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Highlights:
e Chimeric antigen receptor (CAR) improves outcomes in young relapsed B-ALL patients
e CAR T-cell challenges include toxicity, poor persistence, and antigen escape

e Llarge studies determined relapse risk allowing personalized approaches to HCT post-CAR
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Abstract

Chimeric Antigen-Receptor T-cells (CAR T-cells) targeted at pediatric B-cell precursor
acute lymphoblastic leukemia (B-ALL) have changed the paradigm for treatment of relapsed
and refractory B-ALL. We present a comprehensive review and recommendations approaching
this topic from the Westhafen Intercontinental Group, which is comprised of leaders from the
International Berlin Frankfurt, Muenster (iBFM) Stem Cell Transplantation Committee, the
Center for International Blood and Marrow Transplant Research (CIBMTR) Pediatric Cancer
Working Committee, the Children’s Oncology Group (COG) Cellular Therapy Committee, the
Pediatric Diseases Working Party (PDWP) of the European Society for Bone and Marrow
Transplantation (EBMT) and the Pediatric Transplantation and Cellular Therapy Consortium
(PTCTCQC). In this paper we examine the current state of CAR T-cell therapy in pediatric B-ALL,
assess current and emerging integration of CAR T-cells into treatment algorithms, and discuss
emerging strategies to overcome existing challenges.

Introduction

Chimeric Antigen-Receptor T-cells (CAR T-cells) for pediatric B-cell precursor acute
lymphoblastic leukemia (B-ALL) have significantly improved outcomes and hence redefined
expectations and treatment approaches for B-ALL. The Food and Drug Administration (FDA)
and the European Medicines Agency’s (EMA) approval of tisagenlecleucel (Kymriah) marked a
watershed moment in the field of cellular immunotherapy, offering hope to patients who had
exhausted conventional treatment options, many of whom had failed multiple lines of therapy
including allogeneic hematopoietic stem cell transplantation (HCT).

Despite advances, challenges persist. The complexity of manufacturing, high production
costs, and limited accessibility continue to impact widespread adoption. In addition, the field
grapples with clinical challenges including CAR T-cell associated toxicities, lack of CAR T-cell
persistence evidenced by early loss of B-cell aplasia (BCA), and antigen escape. In addition,
although CAR T-cells can lead to responses in patients with extramedullary disease (EMD),
relapses can sometimes occur in sanctuary sites such as the central nervous system (CNS)
despite CAR T-cell persistence, and optimal uses in these patients are unknown. There is a
critical need to understand and address these limitations.

This paper is a comprehensive review that includes recommendations from the
Westhafen Intercontinental Group, which is comprised of leaders from the International Berlin
Frankfurt, Muenster (iBFM) Stem Cell Transplantation Committee, the Center for International
Blood and Marrow Transplant Research (CIBMTR) Pediatric Cancer Working Committee, the
Children’s Oncology Group (COG) Cellular Therapy Committee, the Pediatric Diseases Working
Party (PDWP) of the European Society for Bone and Marrow Transplantation (EBMT) and the
Pediatric Transplantation and Cellular Therapy Consortium (PTCTC). Consensus was achieved
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97 through representatives from each of the groups that were tasked with paper planning, writing,
98 and editing. In this paper, we will examine the current state of CAR T-cell therapy in pediatric
99 and young adult B-ALL, assess current and emerging integration of CAR T-cells into treatment
100 algorithms, and discuss emerging strategies to overcome existing challenges. We will also
101  explore recent technological advances in CAR design, novel approaches to toxicity
102  management, and innovative solutions to enhance manufacturing efficiency and accessibility.
103  Additionally, we will discuss ongoing clinical trials and future directions that may further expand
104 the role of this transformative therapy in pediatric leukemia treatment.

105 Current uses and outcomes

106 Trials leading to the approval of tisagenlecleucel (tisa-cel) were performed without

107  randomization in pediatric and young adults patients with either refractory or multiply relapsed
108 B-ALL.(1,2). Since the FDA and the EMA approval of tisa-cel in children and young adults in
109 2017, there has been a steady stream of approvals of other cellular and gene therapy products
110 in adults. As of May of 2025, however, tisa-cel remains the only CAR T-cell therapy approved in
111  children by the FDA and the EMA, with indications limited to multiply relapsed or refractory (r/r)
112 B-ALL. Brexucabtagene autoleucel (brexu-cel) and obecabtagene autoleucel (obe-cel) are

113  approved for adults with relapsed B-ALL.

114 Relapsed/Refractory Disease

115 CAR T-cells have led to impressive complete remission (CR) rates (70%—90%) in children
116  and adults with r/r B-ALL, (3—7). These high response rates (8) have been observed regardless
117  of white blood cell count, cytogenetics, number of prior therapies, chemotherapy

118 responsiveness, or other factors associated with chemotherapy responsiveness. Despite these
119 early results, a substantial number of patients eventually experience relapse due to CAR T-cell
120 failure. The two primary mechanisms of failure are 1) loss of functional CD19 CAR T-cells

121  before disease eradication; and 2) leukemia relapse due to CD19 target antigen loss on B-ALL
122  blasts.

