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Estimating the time course of biomarker changes in

Alzheimer’s disease

Lars Lau Raket,!? Alexa Pichet Binette,! Niklas Mattsson-Carlgren,!-3-* Shorena Janelidze,! for
the Alzheimer’s Disease Neuroimaging Initiative, Henrik Zetterberg,>-%7-8-%-19 Nicholas J.

Ashton,>!1-12 Kaj Blennow,>-% Erik Stomrud,!-!3 Sebastian Palmqvist!-!3 and Oskar Hansson'-!3

Abstract

Recent advancements in biomarkers have transformed Alzheimer’s disease (AD) diagnosis from
being purely symptom-based to include biological criteria. With newstreatments targeting AD’s
core biology, understanding the timeline of biological changes is crucial as the disease

progresses over decades.

Longitudinal data from amyloid-beta (AB) PET and cognitive tests (MMSE and ADAS-cog)
from the Alzheimer’s Disease Neuroimaging Initiative (n=1,448) and BioFINDER (n=2,088)
were used to stage patients against an estimated continuous disease timeline (predicted time
since AB-PET positivity). The estimated timeline was validated by comparing correlations with
unseen biomarkers and cognitive measures against alternative staging approaches. Trajectories
for plasma, CSF, MRI, and PET biomarkers, measuring AP, tau, and neurodegeneration, were

mapped along this AD.continuum.

The proposed staging approach was found to produce stronger correlations with unseen cognitive
measures and biomarkers compared to alternative staging methods, including amyloid and tau
PET clocks (all pairwise p<0.05). Findings related to biomarker trajectories were highly
consistent-across cohorts. The period from AB-PET positivity to end-stage AD dementia (MMSE
= 0) was estimated at 20-25 years, with a presymptomatic phase of 7-11 years. CSF AB42/40
became abnormal about a year before AB-PET positivity, CSF p-tau231, p-tau217, and plasma
p/np-tau217 1-3 years after, and tau-PET about 8 years after. Neurodegenerative biomarkers,
such as hippocampal volume, became clearly abnormal in early dementia stages, 14-16 years
after AB-PET positivity.
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The progression from initial biomarker abnormality to severe AD spans two decades. Disease
progression modeling elucidates the evolution of AD biomarkers and cognition, highlighting the

relative timing of biomarker abnormalities. These models can determine disease stages, aiding
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prognosis and evaluation for disease-modifying treatments.
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Introduction

Alzheimer’s disease (AD) is biologically defined by the abnormal presence of beta-amyloid (A)
plaques and tau-containing neurofibrillary tangles in the brain. AD progresses slowly, starting
with a preclinical (presymptomatic) phase.where the pathological hallmarks are present with no
objectively verified cognition symptoms. This preclinical phase has been suggested to last up to
several decades.! The preclinical phase is followed by a prodromal phase where cognitive
symptoms emerge and increéase.in severity, followed by dementia where patients lose their ability

to independently perform activities of daily living.

Over the last decades, a wide range of biomarkers for AD have become available. These include
assays to measure ‘A [} and tau proteins in cerebrospinal fluid (CSF), positron emission
tomography (PET) imaging of AD proteinopathies, volumetric magnetic resonance imaging
(MRT), and.accurate blood-based biomarkers reproducing CSF findings.? Currently available
biomarkers enable precise differential diagnosis of AD, and provide staging and prognostic
information.>- Based on animal studies, neuropathology and longitudinal biomarker studies, a
hypothetical biomarker cascade following the Alzheimer’s pathological cascade has been
proposed.” This model suggests that the prototypical disease trajectory is characterized by initial
AP plaque accumulation in the brain, followed by spreading of tau pathology and
neurodegeneration which in combination leads to cognitive symptoms. This Alzheimer’s

biomarker cascade has been largely validated and refined in many previous of studies.?®?
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However, some key unknowns remain. The temporal aspects of AD in relation to biomarker
changes has been underappreciated, with most studies either relating biomarkers to other
biomarkers® or relating them to coarse disease stages based on symptom severity evaluated at
single time points.!? Typical groupings (cognitively unimpaired [CU], mild cognitive impairment
[MCI], dementia) represent stages that can last many years with a large severity spanwithin
groups, with ambiguous differentiation between groups, and which can be influenced. by co-
pathologies and premorbid cognitive capacity. Such staging does not reflect.the continuous
progressive nature of AD, and therefore there are still many unknowns around the fine-scale time

evolution of AD.

The current understanding of the evolution of AD in continuous time has relied heavily on
studies in autosomal dominant AD. A key reason for this is that knowledge of a subject’s
mutation type and other characteristics can be used to roughly predict age of symptom onset and
progression pattern.'! This enables calculation of-a subject-level disease time scale which in turn
enable continuous-time population-level modeling of biomarker trajectories.!>!3 This approach
has been instrumental in understanding not only autosomal dominant disease, but also sporadic
AD which has many pathophysiological similarities, but also some differences that hamper this

extrapolation.!#

Several methods have been proposed to enable better modeling of biomarker trajectories in
sporadic AD. Biologically-consistent estimates of biomarker trajectories along A} or tau
accumulation as measured by PET have been reported.®-!3:1¢ To derive a continuous timeline,
mimicking the time to symptom onset construct in autosomal dominant AD, amyloid and tau
clocks that map PET signals to time and a range of alternative different latent-time disease
progression models utilizing both biomarkers and clinical data have been proposed.!’-23 As
opposed to the estimated time to symptom onset in autosomal dominant AD, these approaches
make use of patterns observed in longitudinal clinical and/or biomarker data to dynamically

derive a new latent time scale on which the longitudinal observations are aligned.?*

In this paper, we propose a disease progression model that utilizes both clinical and A PET data
to model the time-course of AD over a latent time scale that represents predicted time since A 3-
PET positivity. We apply the model in well-characterized participants who are either A 3-

negative CU or have biomarker-confirmed AD (all disease stages) in two large cohorts: the
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Swedish BioFINDER study.
Based on the modeling, continuous-time disease stages representing time since A PET
positivity were predicted for all subjects, which allowed continuous and time-consistent
modeling of biomarker trajectories along the Alzheimer’s continuum. We report trajectories for a
wide selection of biomarkers measuring aspects of amyloidosis, tauopathy, neurodegeneration
and inflammation along predicted time since A 3 positivity, including CSF A42/40 and A
PET, tau PET, various p-tau species in CSF and plasma, CSF/plasma neurofilament light (NfL)
and volumetric MRI, plasma glial fibrillary acidic protein (GFAP) and CSF sTREM2. These

findings shed new light on the fine-scale time evolution of AD.

