8 

[11C]Pittsburgh Compound B were used to establish A-PET positivity in ADNI using published 9 

cut offs by the ADNI PET core, defined by standardized uptake value ratio (SUVR) computed in 10 

a composite cortical region referenced to the cerebellum. Cut-offs were 1.11 SUVR for 11 

[18F]florbetapir and 1.08 SUVR for [18F]florbetaben and 1.22 for [11C]Pittsburgh Compound 12 

B.34-36 In BioFINDER, A-PET positivity was established using [18F]flutemetamol SUVR in a 13 

composite cortical region referenced to the cerebellum with a cutoff of 1.03.37 14 

Negative A status was carried backwards, so individuals without a valid A status at baseline 15 

but a post-baseline A- status were assumed A- at baseline. A+ status was carried forward.  16 

In some cases, both CSF and PET A biomarkers were available and produced discrepant results 17 

(ADNI 229/1954 visits; BioFINDER 271/1078 visits). Discrepant results were primarily in the 18 

form of A+ status on CSF and A- status on PET (ADNI 142/229; BioFINDER 217/271) and 19 

mostly observed in CU subjects (ADNI 126/229; BioFINDER 196/271), consistent with previous 20 

observations that CSF A biomarkers typically become abnormal before PET A biomarkers.9,38 21 

For CU subjects, we assumed A-positivity if just one of the biomarkers was abnormal. For 22 

cognitively impaired subjects, we required A-PET positivity. 23 

Cognitive, functional and clinical outcomes 24 

We used longitudinal Mini-Mental State Examination (MMSE) and Alzheimer’s Disease 25 

Assessment Scale-cognitive subscale (ADAS-cog)39 total scores for the disease progression 26 

modeling in both cohorts. In ADNI, the 13-item version of ADAS-cog was used, while in 27 

BioFINDER, a 2-item version (including immediate and delayed recall) was used. 28 
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For exploring the construct validity of the estimated timeline, we used longitudinal scores from 1 

the Clinical Dementia Rating – sum of boxes (CDR-SB) and Trail making B in both cohorts. In 2 

ADNI, we further used logical memory delayed recall scores. 3 

For validation analyses and for describing the clinical stages associated with the disease 4 

progression model analyses, we used clinical diagnosis (CU, MCI, dementia) at each visit. In 5 

BioFINDER, clinical diagnosis was not consistently available at all follow-up visits, so we 6 

imputed missing diagnoses at visits where we had high certainty of the diagnosis using the 7 

following imputation rules: when visits before and after the missing visit had the same diagnosis, 8 

all in-between visits with missing diagnosis were interpolated to have the same diagnosis. 9 

Cognitively unimpaired status was carried backwards, and diagnoses of dementia were carried 10 

forward. When available, CDR global score (0 = CU, 0.5 = MCI, ≥1 = dementia) was used to 11 

impute clinical diagnosis at the remaining visits with missing diagnosis. 12 

Plasma, CSF and imaging biomarkers 13 

The following section describes the biomarkers that were used for disease progression modeling, 14 

validation or estimation of biomarker trajectories over the AD continuum. The availability of 15 

individual biomarkers differed between studies and subject. Sample sizes of available biomarker 16 

data will be stated in analyses.  17 

Plasma 18 

In ADNI, included plasma biomarkers were p-tau181, neurofilament light (NfL), and glial 19 

fibrillary acidic protein (GFAP), all measured by an electrochemiluminescence immunoassay on 20 

the fully automated cobas e 601 (Roche Diagnostics NeuroToolKit),40 p-tau217, p/np-tau217, 21 

defined as the ratio of p-tau217 to np-tau217, and A42/40 measured by liquid chromatography–22 

tandem high-resolution mass spectrometry analysis (PrecivityAD2).41  23 

In BioFINDER, included plasma biomarkers were NfL measured using the Roche Diagnostics 24 

NeuroToolKit described above, glial fibrillary acidic protein (GFAP) measured using a single 25 

molecule array (Simoa)-based assay,42 p-tau181, p/np-tau181, p-tau217, p/np-tau217 and 26 

A42/40 measured by liquid chromatography–tandem high-resolution mass spectrometry 27 

analysis,40,43 and p-tau231 using a Simoa developed at the University of Gothenburg.44 28 
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CSF 1 

In ADNI, included CSF biomarkers were A42 and A42/40 ratio, p-tau181 and p-tau181/ A42 2 

ratio measured on a cobas e 601 analyzer using Roche Elecsys immunoassays,45 NfL measured 3 

with an enzyme-linked immunosorbent assay (ELISA) from UmanDiagnostic AB,46 sTREM2 4 

and neurogranin measured with immunoassays using the MSD platform,47,48 and YKL-40 5 

measured using the MicroVue YKL-40 ELISA.49 6 

In BioFINDER, included CSF biomarkers were A42, A42/40 ratio, p-tau181, p-tau181/ A42 7 

ratio, total tau, NfL, neurogranin, and sTREM2 and YKL-40 all measured on a cobas e 601 8 

analyzer using the Roche NeuroToolKit. Furthermore, BioFINDER included CSF p-tau217 9 

measured on the MSD platform using an assay developed by Eli Lilly,50 and CSF p-tau231 10 

measured on the Simoa platform developed at University of Gothenburg using an antibody from 11 

