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 Abstract—Due to its multi-objective potential for 

noncontact vital signs monitoring, millimeter-wave 
(mmW) radar has increasingly drawn attention in 
human health and safety related sensing 
applications. However, detection of vital signs, 
especially weak heartbeat reaction, is more 
challenging when disrupted by interference from 
background noise, random human body movement, 
and sensitive nature of radio waves. To address 
these problems, the work presents an improved 
Frequency Modulated Continuous Wave (FMCW) 
radar vital signs monitoring solution incorporating 
phase error correction and heartbeat event 
probability prediction. The main contributions 
include: (1) Development of a data processing framework reinforcing radar echoes for high Signal-to-Noise Ratio (SNR) 
vital signs detection, which amplified the returned signals through beamforming, and compensated phase 
perturbation. Additionally, two techniques including adaptive mode decomposition and neural network have been 
cordially adopted to perform signal conditioning; (2) Proposal of a phase error correction method with an adaptive 
dual-sliding window to mitigate the phase noise and distortion introduced by the non-periodic body movement, 
non-stationary breathing pattern, and dynamic environmental clutter, etc. It overcomes susceptibility to noise for the 
phase response and improves its stability and continuity; (3) Establishment of a Deep Neural Network (DNN)-based 
model to predict the probability distribution of heartbeat events with phase segmentation. This prediction model avoids 
rigid misclassification of heartbeats, and enhances the algorithm's tolerance to noise and adaptability to complex 
conditions. Experimental results have verified the effectiveness of the proposed solutions. The presented method 
provides a robust solution for reliable, high accuracy, and continuous vital signs monitoring in real environments.  

 
Index Terms—FMCW radar, vital signs monitoring, beamforming, phase error correction, DNN heartbeat estimation 

 
 

I. INTRODUCTION 
Vital signs monitoring is indispensable in diverse human 

health and safety-related applications, including medical care, 
remote health monitoring, driver status monitoring, 
underground work sensing, and post-disaster search and rescue. 
Many contact sensing solutions, such as Electrocardiography 
(ECG) and Photoplethysmography (PPG), will inevitably 
introduce constraints to individuals' daily activities [1,2], which 
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also limit their applications to in-hospital medical treatment. 
Non-contact sensing technologies that are free of restrictions on 
human activities are more competitive in satisfying the 
requirements of different application scenarios. However, 
novel non-contact measurement approaches, such as 
vision-based techniques and optical vibrocardiography [3], are 
susceptible to ambient lighting conditions and may raise risks 
of privacy leakage [3,4]. Frequency Modulated Continuous 
Wave (FMCW) millimeter-wave radar technology, for its 
high-resolution ranging and short-wavelength phase sensitivity, 
demonstrates great potential in detecting subtle physiological 
movements caused by respiration and heartbeat. Although 
FMCW radar vital signs detection has gained research effort 
and significant progress has been made in recent years, it still 
faces some key challenges including interference from human 
micro-movements such as subtle body posture changes and 
limb movements, overlapping of weak heartbeat signal with 
harmonics of respiration signal, clutter caused by the 
movement of ambient people or objects, and the inherent 
sensitive property of radar phase signal. 

To address the above challenges, this investigation proposes 
a phase error correction and heartbeat event probability 
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prediction enhanced FMCW radar vital signs monitoring 
technique. The objective is to enhance and extract weak vital 
signs affected by human micro-motions and complex 
environmental factors. The main contributions of this 
investigation include: 

(1) A framework for the enhancement and high 
Signal-to-Noise Ratio (SNR) extraction of radar vital sign 
signals is proposed. This framework integrates pre-processing 
methods, including object identification, beamforming signal 
reinforcement, and phase signal correction. Adaptive vital signs 
modal decomposition is utilized to obtain distinct vital sign 
modes, and subsequently, the heartbeat signal component is 
input into a deep neural network to predict a sequence of 
heartbeat event probabilities to obtain robust vital signs. 

(2) An adaptive dual-sliding window phase error correction 
method is proposed to deal with the susceptibility of FMCW 
radar phase signals to various complex interference factors, and 
to effectively suppress phase noise and distortion introduced by 
target aperiodic micro-motions, non-stationary respiratory 
patterns, dynamic environmental clutter, and potential 
electromagnetic interference. This method can effectively 
enhance the stability and continuity of the radar phase signal, 
which is important for the subsequent signal analysis. 

(3) A Deep Neural Network (DNN) model for heartbeat 
event probability prediction with weak and noisy heartbeat 
signals is developed for heartbeat detection. To create a more 
effective reference signal for the network, the discrete sequence 
of heartbeat events is converted into a sequence of Gaussian 
probability distributions centered by the heartbeat events. This 
model predicts the probability distribution of heartbeat events 
with a longer radar phase segment instead of directly regressing 
the heartbeat or performing binary classification of heartbeat 
events. This approach effectively handles occasional 
probability deviations caused by interference, thereby 
improving the algorithm's noise tolerance and enhancing its 
adaptability to practical and complex environmental influences. 

By employing the presented techniques, including signal 
reinforcement and extraction framework, adaptive phase error 
correction, and heartbeat event probability prediction model, 
this investigation offers an effective solution to handle the key 
challenges facing this area.  

This study focuses on improving the performance of 
continuous heartbeat detection of a single specified individual 
using 60 GHz FMCW radar in the presence of signal 
interference in a typical application environment. The 
remainder of this paper is organized as follows: Section II 
summarizes related work of radar-based vital signs detection 
and gives an analysis of existing applications, algorithms, and 
potential challenges. Section III elaborates on the proposed 
signal processing framework and the proposed technical 
solutions. Section IV presents the experimental verification and 
results analysis to validate the effectiveness of the proposed 
methods. Finally, Section V concludes the work and envisages 
the future. 

II. RELATED WORK 
This section surveys the related research on radar-based 

vital signs detection. It begins with outlining the emerging 
applications, then discusses the key processing algorithms, 
subsequently analyzes the challenges facing current research, 
and finally, gives the objectives of this investigation. 

A. Emerging Applications of Radar Vital Signs Sensing 
Currently, the four mainstream radar technologies used for 

vital signs monitoring are Continuous Wave (CW) [5,6], 
Frequency Modulated Continuous Wave (FMCW) [7-9], 
Ultra-Wideband (UWB) [10,11], and Stepped-Frequency 
Continuous Wave (SFCW) [12,13]. CW radar features high 
sensitivity and simple architecture [14,15] but lacks modulation 
information, rendering it incapable of distance measurement. 
UWB radar offers a high SNR. However, its ultra-wideband 
nature results in a complex hardware structure [16,17]. FMCW 
radar gives rich measurement information through frequency 
modulation and is characterized by high integration, low power 
consumption, and relatively high range resolution. A recent 
comprehensive comparison further validates that although both 
CW and FMCW configurations can measure respiration and 
heart rates, FMCW offers superior performance in identifying 
specific cardiac events and extracting advanced biomarkers like 
Heart Rate Variability (HRV) [18]. FMCW radars operating in 
the millimeter-wave band are currently more commonly used, 
with related technological advancements and innovative 
applications being continuously reported, as summarized in 
recent surveys [19]. 

