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Phase Correction and DNN Heartbeat Estimation
for Vital Signs Monitoring using FMCW Radar

Shihao Zhang, Zhaozong Meng, Yongwei Zhang, Murat Temiz, Orhan Kaplan, Nan Gao, Zonghua Zhang

Abstract—Due to its multi-objective potential for
noncontact vital signs monitoring, millimeter-wave
(mmW) radar has increasingly drawn attention in
human health and safety related sensing
applications. However, detection of vital signs,
especially weak heartbeat reaction, is more
challenging when disrupted by interference from
background noise, random human body movement,
and sensitive nature of radio waves. To address
these problems, the work presents an improved
Frequency Modulated Continuous Wave (FMCW)
radar vital signs monitoring solution incorporating
phase error correction and heartbeat event
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probability prediction. The main contributions

include: (1) Development of a data processing framework reinforcing radar echoes for high Signal-to-Noise Ratio (SNR)
vital signs detection, which amplified the returned signals through beamforming, and compensated phase
perturbation. Additionally, two techniques including adaptive mode decomposition and neural network have been
cordially adopted to perform signal conditioning; (2) Proposal of a phase error correction method with an adaptive
dual-sliding window to mitigate the phase noise and distortion introduced by the non-periodic body movement,
non-stationary breathing pattern, and dynamic environmental clutter, etc. It overcomes susceptibility to noise for the
phase response and improves its stability and continuity; (3) Establishment of a Deep Neural Network (DNN)-based
model to predict the probability distribution of heartbeat events with phase segmentation. This prediction model avoids
rigid misclassification of heartbeats, and enhances the algorithm's tolerance to noise and adaptability to complex
conditions. Experimental results have verified the effectiveness of the proposed solutions. The presented method
provides a robust solution for reliable, high accuracy, and continuous vital signs monitoring in real environments.

Index Terms—FMCW radar, vital signs monitoring, beamforming, phase error correction, DNN heartbeat estimation

|. INTRODUCTION

Vital signs monitoring is indispensable in diverse human
health and safety-related applications, including medical care,
remote health monitoring, driver status monitoring,
underground work sensing, and post-disaster search and rescue.
Many contact sensing solutions, such as Electrocardiography
(ECG) and Photoplethysmography (PPG), will inevitably
introduce constraints to individuals' daily activities [1,2], which
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also limit their applications to in-hospital medical treatment.
Non-contact sensing technologies that are free of restrictions on
human activities are more competitive in satisfying the
requirements of different application scenarios. However,
novel non-contact measurement approaches, such as
vision-based techniques and optical vibrocardiography [3], are
susceptible to ambient lighting conditions and may raise risks
of privacy leakage [3,4]. Frequency Modulated Continuous
Wave (FMCW) millimeter-wave radar technology, for its
high-resolution ranging and short-wavelength phase sensitivity,
demonstrates great potential in detecting subtle physiological
movements caused by respiration and heartbeat. Although
FMCW radar vital signs detection has gained research effort
and significant progress has been made in recent years, it still
faces some key challenges including interference from human
micro-movements such as subtle body posture changes and
limb movements, overlapping of weak heartbeat signal with
harmonics of respiration signal, clutter caused by the
movement of ambient people or objects, and the inherent
sensitive property of radar phase signal.

To address the above challenges, this investigation proposes
a phase error correction and heartbeat event probability
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prediction enhanced FMCW radar vital signs monitoring
technique. The objective is to enhance and extract weak vital
signs affected by human micro-motions and complex
environmental factors. The main contributions of this
investigation include:

(1) A framework for the enhancement and high
Signal-to-Noise Ratio (SNR) extraction of radar vital sign
signals is proposed. This framework integrates pre-processing
methods, including object identification, beamforming signal
reinforcement, and phase signal correction. Adaptive vital signs
modal decomposition is utilized to obtain distinct vital sign
modes, and subsequently, the heartbeat signal component is
input into a deep neural network to predict a sequence of
heartbeat event probabilities to obtain robust vital signs.

(2) An adaptive dual-sliding window phase error correction
method is proposed to deal with the susceptibility of FMCW
radar phase signals to various complex interference factors, and
to effectively suppress phase noise and distortion introduced by
target aperiodic micro-motions, non-stationary respiratory
patterns, dynamic environmental clutter, and potential
electromagnetic interference. This method can effectively
enhance the stability and continuity of the radar phase signal,
which is important for the subsequent signal analysis.

(3) A Deep Neural Network (DNN) model for heartbeat
event probability prediction with weak and noisy heartbeat
signals is developed for heartbeat detection. To create a more
effective reference signal for the network, the discrete sequence
of heartbeat events is converted into a sequence of Gaussian
probability distributions centered by the heartbeat events. This
model predicts the probability distribution of heartbeat events
with a longer radar phase segment instead of directly regressing
the heartbeat or performing binary classification of heartbeat
events. This approach effectively handles occasional
probability deviations caused by interference, thereby
improving the algorithm's noise tolerance and enhancing its
adaptability to practical and complex environmental influences.

By employing the presented techniques, including signal
reinforcement and extraction framework, adaptive phase error
correction, and heartbeat event probability prediction model,
this investigation offers an effective solution to handle the key
challenges facing this area.

This study focuses on improving the performance of
continuous heartbeat detection of a single specified individual
using 60 GHz FMCW radar in the presence of signal
interference in a typical application environment. The
remainder of this paper is organized as follows: Section II
summarizes related work of radar-based vital signs detection
and gives an analysis of existing applications, algorithms, and
potential challenges. Section III elaborates on the proposed
signal processing framework and the proposed technical
solutions. Section IV presents the experimental verification and
results analysis to validate the effectiveness of the proposed
methods. Finally, Section V concludes the work and envisages
the future.

Il. RELATED WORK

This section surveys the related research on radar-based

vital signs detection. It begins with outlining the emerging
applications, then discusses the key processing algorithms,
subsequently analyzes the challenges facing current research,
and finally, gives the objectives of this investigation.

A. Emerging Applications of Radar Vital Signs Sensing

Currently, the four mainstream radar technologies used for
vital signs monitoring are Continuous Wave (CW) [5,6],
Frequency Modulated Continuous Wave (FMCW) [7-9],
Ultra-Wideband (UWB) [10,11], and Stepped-Frequency
Continuous Wave (SFCW) [12,13]. CW radar features high
sensitivity and simple architecture [14,15] but lacks modulation
information, rendering it incapable of distance measurement.
UWRB radar offers a high SNR. However, its ultra-wideband
nature results in a complex hardware structure [16,17]. FMCW
radar gives rich measurement information through frequency
modulation and is characterized by high integration, low power
consumption, and relatively high range resolution. A recent
comprehensive comparison further validates that although both
CW and FMCW configurations can measure respiration and
heart rates, FMCW offers superior performance in identifying
specific cardiac events and extracting advanced biomarkers like
Heart Rate Variability (HRV) [18]. FMCW radars operating in
the millimeter-wave band are currently more commonly used,
with related technological advancements and innovative
applications being continuously reported, as summarized in
recent surveys [19].