ADx NeuroSciences.51 12 

Imaging 13 

In ADNI, included imaging biomarkers were Aβ-PET centiloid computed for the tracers 14 

[11C]Pittsburg Compound B, [18F]flortaucipir and [18F]florbetaben based on standardized uptake 15 

value (SUVR) ratio in a composite cortical region of interest normalized to the whole 16 

cerebellum,52 tau-PET SUVR using [18F]flortaucipir in Braak regions I, III-IV and V-VI 17 

normalized to inferior cerebellar grey matter uptake,53 [18F]FDG PET SUVR in a meta region of 18 

interest,54 MRI biomarkers of hippocampal and ventricular volume normalized to whole-brain 19 

volume55 and a composite cortical thickness AD-signature56, all derived using FreeSurfer.  20 

In BioFINDER, included biomarkers were Aβ-PET SUVR using [18F]flutemetamol in a 21 

composite cortical region normalized to the cerebellum,57 tau-PET SUVR using [18F]RO948 in 22 

Braak regions I, III-IV and V-VI normalized to the inferior cerebellum grey matter,57 and MRI 23 

biomarkers of hippocampal and ventricular volume normalized to whole-brain volume and 24 

composite cortical thickness AD-signature, all derived using FreeSurfer.  25 ACCEPTED M
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Statistical analysis 1 

Disease progression modeling 2 

We developed a semiparametric extension of the multivariate latent-time disease progression 3 

model described by Kühnel et al.58 which estimates trajectories of outcome measures by aligning 4 

multivariate subject-level outcome trajectories. As opposed to many other latent-time disease 5 

progression models, this modeling approach estimates mean trajectories in a time-consistent 6 

manner by using relative visit timings for individual subjects as a scaffold for the time-based 7 

estimation. Consequently, a change in values of the mean trajectory associated with a change in 8 

time unit (e.g., 1 year) is reflective of the typical change observed over the same time unit for 9 

subjects that were matched to that part of the trajectory. The first step of estimating a time-10 

consistent biomarker cascade was to estimate a continuous-time disease trajectory for selected 11 

outcomes simultaneously. This involved predicting the continuous-time progression of each 12 

subject along this estimated multivariate disease trajectory. The estimated multivariate disease 13 

trajectory was based on longitudinal measures of A PET, MMSE and ADAS-cog. The inclusion 14 

of both an A biomarker and clinical scales ensures adequate staging information in both pre-15 

symptomatic and symptomatic stages of AD. 16 

The model was defined as follows. Let 𝑦𝑖𝑗𝑘  denote subject i’s observation of the kth outcome 17 

measure 𝑡𝑖𝑗 years after the baseline visit. The mean trajectory 𝜃𝑘  of the kth outcome over the 18 

disease continuum was estimated from the model 19 

𝑦𝑖𝑗𝑘 = 𝜃𝑘(𝑡𝑖𝑗 + 𝑠bl status(𝑖) + 𝑠bl A- (𝑖) + 𝑠𝑖) + 𝑥𝑖𝑘 + 𝑒𝑖𝑗𝑘  (1) 20 

where we will refer to the time argument 𝑡𝑖𝑗 + 𝑠bl status (𝑖) + 𝑠bl A- (𝑖) + 𝑠𝑖 that is shared across 21 

outcomes as disease time.  22 

The model parameters were modeled as follows:  23 

• 𝜃𝑘  was a monotone Hermite spline with 5 degrees of freedom. The spline had 5 + 2 24 

knots. Relative to average baseline disease time of the cognitively normal A+ group, the 25 

5 internal knots were placed at -8.33, 0, 8.33, 16.67, and 25 years with two additional 26 

knots replicating the boundary values placed 1 month before and after these respective 27 

knots to limit boundary artifacts.  28 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

af413/8313033 by U
niversity C

ollege London user on 17 N
ovem

ber 2025



11 

• 𝑠bl status (𝑖)  was a fixed effect time-shift describing the average shift in disease time of the 1 

baseline status group of subject i (i.e., CU, SCD, MCI or dementia in the BioFINDER 2 

study) 3 

• 𝑠bl A- (𝑖)  was a fixed effect time-shift describing the average shift in disease time 4 

associated with A- status at baseline 5 

• 𝑠𝑖 was a random effect time-shift describing the time deviation of subject i relative to 6 

their baseline group and A+/A- status 7 

• 𝑥𝑖𝑘 was a random effect intercept describing subject i’s consistent deviation in outcome 8 

measure k, for example the consistent deviation observed for patients with comorbidities 9 

or low education that score worse on clinical scales compared to their AD progression 10 

stage, an unstructured covariance matrix was used to model the correlation across 11 

outcomes 12 

• 𝑒𝑖𝑗𝑘  was independent identically distributed Gaussian noise with separate variance 13 

parameters for each outcome k. 14 

To avoid overparameterization, the fixed effect time shifts were anchored such that a disease 15 

time of 0 was the time at which a subject on average reached A+ status measured by PET. The 16 

predicted disease time thus represents predicted years since A PET positivity. The estimation 17 

process is illustrated in Figure 1. All parameters in the model were estimated using maximum 18 

likelihood estimation. The maximum a posteriori criterion was used for prediction of random 19 

effects. Code for fitting the model is available in the progmod R package.59 20 

Model validation 21 

The construct validity of the disease progression model was assessed internally in ADNI and 22 