Millimeter-wave radar, due to its technical advantages in 
sensing applications, has demonstrated extensive application 
prospects in the field of non-contact vital signs monitoring. In 
healthcare, radar systems are employed for continuous vital 
signs monitoring of seriously ill patients, which could reduce 
the discomfort associated with contact sensors and lower the 
risk of cross-infection [20]. Concurrently, this technology is 
widely applied in home environments for remote health 
monitoring of the elderly or patients with chronic diseases. For 
instance, the use of FMCW radar for preliminary screening of 
respiratory patterns highlights its potential in convenient home 
healthcare [21]. The application scope has recently expanded to 
more complex scenarios and extended the boundaries of remote 
health assessment, such as rotary FMCW radar for 
omnidirectional, multi-person localization and simultaneous 
vital signs detection [22], and even non-contact multi-target 
HRV detection [23]. Furthermore, this technology is also 
gaining prominence in emerging fields such as post-disaster 
search and rescue, security, and human-computer interaction. 
In post-disaster scenarios, long-wavelength radar is used to 
penetrate obstacles to detect the vital signs of trapped 
individuals [24]. In smart homes, it can adjust home facilities 
settings by perceiving user physiological parameters. The 
diverse applications and their scenario complexity place higher 
demands on the continuity, accuracy, and robustness of vital 
signs monitoring. 

B. Progress of Radar Data Signal Processing Algorithms 
Radar data processing algorithms are pivotal in 

determining the reconstruction quality of vital sign signals. 
Addressing common technical challenges in radar vital signs 
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signal extraction, such as the susceptibility of weak heartbeat 
signals to human micro-motions, respiratory harmonics, and 
environmental interference, current research in data processing 
algorithms primarily focuses on developing more effective 
noise and interference suppression methods, accurate signal 
separation techniques, and the integration of intelligent 
algorithms like deep learning. The primary goal is to 
comprehensively enhance the accuracy, robustness, and 
real-time performance of vital signs monitoring. 

To improve the effectiveness and robustness of 
algorithmic analysis, accurately separating various frequency 
components within the signal spectrum and strengthening the 
algorithm's anti-noise interference capabilities are crucial 
prerequisites. The Fast Fourier Transform (FFT), as a 
fundamental frequency-domain analysis tool, reveals the 
overall frequency composition of a signal. Wavelet transforms 
provide time-frequency localization capabilities. Specifically, 
the Continuous Wavelet Transform (CWT), through scaling 
and translating a mother wavelet, can effectively characterize 
the time-frequency properties of signals at different scales, 
which makes it particularly suitable for the analysis of 
non-stationary signals like vital signs [25]. Mode 
decomposition methods aim to decompose complex signals 
into several Intrinsic Mode Functions (IMFs) with specific 
physical meanings, thereby achieving effective separation of 
overlapping frequencies in the spectrum. Empirical Mode 
Decomposition (EMD) is an adaptive signal decomposition 
method, but it is sensitive to noise and suffers from issues like 
end effects and mode mixing [26]. To overcome these 
shortcomings of EMD, numerous improved methods have been 
developed. For example, the Empirical Wavelet Transform 
(EWT) combines the adaptivity of EMD with the theoretical 
framework of wavelet transforms by adaptively segmenting the 
signal's Fourier spectrum to construct suitable wavelet filter 
banks, thereby extracting more physically interpretable 
AM-FM components [27]. Another method receiving 
considerable attention is Variational Mode Decomposition 
(VMD), which introduces a variational model. Through a 
constrained iterative optimization process, VMD adaptively 
determines the center frequency and bandwidth of each mode, 
thus decomposing signals more robustly and balancing errors 
among the mode functions [28]. Considering the importance of 
parameter selection for VMD, recent work focused on adaptive 
optimization. For instance, the Health-VMD method utilizes an 
improved grasshopper optimization algorithm to adaptively 
select VMD parameters, enabling more accurate extraction of 
heartbeat waveforms for HRV analysis in multi-target 
scenarios [23]. A similar approach, Successive Variational 
Mode Decomposition (SVMD), was effectively applied to 
decompose and reconstruct breathing and heartbeat signals in 
noisy in-vehicle environments [29]. Additionally, other 
improved schemes such as the Zero-Attracting Sign Least 
Mean Square (ZA-SLMS) technique [30] and peak detection 
techniques [31,32] were employed for the suppression of strong 
motion and interference cancellation. 

In addition, enhancing the robustness of radar sensing 
against body movements has been regarded as a recent research 
focus. To address this, strategies have been developed to 
compensate for both the subject's movement and the sensor's 
own movement. For subject movement, a hybrid signal model 

was established for vital signs detection in various body 
postures, with a periodic signal enhancement algorithm to 
isolate vital signs from limb motion interference [33]. For 
non-periodic body movements, an adaptive motion noise 
cancellation scheme based on virtual antenna arrays was 
proposed to suppress nonlinear noise [34]. Another innovative 
technique treated signal segments corrupted by RBM as 
missing data[35]. By identifying RBM periods, a missing data 
model was established, and compressed sensing was then used 
to accurately recover the vital signs from the incomplete data. 
Furthermore, to handle large-scale displacements where a 
target crossed multiple range bins, a phase compensation 
method was proposed to demodulate the baseband signal using 
the target's estimated distance, thereby enabling wide-range 
and accurate displacement measurement [36]. On the other 
hand, for the motion of the sensor itself, such as handheld 
applications, a novel multimodal sensing method was proposed 
[37], which utilized the built-in Inertial Measurement Unit 
(IMU) of the device to record and compensate for the motion 
artifacts caused by the device vibration, thereby achieving 
accurate vital sign measurement. 

Moreover, deep learning techniques are increasingly being 
incorporated into the reconstruction of vital sign signals to 
enhance measurement accuracy. Mauro et al. utilized a 
Convolutional Variational Autoencoder (C-VAE) to correlate 
measured signals with reference signals, constructing a deep 
learning model and generalizing it to diverse subjects via 
meta-learning for respiratory signal reconstruction [38]. Wang 
et al. employed neural networks to identify heartbeat signal 
patterns, significantly improving the SNR of heartbeat signals 
and leveraging historical data to further enhance the accuracy 
of current heart rate estimation [39]. Numen et al. implemented 
a DNN for joint vital signs and occupancy classification, 
achieving high accuracy in four-category respiration-state 
classification based on frequency and occupancy status [40]. 
However, due to real-time application requirements and 
limitations of embedded computing platform resources, model 
effectiveness and computational lightweighting of deep 
learning networks are major concerns in this field. 

C. Technical Challenges 
Despite the significant progress in existing research, 

radar-based vital signs monitoring still faces several challenges 
in practical applications. Signal distortion and interference 
caused by human micro-motions, coupling between respiration 
and heartbeat, and environmental clutter interference remain 
common difficulties in this domain. Research into vital signs 
signal enhancement and high SNR signal extraction techniques 
to achieve accurate measurement of respiratory and heartbeat 
signals is of great importance for both research and practice. 