Millimeter-wave radar, due to its technical advantages in
sensing applications, has demonstrated extensive application
prospects in the field of non-contact vital signs monitoring. In
healthcare, radar systems are employed for continuous vital
signs monitoring of seriously ill patients, which could reduce
the discomfort associated with contact sensors and lower the
risk of cross-infection [20]. Concurrently, this technology is
widely applied in home environments for remote health
monitoring of the elderly or patients with chronic diseases. For
instance, the use of FMCW radar for preliminary screening of
respiratory patterns highlights its potential in convenient home
healthcare [21]. The application scope has recently expanded to
more complex scenarios and extended the boundaries of remote
health assessment, such as rotary FMCW radar for
omnidirectional, multi-person localization and simultaneous
vital signs detection [22], and even non-contact multi-target
HRV detection [23]. Furthermore, this technology is also
gaining prominence in emerging fields such as post-disaster
search and rescue, security, and human-computer interaction.
In post-disaster scenarios, long-wavelength radar is used to
penetrate obstacles to detect the vital signs of trapped
individuals [24]. In smart homes, it can adjust home facilities
settings by perceiving user physiological parameters. The
diverse applications and their scenario complexity place higher
demands on the continuity, accuracy, and robustness of vital
signs monitoring.

B. Progress of Radar Data Signal Processing Algorithms

Radar data processing algorithms are pivotal in
determining the reconstruction quality of vital sign signals.
Addressing common technical challenges in radar vital signs
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signal extraction, such as the susceptibility of weak heartbeat
signals to human micro-motions, respiratory harmonics, and
environmental interference, current research in data processing
algorithms primarily focuses on developing more effective
noise and interference suppression methods, accurate signal
separation techniques, and the integration of intelligent
algorithms like deep learning. The primary goal is to
comprehensively enhance the accuracy, robustness, and
real-time performance of vital signs monitoring.

To improve the effectiveness and robustness of
algorithmic analysis, accurately separating various frequency
components within the signal spectrum and strengthening the
algorithm's anti-noise interference capabilities are crucial
prerequisites. The Fast Fourier Transform (FFT), as a
fundamental frequency-domain analysis tool, reveals the
overall frequency composition of a signal. Wavelet transforms
provide time-frequency localization capabilities. Specifically,
the Continuous Wavelet Transform (CWT), through scaling
and translating a mother wavelet, can effectively characterize
the time-frequency properties of signals at different scales,
which makes it particularly suitable for the analysis of
non-stationary  signals like vital signs [25]. Mode
decomposition methods aim to decompose complex signals
into several Intrinsic Mode Functions (IMFs) with specific
physical meanings, thereby achieving effective separation of
overlapping frequencies in the spectrum. Empirical Mode
Decomposition (EMD) is an adaptive signal decomposition
method, but it is sensitive to noise and suffers from issues like
end effects and mode mixing [26]. To overcome these
shortcomings of EMD, numerous improved methods have been
developed. For example, the Empirical Wavelet Transform
(EWT) combines the adaptivity of EMD with the theoretical
framework of wavelet transforms by adaptively segmenting the
signal's Fourier spectrum to construct suitable wavelet filter
banks, thereby extracting more physically interpretable
AM-FM components [27]. Another method receiving
considerable attention is Variational Mode Decomposition
(VMD), which introduces a variational model. Through a
constrained iterative optimization process, VMD adaptively
determines the center frequency and bandwidth of each mode,
thus decomposing signals more robustly and balancing errors
among the mode functions [28]. Considering the importance of
parameter selection for VMD, recent work focused on adaptive
optimization. For instance, the Health-VMD method utilizes an
improved grasshopper optimization algorithm to adaptively
select VMD parameters, enabling more accurate extraction of
heartbeat waveforms for HRV analysis in multi-target
scenarios [23]. A similar approach, Successive Variational
Mode Decomposition (SVMD), was effectively applied to
decompose and reconstruct breathing and heartbeat signals in
noisy in-vehicle environments [29]. Additionally, other
improved schemes such as the Zero-Attracting Sign Least
Mean Square (ZA-SLMS) technique [30] and peak detection
techniques [31,32] were employed for the suppression of strong
motion and interference cancellation.

In addition, enhancing the robustness of radar sensing
against body movements has been regarded as a recent research
focus. To address this, strategies have been developed to
compensate for both the subject's movement and the sensor's
own movement. For subject movement, a hybrid signal model

was established for vital signs detection in various body
postures, with a periodic signal enhancement algorithm to
isolate vital signs from limb motion interference [33]. For
non-periodic body movements, an adaptive motion noise
cancellation scheme based on virtual antenna arrays was
proposed to suppress nonlinear noise [34]. Another innovative
technique treated signal segments corrupted by RBM as
missing data[35]. By identifying RBM periods, a missing data
model was established, and compressed sensing was then used
to accurately recover the vital signs from the incomplete data.
Furthermore, to handle large-scale displacements where a
target crossed multiple range bins, a phase compensation
method was proposed to demodulate the baseband signal using
the target's estimated distance, thereby enabling wide-range
and accurate displacement measurement [36]. On the other
hand, for the motion of the sensor itself, such as handheld
applications, a novel multimodal sensing method was proposed
[37], which utilized the built-in Inertial Measurement Unit
(IMU) of the device to record and compensate for the motion
artifacts caused by the device vibration, thereby achieving
accurate vital sign measurement.

Moreover, deep learning techniques are increasingly being
incorporated into the reconstruction of vital sign signals to
enhance measurement accuracy. Mauro et al. utilized a
Convolutional Variational Autoencoder (C-VAE) to correlate
measured signals with reference signals, constructing a deep
learning model and generalizing it to diverse subjects via
meta-learning for respiratory signal reconstruction [38]. Wang
et al. employed neural networks to identify heartbeat signal
patterns, significantly improving the SNR of heartbeat signals
and leveraging historical data to further enhance the accuracy
of current heart rate estimation [39]. Numen et al. implemented
a DNN for joint vital signs and occupancy classification,
achieving high accuracy in four-category respiration-state
classification based on frequency and occupancy status [40].
However, due to real-time application requirements and
limitations of embedded computing platform resources, model
effectiveness and computational lightweighting of deep
learning networks are major concerns in this field.

C. Technical Challenges

Despite the significant progress in existing research,
radar-based vital signs monitoring still faces several challenges
in practical applications. Signal distortion and interference
caused by human micro-motions, coupling between respiration
and heartbeat, and environmental clutter interference remain
common difficulties in this domain. Research into vital signs
signal enhancement and high SNR signal extraction techniques
to achieve accurate measurement of respiratory and heartbeat
signals is of great importance for both research and practice.

Human micro-motions, such as slight postural adjustments
or limb swings, generate motion artifact signals with
amplitudes far exceeding those of the subtle physiological
displacements caused by heartbeats. These artifacts can
interfere with vital sign signals, potentially even completely
overwhelming the useful signals. Harmonics of the respiratory
signal may overlap with the fundamental frequency of the
heartbeat signal, making the accurate separation and extraction
of weak heartbeat signals from a strong respiratory background
particularly challenging. Environmental clutter interference,
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such as movements from nearby individuals and objects,
introduces additional dynamic noise, further reducing the SNR
of the target vital signs signal. Additionally, vital signs from
other targets at similar distances can be mixed into the signal of
the target of interest, thereby reducing the accuracy of vital
signs extraction. Furthermore, disturbances to the signal caused
by factors such as multipath effects and electromagnetic
interference in the space can also affect signal quality. The
severe attenuation of signal strength when short-wavelength
electromagnetic waves penetrate obstacles like walls can lead
to decreased environmental adaptability.

