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Abstract 59 

Chimeric Antigen-Receptor T-cells (CAR T-cells) targeted at pediatric B-cell precursor 60 

acute lymphoblastic leukemia (B-ALL) have changed the paradigm for treatment of relapsed 61 

and refractory B-ALL. We present a comprehensive review and recommendations approaching 62 

this topic from the Westhafen Intercontinental Group, which is comprised of leaders from the 63 

International Berlin Frankfurt, Muenster (iBFM) Stem Cell Transplantation Committee, the 64 

Center for International Blood and Marrow Transplant Research (CIBMTR) Pediatric Cancer 65 

Working Committee, the Children’s Oncology Group (COG) Cellular Therapy Committee, the 66 

Pediatric Diseases Working Party (PDWP) of the European Society for Bone and Marrow 67 

Transplantation (EBMT) and the Pediatric Transplantation and Cellular Therapy Consortium 68 

(PTCTC). In this paper we examine the current state of CAR T-cell therapy in pediatric B-ALL, 69 

assess current and emerging integration of CAR T-cells into treatment algorithms, and discuss 70 

emerging strategies to overcome existing challenges.  71 

 72 

 73 

Introduction 74 

Chimeric Antigen-Receptor T-cells (CAR T-cells) for pediatric B-cell precursor acute 75 

lymphoblastic leukemia (B-ALL) have significantly improved outcomes and hence redefined 76 

expectations and treatment approaches for B-ALL. The Food and Drug Administration (FDA) 77 

and the European Medicines Agency’s (EMA) approval of tisagenlecleucel (Kymriah) marked a 78 

watershed moment in the field of cellular immunotherapy, offering hope to patients who had 79 

exhausted conventional treatment options, many of whom had failed multiple lines of therapy 80 

including allogeneic hematopoietic stem cell transplantation (HCT).  81 

Despite advances, challenges persist. The complexity of manufacturing, high production 82 

costs, and limited accessibility continue to impact widespread adoption. In addition, the field 83 

grapples with clinical challenges including CAR T-cell associated toxicities, lack of CAR T-cell 84 

persistence evidenced by early loss of B-cell aplasia (BCA), and antigen escape. In addition, 85 

although CAR T-cells can lead to responses in patients with extramedullary disease (EMD), 86 

relapses can sometimes occur in sanctuary sites such as the central nervous system (CNS) 87 

despite CAR T-cell persistence, and optimal uses in these patients are unknown. There is a 88 

critical need to understand and address these limitations. 89 

This paper is a comprehensive review that includes recommendations from the 90 

Westhafen Intercontinental Group, which is comprised of leaders from the International Berlin 91 

Frankfurt, Muenster (iBFM) Stem Cell Transplantation Committee, the Center for International 92 

Blood and Marrow Transplant Research (CIBMTR) Pediatric Cancer Working Committee, the 93 

Children’s Oncology Group (COG) Cellular Therapy Committee, the Pediatric Diseases Working 94 

Party (PDWP) of the European Society for Bone and Marrow Transplantation (EBMT) and the 95 

Pediatric Transplantation and Cellular Therapy Consortium (PTCTC). Consensus was achieved 96 
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through representatives from each of the groups that were tasked with paper planning, writing, 97 

and editing. In this paper, we will examine the current state of CAR T-cell therapy in pediatric 98 

and young adult B-ALL, assess current and emerging integration of CAR T-cells into treatment 99 

algorithms, and discuss emerging strategies to overcome existing challenges. We will also 100 

explore recent technological advances in CAR design, novel approaches to toxicity 101 

management, and innovative solutions to enhance manufacturing efficiency and accessibility. 102 

Additionally, we will discuss ongoing clinical trials and future directions that may further expand 103 

the role of this transformative therapy in pediatric leukemia treatment. 104 

Current uses and outcomes 105 

Trials leading to the approval of tisagenlecleucel (tisa-cel) were performed without 106 

randomization in pediatric and young adults patients with either refractory or multiply relapsed 107 

B-ALL.(1,2). Since the FDA and the EMA approval of tisa-cel in children and young adults in 108 

2017, there has been a steady stream of approvals of other cellular and gene therapy products 109 

in adults. As of May of 2025, however, tisa-cel remains the only CAR T-cell therapy approved in 110 

children by the FDA and the EMA, with indications limited to multiply relapsed or refractory (r/r) 111 

B-ALL. Brexucabtagene autoleucel (brexu-cel) and obecabtagene autoleucel (obe-cel) are 112 

approved for adults with relapsed B-ALL. 113 

Relapsed/Refractory Disease 114 

CAR T-cells have led to impressive complete remission (CR) rates (70%–90%) in children 115 

and adults with r/r B-ALL, (3–7). These high response rates (8) have been observed regardless 116 

of white blood cell count, cytogenetics, number of prior therapies, chemotherapy 117 

responsiveness, or other factors associated with chemotherapy responsiveness. Despite these 118 

early results, a substantial number of patients eventually experience relapse due to CAR T-cell 119 

failure. The two primary mechanisms of failure are 1) loss of functional CD19 CAR T-cells 120 

before disease eradication; and 2) leukemia relapse due to CD19 target antigen loss on B-ALL 121 

blasts.  122 

Risk factors for CAR T-cell failure include (Table 1): 123 

1. High disease burden (9–11) Several studies have demonstrated that high 124 

disease burden prior to infusion (>5% blasts) is associated not only with lower 125 

relapse free survival but also with a higher likelihood of CD19-negative relapses. 126 