123 Risk factors for CAR T-cell failure include (Table 1):

124 1. High disease burden (9-11) Several studies have demonstrated that high

125 disease burden prior to infusion (>5% blasts) is associated not only with lower
126 relapse free survival but also with a higher likelihood of CD19-negative relapses.
127 2. Failure of prior treatment with blinatumomab (10,12,13) Rather than any
128 exposure to CD19-directed therapy with blinatumomab, only non-response to
129 blinatumomab has been associated with inferior event-free survival (EFS).

130 3. Early Loss of B-cell aplasia (BCA) (7,14): Defined variably in different reports
131 as <1% to <3% CD19+ cells among total lymphocytes (or an absolute count 210
132 to 50/ul), BCA can be used as a measure of in vivo CD19 CAR T-cell functional
133 activity. Loss of BCA implies the absence of functional CAR T-cells, and if it

134 occurs within 6 months post-infusion, it is associated with a high risk of CD19-

135 positive relapse.
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136 4. Target antigen loss (14-16): CD19 loss/downmodulation can result due to
137 truncated proteins, genetic mutations, epigenetic changes or lymphoid-to-myeloid
138 lineage switch. Subsets of patients, including those with high disease burden
139 and/or KMT2A rearrangements, have been identified as being at a higher risk for
140 antigen loss.
141 5. Lower CAR T-cell dose(17): Higher doses of tisa-cel have been associated with
142 better long-term outcomes.
143 6. Use of autologous CAR T-cells early after relapse post-HCT(18): Patients
144 who relapsed within six months following allogeneic HCT and received tisa-cel
145 manufactured from their cells collected post-HCT experienced significantly
146 poorer disease free survival (DFS) compared to those who relapsed beyond six
147 months after transplant. This compelling observation requires further study to
148 validate and understand possible mechanisms contributing to failure.
149
150 7. Suboptimal fludarabine dosing (19,20) Suboptimal fludarabine exposure (area
151 under the curve [AUC] <13.8 h/L) has been associated with shorter CAR T-cell
152 persistence and an increased risk of relapse.

153 Relapse after HCT

154 Historically, outcomes for patients with B-ALL experiencing relapse after HCT have been
155  particularly poor. Second HCT attempts in this cohort of patients have significant limitations due
156  to high treatment-related mortality (TRM) and contraindications for further total body irradiation
157  (TBI) (21-23). For patients who have already undergone allogeneic HCT, CAR T-cell therapy
158 can serve as an effective rescue therapy (23,24). One study showed that the outcome was

159  associated with the time elapsed between HCT and relapse, with an EFS of 55.5% for patients
160 relapsing beyond 6 months and 18.5% for patients relapsing prior to 6 months after HCT (18).
161 These dismal outcomes in patients with very early relapses after HCT (<6 months) may be

162  explained both by the refractoriness of the disease, and T-cells collected shortly after

163  immunosuppression discontinuation may be dysfunctional and have impaired in vivo expansion
164  (25-27). One potential way to address this issue would be to manufacture T-cells directly from
165 the transplant donor. This approach has been explored in several clinical trials, with promising
166  results in small studies (28—-31), but is not currently FDA/EMA approved.

167 Extra-Medullary Disease (EMD)

168 Only 10-20% of newly diagnosed B-ALL patients present with EMD. However, at

169 recurrence, a higher proportion of patients (15%-25%) relapse with some combination of

170  medullary/extramedullary involvement (21% with isolated CNS disease and less than 1% with
171  isolated testicular relapse)(32). Non-CNS EM disease is likely underdiagnosed, as full body
172  imaging is not a standard part of evaluation at most centers (33).

173 Recent evidence has shown that patients with CNS disease at diagnosis or relapse who
174  undergo CAR T-cell therapy have similar outcomes to those without CNS disease, with no

175 increase in severe ICANS (=grade 3) (34—36). However, in a retrospective report, patients

176 treated with tisa-cel for an isolated CNS relapse had a high incidence of a subsequent CNS
177  relapse (36). There are conflicting data with non-CNS EMD. While some groups noted no
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178 difference in outcomes when compared to CNS-EMD or isolated marrow disease(35) a large
179  retrospective trial found that active EMD at infusion was independently associated with worse
180 EFS(10). Localized transient toxicities have occurred at sites of EMD following CAR T-cells
181 including erythema, swelling, and pain, as well as a report of bilateral retinal detachment with
182  temporary vision loss in a patient with ocular involvement. (37,38)

183 CAR-T cells in special populations

184  The current FDA/EMA indication does not include treatment with CAR T-cell products for

185  patients with first relapse of B-ALL. CAR T-cell therapy should be considered at first relapse for
186  very selected categories of patients, such as those affected with genetic conditions associated
187  with poor outcomes due to excessive toxicity with conventional treatment.

188 Patients with Down Syndrome

189  Patients with Down syndrome-associated acute lymphoblastic leukemia (DS-ALL) are at risk of
190 chemotherapy-associated toxicities and poor outcomes. CAR T-cell therapy offers potential cure
191 in refractory patients with toxicity profiles comparable to non-Down syndrome patients (39—-41).