In real-world scenarios where multiple interference factors
coexist, the continuous and reliable heartbeat monitoring for a
specific individual remains a critical technical challenge that
needs to be addressed. Although existing algorithms may
demonstrate excellent performance when dealing with single or
specific types of interference, their efficacy often significantly
degrades in practical applications characterized by the
superposition of multiple interferences and dynamic
environmental changes, thereby failing to meet practical
application demands.

D. Scope of this Investigation

Addressing the aforementioned challenges, this study aims
to enhance the robustness of continuous heartbeat detection for
a specific individual using FMCW radar in typical interference
environments. This investigation presents a phase error
correction and heartbeat event probability prediction enhanced
FMCW radar vital signs monitoring technique. Firstly, a radar
echo signals reinforcement and high-SNR extraction
framework is proposed to obtain high quality phase signal of
vital signs. Then, an adaptive dual-sliding window phase error
correction method is proposed to handle human body
movements and environmental interference. And finally, a
sequence-to-sequence DNN is developed to process the input
weak phase signal and output the corresponding heartbeat event
probability sequence for heart rate detection, which enhances
the algorithm's tolerance to noise and adaptability to complex
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I1l. PROPOSED SOLUTION

To accurately extract the weak vital sign signals from radar
data and achieve high-accuracy vital signs estimation, this
section presents the proposed FMCW radar vital signs
monitoring technique enhanced by phase error correction and
neural network heartbeat event probability prediction.

A. A Multi-Stage Framework for Signal Processing

The proposed solution is a multi-stage algorithmic
framework, as shown in Figure 1, primarily comprising three
stages: radar data pre-processing, adaptive vital signs signal
decomposition, and neural network heartbeat event probability
prediction. The specific workflow includes:

1) Target radar data pre-processing: This stage is dedicated
to processing raw radar data and isolating the phase signal
reflected from a specific human target. Initially, after the radar's
radio frequency (RF) operation and processing stages, an
Intermediate Frequency (IF) signal is obtained, and the
range-angle spectrum is computed based on Multiple-Input
Multiple-Output (MIMO) data to determine the target's range
bin and angle bin. The Minimum Variance Distortionless
Response (MVDR) beamforming, based on MIMO antenna
arrays, is employed to spatially filter out interference and focus
on the desired individual in multi-target environments or
cluttered scenarios. Subsequently, the phase signal at the
target's location is extracted. An adaptive dual-sliding window
phase error correction method is applied to identify and correct
pulse spikes and segmental disturbances, thereby generating a
clean and stable phase signal corresponding to chest
displacement.

2) Adaptive vital sign decomposition: The enhanced chest
wall undulation phase signal obtained from the previous stage
is utilized and decomposed into respiratory and heartbeat
components. An adaptive VMD method is employed,
optimized by analyzing the decomposition residual energy and
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maximizing the energy significance of the heartbeat mode, to
determine the number of modes and the penalty factor. The
respiration mode is used to directly calculate the respiration rate,
while the heartbeat mode serves as the input for the subsequent
neural network-enhanced heartbeat prediction.

3) Neural network heartbeat event probability prediction: A
DNN with a hybrid architecture, based on a CNN
encoder-decoder, a Transformer module, and a Long
Short-Term Memory (LSTM) network, is used for heartbeat
event probability prediction. This model does not directly
perform the heartbeat event classification task but instead
predicts a sequence of heartbeat event probabilities from longer
segments of the heartbeat signal. The key advantage of this
probability-based prediction method is its ability to leverage
richer contextual information to identify complex interference
patterns and flexibly handle signal noise and uncertainty
through non-binary probabilistic outputs, thereby avoiding the
rigid misclassifications common in traditional classification
tasks when dealing with ambiguous signals. The CNN encoder
extracts local spatial-temporal features, the Transformer
captures temporal dependencies in the vital signs, and the Long
Short-Term Memory (LSTM) models the temporal dynamics of
each detected event and shapes its probability waveform. This
architecture leverages the Transformer's strength in modeling
global, long-range dependencies via self-attention, while
utilizing the LSTM's recurrent nature to precisely model the
local, step-by-step evolution of an event. The output probability
sequence then undergoes regularized post-processing to yield
final high-precision heart rate data.

The proposed multi-stage signal processing method
systematically addresses challenges at various levels, from raw
data acquisition to complex signal identification, aiming to
provide a robust and accurate non-contact vital signs
monitoring solution. The subsequent sub-sections elaborate on
the principles and implementation methods of each stage within
this framework.

B. Principle of FMCW Radar Vital Signs Detection

FMCW radar transmits periodic frequency-modulated
signals, namely chirps, and receives echoes reflected from a
target. Within the period of one chirp, the instantaneous
frequency of the transmitted signal is expressed as:

Jr ()= f.+Kt (1)
where f: is the chirp starting frequency, and KX is the frequency
modulation slope, determined by the ratio of the total
bandwidth to the chirp duration. The phase of the transmitted
signal is then the integral of the frequency over the chirp
duration:

$.() =27 (f, + KEYAE =2m fa+ mKL* + ¢, o
where ¢, is the initial phase of the transmitted signal. For
simplification, it is assumed to be ¢, =0 henceforth. Thus, the
transmitted signal is given by:

S, (t) = A, cos[@,(¢)] = A, cos(27 f.t + nKt”) 3)
where Aris the amplitude of the transmitted signal. The

transmitted signal is reflected by the target surface, and the
received signal is an attenuated and delayed version of the

transmitted signal. The time-of-flight delay produced by the
i-th target in space is expressed as:
— 2Rl

¢ 3)
where R; is the distance between the radar and the target, and ¢
is the speed of light. The received signal generated by reflection
from the i-th target is then expressed as:

SR,i(t) = COS[¢R,1' O]= AR,i COS[Zﬂf(-(t - Ti) +7K(t— Ti)z] 4)
where Agr; is the amplitude of the received signal. The

transmitted signal and the received signal are mixed, and then
an output signal is generated, which is given by:

Sou (1) = Sy () S (1)

T

i

(&)
= A, Ay ; cos(@,. (1)) cos(gy ,(¢))
= %[COS(@ (1) = B (1)) + cos(@y. (1) + by, ()]
where,
¢, (t)=2n f.t + ZKt’ (6)
G, () =27f.(t—7))+ 7K (t—7,) 7

Subsequently, low-pass filtering is applied to remove the
high-frequency terms, retaining the difference frequency term,
yielding the IF signal produced by the i-th target, expressed as:

S () = Ay cOS(P; (1) — P (1)) )
= Ay, cosLrKrit+2r f,1, — 7Kz?)

where, under ideal conditions, 4;r,;=ArAri/ 2. The frequency of
this IF signal is proportional to the target distance. By
performing the FFT on the IF signal, the spectrum of the IF
signal can be obtained. The spectral peak corresponds to the
signal frequency term, fi;, from which the distance R; of target
i can be calculated, thus determining the target's range bin.