2. Failure of prior treatment with blinatumomab (10,12,13) Rather than any 127 

exposure to CD19-directed therapy with blinatumomab, only non-response to 128 

blinatumomab has been associated with inferior event-free survival (EFS). 129 

3. Early Loss of B-cell aplasia (BCA) (7,14): Defined variably in different reports 130 

as <1% to <3% CD19+ cells among total lymphocytes (or an absolute count ≥10 131 

to 50/μl), BCA can be used as a measure of in vivo CD19 CAR T-cell functional 132 

activity. Loss of BCA implies the absence of functional CAR T-cells, and if it 133 

occurs within 6 months post-infusion, it is associated with a high risk of CD19-134 

positive relapse. 135 
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4. Target antigen loss (14–16): CD19 loss/downmodulation can result due to 136 

truncated proteins, genetic mutations, epigenetic changes or lymphoid-to-myeloid 137 

lineage switch. Subsets of patients, including those with high disease burden 138 

and/or KMT2A rearrangements, have been identified as being at a higher risk for 139 

antigen loss. 140 

5. Lower CAR T-cell dose(17): Higher doses of tisa-cel have been associated with 141 

better long-term outcomes. 142 

6. Use of autologous CAR T-cells early after relapse post-HCT(18): Patients 143 

who relapsed within six months following allogeneic HCT and received tisa-cel 144 

manufactured from their cells collected post-HCT experienced significantly 145 

poorer disease free survival (DFS) compared to those who relapsed beyond six 146 

months after transplant. This compelling observation requires further study to 147 

validate and understand possible mechanisms contributing to failure. 148 

 149 

7. Suboptimal fludarabine dosing (19,20) Suboptimal fludarabine exposure (area 150 

under the curve [AUC] <13.8 h/L) has been associated with shorter CAR T-cell 151 

persistence and an increased risk of relapse. 152 

Relapse after HCT 153 

Historically, outcomes for patients with B-ALL experiencing relapse after HCT have been 154 

particularly poor. Second HCT attempts in this cohort of patients have significant limitations due 155 

to high treatment-related mortality (TRM) and contraindications for further total body irradiation 156 

(TBI) (21–23). For patients who have already undergone allogeneic HCT, CAR T-cell therapy 157 

can serve as an effective rescue therapy (23,24). One study showed that the outcome was 158 

associated with the time elapsed between HCT and relapse, with an EFS of 55.5% for patients 159 

relapsing beyond 6 months and 18.5% for patients relapsing prior to 6 months after HCT (18). 160 

These dismal outcomes in patients with very early relapses after HCT (<6 months) may be 161 

explained both by the refractoriness of the disease, and T-cells collected shortly after 162 

immunosuppression discontinuation may be dysfunctional and have impaired in vivo expansion 163 

(25–27). One potential way to address this issue would be to manufacture T-cells directly from 164 

the transplant donor. This approach has been explored in several clinical trials, with promising 165 

results in small studies (28–31), but is not currently FDA/EMA approved.  166 

Extra-Medullary Disease (EMD)  167 

Only 10-20% of newly diagnosed B-ALL patients present with EMD. However, at 168 

recurrence, a higher proportion of patients (15%-25%) relapse with some combination of 169 

medullary/extramedullary involvement (21% with isolated CNS disease and less than 1% with 170 

isolated testicular relapse)(32). Non-CNS EM disease is likely underdiagnosed, as full body 171 

imaging is not a standard part of evaluation at most centers (33).  172 

Recent evidence has shown that patients with CNS disease at diagnosis or relapse who 173 

undergo CAR T-cell therapy have similar outcomes to those without CNS disease, with no 174 

increase in severe ICANS (≥grade 3) (34–36). However, in a retrospective report, patients 175 

treated with tisa-cel for an isolated CNS relapse had a high incidence of a subsequent CNS 176 

relapse (36). There are conflicting data with non-CNS EMD. While some groups noted no 177 
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difference in outcomes when compared to CNS-EMD or isolated marrow disease(35) a large 178 

retrospective trial found that active EMD at infusion was independently associated with worse 179 

EFS(10). Localized transient toxicities have occurred at sites of EMD following CAR T-cells 180 

including erythema, swelling, and pain, as well as a report of bilateral retinal detachment with 181 

temporary vision loss in a patient with ocular involvement. (37,38) 182 

CAR-T cells in special populations 183 

The current FDA/EMA indication does not include treatment with CAR T-cell products for 184 

patients with first relapse of B-ALL. CAR T-cell therapy should be considered at first relapse for 185 

very selected categories of patients, such as those affected with genetic conditions associated 186 

with poor outcomes due to excessive toxicity with conventional treatment.  187 

Patients with Down Syndrome  188 

Patients with Down syndrome-associated acute lymphoblastic leukemia (DS-ALL) are at risk of 189 

chemotherapy-associated toxicities and poor outcomes. CAR T-cell therapy offers potential cure 190 

in refractory patients with toxicity profiles comparable to non-Down syndrome patients (39–41). 191 

