
Towards Data-efficient AI:
Theoretical analysis and

experimental validation of new
exploration algorithms for
Reinforcement Learning

Aya Kayal

A dissertation submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Electronic and Electrical Engineering

University College London

November 14, 2025

2

I, Aya Kayal, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this

has been indicated in the work.

Abstract

Sequential decision-making is at the core of everyday human activities and

complex real-world systems. Equipping machines with this capability has

enormous implications for advancing Artificial Intelligence (AI) and developing

autonomous systems that can reliably address real-world tasks, from robotics

and healthcare to traffic management and large-scale information systems.

Unlike machines, the human brain makes intelligent decisions in a remarkably

data- and energy-efficient manner. A long-term objective of AI research, often

associated with the vision of Artificial General Intelligence (AGI), is to ap-

proximate the human brain’s capabilities, paving the way for more practical

and sustainable AI systems.

Reinforcement Learning (RL) is the mathematical framework that en-

ables machines to learn sequential decision-making through trial and error,

mirroring aspects of human learning. While RL has driven many recent ad-

vances, training RL agents remains highly data- and compute-intensive—far

from the efficiency of the human brain. A central bottleneck to data efficiency

is exploration: how machines gather informative experiences to learn effective

strategies. This thesis addresses the exploration challenge in RL, approaching

it from both empirical and theoretical perspectives, bridging the gap between

the two.

First, a proof-of-concept study is developed that provides a deeper under-

standing of how exploration bonuses shape the behavior of deep RL agents,

yielding new empirical insights into the mechanisms driving exploration in

practice. Second, a theoretical framework is introduced for the analytical

Abstract 4

study of RL in the kernel setting, leading to the development of provably

efficient exploration algorithms with regret bounds that are tighter than ex-

isting approaches. Third, the study of exploration in Bayesian Optimization

with preference-based feedback introduces a novel algorithm that, for the first

time, achieves order-optimal sample complexity in this setting. Together, these

contributions advance the development of sample-efficient decision-making al-

gorithms, bringing AI systems closer to the remarkable efficiency of human

learning.

Impact Statement

AI simulates human intelligence in machines, enabling them to learn from

experience, make decisions, and perform tasks traditionally requiring human

cognition. As a transformative force, AI has immense potential to reshape

industries and society. Its rapid advancement is already driving meaningful

progress across critical domains.

For instance, AI is revolutionizing healthcare by improving early diagnosis

of diseases like breast cancer [1]. In education, AI-powered personalized learn-

ing platforms adapt content and pacing to individual student needs, offering

crucial support for learners with ADHD, dyslexia, and other challenges [2]. In

disaster prediction, AI aids seismologists in detecting early earthquake warning

signs, safeguarding lives and infrastructure [3].

Yet, alongside these advances, AI faces fundamental challenges that limit

its broader impact. Many AI systems demand vast amounts of data and com-

putational resources. Among these, Reinforcement Learning (RL) stands out

as a powerful yet especially data-hungry subfield of AI. While RL has shown

great promise in solving sequential decision-making problems in domains such

as robotics, personalized education, and healthcare, its practical impact re-

mains constrained by inefficiency and high computational costs.

RL is notoriously data-inefficient, often requiring orders of magnitude

more data than humans need to achieve comparable performance. This inef-

ficiency slows progress toward Artificial General Intelligence (AGI) and raises

sustainability concerns due to the substantial carbon footprint of prolonged

training. Moreover, the high computational and financial costs limit RL’s

Abstract 6

accessibility for many researchers and practitioners.

This thesis tackles RL’s data inefficiency by addressing the exploration

challenge—a core mechanism determining how effectively an agent learns from

interacting with its environment. We investigate exploration from both theo-

retical and empirical perspectives, answering two central questions:

How can the agent explore efficiently in any environment, and how can it

determine whether sufficient exploration has been achieved?

Our research develops novel exploration strategies that significantly im-

prove RL’s data efficiency, bridging the gap between theory and real-world

deployment. By enabling RL systems to learn effectively with limited data,

this work expands their applicability in data-constrained domains while re-

ducing computational burdens. Ultimately, these contributions mark a step

toward more practical, inclusive, and environmentally responsible AI, unlock-

ing RL’s potential to drive progress in critical areas like healthcare, education,

and beyond.

Acknowledgements

First and foremost, I thank God for His guidance and for granting me the

strength, knowledge, and understanding to complete this thesis.

I would like to express my deepest gratitude to my PhD supervisor, Dr.

Laura Toni. She has been an incredibly kind, supportive, and inspiring mentor.

From the very beginning, she welcomed me into her group, gave me the freedom

to pursue my ideas, and consistently encouraged me while providing valuable

advice. Her faith in my potential helped me build confidence in myself and in

my abilities as a researcher. She created a relaxed yet stimulating environment

that minimized the stress of the PhD journey, while pushing me to grow into an

independent thinker who can ask the right questions and reason scientifically.

I am inspired by her passion for research and by her role as a successful woman

in the field of AI. I am also sincerely grateful to Dr. Sattar Vakili, my intern-

ship mentor at MediaTek Research. It was a privilege to work with him—I

learned enormously from his expertise in theoretical Reinforcement Learning

and bandits. He not only shared his insights and perspectives generously but

also mentored me with the care and rigor of an advisor, introducing me to the

statistical foundations of machine learning and showing me how to approach

problems rigorously. His guidance pushed me to be more efficient, productive,

and ambitious, enabling me to publish at top AI conferences. Much of the

technical content of this thesis would not have been possible without his input

and support. I also wish to sincerely thank Dr. Alberto Bernacchia, director of

AI research at MediaTek, whose thoughtful questions, constructive critiques,

and expert feedback pushed me forward during my internship. I extend my

Acknowledgements 8

thanks to Dr. Alexandru Cioba for collaborating with me on my last project

at MediaTek, and to Dr. Da-Shan Shiu, managing director at MediaTek, for

offering valuable perspective on how to present research ideas to industry.

I am also grateful to my colleague and co-author, Dr. Eduardo Pignatelli

at UCL, with whom I shared many fruitful discussions on Reinforcement Learn-

ing. He contributed to the work presented in Chapter 4 and was always ready

to provide technical advice throughout my PhD. I extend my gratitude to

Dr. Alain Andrés Fernández for our early discussions on exploration in deep

Reinforcement Learning and for sharing valuable resources, and to MSc stu-

dent Corina Caraconcea for her assistance in experimental results presented

in Chapter 4. I would further like to thank my second advisor, Dr. Ilija Bo-

gunovic, for many enlightening conversations and for examining my transfer

thesis.

The research presented in this thesis was funded by the UCL Dean’s Prize

and by the Institute of Communications and Connected Systems (ICCS) in the

EEE Department. I remain indebted to the head of the ICCS group, Professor

Izzat Darwazeh, for his generous funding, unwavering support, and for being

the person I could always turn to when facing difficulties during my PhD. I

am also grateful to Dr. Simon Banks, the faculty tutor, who also played a key

role in facilitating my research funding in the EEE Department.

I am grateful as well for the brilliant researchers and supportive friends I

was surrounded by at UCL. To my special colleagues and friends in the LASP

group—Eduardo Pignatelli, Nagham Osman, Pedro Gomes, Keyue Jiang, and

Alan Guedes—thank you for your feedback, opinions, and countless hours of

discussion. You helped create a supportive research environment, and I am

grateful for your friendship both inside and outside UCL. To Shyam Sundhar

Ramesh, thank you for being an exceptional friend, for your care, understand-

ing, and constant support. To Nagham Osman, thank you for your friendship,

for sharing both the good and hard moments of life inside and outside the

PhD, and for all our London hangouts over the past four years. To Fan Yang,

Acknowledgements 9

thank you for all the fun, travels, tea breaks, and for being my handbook man-

ual whenever I needed one. To Wasseem Ozan, thank you for your precious

advices which shaped my decisions, including encouraging me to pursue an

internship at MediaTek. To Mai Hawwa, whom I met toward the end of my

PhD, thank you for your fun spirit and for being such a special person who

made my final months much lighter.

To many other wonderful people with whom I had the pleasure of sharing

moments during my PhD journey—Andrew, Amany, Xinyue, Vittorio, Josh,

Reem, Haochen, Iman, Farshad, Maryam, Noora, David, Maria, Gianluca,

Fabio, Seerat, Navin, Edo, Ashraf, Seongho, Zun, Yuanyuan, Ayan, and many

others—thank you for the lunch breaks, dinners, celebrations, for listening

through both struggles and successes, and for showing me that research is

brighter with laughter, and shared experiences. You have been like family,

offering kindness, encouragement, and support throughout this journey.

I would also like to thank my dear friend from outside UCL, Safa Osta,

and the whole Osta family for being my family in London since my arrival.

They welcomed me as one of their own, and I am infinitely grateful for that.

I also thank my friend Hana Koscec, my ex-roommate, for her kindness, calm

presence, and care. To my friend across the ocean, Joudi Hajar, thank you for

sending me love, motivation, and support despite the distance.

Finally, and most importantly, I want to express my deepest love and

gratitude to mom, dad, and my sisters—Mira, Dima, and Amal. You are my

greatest blessing, and I cannot imagine this journey without you by my side.

Your love, encouragement, and faith in me have been the foundation that kept

me going, especially in the most difficult moments.

To my mother, I dedicate this thesis to you. Thank you for being my

constant source of strength, my biggest cheerleader, and my role model. Your

support and unwavering belief in me have inspired me more than words can

capture. I am forever grateful for the example you set, both as a remarkable

professor and as a loving woman.

Contents

1 Introduction 25

1.1 Main Challenges . 28

1.2 Contributions . 30

1.3 Thesis outline . 32

1.4 Publications . 33

2 Background on Reinforcement Learning 34

2.1 Markov Decision Processes . 35

2.1.1 Partially Observable Markov Decision Processes 38

2.2 Value Functions and Bellman Optimality 39

2.3 Model-Based vs Model-Free RL 41

2.4 Model-Based Learning: Dynamic Programming 42

2.4.1 Policy Iteration . 42

2.4.2 Value Iteration . 43

2.5 Model-Free Prediction . 43

2.5.1 Monte Carlo Methods 44

2.5.2 Temporal Difference Learning 44

2.6 Function Approximation in RL 46

2.6.1 Linear Function Approximation 47

2.6.2 Kernel-Based Reinforcement Learning 47

2.6.3 Deep Reinforcement Learning 49

2.7 Policy-Based Methods . 50

2.7.1 Policy Gradient Theorem 51

Contents 11

2.7.2 REINFORCE Algorithm 51

2.7.3 REINFORCE with Baseline 52

2.7.4 Actor-Critic Algorithms 53

2.8 Summary and Conclusion . 56

3 Background on Bandits 57

3.1 Multi-Armed Bandits . 58

3.2 Linear Bandits . 60

3.3 Gaussian Process Bandits / Bayesian Optimization 61

3.3.1 Gaussian Processes (Bayesian View) 62

3.3.2 Reproducing Kernel Hilbert Spaces (frequentist view) . . 63

3.3.3 Kernel Ridge Regression 64

3.3.4 Common Kernels and their Properties 64

3.3.5 Maximum Information Gain and Eigendecay 65

3.3.6 Confidence Intervals . 65

3.3.7 Algorithms for GP Bandits and Regret Bounds 68

3.4 Dueling Bandits . 69

3.5 Summary and Conclusion . 72

4 The Impact of Intrinsic Rewards on Exploration in RL 74

4.1 Introduction . 75

4.2 Related Works . 78

4.3 Methodology . 81

4.3.1 Taxonomy of Diversity Levels Imposed by Intrinsic Reward 81

4.3.2 The Selected Intrinsic Reward Algorithms 81

4.3.3 Environment . 84

4.3.4 Experimental Protocol 85

4.3.5 Model Architecture . 86

4.3.6 Evaluation Metrics . 88

4.4 Experimental Results and Discussion 89

Contents 12

4.4.1 RQ1: Return Performance of the Different Intrinsic Re-

wards . 92

4.4.2 RQ2: Characteristics of Each Intrinsic Reward Algorithm 93

4.4.3 RQ3: First, Second and Third Instances of Discovering

the Sparse Reward . 98

4.5 Conclusion . 100

4.5.1 Limitations and Future Work 100

5 Near-Optimal Sample Complexity in Reward-Free Kernel-

Based RL 102

5.1 Introduction . 103

5.2 Related Work . 107

5.2.1 Literature Review . 107

5.2.2 Comparison to Existing Works 109

5.3 Preliminaries and Problem Formulation 110

5.3.1 Episodic MDP . 110

5.3.2 Reward-Free RL Framework 112

5.3.3 Kernel Ridge Regression 113

5.4 Algorithm Description . 114

5.4.1 Planning Phase . 115

5.4.2 Exploration Phase . 116

5.4.3 Computational Complexity 120

5.5 Analysis of the Sample Complexity 121

5.5.1 Confidence Intervals . 121

5.5.2 Sample Complexities . 123

5.6 Experiments . 126

5.7 Conclusion . 127

6 Bayesian Optimization from Human Feedback 129

6.1 Introduction . 130

6.1.1 Related Work . 132

Contents 13

6.2 Preliminaries and Problem Formulation 135

6.2.1 BOHF Framework . 135

6.2.2 Preliminaries and Assumptions 137

6.2.3 Preference Function Prediction and Uncertainty Estima-

tion . 137

6.3 Algorithm Description . 140

6.4 Analysis of MR-LPF . 141

6.4.1 Sample Complexity and Simple Regret 144

6.4.2 Confidence Intervals and Proofs 145

6.5 Experiments . 146

6.6 Conclusion . 149

7 Conclusions 150

7.1 Summary of Contributions . 150

7.2 Future Work . 152

7.2.1 Theoretical Framework Unifying Exploration Strategies . 152

7.2.2 Exploration as Key to Generalization in RL 152

7.2.3 Active Exploration for LLM Alignment 153

Appendices 155

A Appendix of Chapter 4 155

A.1 Diversity Levels Categorization 155

A.1.1 “Where to Explore?” . 155

A.1.2 “How to Explore?” . 158

A.2 MiniGrid Environments . 160

A.3 Hyperparameters . 162

A.4 Additional Experimental Results 163

A.4.1 Grid Encoding Observation Space 164

A.4.2 RGB Observation Space 167

A.5 DIAYN Extrinsic . 170

Contents 14

B Appendix of Chapter 5 171

B.1 Proof of Theorem 1 and Corollary 1 171

B.2 Proof of Theorem 2 . 176

B.3 Proof of Theorem 3 . 179

B.4 Experimental Details . 182

B.4.1 Synthetic Test Functions from the RKHS 183

B.4.2 Tuning the Confidence Interval Width Multiplier 185

B.4.3 Implementation and Computational Resources 187

B.4.4 Repeated Experiments for Different Draws of r and P . . 187

B.5 RKHS and Mercer Theorem . 188

C Appendix of Chapter 6 190

C.1 Proof of The Regret Bound and Sample Complexities 190

C.1.1 Proof of Theorem 4 . 190

C.1.2 Proof of Corollary 2 . 194

C.1.3 Proof of Corollary 3 . 195

C.2 Proof of Theorem 5 . 195

C.3 Experimental Details . 200

Bibliography 203

List of Figures

2.1 RL agent-environment interaction [4]. 35

2.2 POMDP agent-interaction with the environment [5]. 38

4.1 Overview of the empirical study pipeline, illustrating the flow

from input observations to action selection, and reward compu-

tation (both extrinsic and intrinsic) within the PPO framework.

. 86

4.2 Neural Network Architectures. 87

4.3 The four metrics against the number of transitions (frames) pro-

cessed by the environment. Observations are grid encodings.