The phase term ¢y, of the IF signal can be used to detect
subtle displacements of the target, expressed as:

P = 2rfz, - ”Kriz
_4AnfR 47 KR’

2

c c
_47R  47KR’
S Wi B
A ©)

where 4. is the wavelength of the electromagnetic wave
corresponding to the center frequency f.. The impact of subtle
displacements caused by the target's vital signs on the distance
is expressed as:

R =Ry, +AR () (10)

where Ry represents the fixed position of the i-th target relative
to the radar, and AR{(?) represents the subtle chest wall
displacements caused by vital signs. In ¢;r,;, the quadratic term
with respect to R; has a minimal effect on phase changes, so it
can be approximated that the phase primarily related to
displacement is:

47 R.

1

O =——
z (11)
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The periodic components within this phase signal constitute
the target's vital sign signals. In practical applications, 1Q
quadrature demodulation is typically employed during the
mixing stage to avoid issues such as phase ambiguity and
mirror image interference during the demodulation process.

C. Beamforming Spatial Filtering & Object Determination

To acquire vital signs information of a specific individual in
space, beamforming techniques are required to suppress
interference from other angular directions. This investigation
employs an MVDR beamformer for spatial filtering. The
MVDR beamformer is an adaptive beamforming algorithm, in
principle, to maintain distortionless reception of the signal from
the desired direction while minimizing the total output power of
interference and noise from other directions. For signal x(7)
received by N antennas at the target's range bin, the output of
the beamformer is y(£)=wx(¢). The optimal weight vector w is
expressed as:

R;xla(ﬁo)
W= ]
a” (6,)R_ a(6,) (12)

where R..=E[x(£)x(£)] is the covariance matrix of the signal x(¢),
assuming the DC component has been removed. E[+] denotes
the expectation operation, a(6p) is the steering vector
corresponding to the angle 6y derived from the antenna array
parameters, and (+)"” denotes the conjugate transpose. Applying
the obtained weight vector w to the signals received by the
antenna array from the designated target's range bin can
enhance the target signal and suppress sidelobe interference.
Several target candidate positions exist in the range-angle
spectrum, and the selection of different range and angle bins
significantly affects the signal quality. As shown in Figure 2,
the optimal signal position for this measurement is located at
range bin 20. The waveform from this bin exhibits a respiratory
signal with a relatively large amplitude and regular periodicity,
overlaid with a heartbeat signal of smaller amplitude and higher
frequency. Regarding the selection of the range bin, bins closer
than the optimum risk superficial sampling may fail to
adequately capture weak surface vibrations like heartbeat.
Further bins, however, suffer from interference due to
deep-tissue reflections and significant attenuation of the
heartbeat signal through tissue penetration. For the angle bin, if
the radar beam's pointing angle deviates from the cardiac
region, the strength of the heartbeat signal is attenuated. To
effectively extract phase changes induced by the target's chest
displacement, this method positions the signal analysis point
near the center of the target region in the range-angle heatmap,

and finely adjusts towards the surface of the target's chest closer
to the radar. This approach prioritizes the capture of radar
echoes generated by the chest wall surface, thereby minimizing
signal interference from factors such as reflections from deep
torso tissues and yielding a more direct and cleaner
representation of the subtle chest wall movements.

D. Adaptive Dual Sliding Window Phase error correction

Through the processes described above, the algorithm
obtains the radar phase information corresponding to the vital
signs of the designated individual. However, due to the inherent
high sensitivity of millimeter-wave radar signals to subtle
disturbances during phase extraction, they are highly
susceptible to various influencing factors, including
interference from moving objects in the environment, body
micro-motions, and external electromagnetic interference.
These interferences primarily manifest in two key forms: firstly,
as isolated, instantaneous impulsive spikes with amplitudes
significantly exceeding the normal physiological signal range;
and secondly, as episodic or segmental disturbances of
relatively longer duration. The latter form of interference is
persistent. It typically begins with a significant, large amplitude
jump in its initial phase, which is then followed by a series of
continuous fluctuations. Although these fluctuations may have
a smaller amplitude, they are still strong enough to corrupt the
true physiological information. Such distortions are randomly
superimposed onto signal segments, impairing the
identification of periodic components. This severely degrades
the phase signal quality, presenting a formidable challenge for
the subsequent accurate acquisition of vital signs and the
effective analysis of physiological states. Isolated spikes and
persistent disturbances usually coexist. Due to its suboptimal
performance, the single-threshold method often either misses
subtle interferences or generates false alarms in clean signal
segments, which may corrupt the useful signal. To effectively
mitigate the detrimental impact of the aforementioned
interferences on phase signal integrity, an adaptive dual sliding
window phase error correction method is proposed. This
method is designed to dynamically identify and process
segments affected by interference.

1) Interference segment identification and initiation of
phase error correction: The algorithm monitors the phase
increment across a sliding interference identification window in
real-time. This increment, Ap=|@i-@i-Nener|, 1S calculated as the
absolute difference between the current phase sample ¢; and the
phase sample @;nener from the previous Ney.r samples. When
Ap; exceeds a pre-defined entry threshold Tewer, the segment is
identified as a potentially interfered one, and phase error
correction is initiated.

2) Interference segment phase error correction and adaptive
window expansion: Once an interference segment is entered,
the algorithm initiates an interference processing window of
dynamic length, which expands adaptively when new samples
are incorporated. Within this window, the system applies more
stringent checks and corrections for phase jumps. If the
instantaneous phase change, 4¢,=|p;-¢;.1|, at any sample point j
exceeds an intra-interference processing threshold Tprocess, that
sample is considered to be disturbed. The algorithm then
corrects the phase by subtracting this increment Ag; from
sample point j and all subsequent samples in the current
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Fig. 3. Adaptive dual sliding window phase error correction method: (a)
Interference patterns in the original phase signal and the dual sliding
window processing mechanism; (b) Phase signal after processing with
the adaptive dual sliding window phase error correction.

processing segment to smooth the offset caused by the
disturbance.

3) Determination of interference segment end and exit from
phase error correction: To ensure accurate identification of the
interference segment and timely exit from the processing mode
which could prevent over-correction of normal signal portions,
an exit detection sliding window of fixed length Ngy: is
employed. This exit detection window continuously assesses
whether any instantaneous phase change 4¢=|pr-¢r.;| within it
exceeds an exit threshold gy If 4pi<Tkxi: consistently holds
for all sample points k& within a complete Ng., window, the
interference segment is recognized to be completed, and the
signal is considered stable. The algorithm then exits the
interference processing mode and returns to the standard data
processing pipeline.

Through this adaptive dual sliding window collaborative
mechanism, the logical transitions of the interference
processing are implemented by the joint control of Tenter, TProcess,
and Ty For isolated phase spikes with very short duration, the
algorithm applies the correction and then promptly exits the
interference processing mode, resulting in a localized and
transient impact. For longer-lasting, segmental interferences,
the dynamically expanding processing window and the more
stringent intra-segment processing threshold ensure that the
interference is more comprehensively suppressed. Compared to

methods employing a single global threshold, this approach
provides more refined processing and causes less influence on
unaffected signal portions. The parameters mentioned above
are generally determined based on the measurement
environment and the sampling rate. In complex environments,
it is common to use a lower Tgner to catch more potential
disturbances and a lower 7Tk« to be more confident that the
disturbance has passed. Conversely, in ideal conditions without
strong interference, a higher Tgner and Ty are often employed.
The guideline of Tprocess Selection is to make sure there is no
missing interference within a disturbed segment.