Other special populations  192 

Patients with chromosomal instability syndromes, such as Nijmegen Breakage Syndrome, who 193 

develop B-ALL and have an indication for HCT may do better with reduced-intensity 194 

conditioning (RIC) regimens compared to myeloablative protocols involving TBI(42). As a result, 195 

these patients are likely at a higher risk of developing mixed chimerism following HCT, which 196 

increases their susceptibility to relapse. In such cases, it may be reasonable to consider 197 

consolidation with CAR T-cell therapy when mixed chimerism is detected post-transplant to 198 

reduce the risk of disease recurrence. This approach has been reported to be successful in a 199 

single patient(43). 200 

Additional consideration should be given to two subsets of patients who have been reported to 201 

experience decreased outcomes due to adverse cytogenetic traits. The first includes patients 202 

with KMT2A rearrangements (KMT2Ar). While these patients can achieve long-term DFS similar 203 

to other cytogenetic subsets treated with CAR T-cells(44), if they relapse, they are at increased 204 

risk for lineage switch, and salvage for those relapsing with lineage switch is very poor (10,45). 205 

The second subset includes patients with Li-Fraumeni Syndrome (TP53 germline mutations) 206 

and somatic TP53 mutated leukemia.  Studies from China have shown lower DFS, significant 207 

risk of failure  in these patients (46,47). While other studies have not identified TP53 as a poor 208 

risk factor, TP53 characterization of high-risk patients with B-ALL patients have not been 209 

uniformly performed by many centers and further study is warranted(10,44). 210 

Challenges for the field 211 

The primary biologic challenges can be summarized as toxicities associated with CAR T-212 

cell therapies and leukemia relapse due to CD19 target loss (antigen escape), and loss of 213 

functional CAR T-cells (lack of T-cell persistence), while the socio-economic challenges related 214 

to CAR T-cell therapy are complex and multifaceted (Figure 1). 215 
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Toxicity associated with CAR T-cell therapy 216 

Although hypogammaglobulinemia, cytokine release syndrome (CRS) and Immune 217 

effector cell–associated neurotoxicity syndrome (ICANS) are the most common and well 218 

described toxicities associated with CAR T-cell therapy, recently Immune-effector cell 219 

associated HLH-like syndrome (IEC-HS), and Immune effector cell-associated hematotoxicity 220 

(ICAHT), have been described. (48,49)  221 

Hypogammaglobulinemia and risk of infections 222 

BCA and hypogammaglobulinemia are expected on target adverse events of successful 223 

CAR T-cell therapy but increase the risk of life-threatening infections. Long-term 224 

immunoglobulin replacement therapy is routinely performed in pediatrics, with response and 225 

persistence varying by patient. Most institutions use immunoglobulin G (IgG) levels below 400 226 

mg/dL as the threshold for supplementation, higher levels may be needed for those with 227 

recurrent infections despite IgG replacement(50–52)  228 

Cytokine Release Syndrome (CRS) 229 

Cytokine Release Syndrome (CRS) is caused by the significant release of inflammatory 230 

cytokines, a self-limited process that initially presents with fever and flu-like symptoms 231 

(headaches, myalgias) in mild cases and can progress to a sepsis-like constellation with 232 

hypotension and hypoxia, leading to organ dysfunction, capillary leak, and coagulopathy. CRS 233 

can be successfully treated with anti–interleukin-6 receptor (IL-6R) therapies (e.g., tocilizumab), 234 

often in combination with steroids (44,45). The severity of CRS is measured by staging. High 235 

tumor burden prior to lymphodepletion is the strongest predictive factor for severe CRS. Both 236 

the American Society for Transplantation and Cellular Therapy (ASTCT) and the EBMT/EHA 237 

consensus guidelines for CRS have been broadly adopted (45–48). 238 

Currently, due to the lack of evidence supporting effective prophylactic strategies for CRS in 239 

patients receiving CAR T-cells, no formal recommendations exist for prophylaxis. However, 240 

there is evidence supporting the early use of tocilizumab at Grade I CRS in patients presenting 241 

risk factors for severe CRS, with the aim of preventing progression to severe CRS (8). The 242 

impact of tocilizumab on CAR T-cell expansion and persistence appears negligible (49), this 243 

approach should be considered for a selected group of patients, including: 244 

 Patients with high disease burden (e.g., >5% to >25% blasts) before CAR T-cell infusion 245 

 Patients with pre-existing cardiac or pulmonary comorbidities 246 

 Patients with CRS onset within 24 hours of CAR T-cell infusion 247 

Immune effector cell–associated neurotoxicity syndrome (ICANS) 248 

Neurological manifestations associated with CAR T-cell–induced immune effector cell–249 

associated neurotoxicity syndrome (ICANS) range from language dysfunction or aphasia, 250 

handwriting difficulties, and cognitive impairment to altered mental status or delirium, seizures, 251 

coma, and fatal cerebral edema. Neurological toxicity has been reported less frequently in 252 

pediatric patients and tends to be short-lived. Although rare, fatal cerebral edema has been 253 

documented (50) 254 
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The pathophysiology is likely related to disruption of the blood-brain barrier (BBB) 255 

secondary to systemic cytokine release, high levels of cytokines in the cerebrospinal fluid, 256 

and/or direct CAR T-cell attack of CD19-positive mural cells in CNS tissues (53,54). Unlike 257 

CRS, CNS symptoms have not responded well to tocilizumab, as it does not cross the BBB. 258 