Materials and methods

Participants

This study included participants from the North American Alzheimer’s Disease Neuroimaging
Initiative (ADNTI) that were recruited under protocols 1, GO, 2 and 3 (NCT00106899,
NCT01078636, NCT01231971, and NCT02854033) and participants from the Swedish
BioFINDER Study that were recruited under protocols 1 and 2 (NCT01208675 and
NCT03174938). All participants in:both studies provided written informed consent and the

studies were approved by the appropriate ethical review authorities.

ADNI is a multi-site study launched in 2003 as a public-private partnership. The primary goal of
ADNI has been'to test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of MCI and early

AD. For up-to-date information, see www.adni-info.org.

BioFINDER-1 followed CU, MCI, and dementia participants recruited between 2009 and 2014
for up to 10 years. BioFINDER-2 is an ongoing longitudinal study including participants across
the full spectrum of AD, which started in 2017.

The current study used ADNI data collected from 2005 and up to 24 August 2023, all
BioFINDER-1 data from 2009 to 12 December 2023 and BioFINDER-2 data collected from
2017 to 24 January 2024.
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Inclusion criteria

The inclusion and exclusion criteria for ADNI are described in the study protocols available on
the ADNI webpage, and inclusion and exclusion criteria for the BioFINDER studies have been
previously described (NCT01208675 and NCT03174938).2°-27 Briefly summarized, in.the
BioFINDER studies, cognitively unimpaired participants did not fulfill the NIA-AA critiera for
MCI or dementia?® (performed within normal ranges on a large cognitive test battery) and were
between 40 and 100 years old. Cognitively impaired participants had beenteferred. to the
participating memory clinics at Skine University Hospital or Angelholm Hospital in Sweden.
Participants with MCI did not fulfil the DSM-5 criteria for majorCognitive disorder?® and
performed below normal ranges in at least one cognitive domain.as previously described for
BioFINDER-13% and for BioFINDER-227. All participants understood Swedish to the extent that

an interpreter was not necessary.

For the present study, we included participants who at.baseline were at least 50 years of age, and
had a valid assessment of their cognitive status.(ADNI: unimpaired, significant memory concern,
early MCI, late MCI, dementia; BioFINDER: unimpaired, subjective cognitive decline [SCD],
MCI, dementia), a valid assessment of A [} status (see details below), and at least one

measurement of A PET, MMSE or ADAS-cog.

In BioFINDER, symptomatic participants with an established primary etiology other than AD
were excluded. Etiology was assessed based on a thorough longitudinal clinical evaluation,
biomarker information, and in some cases genetic information. These clinical evaluation criteria
has been described previously.>> Patients were only excluded based on the clinically established

primary etiology, meaning that no effort was done to exclude AD patients with co-pathologies.

CU ApB-negative (AB-) and AB-positive (AB+) participants were included. Since the goal was to
estimate AD-specific trajectories, participants were excluded if they had negative A 3 biomarkers

at visits where they showed of objective cognitive impairment (diagnosis of MCI or dementia or

CDR global score > 0 or MMSE < 26).
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AP status

AP status (AB+/AB-) was determined using CSF or PET at every visit where either was
available. For CSF, AB-positivity was assessed by the AB42/40 ratio. In ADNI, AB42 and AB40
levels were measured on a cobas e 601 analyzer using Roche Elecsys immunoassays (AB42/40
positivity cutoff <0.0666) or by 2D-UPLC tandem mass spectrometry3! (AB42/40 positivity
cutoff <0.138). In BioFINDER, AB42 and AP40 were analyzed on a cobas e 601 analyzer using
the Roche NeuroToolKit and the cutoff for AB-positivity was <0.066 in BioFINDER-13? and
<0.080 in BioFINDER-2.33 The PET tracers [!®F]florbetapir, [!®F]florbetaben and
['1C]Pittsburgh Compound B were used to establish AB-PET positivity in ADNI using published
cut offs by the ADNI PET core, defined by standardized uptake valueratio (SUVR) computed in
a composite cortical region referenced to the cerebellum. Cut-offs'were 1.11 SUVR for
[18F]florbetapir and 1.08 SUVR for ['3F]florbetaben and 1.22 for ['! C]Pittsburgh Compound
B.34-36 In BioFINDER, AB-PET positivity was established using [!®F]flutemetamol SUVR in a

composite cortical region referenced to the cerebellum with a cutoff of 1.03.37

Negative A} status was carried backwards, so individuals without a valid A status at baseline

but a post-baseline A - status were assumed A 3- at baseline. A+ status was carried forward.