Figure 3 illustrates typical phase disturbance patterns and the
operational principle of the proposed algorithm. The red
window denotes an interference segment, which includes both
impulsive and segmental disturbances, and adaptively expands
to incorporate all the detected disturbances. The green window
represents the exit detection window, where the interference
processing mode is terminated if no interference is detected for
Nexit consecutive samples within this window. The black

window shows the outcome of the disturbance correction,
validating the algorithm's effectiveness in handling both
isolated impulsive and segmental disturbances.

E. Adaptive Mode Decomposition of Vital Sign Signals

When the stable and accurate chest surface displacement
signal denoted by x(7) is obtained in the pre-processing stage,
the subsequent task is the reconstruction of respiration and
heartbeat signals.

Chest wall displacements resulting from respiration and
heartbeat modulate the radar's electromagnetic wave signal,
which are ultimately regarded as specific modulated
components within the phase signal. To efficiently extract and
reconstruct high-quality respiration and heartbeat signals from
the chest displacement signal, a crucial aspect is to ensure the
effective separation and capture of these physiological signal
components. This section employs an adaptive processing
algorithm for vital signs signal decomposition utilizing VMD.
In this approach, the number of modes K and the bandwidth
characteristics of each mode are optimized via an adaptive
strategy, and the relevant vital sign frequency bands are
automatically selected.

The method firstly decomposes x(¢) using VMD into K IMFs,
denoted as ui(), each possessing a specific center frequency wy.
The VMD decomposition is accomplished by formulating an
optimization model that concurrently minimizes the spectral
bandwidth of these modes while ensuring their sum
reconstructs the original signal. This is achieved by solving the
following constrained variational problem:

d, [(5@) + i) *u, (t)} el
Tt

s.t.i u, (£) = x(t)

where d(7) is the Dirac delta function, * denotes convolution.
The overall objective is to minimize the sum of the bandwidths
of each IMF, subject to the constraint that the sum of the modes
reconstructs the original signal x(z). To solve this variational
problem, VMD introduces an Augmented Lagrangian. In this
Augmented Lagrangian, o acts as the weighting factor for the
quadratic penalty term, ensuring the fidelity of the original
signal's reconstruction from the sum of the decomposed modes,
while also influencing the bandwidth of each mode.

To ensure that VMD captures sufficient total signal energy,
while also considering the prominence of spectral peaks within
different modes, is a prerequisite for the accurate subsequent
extraction of vital sign signals. To optimize this decomposition
process, K and a are adaptively adjusted according to the signal
characteristics. The normalized residual energy Eis(K, a) is
employed to assess whether the decomposition has captured the
principal energy of the signal, which is given by:

x(t)— iui (t,a)

2

OIN

where ui(t; o) represents the IMF obtained with parameter a.
The algorithmic procedure is divided into three steps:

2
K

min} Z

I3
wehiog | o

: (13)

E.(K,a)= - (14)
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Fig. 4. Results of adaptive vital signs decomposition: (a) Time-domain

signal of the 6 IMFs obtained through adaptive decomposition; (b)

Curve of normalized residual energy versus the preset number of

decomposition modes K, with a=1800; (c) Curve of the objective

function J versus the penalty factor a.

1) Determination of mode number and initial
decomposition: VMD is initially performed using an empirical
value aini. A candidate optimal number of modes Kop is
determined by identifying the elbow point of the curve plotting
Rres(K, ainit) against K, where K is less than the preset upper
limit Kmax. This elbow point signifies that further increments in
K provide diminishing marginal contributions to the reduction
of residual energy. The default value for aiq;; is typically set to
1800 to accommodate most scenarios, though adjustments
based on specific signal characteristics may be necessary in
practical applications.

2) Candidate vital signs mode identification: For the Kop
IMFs resulting from the decomposition, the center frequency
i of each IMF uy(?) is analyzed. IMFs with center frequencies
in the range 0.1-0.5 Hz are identified as candidate respiratory
modes. The heartbeat mode is selected in the subsequent steps.

3) Heartbeat mode selection and a adaptive optimization
based on energy significance: Based on the initial
decomposition, an adaptive optimization strategy rooted in
energy significance is proposed. The core idea is to quantify the
prominence of the heartbeat signal within the spectrum of each
mode, thereby identifying an optimal parameter aop to better
isolate the heartbeat mode and refine the overall decomposition.
Firstly, the maximum power spectral component of u(f) within
the heartbeat frequency band is calculated by:

Pheart (a) = maX

N
fE[fm,f/,z]”Sk (f,Ot)||2 (15)

where fi; and f> define the lower and upper bounds of the
heartbeat frequency band, respectively, and Si(f; o) is the power
spectrum of ux(f) obtained with parameter a. Then, the total
power of u(f) across its entire effective frequency range is
computed by:

L
1600 2800

£/2
Pu(@) =Y [S.(f:a; (16)
S=0

where f; is the radar's slow-time sampling rate. Finally, the
relative peak energy ratio Ri(a) which represents the peak
power within the heartbeat band relative to the total power of
the mode is calculated. The Ry(a) quantifies the significance of
the heartbeat component within that mode:

R, (@) = Liean (@) (17)

Ptatal (a)

The algorithm defines a search range for a and a search step
Aaq. It iterates through o values within this range for each u(?),
aiming to maximize the objective function J(a) given by:

R, (a
J( a) — k( )

E. (0)+¢

res
where ¢ is a very small positive constant to prevent division by
zero. A more prominent heartbeat component results in a larger
Ri(a), while a more thorough decomposition yields a smaller
Eres(a). The optimal decomposition parameter for the current
signal segment denoted by aop is the o value that maximizes
J(a). The mode ui(f) that maximizes J(a) is then identified as
the heartbeat mode.

Figure 4(a) shows typical time-domain waveforms of the
modes obtained by applying the adaptive vital sign
decomposition algorithm to the target's chest displacement
signal. These modes incorporate signals from various
frequency scales present in the original signal. Figure 4(b)
illustrates the curve of normalized residual energy plotted
against the number of decomposition modes K, used during the
preliminary determination of K. As observed in the figure, the
normalized residual energy progressively decreases with the
increase of K. The elbow point of this curve serves as the
candidate K, representing a balance between the capture of
principal ~ signal energy and the prevention of
over-decomposition. Figure 4(c) shows the objective function J
plotted against different values of a. The optimal a for the
current signal segment is identified by locating the peak of J in
this graph.

Given that the respiratory signal typically has a significant
contribution and is less susceptible to interference, it is
processed using the FFT. The frequency corresponding to the
spectral peak in the FFT result is then determined as the target's
respiration rate. For the heartbeat signal, however, the adaptive
VMD optimizes the parameters K and a to collaboratively
enhance mode separability. This approach can effectively
suppress the crosstalk of respiratory harmonics into the
heartbeat mode, thereby mitigating harmonic interference prior
to subsequent neural network processing to yield a more
accurate input.