192  Other special populations

193  Patients with chromosomal instability syndromes, such as Nijmegen Breakage Syndrome, who
194  develop B-ALL and have an indication for HCT may do better with reduced-intensity

195 conditioning (RIC) regimens compared to myeloablative protocols involving TBI(42). As a result,
196 these patients are likely at a higher risk of developing mixed chimerism following HCT, which
197 increases their susceptibility to relapse. In such cases, it may be reasonable to consider

198 consolidation with CAR T-cell therapy when mixed chimerism is detected post-transplant to

199 reduce the risk of disease recurrence. This approach has been reported to be successful in a
200  single patient(43).

201  Additional consideration should be given to two subsets of patients who have been reported to
202  experience decreased outcomes due to adverse cytogenetic traits. The first includes patients
203  with KMT2A rearrangements (KMT2Ar). While these patients can achieve long-term DFS similar
204  to other cytogenetic subsets treated with CAR T-cells(44), if they relapse, they are at increased
205  risk for lineage switch, and salvage for those relapsing with lineage switch is very poor (10,45).
206  The second subset includes patients with Li-Fraumeni Syndrome (TP53 germline mutations)
207  and somatic TP53 mutated leukemia. Studies from China have shown lower DFS, significant
208  risk of failure inthese patients (46,47). While other studies have not identified TP53 as a poor
209 risk factor, TP53 characterization of high-risk patients with B-ALL patients have not been

210 uniformly performed by many centers and further study is warranted(10,44).

211 Challenges for the field

212 The primary biologic challenges can be summarized as toxicities associated with CAR T-
213  cell therapies and leukemia relapse due to CD19 target loss (antigen escape), and loss of

214 functional CAR T-cells (lack of T-cell persistence), while the socio-economic challenges related
215 to CAR T-cell therapy are complex and multifaceted (Figure 1).
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216  Toxicity associated with CAR T-cell therapy

217 Although hypogammaglobulinemia, cytokine release syndrome (CRS) and Immune
218  effector cell-associated neurotoxicity syndrome (ICANS) are the most common and well

219 described toxicities associated with CAR T-cell therapy, recently Immune-effector cell

220  associated HLH-like syndrome (IEC-HS), and Immune effector cell-associated hematotoxicity
221  (ICAHT), have been described. (48,49)

222  Hypogammaglobulinemia and risk of infections

223 BCA and hypogammaglobulinemia are expected on target adverse events of successful
224  CAR T-cell therapy but increase the risk of life-threatening infections. Long-term

225 immunoglobulin replacement therapy is routinely performed in pediatrics, with response and
226  persistence varying by patient. Most institutions use immunoglobulin G (IgG) levels below 400
227  mg/dL as the threshold for supplementation, higher levels may be needed for those with

228  recurrent infections despite-IgG replacement(50-52)

229  Cytokine Release Syndrome (CRS)

230 Cytokine Release Syndrome (CRS) is caused by the significant release of inflammatory
231  cytokines, a self-limited process that initially presents with fever and flu-like symptoms

232  (headaches, myalgias) in mild cases and can progress to a sepsis-like constellation with

233  hypotension and hypoxia, leading to organ dysfunction, capillary leak, and coagulopathy. CRS
234  can be successfully treated with anti—interleukin-6 receptor (IL-6R) therapies (e.qg., tocilizumab),
235  often in combination with steroids (44,45). The severity of CRS is measured by staging. High
236  tumor burden prior to lymphodepletion is the strongest predictive factor for severe CRS. Both
237  the American Society for Transplantation and Cellular Therapy (ASTCT) and the EBMT/EHA
238  consensus guidelines for CRS have been broadly adopted (45-48).

239 Currently, due to the lack of evidence supporting effective prophylactic strategies for CRS in
240  patients receiving CAR T-cells, no formal recommendations exist for prophylaxis. However,
241  there is evidence supporting the early use of tocilizumab at Grade | CRS in patients presenting
242  risk factors for severe CRS, with the aim of preventing progression to severe CRS (8). The

243  impact of tocilizumab on CAR T-cell expansion and persistence appears negligible (49), this
244  approach should be considered for a selected group of patients, including:

245 ¢ Patients with high disease burden (e.g., >5% to >25% blasts) before CAR T-cell infusion
246 e Patients with pre-existing cardiac or pulmonary comorbidities
247 o Patients with CRS onset within 24 hours of CAR T-cell infusion

248 Immune effector cell-associated neurotoxicity syndrome (ICANS)

249 Neurological manifestations associated with CAR T-cell-induced immune effector cell-
250 associated neurotoxicity syndrome (ICANS) range from language dysfunction or aphasia,

251  handwriting difficulties, and cognitive impairment to altered mental status or delirium, seizures,
252  coma, and fatal cerebral edema. Neurological toxicity has been reported less frequently in
253  pediatric patients and tends to be short-lived. Although rare, fatal cerebral edema has been
254  documented (50)
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255 The pathophysiology is likely related to disruption of the blood-brain barrier (BBB)

256  secondary to systemic cytokine release, high levels of cytokines in the cerebrospinal fluid,

257  and/or direct CAR T-cell attack of CD19-positive mural cells in CNS tissues (53,54). Unlike