Results are averaged over five seeds with standard deviation

shading. Vertical dash-dot lines mark the start of DIAYN fine-

tuning. Horizontal dash-dot lines mark the theoretical maxi-

mum entropy of the policy Hmax(π) = log(|A|). 90

4.4 Analogous to Figure 4.3, but observations are partial RGB im-

ages. 91

4.5 Histogram of average frames needed by each exploration method

to collect rewards across environments. Observations are grid

encodings. Each bar’s three fading segments mark the frames

at which the first, second, and third rewards are collected; lower

values are better. Results are averaged over five runs. 98

4.6 Analogous to Figure 4.5 but observations are partial RGB im-

ages. 98

List of Figures 16

5.1 High-level illustration of sample collection in the exploration al-

gorithm without a generative model (Algorithm 9). At each

episode, only one unbiased sample corresponding to step h0

(shown inside the rectangle) is collected. The backward arrows

indicate the recursive computation of the value functions. 120

5.2 Average suboptimality gap against N . The error bars indicate

standard deviation. 126

6.1 Average Regret against T with RKHS test functions (left col-

umn) and Ackley test function (right column). The shaded area

represents the standard error. 147

6.2 Average regret against T for the experiment with Yelp Open

Dataset. The shaded area represents the standard error. 148

A.1 Categorization of the different levels of diversity incurred by

intrinsic rewards for exploration in RL. 156

A.2 MiniGrid environments. 161

A.3 State visitation heatmap for singleton Empty 16x16 environ-

ment with grid encoding observations. 165

A.4 State visitation heatmap for singleton DoorKey 16x16 environ-

ment with grid encoding observations. 165

A.5 State visitation heatmap for singleton FourRooms environment

with grid encoding observations. 166

A.6 State visitation heatmap for singleton RedBlueDoors environ-

ment with grid encoding observations. 166

A.7 State visitation heatmap for singleton Empty 16x16 environ-

ment with RGB observations. 168

A.8 State visitation heatmap for singleton DoorKey 8x8 environ-

ment with RGB observations. 168

A.9 State visitation heatmap for singleton FourRooms environment

with RGB observations. 169

List of Figures 17

A.10 State visitation heatmap for singleton RedBlueDoors environ-

ment with RGB observations. 169

A.11 Analogous to Figure. 4.3, but showing DIAYN combined with

extrinsic rewards on grid encoding observations. Metrics are

plotted against the number frames and averaged over five seeds. 170

B.1 Reward and transition probability functions generated by kernel

ridge regression using SE Kernel with lengthscale = 0.1 and

τ = 0.01. 183

B.2 Reward and transition probability functions generated by kernel

ridge regression using Matérn kernel with ν = 2.5, lengthscale

= 0.1 and τ = 0.5. 184

B.3 Reward and transition probability functions generated by kernel

ridge regression using Matérn kernel with ν = 1.5, lengthscale

= 0.1 and τ = 0.5. 184

B.4 Average suboptimality gap plotted against the number of

episodes N for different values of β in the case of SE kernel. . . 185

B.5 Average suboptimality gap plotted against the number of

episodes N for different values of β in the case of Matérn kernel

with ν = 2.5. 186

B.6 Average suboptimality gap plotted against the number of

episodes N for different values of β in the case of Matérn kernel

with ν = 1.5. 186

B.7 Average suboptimality gap plotted against N for experiment 1. . 187

B.8 Average suboptimality gap plotted against N for experiment 2. . 188

B.9 Average suboptimality gap plotted against N for experiment 3. . 188

List of Figures 18

C.1 Plots of the utility function f(x), the preference function

h(x,x′) = f(x) − f(x′), and the probability of preference

µ(h(x,x′)) for synthetic experiments. The rows correspond

to: (1st row) SE kernel (RKHS), (2nd row) Matérn kernel

with ν = 2.5 (RKHS), (3rd row) Matérn kernel with ν = 1.5

(RKHS), and (4th row) Ackley function. 201

List of Tables

4.1 Comparison of existing works on intrinsic rewards (IR). 77

5.1 Existing sample complexities in reward-free RL. S, A, H, d

and p represent the state space, action space, episode length,

state-action space dimension and parameter of the kernel with

polynomial eigendecay, respectively. Last two rows correspond

to the performance guarantees for the algorithms proposed in

this work. 108

6.1 Comparison of regret bounds in BOHF. 133

A.1 Best intrinsic reward coefficients βint. 162

A.2 List of hyperparameters. 163

A.3 Frame number at which the reward is discovered for the first,

second and third time in Empty 16x16 environment with grid

encodings. 164

A.4 Frame number at which the reward is discovered for the first,

second and third time in DoorKey 16x16 environment with grid

encodings. 164

A.5 Frame number at which the reward is discovered for the first,

second and third time in RedBlueDoors environment with grid

encodings. 164

A.6 Frame number at which the reward is discovered for the first,

second and third time in FourRooms environment with grid en-

codings. 164

List of Tables 20

A.7 Frame number at which the reward is discovered for the first,

second, and third time in Empty 16x16 environment with RGB

observations. 167

A.8 Frame number at which the reward is discovered for the first,

second, and third time in DoorKey 8x8 environment with RGB

observations. 167

A.9 Frame number at which the reward is discovered for the first,

second, and third time in RedBlueDoors environment with RGB

observations. 167

A.10 Frame number at which the reward is discovered for the first,

second, and third time in FourRooms environment with RGB

observations. 167

Abbreviations

AC Actor-Critic

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

AGI Artificial General Intelligence

AI Artificial Intelligence

ALE Arcade Learning Environment

ANNs Artificial Neural Networks

APS Active Pretraining with Successor Feature

APT Active Pretraining

BO Bayesian Optimization

BOHF Bayesian Optimization from Human Feedback

BPE Batched Pure Exploration

BTL Bradley-Terry-Luce

BTM Beat the Mean

CNN Convolutional Neural Networks

DDQN Double Deep Q-Networks

List of Tables 22

DIAYN Diversity is All You Need

DP Dynamic Programming

DPO Direct Preference Optimization

DQN Deep Q-Networks

DSEE Deterministic Sequencing of Exploration and Exploitation

E3B Exploration via Elliptical Episodic Bonuses

EI Expected Improvement

GAE Generalized Advantage Estimation

GP Gaussian Process

GP-ThreDS Gaussian Process-Thresholded Domain Shrinking

GP-TS Gaussian Process-Thompson Sampling

GP-UCB Gaussian Process-Upper Confidence Bound

ICM Intrinsic Curiosity Module

IR Intrinsic Reward

LCB Lower Confidence Bound

LLMs Large Language Models

LP-GP-UCB Local Polynomial Gaussian Process-Upper Confidence Bound

MAB Multi-Armed Bandits

MC Monte Carlo

MDP Markov Decision Processes

MI Mutual Information

List of Tables 23

MR-LPF Multi-Round Learning from Preference-based Feedback

MVR Maximum Variance Reduction

NGU Never Give Up

NTK Neural Tangent Kernel

OFU Optimism in the Face of Uncertainty

OFUL Optimism in the face of Uncertainty Linear bandits

PI Probability of Improvement

POMDP Partially Observable Markov Decision Processes

POP-BO Principled Optimistic Preferential Bayesian Optimization

PPO Proximal Policy Optimization

π-GP-UCB Partitioned Improved Gaussian Process-Upper Confidence

Bound

RE3 Random Encoders for Efficient Exploration

RELU Rectified Linear Unit

RGB Red, Green, Blue

RIDE Reward Impact Driven Exploration

RIPS Robust Inverse Propensity Score

RKHS Reproducing Kernel Hilbert Spaces

RL Reinforcement Learning

RLHF Reinforcement Learning from Human Feedback

RM Reward Model

RND Random Network Distillation

List of Tables 24

RUCB Relative Upper Confidence Bound

SE Squared Exponential

SGD Stochastic Gradient Descent

SMM State Marginal Matching

SST Strong Stochastic Transitivity

STI Stochastic Triangle Inequality

SVGP Sparse Variational Gaussian Processes

TD Temporal Difference

TS Thompson Sampling

UCB Upper Confidence Bound

VF Value Function

Chapter 1

Introduction

Artificial Intelligence (AI) is transforming nearly every facet of modern society,

from healthcare and education to transportation and scientific discovery. Cen-

tral to this transformation are AI agents—autonomous systems that perceive

their environment, reason about tasks, and take actions to achieve specific

goals. These agents leverage capabilities such as planning, memory, and adap-

tive learning, enabling them to improve over time through interaction with

their surroundings.

This process of improvement, known as agent learning, allows AI systems

to refine their decision-making, adapt to new conditions, and tackle increas-

ingly complex challenges. While recent advances in AI have shown impressive

capabilities, most AI systems today remain specialized and lack the flexibility

required for broader problem-solving. They typically struggle to generalize

knowledge, transfer skills between domains, or solve unfamiliar problems in

the way humans can. Achieving Artificial General Intelligence (AGI)—where

machines can learn, reason, and adapt as flexibly as humans—remains one of

the field’s most ambitious goals.

A critical component of AGI is sequential decision-making: the ability to

reason over time, handle uncertainty, and operate in dynamic environments.

The potential applications are vast. For instance, intelligent traffic manage-

ment systems could proactively mitigate congestion. Personalized healthcare

could continuously adapt treatment strategies to individual patients. Precision

26

agriculture systems could optimize water usage, crop yields, and soil health by

dynamically adjusting to weather patterns and plant needs. Yet replicating the

depth and efficiency of human decision-making continues to pose a fundamen-

tal challenge for the advancement of AI systems. In fact, humans excel in tasks

that demand causal reasoning, conceptual understanding, and generalization

from limited experience—skills that enable adaptive behavior across diverse

and uncertain environments [6, 7]. Developing computational approaches that

approximate these abilities has therefore become central to AI research.

Reinforcement Learning (RL) plays a foundational role in this endeavor.

RL is the computational framework through which agents learn to make se-

quential decisions by interacting with an environment and receiving evaluative

feedback in the form of rewards [4]. Unlike supervised learning, where mod-

els learn from labeled datasets of correct input-output pairs, or unsupervised

learning, where models discover patterns within unlabeled data, RL focuses on

learning behavior through trial and error. An RL agent is not given explicit

instructions on the correct action to take; instead, it must explore, observe the

outcomes of its actions, and iteratively improve its decision-making policy to

maximize long-term reward. This paradigm closely mirrors how humans and

animals learn from experience.

RL has achieved remarkable success across a range of challenging domains.

A notable milestone was reached by AlphaGo, a system that combines deep

neural networks with advanced search algorithms, which defeated the world’s

top human players in the ancient game of Go—a game long considered resistant

to traditional AI due to its immense combinatorial complexity [8]. Building

on this progress, AlphaTensor used deep RL to autonomously discover faster

algorithms for matrix multiplication, a fundamental operation in scientific com-

puting [9]. RL has also been employed to control magnetic coils in tokamaks

for plasma confinement, advancing nuclear fusion research [10]. More recently,

RL has also found applications in training Large Language Models (LLMs);

for instance, DeepSeek-R1 demonstrated how RL techniques can be used to

27

enhance the reasoning capabilities of LLMs [11].

Despite its impressive successes, RL continues to face significant

challenges—most notably in scalability, interpretability, safety, the sim-to-

real gap, and data inefficiency [12], the latter of which is the primary focus of

this thesis. RL agents typically require extensive interaction with the environ-

ment to learn effectively. In contrast to humans, who can learn from limited

samples, RL systems often depend on millions of samples, making them highly

data-inefficient [8, 12, 6]. This inefficiency hinders progress toward developing

generalist agents, as most RL models are trained from scratch for each task and

struggle to transfer knowledge across tasks or domains [13]. It also renders RL

impractical in domains where data is expensive, risky, or ethically sensitive

to collect—such as personalized medicine, autonomous driving, or educa-

tion. RL’s data inefficiency goes hand in hand with its heavy computational

requirements, amplifying both cost and environmental impact. Training high-

performing agents in complex environments often requires large-scale compute

clusters over extended periods, leading to substantial energy consumption

and carbon emissions. For example, training AlphaGo Zero is estimated to

have produced approximately 96 tonnes of CO2 over 40 days—equivalent to

nearly 1,000 hours of air travel [14]. These sustainability concerns are further

intensified by the trend toward increasingly large models and datasets, as seen

with LLMs whose compute budgets now reach tens of millions of dollars [15]

and require millions of human annotations [16]. Moreover, the high costs of

data collection, environment simulation, and compute infrastructure restrict

broader access to RL research and applications.

Taken together, these challenges highlight an urgent need to develop data-

efficient RL algorithms that deliver good performance while minimizing data

requirements. In this thesis, we address this need by proposing several ap-

proaches to improve data efficiency in RL, enabling agents to learn more ef-

fectively with fewer interactions.

1.1. Main Challenges 28

1.1 Main Challenges
As outlined in the introduction, data inefficiency poses a central obstacle to

the broader applicability of RL—particularly in settings where data is limited.

To address this problem, it is crucial to understand the underlying sources

of inefficiency. In this section, we highlight three core challenges that con-

tribute to poor sample efficiency in RL: exploration, credit assignment, and

generalization.

Exploration. A major contributor to data inefficiency in RL is exploration,

which plays a critical role in determining how efficiently an agent learns from

interactions with the environment. Exploration has both theoretical and em-

pirical dimensions. Theoretically, efficient exploration aims to guide the agent

toward informative samples in order to minimize sample complexity—the num-

ber of interactions needed to learn an optimal policy. While this goal is

well-understood and provably achievable in simple tabular [17, 18, 19] or lin-

ear [20, 21, 22, 23, 24] settings, it remains poorly understood in more complex

environments with large or continuous state and action spaces.

Moreover, exploration strategies that are well understood in theory often

fail to scale in practice. This gap between theoretical insight and empirical

performance is particularly apparent in deep RL, where exploration remains

one of the primary obstacles to sample-efficient learning. For example, in

sparse-reward settings—where the agent receives little to no feedback until a

task is completed—simple heuristics like ϵ-greedy often fail to reach rewarding

states, leading to slow or unsuccessful learning [25]. This is known as the hard

exploration problem, and it often results in either poor policy performance or

the need for excessive interaction with the environment.

Bridging this theory-practice gap requires studying exploration from both

theoretical and empirical perspectives, and remains a central challenge on the

path toward data-efficient RL.

Credit Assignment. Another key factor contributing to data inefficiency in

RL is the credit assignment problem. In complex environments, the conse-

1.1. Main Challenges 29

quences of an agent’s actions are often delayed, making it difficult to identify

which actions led to the observed outcomes [26]. This temporal gap between

actions and their eventual rewards hinders learning, as the agent struggles to

assign credit to the appropriate decisions. Without accurate credit assignment,

the agent may require many episodes to discover beneficial actions. Ideally, an

agent should be able to trace outcomes back to the key decisions that caused

them—even across long time horizons—allowing it to update its policy more

effectively with fewer interactions.

Generalization. Humans excel at retaining and reusing knowledge, even in

tasks that differ substantially from past experiences [6, 7]. In contrast, most

RL agents are trained to solve a single, well-defined task in a stationary en-

vironment. This often leads to overfitting, where the agent performs well in

the training environment but fails to generalize beyond it. As a result, even

minor changes—such as variations in the environment, distributional shifts,

or task perturbations—can severely degrade performance. RL agents typically

lack the ability to transfer previously learned knowledge or skills to novel tasks

or dynamic environments. This inability to generalize limits the practical ap-

plicability of RL in real-world settings, where environments are often noisy,

non-stationary, and subject to unexpected changes (e.g., modeling errors, re-

ward misspecification, or adversarial attacks). To be truly data-efficient, RL

agents must be able to reuse prior experience, remain robust under uncertainty,

and adapt to new scenarios instead of tackling them from scratch [27].

Motivated by these challenges, this thesis presents several contributions

aimed at improving data efficiency in RL, with a particular focus on the first

challenge: exploration, examined from both theoretical and empirical perspec-

tives. Specifically, we investigate the following high-level research question:

How can the agent explore efficiently in any environment, and how can it

determine whether sufficient exploration has been achieved?

1.2. Contributions 30

1.2 Contributions
The key contributions of this thesis can be summarized as follows:

1. Conduct a proof-of-concept study of intrinsic rewards for ex-

ploration in deep RL: The first part of our research question–“How

can the agent explore efficiently in any environment?” is addressed from

an empirical perspective in Chapter 4. We focus on intrinsic rewards,

a prominent class of exploration strategies for tackling hard exploration

problem. Despite their widespread use in deep RL, there is little consen-

sus on which intrinsic rewards are most effective in different scenarios.

To clarify this, we reinterpret intrinsic rewards through the lens of di-

versity, classifying them based on the level of diversity they promote in

the agent’s behavior. We conduct an empirical study to compare dif-

ferent intrinsic rewards across various RL environments and exploration

metrics.

2. Provide empirical insights into the role of diversity in explo-

ration: From our proof-of-concept study, we analyze how different levels

of diversity in exploration behavior influence the efficiency of exploration.

Our results offer practical guidance on how to tailor exploration strate-

gies to specific tasks and environments, as presented in Chapter 4 of the

thesis.

3. Design exploration algorithms for reward-free kernel-based RL

with theoretical guarantees and empirical validation: The second

part of our research question—“How can the agent determine whether

sufficient exploration has been achieved”— is addressed theoretically in

Chapter 5. While RL theory is well-established in tabular and linear

settings, it is less developed for deep RL. To bridge this gap, we focus on

kernel methods, which provide a middle ground between simple models

and deep learning. Chapter 5 develops a rigorous theoretical framework

for the analysis of kernel-based RL. Within this framework, we propose

1.2. Contributions 31

novel exploration algorithms that collect unbiased samples and establish

tighter sample complexity bounds over a broad class of kernels, supported

by synthetic experiments.

4. Introduce a novel confidence interval for unbiased samples in

kernel-based RL: In Chapter 5, we propose a new confidence interval

for kernel ridge regression in the RL setting. This confidence interval

underpins the theoretical guarantees of our exploration algorithms and

may be broadly applicable to other RL scenarios, including offline RL,

model-based RL, and infinite-horizon problems.

5. Propose a novel algorithm for efficient exploration under

preference-based feedback: We extend the thesis’s central theme

of efficient exploration to settings where feedback is relative and lim-

ited. Motivated by applications such as prompt optimization, we study

exploration in the context of preference-based feedback, where agents

only observe comparisons between outcomes (e.g., “A is preferred to

B”) rather than numerical rewards. We formulate this as a preference-

based Bayesian Optimization (BO) problem and propose Multi-Round

Learning from Preference-based Feedback (MR-LPF) algorithm, which

iteratively selects action pairs based on the highest uncertainty in their

preference, achieving order-optimal sample complexity. This work ap-

pears in Chapter 6.

6. Establish theoretical guarantees and practical utility for MR-

LPF algorithm: In Chapter 6, we prove regret bounds and derive

sample complexity results showing that our MR-LPF algorithm matches

conventional BO bounds with scalar feedback despite relying only on

preference queries. We further validate the algorithm on synthetic and

real-world datasets, demonstrating its practical effectiveness.

1.3. Thesis outline 32

1.3 Thesis outline
This thesis consists of seven chapters. Following this introductory chapter, the

remainder of the document is organized as follows:

1. Chapter 2 provides the necessary background on RL, covering founda-

tional concepts such as Markov Decision Processes (MDPs), value func-

tions, model-based and model-free approaches. This chapter also intro-

duces key algorithms and function approximation techniques, including

deep RL and policy gradient methods. It lays the groundwork essential

for understanding the methods developed in subsequent chapters.

2. Chapter 3 introduces the multi-armed bandit framework and explores

various extensions, including linear bandits, Gaussian Process bandits

(also knows as Bayesian Optimization), and dueling bandits, along with

associated algorithms and theoretical guarantees. This chapter pro-

vides essential theoretical background for understanding exploration-

exploitation trade-offs in simpler settings compared to RL such as bandits

problems.