(18)

F. Enhancing HR Accuracy with Probability Prediction

To achieve stable heart rate estimation, a heartbeat event
probability prediction method is developed based on a novel
deep neural network architecture, termed RTL-Unet. This
method employs a relatively long observation window to
predict the temporal probability distribution of heartbeat events,
rather than outputting binary labels or performing
instantaneous HR regression. Consequently, this approach
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Fig. 5. Schematic diagram of the adopted neural network model.

enhances the tolerance of the network's output to noise and
interference. For signal segments that are hard for the model to
interpret due to superimposed interference, it could avoid
binary classification errors by outputting a waveform of low
confidence. Simultaneously, because longer windows offer
richer contextual information, the model can analyze not only
local signal morphology but also the overall trend of the time
series. The incorporation of heartbeat periodicity and
rhythmicity of the signals makes it appropriate for a more
thorough analysis. The periodic trend of heartbeats is
maintained within the long-window probability sequence, and
random prediction fluctuations are suppressed, thereby
allowing a more effective capture of the signal's dominant
components.

The training data for this network comprises heartbeat mode
phase sequences acquired using a 60GHz FMCW radar and
processed with the algorithms described above. Synchronously
collected ECG signals serve as the ground truth.

Data labels are generated from heartbeat events. Firstly, the
discrete time points of ECG R-peaks are identified.
Subsequently, Gaussian functions with a standard deviation of
o, centered at each R-peak time, are superimposed to create a
smooth time series. This series represents the probability of a
heartbeat event occurring at each sample point. The probability
representation offers the network a smoother and more
learnable reference, and it also facilitates the detection of subtle
temporal shifts in heartbeat events.

The structure of the proposed RTL-Unet is illustrated in
Figure 5. This hybrid network is designed to leverage the
complementary strengths of several advanced deep learning
components. Firstly, the input heartbeat sequence passes
through an encoder based on a Convolutional Neural Network
(CNN). This encoder is designed to learn local spatial-temporal
features from the signal, extract effective representations, and
progressively downsample the data. The encoder consists of
four cascaded 1D convolutional residual modules.
Subsequently, the feature sequence from the encoder is fed into
a Transformer module, which leverages its self-attention
mechanism to capture long-range vital signs dependencies and
periodic patterns within the sequence. Its function is to identify
and localize all potential heartbeat events within the input
signal segment. The Transformer module, in particular, learns
to differentiate the distinct temporal signatures of physiological
heartbeats, such as rhythmic stability and morphological
consistency, from respiratory harmonic artifacts, even when
their frequencies overlap. Then, the feature sequence processed
by the Transformer, which is now enriched with global
information, is fed into an LSTM layer. LSTM is a type of
Recurrent Neural Network (RNN) that has a key advantage of
meticulously modeling the dynamic evolution and local

dependencies of time series data. In this architecture, the LSTM
layer is primarily responsible for delineating the precise shape
of the probability distribution around each heartbeat instance.
Finally, a decoder constructed with deconvolutional layers
symmetrical to the encoder is employed at the network's output
stage. In order to ensure the high-fidelity reconstruction of the
probability sequence, the network adopts a U-Net-like structure,
incorporating skip connections between the corresponding
layers of the encoder and decoder. These connections allow
low-abstraction-level, high-resolution features from the
encoder to be directly fused into the decoder, which is critical
for restoring precise temporal details. This decoder takes the
feature sequence from the LSTM as well as the fused features
from the skip connections, and then upsamples and maps it
back to the temporal resolution of the original signal.This
decoder takes the feature sequence from the LSTM, and then
upsamples and maps it back to the temporal resolution of the
original signal. This process ultimately yields the heartbeat
event probability sequence, achieving a sequence-to-sequence
mapping from the input radar phase sequence to the output
heartbeat probabilities.

The objective of network training is to minimize the
discrepancy between the predicted probability sequence J and
the ground truth probability sequence y. This method utilizes a
Weighted Mean Squared Error (WMSE) as the loss function.
This loss function guides the model to prioritize the
optimization of prediction accuracy in peak regions, which is
achieved by assigning higher weights to sample points where
the target probability values are greater. The loss function
Lwwsk is defined as follows:

1 & -
ﬁWMSE ZWZO"‘“%’)(% _yi)2
i=1

where N is the number of signal points, y; is the ground truth
probability for the i-th point, ; is the predicted probability for

19)

the i-th point, and a is a non-negative weighting factor. Model
parameters are iteratively updated using the Adam optimizer,
with appropriate configurations for learning rate, batch size,
and training epochs for performance optimization.

To enhance the reliability of the output, post-processing is
performed on the network's output. Firstly, a 50% threshold is
applied to filter out low-probability peaks, thereby reducing the
influence of potential noise. Secondly, to further eliminate
predicted peak intervals inconsistent with physiological
patterns, a time interval constraint reflecting valid
physiological ranges is applied to the probability peaks. This
step removes densely clustered probability peaks that do not
align with physiological intervals. Finally, the frequency
corresponding to the maximum spectral value in the probability
sequence is determined using FFT, yielding the final heart rate
estimation.

IV. EXPERIMENTAL VERIFICATION

To validate the feasibility, effectiveness, and ultimate vital
signs monitoring performance of the proposed method, this
section presents the experimental studies conducted.

A. Experimental Setup
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Fig. 6. Experimental setup and the test scenario.

TABLE |

SPECIFICATION OF IWR6843ISK RADAR
Parameters Value Unit
Center frequency 60 GHz
Bandwidth 3.6 GHz
TX power 12 dBm
Antenna configuration 2Tx / 4Rx MIMO
Chirp cycle duration 60 us
Chirp repetition frequency 1000 Hz
ADC sampling rate 7.5 MSPS

The experimental setup, illustrated in Figure 6(a), was
established with a millimeter-wave radar evaluation module
IWR6843ISK (Texas Instruments, US) and a real-time data
capture module DCA1000EVM (Texas Instruments, US). The
IWR6843ISK is an integrated single-chip millimeter-wave
sensor operating in the 60-64 GHz frequency band. In this
investigation, the key parameters of the radar system are given
in Table 1. After the radar echo signals undergo on-chip
processing, the raw Analog-to-Digital Converter (ADC)
sample data are acquired using the DCA1000EVM. The raw
radar data are then transmitted to a host PC via the
DCA1000EVM for subsequent processing.

The heartbeat response for reference was acquired using a
single-lead ECG front-end module with an AD8232 (Analog
Devices, US) and recorded in the host PC. The ground truth for
respiration was controlled by instructing participants to breathe
uniformly in accordance with a preset metronome.

The experiment was performed in a typical office
environment, as shown in Figure 6(b), specifically a
small-sized conference room of approximately 5 m x 10 m.
This room was furnished with a conference table, chairs, and
other standard office equipment. Participants were instructed to
sit on a chair facing the radar. This environment was designed
to embody clutters of stationary objects as well as multipath
interference that is typically encountered in daily office
scenarios. The space can accommodate movements of subjects.
Attempts were made to assess the algorithm's robustness under
real-world office conditions. 6 volunteers are recruited for the
tests and informed consent were obtained.