ICANS has generally been treated with high-dose steroids, anakinra or other approaches. The 259 

timing of treatment for ICANS is controversial, but concerns about its rare, fatal form have led to 260 

near-uniform recommendations for the treatment of patients with grade 3 or higher ICANS (54–261 

56). Rapid peak expansion, severe CRS and higher dose of CAR T-cells have been highlighted 262 

as risk factors for severe ICANS, although, interestingly, pre-CAR T-cell CNS disease has not 263 

been clearly associated with the severity of neurological manifestations (57–60) 264 

Of note, neurocognitive impairment and neuropsychiatric disorders are emerging as long-265 

term side effects associated with ICANS in adults, but the incidence of these late manifestations 266 

in children is unknown (61,62). Given the lack of sufficient evidence, anti-seizure prophylaxis is 267 

generally not universally recommended. However, seizure prophylaxis with levetiracetam—a 268 

medication generally well tolerated in children, with rare and minor side effects—should be 269 

considered for high-risk patients, including those with: 270 

 History of neurological disorders (e.g., seizures, posterior reversible encephalopathy 271 

syndrome) 272 

 Evidence of neurological abnormalities on imaging 273 

Immune-effector cell associated Hemophagocytic Lymphohistiocytosis (HLH)-like syndrome 274 

(IEC-HS) 275 

Immune-effector cell associated HLH-like syndrome (IEC-HS) has been described as 276 

life-threatening immune activation. Onset is usually after CRS is resolving, or after an initial 277 

improvement with CRS directed treatment. IEC-HS is associated with high fever, 278 

hyperferritinemia, prolonged cytopenia, and can lead to multiorgan failure(48). There may be 279 

overlap with CRS in some patients; the later onset disease occurs more frequently with certain 280 

approaches to CD22-targeted CARs. Given the lack of prospective trials in this area, published 281 

ASTCT working group treatment recommendations include a patient-tailored stepwise approach 282 

with anakinra with or without glucocorticoids, followed by ruxolitinib, emapalumab or low-dose 283 

etoposide.(48,63)  284 

Immune effector cell-associated hematotoxicity (ICAHT) 285 

Prolonged cytopenias (30-90 days), particularly neutropenia (<500/mm3) occur in a 286 

subset of patients (approximately 10% of patients experience persistent cytopenia one year 287 

after treatment) (64,65). Cytopenias in combination with hypogammaglobulinemia can 288 

predispose patients to serious infectious complications(66), and patients with B-ALL seem to be 289 

more likely to be affected than other B-cell targeted diseases. The use of B-ALL specific tools to 290 

risk stratify patient’s susceptibility to develop hematoxicity is important for post-CAR T-cell 291 

care(67). The Pediatric Real World CAR Consortium (PRWCC) has also published a score for 292 

predicting risk of severe, prolonged neutropenia(68). Management of cytopenias is mostly 293 

supportive with transfusions. Some patients may respond to G-CSF or thrombopoietin receptor 294 
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agonists (69,70); in patients that have severe persistent cytopenias and a history of prior HCT, 295 

CD34+ selected hematopoietic cell boosts have been beneficial (71,72).  296 

Antigen escape 297 

Combined data from the ELIANA and ENSIGN trials showed rates of CD19-positive and 298 

CD19-negative disease recurrence were 36% and 64%, respectively (73,74). 299 

There are different proposed mechanisms for the emergence of antigen escape:  300 

1. Pre-existing target-negative tumor clones.  301 

2. Antigen gene mutations, alternative splicing or methylation. (15,75)  302 

3. Deficiencies in antigen processing and presentation to the T-cells unrelated to CD19. 303 

(76,77). 304 

4. Lineage switch (commonly observed in patients with KMT2A rearrangements) leading to 305 

loss of the target antigen(16,78). 306 

5. Epitope masking(79) 307 

6. Trogocytosis and Antigen redistribution. While antigen redistribution usually refers to the 308 

movement of antigens from membrane to an intracellular location (80,81), trogocytosis 309 

refers to the exchange of plasma membrane fragments. (82–84). 310 

To address these challenges, researchers have pursued multiple approaches, including 311 

testing combinations with other therapies, such as enhanced or armored CAR T-cells with IL18 312 

(85) or radiation therapy prior to CAR T-cell infusion (86), or concomitant use with chidamide (a 313 

histone deacetylase inhibitor) to upregulate tumor antigens (87). In addition to searching for 314 

novel targets, which has proven difficult due to challenges in finding candidates with acceptable 315 

on-target, off-tumor toxicity profiles. 316 

Multi-antigen approach: Multi-targeted CAR T-cell, sequential cell and immune therapies 317 

Cell and immune therapy approaches have been devised to target a second lymphoid 318 

antigen to overcome CD19 antigen escape. CD22 has been the most extensively studied and is 319 

considered an attractive target, both in CAR constructs and with inotuzumab ozogamicin (88). 320 

CD22 can be downregulated; therefore, this approach is often combined with HCT, as an 321 

increased risk of relapse is expected (55,89,90).  322 

There is concern that administering CD22-targeted therapy before CD19 CAR T-cell 323 

treatment may impair T-cell expansion, potentially reducing therapeutic efficacy (91). Although 324 

not yet commercially available, sequential or simultaneous CD19 and CD22 CAR infusions are 325 

being studied. There have been studies published with promising results (92,93) 326 