BioFINDER based on the predicted disease time’s correlation to longitudinal scores from clinical 23 

scales measuring cognition and function (Trail making B, Logical memory delayed recall, CDR-24 

SB), and biomarkers related to A, tau and neurodegeneration that were not included in the 25 

model. The individual scales and biomarkers were previously described, and biomarkers were 26 

grouped into the A, tau and neurodegeneration. The absolute pairwise Spearman correlations to 27 

these scales and biomarkers, as well as the domain-weighted average (average of average 28 
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absolute pairwise Spearman correlation within each of the four domains: cognition and function, 1 

A, tau, neurodegeneration), were compared to alternative longitudinal staging variables related 2 

to disease progression. These staging variables included age, clinical diagnosis (0 = CU, 1 = 3 

MCI, 2 = dementia), MMSE, ADAS-cog, and A PET. Furthermore, three separate analyses in 4 

ADNI compared predicted time since A PET positivity to recently published amyloid and tau 5 

clocks estimated based on longitudinal A PET and tau PET data following the algorithm 6 

outlined by Milà-Alomà and colleagues,22 and to the two established continuous-time disease 7 

progression models GRACE18 and LTJMM60 with model fitted on the same variables as the 8 

proposed model based on published implementations. Pairwise comparisons between predicted 9 

time since A PET positivity and all other staging measures were done by comparing absolute 10 

correlation across all scales and biomarkers with a binomial sign tests. The analysis only 11 

included visits where all staging variables were available to ensure comparability (staging 12 

variable assigned to same visit, but not required to be collected on the same day, e.g., there were 13 

often several weeks difference between clinical scale data collection and PET scans).  14 

Estimating biomarker trajectories 15 

Based on the model (1), each subject had their time since A-PET positivity predicted at all time 16 

points. Biomarker trajectories were then analyzed along this predicted disease timeline using a 17 

robust quantile mixed-effects spline models with a random Laplace distributed intercept within 18 

participants to estimate the median biomarker trajectory.61 Natural cubic splines with degrees of 19 

freedom ranging from 0 (no time dependence), 1 (linear slope) and up to 8 were used to 20 

parametrize each median biomarker trajectory, and the model with the lowest Bayesian 21 

Information Criterion (BIC) was selected. These biomarkers trajectories were normalized against 22 

the median and 95% percentile (in direction of abnormality) of the biomarker values of CU A-23 

negative individuals. The empirical case bootstrap (1000 resamplings) was used to calculate 95% 24 

confidence intervals of when individual biomarkers crossed 95% abnormality percentiles. 25 

 26 
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Results  1 

Study participants 2 

In ADNI, 1963 subjects fulfilled the inclusion criteria and 2277 subjects from BioFINDER 3 

fulfilled the inclusion criteria. Among these subjects, 515 subjects in ADNI and 189 subjects in 4 

BioFINDER were excluded based on the criteria related to having concurrent A- status and 5 

objective cognitive impairment. The baseline characteristics of the 1448 ADNI subjects and 6 

2088 BioFINDER subjects included in the present study are given in Table 1. 7 

Disease progression modeling results and validation 8 

The observed trajectories of the outcome measures plotted against the predicted years since PET 9 

Aβ-positivity in the two cohorts are shown in Figure 2. There were substantial overlaps between 10 

longitudinal clinical diagnoses stratified by Aβ status along the predicted disease time scale, but 11 

the distributions were very similar between cohorts (Figures S1 and S2, Supplementary 12 

Material). Sensitivity analyses using only available diagnoses in BioFINDER (data not shown) 13 

suggested that the imputation strategy for missing diagnoses in BioFINDER did not affect the 14 

estimated distribution of diagnoses along the predicted disease time scale.  15 

Inspection of conditional residuals indicated a symmetric distribution along the predicted disease 16 

timeline. However, we observed heterogeneous variance in both cohorts, which increased with 17 

disease age (Figure S3 and S4, Supplementary Material). This indicates that there is variability in 18 

the datasets not fully accounted for by the model. However, we believe this deviation does not 19 

significantly impact the conclusions of our subsequent analyses, as it is more likely to increase 20 

uncertainty rather than introduce a meaningful bias. Comparison of the proposed model with 21 

sub-models excluding random effects suggested that both the random time shifts and random 22 

intercepts captured a very substantial amount of variation in the data. Most notably, excluding 23 

the random shift parameter 𝑠𝑖 (1 degree of freedom) increased the estimated residual variance in 24 