3. Chapter 4 presents an empirical study on the impact of diversity on

exploration in deep RL, serving as a preliminary investigation into the

complex relationship between diversity and exploration. It introduces

a proposed taxonomy of diversity levels induced by intrinsic rewards,

conducts a comparative empirical analysis, and evaluates multiple ex-

ploration metrics. The chapter concludes with a discussion of the find-

ings, offering practical insights into the effectiveness of different intrinsic

rewards.

4. Chapter 5 introduces novel exploration algorithms for reward-free RL,

both with and without access to a generative model. It also provides

theoretical analyses of their sample complexity and validate the improved

bounds through synthetic experiments.

1.4. Publications 33

5. Chapter 6 introduces the Bayesian Optimization from Human Feedback

(BOHF) framework and proposes the novel MR-LPF algorithm. A theo-

retical analysis of the algorithm is provided, and its performance is eval-

uated on various test functions, including both synthetic and real-world

cases.

6. Chapter 7 concludes the thesis with a concise summary of the main

contributions and outlines important directions for future research.

7. The appendices include proofs of the theoretical results presented in the

above chapters, as well as supplementary experimental details and plots.

1.4 Publications
The research conducted in the course of this dissertation has led to the follow-

ing publications:

• Aya Kayal, Eduardo Pignatelli, and Laura Toni. “Does behavioral

diversity in intrinsic rewards help exploration?” In NeurIPS 2023 Second

Agent Learning in Open-Endedness Workshop, 2023.

• Aya Kayal, Eduardo Pignatelli, and Laura Toni. “The impact of intrin-

sic rewards on exploration in reinforcement learning”. Neural Computing

and Applications, 37:16269–16303, 2025.

• Aya Kayal, Sattar Vakili, Laura Toni, and Alberto Bernacchia. “Near-

optimal sample complexity in reward-free kernel-based reinforcement

learning”. In Proceedings of the 28th International Conference on Ar-

tificial Intelligence and Statistics, volume 258. PMLR, 2025.

• Aya Kayal, Sattar Vakili, Laura Toni, Da-Shan Shiu and Alberto

Bernacchia. “Bayesian optimization from human feedback: near-optimal

regret bounds”. In Proceedings of the International Conference on Ma-

chine Learning, volume 267. PMLR, 2025.

Chapter 2

Background on Reinforcement

Learning

In RL, an artificial agent interacts with an unknown environment to learn

how to solve a task. As illustrated in Figure 2.1, RL consists of two primary

components: the agent and the environment. During each interaction cycle,

the agent observes the current state of the environment and selects an action.

In response to the agent’s action, the environment transitions to a new state

according to its internal dynamics, potentially yielding a reward. The agent re-

ceives this reward as feedback, which it uses to adjust its behavior and improve

future decision-making. Over time, the agent aims to maximize the cumulative

reward by learning an optimal strategy through repeated interactions.

The key elements of an RL problem include the policy, value function, and

reward. The policy determines the agent’s action based on the current state.

Rewards provide immediate feedback, shaping the agent’s learning process by

signaling the desirability of specific actions. Value functions estimate the ex-

pected long-term return from a given state, accounting for future rewards and

transitions. Unlike in supervised learning, where the correct output is ex-

plicitly provided, RL agents learn through trial and error—exploring different

actions and refining their decision-making strategies based on the observed

outcomes. This process enables the agent to learn the optimal policy, defined

as the policy that maximizes the value function.

2.1. Markov Decision Processes 35

Formally, RL is grounded in the framework of Markov Decision Processes

(MDPs), which model the agent-environment interaction in a probabilistic

manner. In this chapter, we theoretically introduce MDPs and key concepts

such as value functions and Bellman optimality equations, which are essential

for evaluating and optimizing policies. We then present the major categories

of RL problems: model-free vs. model-based, each offering distinct strategies

for learning optimal behavior. We explain the core ideas and principles behind

how these algorithms learn from experience and improve their decision-making

over time.

Figure 2.1: RL agent-environment interaction [4].

2.1 Markov Decision Processes
MDPs provide a foundational framework for modeling sequential decision-

making under uncertainty [28, 4]. The most common formulation used in

pratical RL is the infinite-horizon discounted MDP, which captures ongoing

interaction between an agent and its environment over time. It is defined by

the tuple:

M =
(
S,A, P, r, γ

)
,

where:

• S is a set of states,

2.1. Markov Decision Processes 36

• A is a set of actions,

• P : S ×A×S → [0,1] specifies the transition dynamics,

• r : S ×A→ R is the expected immediate reward function, and

• γ ∈ [0,1) is the discount factor.

The transition dynamics function P gives the probability of moving from state

s to state s′ when action a is taken:

P (s′ | s,a) = P{st+1 = s′ | st = s, at = a}.

The expected immediate reward is defined as:

r(s,a) = E[rt+1 | st = s, at = a],

where rt+1 is the instantaneous immediate reward received at the next time

step. The discount factor γ determines how future rewards are weighted: when

γ= 0, only immediate rewards are considered, whereas as γ→ 1, future rewards

are valued more heavily.

At each discrete time step t, the agent observes the current state st ∈ S,

selects an action at ∈ A according to a policy π, transitions to a new state

st+1 ∼ P (· | st,at), and receives reward rt+1. The policy π is a mapping that,

for each state s, assigns to each action a ∈ A the probability of taking that

action in state s. It is denoted by π(a | s) = P{at = a | st = s}. A policy

can either be stochastic, in which case multiple actions may have nonzero

probability, or deterministic, in which case a single action has probability 1,

often denoted simply by π(s) to indicate the action chosen in state s.

The Markov Property. A key assumption in MDPs is the Markov property,

which states that the future is conditionally independent of the past given the

present. Formally,

P (st+1 | st,at) = P (st+1 | s0,a0, . . . , st,at),

2.1. Markov Decision Processes 37

meaning that the current state st contains all relevant information for predict-

ing future transitions and making optimal decisions.

MDPs can be categorized along several dimensions:

• Horizon:

– Finite-horizon: each trajectory (of state-action-reward tuples) has

a fixed length of exactly H steps,

– Indefinite-horizon: each trajectory has finite but random length,

– Infinite-horizon: trajectories continue indefinitely.

• Discounting:

– Discounted: γ < 1, future rewards are discounted,

– Undiscounted: γ = 1, all rewards are treated equally.

• Stationarity:

– Stationary: transition dynamics and rewards are time-invariant (do

not depend on time),

– Non-stationary: they vary across time steps.

The infinite-horizon discounted setting is more commonly used in the ap-

plied RL community due to its simplicity and real-world relevance. It guaran-

tees the existence of a stationary optimal policy (one that does not depend on

time), which simplifies the algorithm design and implementation. Discount-

ing also naturally aligns with economic and engineering applications, where

future rewards are uncertain. In contrast, the theoretical RL community has

largely focused on the finite-horizon undiscounted (also known as episodic)

setting, primarily due to the persistent challenges in analyzing infinite-horizon

MDPs. Episodic problems offer greater tractability in proofs, enabling cleaner

regret bounds—formal guarantees on the cumulative difference between an al-

gorithm’s total reward and that of the best possible performance—without the

complications introduced by discounted or unbounded time horizons.

2.1. Markov Decision Processes 38

Figure 2.2: POMDP agent-interaction with the environment [5].

In the episodic formulation, the MDP is given by:

M =
(
S,A, {Ph}Hh=1, {rh}Hh=1, H

)
,

where H is the fixed episode length. The transition dynamics Ph and reward

functions rh may vary with the time index h, which denotes the position within

an episode (analogous to the time step t in the infinite-horizon setting, but

ranging from 1 to H). This formulation allows for non-stationarity, where

the dynamics and rewards can change across the episode. A more detailed

description of the episodic MDP framework is provided in Section 5.3.1 of

Chapter 5.

2.1.1 Partially Observable Markov Decision Processes

The framework described above assumes that the environment’s states are

fully observable. However, this assumption is often unrealistic in real-world

scenarios, where certain aspects of the environment may be hidden from the

agent or affected by sensor noise. For example, in robotics applications, a

robot’s sensors may not precisely capture its exact location. This motivates

the use of Partially Observable Markov Decision Processes (POMDPs), where

the agent does not have direct access to the true state but instead receives

partial information through observations. Figure 2.2 illustrates this concept.

2.2. Value Functions and Bellman Optimality 39

Formally, a POMDP is defined as a tuple ⟨S,A,P,r,γ,Ω,O⟩, where

⟨S,A,P,r,γ⟩ defines the underlying fully observable MDP, Ω is a finite set of

possible observations, and O is the observation function O : S×A×Ω→ [0,1],

which gives the probability of observing o ∈ Ω after taking action a ∈ A and

arriving in state s′ ∈ S, denoted as O(o | s′,a) [29]. Although the agent cannot

directly observe the true state, it uses the received observations to infer a belief

over possible states and selects actions to maximize the expected cumulative

discounted reward over time.

2.2 Value Functions and Bellman Optimality

This section adopts the notation and framework presented in [4], which as-

sumes an infinite-horizon discounted MDP with stationary transition dynam-

ics and reward functions. The agent’s objective is to maximize the expected

discounted return over time. While this setting is widely used in practical RL,

the core ideas—such as value functions and Bellman optimality—are general

and can be readily applied to other MDP formulations. For example, they

naturally extend to finite-horizon settings (where T = H) and undiscounted

problems (where γ = 1). Let’s start by defining the expected discounted re-

turn Gt defined as:

Gt = rt+1 +γrt+2 +γ2rt+3 + ...+γT−t−1rT =
T−t−1∑
k=0

γkrt+k+1. (2.1)

A value function V π(s), defined with respect to policy π, estimates the ex-

pected return from a particular state s following π, and it is defined as:

V π(s) = Eπ[Gt|st = s] = Eπ

T−t−1∑
k=0

γkrt+k+1|st = s

 , for all s ∈ S, (2.2)

where Gt is the discounted total return and rt+k+1 are immediate rewards.

Similarly, the state-action value function is defined as the expected return

2.2. Value Functions and Bellman Optimality 40

from state s, taking action a and following policy π:

Qπ(s,a) = Eπ[Gt|st = s,at = a] = Eπ

T−t−1∑
k=0

γkrt+k+1|st = s,at = a

 . (2.3)

It is worth noting that the state value function V and the state-action value

function Q are strictly correlated by the following relationship:

V π(s) =
∑
a∈A

π(a|s)Qπ(s,a). (2.4)

A central recursive relationship in RL which relates the value of a state to the

value of its successor states is the Bellman equation:

V π(s) =
∑
a∈A

π(a|s)
[
r(s,a)+γ

∑
s′∈S

P (s′|s,a)V π(s′)
]
. (2.5)

Value functions define a partial ordering over policies. A policy π is better

than another policy π′ if it has a higher expected return for all states, which

means a higher value function. In other terms:

π ≥ π′⇔ V π(s)≥ V π′
(s),∀s ∈ S. (2.6)

Thus, there is always at least one policy that is better than or equal to all other

policies. Such a policy is called an optimal policy, denoted by π⋆. Although

multiple optimal policies may exist, they all share the same optimal state value

function V ⋆, which gives the maximum expected return achievable from each

state:

V ⋆(s) = max
π
V π(s),∀s ∈ S. (2.7)

Similarly, the optimal state-action value function Q⋆ gives the maximum ex-

pected return achievable from each state-action pair:

Q⋆(s,a) = max
π
Qπ(s,a),∀s ∈ S,a ∈ A. (2.8)

2.3. Model-Based vs Model-Free RL 41

Intuitively, the optimal value function V ⋆ is the state-action value function

with the best action from that state. It also satisfies the recursive property

of the Bellman equation (2.5). The Bellman equation for V ⋆, known as the

Bellman optimality equation, can be written as:

V ⋆(s) = max
a
Qπ

⋆

(s,a)

= max
a

Eπ⋆
[
Gt|st = s,at = a

]
= max

a
Eπ⋆

[
rt+1 +γV ⋆(st+1)|st = s,at = a

]
= max

a

[
r(s,a)+γ

∑
s′∈S

P (s′|s,a)V ⋆(s′)
]
. (2.9)

The state-action value version of the Bellman optimality equation is:

Q⋆(s,a) = r(s,a)+γ
∑
s′∈S

P (s′|s,a)max
a′∈A

Q⋆(s′,a′). (2.10)

Once the optimal value function or state-action value function is solved, the

optimal policy π⋆ can be determined:

π⋆(s) = argmax
a∈A

Q⋆(s,a). (2.11)

Solving the Bellman optimality equation requires accurate knowledge of the

environment’s dynamics, as well as substantial memory and computational

resources. These assumptions are rarely met in practice; therefore, RL tech-

niques aim to implement approximate solutions to the Bellman optimality

equation.

2.3 Model-Based vs Model-Free RL

In model-based RL, the agent either has access to a model of the environ-

ment or learns one through interaction. By “model”, we refer to the transition

dynamics and reward function, which together allow the agent to predict the

consequences of its actions. Model-based methods typically involve two compo-

2.4. Model-Based Learning: Dynamic Programming 42

nents: model learning, where the agent builds an estimate of the environment,

and planning, where it uses this model to compute value functions or improve

its policy through simulated experience.

In contrast, model-free RL assumes no prior or learned knowledge of the

environment’s dynamics or reward function. Instead, the agent interacts di-

rectly with the environment—selecting actions, observing state transitions,

and receiving rewards—to estimate value functions or learn policies through

trial-and-error. This approach forgoes model construction and planning, sim-

plifying the learning process at the cost of typically requiring more experience.

One key distinction between these paradigms lies in their use of experi-

ence. Model-based methods often make fuller use of limited interaction data

by generating simulated experience from the model, enabling more rapid pol-

icy improvement with fewer environmental interactions [4]. However, these

benefits come with trade-offs. Model-free methods are generally simpler and

not subject to modeling errors. In contrast, model-based methods depend on

the quality of the learned model. Inaccuracies in the model can introduce bias,

leading to compounding errors during planning and ultimately degrading the

agent’s performance when deployed [4].

2.4 Model-Based Learning: Dynamic Pro-

gramming
When the environment model is fully known, as in classical planning set-

tings, Dynamic Programming (DP) provides foundational algorithms for solv-

ing MDPs. Two canonical DP algorithms are policy iteration and value it-

eration. These algorithms operate by iteratively refining value functions and

policies based on the known environment dynamics.

2.4.1 Policy Iteration

In policy iteration, the agent alternates between two steps: policy evaluation

and policy improvement. During policy evaluation, the value function is up-

2.5. Model-Free Prediction 43

dated for the current policy until convergence. In the improvement step, a new

policy is derived by acting greedily with respect to the updated value function.

This process continues until the policy stabilizes. For a pseudocode, please see

Algorithm 1.

Algorithm 1 Policy Iteration
Initialization:

Initialize V (s) ∈ R and π(s) ∈ A arbitrarily for all s ∈ S
Policy Evaluation:
repeat

∆← 0
for each s ∈ S do
v← V (s)
V (s)← r(s,π(s))+γ

∑
s′∈S P (s′ | s,π(s))V (s′)

∆←max(∆, |v−V (s)|)
end for

until ∆< θ {a small positive number}
Policy Improvement:
policy-stable ← true
for each s ∈ S do
a← π(s)
π(s)← argmaxa∈A

[
r(s,a)+γ

∑
s′∈S P (s′ | s,a)V (s′)

]
if a ̸= π(s) then policy-stable ← false

end for
if policy-stable then return V and π else go to Policy Evaluation

2.4.2 Value Iteration

An important special case occurs when only a single sweep over all states

is performed. This leads to the value iteration algorithm (see Algorithm 2),

which merges policy evaluation and policy improvement into a single update.

2.5 Model-Free Prediction
Two foundational classes of model-free prediction methods are Monte Carlo

(MC) and Temporal Difference (TD) learning. Both aim to estimate the value

function, but they differ in how they use sampled data and when they update

their estimates.

2.5. Model-Free Prediction 44

Algorithm 2 Value Iteration
Initialize V (s) arbitrarily (e.g., V (s) = 0 for all s ∈ S)
repeat

∆← 0
for each s ∈ S do
v← V (s)
V (s)←maxa

[
r(s,a)+γ

∑
s′∈S P (s′ | s,a)V (s′)

]
∆←max(∆, |v−V (s)|)

end for
until ∆< θ {a small positive number}
Output: A deterministic policy π such that:

π(s) = argmax
a

r(s,a)+γ
∑
s′∈S

P (s′ | s,a)V (s′)


2.5.1 Monte Carlo Methods

MC methods learn directly from experience by collecting complete episodes—

that is, trajectories of states, actions, and rewards from the beginning to the

end of an episode. The underlying idea is straightforward: the value of a state

is estimated by averaging the empirical returns (i.e., discounted cumulative

rewards) observed after each visit to that state. As the number of sampled

episodes increases, this estimate converges to the true expected value function.

LetGt = rt+1 +γrt+2 +γ2rt+3 + . . .+γT−t−1rT denote the return following time

step t until the terminal step T . In MC methods, the value function is updated

according to:

V (st)← V (st)+α(Gt−V (st)), (2.12)

where α is the learning rate (step size).

2.5.2 Temporal Difference Learning

TD learning employs the concept of bootstrapping, where the value estimate

of a state is updated based on the estimated value of its successor state. In

other words, TD learning updates V (st) toward an estimated return Gt =

rt+1 +γV (st+1). After each time step, the agent performs the following update:

2.5. Model-Free Prediction 45

V (st)← V (st)+α (rt+1 +γV (st+1)−V (st)) . (2.13)

The term rt+1 +γV (st+1)−V (st) is known as the TD error, and the objective

of TD learning is to minimize this error.

Unlike MC methods, which must wait until the end of an episode to

compute returns, TD learning updates value estimates online at each step,

without requiring the final outcome. This allows TD to update more efficiently.