258 CRS, CNS symptoms have not responded well to tocilizumab, as it does not cross the BBB.
259  ICANS has generally been treated with high-dose steroids, anakinra or other approaches. The
260 timing of treatment for ICANS is controversial, but concerns about its rare, fatal form have led to
261  near-uniform recommendations for the treatment of patients with grade 3 or higher ICANS (54—
262 56). Rapid peak expansion, severe CRS and higher dose of CAR T-cells have been highlighted
263  asrisk factors for severe ICANS, although, interestingly, pre-CAR T-cell CNS disease has not
264  been clearly associated with the severity of neurological manifestations (57—60)

265 Of note, neurocognitive impairment and neuropsychiatric disorders are emerging as long-
266 term side effects associated with ICANS in adults, but the incidence of these late manifestations
267 in children is unknown (61,62). Given the lack of sufficient evidence, anti-seizure prophylaxis is
268 generally not universally recommended. However, seizure prophylaxis with levetiracetam—a
269  medication generally well tolerated in children, with rare and minor side effects—should be

270  considered for high-risk patients, including those with:

271 e History of neurological disorders (e.g., seizures, posterior reversible encephalopathy
272 syndrome)
273 e Evidence of neurological abnormalities on imaging

274  Immune-effector cell associated Hemophagocytic Lymphohistiocytosis (HLH)-like syndrome
275  (IEC-HS)

276 Immune-effector cell associated HLH-like syndrome (IEC-HS) has been described as
277 life-threatening immune activation. Onset is usually after CRS is resolving, or after an initial
278 improvement with CRS directed treatment. IEC-HS is associated with high fever,

279  hyperferritinemia, prolonged cytopenia, and can lead to multiorgan failure(48). There may be
280 overlap with CRS in some patients; the later onset disease occurs more frequently with certain
281  approaches to CD22-targeted CARs. Given the lack of prospective trials in this area, published
282  ASTCT working group treatment recommendations include a patient-tailored stepwise approach
283  with anakinra with or without glucocorticoids, followed by ruxolitinib, emapalumab or low-dose
284  etoposide.(48,63)

285 Immune effector cell-associated hematotoxicity (ICAHT)

286 Prolonged cytopenias (30-90 days), particularly neutropenia (<500/mm3) occur in a

287  subset of patients (approximately 10% of patients experience persistent cytopenia one year
288  after treatment) (64,65). Cytopenias in combination with hypogammaglobulinemia can

289  predispose patients to serious infectious complications(66), and patients with B-ALL seem to be
290 more likely to be affected than other B-cell targeted diseases. The use of B-ALL specific tools to
291  risk stratify patient’s susceptibility to develop hematoxicity is important for post-CAR T-cell

292  care(67). The Pediatric Real World CAR Consortium (PRWCC) has also published a score for
293  predicting risk of severe, prolonged neutropenia(68). Management of cytopenias is mostly

294  supportive with transfusions. Some patients may respond to G-CSF or thrombopoietin receptor
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295 agonists (69,70); in patients that have severe persistent cytopenias and a history of prior HCT,
296 CD34+ selected hematopoietic cell boosts have been beneficial (71,72).

297 Antigen escape
298 Combined data from the ELIANA and ENSIGN trials showed rates of CD19-positive and
299 CD19-negative disease recurrence were 36% and 64%, respectively (73,74).

300 There are different proposed mechanisms for the emergence of antigen escape:

301 1. Pre-existing target-negative tumor clones.

302 2. Antigen gene mutations, alternative splicing or methylation. (15,75)

303 3. Deficiencies in antigen processing and presentation to the T-cells unrelated to CD19.
304 (76,77).

305 4. Lineage switch (commonly observed in patients with KMT2A rearrangements) leading to
306 loss of the target antigen(16,78).

307 5. Epitope masking(79)

308 6. Trogocytosis and Antigen redistribution. While antigen redistribution usually refers to the
309 movement of antigens from membrane to an intracellular location (80,81), trogocytosis
310 refers to the exchange of plasma membrane fragments. (82—84).

311 To address these challenges, researchers have pursued multiple approaches, including

312 testing combinations with other therapies, such as enhanced or armored CAR T-cells with IL18
313  (85) or radiation therapy prior to CAR T-cell infusion (86), or concomitant use with chidamide (a
314  histone deacetylase inhibitor) to upregulate tumor antigens (87). In addition to searching for
315 novel targets, which has proven difficult due to challenges in finding candidates with acceptable
316  on-target, off-tumor toxicity profiles.

317  Multi-antigen approach: Multi-targeted CAR T-cell, sequential cell and immune therapies

318 Cell and immune therapy approaches have been devised to target a second lymphoid
319 antigen to overcome CD19 antigen escape. CD22 has been the most extensively studied and is
320 considered an attractive target, both in CAR constructs and with inotuzumab ozogamicin (88).
321 CD22 can be downregulated; therefore, this approach is often combined with HCT, as an

322 increased risk of relapse is expected (55,89,90).