This study was reviewed and approved by our institution and
conducted in accordance with the principles of the Declaration
of Helsinki. Prior to the experiment, all participants provided
written informed consent after being fully briefed on the
procedure's confirmed safety, which is ensured by the
negligible RF exposure from a low transmission power of 12
dBm and an operating distance greater than 1.5 meters.

B. Verification of the Proposed Method

1) Respiration and Heartbeat Signal Extraction
To verify the effectiveness of the proposed method for

Range-Angle Heatmap Raw Phase Signal from TX1-RX1 Channel

Range §in

0 i L L L L L
-90 -60 =30 0 30 60 20 0 20 40 60 80 100 120
Angle (Degree) Time (s)

(a) (b)

Beamformed Phase Signal at Range Bin [19] (6=[-5]°) Perturbation-Removed Phase Signal
10 T T T T T T 10 T T T T T T

Phase (Rad)

2‘0 4‘0 6‘0 B‘O 1(‘)0 1;0

Time (s)
(d)
Fig. 7. Extraction of phase response: (a) Joint range-angle heatmap;
(b) Phase response based on a Tx1-Rx1 single antenna pair; (c) Phase
response from 2Tx-4Rx antenna array with beamforming; (d) Phase
response of the 2Tx-4Rx antenna array after applying the adaptive dual
sliding window for phase correction.

target respiration and heartbeat signal extraction, as well as
the adaptive dual sliding window phase error correction
technique, the step-by-step results of the phase signal
extraction process are presented in Figure 7.

Figure 7(a) shows the joint range-angle heatmap, where the
target's location is in high energy echo region. The target was
identified at the range bin 19 with an angle of arrival of —5°.
The differential phase shifts between a single pair of antennas
(1 Tx and 1 Rx) , and the transmit array (2 Tx) and receive
antenna array with beamforming (4 Rx) are depicted in
Figures 7(b) and 7(c) respectively, the phase response over a
time span of 130 s for the carrier frequency was monitored.
Figure 7(d) illustrates the phase response after the correction
processing is implemented on the beamformed signal.
Compared to the signal obtained from a single antenna pair,
the phase information as a result of the window processing on
the received signal from the array after beamforming
operation excluded anomalies caused by background noise
and random disturbances, hence clearer periodic components
can be observed, that are most likely attributable to respiration
and heartbeat. These results validated the effectiveness of the
proposed adaptive dual sliding window phase error correction
method in suppressing phase signal noise and eliminating
sharp jumps, demonstrating that this denoising approach can
successfully improve the fidelity of phase responses.

2) Respiration and Heartbeat Signal Decomposition

Figure 8(a) and 8(c) present the time-domain sequence of the
extracted respiratory mode and heartbeat mode obtained by
adaptive vital signs signal decomposition, and Figure 8(b) and
8(d) show their corresponding spectrum. The spectral peak of
respiration in Figure 8(b) agrees with the participant’s
instructed breathing rate of 9 Breaths Per Minute (BPM), set by
a metronome. The results indicate that the frequency
corresponding to the respiration mode that is obtained by
adaptive vital signs signal decomposition provides an accurate
respiratory rate estimation.

3) DNN Probability Prediction for Heart Rate Estimation

This subsection presents the prediction results on data
collected from a single stationary subject. A segment of
heartbeat-led responses in the time domain, namely phases are
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Fig. 8. Validation of DNN heartbeat event probability prediction: (a)
Time-domain sequence of the respiratory signal mode; (b) Spectrum of
the respiratory signal mode; (c) Time-domain sequence of the
heartbeat signal mode; (d) Spectrum of the heartbeat signal mode; (e)
Predicted heartbeat event probability sequence; (f) Spectrum of the
predicted heartbeat event probability sequence.

illustrated in Figure 8(c), is fed into the neural network. Within
the anticipated heartbeat frequency range of 0.8-2.5 Hz, the
spectrum does not show a single and distinct peak. Instead, it
reveals multiple interference peaks of similar amplitudes,
making it a challenge for conventional peak-detection-based
heart rate estimation algorithms to identify the dominant
heartbeat frequency. After implementing the DNN model,
Figure 8(e) presents the heartbeat event probability sequence
predicted by the neural network, it largely overlapped with the
reference probability sequence derived from the R-peak
locations of the synchronously recorded ECG. The occurrence
of peaks in the neural network outcome agrees fairly well with
that in the reference. Based on this probability sequence, the
heart rate was then determined by seeking the spectral peak.
The resulting spectrum, shown in Figure 8(f), exhibits a good
agreement with the ECG reference heart rate, thereby
demonstrating the neural network model's effectiveness in
accurately predicting heartbeat events and estimating the heart
rate.

C. Vital Signs Detection Performance

To evaluate the adaptability of the proposed method to
various complex scenarios encountered in practical
applications, targeted experiments were conducted. These
experiments investigated the impact of interference among
different subjects, respiratory patterns and intensity changes,
and physiological differences between individuals.

1) Evaluation of Specific Target Focusing Capability in

Multi-Individual Scenarios

In practical monitoring environments, multiple individuals
may present within the radar's field of view. The system is
required to accurately extract the vital signs of a specific Target
of Interest (Tol). The following multi-target scenarios were
designed to evaluate the system's target identification and
interference suppression capabilities in such situations:

e Scenario 1: The Tol was located in front of the radar
with a distance and angle of 1.5m and 0°, with an
interfering individual at 2.5 m and 15°.

e Scenario 2: The Tol was in the front with a distance
and angle of 1.5m and -20°, with an interfering
individual at the same distance but an angle of 20°.

e Scenario 3: The Tol was at 1.5m and 0°, with an
interfering individual in very close proximity.

In each of the above scenarios, the system was configured to
extract only the vital signs of the Tol. Figure 9 shows the
system's monitoring results under these multi-target conditions.
Specifically, Figures 9(a), 9(c), and 9(e) show the joint
range-angle heatmaps for the three scenarios, respectively.
Figures 9(b), 9(d), and 9(f) provide spectral comparisons
between the predicted target heartbeat signals and the reference
heartbeat signals for each scenario, annotated with absolute
error and absolute percentage error. Figure 9(g) shows the
statistical error across 30 measurements for each of these three
conditions. Evidently, the proposed method can effectively
identify the Tol and achieve high-accuracy heart rate
estimations in the common multi-individual interference
scenarios, thus validating its effectiveness. Since the echo
signal incorporates the vital sign signals of all the individuals in
the radar’s coverage, any individual can be identified as the Tol
by selecting the proper range and angle bin, which could finally
achieve the simultaneous monitoring of multiple targets.

2) System Stability Assessment under Varying Respiratory

Patterns and Micro-motion Interference

Dynamic changes in human respiratory patterns such as deep
breathing, shallow breathing, and breath-holding along with
body micro-motions like slight postural adjustments or
coughing, are common interference sources that can
significantly degrade the quality of extracted heartbeat signals.

The experiment was designed with a single participant
positioned 1.5 meters from the radar at 0° direction, performing
the following four typical respiratory patterns in sequence:

e Short breath-hold and cough: The participants held
their breath for 15 seconds, then resumed normal
uniform breathing, with coughing during the recovery.

e Rapid shallow breathing: High respiratory frequency
with small chest displacement amplitude.

e Normal breathing: Calm and uniform breathing under
normal physiological conditions.

e Slow deep breathing: Low respiratory frequency with
significant chest displacement amplitude.