TD methods generally exhibit lower variance but higher bias compared to MC

methods. The higher bias arises because TD uses the estimate V (st+1) instead

of the actual return. Its lower variance stems from the fact that the TD target

rt+1 + γV (st+1) is based on a single reward and a learned estimate, rather

than a complete return composed of many random variables. This reduces the

variability introduced by long-term stochastic transitions.

Two of the most widely used TD algorithms are SARSA and Q-learning.

SARSA is an on-policy method, whereas Q-learning is off-policy. The distinc-

tion between these two learning paradigms is as follows:

• On-policy learning evaluates and improves the same policy that is used

to generate experience. That is, it learns about policy π using samples

collected from π.

• Off-policy learning evaluates and improves a target policy π using data

collected from a different behavior policy π′. In other words, it learns

about π from experiences generated by π′.

SARSA updates the state-action value function using the TD error while fol-

lowing the current policy π (e.g., an ϵ-greedy policy derived from Q). The

update rule is:

Q(st,at)←Q(st,at)+α
[
rt+1 +γQ(st+1,at+1)−Q(st,at)

]
. (2.14)

The main difference between SARSA and Q-learning lies in how they compute

2.6. Function Approximation in RL 46

the value of the next state-action pair. SARSA uses the action at+1 sampled

from the current policy, while Q-learning uses the greedy action that maximizes

the Q-function at the next state. The Q-learning update rule is:

Q(st,at)←Q(st,at)+α
[
rt+1 +γmax

a′
Q(st+1,a

′)−Q(st,at)
]
. (2.15)

SARSA is generally more conservative than Q-learning. For example, in sce-

narios where a large penalty exists near the optimal path, SARSA tends to

avoid it and prefer safer actions, whereas Q-learning aggressively learns the

optimal (but potentially riskier) policy.

2.6 Function Approximation in RL
The methods discussed in Sections 2.5.1 and 2.5.2—namely MC and TD learn-

ing—use explicit lookup tables to represent value functions, maintaining a

separate entry for every state or state-action pair. While effective in small

environments, this approach becomes impractical as the dimensionality grows,

due to the computational and memory demands that scale poorly—a problem

known as the curse of dimensionality. To overcome this, function approxima-

tion techniques have been introduced [30], which estimate the value function

with a parameterized function. For instance, instead of directly storing V (s),

these methods learn an approximation Vw(s), where w is a vector of weights.

Similarly, action-value functions can be approximated as Qw(s,a). This ap-

proach offers two major advantages. First, it significantly reduces memory

requirements by representing the value function compactly through a set of

parameters. Second, it enables generalization across states: the function can

provide reasonable estimates for states that have not been explicitly visited

during training. This is particularly important in environments where the

state space is continuous or extremely large. In the following, we will briefly

introduce methods for function approximation, including linear function ap-

proximation, kernel-based function approximation and deep neural networks

(deep RL).

2.6. Function Approximation in RL 47

2.6.1 Linear Function Approximation

A fundamental and widely studied case of function approximation in RL is lin-

ear function approximation, where the approximate value function is expressed

as a linear function of the weight vector w [4]. For each state s, we define a

feature vector ϕ(s) = [ϕ1(s),ϕ2(s), . . . ,ϕd(s)]⊤, where d is the dimension of the

feature space. The approximate state value function is then defined as:

Vw(s) = w⊤ϕ(s) =
d∑
i=1

wiϕi(s)

Each component ϕi(s) corresponds to a real-valued feature function, and to-

gether, these functions act as basis functions [4].

Similarly, when approximating the state-action value function, we define a

joint feature vector ϕ(s,a), and write the approximation as:

Qw(s,a) = w⊤ϕ(s,a) =
d∑
i=1

wiϕi(s,a)

Constructing the feature vectors ϕ(s) or ϕ(s,a) is equivalent to selecting a

set of basis functions, which plays a crucial role in the performance of linear

methods. There is a long line of classical work on RL with linear function

approximation, encompassing both diverse strategies for constructing feature

vectors and a variety of algorithms for learning the weight vector w; we refer

the reader to [4] for further reading on the subject.

2.6.2 Kernel-Based Reinforcement Learning

Kernel-based methods form a powerful class of function approximation tech-

niques in RL, extending linear models to infinite-dimensional Reproducing Ker-

nel Hilbert Spaces (RKHS) induced by positive definite kernels. These meth-

ods serve as a conceptual bridge between well-understood linear approaches

and more complex neural-network-based models, particularly in light of recent

insights from Neural Tangent kernel (NTK) theory [31]. Their appeal lies in

combining expressive nonlinear representation capacity with strong theoretical

2.6. Function Approximation in RL 48

foundations, making them especially suitable for value function approximation

in RL [32] .

To illustrate this, consider the common value estimation task in RL: com-

puting the expected value of the next state given a current state-action pair.

Formally, we define the target function as f(s,a) = Es′∼P (·|s,a)[V (s′)]. To ap-

proximate f , we introduce a kernel function k : (S ×A)× (S ×A)→ R that

captures similarity between state-action pairs. This kernel implicitly defines a

feature map ϕ into a high- or infinite-dimensional RKHS Hk, such that

k((s,a),(s′,a′)) = ⟨ϕ(s,a),ϕ(s′,a′)⟩Hk
.

In this lifted feature space, we can apply linear methods, even though the

resulting approximation is nonlinear in the original state-action space. This

makes kernel methods particularly attractive in RL, since we often expect

similar state-action pairs to yield similar future returns.

Given a dataset of n transitions {(si,ai), s′
i}ni=1, where s′

i ∼ P (· | si,ai),

kernel ridge regression [33] provides a principled way to estimate f(s,a). For-

mally, the kernel ridge regression solution minimizes the regularized empirical

risk:

f̂ = arg min
f∈Hk

n∑
i=1

(
f(si,ai)−V (s′

i)
)2

+ τ2∥f∥2Hk
,

where τ2 > 0 is a regularization parameter and ||.||Hk
denotes the RKHS norm.

The key advantage of the kernel function is that it enables generalization

to unseen state-action pairs by assuming that similar inputs should produce

similar outputs. If k is smooth (like a Squared Exponential (SE) kernel), the

learned function will also be smooth, meaning small changes in the input lead

to small changes in the prediction.

A more detailed treatment of kernel ridge regression—including its connections

to Bayesian Optimization (BO) and Gaussian Process (GP) regression—is de-

ferred to Section 3.3.3. In the RL context, we focus on its role in value function

approximation, with the explicit form of the estimator and its associated un-

2.6. Function Approximation in RL 49

certainty quantification presented in Section 5.3.3.

2.6.3 Deep Reinforcement Learning

Deep RL refers to the use of Artificial Neural Networks (ANNs) for nonlinear

function approximation in RL. By leveraging the representational power of neu-

ral architectures, deep RL extends the capabilities of linear and kernel-based

methods, enabling the modeling of complex, high-dimensional patterns. ANNs

support automatic feature extraction directly from raw input data, which is es-

pecially beneficial in environments with unstructured or high-dimensional ob-

servations. Recent advancements in deep neural network training have driven

significant progress in RL, leading to notable empirical successes across diverse

domains—including game playing [8, 34, 35], robotic control [36], autonomous

driving [37], microchip design [38], and algorithmic problem solving [9]. De-

spite these achievements, deep RL methods remain theoretically challenging

to analyze due to their high model capacity and the non-convex nature of their

optimization landscapes.

In the next paragraph, we describe Deep Q-Networks (DQN), a foun-

dational algorithm in deep RL, first introduced by [39], using a deep neural

network to approximate the state-action value function. DQN marked a ma-

jor milestone by demonstrating the powerful synergy between RL and modern

deep learning techniques.

Deep Q-Networks. DQN approximate the state-action value function

Qw(s,a) using a deep neural network parameterized by w, which takes a

state s as input and outputs a value for each possible discrete action a. Unlike

supervised learning, the target values used to train the network are not fixed

ground-truth labels but are instead bootstrapped from the network’s own prior

estimates. This reliance on self-generated targets gives rise to semi-gradient

descent, where the target is treated as fixed and the gradient is taken only with

respect to the parameters of the current Q-network. The network is trained

to minimize the TD error, leading to the following update rule:

2.7. Policy-Based Methods 50

w← w+α
[
rt+1 +γmax

a′
Qw(st+1,a

′)−Qw(st,at)
]
∇wQw(st,at). (2.16)

The original DQN algorithm by [39], combined RL with convolutional neural

networks (CNNs) to learn directly from high-dimensional sensory inputs, such

as raw pixels in Atari games. It achieved superhuman performance on many

games but exhibited instability during training due to the non-stationarity of

targets and strong correlations in sequential data.

Several improvements were proposed to address these issues, including:

• Target Network: A separate, periodically updated network Q̃ is used

to compute target values, which stabilizes learning by decoupling the

target calculation from the current network parameters. The target net-

work is synchronized with the main network every fixed number of steps:

Q̃←Q.

• Double Q-Learning: To mitigate overestimation bias in Q-values,

Double DQN uses the main network to select the best action in the

next state, but evaluates that action using the target network:

y = rt+1 +γQ̃w̃(st+1,argmax
a
Qw(st+1,a)).

This separation improves the accuracy of value estimates and contributes

to more stable learning.

In the following, we present the Double DQN algorithm (see Algorithm 3),

which incorporates both the target network and Double Q-learning to improve

training stability and reduce overestimation errors.

2.7 Policy-Based Methods
The algorithms presented in the previous sections focused primarily on learn-

ing the value function (VF). In this section, we introduce policy gradient al-

2.7. Policy-Based Methods 51

Algorithm 3 Double Deep Q-Networks (DDQN)
Initialize Qw with random weights w
Initialize Q̃w̃ with random weights w̃ = w
Initialize replay buffer D to ∅
for each episode do
s← sinit
for each step of the episode do

Choose a from s using policy derived from Qw (e.g ϵ-greedy)
Take action a, observe r and s′

Store the transition (s,a,r,s′) in D
Sample a minibatch B from D of size N
w←w−α 1

N

∑
(s,a,r,s′)∼B∇w[r+γQ̃w̃(s′,argmax

a
Qw(s′,a))−Qw(s,a)]2

every K steps, set w̃ = w
s← s′

end for
end for

gorithms which aim to optimize the policy directly, without relying on value

functions, by modeling the policy as a parameterized function πθ(a | s).

2.7.1 Policy Gradient Theorem
Policy gradient methods seek to maximize performance based on the gradient

of an objective function J(θ) which can be written as:

∇θJ(θ)∝
∑
s
ρ(s)

∑
a
Qπ(s,a)∇θπθ(a | s), (2.17)

where ρ(s) denotes the on-policy state distribution under π (i.e., the normal-

ized fraction of time the agent spends in state s), and the gradients are taken

with respect to the policy parameter θ. The symbol ∝ means “proportional

to”. The proportionality constant is 1 in infinite-horizon tasks, and equal to

the average episode length in episodic tasks. This expression is known as the

Policy Gradient Theorem.

2.7.2 REINFORCE Algorithm
To derive the first policy-gradient learning algorithm (REINFORCE), we use

stochastic gradient ascent, which relies on sample gradients that are propor-

tional to the true gradient of the objective function. The policy gradient

2.7. Policy-Based Methods 52

theorem provides such an expression proportional to the true gradient:

∇θJ(θ)∝
∑
s
ρ(s)

∑
a
Qπ(s,a)∇θπθ(a | s) (2.18)

= Eπ
[∑
a
Qπ(st,a)∇θπθ(a|st)

]
(2.19)

= Eπ
[∑
a
πθ(a|st)Qπ(st,a)∇θπθ(a|st)

πθ(a|st)

]
(2.20)

= Eπ
[
Gt∇θ logπθ(at|st)

]
(2.21)

Here, the last equality follows from replacing a by a sample at ∼ πθ(· | st) and

by applying Eπ
[
Gt | st,at

]
= Qπ(st,at). Hence, the policy parameter update

equation in the general discounted case1 is:

θ← θ+αγtGt logπθ(at|st), (2.22)

where α is the step size. This shows that REINFORCE algorithm updates the

policy parameters in the direction that favors actions with the highest return.

Note that REINFORCE relies on the full return from time t, incorporating all

future rewards until the episode ends. This makes it an MC method, as it uses

complete episodes to estimate returns.

2.7.3 REINFORCE with Baseline

REINFORCE algorithm has low bias but high variance due to the use of MC

estimation. One common approach to reduce this variance is to subtract a

baseline b(st) from the return Gt. A commonly chosen baseline is the estimate

of the state value function denoted by Vw(st), where w represents a learned

parameter:

b(st) = E[rt+1 +γrt+2 +γ2rt+3 + · · ·+γT−t−1rT] = Vw(st). (2.23)

1The discount factor was omitted in the previous derivations for simplicity and is rein-
troduced here in the update rule.

2.7. Policy-Based Methods 53

Using this baseline, the log-probability of an action increases proportionally

to how much its return exceeds the expected return. In the following, the

pseudo-code is provided for the REINFORCE algorithm with baseline:

Algorithm 4 REINFORCE with Baseline
Input: a differentiable policy parameterized by θ: πθ(a|s)
Input: a differentiable value function parameterized by w : Vw(s)
Algorithm parameters: step sizes αθ > 0, αw > 0
Initialize policy parameter θ ∈Rd′ and state value function parameter w∈Rd

for each episode do
Generate an episode s0,a0, r1, . . . , sT−1,aT−1, rT following the policy πθ
for each step t of the episode do
Gt←

∑T
k=t+1 γ

k−t−1rk
δ←Gt−Vw(st)
w← w+αwδ∇Vw(st)
θ← θ+αθγ

tδ∇ logπθ(at|st)
end for

end for

2.7.4 Actor-Critic Algorithms

Although the REINFORCE with baseline method involves learning both a

policy and a state value function, it is not typically classified as an Actor-

Critic (AC) method, since the value function serves only as a baseline for

variance reduction rather than a critic.

AC algorithms, by contrast, simultaneously learn both the policy and

the value function in a tightly coupled manner and leverage bootstrapping to

estimate the value function, making the TD error central to learning. The

main components of AC are:

• Critic: it learns the parameters w for the state value function Vw(s) or

the state-action value function Qw(s,a).

• Actor: it learns the policy parameters θ for πθ(s|a), guided by the value

estimates provided by the critic.

Unlike methods that must wait until the end of an episode to compute the

2.7. Policy-Based Methods 54

return, AC algorithms update incrementally using the TD error. The pseudo-

code for an AC algorithm is as follows:

Algorithm 5 One-step Actor-Critic (episodic) algorithm
Input: a differentiable policy parameterized by θ: πθ(a|s)
Input: a differentiable value function parameterized by w : Vw(s)
Algorithm parameters: step sizes αθ > 0, αw > 0
Initialize policy parameter θ ∈Rd′ and state value function parameter w∈Rd

for each episode do
Initialize the start state s
I ← 1
for each step of the episode do

Sample action a from πθ(.|s)
Take action a, observe reward r and next state s′

δ← r+γVw(s′)−Vw(s)
w← w+αwδ∇Vw(s)
θ← θ+αθIδ∇ logπθ(a|s)
I ← γI
s← s′

end for
end for

Asynchronous Advantage Actor-Critic (A3C) [40] is a variant of Actor-

Critic methods in which multiple agents (actors) interact with separate in-

stances of the environment and are trained in parallel, typically across differ-

ent CPU cores. Each actor periodically synchronizes with the global network

parameters. After interacting with its environment, an actor accumulates gra-

dients using its local parameters and sends them to the global network, which

updates its weights slightly in the direction of each training thread’s gradients.

The actor’s parameters are then reset to match the updated global parame-

ters. This process is asynchronous because updates occur at different times

for different actors.

More recently, researchers introduced Advantage Actor-Critic (A2C), a

synchronous and deterministic version of A3C. The key difference is the in-

clusion of a coordinator that synchronizes all actors and updates the global

parameters only after all actors have completed their interactions. This re-

2.7. Policy-Based Methods 55

moves the inconsistency caused by asynchronous updates. Empirical results

have shown that A2C converges faster and achieves better performance than

A3C [41].

Proximal Policy Optimization (PPO) [42] is a widely-used AC method

designed to achieve reliable and stable policy updates. Unlike A3C or A2C,

PPO focuses on improving the training stability of policy gradients through a

surrogate objective function that limits large policy updates. The core idea is

to ensure that the new policy does not diverge significantly from the old one

by clipping the probability ratio between the new and old policies. The main

clipped surrogate objective objective is defined as follows [42]:

LCLIP
t (θ) = Et

[
min

(
πθ(at|st)
πθold(at|st)

Ât, clip
(
πθ(at|st)
πθold(at|st)

,1− ϵclip,1+ ϵclip

)
Ât

)]
,

where Ât is an estimator of the advantage function and ϵclip is a small positive

hyperparameter (e.g., ϵclip = 0.2). The clipping prevents the probability ratio

from deviating too far from 1, ensuring conservative updates.

In practice, PPO combines this clipped objective with a value function

loss and an entropy bonus, forming the total objective function:

LCLIP+VF+Entropy
t (θ) = Et

[
LCLIP
t (θ)− c1LVF

t (θ)+ c2H(πθ(.|st))
]
,

where:

• LVF
t (θ) =

(
Vθ(st)−V target(st)

)2
is the squared error loss between Vθ(st)

and the target value function V target(st).

• H(πθ(.|st)) is the entropy of the policy, encouraging exploration.

• c1, c2 are coefficients for the value loss and entropy bonus, respectively.

Note that we used the notation Vθ(s) for simplicity, since PPO typically uses

a shared parameter vector θ for both the policy and value function.

For the advantage estimate Ât, it can be computed using Generalized Advan-

tage Estimation (GAE) [42]. Assuming the policy is run for a fix number of T

2.8. Summary and Conclusion 56

time steps, the advantage function can be written as:

Ât = δt+(γλgae)δt+1 + · · ·+(γλgae)T−t+1δT−1,

where δt = rt + γVθ(st+1)−Vθ(st), and λgae ∈ [0,1] controls the trade-off be-

tween bias and variance.