In some cases, both CSF and PET AP biomarkers were available and produced discrepant results
(ADNI 229/1954 visits; BioFINDER 271/1078 visits). Discrepant results were primarily in the
form of AP+ status on/CSF and A- status on PET (ADNI 142/229; BioFINDER 217/271) and
mostly observed in CU subjects (ADNI 126/229; BioFINDER 196/271), consistent with previous
observations that.CSF AP biomarkers typically become abnormal before PET A biomarkers.”-38
For.CU subjects, we assumed A -positivity if just one of the biomarkers was abnormal. For

cognitively impaired subjects, we required AB-PET positivity.
Cognitive, functional and clinical outcomes

We used longitudinal Mini-Mental State Examination (MMSE) and Alzheimer’s Disease
Assessment Scale-cognitive subscale (ADAS-cog)3? total scores for the disease progression
modeling in both cohorts. In ADNI, the 13-item version of ADAS-cog was used, while in

BioFINDER, a 2-item version (including immediate and delayed recall) was used.
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For exploring the construct validity of the estimated timeline, we used longitudinal scores from
the Clinical Dementia Rating — sum of boxes (CDR-SB) and Trail making B in both cohorts. In

ADNI, we further used logical memory delayed recall scores.

For validation analyses and for describing the clinical stages associated with the disease
progression model analyses, we used clinical diagnosis (CU, MCI, dementia) at each visit. In
BioFINDER, clinical diagnosis was not consistently available at all follow-up visits, so we
imputed missing diagnoses at visits where we had high certainty of the diagnosis using the
following imputation rules: when visits before and after the missing visit had the same diagnosis,
all in-between visits with missing diagnosis were interpolated to have the same diagnosis.
Cognitively unimpaired status was carried backwards, and diagnoses of dementia were carried
forward. When available, CDR global score (0 = CU, 0.5 =MCI, =1 = dementia) was used to

impute clinical diagnosis at the remaining visits with.missing diagnosis.
Plasma, CSF and imaging biomarkers

The following section describes the biomarkers that were used for disease progression modeling,
validation or estimation of biomarker trajectories over the AD continuum. The availability of
individual biomarkers differed between studies and subject. Sample sizes of available biomarker

data will be stated in analyses.

Plasma

In ADNI, included plasma biomarkers were p-taul81, neurofilament light (NfL), and glial
fibrillary acidic protein (GFAP), all measured by an electrochemiluminescence immunoassay on
the fully automated cobas € 601 (Roche Diagnostics NeuroToolKit),*? p-tau217, p/np-tau217,
defined as the ratio of p-tau217 to np-tau217, and AP42/40 measured by liquid chromatography—

tandem high-resolution mass spectrometry analysis (PrecivityAD2).4!

In BioFINDER, included plasma biomarkers were NfL measured using the Roche Diagnostics
NeuroToolKit described above, glial fibrillary acidic protein (GFAP) measured using a single
molecule array (Simoa)-based assay,*? p-taul81, p/np-taul81, p-tau217, p/np-tau217 and
APB42/40 measured by liquid chromatography—tandem high-resolution mass spectrometry

analysis,**43 and p-tau231 using a Simoa developed at the University of Gothenburg.**
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CSF

In ADNI, included CSF biomarkers were A42 and AB42/40 ratio, p-taul81 and p-taul81/ Ap42
ratio measured on a cobas e 601 analyzer using Roche Elecsys immunoassays,*® NfL measured
with an enzyme-linked immunosorbent assay (ELISA) from UmanDiagnostic AB,*6 sSTREM?2

and neurogranin measured with immunoassays using the MSD platform,*7-48 and YKL-40

measured using the MicroVue YKL-40 ELISA.#

In BioFINDER, included CSF biomarkers were A 342, AB42/40 ratio, p-taul81, p-taul81/ Ap42
ratio, total tau, NfL, neurogranin, and STREM2 and YKL-40 all measured on a cobas e 601
analyzer using the Roche NeuroToolKit. Furthermore, BioFINDER-included CSF p-tau217
measured on the MSD platform using an assay developed by Eli Lilly,3° and CSF p-tau231
measured on the Simoa platform developed at University of Gothenburg using an antibody from

ADx NeuroSciences.>!
Imaging

In ADNI, included imaging biomarkers were AB-PET centiloid computed for the tracers
['1C]Pittsburg Compound B, [!®F]flertaucipir and ['®F]florbetaben based on standardized uptake
value (SUVR) ratio in a compesite cortical region of interest normalized to the whole
cerebellum,’? tau-PET SUVR using ['®F]flortaucipir in Braak regions I, III-IV and V-VI
normalized to inferior cerebellar grey matter uptake,®® ['®*F]JFDG PET SUVR in a meta region of
interest,* MRI biomarkers of hippocampal and ventricular volume normalized to whole-brain

volume> and‘a composite cortical thickness AD-signature’®, all derived using FreeSurfer.

In BioFINDER; included biomarkers were AB-PET SUVR using [!3F]flutemetamol in a
composite cortical region normalized to the cerebellum,>” tau-PET SUVR using ['®*FJR0948 in
Braak regions I, ITI-IV and V-VI normalized to the inferior cerebellum grey matter,>” and MRI
biomarkers of hippocampal and ventricular volume normalized to whole-brain volume and

composite cortical thickness AD-signature, all derived using FreeSurfer.

GZ0Z J8quiaAoN /| uo Jasn uopuoT 8bs|j0) AlsisAlun Aq £E0ELES/E L FIeMe/UIRIG/SE0L 0 | /I0P/8|o1e-80UBAPE/UIRI]/WO0D dNO"0IWapEI.//:Sd)y WO} POPEOjUMO(]



O O 00 N O o M W

17
18
19

20

21

22

23

24
25
26

27
28

Statistical analysis

Disease progression modeling

We developed a semiparametric extension of the multivariate latent-time disease progression
model described by Kiihnel et al.>® which estimates trajectories of outcome measures by aligning
multivariate subject-level outcome trajectories. As opposed to many other latent~time disease
progression models, this modeling approach estimates mean trajectories in a‘time-consistent
manner by using relative visit timings for individual subjects as a scaffold for the time-based
estimation. Consequently, a change in values of the mean trajectory-associated with a change in
time unit (e.g., 1 year) is reflective of the typical change observed over the same time unit for
subjects that were matched to that part of the trajectory. The first step of estimating a time-
consistent biomarker cascade was to estimate a continuous-time disease trajectory for selected
outcomes simultaneously. This involved predicting the continuous-time progression of each
subject along this estimated multivariate disease trajectory. The estimated multivariate disease
trajectory was based on longitudinal measures of Ap PET, MMSE and ADAS-cog. The inclusion
of both an Af} biomarker and clinical scales.ensures adequate staging information in both pre-

symptomatic and symptomatic stages of AD.