323 There is concern that administering CD22-targeted therapy before CD19 CAR T-cell
324  treatment may impair T-cell expansion, potentially reducing therapeutic efficacy (91). Although
325 not yet commercially available, sequential or simultaneous CD19 and CD22 CAR infusions are
326  being studied. There have been studies published with promising results (92,93)

327 Multitargeted CAR T-cells offer a promising strategy to combat antigen escape;

328 however, early experience has revealed significant limitations. Several approaches have been
329 tested clinically, including co-administration of two CAR T-cell products targeting different

330 antigens, co-transduction of T-cells with two separate vectors encoding different CARs, the use
331  of a bicistronic vector encoding two CARs, and tandem CARs (94,95). To date, the major

332 limitation of these studies (89—92) has been the limited persistence of CAR T-cells, which
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333  precludes assessment of the impact of multi-antigen targeting on CD19-negative relapse.
334  Addressing this challenge will likely be necessary to fully realize the potential of this approach.

335 T-cell persistence

336 A decade has passed since Maude et al. (7) first identified the correlation between CAR
337  T-cell persistence in peripheral blood and BCA. Subsequent data from the ELIANA and

338 ENSIGN trials have refined our understanding (18,73) revealing that B-cell recovery alone does
339  not necessarily imply relapse.

340 CAR T-cell persistence involves multiple factors, with T-cell functionality proving more
341 important than CAR detection (7,96), as evidenced by the practice of using BCA as a key

342 indicator of T-cell persistence. T-cell phenotype—including memory versus effector status and
343  activation versus exhaustion markers—influences persistence. (97,98) (99) The persistent

344  antigenic stimulation of T cells can lead to dysfunction (100-102), where exhausted T-cells

345  exhibiting a characteristic pattern of inhibitory receptors, and transcription factors display altered
346  metabolism, low proliferative capacity, and a reduced cytotoxicity and secretion of effector

347  cytokines (103)

348 Potential T-cell Persistence Improvement Strategies

349  Architecture

350 The sequential generations of CAR T-cells have not only improved the cytotoxic ability of the T-
351 cells but also aided in persistence. The addition of the 4-1BB (CD137) domain to CAR

352  constructs promoted the induction of CD8+ T-cells with increased oxidative metabolism and
353  heightened mitochondrial biogenesis, two characteristics of the least differentiated memory T-
354  cells. The structure of the single chain fragment variable (scFv) can modify persistence, as seen
355 in obecabtagene autoleucel (Obe-cel), a CD19 CAR T-cell (FAST OFF CAR), with a lower

356  affinity than FMCG63 (the scFv in tisa-cel), which has led to higher in vitro proliferation and

357  cytotoxicity and greater in‘vivo proliferative and antitumor activity compared with FMC63 CAR T-
358  cells(104). There are numerous newer constructs that integrate systems with modulated CAR
359  expression and intermittent activation(105). Oxygen sensitive CAR expression is also being

360  studied by utilizing the subdomain of HIF1a to modulate CAR expression according to oxygen
361 availability in the tumor microenvironment(106).

362 Another approach to enhance persistence such as incorporating vaccination with tumor
363 antigens (107,108), or incorporating oncolytic virus into treatment(109-112). Recent studies
364  have also shown that CAR T-cells engineered to express and deliver non-coding RNA can
365  promote expansion and effector memory differentiation of CAR T-cells leading to higher

366  persistence and less exhaustion(113)

367  Cell Culture Optimization

368 Modifications in manufacturing techniques have led to significant changes in functionality
369 and phenotype. Both the type of culture medium used for ex vivo expansion and the duration of
370  expansion(101,114) influence cellular behavior in vivo, including their phenotypic differentiation,
371  proliferation, and efficacy. The use of fetal bovine serum (FBS) versus human serum or human
372  platelet lysate have all shown differences in outcomes. The use of RetroNection for lentiviral
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373  transductions(115-117), specific CD4/CD8 ratios, and agents like dasatinib have been used to
374  increase transduction efficiencies and have demonstrable influence on T-cell performance
375  (118).

376  Cytokines Used to Yield Undifferentiated CAR-T Cells

377 The most studied is Interleukin (IL)-2 (115), has played an essential role in the

378  manufacturing process, as it stimulates cell proliferation and maintains cell viability during the
379  expansion phase. IL-2 can lead to shorter lived phenotypes. Some studies have shown that,
380 during the expansion phase of CD28-based CD19 CAR T-cells, a mixture of IL-7 and IL-15

381 increased the number and proportion of a T-cell subpopulation with T-cell memory stem cell and
382  central memory-like phenotypes (101). Some newer generation of CARs include inducible gene
383  expression cassette encoding a transgenic cytokine, to enhance T-cell activity within tumor

384  microenvironment (85,119,120)

385 Patient Access and Regulatory Considerations

386 The regulatory landscape presents additional complexities. Current European Union
387 legislation requires pharmaceutical licensing for CAR T-cell therapy. The EMA supports

388 academic investigators in licensing CAR T-cells and other advanced therapy medicinal products
389 (ATMPs) (93). Single-center approaches prove inefficient and time-consuming (121)

390 The current development pathway mirrors traditional drug development, requiring FDA
391 biological license application (BLA) submission and approval after demonstrating efficacy and
392 safety. Academic institutions typically lack the infrastructure for conducting pivotal trials

393 necessary for commercial approvals; though orphan drug designation provides some incentives.