Human micro-motions, such as slight postural adjustments 
or limb swings, generate motion artifact signals with 
amplitudes far exceeding those of the subtle physiological 
displacements caused by heartbeats. These artifacts can 
interfere with vital sign signals, potentially even completely 
overwhelming the useful signals. Harmonics of the respiratory 
signal may overlap with the fundamental frequency of the 
heartbeat signal, making the accurate separation and extraction 
of weak heartbeat signals from a strong respiratory background 
particularly challenging. Environmental clutter interference, 
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such as movements from nearby individuals and objects, 
introduces additional dynamic noise, further reducing the SNR 
of the target vital signs signal. Additionally, vital signs from 
other targets at similar distances can be mixed into the signal of 
the target of interest, thereby reducing the accuracy of vital 
signs extraction. Furthermore, disturbances to the signal caused 
by factors such as multipath effects and electromagnetic 
interference in the space can also affect signal quality. The 
severe attenuation of signal strength when short-wavelength 
electromagnetic waves penetrate obstacles like walls can lead 
to decreased environmental adaptability. 

 In real-world scenarios where multiple interference factors 
coexist, the continuous and reliable heartbeat monitoring for a 
specific individual remains a critical technical challenge that 
needs to be addressed. Although existing algorithms may 
demonstrate excellent performance when dealing with single or 
specific types of interference, their efficacy often significantly 
degrades in practical applications characterized by the 
superposition of multiple interferences and dynamic 
environmental changes, thereby failing to meet practical 
application demands. 

D. Scope of this Investigation 
Addressing the aforementioned challenges, this study aims 

to enhance the robustness of continuous heartbeat detection for 
a specific individual using FMCW radar in typical interference 
environments. This investigation presents a phase error 
correction and heartbeat event probability prediction enhanced 
FMCW radar vital signs monitoring technique. Firstly, a radar 
echo signals reinforcement and high-SNR extraction 
framework is proposed to obtain high quality phase signal of 
vital signs. Then, an adaptive dual-sliding window phase error 
correction method is proposed to handle human body 
movements and environmental interference. And finally, a 
sequence-to-sequence DNN is developed to process the input 
weak phase signal and output the corresponding heartbeat event 
probability sequence for heart rate detection, which enhances 
the algorithm's tolerance to noise and adaptability to complex 

conditions. 

III. PROPOSED SOLUTION 
To accurately extract the weak vital sign signals from radar 

data and achieve high-accuracy vital signs estimation, this 
section presents the proposed FMCW radar vital signs 
monitoring technique enhanced by phase error correction and 
neural network heartbeat event probability prediction. 

A. A Multi-Stage Framework for Signal Processing 
The proposed solution is a multi-stage algorithmic 

framework, as shown in Figure 1, primarily comprising three 
stages: radar data pre-processing, adaptive vital signs signal 
decomposition, and neural network heartbeat event probability 
prediction. The specific workflow includes: 

1) Target radar data pre-processing: This stage is dedicated 
to processing raw radar data and isolating the phase signal 
reflected from a specific human target. Initially, after the radar's 
radio frequency (RF) operation and processing stages, an 
Intermediate Frequency (IF) signal is obtained, and the 
range-angle spectrum is computed based on Multiple-Input 
Multiple-Output (MIMO) data to determine the target's range 
bin and angle bin. The Minimum Variance Distortionless 
Response (MVDR) beamforming, based on MIMO antenna 
arrays, is employed to spatially filter out interference and focus 
on the desired individual in multi-target environments or 
cluttered scenarios. Subsequently, the phase signal at the 
target's location is extracted. An adaptive dual-sliding window 
phase error correction method is applied to identify and correct 
pulse spikes and segmental disturbances, thereby generating a 
clean and stable phase signal corresponding to chest 
displacement.  

2) Adaptive vital sign decomposition: The enhanced chest 
wall undulation phase signal obtained from the previous stage 
is utilized and decomposed into respiratory and heartbeat 
components. An adaptive VMD method is employed, 
optimized by analyzing the decomposition residual energy and 

 
Fig. 1. The proposed framework for radar vital sign signals enhancement and high SNR extraction. 
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maximizing the energy significance of the heartbeat mode, to 
determine the number of modes and the penalty factor. The 
respiration mode is used to directly calculate the respiration rate, 
while the heartbeat mode serves as the input for the subsequent 
neural network-enhanced heartbeat prediction.  

3) Neural network heartbeat event probability prediction: A 
DNN with a hybrid architecture, based on a CNN 
encoder-decoder, a Transformer module, and a Long 
Short-Term Memory (LSTM) network, is used for heartbeat 
event probability prediction. This model does not directly 
perform the heartbeat event classification task but instead 
predicts a sequence of heartbeat event probabilities from longer 
segments of the heartbeat signal. The key advantage of this 
probability-based prediction method is its ability to leverage 
richer contextual information to identify complex interference 
patterns and flexibly handle signal noise and uncertainty 
through non-binary probabilistic outputs, thereby avoiding the 
rigid misclassifications common in traditional classification 
tasks when dealing with ambiguous signals. The CNN encoder 
extracts local spatial-temporal features, the Transformer 
captures temporal dependencies in the vital signs, and the Long 
Short-Term Memory (LSTM) models the temporal dynamics of 
each detected event and shapes its probability waveform. This 
architecture leverages the Transformer's strength in modeling 
global, long-range dependencies via self-attention, while 
utilizing the LSTM's recurrent nature to precisely model the 
local, step-by-step evolution of an event. The output probability 
sequence then undergoes regularized post-processing to yield 
final high-precision heart rate data.  

The proposed multi-stage signal processing method 
systematically addresses challenges at various levels, from raw 
data acquisition to complex signal identification, aiming to 
provide a robust and accurate non-contact vital signs 
monitoring solution. The subsequent sub-sections elaborate on 
the principles and implementation methods of each stage within 
this framework. 

B. Principle of FMCW Radar Vital Signs Detection 
FMCW radar transmits periodic frequency-modulated 

signals, namely chirps, and receives echoes reflected from a 
target. Within the period of one chirp, the instantaneous 
frequency of the transmitted signal is expressed as: 
 ( )T cf t f Kt   (1) 
where fc is the chirp starting frequency, and K is the frequency 
modulation slope, determined by the ratio of the total 
bandwidth to the chirp duration. The phase of the transmitted 
signal is then the integral of the frequency over the chirp 
duration: 
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where 0  is the initial phase of the transmitted signal. For 
simplification, it is assumed to be 0 0   henceforth. Thus, the 
transmitted signal is given by: 
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where AT is the amplitude of the transmitted signal. The 
transmitted signal is reflected by the target surface, and the 
received signal is an attenuated and delayed version of the 

transmitted signal. The time-of-flight delay produced by the 
i-th target in space is expressed as: 
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where Ri is the distance between the radar and the target, and c 
is the speed of light. The received signal generated by reflection 
from the i-th target is then expressed as: 
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where AR,i is the amplitude of the received signal. The 
transmitted signal and the received signal are mixed, and then 
an output signal is generated, which is given by: 
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Subsequently, low-pass filtering is applied to remove the 
high-frequency terms, retaining the difference frequency term, 
yielding the IF signal produced by the i-th target, expressed as: 
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where, under ideal conditions, AIF,i =ATAR,i / 2. The frequency of 
this IF signal is proportional to the target distance. By 
performing the FFT on the IF signal, the spectrum of the IF 
signal can be obtained. The spectral peak corresponds to the 
signal frequency term, fIF,i, from which the distance Ri of target 
i can be calculated, thus determining the target's range bin. 