The model was defined as follows. Let y; ;, denote subject i’s observation of the kth outcome
measure t;; years after the baseline visit. The mean trajectory 6, of the kth outcome over the

disease continuum was estimated from the model

Yijk = Hk(tij + Spistatus(i) T Sbiapg-() T s;) + xy + €ijk (1)
where.we will refer to the time argument t;; + Sy searus (i) + Swiap-(p T S; that is shared across
outcomes as disease time.

The'model parameters were modeled as follows:

e 0, was a monotone Hermite spline with 5 degrees of freedom. The spline had 5 + 2
knots. Relative to average baseline disease time of the cognitively normal A3+ group, the
5 internal knots were placed at -8.33, 0, 8.33, 16.67, and 25 years with two additional

knots replicating the boundary values placed 1 month before and after these respective

knots to limit boundary artifacts.

10
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®  Spistarus(i) Was a fixed effect time-shift describing the average shift in disease time of the

baseline status group of subject i (i.e., CU, SCD, MCI or dementia in the BioFINDER
study)

®  Spiap-(» Was a fixed effect time-shift describing the average shift in disease time

associated with A - status at baseline

e s; was a random effect time-shift describing the time deviation of subject i relative to

their baseline group and AB+/Ap- status

e x; wasarandom effect intercept describing subject i’s consistent deviation in outcome
measure k, for example the consistent deviation observed for patients with comorbidities
or low education that score worse on clinical scales compared to their AD progression
stage, an unstructured covariance matrix was used to:model the correlation across

outcomes

* ¢;j, was independent identically distributed Gaussian noise with separate variance

parameters for each outcome £.

To avoid overparameterization, the fixed effect time shifts were anchored such that a disease
time of 0 was the time at which a subject on average reached A+ status measured by PET. The
predicted disease time thus represents predicted years since AP} PET positivity. The estimation
process is illustrated in Figure 1. All parameters in the model were estimated using maximum
likelihood estimation. The maximum a posteriori criterion was used for prediction of random

effects. Code for fitting the model is available in the progmod R package.>’
Model validation

The construct validity of the disease progression model was assessed internally in ADNI and
BioFINDER based on the predicted disease time’s correlation to longitudinal scores from clinical
scales measuring cognition and function (Trail making B, Logical memory delayed recall, CDR -
SB), and biomarkers related to A, tau and neurodegeneration that were not included in the
model. The individual scales and biomarkers were previously described, and biomarkers were
grouped into the A3, tau and neurodegeneration. The absolute pairwise Spearman correlations to

these scales and biomarkers, as well as the domain-weighted average (average of average

11
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absolute pairwise Spearman correlation within each of the four domains: cognition and function,
AP, tau, neurodegeneration), were compared to alternative longitudinal staging variables related
to disease progression. These staging variables included age, clinical diagnosis (0 =CU, 1 =
MCI, 2 = dementia), MMSE, ADAS-cog, and AP PET. Furthermore, three separate analyses in
ADNI compared predicted time since A} PET positivity to recently published amyloid and tau
clocks estimated based on longitudinal A PET and tau PET data following the‘algorithm
outlined by Mila-Aloma and colleagues,?? and to the two established continuous-time disease
progression models GRACE!® and LTIMM®® with model fitted on the'same variables as the
proposed model based on published implementations. Pairwise comparisons-between predicted
time since AP PET positivity and all other staging measures were done by comparing absolute
correlation across all scales and biomarkers with a binomial sign tests. The analysis only
included visits where all staging variables were available. to ensure comparability (staging
variable assigned to same visit, but not required to.be collected on the same day, e.g., there were

often several weeks difference between clinical scale data collection and PET scans).

Estimating biomarker trajectories

Based on the model (1), each subject had their time since AB-PET positivity predicted at all time
points. Biomarker trajectories were then analyzed along this predicted disease timeline using a
robust quantile mixed-effects spline models with a random Laplace distributed intercept within
participants to estimate the median biomarker trajectory.®! Natural cubic splines with degrees of
freedom ranging from 0 (no time dependence), 1 (linear slope) and up to 8 were used to
parametrize each median biomarker trajectory, and the model with the lowest Bayesian
Information Criterion (BIC) was selected. These biomarkers trajectories were normalized against
the median and 95% percentile (in direction of abnormality) of the biomarker values of CU A -
negative individuals. The empirical case bootstrap (1000 resamplings) was used to calculate 95%

confidence intervals of when individual biomarkers crossed 95% abnormality percentiles.

12
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Results

Study participants

In ADNI, 1963 subjects fulfilled the inclusion criteria and 2277 subjects from BioFINDER
fulfilled the inclusion criteria. Among these subjects, 515 subjects in ADNI and 189 subjects in
BioFINDER were excluded based on the criteria related to having concurrent A - status and

objective cognitive impairment. The baseline characteristics of the 1448 ADNI'subjects and

2088 BioFINDER subjects included in the present study are given in Table 1.
Disease progression modeling results and validation

The observed trajectories of the outcome measures plotted against the predicted years since PET
AB-positivity in the two cohorts are shown in Figure 2.-There were substantial overlaps between
longitudinal clinical diagnoses stratified by A status along the predicted disease time scale, but
the distributions were very similar between cohorts (Figures S1 and S2, Supplementary
Material). Sensitivity analyses using only-available diagnoses in BioFINDER (data not shown)
suggested that the imputation strategy for missing diagnoses in BIoFINDER did not affect the

estimated distribution of diagnoses along the predicted disease time scale.