The PPO algorithm proceeds as follows [42]:

Algorithm 6 PPO, Actor-Critic Style
for iteration = 1, 2, . . . do

for actor = 1, . . . , N do
Run policy πθold in the environment for T time steps
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize the objective LCLIP+VF+Entropy w.r.t. θ, using minibatch
stochastic gradient descent (SGD) for K epochs
Update θold← θ

end for

2.8 Summary and Conclusion
This chapter offered an overview of foundational RL concepts, including

MDPs and POMDPs, value functions and Bellman optimality, model-based

vs. model-free approaches, function approximation from linear to deep RL,

value- and policy-based methods, and key algorithm pseudocode central to

RL research. While much of the material draws from established sources such

as [4], it establishes the essential language and tools needed to understand

and situate contemporary RL research. In particular, the frameworks and al-

gorithms presented in this chapter directly frame the context for the studies

discussed later in this thesis, including the impact of intrinsic rewards on ex-

ploration in deep RL (Chapter 4) and the analysis of sample complexity in

reward-free, kernel-based RL (Chapter 5). By providing these foundational

principles, this chapter ensures that the subsequent work can be interpreted

both rigorously and intuitively within the broader RL framework.

Chapter 3

Background on Bandits

Another fundamental framework for sequential decision-making under uncer-

tainty is the family of bandit problems. In contrast to RL problems, which

involve multiple states and transitions among them, bandit problems focus

on a single state with multiple actions (referred to as arms), each produc-

ing stochastic rewards. They also serve as a key theoretical foundation for

RL, often representing the first step toward understanding more complex RL

problems. This simplified setting allows researchers to isolate and study the

exploration-exploitation tradeoff, a central challenge in machine learning and

decision theory. In addition to serving as a foundational framework, bandits

have found broad applications in a variety of domains, such as clinical tri-

als, dynamic spectrum allocation in wireless networks, online advertising, web

search optimization, and social networking analysis [43]. This wide range of

applications underscores the importance of bandits as a critical area of study.

In this chapter, we cover several main classes of bandit models. We begin

with multi-armed bandits (MAB), characterized by a finite set of actions, each

providing independent stochastic rewards. We then discuss linear bandits,

where the expected reward of each action is modeled as a linear function of

the action’s feature vector. Next, we cover Gaussian Process (GP) bandits,

which model the unknown reward function using a GP and form the core of

many Bayesian Optimization (BO) algorithms. Finally, we present dueling

bandits, a variant where feedback is provided through pairwise comparisons

3.1. Multi-Armed Bandits 58

instead of absolute rewards.

Together, these classes of bandits provide the foundation for much of mod-

ern bandit theory and its applications. They also serve as essential building

blocks for our theoretical work in subsequent chapters.

3.1 Multi-Armed Bandits
In the classic MAB setup, a player sequentially selects one arm at ∈ A at

each time step t ∈ {1, . . . ,T}, where A is a finite set of K arms. Each arm

a ∈ A yields a random reward rt ∈ R, drawn independently from an unknown

distribution with mean µa = E[rt | at = a]. Rewards from different arms are

assumed to be independent. The goal is to design an arm selection policy that

maximizes the total expected reward over a finite horizon T .

A major challenge in MAB problems is managing the exploration–exploitation

tradeoff: exploration involves selecting under-sampled arms to better estimate

their reward distributions, while exploitation focuses on choosing the arm

believed to offer the highest expected reward based on historical data.

The performance of a policy is commonly evaluated through cumulative

regret, defined as the expected loss in cumulative reward compared to an omni-

scient player who always selects the arm a⋆, which is the arm with the highest

expected reward:

R(T) = Tµa⋆−E

 T∑
t=1

rt

 ,
where a⋆ is given by

a⋆ = argmax
a∈A

µa .

Achieving sublinear regret in T guarantees that the policy’s reward converges

to the optimal reward as the number of plays grows.

In [44], authors showed that the minimum regret has a logarithmic order

in T . Under the assumption that the reward distribution family is known, [44]

have introduced policies achieving this logarithmic order for several reward

distributions, including Bernoulli, Poisson, Gaussian, and Laplace. Later, [45]

3.1. Multi-Armed Bandits 59

proposed the Upper Confidence Bound (UCB) algorithm known for its simplic-

ity and strong theoretical guarantees. At each time step t, the UCB algorithm

selects the arm

at = argmax
a∈A

[
µ̂a(t)+

√
2log t
Na(t)

]
,

where µ̂a(t) denotes the empirical mean reward of arm a, and Na(t) is the

number of times arm a has been selected up to time t. The confidence term en-

courages exploration by favoring arms with greater uncertainty. UCB ensures

each arm is sampled sufficiently—on the order of log t—to achieve logarith-

mic regret. The original UCB algorithm assumes reward distributions with

bounded support [45]. This approach has since been extended to light-tailed

distributions [46] and a later variant of UCB was developed to achieve opti-

mal logarithmic regret for heavy-tailed rewards with finite p-th moments [47].

Moreover, a different approach, termed the deterministic sequencing of explo-

ration and exploitation (DSEE), was proposed by [48] to achieve logarithmic

regret for both light-tailed and heavy-tailed cases.

Another important class of algorithms for the MAB problem is Thomp-

son Sampling (TS), also known as posterior sampling. First introduced by

W. R. Thompson in 1933 [49], it is a Bayesian approach that maintains a

posterior distribution over the expected reward of each arm. At each time

step, the algorithm samples a value from each posterior and selects the arm

with the largest sampled value. This posterior reflects all rewards observed

so far and is updated after each time step, becoming the prior for the next

time step. This means that actions are chosen with a probability proportional

to their likelihood of being optimal under the current posterior. TS has been

analyzed in the literature [50, 51], with theoretical guarantees demonstrating

its effectiveness. In particular, the analysis by [50] showed that TS achieves

logarithmic expected cumulative regret in the stochastic MAB setting. Fur-

thermore, for the specific case of Bernoulli bandits, TS was shown in [51] to

attain the asymptotic lower bound on regret established by [44].

While the standard stochastic MAB problem is well understood in the

3.2. Linear Bandits 60

case of finite set of arms, it becomes intractable as the number of arms grows

large—and essentially unmanageable for infinite arm sets.

3.2 Linear Bandits
Stochastic linear bandits extend the classical MAB setting by assuming that

the reward is a linear function of the chosen action. Specifically, the action set

is A ⊂ Rd, and at each time step t, the learner selects an action at ∈ A and

receives a reward

rt = ⟨at, θ⟩+ εt,

where θ ∈ Rd is an unknown parameter vector and εt is random zero-mean

noise term.

The linear bandit problem was first introduced by [52] under the name

linear reinforcement learning. In this formulation, the set of available ac-

tions changes from time step to time step but has a fixed finite cardinality.

Their work proposed two algorithms: LinRel, a simpler algorithm without

formal regret analysis, and SupLinRel, which achieves a regret upper bound

of Õ(log3/2K
√
dT)1, where d is the dimensionality of the unknown parame-

ter and K is the number of actions. This approach was later studied by [53]

and [54] in the context of web advertisement.

A more general setting, where the action set remains fixed over time but

may be infinite (subject to being a bounded subset of a finite-dimensional

vector space), was studied by [55, 56, 57, 58]. For instance, [55] introduced

the Confidence Ball algorithm and proved a regret bound of Õ(d
√
T), also

showing this bound to be tight by proving a lower bound of the same order.

The apparent difference from the earlier upper bound Õ(
√
dT) by [52] arises

from variations in the underlying settings and constraints.

A unifying concept across all these formulations is the Optimism in the

Face of Uncertainty (OFU) principle. The learner maintains a confidence set

1Throughout this thesis, we use the O and Õ notations to hide constants and logarithmic
terms, respectively, for simplicity of presentation.

3.3. Gaussian Process Bandits / Bayesian Optimization 61

for the unknown parameter vector based on past observations and, at each

time step, selects the action that would yield the highest reward under the

optimistic plausible parameter. Building on the work of [55], [58] introduced

smaller confidence set constructions by addressing the dependence between

arms through a novel tail inequality for vector-valued martingales and tech-

niques from the theory of self-normalized processes [59, 60]. Their algorithm,

called Optimism in the face of Uncertainty Linear bandits (OFUL), produced

tighter confidence sets that hold uniformly over time, resulting in improved

regret bounds and enhanced empirical performance.

Another family of approaches applies TS to the linear bandit setting. A

study by [61] considered the contextual linear bandit problem, where each

arm is associated with a d-dimensional feature vector (context). The authors

proposed an algorithm which maintains a Gaussian posterior over the unknown

parameter vector, updating it with observed rewards and contexts. At each

time step, it selects the arm with the highest expected reward under a sample

from this posterior. A regret bound of O(d3/2√T) was established for this

algorithm. In related work, [62] provided an alternative proof of the regret

bound for TS in the stochastic linear bandit setting. They achieved the same

regret bound, while offering new insights into the behavior and underlying

mechanisms of TS.

3.3 Gaussian Process Bandits / Bayesian Op-

timization
An alternative and powerful approach to modeling bandit problems with a con-

tinuum set of arms is based on the framework of GPs [63]. GP bandit optimiza-

tion has developed under two distinct approaches with different philosophies

and terminologies (see, e.g., [64]). On the one hand, the Bayesian approach

models the unknown reward function as a GP, treats the problem probabilisti-

cally, and produces a posterior distribution with predictive uncertainty. This

viewpoint is commonly referred to as BO [65]. On the other hand, the frequen-

3.3. Gaussian Process Bandits / Bayesian Optimization 62

tist approach assumes that the unknown reward function is deterministic and

lies in a Reproducing Kernel Hilbert Space (RKHS) associated with a known

positive definite kernel. It leverages kernel ridge regression, where predictions

are obtained by minimizing a regularized empirical loss. Although histori-

cally distinct, these approaches are intimately connected and lead to the same

regression solution.

Theoretically, GP bandits can also be seen as a generalization of the linear

bandit setting, extending it to infinite-dimensional feature spaces and allowing

nonlinear functions to be treated as linear in a high-dimensional RKHS [66].

In what follows, we first review background on GPs, RKHS, and kernel ridge

regression. We then discuss common kernels and complexity measures such as

information gain, summarize existing confidence intervals, and finally present

algorithms for GP bandits along with their regret bounds.

3.3.1 Gaussian Processes (Bayesian View)

GPs provide a flexible nonparametric framework for modeling functions with

uncertainty. A GP {f(x)}x∈X is a collection of random variables, any finite

subset of which is jointly Gaussian. A GP is fully specified by a mean function

m : X → R and a covariance (kernel) function k : X ×X → R, such that:

E[f(x)] =m(x), E[(f(xi)−m(xi))(f(xj)−m(xj))] = k(xi,xj),

where xi,xj ∈ X . In practice, the mean is often assumed to be zero without

loss of generality.

The Bayesian view of GP-bandit optimization generally considers the

problem of optimizing a fixed and unknown function f :X →R, where X ⊂Rd

is a compact domain. The function f is assumed to be a sample from a GP

prior. At each time step, the algorithm selects a point xt ∈ X and observes

a noisy evaluation yt = f(xt) + εt where εt is i.i.d. zero-mean Gaussian noise.

The goal is to rapidly identify the maximum of f through the sequence of noisy

observations. To guide the search for the maximizer of f , the algorithm must

3.3. Gaussian Process Bandits / Bayesian Optimization 63

continually update its belief about the function as data accumulate. Condi-

tioning on the history of observations yields a posterior distribution for the

function f , characterized by a mean and variance. This procedure is referred

to as GP regression. These posterior quantities (mean and variance) coin-

cide with those obtained from kernel ridge regression; the explicit forms are

presented in Section 3.3.3.

3.3.2 Reproducing Kernel Hilbert Spaces (frequentist

view)

Let k be a positive definite kernel, and let Hk be the RKHS associated with

k. The RKHS consists of functions f : X → R with finite norm ∥f∥Hk
, and

satisfies the reproducing property:

f(x) = ⟨f,k(·,x)⟩Hk
, ∀f ∈Hk.

Mercer’s theorem guarantees that k admits a spectral decomposition:

k(x,x′) =
∞∑
m=1

γmφm(x)φm(x′),

with eigenvalues γm > 0 and orthonormal eigenfunctions {φm}. Functions

f ∈Hk can be written as:

f =
∞∑
m=1

wm
√
γmφm, with ∥f∥2Hk

=
∞∑
m=1

w2
m.

The frequentist view of GP bandit optimization assumes that the objective

function f has a bounded norm in the RKHS: ∥f∥Hk
≤B, and that the noise

terms εt are sub-Gaussian random variables. This approach leverages kernel

ridge regression, which combines least-squares fitting with RKHS regulariza-

tion. We introduce kernel ridge regression next and then highlight its connec-

tion to GP regression.

3.3. Gaussian Process Bandits / Bayesian Optimization 64

3.3.3 Kernel Ridge Regression

Given t noisy observations {(xi,yi)}ti=1, where yi = f(xi)+εi, the kernel ridge

regression estimator is defined as the solution to the regularized least-squares

problem:

f̂t = arg min
f∈Hk

{
t∑
i=1

(f(xi)−yi)2 + τ2∥f∥2Hk

}
,

where τ2 > 0 is a regularization parameter. The resulting closed-form predictor

and uncertainty estimate are:

f̂t(x) = k⊤
t (x)

(
Kt+ τ2I

)−1
yt,

σ2
t (x) = k(x,x)−k⊤

t (x)
(
Kt+ τ2I

)−1
kt(x), (3.1)

where kt(x) = [k(x,x1), . . . ,k(x,xt)]⊤, Kt = [k(xi,xj)]ti,j=1 is the kernel matrix,

yt = [y1, . . . ,yt]⊤, and I is the identity matrix.

Equivalence with GP Regression. These expressions for f̂t(x) and σ2
t (x)

coincide exactly with the posterior mean and variance of a zero-mean GP

with the same covariance function and Gaussian noise of variance τ2 [63]. In

this thesis, we adopt the RKHS-based frequentist view, framing estimators

and regret bounds in terms of kernel ridge regression. Nonetheless, the GP

interpretation remains valuable for intuition, particularly in algorithm design.

3.3.4 Common Kernels and their Properties

In practice, the Matérn and Squared Exponential (SE) kernels are among the

most widely used choices in BO. These kernels are defined as follows:

kMatérn(x,x′) = 1
G(ν)2ν−1

(√
2νρ
l

)ν
Bν

(√
2νρ
l

)
, (3.2)

kSE(x,x′) = exp
(
− ρ

2

2l2

)
, (3.3)

where l > 0 is the lengthscale, ρ= ∥x−x′∥2 is the Euclidean distance between

x and x′, ν > 0 is the smoothness parameter, G denotes the Gamma function,

and Bν is the modified Bessel function of the second kind. The SE kernel can

3.3. Gaussian Process Bandits / Bayesian Optimization 65

be interpreted as a special case of the Matérn kernel as ν→∞.

3.3.5 Maximum Information Gain and Eigendecay

We introduce a kernel specific complexity term referred to as maximum in-

formation gain that helps characterize the regret of algorithms in bandits and

kernel-based RL. It is defined as follows2 [67, 68]:

Γ(t) = max
x1,...,xt

1
2 logdet(I+ τ−2Kt) (3.4)

where Kt is the kernel matrix, and τ2 is the regularization parameter (as

defined in Section 3.3.3). The maximum information gain depends on the

eigendecay defined as follows.

Definition 1. A kernel k is said to have a polynomial (resp. exponential)

eigendecay if γm =O(m−p) (resp. γm =O(cm)), for some p > 1 (c < 1), where

γm are the Mercer eigenvalues in decreasing order.

In particular, for smooth kernels with exponentially decaying eigenvalues—

such as the SE kernel—the maximum information gain grows polylogarithmi-

cally in T [68]. In contrast, for broader classes of kernels with polynomial

eigendecay that are of both practical and theoretical importance, including

the Matérn family [69], the information gain grows polynomially in T . In such

cases, the resulting regret bounds may no longer be sublinear (i.e., become

vacuous), and therefore do not guarantee that the algorithm’s performance

improves over time.

3.3.6 Confidence Intervals

GP modeling enables the construction of confidence intervals for complex func-

tions defined over continuous domains. In particular, we utilize the GP’s

predictive mean f̂t(x) and uncertainty estimate σt(x) to construct confidence
2In later chapters, we use slight variations of the maximum information gain notation to

reflect local context. In Chapter 5, we denote the number of observations by n instead of
t. In Chapter 6, we replace τ2 by λ. This is purely a notational change; the definitions
are equivalent.

3.3. Gaussian Process Bandits / Bayesian Optimization 66

bounds of the form:

|f(x)− f̂t(x)| ≤ βt(δ)σt(x),

where βt(δ) is a confidence width multiplier corresponding to confidence level

of 1− δ. Confidence intervals formally quantify our uncertainty about the

unknown function at any input, with high probability guarantees. The key

goal of the theoretical analysis is to derive expressions for βt(δ) that are as

tight as possible while still ensuring the bound holds with high probability.