394 Regarding cost recovery, the Code of Federal Regulations (CFR) Title 21 Part 312, subpart
395 A section 312.8 allows academic institutions to recover specified costs under an investigational
396 new drug (IND) application if they meet certain criteria:

397 o Evidence of potential clinical benefit

398 o Possibility of advantages over existing treatments

399 o Essential safety and efficacy data collection

400 ¢ Financial necessity for trial continuation

401 The FDA's authority does not extend to determining reimbursement mechanisms. Even with

402  approved INDs, patients rely heavily on insurance coverage, and product pricing remains
403  constrained by allowable production cost calculations.

404 Potential solutions have emerged, although these may vary across different continents. For
405 example:

406 e A hybrid model, where academic centers continue production with expanded distribution
407 capabilities.

408 e Automation to address production challenges.

409 ¢ Novel reimbursement strategies, such as limiting pharmaceutical licensing to specific

410 vectors or CAR constructs rather than to individual patient cell products.
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411  Industry experts advocate for innovative solutions, such as establishing new entities like the
412  Pediatric Advanced Medicines Biotech (PAMB) to advance late-stage development and

413  commercialization of pediatric cell and gene therapies outside traditional biopharmaceutical
414  models in the United States(122). Developing consensus on these solutions is crucial (123).

415 Controversial Role of HCT as consolidation after CD19 CAR T-cells:
416 HCT for all vs. selective use

417  Prior to CAR T-cells, the universal standard of care (SOC) for patients with high-risk, r/r B-ALL
418  was to proceed to HCT following the achievement of a CR. Today the role of consolidative HCT
419  post tisa-cel is being debated, with notable regional and institutional practice differences.

420 An estimated 35-40% patients (124) are cured by tisa-cel as a stand-alone therapy, a
421  central question in the field is whether CAR T-cell therapy should be used to avoid the need for
422  HCT in this group or if all patients should be consolidated with HCT. Proceeding with HCT after
423  CAR T-cell therapy can potentially reduce the risk of recurrence in some categories of patients.
424  Studies from the National Institutes of Health (NIH) showed that therapy with CAR T-cells using
425  the CD28 co-stimulatory domain in pediatrics and young adults had improved survival when
426  HCT was given 4 to 8 weeks after the CAR T-cell infusion(125). The short half-life of CARs with
427  a CD28 co-stimulatory signal, almost invariably require a consolidative HCT to avoid relapse for
428  patients with B-ALL, as a survival advantage has been demonstrated in children and young
429  adults consolidated with HCT(126).

430 For patients receiving CD19 targeted CAR T-cells using 4-1BB costimulatory domains
431  (tisa-cel and obe-cel) the decision to proceed to transplant is nuanced. A subset of patients will
432  have sustained remission without further therapy. To date, the available data rely on

433  nonrandomized, retrospective analyses, and are potentially subject to biases (127-129). In the
434  ELIANA update, 11/79 or 14% of patients in a tisa-cel mediated remission went to HCT. Of the 8
435 patients from these 11 who had follow-up data available, none had relapsed(73). Reason to

436  proceed to HCT was not described.

437  Over the last three decades, TRM after HCT has decreased, due to increasing precision in

438 donor matching, better graft-versus-host disease (GVHD) prevention and management, and
439  overall improvements in supportive care. As conditioning for B-ALL in pediatrics and AYA has
440 traditionally included high-dose TBI, pediatric HCT survivors are at increased risk of early

441  development of chronic health conditions, with over 60% of HCT survivors reporting at least one
442  chronic condition, which in turn can lead to late TRM (130). In one study, consolidative

443  transplant after CAR T-cell therapy improved leukemia-free survival in patients who were not
444  previously transplanted, but this benefit was not observed in those who had previously been
445  transplanted(128). A European retrospective study highlighted a survival benefit of consolidative
446  HCT in patients without evidence of disease recurrence, when compared to those who had

447  disease relapse or MRD positivity after CAR T-cells. In this study, no difference was noted in
448  OS, LFS, and NRM between outcomes of consolidative HCT of patients undergoing a first or a
449  second HCT after CAR T-cell treatment. (131) More study is required of patients undergoing a
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450 second HCT after CAR T-cell therapy, but current literature supports recommendations for two
451  patient types.(131)

452 In patients who are eligible to proceed to HCT and do not have a history of prior HCT, there
453  is reasonable evidence to recommend consolidative HCT in patients who:

454 a) receive a CAR T-cell therapy using CD28-costimulatory domains, OR

455 b) experience loss of BCA within 6 months of CAR T-cell infusion, OR

456 c) present with MRD positivity at any level after CAR T-cell infusion.

457 In patients who are eligible to proceed to HCT and do not have a history of prior HCT,

458  patients that may be_considered for consolidative HCT are those who:

459 a) have an appropriate donor available and desire to proceed with HCT, AND/OR

460 b) have a high disease burden (prior studies have defined >5% blasts up to >25%) pre-
461 lymphodepletion, AND/OR

462 ¢) have a history of prior treatment failure with blinatumomab, AND/OR

463 d) another relapse is unlikely to be treatable, whether due to history of refractoriness or
464 adverse cytogenetics.

