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Abstract—The advent of text-driven 360-degree panorama
generation, enabling the synthesis of 360-degree panoramic
images directly from textual descriptions, marks a transformative
advancement in immersive visual content creation. This inno-
vation significantly simplifies the traditionally complex process
of producing such content. Recent progress in text-to-image
diffusion models has accelerated the rapid development in this
emerging field. This survey presents a comprehensive review
of text-driven 360-degree panorama generation, offering an in-
depth analysis of state-of-the-art algorithms. We extend our
analysis to two closely related domains: text-driven 360-degree
3D scene generation and text-driven 360-degree panoramic video
generation. Furthermore, we critically examine current limi-
tations and propose promising directions for future research.
A curated project page with relevant resources and research
papers is available at https://littlewhitesea.github.io/Text-Driven-
Pano-Gen/.

Index Terms—360-degree panorama generation, text-driven
generation, 360-degree 3D scene generation, 360-degree
panoramic video generation.

I. INTRODUCTION

Rapid growth of immersive technologies, such as virtual
reality (VR) and augmented reality (AR), has dramatically
increased the demand for high-quality panoramic visual con-
tent. Among such content, 360-degree panoramas are pivotal
in delivering realistic and immersive experiences by capturing
a complete spherical view of an environment. Traditionally,
producing these panoramas requires specialized camera equip-
ment and considerable technical expertise. However, recent
advances in text-driven 360-degree panorama generation [/14],
[40], [56]-[59] have introduced groundbreaking capabilities,
enabling the synthesis of 360-degree panoramic images di-
rectly from textual descriptions. This innovation not only
revolutionizes content creation over diverse domains [85]—
[87], [89]] including VR/AR applications, gaming, and virtual
tours, but also serves as a foundational technology for new
creative frontiers.

Unlike conventional 2D images, 360-degree panoramic im-
ages, often represented through equirectangular projection [/7]],
encompass the entire 360°x180° field of view, as shown in
Fig.[T] This distinctive format poses unique challenges for text-
driven generation, requiring not only accurate image synthesis
but also excellent preservation of geometric consistency and
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Fig. 1. Visual comparison between a 360-degree panoramic image and a
conventional 2D image.

seamless visual coherence across the full 360° horizontal and
180° vertical extents.

The availability of large-scale paired image-text datasets has
facilitated the development of text-to-image latent diffusion
models (LDMs) [63]], which excel at synthesizing high-quality,
visually compelling images aligned with given text descrip-
tions [64]-[67], [72]. Leveraging the powerful generative
capabilities of pre-trained LDMs, researchers have developed
methods specifically tailored to address the unique challenges
of text-driven 360-degree panoramic image generation [42],
[571-1601, [73]. Although broader surveys on panoramic vision
and 3D scene-generation [88]], [104] briefly discuss some text-
driven 360-degree panorama generation methods, they treat
them only as peripheral topics.

To the best of our knowledge, a focused and systematic anal-
ysis devoted specifically to text-driven 360-degree panoramic
image generation has not yet been presented. To address this
gap, this paper presents a holistic survey and analysis of text-
driven 360-degree panorama generation, its direct applications,
and related emerging fields.

This survey is structured as follows: First, we establish a
foundational understanding of this field by introducing the
principal representations of 360-degree panoramas, presenting
prominent datasets commonly used in this area, and outlining
key evaluation metrics employed to assess the quality and
fidelity of generated panoramic content. Next, we review
state-of-the-art (SOTA) methods for text-driven 360-degree
panorama generation, categorizing them into two primary
paradigms: (a) Text-Only Generation and (b) Text-Driven Nar-
row Field-of-View (NFoV) Outpainting. Fig. ] and Fig. [3| pro-
vide a systematic taxonomy and a chronological overview of
these SOTA methods, respectively. Following this, we explore
two key emerging directions that are closely related to this
field: (a) text-driven 360-degree 3D scene generation, which
uses 360-degree panoramic images as an intermediate step;
and (b) text-driven 360-degree panoramic video generation,
a parallel and more complex task. Finally, we discuss the
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Fig. 2. A systematic taxonomy proposed in this survey of text-driven 360-degree panorama generation methods. Methods marked with * support multiple

input modalities and therefore appear in more than one branch.
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Fig. 3. Chronological overview of text-driven 360-degree panorama generation approaches. Methods in s

Sec. |IV-A2| Sec. [IV-B1] and Sec. [[V-B2| respectively.

prevailing challenges in this developing field and propose
potential directions for future research.

In short, this paper offers the first dedicated and com-
prehensive survey on text-driven 360-degree panoramic im-
age generation, systematically reviewing its state-of-the-art
techniques, key datasets and evaluation metrics. Furthermore,
we explore its two closely related emerging directions: text-
driven 360-degree 3D scene generation and text-driven 360-
degree panoramic video synthesis. We also identify critical
challenges and outline future research directions, aiming to
offer a valuable resource to researchers and practitioners in
this area.

ITI. RELATED WORK
A. Text-to-Image Diffusion Models

Text-to-image (T2I) diffusion models [[11[]-[13]], [21]], [|63]
have achieved remarkable progress in generating high-fidelity
and photorealistic images from textual descriptions. These
models have garnered widespread attention because of their
intuitive text-based conditioning as a user-friendly interface
for diverse image generation tasks.

T2I diffusion models can be broadly categorized into pixel-
space and latent-space models. Pixel-space models, such as
GLIDE |[11] and Imagen [12]], operate directly in the pixel
space, producing visually impressive results at the expense of
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substantial computational resources, limiting their scalability.
In contrast, latent diffusion models (LDMs) [63] address
these limitations by leveraging pre-trained autoencoders like
VQGAN [43]] to map images into a compact latent space,
where the diffusion process is conducted. This reduces com-
putational overhead while maintaining high-quality outputs,
making LDMs a preferred framework for text-driven 360-
degree panorama generation, as surveyed in this work.

B. 3D Scene Representation

Efficient and accurate 3D scene representation is a criti-
cal challenge in computer graphics and vision. Traditional
explicit representations, including point clouds, meshes, and
voxel grids, often suffer from high memory requirements and
struggle with complex topologies and unbounded scenes.

Neural implicit functions [9], [[10], [29], which represent 3D
scenes as continuous functions encoded within neural network
parameters, offer a compact and flexible paradigm for scene
representation. Notably, Neural Radiance Fields (NeRFs) [8]
stand out for their ability to achieve high-quality novel view
synthesis. However, NeRF’s reliance on dense volumetric
sampling along camera rays results in slow training, hindering
its practicability.

Recently, 3D Gaussian Splatting (3DGS) [26]] has emerged
as an efficient alternative to 3D scene representation. By com-
bining an explicit representation of 3D Gaussians with a highly
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Fig. 4. Visual comparison between the equirectangular and cubemap projec-
tions of spherical images (360-degree panoramic images).

efficient differentiable rasterization pipeline, 3DGS facilitates
rapid scene reconstruction and rendering. This advancement
has opened up new possibilities, including recent explorations
in text-to-3D 360-degree scene synthesis [32]], [33], which
leverage text-driven 360-degree panorama generation tech-
niques.

III. PRELIMINARIES
A. Representations of 360-Degree Panoramas

The representation of 360-degree panoramic content poses
a fundamental challenge: How to accurately map spherical
visual information onto a two-dimensional plane? To address
this, a variety of projection methodologies [7], [88] have
been developed, each with distinct advantages and trade-offs.
Below, we first outline two widely used formats for 360-degree
panorama representation: Equirectangular Projection (ERP)
and Cubemap Projection (CMP), as illustrated in Fig. ] and
then introduce Multi-Perspective Projection (MPP), a category
we define for the classification purposes of this survey.