Under the assumption that the observation noise is ς-sub-Gaussian and

the function f ∈Hk, Theorem 1 in [70] provides a high-probability bound in the

non-adaptive setting—where the observation points {xj}tj=1 are independent

of the observation noise. Specifically, for any fixed x ∈ X , with probability at

least 1− δ, the confidence width multiplier is:

βt(δ) = ∥f∥Hk
+ ς

τ

√
2log

(1
δ

)
. (3.5)

In the adaptive setting—where the observation points {xj}tj=1 are adap-

tively selected based on prior observation values—the standard concentration

inequalities cannot be applied directly because the data exhibit temporal de-

pendence. This challenge was addressed in the linear case where f(x) = θ⊤x,

by the work of [58], who derived high-probability confidence intervals using self-

normalized concentration inequalities for vector-valued martingales. Specifi-

cally, for all x ∈ X , with probability at least 1− δ, the confidence width mul-

tiplier is given by:

βt(δ) = ∥f∥Hk
+ ς

τ

√√√√d log
(

1+ tx̄2/τ2

δ

)
, (3.6)

and x̄ = maxx∈X ∥x∥2. Their analysis is based on bounding the martingale

sequence St = ∑t
i=1 εixi, leading to the following confidence ellipsoid for the

unknown parameter θ:

∥θ− θ̂t∥Vt ≤ τβt(δ),

3.3. Gaussian Process Bandits / Bayesian Optimization 67

where Vt = τ2I+∑t
i=1xix

⊤
i . This confidence ellipsoid for θ can then be repre-

sented in terms of the confidence interval for f [71].

Building on this framework, an extension to the RKHS (kernel) setting was

provided by [66] through an analogous self-normalized bound for vector-valued

martingales. Under the assumptions on sub-Gaussian noise and bounded

RKHS norm, it is shown that, with probability at least 1− δ, the confidence

interval bound holds uniformly for all x ∈ X [72, 32]:

βt(δ) = ∥f∥Hk
+ ς

τ

√
2log

(1
δ

)
+Γ(t), (3.7)

where Γ(t) defined in (3.4), denotes the maximum information gain at time t.

These results highlight a key difference between non-adaptive and adap-

tive sampling. In the non-adaptive case, βt(δ) scales only with
√

log(1/δ) (see

Equation (3.5)), giving tighter confidence intervals since observation points are

independent of the noise. In adaptive sampling, each xt depends on past data,

creating statistical dependencies that standard concentration results cannot

handle. To compensate, βt(δ) must also scale with the maximum information

gain Γ(t), which measures how much information t samples can reveal about

the function under the GP prior. Consequently, adaptive confidence intervals

are inflated by an additional
√

Γ(t) factor (see Equation (3.7)). Intuitively,

larger Γ(t) means greater potential dependence among observations, requiring

more conservative bounds to ensure the true function remains within them

with high probability.

These high-probability confidence intervals are not merely theoretical con-

structs; they form the core mechanism behind many BO and bandit algorithms.

They quantify how much we can trust GP predictions and how conservative we

must be when selecting points adaptively. The guarantee that the true function

f lies within the bounds allows these algorithms to strategically balance ex-

ploration and exploitation, with formal regret guarantees. Tighter confidence

intervals directly translate to faster convergence and better performance of

these algorithms.

3.3. Gaussian Process Bandits / Bayesian Optimization 68

3.3.7 Algorithms for GP Bandits and Regret Bounds

Among the most widely studied algorithms for GP bandits is GP-UCB [67],

which maintains a kernel ridge regression estimate of the unknown function

together with a confidence ellipsoid around this estimate. At each time step, it

optimistically selects the point that maximizes the predicted mean plus a scaled

standard deviation, thereby balancing exploration and exploitation. Alterna-

tive acquisition strategies, such as Expected Improvement (EI) [73, 74, 75],

Probability of Improvement (PI) [76], and Thompson Sampling (GP-TS) [66],

follow different selection rules but achieve comparable cumulative regret guar-

antees of order O(Γ(T)
√
T), where Γ(T) is the maximum information gain of

the kernel [67].

This bound, however, is often loose [77]. For common kernels such as

Matérn, Γ(T) can grow polynomially with T , leading to regret that may fail

to be sublinear and is known to be a factor
√

Γ(T) worse than the minimax

rate [65].

To mitigate this limitation, several algorithmic refinements have been pro-

posed. For instance, Local Polynomial GP-UCB (LP-GP-UCB) [78] augments

GP models with local polynomial estimators, improving performance in cer-

tain regimes while retaining the same regret bound O(Γ(T)
√
T). The Par-

tioned Improved GP-UCB (π-GP-UCB) algorithm [79] instead partitions the

search space into hypercubes and fits an independent GP to each, achieving a

sublinear regret across all parameters of the Matérn kernel family.

More substantial progress was achieved by SupKernelUCB [80], which

achieves Õ(
√

Γ(T)T) regret on discrete domains, and extends to continu-

ous domains under mild Lipschitz-style assumptions. When combined with

tighter bounds on Γ(T) [68], this nearly matches the lower bounds for SE

and Matérn kernels. However, SupKernelUCB is often regarded as impracti-

cal [81]. Subsequent works proposed more practical algorithms that achieve

the same Õ(
√

Γ(T)T) scaling: Robust Inverse Propensity Score (RIPS) [82]

achieves the bound while requiring only O(logT) batches and being robust to

3.4. Dueling Bandits 69

model misspecification. GP-Thresholded Domain Shrinking (GP-ThreDS) [83]

adopts a tree-based domain shrinking strategy that performs well empirically

while meeting the theoretical guarantee. Batched Pure Exploration (BPE) [84]

employs a structured, multiround batching scheme that leverages uncertainty

information across rounds to balance exploration and exploitation.

Beyond cumulative regret, another performance metric studied in the GP

bandit literature is simple regret, which evaluates the quality of the final rec-

ommendation rather than the entire sequence of actions. Formally, it measures

the gap between the optimal reward and the reward obtained at the point se-

lected as best after T iterations. Although [67] did not analyze simple regret

explicitly, their cumulative regret bound of O(Γ(T)
√
T) for GP-UCB implies

a simple regret bound of O(Γ(T)/
√
T) [65]. This rate of simple regret was

later established directly under the RKHS setting with noisy observations in

several works [65, 78, 85]. A sharper analysis was provided by [70], who in-

troduced the Maximum Variance Reduction (MVR) algorithm and proved a√
Γ(T)-factor improvement, bringing the achievable simple regret closer to

the known information-theoretic lower bounds. Importantly, these results are

often framed in terms of sample complexity, i.e., the number of evaluations

required to guarantee that the simple regret is below a target threshold with

high probability.

3.4 Dueling Bandits

The assumption of a numerical reward signal is a potential limitation of the

standard MAB setting. In many real-world applications, it is hard—or even

impossible—to quantify the quality of an option numerically. For instance,

consider crowdsourcing services like Amazon Mechanical Turk, where annota-

tors are asked to make pairwise comparisons between alternatives. The goal

is to approximate an underlying preference ordering based on these (possibly

noisy and inconsistent) comparisons [86]. Preferential feedback also arises in

various online learning tasks such as information retrieval [87], recommenda-

3.4. Dueling Bandits 70

tion systems [88], and skill rating/player ranking [89].

To address such scenarios, the dueling bandits framework extends the

MAB framework to handle preference-based feedback [87]. In this setting,

the learner selects two arms at each time step and receives binary feedback

indicating which arm is preferred, in contrast to the traditional MAB setting

where a single arm is chosen and a numerical reward is observed. We refer

the reader to [90] for a comprehensive survey. Formally, at each time step

t= 1, . . . ,T , the interaction in the dueling bandits setting proceeds as follows:

• The algorithm selects a pair of actions/arms ai and aj from the available

set of actions.

• The environment returns preference-based feedback: action ai is pre-

ferred over aj with probability P(ai≻ aj), and vice versa with probability

P(aj ≻ ai) = 1−P(ai ≻ aj).

The central goal in the dueling bandits framework is to design algorithms

that identify the “optimal” arm as efficiently as possible, typically measured

in terms of cumulative regret. Unlike standard MAB, defining optimality in

dueling bandits is more nuanced due to the preference-based feedback. Sev-

eral notions of optimality have been proposed in the literature, including the

Copeland Winner [91], Borda Winner [92], and von Neumann Winner [93],

each offering a different interpretation of the optimal arm. In utility-based du-

eling bandits, preferences are assumed to stem from latent utility values, and

the optimal arm is defined as the one maximizing this utility. Consequently,

regret is defined relative to the chosen notion of optimality. In general, cu-

mulative regret measures how much the learner’s selected arms underperform

compared to the optimal arm over time. Depending on the model, regret

may be expressed in terms of the utility gap, Borda score, Copeland score, or

expected outcomes against the von Neumann winner.

A wide range of algorithms has been developed to address these problems

under various assumptions. The initial works on dueling bandits focused on

3.4. Dueling Bandits 71

scenarios with a finite number K of arms. Here, the problem instance can

be fully described by a K×K preference probability matrix, where each en-

try pi,j = P(ai ≻ aj) denotes the probability that arm i is preferred over arm

j. Many algorithms attempted to learn this pairwise preference matrix by

leveraging noisy sorting or tournament procedures, or by generalizing classical

MAB algorithms to the preference-based setting. Examples include Interleaved

Filter [94], Beat the Mean (BTM) [95], Relative Confidence Sampling [96],

Relative Upper Confidence Bound (RUCB) [97], Doubler, MultiSBM, Spar-

ring [98], and mergeRUCB [99]. These methods typically impose various

structural assumptions on the problem, such as strong stochastic transitiv-

ity (SST) [94, 100], stochastic triangle inequality (STI) [95], weak or relaxed

stochastic transitivity [101, 95], or the presence of a Condorcet winner (an arm

preferred over every other arm) [97, 99, 96]. These algorithms usually guaran-

tee regret bounds that grow logarithmically in the number of time steps but

at least linearly with respect to the number of arms, limiting their scalability

to large or infinite arm sets.

To address settings with infinitely many arms, utility-based dueling ban-

dits have gained popularity. Instead of a preference matrix, preferences are

modeled via an unknown latent utility function. Preference feedback is in-

terpreted as arising from the difference in utilities of the chosen arms, passed

through a link function. A common choice is the logistic function, as in the

Bradley-Terry-Luce (BTL) model [102], where the probability of preferring one

arm over another is given by the logistic function of the utility difference.

The simplest structured variant is the linear contextual dueling bandit,

studied in [103, 104, 105, 106, 107], which allows a large action set but assumes

a linear utility function. Here, the utility of an arm a is modeled as f(a) =

θ⊤ϕ(a) for some unknown parameter vector θ ∈ Rd and a known feature map

ϕ(·) ∈ Rd. Preference-based bandit optimization with linear utilities is well

understood and has even been extended to RL settings involving preference

feedback on trajectories [108, 109, 110, 111, 112]. However, such linear models

3.5. Summary and Conclusion 72

have limited applicability in practice, as they cannot capture the complex

nonlinear utility functions typical of many real-world problems.

Alternatively, RKHS offer a rich class of models for representing the

utility function. This has motivated several extensions of the dueling ban-

dit problem to kernel-based settings. Recent works have investigated the

convergence of kernelized algorithms for preference-based bandits. For in-

stance, [113, 114, 115] focus on the Borda score, which quantifies the proba-

bility that a given action is preferred over a uniformly sampled action from

the domain. However, these approaches typically rely on strong assumptions

about the Borda function, effectively reducing the problem to a conventional

BO setting. Moreover, these works model the problem using a regression like-

lihood, which assumes that both the latent utility function and the probability

of preference lie in an RKHS. This regression-based modeling approach is some-

what misaligned with the inherently classification-based nature of preference

learning. While the model is valid, it often does not lead to sample efficient

algorithms.

In contrast, other methods [116, 117] adopt a kernelized logistic negative

log-likelihood loss to infer the utility function. These works provide confidence

sets for the minimizer of the logistic loss and establish tighter regret guarantees,

offering more principled and efficient approaches.

Finally, a recent extension [118] introduces neural dueling bandits, where

wide neural networks are used for preference prediction instead of kernels.

Although the theoretical analysis relies on connections to the Neural Tangent

kernel (NTK), this approach demonstrates an alternative modeling strategy.

Importantly, the guarantees and assumptions remain largely analogous to those

in kernel-based methods.

3.5 Summary and Conclusion
This chapter provided a structured overview of bandit models, tracing their

development from classical MAB to more advanced frameworks. We started

3.5. Summary and Conclusion 73

with finite MAB, progressed to linear bandits and then to GP bandits, which

allow more general nonlinear rewards. Finally, we covered dueling bandits,

where scalar feedback is replaced by binary comparisons.

This progression from simple to complex bandit models lays the founda-

tion for the techniques developed in this thesis. We introduced core algorithmic

families and key principles—such as the exploration–exploitation trade-off, re-

gret, OFU, GPs, kernel ridge regression, confidence intervals, and complexity

measures—that underpin the theoretical analysis of these models. These con-

cepts are essential for the subsequent chapters: near-optimal sample complex-

ity in reward-free, kernel-based RL (Chapter 5) and Bayesian Optimization

from Human Feedback (Chapter 6), with dueling bandits providing crucial

background for the latter. Overall, this chapter equips the reader with the

theoretical framework and technical tools that connect classical bandit theory

to the advanced methods explored in this thesis.

Chapter 4

The Impact of Intrinsic

Rewards on Exploration in RL

Following the background on RL and bandit problems, this chapter turns to the

exploration problem in RL, focusing on an empirical proof-of-concept study.

A persistent challenge in deep RL is exploration in sparse-reward environ-

ments, where rewards are provided to the agent only rarely—for example,

when accomplishing a task. As a consequence, the agent often fails to discover

rewarding behaviors. To address this challenge, researchers have proposed var-

ious types of intrinsic rewards that encourage diversity in exploration. Such

diversity can be imposed at different levels, favoring the agent to explore dif-

ferent states, policies, or behaviors (State, Policy, and Skill level diversity,

respectively). Yet, the actual impact of these different types of diversity on

exploration behavior remains unclear. In this chapter, we aim to fill this gap by

studying how intrinsic rewards operating at different levels of diversity affect

the exploration patterns of RL agents. We select four intrinsic rewards (State

Count, Intrinsic Curiosity Module (ICM), Maximum Entropy, and Diversity is

All You Need (DIAYN)), each favoring different levels of diversity. We conduct

an empirical study on MiniGrid environments to compare their impact on ex-

ploration considering various metrics related to the agent’s exploration. This

study sheds light on how diversity influences exploration and offers practical

implications for selecting and applying intrinsic rewards in environments with

4.1. Introduction 75

varying levels of exploration difficulty.

4.1 Introduction

The sparsity of rewards is a major hurdle for RL algorithms [25, 119]. With

infrequent feedback, the probability of the agent randomly discovering a re-

warding sequence of actions becomes low. Therefore, a large number of samples

is needed to explore and stumble into a successful sequence of actions leading to

the desired outcome [120]. This is known as the hard exploration problem [25].

Classical exploration strategies, e.g., epsilon-greedy and Boltzmann distribu-

tion [121] fail to explore the environment efficiently enough to find the optimal

solution when the feedback is sparse [122]. Among the possible solutions to

address this limitation [25, 123, 124], intrinsic rewards [125, 126] have been pro-

posed. Intrinsic rewards are signals that encourage the agent to explore novel

experiences, with the aim of enhancing learning efficiency in environments with

sparse external rewards [125, 126]. They are a part of the larger notion of in-

trinsic motivation defined by [127] as the tendency to “seek out novelty and

challenges, to extend and exercise one’s capacity, to explore, and to learn”.

Intrinsic rewards are often categorized in the literature into knowledge-based

and competence-based [128, 129, 124, 130]. The first category encourages the

agent to gain new knowledge about the environment. It compares the agent’s

experiences to its existing knowledge, and rewards the agent for encountering

unexpected situations. This includes methods that reward novelty in states or

state transitions [131, 132, 133, 134], the prediction error [135] or the informa-

tion gain [136]. The second category, also called “skill learning” in [124, 137],

rewards the agent for learning a diverse repertoire of skills in an unsupervised

way. It mainly includes goal-conditioned RL approaches, which generate and

achieve their own goals to explore the environment [138, 139, 140]. In [129], a

detailed survey on goal-conditioned RL is presented, highlighting the different

types of goal representations and goal-sampling strategies.

This categorization uncovers a potential link between diversity and explo-

4.1. Introduction 76

ration, where intrinsic rewards promote diverse agent behaviors to efficiently

explore the environment. While diversity is acknowledged as crucial in RL,

it has mainly been explored in relation to robustness, generalization, hierar-

chical learning or generation tasks [141, 142, 143, 144, 145, 146, 147, 148].

However, its role in driving effective exploration remains underexplored and

not empirically validated yet. In this chapter, we take an initial step toward

understanding whether mechanisms that encourage diversity through skill dis-

covery can also drive more effective exploration. To address this gap, we

propose a rigorous methodology to empirically compare knowledge-based and

competence-based intrinsic rewards, which has not been thoroughly investi-

gated in prior research. Our work focuses on examining how different levels

of diversity in exploration behavior impact exploration, driven by the need

to address the following open questions: i) What is, in practice, an effective

exploration in environments with low- and high-dimensional state spaces? ii)

How does the level of diversity imposed by intrinsic rewards affect exploration

performance across different scenarios? iii) Does behavioral diversity through

skill discovery, known to help robustness and fast adaptation [143, 144], also

helps exploration? Our key contributions are as follows:

1. We introduce a refined categorization of intrinsic rewards based on four

diversity levels—State, State + Dynamics, Policy, and Skill—offering a

more granular understanding of their influence on exploration.

2. We design an empirical study that assesses how these different diversity

levels impact exploration by incorporating multiple complementary ex-

ploration metrics such as return, coverage, entropy, reward findings, and

state visitation maps.

3. We provide empirical insights into the role of diversity in exploration,

offering practical guidance to leverage intrinsic rewards for environments

with varying exploration challenges.

4.1. Introduction 77
T

ab
le

4.
1:

C
om

pa
ris

on
of

ex
ist

in
g

w
or

ks
on

in
tr

in
sic

re
w

ar
ds

(I
R

).

S
tu

d
y

P
ap

er
C

at
eg

o
ry

P
ro

s
C

o
n

s/
L

im
it

at
io

n
s

[2
5]

C
at

eg
or

iz
at

io
n

of
IR

C
at

eg
or

iz
ed

IR
in

to
re

w
ar

d
no

ve
l

st
at

es
an

d
re

w
ar

d
di

ve
rs

e

b
eh

av
io

rs
.