Multitargeted CAR T-cells offer a promising strategy to combat antigen escape; 327 

however, early experience has revealed significant limitations. Several approaches have been 328 

tested clinically, including co-administration of two CAR T-cell products targeting different 329 

antigens, co-transduction of T-cells with two separate vectors encoding different CARs, the use 330 

of a bicistronic vector encoding two CARs, and tandem CARs (94,95). To date, the major 331 

limitation of these studies (89–92) has been the limited persistence of CAR T-cells, which 332 
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precludes assessment of the impact of multi-antigen targeting on CD19-negative relapse. 333 

Addressing this challenge will likely be necessary to fully realize the potential of this approach. 334 

T-cell persistence 335 

A decade has passed since Maude et al. (7) first identified the correlation between CAR 336 

T-cell persistence in peripheral blood and BCA. Subsequent data from the ELIANA and 337 

ENSIGN trials have refined our understanding (18,73) revealing that B-cell recovery alone does 338 

not necessarily imply relapse. 339 

CAR T-cell persistence involves multiple factors, with T-cell functionality proving more 340 

important than CAR detection (7,96), as evidenced by the practice of using BCA as a key 341 

indicator of T-cell persistence. T-cell phenotype—including memory versus effector status and 342 

activation versus exhaustion markers—influences persistence. (97,98) (99) The persistent 343 

antigenic stimulation of T cells can lead to dysfunction (100–102), where exhausted T-cells 344 

exhibiting a characteristic pattern of inhibitory receptors, and transcription factors display altered 345 

metabolism, low proliferative capacity, and a reduced cytotoxicity and secretion of effector 346 

cytokines (103) 347 

Potential T-cell Persistence Improvement Strategies 348 

Architecture 349 

The sequential generations of CAR T-cells have not only improved the cytotoxic ability of the T-350 

cells but also aided in persistence. The addition of the 4-1BB (CD137) domain to CAR 351 

constructs promoted the induction of CD8+ T-cells with increased oxidative metabolism and 352 

heightened mitochondrial biogenesis, two characteristics of the least differentiated memory T-353 

cells. The structure of the single chain fragment variable (scFv) can modify persistence, as seen 354 

in obecabtagene autoleucel (Obe-cel), a CD19 CAR T-cell (FAST OFF CAR), with a lower 355 

affinity than FMC63 (the scFv in tisa-cel), which has led to higher in vitro proliferation and 356 

cytotoxicity and greater in vivo proliferative and antitumor activity compared with FMC63 CAR T-357 

cells(104). There are numerous newer constructs that integrate systems with modulated CAR 358 

expression and intermittent activation(105). Oxygen sensitive CAR expression is also being 359 

studied by utilizing the subdomain of HIF1α to modulate CAR expression according to oxygen 360 

availability in the tumor microenvironment(106). 361 

Another approach to enhance persistence such as incorporating vaccination with tumor 362 

antigens (107,108), or incorporating oncolytic virus into treatment(109–112). Recent studies 363 

have also shown that CAR T-cells engineered to express and deliver non-coding RNA can 364 

promote expansion and effector memory differentiation of CAR T-cells leading to higher 365 

persistence and less exhaustion(113) 366 

Cell Culture Optimization  367 

Modifications in manufacturing techniques have led to significant changes in functionality 368 

and phenotype. Both the type of culture medium used for ex vivo expansion and the duration of 369 

expansion(101,114) influence cellular behavior in vivo, including their phenotypic differentiation, 370 

proliferation, and efficacy. The use of fetal bovine serum (FBS) versus human serum or human 371 

platelet lysate have all shown differences in outcomes. The use of RetroNection for lentiviral 372 

                  



11 
 

transductions(115–117), specific CD4/CD8 ratios, and agents like dasatinib have been used to 373 

increase transduction efficiencies and have demonstrable influence on T-cell performance 374 

(118). 375 

Cytokines Used to Yield Undifferentiated CAR-T Cells 376 

The most studied is Interleukin (IL)-2 (115), has played an essential role in the 377 

manufacturing process, as it stimulates cell proliferation and maintains cell viability during the 378 

expansion phase. IL-2 can lead to shorter lived phenotypes. Some studies have shown that, 379 

during the expansion phase of CD28-based CD19 CAR T-cells, a mixture of IL-7 and IL-15 380 

increased the number and proportion of a T-cell subpopulation with T-cell memory stem cell and 381 

central memory-like phenotypes (101). Some newer generation of CARs include inducible gene 382 

expression cassette encoding a transgenic cytokine, to enhance T-cell activity within tumor 383 

microenvironment (85,119,120) 384 

Patient Access and Regulatory Considerations 385 

The regulatory landscape presents additional complexities. Current European Union 386 

legislation requires pharmaceutical licensing for CAR T-cell therapy. The EMA supports 387 

academic investigators in licensing CAR T-cells and other advanced therapy medicinal products 388 

(ATMPs) (93). Single-center approaches prove inefficient and time-consuming (121)  389 

The current development pathway mirrors traditional drug development, requiring FDA 390 

biological license application (BLA) submission and approval after demonstrating efficacy and 391 

safety. Academic institutions typically lack the infrastructure for conducting pivotal trials 392 

necessary for commercial approvals, though orphan drug designation provides some incentives. 393 

Regarding cost recovery, the Code of Federal Regulations (CFR) Title 21 Part 312, subpart 394 