1) Equirectangular Projection (ERP): As the most preva-
lent representation format for 360-degree panoramas, ERP
establishes a direct mapping between spherical and planar
coordinates: longitude corresponds to the horizontal axis,
spanning the full 360° range, while latitude maps to the
vertical axis, covering 180° from -90° (south pole) to +90°
(north pole). ERP’s simplicity and compatibility with web
viewers and VR headsets make it the preferred choice for
numerous applications. Additionally, its representation as a
single, continuous image allows the direct application of
image manipulation techniques, such as text-driven 360-degree
panorama-to-panorama translation [28]. Despite these advan-
tages, ERP introduces pronounced geometric distortions, par-
ticularly at the polar regions, where the visual content appears
stretched. Furthermore, the texel density of a spherical image
in ERP is non-uniformly distributed: it is comparatively lower
in the equatorial regions and markedly higher towards the
poles. This inhomogeneity can be particularly problematic in
scenarios where critical visual information is predominantly
located away from the poles, leading to inefficient utilization

TABLE I
SUMMARY OF POPULAR DATASETS USED FOR TEXT-DRIVEN
360-DEGREE PANORAMA GENERATION: INCLUDES CATEGORIES,
PUBLICATION YEAR, SAMPLE SIZE, RESOLUTION (RES.), AND LICENSE.
CATEGORIES ARE INDOOR (I), OUTDOOR (O), OR HYBRID (I, O).
DATASETS MARKED WITH * ARE SOURCED FROM PUBLIC WEBSITES.

Dataset (Category)  Year #Samples Res. License
SUN360 (I, O) 2012 67,583 9K  Custom
Matterport3D (I) 2017 10,800 2K  Custom
Laval Indoor (I) 2017 2,233 7K Custom
Laval Outdoor (O) 2019 205 7K  Custom
Structured3D (I) 2020 196,515 1K Custom
Pano360 (I, O) 2021 35000 8K  Custom
*Polyhaven (I, O) 2025 786 8K  CCO
*Humus (I, O) 2025 139 8K CCBY 3.0

of image resolution for regions of interest. In this survey,
unless explicitly stated otherwise, 360-degree panoramas are
represented using ERP.

2) Cubemap Projection (CMP): CMP offers an alternative
representation that mitigates the distortions inherent in the
ERP format, particularly at the poles. In CMP, the spherical
image is projected onto the six faces of a cube, with each
face representing a 90°x90° field of view. This division
significantly reduces geometric distortions, making CMP more
compatible with diffusion priors from text-to-image diffusion
models trained on standard perspective images [44]. However,
CMP introduces several challenges: (1) it increases the com-
plexity of image manipulation compared to the single-image
format of ERP; (2) it may necessitate additional conversion for
compatibility with platforms or viewers that primarily support
ERP. Despite these practical challenges, CMP is well-suited
for applications that demand reduced distortion and higher
fidelity. The width and height of an ERP image are four
and two times the side length of the corresponding CMP,
respectively, reflecting the geometric relationship between the
two formats.

3) Multi-Perspective Projection (MPP): MPP is defined as
the use of multiple individual perspective images to collec-
tively represent a 360-degree panoramic view, where these
images may or may not overlap. This category is characterized
by configurations that deviate from the standard six-face,
90°x90° field of view CMP.

The advantages and limitations of these representation for-
mats are further analyzed in Sec. [V-C1]

B. Datasets

360-degree panoramic image generation from text prompts
presents unique challenges due to the complete 360°x180°
field of view that these images encompass. Text-to-image
diffusion models [[12f], [21]], [35], [63], predominantly trained
on perspective images with a narrower field of view, often
struggle to synthesize high-quality 360-degree panoramas. To
address this, several specialized datasets have been developed
to facilitate research in this domain. Tab. [l summarizes these
datasets, with further details provided below.

SUN360 [48] is a comprehensive database comprising 67,583
high-resolution (9104 x4552) panoramic images sourced from
the Internet. Each image covers a 360°x180° field of view
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in ERP format and is manually categorized into 80 distinct
classes. Originally created for scene viewpoint recognition,
SUN360 now serves as a valuable resource for a wide range
of computer vision, computer graphics, and related research
areas.

Matterport3D [49] offers 10,800 indoor 360-degree
panoramic images with corresponding depth maps, all at a
resolution of 2048 x 1024 pixels. These panoramas are derived
from 194,400 RGB-D images of 90 buildings, making it a
rich dataset for studying indoor environments.

Laval Indoor [45] consists of 2,233 high-dynamic-range,
high-resolution (7768 x3884) 360-degree panoramic images,
specifically curated for the study of extensive indoor scenes,
such as factories, apartments, and houses.

Laval Outdoor [46] complements its indoor counterpart, of-
fering 205 high-dynamic-range, high-resolution (7768 x3884)
360-degree panoramic images that capture diverse outdoor
environments, including urban and natural scenes.

Structured3D [47] contains 196,515 360-degree panoramas
with varying configurations and lighting conditions, repre-
senting 21,835 distinct rooms. Rendered at a resolution of
1024x512 from 3D scenes of original house design files,
Structured3D is ideal for research on structured 3D modeling
and understanding.

Pano360 [19] contains 35,000 360-degree panoramic images
with a resolution of 8192 x4096. Of these, 34,000 are sourced
from Flickr, with the remainder rendered from photorealistic
3D scenes. Pano360 was originally proposed for training
camera calibration networks.

Polyhaven [5] contributes 786 real-world high-resolution
(8192x4096) 360-degree panoramas encompassing a variety
of indoor and outdoor scenes.

Humus [6] includes 139 real-world 360-degree panoramas
represented using cubemap projection, with each face having a
resolution of 2048 x2048 pixels. This dataset includes indoor
and outdoor environments.

C. Evaluation Metrics

A rigorous evaluation of text-driven 360-degree panorama
generation methods typically requires to combine (a) universal
and (b) panorama-specific metrics. The universal metrics,
comprising Fréchet Inception Distance (FID), Kernel Inception
Distance (KID), Inception Score (IS), and CLIP Score (CS),
are widely applicable to both perspective and panoramic
images.

FID [53]] measures the distance between feature distributions
of generated and real images using a pre-trained Inception-
v3 network [36]. Lower FID scores indicate better perceptual
quality and closer alignment with the real image distribution.

KID [20] measures the difference between real and generated
image distributions by computing the maximum mean discrep-
ancy of their features extracted from Inception-v3 [|36]]. Similar
to FID, lower KID values indicate better image quality.

IS [54]] measures both the quality and diversity of generated
images by leveraging Inception-v3 [36]. It calculates the KL

divergence between the conditional class distribution of gen-
erated images and the marginal distribution over all generated
samples. Higher IS suggests better visual quality and diversity.

CS [52] evaluates consistency between text prompts and
generated images using the CLIP model [52]. It calculates the
cosine similarity between the text embedding of the prompt
and the visual embedding of the generated image. A higher CS
reflects stronger text-image alignment and semantic coherence.