The phase term φIF,i of the IF signal can be used to detect 
subtle displacements of the target, expressed as: 
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where λc is the wavelength of the electromagnetic wave 
corresponding to the center frequency fc. The impact of subtle 
displacements caused by the target's vital signs on the distance 
is expressed as: 

 0, ( )i i iR R R t    (10) 
where R0,i represents the fixed position of the i-th target relative 
to the radar, and ∆Ri(t) represents the subtle chest wall 
displacements caused by vital signs. In φIF,i, the quadratic term 
with respect to Ri has a minimal effect on phase changes, so it 
can be approximated that the phase primarily related to 
displacement is: 
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The periodic components within this phase signal constitute 
the target's vital sign signals. In practical applications, IQ 
quadrature demodulation is typically employed during the 
mixing stage to avoid issues such as phase ambiguity and 
mirror image interference during the demodulation process. 

C. Beamforming Spatial Filtering & Object Determination 
To acquire vital signs information of a specific individual in 

space, beamforming techniques are required to suppress 
interference from other angular directions. This investigation 
employs an MVDR beamformer for spatial filtering. The 
MVDR beamformer is an adaptive beamforming algorithm, in 
principle, to maintain distortionless reception of the signal from 
the desired direction while minimizing the total output power of 
interference and noise from other directions. For signal x(t) 
received by N antennas at the target's range bin, the output of 
the beamformer is y(t)=wHx(t). The optimal weight vector w is 
expressed as: 
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where Rxx=E[x(t)xH(t)] is the covariance matrix of the signal x(t), 
assuming the DC component has been removed. E[•] denotes 
the expectation operation, a(θ0) is the steering vector 
corresponding to the angle θ0 derived from the antenna array 
parameters, and (•)H denotes the conjugate transpose. Applying 
the obtained weight vector w to the signals received by the 
antenna array from the designated target's range bin can 
enhance the target signal and suppress sidelobe interference. 

Several target candidate positions exist in the range-angle 
spectrum, and the selection of different range and angle bins 
significantly affects the signal quality. As shown in Figure 2, 
the optimal signal position for this measurement is located at 
range bin 20. The waveform from this bin exhibits a respiratory 
signal with a relatively large amplitude and regular periodicity, 
overlaid with a heartbeat signal of smaller amplitude and higher 
frequency. Regarding the selection of the range bin, bins closer 
than the optimum risk superficial sampling may fail to 
adequately capture weak surface vibrations like heartbeat. 
Further bins, however, suffer from interference due to 
deep-tissue reflections and significant attenuation of the 
heartbeat signal through tissue penetration. For the angle bin, if 
the radar beam's pointing angle deviates from the cardiac 
region, the strength of the heartbeat signal is attenuated. To 
effectively extract phase changes induced by the target's chest 
displacement, this method positions the signal analysis point 
near the center of the target region in the range-angle heatmap, 

and finely adjusts towards the surface of the target's chest closer 
to the radar. This approach prioritizes the capture of radar 
echoes generated by the chest wall surface, thereby minimizing 
signal interference from factors such as reflections from deep 
torso tissues and yielding a more direct and cleaner 
representation of the subtle chest wall movements. 

D. Adaptive Dual Sliding Window Phase error correction 
Through the processes described above, the algorithm 

obtains the radar phase information corresponding to the vital 
signs of the designated individual. However, due to the inherent 
high sensitivity of millimeter-wave radar signals to subtle 
disturbances during phase extraction, they are highly 
susceptible to various influencing factors, including 
interference from moving objects in the environment, body 
micro-motions, and external electromagnetic interference. 
These interferences primarily manifest in two key forms: firstly, 
as isolated, instantaneous impulsive spikes with amplitudes 
significantly exceeding the normal physiological signal range; 
and secondly, as episodic or segmental disturbances of 
relatively longer duration. The latter form of interference is 
persistent. It typically begins with a significant, large amplitude 
jump in its initial phase, which is then followed by a series of 
continuous fluctuations. Although these fluctuations may have 
a smaller amplitude, they are still strong enough to corrupt the 
true physiological information. Such distortions are randomly 
superimposed onto signal segments, impairing the 
identification of periodic components. This severely degrades 
the phase signal quality, presenting a formidable challenge for 
the subsequent accurate acquisition of vital signs and the 
effective analysis of physiological states. Isolated spikes and 
persistent disturbances usually coexist. Due to its suboptimal 
performance, the single-threshold method often either misses 
subtle interferences or generates false alarms in clean signal 
segments, which may corrupt the useful signal. To effectively 
mitigate the detrimental impact of the aforementioned 
interferences on phase signal integrity, an adaptive dual sliding 
window phase error correction method is proposed. This 
method is designed to dynamically identify and process 
segments affected by interference. 

1) Interference segment identification and initiation of 
phase error correction: The algorithm monitors the phase 
increment across a sliding interference identification window in 
real-time. This increment, Δφi=|φi-φi-Nenter|, is calculated as the 
absolute difference between the current phase sample φi and the 
phase sample φi-Nenter from the previous Nenter samples. When 
Δφi exceeds a pre-defined entry threshold Tenter, the segment is 
identified as a potentially interfered one, and phase error 
correction is initiated. 

2) Interference segment phase error correction and adaptive 
window expansion: Once an interference segment is entered, 
the algorithm initiates an interference processing window of 
dynamic length, which expands adaptively when new samples 
are incorporated. Within this window, the system applies more 
stringent checks and corrections for phase jumps. If the 
instantaneous phase change, Δφj=|φj-φj-1|, at any sample point j 
exceeds an intra-interference processing threshold TProcess, that 
sample is considered to be disturbed. The algorithm then 
corrects the phase by subtracting this increment Δφj from 
sample point j and all subsequent samples in the current 

 
Fig. 2. Effect of target localization on signal quality: (a) Range-angle 
heatmap of the target region; (b) Raw phase signal sequences 
extracted from different range-angle combination positions. 
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processing segment to smooth the offset caused by the 
disturbance.  

3) Determination of interference segment end and exit from 
phase error correction: To ensure accurate identification of the 
interference segment and timely exit from the processing mode 
which could prevent over-correction of normal signal portions, 
an exit detection sliding window of fixed length NExit is 
employed. This exit detection window continuously assesses 
whether any instantaneous phase change Δφk=|φk-φk-1| within it 
exceeds an exit threshold TExit. If Δφk<TExit consistently holds 
for all sample points k within a complete NExit window, the 
interference segment is recognized to be completed, and the 
signal is considered stable. The algorithm then exits the 
interference processing mode and returns to the standard data 
processing pipeline. 

Through this adaptive dual sliding window collaborative 
mechanism, the logical transitions of the interference 
processing are implemented by the joint control of TEnter, TProcess, 
and TExit. For isolated phase spikes with very short duration, the 
algorithm applies the correction and then promptly exits the 
interference processing mode, resulting in a localized and 
transient impact. For longer-lasting, segmental interferences, 
the dynamically expanding processing window and the more 
stringent intra-segment processing threshold ensure that the 
interference is more comprehensively suppressed. Compared to  
 
methods employing a single global threshold, this approach 
provides more refined processing and causes less influence on 
unaffected signal portions. The parameters mentioned above 
are generally determined based on the measurement 
environment and the sampling rate. In complex environments, 
it is common to use a lower TEnter to catch more potential 
disturbances and a lower TExit to be more confident that the 
disturbance has passed. Conversely, in ideal conditions without 
strong interference, a higher TEnter and TExit are often employed. 
The guideline of TProcess selection is to make sure there is no 
missing interference within a disturbed segment.  