ADNI by 9% for Aβ-PET centiloid, 113% for ADAS-cog (13-item), and 211% for MMSE 25 

(Table S1, Supplementary Material). In BioFINDER, the increases in estimated residual variance 26 

associated with excluding 𝑠𝑖were 10% for Aβ-PET SUVR, 12% for ADAS-cog (2-item), and 27 

94% for MMSE (Table S2, Supplementary Material). 28 
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14 

The correlations between the predicted disease time, alternative staging variables and unseen 1 

validation variables in ADNI and BioFINDER are given in Tables 2 and 3 respectively. 2 

Comparisons of correlations for predicted disease time and an amyloid clock and a tau clock are 3 

given in Table S3 in the Supplementary Material and comparisons to other disease progression 4 

models are given in Table S4 in the Supplementary Material. To test the validity of the predicted 5 

disease time as a single continuous staging measure that effectively captures overall disease 6 

progression, the simultaneous pattern of correlations to the full set of validation variables was 7 

compared between predicted disease time and the alternative staging variables. In both cohorts, 8 

the predicted disease time showed a significantly stronger pattern of correlation to the set of 9 

validation variables compared to all other staging variables (all pairwise p < 0.05; binomial sign 10 

test), including the amyloid PET clock (p = 0.0034) and the tau PET clock in (p = 0.0002) in 11 

ADNI. The predicted disease showed numerically stronger average correlations than GRACE 12 

disease time (p = 0.1796) and LTJMM disease time (p = 0.0001). Notably, predicted disease time 13 

and GRACE disease time showed similar correlations for validation variables in the cognition 14 

and function and neurodegeneration categories, while predicted disease time showed markedly 15 

stronger correlations across all validation variables in the Aβ and tau categories. We note that 16 

while predicted disease time had the strongest correlations as a single measure, the validation 17 

variables may be affected by multiple independent processes. For example, we found modest but 18 

significant partial correlations of age on most validation variables after correcting for predicted 19 

disease time, with the smallest partial correlations for AD-specific biomarkers and largest partial 20 

correlations across neurodegenerative biomarkers (Table S5, Supplementary Material). We note 21 

that correlations were calculated on a common subset of observations where all staging variables 22 

were observed to ensure comparability. Figures S5-S8 in the Supplementary Material shows 23 

comparisons of predicted disease time, Aβ-PET and tau-PET as staging variables for selected 24 

clinical scales and biomarkers.  25 

Biomarker trajectories 26 

For the biomarkers specified in Table 4, longitudinal models for the biomarker trajectories as a 27 

function of predicted disease time were fitted. The trajectories were normalized against the 28 

median and 95% abnormality quantile for A- CU, to investigate the AD-specific abnormality 29 

trajectories. Estimated biomarker abnormality trajectories generally showed consistent patterns 30 
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across cohorts (Figure 3; Figure S9, Supplementary Material), and the time at which biomarkers 1 

reached abnormality relative to predicted disease time was highly consistent across both cohorts 2 

(Figure 4). CSF Aβ42/40 reached 95% abnormality approximately 1 year prior to predicted time 3 

of Aβ-PET positivity and was largely consistent with CSF p-tau181/ Aβ42 time of abnormality, 4 

but not CSF p-tau181 alone (abnormal 10 years after predicted predicted Aβ PET positivity). 5 

CSF p-tau231 and p-tau217, that were only available in BioFINDER, were found to reach 95% 6 

abnormality 1 and 3 years after predicted Aβ PET positivity, respectively. Plasma p/np-tau217 7 

reached the 95% abnormality threshold 2-3 years after predicted Aβ PET positivity. In 8 

BioFINDER, plasma p-tau217 behaved very similarly to p/np-tau217, while in ADNI, plasma p-9 

tau217 showed approximately 3 years delay in reaching 95% abnormality compared to plasma 10 

p/np-tau217. Tau-PET in Braak regions I, II-IV and V-VI reached this abnormality threshold, 11 

respectively, 7-9 years, 10-12 years, and 13-15 after Aβ-PET positivity. ADAS-cog and MMSE 12 

both became abnormal during the MCI stage of disease (11-15 years after predicted Aβ PET 13 

positivity), while volumetric MRI measures of hippocampus and cortical thickness only reached 14 