Inspection of conditional residuals indicated a symmetric distribution along the predicted disease
timeline. However, we observed heterogeneous variance in both cohorts, which increased with
disease age (Figure S3/and S4, Supplementary Material). This indicates that there is variability in
the datasets not fully accounted for by the model. However, we believe this deviation does not
significantly impact the conclusions of our subsequent analyses, as it is more likely to increase
uncertainty rather than introduce a meaningful bias. Comparison of the proposed model with
sub-models excluding random effects suggested that both the random time shifts and random
mtercepts captured a very substantial amount of variation in the data. Most notably, excluding
the random shift parameter s; (1 degree of freedom) increased the estimated residual variance in
ADNI by 9% for AB-PET centiloid, 113% for ADAS-cog (13-item), and 211% for MMSE
(Table S1, Supplementary Material). In BioFINDER, the increases in estimated residual variance
associated with excluding s;were 10% for AB-PET SUVR, 12% for ADAS-cog (2-item), and
94% for MMSE (Table S2, Supplementary Material).

13

GZ0Z J8quiaAoN /| uo Jasn uopuoT 8bs|j0) AlsisAlun Aq £E0ELES/E L FIeMe/UIRIG/SE0L 0 | /I0P/8|o1e-80UBAPE/UIRI]/WO0D dNO"0IWapEI.//:Sd)y WO} POPEOjUMO(]



O OW 00 N O o M WON =

N N N N N N 2 o m m o o
a A WO N =, O ©W 00 N O o B WO N =

26

27
28
29
30

The correlations between the predicted disease time, alternative staging variables and unseen
validation variables in ADNI and BioFINDER are given in Tables 2 and 3 respectively.
Comparisons of correlations for predicted disease time and an amyloid clock and a tau clock are
given in Table S3 in the Supplementary Material and comparisons to other disease progression
models are given in Table S4 in the Supplementary Material. To test the validity of the predicted
disease time as a single continuous staging measure that effectively captures overall disease
progression, the simultaneous pattern of correlations to the full set of validation variables was
compared between predicted disease time and the alternative staging variables. In both cohorts,
the predicted disease time showed a significantly stronger pattern of correlation to the set of
validation variables compared to all other staging variables (all pairwise p < 0.05; binomial sign
test), including the amyloid PET clock (»p = 0.0034) and the tau PET clock in (p = 0.0002) in
ADNI. The predicted disease showed numerically strongeraverage correlations than GRACE
disease time (p = 0.1796) and LTIMM disease time (p =0.0001). Notably, predicted disease time
and GRACE disease time showed similar correlations for validation variables in the cognition
and function and neurodegeneration categories, while predicted disease time showed markedly
stronger correlations across all validation variables in the AP and tau categories. We note that
while predicted disease time had the strongest correlations as a single measure, the validation
variables may be affected by multiple independent processes. For example, we found modest but
significant partial correlations of age on most validation variables after correcting for predicted
disease time, with the'smallest partial correlations for AD-specific biomarkers and largest partial
correlations across neurodegenerative biomarkers (Table S5, Supplementary Material). We note
that correlations‘were calculated on a common subset of observations where all staging variables
were observed to ensure comparability. Figures S5-S8 in the Supplementary Material shows
comparisons of predicted disease time, AB-PET and tau-PET as staging variables for selected

clinical scales and biomarkers.
Biomarker trajectories

For the biomarkers specified in Table 4, longitudinal models for the biomarker trajectories as a
function of predicted disease time were fitted. The trajectories were normalized against the
median and 95% abnormality quantile for AB- CU, to investigate the AD-specific abnormality

trajectories. Estimated biomarker abnormality trajectories generally showed consistent patterns
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across cohorts (Figure 3; Figure S9, Supplementary Material), and the time at which biomarkers
reached abnormality relative to predicted disease time was highly consistent across both cohorts
(Figure 4). CSF AP42/40 reached 95% abnormality approximately 1 year prior to predicted time
of AB-PET positivity and was largely consistent with CSF p-taul81/ Ap42 time of abnormality,
but not CSF p-taul81 alone (abnormal 10 years after predicted predicted AP PET positivity).
CSF p-tau231 and p-tau217, that were only available in BioFINDER, were found to reach 95%
abnormality 1 and 3 years after predicted AP PET positivity, respectively. Plasma p/np-tau217
reached the 95% abnormality threshold 2-3 years after predicted AP PET positivity. In
BioFINDER, plasma p-tau217 behaved very similarly to p/np-tau217, while in ADNI, plasma p-
tau217 showed approximately 3 years delay in reaching 95% abnormality compared to plasma
p/np-tau217. Tau-PET in Braak regions I, II-IV and V-VIaseached this abnormality threshold,
respectively, 7-9 years, 10-12 years, and 13-15 after AB-PET positivity. ADAS-cog and MMSE
both became abnormal during the MCI stage of disease(11-15 years after predicted Ap PET
positivity), while volumetric MRI measures of hippocampus and cortical thickness only reached
95% abnormality in the dementia stages of disease (15-16 years after predicted Ap PET
positivity). Sensitivity analyses to assess the impact of different biomarker availability within
patients on the estimated abnormality of tau biomarkers found highly consistent patterns of
pairwise abnormality timings betweenbiomarkers on subsets of patients with both tau
biomarkers available and only limited numerical differences in estimates of abnormality timings

based on ADNI data‘(Section 8, Supplementary Material).