Figure 3 illustrates typical phase disturbance patterns and the 
operational principle of the proposed algorithm. The red 
window denotes an interference segment, which includes both 
impulsive and segmental disturbances, and adaptively expands 
to incorporate all the detected disturbances. The green window 
represents the exit detection window, where the interference 
processing mode is terminated if no interference is detected for 
NExit consecutive samples within this window. The black 

window shows the outcome of the disturbance correction, 
validating the algorithm's effectiveness in handling both 
isolated impulsive and segmental disturbances. 

E. Adaptive Mode Decomposition of Vital Sign Signals 
When the stable and accurate chest surface displacement 

signal denoted by x(t) is obtained in the pre-processing stage, 
the subsequent task is the reconstruction of respiration and 
heartbeat signals. 

Chest wall displacements resulting from respiration and 
heartbeat modulate the radar's electromagnetic wave signal, 
which are ultimately regarded as specific modulated 
components within the phase signal. To efficiently extract and 
reconstruct high-quality respiration and heartbeat signals from 
the chest displacement signal, a crucial aspect is to ensure the 
effective separation and capture of these physiological signal 
components. This section employs an adaptive processing 
algorithm for vital signs signal decomposition utilizing VMD. 
In this approach, the number of modes K and the bandwidth 
characteristics of each mode are optimized via an adaptive 
strategy, and the relevant vital sign frequency bands are 
automatically selected. 

The method firstly decomposes x(t) using VMD into K IMFs, 
denoted as uk(t), each possessing a specific center frequency ωk. 
The VMD decomposition is accomplished by formulating an 
optimization model that concurrently minimizes the spectral 
bandwidth of these modes while ensuring their sum 
reconstructs the original signal. This is achieved by solving the 
following constrained variational problem: 
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where δ(t) is the Dirac delta function, * denotes convolution. 
The overall objective is to minimize the sum of the bandwidths 
of each IMF, subject to the constraint that the sum of the modes 
reconstructs the original signal x(t). To solve this variational 
problem, VMD introduces an Augmented Lagrangian. In this 
Augmented Lagrangian, α acts as the weighting factor for the 
quadratic penalty term, ensuring the fidelity of the original 
signal's reconstruction from the sum of the decomposed modes, 
while also influencing the bandwidth of each mode. 

To ensure that VMD captures sufficient total signal energy, 
while also considering the prominence of spectral peaks within 
different modes, is a prerequisite for the accurate subsequent 
extraction of vital sign signals. To optimize this decomposition 
process, K and α are adaptively adjusted according to the signal 
characteristics. The normalized residual energy Eres(K, α) is 
employed to assess whether the decomposition has captured the 
principal energy of the signal, which is given by: 
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where ui(t; α) represents the IMF obtained with parameter α. 
The algorithmic procedure is divided into three steps: 

Fig. 3. Adaptive dual sliding window phase error correction method: (a) 
Interference patterns in the original phase signal and the dual sliding 
window processing mechanism; (b) Phase signal after processing with 
the adaptive dual sliding window phase error correction. 
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1) Determination of mode number and initial 
decomposition: VMD is initially performed using an empirical 
value αinit. A candidate optimal number of modes Kopt is 
determined by identifying the elbow point of the curve plotting 
Rres(K, αinit) against K, where K is less than the preset upper 
limit Kmax. This elbow point signifies that further increments in 
K provide diminishing marginal contributions to the reduction 
of residual energy. The default value for αinit is typically set to 
1800 to accommodate most scenarios, though adjustments 
based on specific signal characteristics may be necessary in 
practical applications. 

2) Candidate vital signs mode identification: For the Kopt 
IMFs resulting from the decomposition, the center frequency 
ωk of each IMF uk(t) is analyzed. IMFs with center frequencies 
in the range 0.1–0.5 Hz are identified as candidate respiratory 
modes. The heartbeat mode is selected in the subsequent steps. 

3) Heartbeat mode selection and α adaptive optimization 
based on energy significance: Based on the initial 
decomposition, an adaptive optimization strategy rooted in 
energy significance is proposed. The core idea is to quantify the 
prominence of the heartbeat signal within the spectrum of each 
mode, thereby identifying an optimal parameter αopt to better 
isolate the heartbeat mode and refine the overall decomposition. 
Firstly, the maximum power spectral component of uk(t) within 
the heartbeat frequency band is calculated by: 
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where fh1 and fh2 define the lower and upper bounds of the 
heartbeat frequency band, respectively, and Sk(f; α) is the power 
spectrum of uk(t) obtained with parameter α. Then, the total 
power of uk(t) across its entire effective frequency range is 
computed by: 
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where fs is the radar's slow-time sampling rate. Finally, the 
relative peak energy ratio Rk(α) which represents the peak 
power within the heartbeat band relative to the total power of 
the mode is calculated. The Rk(α) quantifies the significance of 
the heartbeat component within that mode: 
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The algorithm defines a search range for α and a search step 
Δα. It iterates through α values within this range for each uk(t), 
aiming to maximize the objective function J(α) given by: 
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where ε is a very small positive constant to prevent division by 
zero. A more prominent heartbeat component results in a larger 
Rk(α), while a more thorough decomposition yields a smaller 
Eres(α). The optimal decomposition parameter for the current 
signal segment denoted by αopt is the α value that maximizes 
J(α). The mode uk(t) that maximizes J(α) is then identified as 
the heartbeat mode. 

Figure 4(a) shows typical time-domain waveforms of the 
modes obtained by applying the adaptive vital sign 
decomposition algorithm to the target's chest displacement 
signal. These modes incorporate signals from various 
frequency scales present in the original signal. Figure 4(b) 
illustrates the curve of normalized residual energy plotted 
against the number of decomposition modes K, used during the 
preliminary determination of K. As observed in the figure, the 
normalized residual energy progressively decreases with the 
increase of K. The elbow point of this curve serves as the 
candidate Kopt, representing a balance between the capture of 
principal signal energy and the prevention of 
over-decomposition. Figure 4(c) shows the objective function J 
plotted against different values of α. The optimal α for the 
current signal segment is identified by locating the peak of J in 
this graph. 

Given that the respiratory signal typically has a significant 
contribution and is less susceptible to interference, it is 
processed using the FFT. The frequency corresponding to the 
spectral peak in the FFT result is then determined as the target's 
respiration rate. For the heartbeat signal, however, the adaptive 
VMD optimizes the parameters K and α to collaboratively 
enhance mode separability. This approach can effectively 
suppress the crosstalk of respiratory harmonics into the 
heartbeat mode, thereby mitigating harmonic interference prior 
to subsequent neural network processing to yield a more 
accurate input. 