However, these universal metrics have significant limita-
tions when applied to 360-degree panoramic content. The
core issue lies in their underlying encoders (e.g., Inception-
v3, CLIP’s ViT), which were trained primarily on large
datasets of standard perspective images. These encoders are
not trained to account for the geometric distortions inherent
in equirectangular projections. Consequently, FID, KID, and
IS may penalize geometrically correct panoramic features as
artifacts, leading to an inaccurate assessment of perceptual
quality. Similarly, the CS may fail to accurately measure text-
image alignment, as its encoder might misinterpret distorted
objects or spatial relationships within the spherical scene.
This gap highlights the inadequacy of universal metrics for
capturing properties unique to 360-degree panoramas, such as
seamlessness and global geometric fidelity. To address these
shortcomings, several panorama-specific metrics have been
proposed, including Fréchet Auto-Encoder Distance (FAED),
Omnidirectional FID (OmniFID), Discontinuity Score (DS),
and Distortion-perception FID (Distort-FID).

FAED [50] computes Fréchet distances between features
extracted from generated and real panoramas. Unlike FID,
it employs an autoencoder [34] specifically trained on 360-
degree panoramic images. Lower FAED scores reflect bet-
ter perceptual and geometric quality tailored to the unique
panoramic properties.

OmniFID [51] adapts FID to specifically evaluate 360-degree
panoramas. It converts equirectangular panoramas into cube-
map representations and calculates FID across three disjoint
subsets of cubemap faces, averaging the results. Lower Om-
niFID scores indicate higher geometric fidelity in 360-degree
panorama generation.

DS [51] measures the seam alignment across the borders
of generated panoramas by applying a kernel-based edge
detection algorithm. A lower DS corresponds to fewer visible
seam artifacts, indicating better perceived consistencies across
the seam.

Distort-FID [24]] measures the distance between feature dis-
tributions of generated and real images based on a distortion-
perception CLIP [24] that is fine-tuned on 360-degree
panoramic images. Lower Distort-FID scores reflect better
distortion accuracy of the generated 360-degree panoramic
images.

Despite these advances, a critical gap remains. While met-
rics like OmniFID improve the measurement of geometric
fidelity by mitigating ERP distortions and DS checks for
visual seamlessness, they do not holistically evaluate the
global semantic and structural coherence of a full 360-degree
panoramic scene. Developing new metrics that capture this
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Fig. 5. Paradigms for Text-Driven 360-Degree Panorama Generation. (a) Text-Only Generation synthesizes 360-degree panoramas from textual descriptions
only. (b) Text-Driven NFoV Outpainting uses prompts and initial NFoV images as input to generate 360-degree panoramic images.

TABLE 11
SUMMARY OF TEXT-ONLY GENERATION METHODS. ‘LDM-B’ INDICATES WHETHER THE METHOD IS BASED ON LATENT DIFFUSION MODELS. ‘TF’
SPECIFIES IF IT IS TRAINING-FREE. ‘CODE’ DENOTES WHETHER BOTH THE SOURCE CODE AND THE PRE-TRAINED MODEL CHECKPOINT ARE PUBLICLY
ACCESSIBLE. ‘N/A’ MEANS NOT APPLICABLE.

Method Publication LDM-B  TF Code Training Datasets Representation
. Polyhaven [5], Laval Indoor [45], Laval Outdoor [46]

TextzLight [36] TOG 2022 % x v iHDRI [70], HDRI Skies [68], HDRMaps [69] ERP
Diffusion360 [58] arxiv 2023 v X v SUN360 [48] ERP
StitchDiffusion [57] WACV 2024 v X v Polyhaven [5] ERP
PanFusion [59] CVPR 2024 v X v Matterport3D [49] ERP
PanoFree [41] ECCV 2024 v v X N/A MPP
DiffPano [40] NeurIPS 2024 v X X Habitat Matterport 3D [15] ERP
Omni? [23]] ACM MM 2025 X X X SUN360 (48], Structured3D [47]] MPP
SphereDiff [22] arxiv 2025 v v X N/A Spherical
PAR [25] arxiv 2025 X X v Matterport3D [49] ERP
UniPano [80] ICCV 2025 v X X Matterport3D [49] ERP
SMGD [81]] CVPR 2025 v X v Matterport3D [49] Spherical

global consistency is therefore an important direction for
future research.

We provide a comprehensive comparison of state-of-the-
art methods, introduced in the following section, using the
outlined metrics in Sec.

IV. STATE-OF-THE-ART METHODS FOR IMAGES

Existing text-driven 360-degree panorama generation meth-
ods can be broadly categorized into two paradigms according
to input modalities: (a) Text-Only Generation aims to synthe-
size 360-degree panoramas from textual prompts only, while
(b) Text-Driven Narrow Field-of-View (NFoV) Outpainting
leverages both textual descriptions and initial NFoV images to
guide the generation process, offering enhanced user control.
Fig. [ provides an intuitive illustration for both paradigms. We
detail the literature for both as follows.

A. Text-Only Generation

This paradigm focuses on synthesizing 360-degree panora-
mas from textual descriptions only. Tab. [l provides a compara-
tive overview of representative text-only methods. These meth-
ods can be broadly divided into training-based and training-
free approaches.

1) Training-Based: Text2Light [56], an early notable effort,
explores a hierarchical text-driven framework, using VQ-
GAN [43] and CLIP [52] to address this challenge based
on training data aggregated from multiple sources, such as
Polyhaven [5]], Laval Indoor [45] and Laval Outdoor [46].
Recently, the advent of latent diffusion models (LDMs) [[63]]
for text-to-image synthesis marks a significant advancement,
enabling more sophisticated 360-degree panorama generation

techniques. LDMs are typically trained on vast datasets con-
sisting of standard perspective images with a limited field of
view and corresponding textual descriptions. Despite demon-
strating robust capabilities in generating perspective images
from text prompts, these models face significant difficul-
ties when creating 360-degree panoramas with a complete
360°x180° field of view, which differ substantially from
traditional perspective images.

To adapt pre-trained LDMs for 360-degree panorama syn-
thesis, a common strategy is to fine-tune these models with
specialized 360-degree panorama datasets. Diffusion360 [58]
exemplifies this approach by leveraging the DreamBooth
technique [38] to fine-tune a pre-trained LDM [63] on
SUN360 [48]]. To ensure geometric consistency of boundaries,
Diffusion360 uses a circular blending strategy during both the
denoising process and the VAE [74]] decoding stage, effectively
reducing seam artifacts. In addition, it introduces a super-
resolution module to enable the generation of high-resolution
(6114x3072) 360-degree panoramas. While this full fine-
tuning approach adopted by Diffusion360 effectively embeds
panoramic geometry into the model, its primary trade-off is the
high computational cost and risk of quality drop by altering
the model’s original generative priors.

In contrast, LoRA [39] has recently gained attention as
a parameter-efficient fine-tuning method. LoRA works by
injecting trainable low-rank matrices into the pre-trained
model’s weights, allowing for rapid adaptation to new tasks
with minimal additional parameters. For example, StitchDif-
fusion [57] employs LoRA to fine-tune a pre-trained LDM
on a dataset of 120 paired 360-degree images (sourced from
Polyhaven [5]]) and corresponding textual descriptions gen-
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erated using BLIP [17]. Its key contribution is formulating
panorama generation as a latent-space stitching problem, using
a MultiDiffusion-based [55]] method to enforce boundary con-
tinuity. However, the geometry fidelity of 360-degree panora-
mas generated by StitchDiffusion is relatively low due to the
small fine-tuning dataset.