A section 312.8 allows academic institutions to recover specified costs under an investigational 395 

new drug (IND) application if they meet certain criteria: 396 

 Evidence of potential clinical benefit 397 

 Possibility of advantages over existing treatments 398 

 Essential safety and efficacy data collection 399 

 Financial necessity for trial continuation 400 

The FDA's authority does not extend to determining reimbursement mechanisms. Even with 401 

approved INDs, patients rely heavily on insurance coverage, and product pricing remains 402 

constrained by allowable production cost calculations. 403 

Potential solutions have emerged, although these may vary across different continents. For 404 

example: 405 

 A hybrid model, where academic centers continue production with expanded distribution 406 

capabilities. 407 

 Automation to address production challenges. 408 

 Novel reimbursement strategies, such as limiting pharmaceutical licensing to specific 409 

vectors or CAR constructs rather than to individual patient cell products. 410 
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Industry experts advocate for innovative solutions, such as establishing new entities like the 411 

Pediatric Advanced Medicines Biotech (PAMB) to advance late-stage development and 412 

commercialization of pediatric cell and gene therapies outside traditional biopharmaceutical 413 

models in the United States(122). Developing consensus on these solutions is crucial (123).  414 

Controversial Role of HCT as consolidation after CD19 CAR T-cells: 415 

HCT for all vs. selective use  416 

Prior to CAR T-cells, the universal standard of care (SOC) for patients with high-risk, r/r B-ALL 417 

was to proceed to HCT following the achievement of a CR. Today the role of consolidative HCT 418 

post tisa-cel is being debated, with notable regional and institutional practice differences. 419 

An estimated 35-40% patients (124) are cured by tisa-cel as a stand-alone therapy, a 420 

central question in the field is whether CAR T-cell therapy should be used to avoid the need for 421 

HCT in this group or if all patients should be consolidated with HCT. Proceeding with HCT after 422 

CAR T-cell therapy can potentially reduce the risk of recurrence in some categories of patients. 423 

Studies from the National Institutes of Health (NIH) showed that therapy with CAR T-cells using 424 

the CD28 co-stimulatory domain in pediatrics and young adults had improved survival when 425 

HCT was given 4 to 8 weeks after the CAR T-cell infusion(125). The short half-life of CARs with 426 

a CD28 co-stimulatory signal, almost invariably require a consolidative HCT to avoid relapse for 427 

patients with B-ALL, as a survival advantage has been demonstrated in children and young 428 

adults consolidated with HCT(126). 429 

For patients receiving CD19 targeted CAR T-cells using 4-1BB costimulatory domains 430 

(tisa-cel and obe-cel) the decision to proceed to transplant is nuanced. A subset of patients will 431 

have sustained remission without further therapy. To date, the available data rely on 432 

nonrandomized, retrospective analyses, and are potentially subject to biases (127–129). In the 433 

ELIANA update, 11/79 or 14% of patients in a tisa-cel mediated remission went to HCT. Of the 8 434 

patients from these 11 who had follow-up data available, none had relapsed(73). Reason to 435 

proceed to HCT was not described. 436 

Over the last three decades, TRM after HCT has decreased, due to increasing precision in 437 

donor matching, better graft-versus-host disease (GVHD) prevention and management, and 438 

overall improvements in supportive care. As conditioning for B-ALL in pediatrics and AYA has 439 

traditionally included high-dose TBI, pediatric HCT survivors are at increased risk of early 440 

development of chronic health conditions, with over 60% of HCT survivors reporting at least one 441 

chronic condition, which in turn can lead to late TRM (130). In one study, consolidative 442 

transplant after CAR T-cell therapy improved leukemia-free survival in patients who were not 443 

previously transplanted, but this benefit was not observed in those who had previously been 444 

transplanted(128). A European retrospective study highlighted a survival benefit of consolidative 445 

HCT in patients without evidence of disease recurrence, when compared to those who had 446 

disease relapse or MRD positivity after CAR T-cells. In this study, no difference was noted in 447 

OS, LFS, and NRM between outcomes of consolidative HCT of patients undergoing a first or a 448 

second HCT after CAR T-cell treatment. (131) More study is required of patients undergoing a 449 
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second HCT after CAR T-cell therapy, but current literature supports recommendations for two 450 

patient types.(131) 451 

In patients who are eligible to proceed to HCT and do not have a history of prior HCT, there 452 

is reasonable evidence to recommend consolidative HCT in patients who:  453 

a) receive a CAR T-cell therapy using CD28-costimulatory domains, OR 454 

b) experience loss of BCA within 6 months of CAR T-cell infusion, OR 455 

c) present with MRD positivity at any level after CAR T-cell infusion. 456 

In patients who are eligible to proceed to HCT and do not have a history of prior HCT, 457 

patients that may be considered for consolidative HCT are those who: 458 

a) have an appropriate donor available and desire to proceed with HCT, AND/OR  459 

b) have a high disease burden (prior studies have defined >5% blasts up to >25%) pre-460 

lymphodepletion, AND/OR 461 

c) have a history of prior treatment failure with blinatumomab, AND/OR 462 

d) another relapse is unlikely to be treatable, whether due to history of refractoriness or 463 

adverse cytogenetics. 464 

The optimal approach for patients who have previously been transplanted and have early 465 

loss of BCA has yet to be determined and requires special consideration. Our proposed 466 

treatment algorithm is included in Figures 2 and 3. Patient specific features should be 467 

considered to balance pros and cons of consolidative HCT. Including time elapsed since first 468 

transplant and characteristics of the previous HCT (conditioning regimen and donor type). The 469 

presence of CD19 negative clone before CAR T-cell infusion, donor availability and co-470 

morbidities, and previous toxicities should be accounted for in the decision-making process. 471 