F. Enhancing HR Accuracy with Probability Prediction 
To achieve stable heart rate estimation, a heartbeat event 

probability prediction method is developed based on a novel 
deep neural network architecture, termed RTL-Unet. This 
method employs a relatively long observation window to 
predict the temporal probability distribution of heartbeat events, 
rather than outputting binary labels or performing 
instantaneous HR regression. Consequently, this approach 

 
Fig. 4. Results of adaptive vital signs decomposition: (a) Time-domain 
signal of the 6 IMFs obtained through adaptive decomposition; (b) 
Curve of normalized residual energy versus the preset number of 
decomposition modes K, with α=1800; (c) Curve of the objective 
function J versus the penalty factor α. 
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enhances the tolerance of the network's output to noise and 
interference. For signal segments that are hard for the model to 
interpret due to superimposed interference, it could avoid 
binary classification errors by outputting a waveform of low 
confidence. Simultaneously, because longer windows offer 
richer contextual information, the model can analyze not only 
local signal morphology but also the overall trend of the time 
series. The incorporation of heartbeat periodicity and 
rhythmicity of the signals makes it appropriate for a more 
thorough analysis. The periodic trend of heartbeats is 
maintained within the long-window probability sequence, and 
random prediction fluctuations are suppressed, thereby 
allowing a more effective capture of the signal's dominant 
components. 

The training data for this network comprises heartbeat mode 
phase sequences acquired using a 60GHz FMCW radar and 
processed with the algorithms described above. Synchronously 
collected ECG signals serve as the ground truth. 

Data labels are generated from heartbeat events. Firstly, the 
discrete time points of ECG R-peaks are identified. 
Subsequently, Gaussian functions with a standard deviation of 
σ, centered at each R-peak time, are superimposed to create a 
smooth time series. This series represents the probability of a 
heartbeat event occurring at each sample point. The probability 
representation offers the network a smoother and more 
learnable reference, and it also facilitates the detection of subtle 
temporal shifts in heartbeat events. 

The structure of the proposed RTL-Unet is illustrated in 
Figure 5. This hybrid network is designed to leverage the 
complementary strengths of several advanced deep learning 
components. Firstly, the input heartbeat sequence passes 
through an encoder based on a Convolutional Neural Network 
(CNN). This encoder is designed to learn local spatial-temporal 
features from the signal, extract effective representations, and 
progressively downsample the data. The encoder consists of 
four cascaded 1D convolutional residual modules. 
Subsequently, the feature sequence from the encoder is fed into 
a Transformer module, which leverages its self-attention 
mechanism to capture long-range vital signs dependencies and 
periodic patterns within the sequence. Its function is to identify 
and localize all potential heartbeat events within the input 
signal segment. The Transformer module, in particular, learns 
to differentiate the distinct temporal signatures of physiological 
heartbeats, such as rhythmic stability and morphological 
consistency, from respiratory harmonic artifacts, even when 
their frequencies overlap. Then, the feature sequence processed 
by the Transformer, which is now enriched with global 
information, is fed into an LSTM layer. LSTM is a type of 
Recurrent Neural Network (RNN) that has a key advantage of 
meticulously modeling the dynamic evolution and local 

dependencies of time series data. In this architecture, the LSTM 
layer is primarily responsible for delineating the precise shape 
of the probability distribution around each heartbeat instance. 
Finally, a decoder constructed with deconvolutional layers 
symmetrical to the encoder is employed at the network's output 
stage. In order to ensure the high-fidelity reconstruction of the 
probability sequence, the network adopts a U-Net-like structure, 
incorporating skip connections between the corresponding 
layers of the encoder and decoder. These connections allow 
low-abstraction-level, high-resolution features from the 
encoder to be directly fused into the decoder, which is critical 
for restoring precise temporal details. This decoder takes the 
feature sequence from the LSTM as well as the fused features 
from the skip connections, and then upsamples and maps it 
back to the temporal resolution of the original signal.This 
decoder takes the feature sequence from the LSTM, and then 
upsamples and maps it back to the temporal resolution of the 
original signal. This process ultimately yields the heartbeat 
event probability sequence, achieving a sequence-to-sequence 
mapping from the input radar phase sequence to the output 
heartbeat probabilities. 

The objective of network training is to minimize the 
discrepancy between the predicted probability sequence ŷ  and 
the ground truth probability sequence y. This method utilizes a 
Weighted Mean Squared Error (WMSE) as the loss function. 
This loss function guides the model to prioritize the 
optimization of prediction accuracy in peak regions, which is 
achieved by assigning higher weights to sample points where 
the target probability values are greater. The loss function 
LWMSE is defined as follows: 
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where N is the number of signal points, yi is the ground truth 
probability for the i-th point, ˆiy is the predicted probability for 
the i-th point, and α is a non-negative weighting factor. Model 
parameters are iteratively updated using the Adam optimizer, 
with appropriate configurations for learning rate, batch size, 
and training epochs for performance optimization. 

To enhance the reliability of the output, post-processing is 
performed on the network's output. Firstly, a 50% threshold is 
applied to filter out low-probability peaks, thereby reducing the 
influence of potential noise. Secondly, to further eliminate 
predicted peak intervals inconsistent with physiological 
patterns, a time interval constraint reflecting valid 
physiological ranges is applied to the probability peaks. This 
step removes densely clustered probability peaks that do not 
align with physiological intervals. Finally, the frequency 
corresponding to the maximum spectral value in the probability 
sequence is determined using FFT, yielding the final heart rate 
estimation. 

IV. EXPERIMENTAL VERIFICATION 
To validate the feasibility, effectiveness, and ultimate vital 

signs monitoring performance of the proposed method, this 
section presents the experimental studies conducted. 

A. Experimental Setup 

...

...

Input Phase 
Sequence

Transformer 
Layer

Bi-LSTM
Layer

Output Probability 
Sequence

BottleneckEncoder Decoder

Skip Connection Concat

Residual CNN Block Residual CNN Block

Fig. 5. Schematic diagram of the adopted neural network model. 
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The experimental setup, illustrated in Figure 6(a), was 
established with a millimeter-wave radar evaluation module 
IWR6843ISK (Texas Instruments, US) and a real-time data 
capture module DCA1000EVM (Texas Instruments, US). The 
IWR6843ISK is an integrated single-chip millimeter-wave 
sensor operating in the 60-64 GHz frequency band. In this 
investigation, the key parameters of the radar system are given 
in Table 1. After the radar echo signals undergo on-chip 
processing, the raw Analog-to-Digital Converter (ADC) 
sample data are acquired using the DCA1000EVM. The raw 
radar data are then transmitted to a host PC via the 
DCA1000EVM for subsequent processing. 

The heartbeat response for reference was acquired using a 
single-lead ECG front-end module with an AD8232 (Analog 
Devices, US) and recorded in the host PC. The ground truth for 
respiration was controlled by instructing participants to breathe 
uniformly in accordance with a preset metronome. 

The experiment was performed in a typical office 
environment, as shown in Figure 6(b), specifically a 
small-sized conference room of approximately 5 m × 10 m. 
This room was furnished with a conference table, chairs, and 
other standard office equipment. Participants were instructed to 
sit on a chair facing the radar. This environment was designed 
to embody clutters of stationary objects as well as multipath 
interference that is typically encountered in daily office 
scenarios. The space can accommodate movements of subjects. 
Attempts were made to assess the algorithm's robustness under 
real-world office conditions. 6 volunteers are recruited for the 
tests and informed consent were obtained. 