Other works [40], [59], [80], [84] have similarly adopted
the LoRA fine-tuning technique. PanFusion [59] contributes
a novel dual-branch architecture, trained on the Matter-
port3D [49] dataset, with separate LoRA layers to integrate
both global panoramic and local perspective views. It in-
troduces an equirectangular-perspective projection attention
module to facilitate information exchange between the two
branches, aiming to alleviate visual inconsistencies in the gen-
erated 360-degree panoramas. However, PanFusion’s output
often exhibits blurriness at the top and bottom regions, due
to its training dataset. To avoid this issue, DiffPano [40] uses
the Habitat Matterport 3D dataset [15] to produce multi-view
consistent 360-degree panoramas with clearer top and bottom
details. For generating more precise textual descriptions, Diff-
Pano adopts BLIP2 [18] and Llama?2 [16] sequentially, result-
ing in a panoramic video-text dataset. Based on this dataset, it
fine-tunes a pre-trained LDM [63]] using LoRA for single-view
text-driven 360-degree panorama generation. Furthermore, to
enable multi-view 360-degree panorama generation based on
text prompts and camera viewpoints, DiffPano introduces a
spherical epipolar-aware attention module, a key innovation
for enforcing multi-view geometric consistency. Based on the
observation that value and output weight matrices are crucial
during the LoRA-based fine-tuning of cross-attention blocks
within pre-trained LDMs for 360-degree panoramic image
generation, UniPano [80] proposes a uni-branch framework
for panorama generation. This framework exclusively fine-
tunes these specific matrices using LoRA, while keeping the
original query and key weight matrices in the cross-attention
blocks frozen.

Diverging from fine-tuning the commonly used pre-trained
LDMs [63] (as in PanFusion [59]] and DiffPano [40]]), sev-
eral studies have explored alternative pre-trained models for
synthesizing 360-degree panoramic images from textual de-
scriptions. Inspired by OmniGen [76], Omni* [23] adopts
a diffusion model consisting of a VAE [74] and a pre-
trained Transformer [75]]. To adapt the pre-trained Trans-
former for synthesizing 360-degree panoramic images, the
LoRA fine-tuning technique is employed. Instead of process-
ing the entire 360-degree panoramic image at once, Omni?
generates six overlapping viewports. In the inference phase,
these synthesized perspective images are integrated to recon-
struct 360-degree panoramic images. Addressing the challenge
that spatial distortions in ERP 360-degree panoramic images
violate the identically and independently distributed (i.i.d.)
Gaussian noise assumption inherent in many diffusion mod-
els, PAR [25], inspired by masked autoregressive modeling
(MAR) [77], proposes an autoregressive modeling approach
for text-based 360-degree panoramic image generation. This
method is not constrained by the i.i.d. assumption. Specifically,
PAR fine-tunes a pre-trained autoregressive model [78]] on the
Matterport3D dataset [49] and develops a dual-space circular

padding technique to mitigate boundary discontinuities.

Most aforementioned approaches rely on ERP represen-
tations, which struggle to adequately deal with the inher-
ent spherical distortions. To mitigate these distortions and
maintain global geometric coherence, SMGD [81]] proposes
the use of spherical manifold convolution within a spherical
manifold U-Net combined with VQGAN [43]], enabling more
accurate synthesis of 360-degree panoramic images, but the
primary trade-off is reduced transferability of pre-trained dif-
fusion priors, since the specialized spherical convolutions are
not directly compatible with standard text-to-image diffusion
architectures [21], [63].

2) Training-Free: In contrast to training-based approaches,
training-free methods avoid any model fine-tuning and in-
stead repurpose powerful pre-trained text-to-image diffusion
backbones. PanoFree [41]] pioneered a tuning-free multi-view
image generation framework based on a pre-trained LDM [63]].
Guided by textual descriptions, PanoFree leverages iterative
warping and inpainting steps to produce multi-view perspec-
tive images, which are subsequently stitched into 360-degree
panoramas, thus avoiding the need for specialized 360-degree
panorama datasets. While this avoids the need for specialized
training data, its multi-step process can be slow and risks accu-
mulating errors that harm global consistency. Unlike PanoFree,
which operates on perspective latent representations, the recent
SphereDiff [22] contributes a more theoretically grounded
approach by extending the MultiDiffusion [55] framework to
a spherical latent space. To mitigate minor distortions arising
from the spherical-to-perspective projection during its process,
SphereDiff further incorporates a distortion-aware weighted
averaging method. Although these approaches inherit the rich
prior knowledge of large text-to-image models and require no
additional training or 360-degree panoramic data, their patch-
based synthesis mechanisms can lead to global inconsistencies
and comparatively longer inference times than training-based
models. Future work may explore stronger global guidance and
more efficient inference designs to overcome these limitations.

B. Text-Driven NFoV Outpainting

This paradigm enhances user control by conditioning the
360-degree panorama generation process on both textual
prompts and initial NFoV images. The NFoV image, represent-
ing a limited portion of the scene, serves as a visual starting
point, which the generative model subsequently expands into
a complete 360-degree panoramic image guided by the textual
description. Tab. offers a summary of representative text-
driven NFoV outpainting approaches. These approaches can be
broadly classified into non-autoregressive-based (NAR-based)
and autoregressive-based (AR-based) methods according to
their underlying frameworks.

1) NAR-Based: An early attempt in this paradigm, Im-
merseGAN [14]], uses a GAN-based inpainting architec-
ture [79] for this task. To achieve text-guided outpainting, Im-
merseGAN adopts a pre-trained discriminative network to pro-
duce a latent vector representing the given textual description.
This latent vector subsequently guides the generator to produce
a 360-degree panorama semantically consistent with the text
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TABLE III
SUMMARY OF TEXT-DRIVEN NFOV OUTPAINTING METHODS. FOR EXPLANATIONS OF THE ‘LDM-B’, ‘TF’ AND ‘CODE’ COLUMNS, SEE TAB. [T}

Method Publication LDM-B TF Code Training Datasets Representation
ImmerseGAN [14] 3DV 2022 X X X 360Cities [71] ERP
PanoDiff [42] MM 2023 v X v SUN360 [48] ERP
Diffusion360 [58] arxiv 2023 v X v SUN360 [48] ERP
AOG-Net [60] AAAI 2024 v X X Laval Indoor [45]], Laval Outdoor [46] ERP
OPa-Ma [4] arxiv 2024 v X X Laval Indoor [45]], Laval Outdoor [46]] ERP
CubeDiff [44] ICLR 2025 v y y Polyhaven [5], Humus [6]], Structured3D [47] CMP
Pano360 [19]
PanoDecouple [24] CVPR 2025 v X X SUN360 [48]] ERP
Omni? [23] ACM MM 2025 X X X SUN360 [48], Structured3D [47] MPP
PAR [25] arxiv 2025 X X X Matterport3D [49] ERP
SpND [82] ICML 2025 v X v Matterport3D [49], Structured3D [47] ERP
DreamCube [83|) ICCV 2025 v X v Structured3D [47]] CMP

prompt. More recent approaches have primarily focused on
leveraging the power of pre-trained latent diffusion models
(LDMs) for their strong image generation priors acquired from
training on large-scale datasets.

PanoDiff [[42], the first LDM-based method for text-driven
NFoV outpainting, is trained on the SUN360 [48] dataset. It
initially converts the input NFoV images into partial panora-
mas with visibility masks, and then employs a ControlNet-
based LDM [37] for text-guided panorama completion. To
ensure geometric continuity at the borders of the generated
panorama, PanoDiff further implements a circular padding
scheme during inference. Similarly, Diffusion360 [58|] adopts
a ControlNet-based LDM [37] to generate 360-degree panora-
mas from perspective images and textual descriptions. How-
ever, instead of circular padding, Diffusion360 leverages a
circular blending strategy during the denoising and VAE de-
coding stages for improved boundary continuity of the gener-
ated 360-degree panorama. Recognizing that a single network
(as employed in PanoDiff and Diffusion360) often struggles
to simultaneously learn the inherent 360-degree panoramic
distortion and perform content completion, PanoDecouple [24]]
introduces a decoupled diffusion model as its core contribu-
tion. This framework separates the NFoV outpainting process
into distortion guidance and content completion. While this
modular design is effective, it increases model complexity
by requiring a separately trained Distort-CLIP model. Con-
trastingly, SpND [82] incorporates structural prior information
from 360-degree panoramic images processed through a spher-
ical network into its diffusion model to guide the 360-degree
panoramic image outpainting process.