L
ac

k
of

em
pi

ri
ca

l
te

st
in

g
in

a
co

m
m

on
fr

am
ew

or
k.

[1
24

]
C

at
eg

or
iz

at
io

n
of

IR
C

at
eg

or
iz

ed
IR

in
to

kn
ow

le
dg

e
ac

qu
is

it
io

n
an

d
sk

il
l-

le
ar

ni
ng

.
L

ac
k

of
em

pi
ri

ca
l

te
st

in
g

in
a

co
m

m
on

fr
am

ew
or

k.

[1
37

]
C

at
eg

or
iz

at
io

n
of

IR
C

at
eg

or
iz

ed
IR

in
to

su
rp

ri
se

,
no

ve
lt

y
an

d
sk

il
l-

le
ar

ni
ng

.
L

ac
k

of
em

pi
ri

ca
l

te
st

in
g

in
a

co
m

m
on

fr
am

ew
or

k.

[1
23

]
C

at
eg

or
iz

at
io

n
of

IR
C

at
eg

or
iz

ed
IR

in
to

bl
in

d,
un

ce
rt

ai
nt

y,
sp

ac
e

co
ve

ra
ge

an
d

se
lf

-

ge
ne

ra
te

d
go

al
s.

L
ac

k
of

em
pi

ri
ca

l
te

st
in

g
in

a
co

m
m

on
fr

am
ew

or
k.

[1
29

]
C

at
eg

or
iz

at
io

n
of

IR
C

at
eg

or
iz

ed
IR

in
to

kn
ow

le
dg

e
an

d
co

m
p

et
en

ce
-b

as
ed

(f
oc

us
ed

on
go

al
-c

on
di

ti
on

ed
R

L
).

L
ac

k
of

em
pi

ri
ca

l
te

st
in

g
in

a
co

m
m

on
fr

am
ew

or
k.

[1
49

]
C

at
eg

or
iz

at
io

n
of

IR
C

at
eg

or
iz

ed
IR

in
to

pr
ed

ic
ti

on
-e

rr
or

,
no

ve
lt

y
an

d
in

fo
rm

at
io

n

ga
in

.

L
ac

k
of

em
pi

ri
ca

l
te

st
in

g
in

a
co

m
m

on
fr

am
ew

or
k.

[1
30

]
C

at
eg

or
iz

at
io

n
of

IR
C

at
eg

or
iz

ed
IR

in
to

kn
ow

le
dg

e-
ba

se
d

an
d

co
m

p
et

en
ce

-b
as

ed
.

L
ac

k
of

em
pi

ri
ca

l
te

st
in

g
in

a
co

m
m

on
fr

am
ew

or
k.

[1
50

]
E

m
pi

ri
ca

l
st

ud
y

on
IR

E
va

lu
at

ed
p

er
fo

rm
an

ce
of

kn
ow

le
dg

e-
ba

se
d

IR
(S

ta
te

C
ou

nt
,

R
N

D
,

IC
M

,
R

ID
E

)
on

M
in

iG
ri

d.
A

na
ly

ze
d

di
ff

er
en

t
w

ei
gh

ti
ng

m
et

ho
ds

fo
r

IR
an

d
di

ff
er

en
t

ne
ur

al
ne

tw
or

k
ar

ch
it

ec
tu

re
s.

D
id

no
t

in
cl

ud
e

an
y

sk
il

l-
le

ar
ni

ng
m

et
ho

ds
fr

om
th

e

co
m

p
et

en
ce

-b
as

ed
ca

te
go

ry
.

Fo
cu

se
d

on
re

tu
rn

p
er

fo
rm

an
ce

w
it

ho
ut

di
re

ct
ly

st
ud

yi
ng

ex
pl

or
at

io
n.

[1
51

]
E

m
pi

ri
ca

l
st

ud
y

on
IR

C
om

pa
re

d
th

e
p

er
fo

rm
an

ce
of

kn
ow

le
dg

e-
ba

se
d

IR
(p

se
ud

o-

co
un

ts
,

R
N

D
,

IC
M

,
N

oi
sy

N
et

w
or

ks
)

on
A

L
E

en
vi

ro
nm

en
t.

D
id

no
t

in
cl

ud
e

an
y

sk
il

l-
le

ar
ni

ng
/g

oa
l-

co
nd

it
io

ne
d

m
et

ho
ds

.

E
va

lu
at

ed
p

er
fo

rm
an

ce
so

le
ly

ba
se

d
on

re
tu

rn
w

it
h

no
sp

ec
ifi

c

fo
cu

s
on

th
e

ex
pl

or
at

io
n

b
eh

av
io

r.

[1
52

]
E

m
pi

ri
ca

l
st

ud
y

on
IR

C
om

pa
re

d
th

e
p

er
fo

rm
an

ce
of

kn
ow

le
dg

e-
ba

se
d

IR
(I

C
M

,

R
N

D
,

D
is

ag
re

em
en

t,
N

G
U

,
ps

eu
do

-c
ou

nt
s,

R
ID

E
,

R
E

3,
an

d

E
3B

).
A

dd
re

ss
ed

ke
y

de
si

gn
an

d
op

ti
m

iz
at

io
n

de
ta

il
s

of
IR

to

es
ta

bl
is

h
st

an
da

rd
iz

ed
im

pl
em

en
ta

ti
on

s.

D
id

no
t

in
cl

ud
e

sk
il

l-
le

ar
ni

ng
/g

oa
l-

co
nd

it
io

ne
d

m
et

ho
ds

.
D

id

no
t

pr
ov

id
e

an
y

li
nk

b
et

w
ee

n
di

ve
rs

it
y

an
d

ex
pl

or
at

io
n.

[1
53

]
C

at
eg

or
iz

at
io

n
an

d
em

pi
ri

ca
l

st
ud

y

on
IR

T
es

te
d

m
et

ho
ds

fr
om

kn
ow

le
dg

e-
ba

se
d

(I
C

M
,

D
is

ag
re

em
en

t,

R
N

D
),

co
m

p
et

en
ce

-b
as

ed
(D

IA
Y

N
,

SM
M

,
A

P
S)

an
d

da
ta

-

ba
se

d
(A

P
T

,
P

ro
to

R
L

)
ca

te
go

ri
es

on
co

nt
in

uo
us

co
nt

ro
l

ta
sk

s.

E
va

lu
at

ed
th

ei
r

ge
ne

ra
li

za
ti

on
ca

pa
bi

li
ti

es
in

an
un

su
p

er
vi

se
d

pr
et

ra
in

in
g

fo
ll

ow
ed

by
su

p
er

vi
se

d
fi

ne
tu

ni
ng

fr
am

ew
or

k.

D
id

no
t

co
ns

id
er

th
e

jo
in

t
op

ti
m

iz
at

io
n

of
IR

an
d

ex
tr

in
si

c

re
w

ar
ds

.
F

oc
us

ed
on

ge
ne

ra
li

za
ti

on
an

d
fa

st
ad

ap
ta

ti
on

ra
th

er

th
an

st
ud

yi
ng

th
e

im
pa

ct
of

di
ve

rs
it

y
on

ex
pl

or
at

io
n.

[1
54

]
C

at
eg

or
iz

at
io

n
an

d
em

pi
ri

ca
l

st
ud

y

on
IR

D
iv

id
ed

IR
b

et
w

ee
n

li
fe

lo
ng

(g
lo

ba
l)

an
d

ep
is

od
ic

b
on

us
es

.

T
es

te
d

di
ff

er
en

t
co

m
bi

na
ti

on
s

of
gl

ob
al

an
d

ep
is

od
ic

b
on

us
es

on
M

in
iG

ri
d,

in
sp

ar
se

re
w

ar
d

an
d

pu
re

ex
pl

or
at

io
n

se
tt

in
gs

.

A
na

ly
ze

d
w

hy
li

fe
lo

ng
IR

do
no

t
co

nt
ri

bu
te

m
uc

h
in

im
pr

ov
in

g

ex
pl

or
at

io
n.

F
oc

us
ed

on
gl

ob
al

vs
ep

is
od

ic
p

er
sp

ec
ti

ve
,

no
t

on
di

ve
rs

it
y

an
d

it
s

im
pa

ct
on

ex
pl

or
at

io
n.

[1
55

]
C

at
eg

or
iz

at
io

n
an

d
em

pi
ri

ca
l

st
ud

y

of
IR

St
ud

ie
d

th
e

ad
va

nt
ag

es
an

d
di

sa
dv

an
ta

ge
s

of
gl

ob
al

an
d

ep
is

od
ic

IR
fo

r
ex

pl
or

at
io

n
in

co
nt

ex
tu

al
M

D
P

s.

In
te

rp
re

te
d

IR
fr

om
th

e
gl

ob
al

/e
pi

so
di

c
p

er
sp

ec
ti

ve
,

bu
t

no
t

fr
om

a
di

ve
rs

it
y

p
er

sp
ec

ti
ve

.

[1
56

]
G

en
er

al
fr

am
ew

or
k

un
if

yi
ng

IR
In

te
rp

re
te

d
IR

as
sp

ec
ia

l
ca

se
s

of
co

nd
it

io
na

l
pr

ed
ic

ti
on

w
it

h

di
ff

er
en

t
m

as
k

di
st

ri
bu

ti
on

s.

L
ac

k
of

a
co

m
pa

ra
ti

ve
em

pi
ri

ca
l

st
ud

y.

[1
57

]
G

en
er

al
fr

am
ew

or
k

un
if

yi
ng

IR
R

ef
or

m
ul

at
ed

th
e

co
nv

ex
M

D
P

pr
ob

le
m

as
a

co
nv

ex
-c

on
ca

ve

ga
m

e
an

d
in

te
rp

re
te

d
se

ve
ra

l
R

L
al

go
ri

th
m

s
(i

nc
lu

di
ng

sk
il

l-

ba
se

d
IR

)
as

in
st

an
ce

s
of

it
.

L
ac

k
of

a
co

m
pa

ra
ti

ve
em

pi
ri

ca
l

st
ud

y.

4.2. Related Works 78

To achieve this, we evaluate representative intrinsic reward methods from each

diversity level on MiniGrid [158], using both grid encodings and RGB (Red,

Green, Blue) observations. This setup allows us to analyze how diversity

shapes agent behavior in exploration-critical environments. To the best of our

knowledge, this is the first systematic evaluation of diversity levels in intrinsic

rewards within a unified framework, offering novel insights into their influence

on exploration and performance.

4.2 Related Works

While numerous intrinsic reward formulations have been proposed to address

complex sparse-reward tasks, a comprehensive understanding of their compar-

ative advantages and challenges remains elusive, leaving this an open question

in the field. Here, we review previous works that have attempted to categorize

or empirically compare intrinsic rewards. Table 4.1 provides an overview of

these studies, highlighting the pros and cons of each approach.

Existing surveys [137, 25, 124, 123, 129, 149, 130] offer slightly differ-

ent taxonomies of intrinsic rewards, often using varied terminology. However,

most include two broad categories: one focused on increasing knowledge about

the environment (e.g., prediction error, information gain, learning progress,

and state novelty), and another focused on learning diverse skills. Yet, these

surveys lack empirical validation and none of them explore the different lev-

els of diversity that these intrinsic rewards can introduce within each cate-

gory. In this work, we build on the categorization proposed by [129], which

clearly distinguishes between knowledge-based and competence-based intrinsic

rewards, and we further subdivide them into different diversity levels (state/s-

tate+dynamics/policy/skill).

We are now interested in the works provided in the literature aimed

at benchmarking different intrinsic rewards. A few studies have compared

methods within the knowledge-based category. For instance, [150] compared

State Count [159], Random Network Distillation (RND) [133], Intrinsic Cu-

4.2. Related Works 79

riosity Module (ICM) [135], Reward Impact Driven Exploration (RIDE) [160]

on MiniGrid environment. The study aimed to evaluate the impact that

weighting intrinsic rewards has on performance, as well as the effect of us-

ing different neural network architectures. The main insight from this work

was that no single intrinsic reward method consistently outperforms the oth-

ers across all tasks, and the performance is highly sensitive to the choice of

network architecture and reward scaling. Another study by [151] evaluated

pseudo-counts [131], RND, ICM and Noisy Networks [161] within the Arcade

Learning Environment (ALE) [162], and suggested that none of these meth-

ods outperform the epsilon-greedy exploration. A more recent work by [152]

introduced RLeXplore, a comprehensive plug-and-play framework that imple-

ments ICM [135], RND [133], Disagreement [163], Never Give Up (NGU) [134],

pseudo-counts [131], RIDE [160], Random Encoders for Efficient Exploration

(RE3) [164], and Exploration via Elliptical Episodic Bonuses (E3B) [165].

Their framework addressed critical design, implementation, and optimization

issues related to intrinsic rewards, including reward and observation normal-

ization, co-learning dynamics of policies and representations, weight initial-

ization, and the combined optimization of intrinsic and extrinsic rewards.

The study most similar to ours is by [153] which evaluated intrinsic rewards

across knowledge-based (ICM, Disagreement, RND), competence-based (DI-

AYN, State Marginal Matching (SMM), Active Pretraining with Successor

Features (APS)), and data-based (Active Pretraining (APT), ProtoRL) cate-

gories on the DeepMind Control Suite. However, their primary objective was

to assess the generalization of unsupervised RL algorithms by measuring how

quickly they adapted to diverse downstream tasks. To achieve this, they used

a reward-free pretraining phase followed by supervised finetuning. In contrast,

our study focuses on the standard RL setting, where both intrinsic and ex-

trinsic rewards are optimized simultaneously (except for skill-based learning).

Instead of concentrating on adaptation, we address the exploration challenge,

evaluating intrinsic rewards from a diversity perspective and employing various

4.2. Related Works 80

metrics to measure exploration quality.

Other works have examined a different taxonomy of intrinsic rewards:

global vs. episodic bonuses. Global bonuses are calculated using the entire

training experience, while episodic bonuses are calculated using only the expe-

rience from the current episode. The work by [154] found that episodic bonuses

are more crucial than global bonuses to improve exploration in procedurally

generated environments such as MiniGrid. A later study by [155] found that

episodic bonuses tend to yield better results in situations where there is min-

imal shared structure across various contexts in MiniHack [166], while global

bonuses tend to be effective in cases where there is a greater degree of shared

structure.

Additionally, some works aimed to unify different intrinsic reward for-

mulations under a general framework. For instance, [156] proposed a unified

framework for intrinsic rewards, showing that existing methods can be viewed

as special cases of conditional prediction with different mask distributions.

Building on this, they introduced a novel trajectory-level exploration intrinsic

reward, which extends beyond the typical one-step future prediction to capture

transition dynamics across longer time horizons. In a related line of work, [157]

reformulated the convex MDP problem as a convex-concave game between an

agent and an adversarial player generating costs (negative rewards). They uni-

fied a broad range of RL algorithms, including methods for unsupervised skill

discovery, by interpreting them as instances of this generalized game-theoretic

framework.

Despite these significant advances in categorizing, evaluating, and inter-

preting intrinsic rewards in RL, a critical gap remains: the impact of diver-

sity in intrinsic rewards on the exploration performance has not been thor-

oughly examined. Specifically, it is unclear how the exploration performance

of competency-based methods, which encourage various behaviors, compares

to knowledge-based methods that promote various states. In this study, we

provide an initial empirical investigation into the impact of different levels of

4.3. Methodology 81

diversity on exploration across several MiniGrid environments, serving as a

preliminary effort to understand the complex relation between diversity and

exploration in RL.

4.3 Methodology
In the following, we subclassify the knowledge and competence-based intrinsic

reward methods according to the level of diversity they impose on the agent’s

exploration (Section 4.3.1). Then, we select four intrinsic rewards, one for

each level (Section 4.3.2), and we test them empirically on MiniGrid environ-

ment, explained and motivated in Section 4.3.3. Section 4.3.4 outlines the

experimental protocol used in the study, while Section 4.3.5 details the model

architecture. Finally, Section 4.3.6 introduces the evaluation metrics.

4.3.1 Taxonomy of Diversity Levels Imposed by Intrin-

sic Reward

We systematize the types of diversity imposed by intrinsic rewards into four

levels: State level diversity encourages exploration of unseen states, push-

ing the agent towards areas where its knowledge is most limited. State +

Dynamics level diversity also focuses on diverse states, but additionally

considers the novelty of the dynamics between those states for a more compre-

hensive exploration. Policy level diversity explores the impact of different

actions from given states, while Skill level diversity explores the effectiveness

of diverse skills (policy-goal association) in achieving goals [129]. For a more

detailed description of these diversity levels, please refer to Appendix A.1.

4.3.2 The Selected Intrinsic Reward Algorithms

We augment the task reward with an intrinsic reward such that the total reward

becomes: rtotal = rext+βint ∗rint, where rext is the extrinsic reward, rint is the

intrinsic reward and βint is the intrinsic reward coefficient [25]. The best-

performing βint values, either sourced from the literature [150] or determined

through a grid search (details provided in Appendix A.3), are presented in

4.3. Methodology 82

Table A.1, also located in Appendix A.3. We select four different intrinsic

reward methods, each representative of one of the four diversity levels:

State Count (State level diversity) builds an intrinsic reward inversely

proportional to the state visitation count [159]. For a transition (st,at, st+1),

where st is the current state, at is the current action and st+1 is the next

state, rintt = 1/
√
N(st+1), where N(st+1) represents the number of times st+1

has been visited during training. This algorithm considers only discrete, low-

dimensional state space. However, for RGB observations, where the state space

is much larger and State Count is not feasible, we use SimHash [132] to hash

states before counting them. SimHash maps the pixel observations to hash

codes according to the following equation, with ψ as the hashing function:

ψ(st+1) = sgn(A ∗ϕ(st+1)) ∈ {−1,1}m. Here, ϕ is an embedding function, A

is a matrix with i.i.d. entries drawn from a standard normal distribution, m

is the size of the hashed key, and sgn(·) maps a number to its sign. Then,

the same intrinsic reward formula is applied but using the hashed observation:

rintt = 1/
√
N(ψ(st+1)).