Potential alternative approaches other than HCT are discussed below. 472 

Reinfusion and maintenance therapy 473 

In cases where patients achieve initial remission following a CD19 CAR with a 4-1BB co-474 

stimulatory domain and do not proceed to HCT, is there a role for CAR T-cell reinfusion to 475 

overcome short persistence (loss of BCA)? Investigators from Children’s Hospital of 476 

Philadelphia (CHOP) recently published a retrospective review of children and young adults with 477 

r/r B-ALL treated on three CD19 CAR clinical trials or with commercial tisa-cel between 2012 478 

and 2020 who received at least one reinfusion of the same product (132). While some patients 479 

re-established BCA and demonstrated improved persistence following reinfusion, this was 480 

observed mostly in those who were given reinfusions because of emergence of CD19-positive 481 

hematogones in the bone marrow versus those with robust peripheral B-cell recovery.  Other 482 

studies addressing whether reinfusion is beneficial are ongoing and have generally focused on 483 

infusions for loss of BCA or relapse. 484 

An alternative approach is to treat patients with early loss of BCA with maintenance 485 

therapy. In a small UK retrospective study, 5 out of 8 patients treated with this approach 486 
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remained in molecular remission at last follow up (median follow-up time from loss of BCA was 487 

21.5 months) and 3 relapsed with CD19-positive disease (133). Further larger studies of this 488 

approach are ongoing. 489 

Similarly, maintenance with tyrosine kinase inhibitors (TKI) in small cohorts of Ph+ B-490 

ALL patients have been explored as an approach, derived from post-transplant management of 491 

these patients, to reduce the risk of disease relapse. However, data are limited to small cohorts 492 

of patients, and the benefit of TKI in children post-CART still warrants further study (134). 493 

Discussion 494 

CAR T-cell therapy has transformed the treatment landscape for patients with relapsed 495 

or refractory B-ALL, not only improving the chances of sustained remissions but has also 496 

facilitated the eligibility of some patients for HCT who would otherwise have been deemed 497 

ineligible due to the severity of their disease, other underlying conditions (e.g. active infections) 498 

or treatment failures. The efficacy of CAR T-cell therapy, particularly targeting CD19, has been 499 

well documented, with studies reporting high remission rates and durable responses(135) and a 500 

favorable toxicity profile. While adverse events such as CRS and ICANS remain a concern, 501 

many of these effects are manageable with supportive care and timely interventions.(136,137). 502 

Furthermore, the safety of CAR T-cell therapy has been underscored by studies demonstrating 503 

that most adverse reactions occur within the initial weeks post-infusion and are controllable 504 

(70,138). 505 

Despite these advances, challenges persist, such as antigen escape that leads to CD19 506 

negative relapses, or poor T-cell persistence. Multifaceted approaches are required to 507 

overcome these challenges, including multi-antigen targeting strategies to mitigate escape, 508 

enhanced CAR designs, and accurate patient risk stratification to identify which patients may 509 

require consolidative therapies. 510 

Among the most pressing issues are cost and production scalability. Equally concerning 511 

is the reality that CAR T-cell therapies that show promise in clinical trials remain challenging to 512 

produce commercially, particularly for rare pediatric indications. The term "valley of death" aptly 513 

describes the substantial gap between basic science achievements and their clinical 514 

implementation  (139) This gap is primarily driven by limited commercial interest, resulting in 515 

restricted access to products from academic centers and significant regulatory and financial 516 

barriers to conducting prospective investigational trials. 517 

The effectiveness of any therapy depends on its accessibility. Currently, patients outside 518 

academic center catchment areas or those facing financial constraints often cannot access 519 

these potentially life-saving treatments. (140,141) To address these challenges, the ASTCT 520 

established the ACT to Sustain (Adoptive Cell Therapy to Sustain) task force (142). This 521 

initiative focuses on scenarios where the current model fails patients, including cases involving 522 

effective CAR T-cells without commercial partners, off-label indications, and rare diseases that 523 

would benefit from gene or cellular therapy. (143,144)  524 
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Despite challenges CAR T-cell therapy represents a paradigm shift in the management 525 

of relapsed or refractory B-ALL, offering hope for cure and improved quality of life for patients. 526 

While significant obstacles remain, the potential benefits make these challenges worth 527 

addressing through continued research and clinical development. The favorable toxicity profile 528 

and potential to facilitate HCT eligibility secures CAR T-cell therapy’s spot as a cornerstone of 529 

treatment for r/r B-ALL.  530 
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Figure 1 Challenges in Chimeric Antigen Receptor (CAR) Therapies - Food and Drug Administration (FDA), 1092 
European Medicines Agency’s (EMA), extramedullary disease (EMD), cytokine release syndrome (CRS) 1093 
Immune effector cell–associated neurotoxicity syndrome (ICANS)  Immune-effector cell associated HLH-like 1094 
syndrome (IEC-HS), and Immune effector cell-associated hematotoxicity (ICAHT) Created in BioRender. 1095 
Deimundo Roura, C. (2025) https://BioRender.com/t90006r 1096 
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 1104 