Depart from the aforementioned methods [24]], [42], [58],
which predominantly process and generate 360-degree panora-
mas using an equirectangular representation throughout their
networks, several recent studies have explored leveraging
alternative representations for 360-degree panoramic synthesis.
CubeDiff [44], inspired by multi-view diffusion models [61]],
[62], generates 360-degree panoramas in cubemap format.
This cubemap representation enables CubeDiff to more ef-
fectively leverage the diffusion priors learned by the LDM
from extensive perspective images during the generation pro-
cess. CubeDiff fine-tunes a pre-trained LDM on a mixed

dataset of Structured3D [47]], Pano360 [19], Polyhaven [5],
and Humus [6], using a single conditional view (NFoV image)
and textual embeddings as input. Its central innovation is the
inflation of 2D attention layers in the LDM into 3D attention
layers, enabling the model to explicitly learn inter-face depen-
dencies. This effectively trades the ERP distortion problem
for a complex inter-view consistency challenge. Similarly,
Omni? [23] produces six overlapping perspective images, each
with a 110°x110° field of view, using a Transformer [75]]
architecture fine-tuned with LoRA on the SUN360 [48]] and
Structured3D [47]] datasets. These overlapping images are sub-
sequently stitched together to synthesize the final 360-degree
panoramic image. To address the computational redundancy
and resolution constrains introduced by these overlapping im-
ages, DreamCube [83] designs a multi-plane synchronization
approach, enabling seamless and consistent RGB-D cubemap
generation without overlaps as its main contribution.

2) AR-Based: AOG-Net [60] introduces an autoregressive
framework, building upon a pre-trained LDM [|63|], to progres-
sively outpaint NFoV images into complete panoramas under
textual guidance. This stepwise approach enhances the gener-
ation of fine-grained visual content and improves alignment
with the input textual descriptions. Its key innovation is a
global-local conditioning mechanism that integrates multiple
guidance signals at each step to ensure consistency across
the generated panorama. AOG-Net is trained on Laval Indoor
[45]] and Laval Outdoor [46] for indoor and outdoor scenarios,
respectively. Following the training dataset settings in AOG-
Net, OPa-Ma [4] uses a pre-trained LDM with Mamba [3],
a state-space model known for its efficiency in handling long
sequences, to iteratively outpaint local regions in each step.
It introduces two modules: the Visual-textual Consistency
Refiner, which enhances input utilization during generation,
and the Global-local Mamba Adapter, which ensures global
coherence across the generated panorama. In contrast to meth-
ods leveraging pre-trained LDMs (such as AOG-Net and OPa-
Ma), the recent PAR [25] adopts a text-conditioned masked
autoregressive model [78]] for 360-degree panoramic image
outpainting. Guided by text descriptions, PAR incorporates
its designed dual-space circular padding and a translation
consistency loss to improve output quality. For all AR-based
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methods, this step-by-step generation enforces strong logical
coherence but at the cost of slower inference and a suscepti-
bility to error propagation.

C. Analysis of Fundamental Design Choices

The methods surveyed above make fundamentally different
design choices that entail significant trade-offs in performance,
efficiency, and quality. A critical examination of these choices
is essential for understanding the current research landscape
and identifying future directions. Below, we systematically an-
alyze the trade-offs and implications of three core architectural
decisions: (1) the choice of panoramic representation, (2) the
generation framework, and (3) the strategy for adapting pre-
trained models.

1) Panoramic Representation — Simplicity vs. Prior Com-
patibility: As detailed in Sec. [[II-Al methods typically adopt
ERP, CMP, or MPP. This selection reflects a trade-off between
representational simplicity and compatibility with the genera-
tive priors of large pre-trained text-to-image models.

o Implications of Choosing ERP: ERP offers a single
continuous image, making it directly compatible with
standard 2D architectures such as U-Nets and Transform-
ers. However, this choice presents two significant chal-
lenges. (1) Standard 2D convolutions are not inherently
periodic, so to enforce seamlessness at the 360-degree
wrap-around boundary, methods must incorporate special
treatments such as circular padding (PanoDiff [42]), cir-
cular blending (Diffusion360 [58]]), or dedicated stitching
steps (StitchDiffusion [57]). (2) ERP introduces non-
uniform texel density (geometric distortions), stretching
content near the poles and complicating learning of
accurate 360-degree panoramas. Some methods address
this with spherical manifold convolution (SMGD [81]]) or
a distortion guidance branch (PanoDecouple [24]]), albeit
at additional computational cost.

o Implications of Choosing CMP/MPP: The decision to
use a collection of perspective views (CMP or MPP) aims
to leverage the priors of pre-trained models more effec-
tively, as these models were trained predominantly on
low-distortion perspective images. Representing the 360-
degree panoramic scene in this format, as done in Cube-
Diff [44]] and Omni? [23]], maximizes compatibility and
often yields higher-fidelity details. The trade-off is a shift
in complexity: the problem of distortion is replaced by
the problem of inter-view consistency. This necessitates
specialized mechanisms to ensure seamlessness between
views, such as inflating 2D attention layers to model 3D
relations (CubeDiff [44]) or employing complex multi-
step stitching and inpainting pipelines (PanoFree [41])),
which can increase computational overhead and introduce
new types of boundary artifacts.

2) Generation Framework — NAR-based vs. AR-based: The
underlying mechanism for generating 360-degree panoramic
content represents a key architectural choice, centered on a
trade-off between generation speed and global coherence.

o Non-Autoregressive (NAR-based): Most recent meth-

ods are built upon non-autoregressive LDMs [63]], in

which the entire latent representation of the 360-degree
panorama is denoised in parallel over a series of steps.
The primary advantage of this approach is computa-
tional efficiency, enabling relatively fast generation of
full panoramas, as demonstrated by Diffusion360 [58].
The main drawback is the difficulty of ensuring global
coherence across the vast 360-degree scene. Because the
whole image is generated in a single holistic process,
the model may struggle to maintain consistent long-
range context, sometimes producing mismatched regions
or repetitive textures.

o Autoregressive (AR-based): In contrast, an autoregres-
sive framework generates the panorama sequentially, ex-
plicitly conditioning each new region on the content
generated in previous steps. This step-by-step process
naturally enforces both local and global consistency, and
methods like AOG-Net [60] and PAR [25] often exhibit
strong logical coherence and fine-grained detail. The
trade-off for this improved consistency is a substantial
increase in inference time, as the sequential process
is inherently slower than parallel generation. Moreover,
these methods can suffer from error propagation, where
low-quality generation in an early step can negatively
impact the quality of all subsequent parts.