This study was reviewed and approved by our institution and 
conducted in accordance with the principles of the Declaration 
of Helsinki. Prior to the experiment, all participants provided 
written informed consent after being fully briefed on the 
procedure's confirmed safety, which is ensured by the 
negligible RF exposure from a low transmission power of 12 
dBm and an operating distance greater than 1.5 meters. 

B. Verification of the Proposed Method 
1）Respiration and Heartbeat Signal Extraction  

To verify the effectiveness of the proposed method for 

target respiration and heartbeat signal extraction, as well as 
the adaptive dual sliding window phase error correction 
technique, the step-by-step results of the phase signal 
extraction process are presented in Figure 7. 

Figure 7(a) shows the joint range-angle heatmap, where the 
target's location is in high energy echo region. The target was 
identified at the range bin 19 with an angle of arrival of –5°. 
The differential phase shifts between a single pair of antennas 
(1 Tx and 1 Rx) , and the transmit array (2 Tx) and receive 
antenna array with beamforming (4 Rx) are depicted in 
Figures 7(b) and 7(c) respectively, the phase response over a 
time span of 130 s for the carrier frequency was monitored. 
Figure 7(d) illustrates the phase response after the correction 
processing is implemented on the beamformed signal. 
Compared to the signal obtained from a single antenna pair, 
the phase information as a result of the window processing on 
the received signal from the array after beamforming 
operation excluded anomalies caused by background noise 
and random disturbances, hence clearer periodic components 
can be observed, that are most likely attributable to respiration 
and heartbeat. These results validated the effectiveness of the 
proposed adaptive dual sliding window phase error correction 
method in suppressing phase signal noise and eliminating 
sharp jumps, demonstrating that this denoising approach can 
successfully improve the fidelity of phase responses. 
2）Respiration and Heartbeat Signal Decomposition  

Figure 8(a) and 8(c) present the time-domain sequence of the 
extracted respiratory mode and heartbeat mode obtained by 
adaptive vital signs signal decomposition, and Figure 8(b) and 
8(d) show their corresponding spectrum. The spectral peak of 
respiration in Figure 8(b) agrees with the participant’s 
instructed breathing rate of 9 Breaths Per Minute (BPM), set by 
a metronome. The results indicate that the frequency 
corresponding to the respiration mode that is obtained by 
adaptive vital signs signal decomposition provides an accurate 
respiratory rate estimation. 
3）DNN Probability Prediction for Heart Rate Estimation  

This subsection presents the prediction results on data 
collected from a single stationary subject. A segment of 
heartbeat-led responses in the time domain, namely phases are 

 
Fig. 7. Extraction of phase response: (a) Joint range-angle heatmap; 
(b) Phase response based on a Tx1-Rx1 single antenna pair; (c) Phase 
response from 2Tx-4Rx antenna array with beamforming; (d) Phase 
response of the 2Tx-4Rx antenna array after applying the adaptive dual 
sliding window for phase correction. 

IWR6843ISK DCA1000EVM

Radar SensorECG Sensor

Laptop

 
Fig. 6. Experimental setup and the test scenario. 
 

TABLE I 
SPECIFICATION OF IWR6843ISK RADAR 

Parameters Value Unit 
Center frequency 60 GHz 
Bandwidth 3.6 GHz 
TX power 12 dBm 
Antenna configuration 2Tx / 4Rx MIMO  
Chirp cycle duration 60 μs 
Chirp repetition frequency 1000 Hz 
ADC sampling rate 7.5 MSPS 
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illustrated in Figure 8(c), is fed into the neural network. Within 
the anticipated heartbeat frequency range of 0.8–2.5 Hz, the 
spectrum does not show a single and distinct peak. Instead, it 
reveals multiple interference peaks of similar amplitudes, 
making it a challenge for conventional peak-detection-based 
heart rate estimation algorithms to identify the dominant 
heartbeat frequency. After implementing the DNN model, 
Figure 8(e) presents the heartbeat event probability sequence 
predicted by the neural network, it largely overlapped with the 
reference probability sequence derived from the R-peak 
locations of the synchronously recorded ECG. The occurrence 
of peaks in the neural network outcome agrees fairly well with 
that in the reference. Based on this probability sequence, the 
heart rate was then determined by seeking the spectral peak. 
The resulting spectrum, shown in Figure 8(f), exhibits a good 
agreement with the ECG reference heart rate, thereby 
demonstrating the neural network model's effectiveness in 
accurately predicting heartbeat events and estimating the heart 
rate. 

C. Vital Signs Detection Performance 
To evaluate the adaptability of the proposed method to 

various complex scenarios encountered in practical 
applications, targeted experiments were conducted. These 
experiments investigated the impact of interference among 
different subjects, respiratory patterns and intensity changes, 
and physiological differences between individuals. 
1）Evaluation of Specific Target Focusing Capability in 

Multi-Individual Scenarios  
In practical monitoring environments, multiple individuals 

may present within the radar's field of view. The system is 
required to accurately extract the vital signs of a specific Target 
of Interest (ToI). The following multi-target scenarios were 
designed to evaluate the system's target identification and 
interference suppression capabilities in such situations: 

 Scenario 1: The ToI was located in front of the radar 
with a distance and angle of 1.5m and 0°, with an 
interfering individual at 2.5 m and 15°. 

 Scenario 2: The ToI was in the front with a distance 
and angle of 1.5m and -20°, with an interfering 
individual at the same distance but an angle of 20°. 

 Scenario 3: The ToI was at 1.5m and 0°, with an 
interfering individual in very close proximity. 

In each of the above scenarios, the system was configured to 
extract only the vital signs of the ToI. Figure 9 shows the 
system's monitoring results under these multi-target conditions. 
Specifically, Figures 9(a), 9(c), and 9(e) show the joint 
range-angle heatmaps for the three scenarios, respectively. 
Figures 9(b), 9(d), and 9(f) provide spectral comparisons 
between the predicted target heartbeat signals and the reference 
heartbeat signals for each scenario, annotated with absolute 
error and absolute percentage error. Figure 9(g) shows the 
statistical error across 30 measurements for each of these three 
conditions. Evidently, the proposed method can effectively 
identify the ToI and achieve high-accuracy heart rate 
estimations in the common multi-individual interference 
scenarios, thus validating its effectiveness. Since the echo 
signal incorporates the vital sign signals of all the individuals in 
the radar’s coverage, any individual can be identified as the ToI 
by selecting the proper range and angle bin, which could finally 
achieve the simultaneous monitoring of multiple targets. 
2）System Stability Assessment under Varying Respiratory 

Patterns and Micro-motion Interference 
Dynamic changes in human respiratory patterns such as deep 

breathing, shallow breathing, and breath-holding along with 
body micro-motions like slight postural adjustments or 
coughing, are common interference sources that can 
significantly degrade the quality of extracted heartbeat signals.  

The experiment was designed with a single participant 
positioned 1.5 meters from the radar at 0° direction, performing 
the following four typical respiratory patterns in sequence: 

 Short breath-hold and cough: The participants held 
their breath for 15 seconds, then resumed normal 
uniform breathing, with coughing during the recovery.  

 Rapid shallow breathing: High respiratory frequency 
with small chest displacement amplitude.  