Discussion

In this study, we used latent-time disease progression modeling of A PET and cognitive scale
scores to predict years since AP PET positivity for subjects in ADNI and BioFINDER. The
predicted disease time was shown to outperform other clinical scales, biomarkers and biomarker
clocks that are often used for disease staging, including clinical diagnosis, MMSE, amyloid clock
and tau clock, in terms of overall strength of correlation to unseen clinical scores and biomarkers
representing AP, tau, and neurodegeneration. Predicted disease time was also shown to produce

numerically stronger correlations to the validation variables than alternative disease staging
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models with access to the same information, but the difference did not reach statistical
significance compared to the GRACE model. These findings are consistent with the findings of
Kiihnel and colleagues® who found that a similar nonlinear mixed-effects disease progression

model produced significantly better predictions of future cognitive trajectories than LTIMM and
GRACE.

Compared to conventional staging approaches, predicted disease time has the advantage that a
prediction based on any set of observed cross-sectional or longitudinal data will enable
calculation of predicted disease time at any future visit, while some staging measures, such as
clinical scales or PET-based biomarkers may be difficult to project to visits where they were not
assessed. Amyloid and tau PET clocks offer an alternative solution to this problem, but as
demonstrated here, these biomarker clocks produce less generalizable stagings than our proposed
model. The difference which may be caused by the clocks capturing a single aspect of the
disease, that there may be ranges of AP and tau PET quantifications that have low predictive
value for disease staging (e.g. values below abnormality thresholds, Ap PET in later
symptomatic disease stages), and that the clocks are more affected by noise in the biomarker data
due to the more direct translations. Recent work has demonstrated the feasibility of estimating
typical biomarker profiles associated with continuous-time disease stage from latent-time disease
progression modeling, which in turn enable improved prognostication based on a collection of

biomarkers measured at'a single visit that reflect different aspects of Alzheimer’s disease.*

Based on predicted years since AP PET positivity, biomarker trajectories were estimated on a
joint time scale, and the abnormality of individual biomarkers along the disease timeline were
analyzed: This provided new insights, by estimating the temporal relations of when biomarkers
and clinical outcome measures typically become abnormal, and the temporal relations between
markers of insoluble and soluble pathology. The trajectories of imaging biomarkers were well
aligned with the amyloid cascade hypothesis, suggesting that the typical evolution of biomarker
profiles along the AD trajectory is one where A3 biomarkers initially become abnormal,
followed by abnormal tau biomarkers and finally abnormal neurodegeneration biomarkers.
However, it was found that that amyloidopathy defined using a biofluid -based biomarker (CSF
AB42/40) was detectable prior to A PET abnormality, which is in agreement with previous

results comparing CSF and PET AP biomarkers.® Further, we found that some biomarkers of
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soluble phosphorylated tau became detectably abnormal 1-3 years after A3 biomarkers (CSF p-
tau231, CSP p-tau217, plasma p/np-tau217), many years earlier than tau PET signals became
abnormal. P-tau biomarkers (especially p-tau231 but to some extent also p-tau217) have been
shown to be very closely associated with early AB accumulation,*462:63 so the observed signal
could reflect early AB-induced changes in p-tau and not insoluble tau pathology. Compared to
CSF p-tau231 and p-tau217, p-taul81 increased considerably later, reaching 95% abnormality
approximately 10 years after A PET. This difference may be partly explained by the effect of
different assays analytical protocols for p-taul81 compared to p-tau231“and p-tau217.%-6* The
findings of the present study are largely in agreement with recent findings by Jia and colleagues
in a Chinese cohort with 20 years follow-up.%> In particular, the Chinese study suggested that
CSF Ap-biomarkers became abnormal 14-18 years before diagnosis and CDR-SB scores
becoming abnormal 6 years prior to diagnosis, which is consistent with the 12-year gap between
abnormality of CSF AB42/40 and ADAS-cog in the current study. Differences in timing of
abnormality of other CSF markers such as p-taul81relative to CSF amyloid positivity (3-7 years
in Chinese study, 11 years in the present study) may reflect differences in assays, definition of
abnormality thresholds, and other methodological differences (including use of imputation of

biomarker values in the study by Jia and colleagues).

An important consideration for the estimated time course of biomarker changes presented here is
that it does not directly reflect the biological progression of disease but is also influenced by the
sensitivity and stability of the biomarker and the natural variation of the biomarker in non-AD
populations. The latter feature means that biomarkers that are not specific to AD, such as the
neurodegenerative biomarkers considered here, will present as less anomalous compared to
biomarkers closer related to AD pathology, but may still track disease progression well within a

population of AD patients.

Overall, we showed that despite differences in assays, tracers and processing methods, AD
progression was associated with a highly consistent pattern of biomarker progression across two
separate cohorts. With the availability of the first approved disease-modifying therapies for
Alzheimer’s disease in the form of high-clearance AB-targeting immunotherapies, biomarkers
will play an increasingly important role in verification of the presence of AP pathology and early

identification of patients. Biomarker-based staging of patients has already been implemented in
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some clinical trials through tau-PET-based inclusion criteria,®®-%7 in an effort to exclude patients
who are early on the disease continuum and thus unlikely to decline during the study period (thus
masking a treatment effect) or patients who are late on the disease continuum and thus may be
too advanced to fully benefit of the treatment. A natural hypothesis which is being tested in
several large studies is that AB-targeting immunotherapies would be most efficaciousif delivered
in the earliest stages of AD, where little tau pathology is present.®® Resultingly, it is important to
know the typical duration of elevated AP plaque load without elevated tau. Recently, Therneau
and colleagues used an accelerated failure time model with similarities tothe approach presented
here to estimate the temporal relationship between AB-PET and tau=PET.®® They found the
average delay between when AB-PET and tau-PET would reach a change point and begin to
increase abnormally to be 13.3 years. This duration is slightly longer than the difference between
when AB-PET and tau-PET became abnormal in the present analysis, with differences of 9 years
(Braak I) and 12 years (Braak I1I1-IV) in ADNI and 8 years (Braak I) and 10 years (Braak I11-IV)
in BioFINDER. The difference in the type of eventsstudied (change in accumulation vs.

abnormality relative to AP- CU) may have contributed to the differences.