3) Adaptation of Pre-trained Models — Fine-tuning vs.
Training-Free: Since no large-scale generative model is na-
tively trained on 360-degree panoramic image-text pairs, re-
searchers have to adapt models originally trained on standard
perspective image-text datasets. Three distinct strategies have
emerged, spanning a spectrum of trade-offs among computa-
tional cost, data requirements, and model specialization.

o Full/Substantial Fine-Tuning: One strategy is to fine-
tune a large portion of the model parameters on a spe-
cialized 360-degree panoramic image-text dataset. For in-
stance, Diffusion360 [58] leverages the DreamBooth [38]]
technique to adapt a pre-trained LDM [63]]. This approach
enables the model to learn the unique geometric proper-
ties and data distributions of 360-degree panoramas, often
leading to strong performance. However, the trade-offs
are significant: it is usually computationally expensive
and time-consuming, requires a substantial panoramic
dataset, and may induce catastrophic forgetting, in which
the model loses some of the rich generative knowledge
from its original training.

o Parameter-Efficient Fine-Tuning (PEFT): A more eco-
nomical alternative trains only a small set of additional
parameters while keeping the backbone of the pre-trained
model frozen. LoRA [39]], employed by methods such
as StitchDiffusion [57] and DiffPano [59], typifies this
class. The chief advantage is a drastic reduction in
computational and memory requirements, making adap-
tation more accessible and largely preserving the original
model’s powerful priors. The main limitation is that the
frozen backbone can restrict the model’s ability to learn
fundamentally new concepts, such as complex spherical
geometry, making it potentially less expressive than a
fully fine-tuned model.
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Fig. 6. Visual Comparison of Text-Only Generation Methods. To facilitate the assessment of visual and semantic continuities at the image borders, we generate
“swapped” versions by exchanging the left and right halves of each generated image, and then use red dashed boxes in these swapped images to highlight
the boundary regions. The continuity results are categorized as good, fair, or poor.

o Training-Free: The third strategy completely bypasses
fine-tuning. Training-free methods like PanoFree and
SphereDiff [22] use pre-trained text-to-image models di-
rectly. They achieve panorama generation through careful
orchestration of existing capabilities, such as iterative
inpainting, view stitching, and specialized sampling algo-
rithms. This approach requires no 360-degree panoramic
training data and avoids costly training, fully leveraging
the inherent power of the base models. The trade-offs
include typically slower inference due to their multi-
step, patch-based processes and a higher risk of global
inconsistency, as there is no end-to-end training to enforce
panoramic coherence.

D. Comparisons

To systematically evaluate strengths and weaknesses of
representative methods, we conduct a benchmark on methods
with publicly available inference code and model checkpoints.
Our primary objective is to provide a fair and consistent
comparison of the official releases, which requires running
all models on the same hardware and evaluating them using a
consistent set of metrics. We acknowledge that this approach
introduces a selection bias, which means our quantitative
comparison does not include several recent and important
contributions that lack public code or model checkpoints.
While this constraint limits the breadth of our comparison,
it critically ensures the validity and fairness of the presented
results. We encourage readers to consult the original papers

for the reported performance of methods not included here.
For Text-Only Generation, we compare Text2Light [56], Diffu-
sion360 [58]], StitchDiffusion [57]], PanFusion [59]], PAR [23]],
and SMGD [81]. For Text-Driven NFoV Outpainting, we
compare PanoDiff [42], Diffusion360 [58], SpND and
DreamCube [83].

1) Qualitative Comparison: Fig. [f] presents a visual com-
parison of the six text-only generation methods. To facilitate
the assessment of visual and semantic continuities at the image
borders, we generate “swapped” versions by exchanging the
left and right halves of each generated image. Red dashed
boxes are employed in these swapped images to highlight the
boundary regions. Among the evaluated methods, Text2Light
exhibits obvious seams in the highlighted areas of its swapped
images, indicating a failure to maintain visual and semantic
continuities at the borders. While Diffusion360 effectively mit-
igates such observable seams and preserves visual continuity,
it occasionally demonstrates local semantic discontinuity at the
borders, where content across image boundaries lacks consis-
tent logical or meaningful coherence. In contrast, the other
four methods achieve strong visual and semantic continuities
at the borders of their synthesized images.

Fig. [7) displays the visual comparison for the four text-
driven NFoV outpainting approaches. Similar to the text-
only comparison, swapped image versions were created to
scrutinize the visual and semantic continuities at the borders.
PanoDiff, Diffusion360, and DreamCube demonstrate com-
mendable visual and semantic continuities at the borders of
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Fig. 7. Visual Comparison of Text-Driven NFoV Outpainting Approaches. The rest caption is the same as that for Fig. [6| Note that Diffusion360 provides
two separate models. The model for text-driven NFoV outpainting generates images with good semantic continuity at the borders.

TABLE IV
QUANTITATIVE COMPARISON OF REPRESENTATIVE TEXT-DRIVEN 360-DEGREE PANORAMA GENERATION METHODS. THE FIRST BLOCK OF ROWS ARE
FOR METHODS IN THE PARADIGM OF TEXT-ONLY GENERATION, WHILE THE SECOND BLOCK OF ROWS ARE FOR TEXT-DRIVEN NFOV OUTPAINTING.
WE USE METRICS OUTLINED IN SEC. [[TI=C|FOR COMPREHENSIVE EVALUATION. THE INFERENCE TIME AND GPU MEMORY, REQUIRED BY EACH
METHOD TO GENERATE A 1024 x 512 360-DEGREE PANORAMA, ARE ALSO REPORTED. THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED FOR
THE TWO PARADIGMS, RESPECTIVELY.

Method FID | KID (x107%)] ISt CS+ FAED] OmniFID| DS | Inference (s) ] GPU Memory (GB) |
Text2Light 72.63 1.54 535 19.20 18.10 99.81  5.38 33 12.5
Diffusion360 70.32 200 529 1874 12.43 9223 094 3 3.5
StitchDiffusion ~ 76.69 204 1736 19.20 15.58 108.63 1.07 28 3.6
PanFusion 61.23 1.07 6.16 18.96 13.16 9222 0.85 30 26.3
PAR 64.96 149 6.68 1891 13.99 104.02  0.76 17 18.6
SMGD 74.91 200 423 19.22 16.78 106.68  0.75 2 8.0
PanoDiff 65.94 244 472 19.02 10.24 12230  1.10 48 36.0
Diffusion360 64.19 205 453 1792 5.50 101.39  0.72 4 3.7
SpND 69.54 3.00 377 19.17 8.67 119.05 1.40 22 16.7
DreamCube 66.15 2.05 4.88 19.26 15.87 11552 1.10 12 16.7

the produced images, while SpND exhibits fair visual and
semantic continuities.

2) Quantitative Comparison: While the qualitative exam-
ples in Figs. [6] and [7) offer valuable visual insights, a quantita-
tive evaluation is essential for a rigorous and objective com-
parison. To this end, we conduct a comprehensive comparison
using metrics outlined in Sec. [[II-C|

To ensure an unbiased evaluation of the generalizability
of the methods, we employ an out-of-domain dataset, ODI-
SR [I]]. This dataset was specifically chosen for two primary
reasons: (1) None of the evaluated models were trained on it,
which guarantees a fair test of generalization to unseen data;
and (2) its diverse composition of indoor and outdoor 360-
degree panoramas provides a robust benchmark for evaluating
performance across varied real-world scenarios. For generating
text descriptions, we use BLIP2 to create textual captions
for the 360-degree panoramas included in the ODI-SR dataset.
These generated text prompts serve as inputs for both Text-
Only Generation and Text-Driven NFoV Outpainting tasks.
To simulate NFoV images, we first project the equirectan-
gular 360-degree panoramas from the ODI-SR dataset into
a cubemap format and then extract the front face of each

cubemap. The original 360-degree panoramas from ODI-SR
are designated as real images and used as ground truth for the
computation of evaluation metrics.