 Normal breathing: Calm and uniform breathing under 
normal physiological conditions.  

 Slow deep breathing: Low respiratory frequency with 
significant chest displacement amplitude. 

The results of the proposed method under these test 
conditions are shown in Figure 10. Figure 10(a) presents the 
time-domain sequences of the pre-processed chest 
displacement signals obtained under the four specified 
respiratory patterns and micro-motion interferences. Figure 
10(b) shows the scatter plots, derived from 40 repeated 
measurements for each condition, comparing the agreement 
between heart rates estimated under these varying respiratory 
patterns and the synchronously recorded reference values. The 
results demonstrate that the outcomes of multiple 
measurements closely approximate the Y=X line across various 
heart rates and respiratory patterns, indicating that the proposed 
method exhibits robust estimation accuracy and stability under 
the influence of diverse respiratory modes. 
3） Impact of Inter-Individual Physiological Differences on 

System Performance 

 
Fig. 8. Validation of DNN heartbeat event probability prediction: (a) 
Time-domain sequence of the respiratory signal mode; (b) Spectrum of 
the respiratory signal mode; (c) Time-domain sequence of the 
heartbeat signal mode; (d) Spectrum of the heartbeat signal mode; (e) 
Predicted heartbeat event probability sequence; (f) Spectrum of the 
predicted heartbeat event probability sequence. 
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Variations in physiological structure, body type, and 
breathing habits among individuals can lead to different 
characteristics in their vital sign signals. These differences can, 
in turn, impact the generalizability of methods for extracting 
vital sign parameters. To evaluate the system's adaptability and 
measurement consistency across different subjects, two sets of 
experiments were performed with 6 participants: Firstly, a 
single 3-minute continuous vital signs monitoring session; and 
secondly, 30 times 30-second vital signs monitoring sessions. 
During the experiments, participants were positioned 1.5 
meters from the radar at a 0° direction. 

Figure 11(a) presents the absolute heart rate errors for the 6 
different participants during the single long-term continuous 
monitoring session, which aimed at evaluating the system's 
stability over extended periods for different individuals. Figure 
11(b) illustrates the distribution of absolute heart rate errors for 
each participant across 10 repeated short-term monitoring tasks. 
The measurement results indicate that the system exhibits good 
stability across different individuals and various measurement 
instances, and the proposed algorithm demonstrates strong 
adaptability to inter-individual physiological differences. 

D. Discussion 
In summary, the proposed method consistently achieved a 

Mean Absolute Error (MAE) in the range of 0.3-1.9 Beats Per 
Minute (BPM) with a median absolute error in 0.4-1.6 BPM, 
and an Absolute Percentage Error (APE) in the range of 
approximately 0.5%-2.9% across the various experimental 
scenarios. For a comparative performance evaluation, the 
proposed algorithm was benchmarked against existing 
algorithms, such as CWT, FFT, EWT, and VMD, using the 
same dataset. The results depicted in Figure 12 demonstrate 
that the proposed method achieves lower absol ute errors and a 
more concentrated error distribution for heart rate estimation. 
Furthermore, it exhibits superior stability across multiple 
measurements and greater consistency. These findings indicate 
that, compared to the existing radar-based vital signs 
monitoring signal processing techniques, the proposed method 
demonstrates competitive performance.  

Regarding algorithmic efficiency, our proposed method is 
sufficiently fast for real-time implementation. Its main 
components consist of MVDR beamforming, phase error 
correction, adaptive VMD, and neural network inference. The 
phase error correction step is a linear process with a time 
complexity directly proportional to the signal length, resulting 

Fig. 9. Evaluation results of specific target focus capability in multi-individual scenarios: (a) Scenario 1 joint range-angle heatmap; (b) Scenario 1: 
predicted target heartbeat spectrum and reference signal spectrum; (c) Scenario 2 joint range-angle heatmap; (d) Scenario 2: predicted target 
heartbeat spectrum and reference signal spectrum; (e) Scenario 3 joint range-angle heatmap; (f) Scenario 3: predicted target heartbeat spectrum 
and reference signal spectrum; (g) Error distribution of 30 measurements. 

 
Fig. 10. System robustness under varying respiratory patterns and 
micro-motion interferences: (a) Target chest displacement phase 
sequences under different respiratory patterns; (b) Distribution of 
predicted results versus reference results from 40 measurements under 
different respiratory patterns. 

 
Fig. 11. Assessment of the impact of inter-individual physiological 
differences on system performance: (a) Comparison of predicted heart 
rate with reference heart rate during long-term single continuous 
monitoring; (b) Absolute heart rate errors distribution of 30 times 
short-term repeated monitoring sessions. 
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in negligible processing cost. The other key components 
including beamforming, adaptive VMD, and neural network 
inference rely on matrix multiplication, FFT, and 
bounded-region searches, and their performance is significantly 
accelerated through parallel processing. Our experiments have 
verified that the algorithm runs in real-time on both PCs and 
edge devices, confirming its applicability in practice. 

In the current body of research in this domain, recently 
published studies typically report heart rate MAE in the range 
of 0.5–3 BPM. Under more challenging conditions, this error 
can increase to 5–6 BPM [33,41], or a Mean APE (MAPE) in 
0.6%–4% [22,39]. The method proposed in this study, 
leveraging target phase error correction, adaptive vital sign 
signals decomposition, and deep learning-based heartbeat event 
probability prediction, enhances the vital signs detection 
performance against complex environmental interferences. 
Even when facing challenging scenarios such as 
multi-individual aliasing from proximate individuals, strong 
multipath interference, and phase distortions due to human 
micro-motions, it can consistently maintain comparable or 
superior measurement accuracy and demonstrates stable 
performance across diverse settings. 

V. CONCLUSIONS AND FUTURE WORK 
This study addresses the entanglement between different 

vital signs, and interference among several targets that FMCW 
radar encounters in vital signs monitoring, particularly in 
heartbeat detrmination, factors including human micro-motions, 
high-order respiratory harmonics overlapping, environmental 
clutter, and the inherent sensitivity of phase responses are 
imposing serious challenges. A multi-stage data processing 
framework with phase error correction and heartbeat event 
probability prediction for FMCW radar vital signs monitoring 
is developed with experimental verification. The experimental 
results have demonstrated its capability to maintain high 
measurement accuracy and stability even when facing complex 
scenarios involving multi-individual signal overlapping, strong 
multipath propagation, and interference from human 
micro-motions. Comparative results against existing 
benchmark algorithms have demonstrated its superiority 
regarding absolute error and the concentration of error 
distribution in heart rate estimation of the proposed solution. 

Despite the positive progress achieved in this investigation, 
some limitations persist, which have also raised directions for 
future investigation. Firstly, when the human body performs 

significant motions, the current method struggles to extract 
adequate information to serve as input for the neural network 
and consequently fails to produce meaningful output. This 
limitation remains a key challenge for future research. 
Secondly, the performance of the DNN models is dependent on 
the quantity and diversity of training data. Although the 
effectiveness of the model has been experimentally validated in 
this study, future efforts should be devoted to data collection 
and testing across populations with broader variations in age, 
body types, and health conditions under a wider range of 
environmental settings. Such endeavors are crucial for 
improving the model's generalization capabilities and its 
practical use in different applications. 
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