95% abnormality in the dementia stages of disease (15-16 years after predicted Aβ PET 15 

positivity). Sensitivity analyses to assess the impact of different biomarker availability within 16 

patients on the estimated abnormality of tau biomarkers found highly consistent patterns of 17 

pairwise abnormality timings between biomarkers on subsets of patients with both tau 18 

biomarkers available and only limited numerical differences in estimates of abnormality timings 19 

based on ADNI data (Section 8, Supplementary Material). 20 

 21 

Discussion  22 

In this study, we used latent-time disease progression modeling of A PET and cognitive scale 23 

scores to predict years since Aβ PET positivity for subjects in ADNI and BioFINDER. The 24 

predicted disease time was shown to outperform other clinical scales, biomarkers and biomarker 25 

clocks that are often used for disease staging, including clinical diagnosis, MMSE, amyloid clock 26 

and tau clock, in terms of overall strength of correlation to unseen clinical scores and biomarkers 27 

representing Aβ, tau, and neurodegeneration. Predicted disease time was also shown to produce 28 

numerically stronger correlations to the validation variables than alternative disease staging 29 
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models with access to the same information, but the difference did not reach statistical 1 

significance compared to the GRACE model. These findings are consistent with the findings of 2 

Kühnel and colleagues58 who found that a similar nonlinear mixed-effects disease progression 3 

model produced significantly better predictions of future cognitive trajectories  than LTJMM and 4 

GRACE.  5 

Compared to conventional staging approaches, predicted disease time has the advantage that a 6 

prediction based on any set of observed cross-sectional or longitudinal data will enable 7 

calculation of predicted disease time at any future visit, while some staging measures, such as 8 

clinical scales or PET-based biomarkers may be difficult to project to visits where they were not 9 

assessed. Amyloid and tau PET clocks offer an alternative solution to this problem, but as 10 

demonstrated here, these biomarker clocks produce less generalizable stagings than our proposed 11 

model. The difference which may be caused by the clocks capturing a single aspect of the 12 

disease, that there may be ranges of Aβ and tau PET quantifications that have low predictive 13 

value for disease staging (e.g. values below abnormality thresholds, Aβ PET in later 14 

symptomatic disease stages), and that the clocks are more affected by noise in the biomarker data 15 

due to the more direct translations. Recent work has demonstrated the feasibility of estimating 16 

typical biomarker profiles associated with continuous-time disease stage from latent-time disease 17 

progression modeling, which in turn enable improved prognostication based on a collection of 18 

biomarkers measured at a single visit that reflect different aspects of Alzheimer’s disease.4 19 

Based on predicted years since Aβ PET positivity, biomarker trajectories were estimated on a 20 

joint time scale, and the abnormality of individual biomarkers along the disease timeline were 21 

analyzed. This provided new insights, by estimating the temporal relations of when biomarkers 22 

and clinical outcome measures typically become abnormal, and the temporal relations between 23 

markers of insoluble and soluble pathology. The trajectories of imaging biomarkers were well 24 

aligned with the amyloid cascade hypothesis, suggesting that the typical evolution of biomarker 25 

profiles along the AD trajectory is one where A biomarkers initially become abnormal, 26 

followed by abnormal tau biomarkers and finally abnormal neurodegeneration biomarkers. 27 

However, it was found that that amyloidopathy defined using a biofluid -based biomarker (CSF 28 

Aβ42/40) was detectable prior to A PET abnormality, which is in agreement with previous 29 

results comparing CSF and PET Aβ biomarkers.38 Further, we found that some biomarkers of 30 
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soluble phosphorylated tau became detectably abnormal 1-3 years after A biomarkers (CSF p-1 

tau231, CSP p-tau217, plasma p/np-tau217), many years earlier than tau PET signals became 2 

abnormal. P-tau biomarkers (especially p-tau231 but to some extent also p-tau217) have been 3 

shown to be very closely associated with early Aβ accumulation,44,62,63 so the observed signal 4 

could reflect early Aβ-induced changes in p-tau and not insoluble tau pathology. Compared to 5 

CSF p-tau231 and p-tau217, p-tau181 increased considerably later, reaching 95% abnormality 6 

approximately 10 years after A PET. This difference may be partly explained by the effect of 7 

different assays analytical protocols for p-tau181 compared to p-tau231 and p-tau217.9,64 The 8 

findings of the present study are largely in agreement with recent findings by Jia and colleagues 9 

in a Chinese cohort with 20 years follow-up.65 In particular, the Chinese study suggested that 10 

CSF Aβ-biomarkers became abnormal 14-18 years before diagnosis and CDR-SB scores 11 

becoming abnormal 6 years prior to diagnosis, which is consistent with the 12-year gap between 12 

abnormality of CSF Aβ42/40 and ADAS-cog in the current study. Differences in timing of 13 

abnormality of other CSF markers such as p-tau181 relative to CSF amyloid positivity (3-7 years 14 

in Chinese study, 11 years in the present study) may reflect differences in assays, definition of 15 

abnormality thresholds, and other methodological differences (including use of imputation of 16 

biomarker values in the study by Jia and colleagues). 17 

An important consideration for the estimated time course of biomarker changes presented here is 18 

that it does not directly reflect the biological progression of disease but is also influenced by the 19 

sensitivity and stability of the biomarker and the natural variation of the biomarker in non-AD 20 

populations. The latter feature means that biomarkers that are not specific to AD, such as the 21 

neurodegenerative biomarkers considered here, will present as less anomalous compared to 22 

biomarkers closer related to AD pathology, but may still track disease progression well within a 23 

population of AD patients. 24 

Overall, we showed that despite differences in assays, tracers and processing methods, AD 25 

progression was associated with a highly consistent pattern of biomarker progression across two 26 

separate cohorts. With the availability of the first approved disease-modifying therapies for 27 