The quantitative results obtained from this comparative
evaluation, across the seven evaluation metrics, are presented
in Tab. [[V] To provide insights into the computational ef-
ficiency of each method, we also report the inference time
and GPU memory required to generate a 1024x512 360-
degree panorama on a consistent machine equipped with
an RTX A6000 GPU. Note that our results only represent
the performance of the publicly released version of each
method on a specific GPU (RTX A6000, 48 GB). The ac-
tual performance may be influenced by hardware differences
and implementation-specific optimizations. These quantitative
findings effectively delineate the strengths and weaknesses of
the evaluated approaches, offering valuable guidance for future
research in this domain.

V. EMERGING DIRECTIONS

This section details two emerging directions that are closely
related to text-driven 360-degree panoramic image generation:
text-driven 360-degree 3D scene generation and text-driven
360-degree panoramic video generation, respectively.
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Fig. 8. The Framework for Text-Driven 360-Degree 3D Scene Generation using Text-Driven 360-Degree Panorama Generation. This framework accommodates
both Text-Only Generation and Text-Driven NFoV Outpainting methods. The input NFoV image is omitted when employing text-driven NFoV outpainting
methods for simplicity. “3D lifting” denotes the transformation from a generated 360-degree panoramic image to a 3D scene representation by inferring the

underlying geometry of the scene.

TABLE V
SUMMARY OF TEXT-DRIVEN 360-DEGREE 3D SCENE GENERATION
METHODS. ‘360-DEGREE PG’ INDICATES WHICH TEXT-DRIVEN
360-DEGREE PANORAMA GENERATION TECHNIQUES ARE ADOPTED TO
SYNTHESIZE THE INTERMEDIATE PANORAMIC REPRESENTATION OF THE
SCENE. ‘3DGS’ DENOTES 3D GAUSSIAN SPLATTING.

Method Publication 360-Degree PG 3D Lifting
FastScene 1JCAI 2024 Diffusion360 3DGS
DreamScene360 ECCV 2024 StitchDiffusion 3DGS
HoloDreamer arxiv 2024 Diffusion360 3DGS
SceneDreamer360 arxiv 2024 PanFusion 3DGS
LayerPano3D SIGGRAPH 2025  Diffusion360 & PanFusion 3DGS

A. 360-Degree 3D Scene Generation

Recent advances in text-driven 360-degree panorama gen-
eration [57]-[59] have catalyzed innovative methods for re-
constructing 360-degree 3D scenes from textual descriptions.
360-degree panoramic images inherently capture both global
contexts and geometric constraints of a scene, making them
an essential intermediate representation for 3D scene gener-
ation. Consequently, recent text-driven 360-degree 3D scene
generation methods [27]], [30]—[33[, [90]-[92] use 360-degree
panorama generation to bridge the gap between text prompts
and 360-degree 3D scene reconstruction.

As depicted in Fig. [§] these methods typically use a two-
stage process: (1) 360-Degree Panorama Generation: generat-
ing a 360-degree panorama from the input text prompt using
a fine-tuned LDM [63]], and (2) 3D Scene Reconstruction:
inferring a 3D representation, typically with 3D Gaussian
Splatting (3DGS) [26]], from the generated panorama and
corresponding multi-view perspective images. Tab. [V] provides
a comparative summary of the methods using text-driven 360-
degree panorama generation techniques introduced in Sec.

Within this framework, emerging methods are primarily
differentiated by (a) their choice of 360-degree panorama
generators and (b) their strategies for extracting and utiliz-
ing 3D information. For instance, FastScene [31] and Holo-
Dreamer [30] both employ Diffusion360 [58|] to generate
the initial 360-degree panorama depicting a scene from a
given text prompt. FastScene [31] then synthesizes multi-view
panoramas of this scene for specific camera poses using Coarse
View Synthesis and Progressive Novel View Inpainting. With
these synthesized multi-view panoramas, FastScene introduces
Multi-View Projection to get their perspective views. The point
clouds derived from these views are then used as input for
3DGS to reconstruct the 3D scene. HoloDreamer [30] en-

hances the Diffusion360-generated panorama with two distinct
ControlNet-based LDMs [37]] and a super-resolution network
to create a high-resolution, stylized output. Subsequently,
HoloDreamer initializes 3D Gaussians using point clouds
derived from a reverse equirectangular projection of the high-
resolution panorama combined with its corresponding depth
information. Finally, a two-stage 3DGS optimization process
is developed to refine the scene rendering, resulting in the
desired 3D scene reconstruction.

Furthermore, certain methods deviate from the reliance
on Diffusion360 [58]]. DreamScene360 [33] uses StitchDiffu-
sion [57] to generate multiple 360-degree panorama candidates
and then employs a self-refinement process to select the
optimal candidate for initializing panoramic 3D Gaussians
with a 3D geometric field. To facilitate visual feature cor-
respondences between different views and maintain geometric
consistencies during the 3DGS optimization process, semantic
and geometric regularizations are applied. In contrast, Scene-
Dreamer360 [32] uses a fine-tuned PanFusion [59]] generator,
coupled with a super-resolution module from [58], to produce
a high-resolution (6K) panorama aligned with the input text
prompt. It then uses optimization-based viewpoint selection
to extract multi-view images, which are subsequently used
for improved point cloud initialization, ultimately leading to
3DGS-based scene reconstruction.

Other methods explore alternative panorama generation
techniques. LayerPano3D [27] begins by generating four or-
thogonal perspective views with a fine-tuned text-to-image
model [21]. These initial views are then combined with text-
guided inpainting [|63]], and further processed by using a fine-
tuned Diffusion360 [58]] model to outpaint the polar regions,
resulting in a reference 360-degree panorama. To handle
occlusions in complex scenes, LayerPano3D [27] decomposes
the reference panorama into multiple depth-based layers and
uses a fine-tuned inpainter [59] to complete unseen content at
each layer. These inpainted, layered panoramas then provide
supervision for panoramic 3D Gaussian scene optimization.

B. 360-Degree Panoramic Video Generation

Analogous to the natural evolution from text-to-image gen-
eration [12], [13], [21], [63] to text-to-video (T2V) gener-
ation [98]-[101], recent progress in text-driven 360-degree
panoramic image synthesis has spurred research into the more
challenging task: text-driven 360-degree panoramic video gen-
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TABLE VI
SUMMARY OF TEXT-DRIVEN 360-DEGREE PANORAMIC VIDEO
GENERATION METHODS. ‘TF’ SPECIFIES IF IT IS TRAINING-FREE.

Method Publication  Training Dataset TF  Representation
360DVD [93] CVPR 2024 WEB360 [93] X ERP
DynamicScaler [94] CVPR 2025 N/A v ERP
PanoDiT [95] AAAI 2025 PHQ360 [95] X ERP
SphereDiff [22] arxiv 2025 N/A v Spherical
VideoPanda [96] arxiv 2025 WEB360 [93] X MPP
PanoWan [97] arxiv 2025 PanoVid [97] X ERP

eration. Its representative methods [93]-[97] are summarized
in Tab.

Most works in this area rely on specialized training.
360DVD [93] pioneers this task by first constructing a tailored
dataset, WEB360, consisting of 2,114 360-degree panoramic
video-text pairs. Using this dataset, it trains an adapter to
enable a pre-trained T2V models [99] to synthesize 360-degree
panoramic videos from provided text prompts. Inspired by
PanoDiff [42], 360DVD adopts a latent rotation mechanism
in the inference process to maintain the boundary continuity
of the synthesized results. Limitations in 360DVD, particu-
larly the lack of detailed motion descriptions in its dataset,
have prompted further refinements. PanoDiT [95] addresses
this by curating a higher-quality subset named PHQ360 and
replacing the U-Net architecture with a Diffusion Transformer
(DiT) [102] and a motion LoRA for improved generation.
Similarly, the rotation mechanism from PanoDiff is used in
the post-processing phase of PanoDiT to ensure continuity.
Recognizing the critical role of large-scale and high-quality
data, PanoWan [97]] establishes PanoVid, a dataset with over
13,000 video-text pairs. It introduces a latitude-aware sampling
technique to mitigate ERP distortions and fined-tune a DiT-
based T2V model [103]] with LoRA for generation.