The results of the proposed method under these test
conditions are shown in Figure 10. Figure 10(a) presents the
time-domain  sequences of the pre-processed chest
displacement signals obtained under the four specified
respiratory patterns and micro-motion interferences. Figure
10(b) shows the scatter plots, derived from 40 repeated
measurements for each condition, comparing the agreement
between heart rates estimated under these varying respiratory
patterns and the synchronously recorded reference values. The
results demonstrate that the outcomes of multiple
measurements closely approximate the Y=X line across various
heart rates and respiratory patterns, indicating that the proposed
method exhibits robust estimation accuracy and stability under
the influence of diverse respiratory modes.

3) Impact of Inter-Individual Physiological Differences on

System Performance



12

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

60 0.06 —rorerence ! ! T T ™72
50 F |—— Prediction
£ © 004" Reference HR (1.41 Hz, 84.6 BPM), i e
M 40 g - |- - = Prediction HR (1.42Hz, 85.2BPM)
g % AE: 0.8 BPM  APE: 0.95% L 46.0
£30 g 4
o <
20 .
0.06 (®) o —438
7 —Reference ! ! s
|—— Prediction o
o 0.04 I- - - Reference HR (1.28 Hz, 76.8 BPM) e
m 'g - |- - - Prediction HR (1.28Hz, 76.8BPM) T s F - 3.6
[} = AE: 0 BPM APE: 0% =
g g o
)
S £ 0.02 : E
2 24
0.00 i 2 '
d
e |—— Reference i : i M
|—— Prediction H
< © 004 [~ Reference HR (1.28 Hz, 76.8 BPM) : i a 112
s3] 'g = I - = Prediction HR (1.32Hz, 79.2BPM)
% = AE: 2.4 BPM APE: 3.1%
s £
8 g 0.02 | 1oo
0.00 1 it I 1 1
0.0 0.5 1.0 1.5 2.0 1 2 3
Angle (Degree) Frequency (Hz) Scenario

(e)

® )
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Fig. 10. System robu(s)tness under varying respiratory patterns and
micro-motion interferences: (a) Target chest displacement phase
sequences under different respiratory patterns; (b) Distribution of
predicted results versus reference results from 40 measurements under
different respiratory patterns.

Variations in physiological structure, body type, and
breathing habits among individuals can lead to different
characteristics in their vital sign signals. These differences can,
in turn, impact the generalizability of methods for extracting
vital sign parameters. To evaluate the system's adaptability and
measurement consistency across different subjects, two sets of
experiments were performed with 6 participants: Firstly, a
single 3-minute continuous vital signs monitoring session; and
secondly, 30 times 30-second vital signs monitoring sessions.
During the experiments, participants were positioned 1.5
meters from the radar at a 0° direction.

Figure 11(a) presents the absolute heart rate errors for the 6
different participants during the single long-term continuous
monitoring session, which aimed at evaluating the system's
stability over extended periods for different individuals. Figure
11(b) illustrates the distribution of absolute heart rate errors for
each participant across 10 repeated short-term monitoring tasks.
The measurement results indicate that the system exhibits good
stability across different individuals and various measurement
instances, and the proposed algorithm demonstrates strong
adaptability to inter-individual physiological differences.
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Fig. 11. Assessment of the impact of inter-individual physiological
differences on system performance: (a) Comparison of predicted heart
rate with reference heart rate during long-term single continuous
monitoring; (b) Absolute heart rate errors distribution of 30 times
short-term repeated monitoring sessions.

D. Discussion

In summary, the proposed method consistently achieved a
Mean Absolute Error (MAE) in the range of 0.3-1.9 Beats Per
Minute (BPM) with a median absolute error in 0.4-1.6 BPM,
and an Absolute Percentage Error (APE) in the range of
approximately 0.5%-2.9% across the various experimental
scenarios. For a comparative performance evaluation, the
proposed algorithm was benchmarked against existing
algorithms, such as CWT, FFT, EWT, and VMD, using the
same dataset. The results depicted in Figure 12 demonstrate
that the proposed method achieves lower absolute errors and a
more concentrated error distribution for heart rate estimation.
Furthermore, it exhibits superior stability across multiple
measurements and greater consistency. These findings indicate
that, compared to the existing radar-based vital signs
monitoring signal processing techniques, the proposed method
demonstrates competitive performance.

Regarding algorithmic efficiency, our proposed method is
sufficiently fast for real-time implementation. Its main
components consist of MVDR beamforming, phase error
correction, adaptive VMD, and neural network inference. The
phase error correction step is a linear process with a time
complexity directly proportional to the signal length, resulting
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Fig. 12. Comparison of heart rate extraction performance with existing methods.

in negligible processing cost. The other key components
including beamforming, adaptive VMD, and neural network
inference rely on matrix multiplication, FFT, and
bounded-region searches, and their performance is significantly
accelerated through parallel processing. Our experiments have
verified that the algorithm runs in real-time on both PCs and
edge devices, confirming its applicability in practice.

In the current body of research in this domain, recently
published studies typically report heart rate MAE in the range
of 0.5-3 BPM. Under more challenging conditions, this error
can increase to 5—-6 BPM [33,41], or a Mean APE (MAPE) in
0.6%—4% [22,39]. The method proposed in this study,
leveraging target phase error correction, adaptive vital sign
signals decomposition, and deep learning-based heartbeat event
probability prediction, enhances the vital signs detection
performance against complex environmental interferences.
Even when facing challenging scenarios such as
multi-individual aliasing from proximate individuals, strong
multipath interference, and phase distortions due to human
micro-motions, it can consistently maintain comparable or
superior measurement accuracy and demonstrates stable
performance across diverse settings.

V. CONCLUSIONS AND FUTURE WORK

This study addresses the entanglement between different
vital signs, and interference among several targets that FMCW
radar encounters in vital signs monitoring, particularly in
heartbeat detrmination, factors including human micro-motions,
high-order respiratory harmonics overlapping, environmental
clutter, and the inherent sensitivity of phase responses are
imposing serious challenges. A multi-stage data processing
framework with phase error correction and heartbeat event
probability prediction for FMCW radar vital signs monitoring
is developed with experimental verification. The experimental
results have demonstrated its capability to maintain high
measurement accuracy and stability even when facing complex
scenarios involving multi-individual signal overlapping, strong
multipath  propagation, and interference from human
micro-motions. Comparative results against existing
benchmark algorithms have demonstrated its superiority
regarding absolute error and the concentration of error
distribution in heart rate estimation of the proposed solution.

Despite the positive progress achieved in this investigation,
some limitations persist, which have also raised directions for
future investigation. Firstly, when the human body performs

significant motions, the current method struggles to extract
adequate information to serve as input for the neural network
and consequently fails to produce meaningful output. This
limitation remains a key challenge for future research.
Secondly, the performance of the DNN models is dependent on
the quantity and diversity of training data. Although the
effectiveness of the model has been experimentally validated in
this study, future efforts should be devoted to data collection
and testing across populations with broader variations in age,
body types, and health conditions under a wider range of
environmental settings. Such endeavors are crucial for
improving the model's generalization capabilities and its
practical use in different applications.
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