Figure 2 Algorithm based on Minimal Residual Disease (MRD), at either quantitative PCR (qPCR) or flow 1105 
cytometry level. Hematopoietic Cell Transplant (HCT), Next Generation Sequencing (NGS) Created in 1106 
BioRender. Deimundo Roura, C. (2025) https://BioRender.com/lo22o1z 1107 
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 1111 

Figure 3 Algorithm based on loss of B-cell aplasia (BCA) within 6 months of infusion. Hematopoietic Cell 1112 
Transplant (HCT), Next Generation Sequencing (NGS) Created in BioRender. Deimundo Roura, C. (2025) 1113 
https://BioRender.com/lo22o1z 1114 
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 1125 

Table: 1126 

Risk Factors for CAR T-cell Therapy Failure 

High disease burden (≥5% 

bone marrow blasts) 

 

CAR-MA studies (N =420)(10,45): HD burden (≥5% bone 

marrow blasts) was associated with inferior EFS, RFS, and 

OS. HD burden was independently 

associated with worse EFS (HR 2.5, P < .001) by multivariable 

analysis, and specifically associated with a higher cumulative 

incidence of CD19− relapse (HR 5.2, P < .001). 

CHOP clinical trials: in a trial of tisa-cel (N = 70)(9), patients 

with HD burden (>40% blasts) had inferior 24-mo EFS (34% vs 

78%) and OS (60% vs 92%) compared with LD burden. In a 

trial of humanized CD19 CAR (N = 74), HD burden was 

associated with inferior RFS(145). 

PRWCC study(146) (N = 185): patients with HD burden (≥5% 

bone marrow blasts) had lower 12-mo EFS (31% vs 70%, P < 

.0001) and OS (58% vs 85%, P <.0001) compared with LD 

burden. HD burden was independently associated with OS by 

multivariable analysis (HR 5.1, P = .002). 

St Jude and JHU study(147) (N = 30): HD burden (≥5% bone 

marrow blasts) was independently associated with inferior EFS 

(HR 6.0, P = .038) and OS (HR 4.2,P = .015). 

Robert Debre and Saint Louis University Hospitals study 

(148)(N = 51): HD burden (≥1% bone marrow blasts) was 

associated with a higher cumulative incidence of CD19− 

relapse (SHR 10.4, P = .03) in a competing risks analysis. 

Non-response to blinatumomab  CAR-MA study (N = 420): blinatumomab non-responders had 

lower CR rates to CD19 CAR T cells and worse 6-mo EFS 

(CR, 65%; EFS, 27%) than blinatumomab responders (CR, 

93%; EFS, 67%) or blinatumomab-naïve patients (CR, 94%; 

EFS, 73%). (10)  

CHOP study (N = 166): composite outcome of NR, CD19− 

MRD/relapse was more frequent in blinatumomab-exposed 

patients.(149) 
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Robert Debre and Saint Louis University Hospitals study(148) 

(N = 51): prior blinatumomab was associated with early CAR 

failure (P = .01), increased CIR (HR 2.6), and shorter EFS (HR 

3.0) and OS (HR 5.5). 

 

Short CAR 

persistence (loss 

of BCA) 

 

Pooled ELIANA/ENSIGN analysis (N = 143): loss of BCA within 

1 y was associated with increased relapse risk (HR 4.5, P < 

.001). Patients with loss of BCA within 6 mo had a 24-mo EFS 

of 14%.(14) 

Seattle PLAT-02 trial32 (N = 45): loss of BCA was associated 

with increase relapse risk (HR 3.5, P = .04).(6) 

CHOP humanized CD19 CAR T-cell trial (N = 74): when 

treated as a time varying covariate, B-cell recovery was 

associated with worse RFS (P = .011).(145) 

Cell dose  PRWCC (n=185) OS, EFS, and RFS were improved in patients 

who received higher doses of tisa-cel (P = .031, .0079, and 

.0045, respectively) without increasing toxicity profile (17)  

Timing post HCT  Bade Real world data form Germany (N=81): relapsing within 6 

months of allo-HCT pEFS of 18.4% (pOS = 16.0%); the pEFS 

for those relapsing later was 55.5% (pOS = 74.8%) (18) 

Inadequate dose of fludarabine 

 

PRWCC study (N = 152): suboptimal fludarabine exposure, 

defined as AUC <13.8 mg × h/L and estimated by a validated 

population pharmacokinetic model, was associated with a 

higher CIR (HR 2.5, P = .005) and higher risk of a composite 

end point of relapse or loss of BCA (HR 2.0, P = .01) compared 

with optimal fludarabine exposure.(20) 

Princess Maxima study (N = 26): a cumulative fludarabine AUC 

<14 mg × h/L was associated with a higher frequency of 

CD19+ relapse within 1 y (100% vs 27%, P = .0001) and 

probability of losing BCA within 6 mo (77% vs 37%, P =.009) 

than AUC >14 mg × h/L.(150) 

 

 1127 

Table 1 Risk for CAR T-cell Therapy Failure. Area under the curve (AUC), Children's Hospital of Philadelphia 1128 
(CHOP), John Hopkins University (JHU), detectable minimal residual disease by next generation sequencing, 1129 
(NGS-MRD), St Jude Children's Research Hospital (St Jude), Pediatric Real World CAR Consortium (PRWCC) 1130 
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