465 The optimal approach for patients who have previously been transplanted and have early

466 loss of BCA has yet to be determined and requires special consideration. Our proposed

467  treatment algorithm is included in Figures 2 and 3. Patient specific features should be

468  considered to balance pros and cons of consolidative HCT. Including time elapsed since first
469 transplant and characteristics of the previous HCT (conditioning regimen and donor type). The
470 presence of CD19 negative clone before CAR T-cell infusion, donor availability and co-

471  morbidities, and previous toxicities should be accounted for in the decision-making process.
472  Potential alternative approaches other than HCT are discussed below.

473  Reinfusion and maintenance therapy

474 In cases where patients achieve initial remission following a CD19 CAR with a 4-1BB co-
475  stimulatory domain and do not proceed to HCT, is there a role for CAR T-cell reinfusion to

476  overcome short persistence (loss of BCA)? Investigators from Children’s Hospital of

477  Philadelphia (CHOP) recently published a retrospective review of children and young adults with
478  r/r B-ALL treated on three CD19 CAR clinical trials or with commercial tisa-cel between 2012
479  and 2020 who received at least one reinfusion of the same product (132). While some patients
480 re-established BCA and demonstrated improved persistence following reinfusion, this was

481  observed mostly in those who were given reinfusions because of emergence of CD19-positive
482  hematogones in the bone marrow versus those with robust peripheral B-cell recovery. Other
483  studies addressing whether reinfusion is beneficial are ongoing and have generally focused on
484  infusions for loss of BCA or relapse.

485 An alternative approach is to treat patients with early loss of BCA with maintenance
486  therapy. In a small UK retrospective study, 5 out of 8 patients treated with this approach
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487  remained in molecular remission at last follow up (median follow-up time from loss of BCA was
488  21.5 months) and 3 relapsed with CD19-positive disease (133). Further larger studies of this
489  approach are ongoing.

490 Similarly, maintenance with tyrosine kinase inhibitors (TKI) in small cohorts of Ph+ B-
491  ALL patients have been explored as an approach, derived from post-transplant management of
492  these patients, to reduce the risk of disease relapse. However, data are limited to small cohorts
493  of patients, and the benefit of TKI in children post-CART still warrants further study (134).

494 Discussion

495 CAR T-cell therapy has transformed the treatment landscape for patients with relapsed
496  or refractory B-ALL, not only improving the chances of sustained remissions but has also

497 facilitated the eligibility of some patients for HCT who would otherwise have been deemed

498 ineligible due to the severity of their disease, other underlying conditions (e.g. active infections)
499  or treatment failures. The efficacy of CAR T-cell therapy, particularly targeting CD19, has been
500 well documented, with studies reporting high remission rates and durable responses(135) and a
501 favorable toxicity profile. While adverse events such as CRS and ICANS remain a concern,
502 many of these effects are manageable with supportive care and timely interventions.(136,137).
503 Furthermore, the safety of CAR T-cell therapy has been underscored by studies demonstrating
504 that most adverse reactions occur within the initial weeks post-infusion and are controllable
505 (70,138).

506 Despite these advances, challenges persist, such as antigen escape that leads to CD19
507 negative relapses, or poor T-cell persistence. Multifaceted approaches are required to

508 overcome these challenges, including multi-antigen targeting strategies to mitigate escape,

509 enhanced CAR designs, and accurate patient risk stratification to identify which patients may
510 require consolidative therapies.

511 Among the most pressing issues are cost and production scalability. Equally concerning
512 s the reality that CAR T-cell therapies that show promise in clinical trials remain challenging to
513  produce commercially, particularly for rare pediatric indications. The term "valley of death" aptly
514  describes the substantial gap between basic science achievements and their clinical

515 implementation (139) This gap is primarily driven by limited commercial interest, resulting in
516  restricted access to products from academic centers and significant regulatory and financial
517  barriers to conducting prospective investigational trials.

518 The effectiveness of any therapy depends on its accessibility. Currently, patients outside
519 academic center catchment areas or those facing financial constraints often cannot access

520 these potentially life-saving treatments. (140,141) To address these challenges, the ASTCT
521  established the ACT to Sustain (Adoptive Cell Therapy to Sustain) task force (142). This

522 initiative focuses on scenarios where the current model fails patients, including cases involving
523 effective CAR T-cells without commercial partners, off-label indications, and rare diseases that
524  would benefit from gene or cellular therapy. (143,144)
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525 Despite challenges CAR T-cell therapy represents a paradigm shift in the management
526  of relapsed or refractory B-ALL, offering hope for cure and improved quality of life for patients.
527  While significant obstacles remain, the potential benefits make these challenges worth

528 addressing through continued research and clinical development. The favorable toxicity profile
529 and potential to facilitate HCT eligibility secures CAR T-cell therapy’s spot as a cornerstone of
530 treatment for r/r B-ALL.
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1092  Figure 1 Challenges in Chimeric Antigen Receptor (CAR) Therapies - Food and Drug Administration (FDA),
1093  European Medicines Agency’s (EMA), extramedullary disease (EMD), cytokine release syndrome (CRS)
1094 Immune effector cell-associated neurotoxicity syndrome (ICANS) Immune-effector cell associated HLH-like
1095  syndrome (IEC-HS), and Immune effector cell-associated hematotoxicity (ICAHT) Created in BioRender.
1096 Deimundo Roura, C. (2025) https://BioRender.com/t90006r