Our work has some limitations. Staging of patients was achieved by modeling under certain
assumptions. A key assumption ‘was that AD can be described as evolving around a single
multivariate trajectory on asingle time scale. However, there may exist AD subtypes with
distinct trajectories,’® and rate of decline and cognitive manifestation can be affected by patient
characteristics such as age, comorbidities, and co-pathologies.*27-33 In particular, we found that
age had substantial partial correlations with neurodegeneration biomarkers after controlling for
predicted.disease time (Table S5, Supplementary Material). In the present study, such variation
was captured by random effects or measurement noise terms. More elaborate modeling of
differences in rate of decline and systematic deviations could yield more precise estimates of
biomarker evolution. Another assumption of the model was that missing data was not
informative, but since patients are more likely to drop out of the study as disease progresses, the
disease progression model may rely on a healthier group of subjects and thus estimate a longer

disease duration in the later stages of disease than what is typically seen in the real world.”!

In conclusion, this study used latent-time modeling to analyze longitudinal data from two large

cohorts of subjects that were well characterized in terms of their AD status. The continuous-time
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staging of patients based on the disease progression model was shown to be superior to existing
methods, and by analyzing biomarker trajectories along the resulting AD continuum, we believe
our study offers the most accurate estimates of the temporal progression of AD pathology to

date.

Data availability

ADNI data is available to qualified academic investigators submitting an online application for

access. For more information, please see the ADNI website http://adni.leniausc.edu/.

Pseudonymized data from BioFINDER will be made available by request from a qualified
academic investigator for the sole purpose of replicating procedures and results presented in the
article and if data transfer is in agreement with EU legislation on the general data protection
regulation and decisions by the Ethical Review Board of Sweden and Region Skéne, which

should be regulated in a material transfer agreement.
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Figure legends

Figure 1 Illustration of the alignment of observed samples from four subjects against
estimated trajectories of outcomes (dotted lines) along the predicted disease time scale. Line
colors differentiate individual subjects while point colors show the diagnosis of a subject at a
given visit. The dotted mean trajectories are estimated simultaneously with the alignment of

individual subject trajectories based on all available data.
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Figure 2 Participants’ longitudinal trajectories of the three measures used to build the
disease progression model. AB PET, ADAS-cog and MMSE in ADNI (N = 1448) and
BioFINDER (N = 2088) plotted against predicted time since AB-PET positivity. The time scale

1s measured in years with 0 is anchored at the time of average A positivity as assessed by PET.

Figure 3 Biomarker trajectories showing abnormality relative to cognitively unimpaired
Ap-negative subjects. Figure shows measures included in the disease progression model, plasma

biomarkers, CSF biomarkers, MRI biomarkers, and PET biomarkers:

Figure 4 Estimated time point of when different measures on average reach 95%
abnormality threshold relative to cognitively unimpaired Ap-negative subjects. A. ADNI
and B. BioFINDER. Lines represent 95% confidence intervals computed using the empirical

case bootstrap.
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Table | Baseline characteristics of subjects in ADNI and BioFINDER

ADNI BioFINDER
N 1448 2088
Female (%) 728 (50%) 1199 (57%)
Education (years) 16 [14, 18] 12 [10, I5]
Age (years) 729 [68.1,77.9] 724 [66.6,76.9]
Follow-up time (years) 281[1.0,4.3] 38[1.6,62]
Cognitively unimpaired at baseline
N 677 1436

Female (%)

395 (58%)

855 (60%)

APOE &4 carriers (%)

200 (32%)

530 (37%)

Education (years) 16 [15, 18] 12710, 15]
Age (years) 7141[67.1,763] 714[650,764]
AB-positive (%) 293 (43%) 499 (35%)
MMSE 29 [29, 30] 29 [28, 30]
MCI at baseline

N 501 400
Female (%) 212 (42%) 202 (50%)
APOE €4 carriers (%) 314 (66%) 286 (72%)
Education (years) 16 [14, 18] 12 [9, 15]

Age (years) 739 [68.8,78.2] 73.8[69.3,77.2]
AB-positive (%) 478 (100%) 400 (100%)
MMSE 28 [26, 29] 27 [25, 28]
Dementia at baseline

N 270 252
Female (%) 121 (45%) 142 (56%)
APOE &4 carriers (%) 194 (75%) 179 (71%)
Education (years) 16 [13,18] 12 [9, 14]

Age (years) 744 [69.1,79.6] 75.1 [70.7, 78.5]
AB-positive (%) 265 (100%) 252 (100%)
MMSE 23 [21, 25] 21118, 24]

Continuous measures are given as median [interquartile range]. MMSE = Mini Mental State Examination.
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Table 2 Spearman correlations (absolute value) between staging variables and unseen validation variables in ADNI

Domain Validation variable Staging variables
Age | Diagnosis* | MMSE | ADAS- AB Predicted disease

cog PET time
Cognition and Trail making B (n=2119) 0.29 053 053 0.58 045 057
function Logical memory delayed recall (n= | 0.06 0.77 0.66 0.75 055 0.70
?ZID7I§-)SB (n=2178) 0.11 0.93 0.68 0.74 0.65 0.82
AB Plasma AB42/40 (n=615) 0.04 025 0.15 0.15 0.42 0.39
CSF AB42/40 (n = 542) 023 0.55 0.38 043 0.78 0.81
Tau Plasma p-taul81 (n=615) 0.28 042 0.35 0.40 0.60 0.66
Plasma p/np-tau217 (n = 618) 0.14 0.56 045 0.50 0.78 0.81
CSF p-taul 81 (n=1340) 0.15 048 0.39 0.44 0.58 0.60
Tau PET Braak Ill-IV SUVR (n = 0.08 0.56 0.38 0.54 0.60 0.64
Neurodegeneration gillsr)na NfL (n=615) 0.51 0.24 022 0.30 027 041
MRI hippocampus volume (n = 038 057 051 058 043 0.59
II"ISP?IZ\Zentricle volume (n=1761) 0.45 0.29 0.29 035 026 0.38
MRI AD thickness signature (n = 0.34 0.55 0.55 0.62 043 0.65
EIEII7)5G) PET SUVR (n = 1045) 0.13 0.57 0.55 0.65 0.44 0.67
Domain-weighted average 0.20 0.53 043 049 0.54 0.63