Alzheimer’s disease in the form of high-clearance Aβ-targeting immunotherapies, biomarkers 28 

will play an increasingly important role in verification of the presence of Aβ pathology and early 29 

identification of patients. Biomarker-based staging of patients has already been implemented in 30 
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some clinical trials through tau-PET-based inclusion criteria,66,67 in an effort to exclude patients 1 

who are early on the disease continuum and thus unlikely to decline during the study period (thus 2 

masking a treatment effect) or patients who are late on the disease continuum and thus may be 3 

too advanced to fully benefit of the treatment. A natural hypothesis which is being tested in 4 

several large studies is that Aβ-targeting immunotherapies would be most efficacious if delivered 5 

in the earliest stages of AD, where little tau pathology is present.68 Resultingly, it is important to 6 

know the typical duration of elevated Aβ plaque load without elevated tau. Recently, Therneau 7 

and colleagues used an accelerated failure time model with similarities to the approach presented 8 

here to estimate the temporal relationship between Aβ-PET and tau-PET.69 They found the 9 

average delay between when Aβ-PET and tau-PET would reach a change point and begin to 10 

increase abnormally to be 13.3 years. This duration is slightly longer than the difference between 11 

when Aβ-PET and tau-PET became abnormal in the present analysis, with differences of 9 years 12 

(Braak I) and 12 years (Braak III-IV) in ADNI and 8 years (Braak I) and 10 years (Braak III-IV) 13 

in BioFINDER. The difference in the type of events studied (change in accumulation vs. 14 

abnormality relative to A- CU) may have contributed to the differences.  15 

Our work has some limitations. Staging of patients was achieved by modeling under certain 16 

assumptions. A key assumption was that AD can be described as evolving around a single 17 

multivariate trajectory on a single time scale. However, there may exist AD subtypes with 18 

distinct trajectories,70 and rate of decline and cognitive manifestation can be affected by patient 19 

characteristics such as age, comorbidities, and co-pathologies.4,27,33 In particular, we found that 20 

age had substantial partial correlations with neurodegeneration biomarkers after controlling for 21 

predicted disease time (Table S5, Supplementary Material). In the present study, such variation 22 

was captured by random effects or measurement noise terms. More elaborate modeling of 23 

differences in rate of decline and systematic deviations could yield more precise estimates of 24 

biomarker evolution. Another assumption of the model was that missing data was not 25 

informative, but since patients are more likely to drop out of the study as disease progresses, the 26 

disease progression model may rely on a healthier group of subjects and thus estimate a longer 27 

disease duration in the later stages of disease than what is typically seen in the real world.71  28 

In conclusion, this study used latent-time modeling to analyze longitudinal data from two large 29 

cohorts of subjects that were well characterized in terms of their AD status. The continuous-time 30 
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staging of patients based on the disease progression model was shown to be superior to existing 1 

methods, and by analyzing biomarker trajectories along the resulting AD continuum, we believe 2 

our study offers the most accurate estimates of the temporal progression of AD pathology to 3 

date. 4 

 5 

Data availability 6 

ADNI data is available to qualified academic investigators submitting an online application for 7 

access. For more information, please see the ADNI website http://adni.loni.usc.edu/. 8 
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academic investigator for the sole purpose of replicating procedures and results presented in the 10 

article and if data transfer is in agreement with EU legislation on the general data protection 11 
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should be regulated in a material transfer agreement. 13 
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Figure legends 21 

Figure 1 Illustration of the alignment of observed samples from four subjects against 22 

estimated trajectories of outcomes (dotted lines) along the predicted disease time scale. Line 23 

colors differentiate individual subjects while point colors show the diagnosis of a subject at a 24 

given visit. The dotted mean trajectories are estimated simultaneously with the alignment of 25 

individual subject trajectories based on all available data. 26 
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 1 

Figure 2 Participants’ longitudinal trajectories of the three measures used to build the 2 

disease progression model. Aβ PET, ADAS-cog and MMSE in ADNI (N = 1448) and 3 

BioFINDER (N = 2088) plotted against predicted time since Aβ-PET positivity. The time scale 4 

is measured in years with 0 is anchored at the time of average Aβ positivity as assessed by PET. 5 

 6 

Figure 3 Biomarker trajectories showing abnormality relative to cognitively unimpaired 7 

Aβ-negative subjects. Figure shows measures included in the disease progression model, plasma 8 

biomarkers, CSF biomarkers, MRI biomarkers, and PET biomarkers.  9 

 10 

Figure 4 Estimated time point of when different measures on average reach 95% 11 

abnormality threshold relative to cognitively unimpaired Aβ-negative subjects. A. ADNI 12 

and B. BioFINDER. Lines represent 95% confidence intervals computed using the empirical 13 

case bootstrap.  14 

 15 
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Table 1 Baseline characteristics of subjects in ADNI and BioFINDER 1 
 ADNI BioFINDER 