1097
1098
1099
1100
1101
1102
+ .
MRD Family § A .| Consider
desire to available Consolidative
roceed to
e / HCT
Yes /
i Yes
| Preinfusion
No "| High Disease / NGS
Burden No » S
/ Monitoring
History of No
BIinatumomab/
failure
Consolidative
Bridging > HCL
Therapy
1103
1104

1105  Figure 2 Algorithm based on Minimal Residual Disease (MRD), at either quantitative PCR (qPCR) or flow
1106  cytometry level. Hematopoietic Cell Transplant (HCT), Next Generation Sequencing (NGS) Created in
1107  BioRender. Deimundo Roura, C. (2025) https://BioRender.com/l02201z
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1126  Table:
Risk Factors for CAR T-cell Therapy Failure
High disease burden (5% CAR-MA studies (N =420)(10,45): HD burden (5% bone
bone marrow blasts) marrow blasts) was associated with inferior EFS, RFS, and

OS. HD burden was independently

associated with worse EFS (HR 2.5, P <.001) by multivariable
analysis, and specifically associated with a higher cumulative
incidence of CD19- relapse (HR 5.2, P <.001).

CHORP clinical trials: in a trial of tisa-cel (N = 70)(9), patients
with HD burden (>40% blasts) had inferior 24-mo EFS (34% vs
78%) and OS (60% vs 92%) compared with LD burden. In a
trial of humanized CD19 CAR (N = 74), HD burden was
associated with inferior RFS(145).

PRWCC study(146) (N = 185): patients with HD burden (5%
bone marrow blasts) had lower 12-mo EFS (31% vs 70%, P <
.0001) and OS (58% vs 85%, P <.0001) compared with LD
burden. HD burden was independently associated with OS by
multivariable analysis (HR 5.1, P = .002).

St Jude and JHU study(147) (N = 30): HD burden (=5% bone
marrow blasts) was independently associated with inferior EFS
(HR 6.0, P =.038) and OS (HR 4.2,P = .015).

Robert Debre and Saint Louis University Hospitals study
(148)(N = 51): HD burden (21% bone marrow blasts) was
associated with a higher cumulative incidence of CD19-
relapse (SHR 10.4, P =.03) in a competing risks analysis.

Non-response to blinatumomab | CAR-MA study (N = 420): blinatumomab non-responders had
lower CR rates to CD19 CAR T cells and worse 6-mo EFS
(CR, 65%; EFS, 27%) than blinatumomab responders (CR,
93%; EFS, 67%) or blinatumomab-naive patients (CR, 94%;
EFS, 73%). (10)

CHOP study (N = 166): composite outcome of NR, CD19-
MRD/relapse was more frequent in blinatumomab-exposed
patients.(149)
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Robert Debre and Saint Louis University Hospitals study(148)
(N = 51): prior blinatumomab was associated with early CAR
failure (P = .01), increased CIR (HR 2.6), and shorter EFS (HR
3.0) and OS (HR 5.5).

Short CAR Pooled ELIANA/ENSIGN analysis (N = 143): loss of BCA within
_ 1y was associated with increased relapse risk (HR 4.5, P <
persistence (loss .001). Patients with loss of BCA within 6 mo had a 24-mo EFS
of BCA) of 14%.(14)

Seattle PLAT-02 trial32 (N = 45): loss of BCA was associated
with increase relapse risk (HR 3.5, P = .04).(6)

CHOP humanized CD19 CAR T-cell trial (N = 74): when
treated as a time varying covariate, B-cell recovery was
associated with worse RFS (P =.011).(145)

Cell dose PRWCC (n=185) OS, EFS, and RFS were improved in patients
who received higher doses of tisa-cel (P = .031, .0079, and
.0045, respectively) without increasing toxicity profile (17)

Timing post HCT Real world data form Germany (N=81): relapsing within 6
months of allo-HCT pEFS of 18.4% (pOS = 16.0%); the pEFS
for those relapsing later was 55.5% (pOS = 74.8%) (18)

Inadequate dose of fludarabine | PRWCC study (N = 152): suboptimal fludarabine exposure,
defined as AUC <13.8 mg x h/L and estimated by a validated
population pharmacokinetic model, was associated with a
higher CIR (HR 2.5, P =.005) and higher risk of a composite
end point of relapse or loss of BCA (HR 2.0, P =.01) compared
with optimal fludarabine exposure.(20)

Princess Maxima study (N = 26): a cumulative fludarabine AUC
<14 mg x h/L was associated with a higher frequency of
CD19+ relapse within 1y (100% vs 27%, P = .0001) and
probability of losing BCA within 6 mo (77% vs 37%, P =.009)
than AUC >14 mg x h/L.(150)

1127

1128  Table 1 Risk for CAR T-cell Therapy Failure. Area under the curve (AUC), Children's Hospital of Philadelphia
1129 (CHOP), John Hopkins University (JHU), detectable minimal residual disease by next generation sequencing,
1130 (NGS-MRD), St Jude Children's Research Hospital (St Jude), Pediatric Real World CAR Consortium (PRWCC)
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