Correlations are computed on the subset of datawith complete dataforallstaging variables. n denotes number of observations of the validation
variable. Bold text indicates the strongest correlation across staging variablestMMSE = Mini Mental State Examination; ADAS -cog = Alzheimer's
Disease Assessment Scale — cognitive subscale; CDR-SB = Clinical Dementia Rating — Sum of Boxes; SUVR = Standardized Uptake Value Ratio;
AD = Alzheimer's disease, MC| = Mild Cognitive Impairment.

*Diagnosis coded numerically as 0 = cognitively unimpaired;.l. = MCI, 2 = dementia.
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Table 3 Spearman correlations (absolute value) between staging variables and unseen validation variables in BioFINDER

Domain Validation variable Staging variables
Age | Diagnosis®* | MMSE | ADAS- AB Predicted
cog PET disease time
Cognition and Trail making B (n = 1431) 045 049 045 0.52 045 049
function CDR-SB (n = 328) 0.02 0.89 063 075 0.67 0.79
AB Plasma AB42/40 (n = 487) 0.16 033 0.18 035 049 0.52
CSF AB42/40 (n=1091) 025 053 033 0.46 0.78 0.81
Tau Plasma p-taul81 (n =763) 045 0.34 028 0.38 0.50 0.46
Plasma p/np-tau 217 (n =761) | 032 057 035 0.49 0.78 0.76
CSF p-taul81 (n=1095) 031 045 0.32 045 0.60 0.61
CSF p-tau 217 (n =269) 0.06 063 051 063 0.8l 0.81
CSF p-tau 231 (n = 440) 0.39 0.54 037 0.51 0.71 0.75
Tau PET Braak IlI-IV SUVR (n=| 03I 051 037 0.46 0.58 0.58
Neurodegeneration FI’IZair?wll NfL (n =236) 027 0.24 0.17 0.19 0.20 0.28
CSF NfL (n=728) 051 043 036 0.46 049 0.51
CSF neurogranin (n =726) 0.18 0.26 0.24 0.30 0.35 0.38
MRI hippocampus volume (n = 053 0.48 0.39 0.55 047 0.50
II"IzRZI6v)entricIevolume(n =1226) | 0.57 033 0.28 0.40 033 035
M2R2I AD thickness signature (n = | 0.46 048 036 048 047 0.52
Domain-weighted averagtle L 0.29 0.50 037 048 0.56 0.60

Correlationsare computed on the subset of datawith complete datafor allstaging variables. n denotes number of observations of the validation
variable. Bold text indicates the strongest correlation across staging variables. MMSE = Mini Mental State Examination; ADAS -cog = Alzheimer's
Disease Assessment Scale — cognitive subscale; CDR-SB =Clinical Dementia Rating — Sum of Boxes; SUVR = Standardized Uptake Value Ratio;
AD = Alzheimer's disease, MCl = Mild Cognitive Impairment.

*Diagnosis coded numerically as 0 = cognitively unimpaired, | =MCI, 2 = dementia.
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Table 4 Available longitudinal biomarker data and correlation to predicted disease time in the ADNI and BioFINDER cohorts

ADNI BioFINDER
Measurements Subjects Spearman p Measurements Subjects Spearman p
with predicted with predicted
disease time disease time
Model measures
AB PET 2288 1138 0.82 2040 1339 0.83
ADAS-cog 6237 1447 0.82 6472 2071 0.73
MMSE 6322 1448 -0.76 6840 2088 -0.72
Plasma
ApB42/40 687 233 -0.38 638 638 -051
P-taul8I 686 233 0.66 1006 1006 0.59
P/Np-taul 81 — — — 1006 1006 0.66
P-tau217 690 233 0.80 1004 1004 0.83
P/Np-tau217 690 233 038l 1004 1004 0.84
P-tau231 — — — 922 922 0.66
NfL 686 223 0.42 1303 505 0.27
GFAP 684 233 0.54 943 943 0.53
CSF
AB42 2283 1213 -0.69 2702 1888 -0.71
AB42/40 684 416 -0.80 2702 1888 -0.78
P-taul81/A342 2283 1213 0.78 2707 1893 0.63
P-taul8I 2283 1213 0.57 2707 1893 0.63
P-tau217 — — — 1594 799 0.74
P-tau231 — — — 610 610 0.80
Total tau 2284 1213 0.53 2707 1893 0.58
NfL 325 325 042 2252 1438 0.54
Neurogranin 325 325 0.33 2252 1436 0.54
YKL-40 463 121 0.12 2254 1440 0.29
sTREM2 1275 745 -001 2255 1441 0.15
MRI
Ventricles volume 5343 1411 0.39 2080 1258 044
Hippocampus 5106 1393 -0.63 2080 1258 -0.62
volume
AD thickness 3781 839 -0.68 2080 1258 -0.66
sighature
PET
AB PET SUVR 2288 1138 0.82 2040 1339 083
Tau PET SUVR 891 533 0.71 2089 1254 0.75
(Braak )
Tau PET SUVR 891 533 0.66 2089 1254 0.72
(Braak lli=1V)
Tau PET SUVR 891 533 0.52 2089 1254 0.55
(Braak V-VI)
FDG PET SUVR 1987 976 -0.68 — — —

ADAS-cog = Alzheimer's Disease Assessment Scale — cognitive subscale; MMSE = Mini Mental State Examination; AD = Alzheimer's disease

SUVR = Standardized Uptake Value Ratio.
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