N 1448 2088 

Female (%) 728 (50%) 1199 (57%) 

Education (years) 16 [14, 18] 12 [10, 15] 

Age (years) 72.9 [68.1, 77.9] 72.4 [66.6, 76.9] 

Follow-up time (years) 2.8 [1.0, 4.3] 3.8 [1.6, 6.2] 

Cognitively unimpaired at baseline 

N 677 1436 

Female (%) 395 (58%) 855 (60%) 

APOE ε4 carriers (%) 200 (32%) 530 (37%) 

Education (years) 16 [15, 18] 12 [10, 15] 

Age (years) 71.4 [67.1, 76.3] 71.4 [65.0, 76.4] 

Aβ-positive (%) 293 (43%) 499 (35%) 

MMSE 29 [29, 30] 29 [28, 30] 

MCI at baseline 

N 501 400 

Female (%) 212 (42%) 202 (50%) 

APOE ε4 carriers (%) 314 (66%) 286 (72%) 

Education (years) 16 [14, 18] 12 [9, 15] 

Age (years) 73.9 [68.8, 78.2] 73.8 [69.3, 77.2] 

Aβ-positive (%) 478 (100%) 400 (100%) 

MMSE 28 [26, 29] 27 [25, 28] 

Dementia at baseline 

N 270 252 

Female (%) 121 (45%) 142 (56%) 

APOE ε4 carriers (%) 194 (75%) 179 (71%) 

Education (years) 16 [13, 18] 12 [9, 14] 

Age (years) 74.4 [69.1, 79.6] 75.1 [70.7, 78.5] 

Aβ-positive (%) 265 (100%) 252 (100%) 

MMSE 23 [21, 25] 21 [18, 24] 

Continuous measures are given as median [interquartile range]. MMSE = Mini Mental State Examination.  2 
  3 
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Table 2 Spearman correlations (absolute value) between staging variables and unseen validation variables in ADNI  1 
Domain Validation variable Staging variables 

Age Diagnosisa MMSE ADAS-
cog 

Aβ 
PET 

Predicted disease 
time 

Cognition and 

function 

Trail making B (n = 2119) 0.29 0.53 0.53 0.58 0.45 0.57 

Logical memory delayed recall (n = 
2175) 

0.06 0.77 0.66 0.75 0.55 0.70 

CDR-SB (n = 2178) 0.11 0.93 0.68 0.74 0.65 0.82 

Aβ Plasma Aβ42/40 (n = 615) 0.04 0.25 0.15 0.15 0.42 0.39 

CSF Aβ42/40 (n = 542) 0.23 0.55 0.38 0.43 0.78 0.81 

Tau Plasma p-tau181 (n = 615) 0.28 0.42 0.35 0.40 0.60 0.66 

Plasma p/np-tau217 (n = 618) 0.14 0.56 0.45 0.50 0.78 0.81 

CSF p-tau181 (n = 1340) 0.15 0.48 0.39 0.44 0.58 0.60 

Tau PET Braak III-IV SUVR (n = 

661)  

0.08 0.56 0.38 0.54 0.60 0.64 

Neurodegeneration Plasma NfL (n = 615) 0.51 0.24 0.22 0.30 0.27 0.41 

MRI hippocampus volume (n = 

1802) 

0.38 0.57 0.51 0.58 0.43 0.59 

MRI ventricle volume (n = 1761) 0.45 0.29 0.29 0.35 0.26 0.38 

MRI AD thickness signature (n = 

875) 

0.34 0.55 0.55 0.62 0.43 0.65 

FDG PET SUVR (n = 1045) 0.13 0.57 0.55 0.65 0.44 0.67 

Domain-weighted average 0.20 0.53 0.43 0.49 0.54 0.63 

Correlations are computed on the subset of data with complete data for all staging variables. n denotes number of observations of the validation 2 
variable. Bold text indicates the strongest correlation across staging variables. MMSE = Mini Mental State Examination; ADAS-cog = Alzheimer's 3 
Disease Assessment Scale – cognitive subscale; CDR-SB = Clinical Dementia Rating – Sum of Boxes; SUVR = Standardized Uptake Value Ratio; 4 
AD = Alzheimer's disease, MCI = Mild Cognitive Impairment.  5 
aDiagnosis coded numerically as 0 = cognitively unimpaired, 1 = MCI, 2 = dementia. 6 
 7 
 8 
  9 
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Table 3 Spearman correlations (absolute value) between staging variables and unseen validation variables in BioFINDER 1 
Domain Validation variable Staging variables 