In a different vein, VideoPanda [96] seeks to better leverage
priors from pre-trained T2V models. Trained on WEB360, it
introduces multi-view attention layers to synthesize multiple
perspective video outputs, which are then stitched together
to form the final 360-degree panoramic video. This approach
avoids direction in the equirectangular projection space.

Contrasting with these trained-based methods, several ap-
proaches have explored trained-free generation. Dynamic-
Scaler [94]] designs an offset-shifting denoiser and a panoramic
projection technique to synthesize a low-resolution 360-degree
panoramic video, which then provides global motion guidance
for refining a high-resolution version. However, its reliance
on the ERP latent representation can lead to discontinuities
near the poles. To address this, SphereDiff [22] introduces a
spherical latent representation and extends Multidiffusion [55]]
to the constructed spherical space, achieving a more uniform
distribution and improving quality at the poles. A common
challenge to these training-free methods is that their patch-
based synthesis mechanism can introduce global inconsisten-
cies. Future work could focus on incorporating global guidance
into these frameworks to mitigate this issue.

Datasets for 360-Degree Panoramic Video Generation.
While the datasets discussed in Sec. [III-Bf are foundational
for static 360-degree panoramic image generation, the task of

360-degree panoramic video generation requires specialized
datasets that include temporal information. These datasets are
crucial for training and evaluating models capable of pro-
ducing coherent and immersive 360-degree panoramic video
content. Key datasets in this domain include:

« WEB360 [93] offers 2,114 text-video pairs of 360-degree
panoramas. The videos are sourced from existing datasets
such as ODV360 [[107]] and platforms like YouTube. To
generate detailed textual descriptions for the videos, a
combination of BLIP [17] and ChatGPT was employed.

¢ YouTube360 [[105] provides 9,557 360-degree panoramic
videos sourced from YouTube, featuring diverse scenes
such as virtual city tours and wildlife documentaries.
The corresponding text prompts were generated using
VideoLLaMa-2 [108]].

e 360-1M [106] is a large-scale dataset consisting of
1,076,592 360-degree videos, collected from YouTube
and distributed across 15 categories. As it was not origi-
nally created for text-driven generation, this dataset does
not provide paired textual descriptions.

o PanoVid [97] is a high-quality dataset of over 13,000
video clips curated specifically for text-driven 360-degree
panoramic video generation. The videos in PanoVid
are collected from multiple sources, including WEB360,
YouTube360, and 360-1M. Qwen-2.5-VL [109] was
adopted to produce rich textual descriptions for the video
content.

VI. CHALLENGES AND FUTURE DIRECTIONS

Despite the impressive results achieved in text-driven 360-
degree panorama generation, challenges remain in evalua-
tion metrics, resolution, controllability, model design, societal
impact and industrial adoption. This section identifies these
challenges and outlines potential directions for future research.

a) Evaluation Metrics: As established in our analysis
(see Sec. , the development of metrics for global scene
consistency remains a key challenge. This includes creating
more robust, panorama-aware methods for evaluating both
text-to-image semantic alignment and the overall structural
plausibility of the generated 360-degree panoramic space.
Future work could explore using advanced Vision-Language
Models (VLMs) for question-based evaluations of complex
spatial relationships. Another promising direction is the de-
velopment of metrics that assess the implicit 3D geometry of
the scene to detect logical inconsistencies in scale and layout
that 2D metrics currently miss.

b) Higher Resolution: While Diffusion360 [58]], which
uses a super-resolution module, is among the few methods that
can currently achieve a maximum resolution of 6144x3072
(6K), this remains inadequate for demanding applications like
VR gaming and high-fidelity 3D scene reconstruction, which
often necessitate resolutions of 8K or higher to capture intri-
cate details of landscapes and architecture. However, generat-
ing such high-resolution panoramas incurs both high memory
consumption and long inference times, which severely limit
practical deployment. Addressing these limitations will require
the development of more efficient model architectures and
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optimization techniques. Promising approaches include the
use of window-based operations, model pruning, quantization,
knowledge distillation, and advanced neural network designs
tailored to resource-intensive tasks. Moreover, the availability
of high-resolution, large-scale datasets will be critical for
driving progress in this direction.

¢) Multi-modal Generation: Existing text-driven meth-
ods, despite their ability to produce photorealistic 360-degree
panoramas, often lack precise control over global semantic
layout and spatial structure of the generated scene. This
motivates exploring multi-modal approaches to enhance con-
trollability. Although 360PanT [28] demonstrates panorama-
to-panorama translation using auxiliary modalities like edge
and segmentation maps alongside text, its outputs deviate from
the standard 360°x 180° field of view when these additional
modalities are incorporated. Future research should focus on
developing multi-modal techniques that effectively integrate
diverse inputs (e.g. depth maps, segmentation maps, or edge
maps) with text prompts to achieve fine-grained spatial control
in the generated 360-degree panoramas, while ensuring strict
adherence to the standard equirectangular projection format.

d) Model Design: Most text-driven 360-degree panorama
generation methods are built upon latent diffusion models
(LDMs) [63]]. While LDMs have achieved remarkable success
in text-to-image synthesis, recent advancements in autore-
gressive models indicate promising alternative architectures.
Specifically, Visual Autoregressive (VAR) models, exemplified
by Infinity [2f], have exhibited superior performance compared
to the leading LDMs in standard text-to-image synthesis. This
highlights an exciting avenue for future research: exploring
VAR-based models for text-driven 360-degree panorama gen-
eration.

e) Ethical and Societal Considerations: The persuasive
nature of 360-degree panoramas introduces risks of misuse,
including fabricated environments, disinformation, and privacy
violations. To mitigate these concerns, future research should
pair technical advances with safeguards such as transparent
data documentation, responsible licensing, and watermarking
mechanisms. Proactive engagement with ethical guidelines
and interdisciplinary oversight is essential to ensure that text-
driven 360-degree panorama generation benefits society while
limiting potential harm.

f) Industry Translation and Adoption: Text-driven 360-
degree panorama generation is beginning to move from re-
search to practice, supporting VR/AR content creation, virtual
tourism, and game development. Major industry players, in-
cluding Meta (Quest), Google (Street View), and Apple (Vi-
sion Pro), are actively developing related capabilities. Broader
deployment is currently limited by requirements for stable 8K
plus resolution, low latency on-device inference, and industry-
standard benchmarks. Addressing these challenges through
more efficient model design and closer collaboration between
academia and industry will be critical for production-ready
adoption.

VII. CONCLUSION

This survey has provided a comprehensive overview of the
rapidly evolving field of text-driven 360-degree panoramic
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image generation. We began by introducing primary repre-
sentation methods of 360-degree panoramic images, along
with widely used datasets, and key evaluation metrics in this
domain. Subsequently, we presented an in-depth discussion
of prevalent methods for text-driven 360-degree panorama
generation, and explored its two closely related directions:
text-driven 360-degree 3D scene generation and text-driven
360-degree panoramic video synthesis. Despite the significant
progress achieved in this field, several challenges remain.
To address these challenges, we have articulated promising
directions for future research.
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