Age Diagnosisa MMSE ADAS-
cog 

Aβ 
PET 

Predicted 
disease time 

Cognition and 

function 

Trail making B (n = 1431) 0.45 0.49 0.45 0.52 0.45 0.49 

CDR-SB (n = 328) 0.02 0.89 0.63 0.75 0.67 0.79 

Aβ Plasma Aβ42/40 (n = 487) 0.16 0.33 0.18 0.35 0.49 0.52 

CSF Aβ42/40 (n = 1091)  0.25 0.53 0.33 0.46 0.78 0.81 

Tau Plasma p-tau181 (n = 763) 0.45 0.34 0.28 0.38 0.50 0.46 

Plasma p/np-tau 217 (n = 761) 0.32 0.57 0.35 0.49 0.78 0.76 

CSF p-tau181 (n = 1095) 0.31 0.45 0.32 0.45 0.60 0.61 

CSF p-tau 217 (n = 269) 0.06 0.63 0.51 0.63 0.81 0.81 

CSF p-tau 231 (n = 440) 0.39 0.54 0.37 0.51 0.71 0.75 

Tau PET Braak III-IV SUVR (n = 

1250)  

0.31 0.51 0.37 0.46 0.58 0.58 

Neurodegeneration Plasma NfL (n = 236) 0.27 0.24 0.17 0.19 0.20 0.28 

CSF NfL (n = 728) 0.51 0.43 0.36 0.46 0.49 0.51 

CSF neurogranin (n = 726) 0.18 0.26 0.24 0.30 0.35 0.38 

MRI hippocampus volume (n = 
1226) 

0.53 0.48 0.39 0.55 0.47 0.50 

MRI ventricle volume (n = 1226) 0.57 0.33 0.28 0.40 0.33 0.35 

MRI AD thickness signature (n = 
1226) 

0.46 0.48 0.36 0.48 0.47 0.52 

Domain-weighted average 0.29 0.50 0.37 0.48 0.56 0.60 

Correlations are computed on the subset of data with complete data for all staging variables. n denotes number of observations of the validation 2 
variable. Bold text indicates the strongest correlation across staging variables. MMSE = Mini Mental State Examination; ADAS-cog = Alzheimer's 3 
Disease Assessment Scale – cognitive subscale; CDR-SB = Clinical Dementia Rating – Sum of Boxes; SUVR = Standardized Uptake Value Ratio; 4 
AD = Alzheimer's disease, MCI = Mild Cognitive Impairment.   5 
aDiagnosis coded numerically as 0 = cognitively unimpaired, 1 = MCI, 2 = dementia. 6 
 7 
 8 
  9 
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Table 4 Available longitudinal biomarker data and correlation to predicted disease time in the ADNI and BioFINDER cohorts 1 
 ADNI BioFINDER 

Measurements Subjects Spearman ρ 

with predicted 
disease time 

Measurements Subjects Spearman ρ 

with predicted 
disease time 

Model measures 

Aβ PET 2288 1138 0.82 2040 1339 0.83 

ADAS-cog 6237 1447 0.82 6472 2071 0.73 

MMSE 6322 1448 -0.76 6840 2088 -0.72 

Plasma 

Aβ42/40 687 233 -0.38 638 638 -0.51 

P-tau181 686 233 0.66 1006 1006 0.59 

P/Np-tau181 — — — 1006 1006 0.66 

P-tau217 690 233 0.80 1004 1004 0.83 

P/Np-tau217 690 233 0.81 1004 1004 0.84 

P-tau231 — — — 922 922 0.66 

NfL 686 223 0.42 1303 505 0.27 

GFAP 684 233 0.54 943 943 0.53 

CSF 

Aβ42 2283 1213 -0.69 2702 1888 -0.71 

Aβ42/40 684 416 -0.80 2702 1888 -0.78 

P-tau181/Aβ42 2283 1213 0.78 2707 1893 0.63 

P-tau181 2283 1213 0.57 2707 1893 0.63 

P-tau217 — — — 1594 799 0.74 

P-tau231 — — — 610 610 0.80 

Total tau 2284 1213 0.53 2707 1893 0.58 

NfL 325 325 0.42 2252 1438 0.54 

Neurogranin 325 325 0.33 2252 1436 0.54 

YKL-40 463 121 0.12 2254 1440 0.29 

sTREM2 1275 745 -0.01 2255 1441 0.15 

MRI 

Ventricles volume 5343 1411 0.39 2080 1258 0.44 

Hippocampus 

volume 

5106 1393 -0.63 2080 1258 -0.62 

AD thickness 
signature 

3781 839 -0.68 2080 1258 -0.66 

PET 

Aβ PET SUVR 2288 1138 0.82 2040 1339 0.83 

Tau PET SUVR 

(Braak I) 

891 533 0.71 2089 1254 0.75 

Tau PET SUVR 
(Braak III-IV) 

891 533 0.66 2089 1254 0.72 

Tau PET SUVR 
(Braak V-VI) 

891 533 0.52 2089 1254 0.55 

FDG PET SUVR 1987 976 -0.68 — — — 

ADAS-cog = Alzheimer's Disease Assessment Scale – cognitive subscale; MMSE = Mini Mental State Examination; AD = Alzheimer's disease; 2 
SUVR = Standardized Uptake Value Ratio.  3 
  4 
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