ICM (State + Dynamics level diversity) uses curiosity as an intrinsic

reward. Curiosity is formulated as the error in the agent’s ability to pre-

dict the outcome of its own actions in a learned state embedding space [135].

Specifically, ICM trains a state embedding network, a forward and an inverse

dynamic model. For a transition tuple (st,at, st+1), the embedding network

ϕ : S → F projects the current state st and next state st+1 into the feature

space F to get the embeddings ϕ(st) and ϕ(st+1) respectively. Then, the in-

verse dynamics model g :F×F →A takes as input the current and next state

embeddings, ϕ(st) and ϕ(st+1) respectively, and predicts the action at taken by

the agent to move from state st to state st+1. The state embedding network

is updated, such that it only captures the features of the environment that

are controlled by the agent’s actions, and ignores the uncontrollable factors.

The forward dynamics model f : F ×A→ F predicts the next state embed-

ding ϕ(st+1) given the current state embedding ϕ(st) and current action at.

4.3. Methodology 83

The intrinsic reward is the prediction error of the forward dynamics model:

rintt = ∥f(ϕ(st),at)−ϕ(st+1)∥22 [135].

Max Entropy RL (Policy level diversity) augments the extrinsic reward

with the policy entropy rintt =H(π(.|st)) to favor stochastic policies [167, 168].

DIAYN (Skill level diversity) aims to discover a set of diverse skills with-

out supervision [138]. A skill is defined as a policy π(a|s,z) conditioned on

the state s and latent variable/goal z1. DIAYN’s objective is to maximize the

mutual information (MI) between z and every state in the trajectory generated

by π(a|s,z). The intuition is to infer the skill from the state. At the start of

each episode, a latent variable z is sampled from a uniform distribution p(z),

then the agent acts according to that skill π(a|s,z) throughout the episode. A

discriminator qα(z|s) parametrized by α is trained to estimate the skill z from

the state s. The intrinsic reward, defined by rintt = log(qα(z|st+1))− log(p(z)),

is used to push the agent to visit states that are easily distinguishable in

terms of skills. Then, the discriminator is updated to better predict the skill,

and the policy is updated to maximize rint using any RL algorithm. It is

worth mentioning that DIAYN has been proposed as an unsupervised skill

discovery method to favor robustness, fast adaptation to new tasks and hier-

archical learning. Therefore, exploration is not the main goal of DIAYN. As a

consequence, DIAYN’s intrinsic reward can conflict with the agent’s extrinsic

reward, potentially jeopardizing convergence if combined directly. To address

this, we split the training budget between pretraining and finetuning phases.

During pretraining, skills are learned using only intrinsic rewards. The learned

weights are then used to initialize the policy and value networks for the finetun-

ing phase with task-specific extrinsic rewards. The rationale for this approach

is further explained in Appendix A.5, where we evaluate the performance of

DIAYN when combined with extrinsic rewards.

1In this chapter, z denotes a latent skill variable. The symbol z may have different
meanings in other chapters: in Chapter 5, it denotes a state-action pair (s,a); in Chapter 6,
it denotes a pair of actions (x,x′).

4.3. Methodology 84

4.3.3 Environment

We test on MiniGrid [158], a widely used procedurally generated environment

in RL exploration benchmarks [160, 150, 154] suitable for experimenting with

sparse rewards, as its tasks provide rewards only upon reaching goals, encour-

aging agents to explore efficiently. We consider two types of observations:

partially observable grid encodings, and partially observable RGB images (see

Appendix A.2). The latter has a much larger state space, allowing us to inves-

tigate the scenarios challenging for State level diversity algorithms. To study

the impact of different diversity levels on exploration, we select four environ-

ments with varying grid layouts and tasks, that highlight the strengths and

weaknesses of various intrinsic reward methods:

1. Empty: We choose this environment as a control and it is the only one

not procedurally generated (fixed initial and goal positions). The setup

imposes minimal constraints, providing freedom to solve the task in dif-

ferent ways. Consisting of one big homogeneous room, this environment

is interesting since it can lead to state aliasing: different MDP states,

for example, different (x,y) positions of the agent, appear as identical

observations [169]. This creates a challenge for state count-based meth-

ods, which count the observations they encounter and therefore cannot

differentiate between the true underlying states.

2. DoorKey: This environment requires strategic exploration to locate

keys and unlock doors. It stresses the importance of a trajectory to visit

states in particular order. Methods that can learn skills and recognize

these dependencies might perform better than state count-based meth-

ods, which treat all state visits equally without taking into account the

order.

3. FourRooms: This environment is characterized by its sparsity of re-

wards. The presence of multiple rooms encourages the agent to devise

different strategies for navigation, fostering diversity in the trajectories

4.3. Methodology 85

or paths taken by the agent to achieve the goal.

4. RedBlueDoors: This environment also requires strategic exploration,

but it is an easier task than DoorKey. It introduces color-coded doors,

requiring agents to exhibit high levels of cognitive flexibility.

More details about the tasks, observation and action spaces are included in

Appendix A.2.

4.3.4 Experimental Protocol

We test the four algorithms in each environment for each observation space.

We select Proximal Policy Optimization (PPO) [42] as our baseline algorithm.

PPO is a widely accepted and popular choice in RL research, known for its sta-

bility, robustness, and relatively high sample efficiency. Its simple implemen-

tation offers manageable computational costs, which enhances reproducibility

and facilitates validation of results. Beyond its theoretical strengths, PPO has

demonstrated success in complex real-world applications, such as Large Lan-

guage Model (LLM) research, underscoring its versatility and reliability for

our study. For the pseudocode of the algorithm, please refer to Algorithm 6 in

Chapter 2.

We adopt the default hyperparameters from [150], listed in Table A.2 of

Appendix A.3. This baseline algorithm comes with an entropy regularization

in the objective function to encourage a minimum level of exploration [170].

Such regularization is essential to avoid overfitting [171] and to stabilize the

training process [168]. We set the entropy regularization coefficient to 0.0005

in all simulated algorithms. The selected value is large enough to guarantee

a minimum level of stable convergence but small enough to not affect our

experiments. We train each algorithm for 40M frames on all environments.

For DIAYN exclusively, we use 25M for pretraining and 15M for finetuning.

Training curves, averaged over five runs with different seeds, are provided

for all algorithms. The simulations in this study were conducted on a high-

performance computing node equipped with an NVIDIA TITAN X (Pascal)

4.3. Methodology 86

GPU featuring 12 GB of VRAM, an Intel Xeon E5-2640 v4 CPU operating at

2.40 GHz with 40 cores, and 62 GB of RAM.

Figure 4.1: Overview of the empirical study pipeline, illustrating the flow from
input observations to action selection, and reward computation (both
extrinsic and intrinsic) within the PPO framework.

4.3.5 Model Architecture

Figure 4.1 illustrates the pipeline of the empirical study, depicting the sequen-

tial flow of inputs, outputs, and reward computations within the model. At

each time step t, the input observation st (either a grid encoding or an RGB

image) is processed by the PPO algorithm, which outputs an estimated policy

and value function. The agent then takes an action at based on the estimated

policy, transitions to the next state st+1, and receives an extrinsic reward rextt .

Depending on the intrinsic reward method applied (State Count/SimHash,

ICM, DIAYN, or Max Entropy), the agent computes an intrinsic reward rintt

for the transition (st,at, st+1), following the formulations in Section 4.3.2. The

intrinsic and extrinsic rewards are combined rtotalt = rextt +βint ∗ rintt and fed

back into the Actor-Critic PPO network to refine the policy and value function.

For DIAYN exclusively, we avoid combining intrinsic and extrinsic rewards, as

discussed in Section 4.3.2.

The Actor-Critic (AC) model architecture used in PPO employs a shared

CNN to process observations, which can be either grid encodings or RGB

4.3. Methodology 87

(a) AC network (b) State Embedding

(c) Forward dynamics net-
work

(d) Inverse dynamics net-
work

(e) Discriminator network

Figure 4.2: Neural Network Architectures.

images. This CNN consists of three convolutional layers: the first layer has 16

filters of size 2×2 with Rectified Linear Unit (ReLU) activation, followed by a

2×2 max-pooling layer; the second layer has 32 filters of size 2×2 with ReLU

4.3. Methodology 88

activation; and the third layer has 64 filters of the same size and activation

function. The CNN output then branches into two fully connected networks,

designated as the actor and critic networks. Each network includes a hidden

layer with 64 units and Tanh activation. The actor network produces action

probabilities, while the critic network outputs the value function. Figure 4.2a

provides an overview of this architecture.

The PPO architecture remains consistent across all intrinsic rewards.

Some methods, however, require additional auxiliary networks, such as the

embedding networks ϕ for ICM, DIAYN, and SimHash (see Figure 4.2b), for-

ward (f) and inverse (g) dynamics networks in ICM (Figures 4.2c and 4.2d),

and the discriminator network qα in DIAYN (Figure 4.2e). For ICM and DI-

AYN, the state embedding network follows the same CNN architecture as PPO

to extract features from observations (see Figure 4.2b). SimHash further ap-

pends a fully connected layer to the embedding network, reducing the RGB

image embedding to a 512-dimensional vector prior to hashing.

4.3.6 Evaluation Metrics
We analyze each of the intrinsic rewards, according to five metrics:

Episodic return: This metric measures the total extrinsic reward accumu-

lated within a single episode: ∑H
t=1 r

ext
t , where rext

t is the extrinsic reward

received at timeframe t and H is the length of the episode. We report the

average episodic return for all actors. This metric captures the convergence

speed and learning ability of the intrinsic reward method.

Observation coverage: This metric offers insight into the extent of exploring

the observation space. We count how many unique observations (grid encod-

ings or RGB) have been visited during training. We normalize this metric over

the highest coverage achieved by the intrinsic reward methods.

Agent’s position coverage: This metric indicates the proportion of (x,y)

grid positions visited by the agent so far during training, calculated as:
Nvisited(x,y)
Ntotal(x,y) . Here, Nvisited(x,y) is the number of unique grid positions the

agent has visited, and Ntotal(x,y) is the total number of possible grid positions

4.4. Experimental Results and Discussion 89

the agent can visit. This metric captures how well the agent has explored

the position space, which is different from the observation space in a partially

observable framework.

Policy Entropy: This metric evaluates the stochasticity of the policy. For a

given state st, the Shannon entropy of the policy is defined as H(π(· | st)) =

−∑|A|
j=1π(aj | st) logπ(aj | st), where aj denotes one of the |A| possible actions

in the MiniGrid environment (|A|= 7 in our case). In practice, we report the

average of H(π(· | st)) across visited states and actors during training.

Time steps of the first, second, and third reward discoveries: We

record the number of frames at which the agent, using a particular intrinsic

reward method, successfully reaches a sparse reward for the first, second, and

third time. Note that “number of frames” refers to the number of times the

agent interacted with the environment throughout the training. This metric

sheds light on the speed and effectiveness of the exploration method to discover

the high-reward states, as well as learning to revisit these states.

Finally, we include further visualizations (heatmaps) of the state visita-

tion count ((x,y) positions) in Appendix A.4. These heatmaps represent the

proportion of visits to each grid position (x,y) relative to the total number

of frames. To generate them, we train the agent for 10M frames in singleton

environments, where the maze layout remains fixed across training episodes.

This setup highlights the agent’s exploration patterns on a consistent grid map.

Figures A.3, A.4, A.5, and A.6 in Appendix A.4.1 display results for grid-

encoded observations, while Figures A.7, A.8, A.9, and A.10 in Appendix A.4.2

show results for RGB observations. These visualizations illustrate the areas of

the grid explored by the agent during training across the four environments:

Empty, DoorKey, FourRooms, and RedBlueDoors.

4.4 Experimental Results and Discussion
We discuss the following three questions to analyze the performance of the

exploration algorithms:

4.4. Experimental Results and Discussion 90

F
ig

ur
e

4.
3:

T
he

fo
ur

m
et

ric
s

ag
ai

ns
t

th
e

nu
m

be
r

of
tr

an
sit

io
ns

(f
ra

m
es

)
pr

oc
es

se
d

by
th

e
en

vi
ro

nm
en

t.
O

bs
er

va
tio

ns
ar

e
gr

id
en

co
di

ng
s.

R
es

ul
ts

ar
e

av
er

ag
ed

ov
er

fiv
e

se
ed

s
w

ith
st

an
da

rd
de

vi
at

io
n

sh
ad

in
g.

Ve
rt

ic
al

da
sh

-d
ot

lin
es

m
ar

k
th

e
st

ar
t

of
D

IA
Y

N
fin

et
un

in
g.

H
or

iz
on

ta
ld

as
h-

do
t

lin
es

m
ar

k
th

e
th

eo
re

tic
al

m
ax

im
um

en
tr

op
y

of
th

e
po

lic
y
H

m
a

x
(π

)=
lo

g(
|A
|).

4.4. Experimental Results and Discussion 91

F
ig

ur
e

4.
4:

A
na

lo
go

us
to

Fi
gu

re
4.

3,
bu

t
ob

se
rv

at
io

ns
ar

e
pa

rt
ia

lR
G

B
im

ag
es

.

4.4. Experimental Results and Discussion 92

– RQ1: Do different intrinsic rewards lead to different return perfor-

mance/sample efficiency for both grid encodings and RGB partial obser-

vations?

– RQ2: What are the characteristics (strengths/weaknesses) of each intrin-

sic reward method, and what are the practical recommendations to select

intrinsic rewards?

– RQ3: How do different intrinsic rewards impact efficiency in discovering the

sparse reward? Is there any link with credit assignment?

4.4.1 RQ1: Return Performance of the Different Intrin-

sic Rewards
In terms of episodic return, State Count has the best performance with low-

dimensional observations (grid encodings) on all environments (see column 1

of Figure 4.3). It converges to the maximum return with the least number

of frames. In the case of DoorKey 16x16, where many algorithms—including

PPO, Max Entropy, and DIAYN—struggle to solve the task, State Count

emerges as the top performer, successfully obtaining the key and attaining the

highest return. Following closely, ICM demonstrates lower sample efficiency.

However, this is not the case for RGB observations (refer to column 1 of Figure

4.4), in which SimHash (equivalent to State Count) performs poorly on most

environments. The failure of SimHash in the case of RGB observations can be

attributed to the challenge in adequately representing the significant features

present in the high-dimensional states. RGB images contain an abundance

of extraneous pixel-level details that are irrelevant to the task, requiring the

agent to represent only the meaningful features. SimHash, which uses a sim-

ple hashing mechanism to represent states, struggles to capture the essential

features in RGB states due to their sparse and coarse encoding mechanisms.

This limitation is especially evident in environments that require high level

of feature abstraction and attention to object relationships, such as DoorKey

16x16, where misrepresenting critical details hinders the agent’s navigation.

4.4. Experimental Results and Discussion 93

Max Entropy is less impacted by such representation learning difficulties.

It achieves a slightly higher return on DoorKey 8x8 and FourRooms environ-

ments in the case of RGB observations (Figure 4.4). This robustness can be

attributed to Max Entropy’s tendency to encourage diverse policy exploration

without heavily relying on specific state representations, which provides a cer-

tain level of resilience to noisy feature extraction. All other intrinsic rewards

struggle to solve the tasks (except for Empty 16x16) and consistently maintain

a high level of non-decreasing policy entropy. This is likely because these meth-

ods rely on high-quality state representations to produce meaningful novelty

signals. In high-dimensional RGB observations, however, they tend to gener-

ate less informative intrinsic rewards. This results in difficulty differentiating

between truly novel states and irrelevant pixel-level variations, causing policy

learning to stagnate.

DIAYN finetuning has a worse average return compared to the baseline

PPO in both grid encodings and RGB scenarios. This shows that initializing

the AC weights with DIAYN skills does not improve sample efficiency com-

pared to random initialization. Note that DIAYN pretraining does not collect

any extrinsic reward because it is trained to maximize the intrinsic reward

generated by the discriminator and not the true task reward. We hypothesize

that the limited skill label space, compared to the vast state space, promotes

the learning of static skills that lack adaptability and fail to transfer effec-

tively to the target task. Specifically, the states encountered by different skills

tend to vary only slightly, enabling skill differentiation but not necessarily the

development of semantically meaningful or broadly transferable skills.

4.4.2 RQ2: Characteristics of Each Intrinsic Reward

Algorithm
State Count / SimHash demonstrates the best sample efficiency in grid

encodings, enabling efficient task-solving in small state/action spaces. Addi-

tionally, it ensures a fast coverage of observations and grid positions compared

to other algorithms, as depicted in columns 2 and 3 of Figures 4.3 and 4.4.

4.4. Experimental Results and Discussion 94

Furthermore, as it converges to the optimal policy, it exhibits a fast decreasing

policy entropy due to the diminishing intrinsic reward effect with increas-

ing state counts. Examination of the heatmaps (Appendix A.4) reveals that

State Count offers the most uniform coverage of the state space across all en-

vironments. This enables the algorithm to identify the optimal path, while

maintaining a balanced approach between exploration and reward maximiza-

tion. Remarkably, in the DoorKey environment (Figure A.4 in Appendix A.4),

State Count demonstrates a tendency to revisit the area around the key more

frequently. However, despite these strengths, a notable limitation arises in its

inability to effectively handle RGB images. In such cases, the algorithm strug-

gles to accurately count or represent pixels, thereby limiting its applicability

in scenarios with high-dimensional state spaces. As a practical recommen-

dation, State Count is a good choice for small, discrete environments, but

struggles with complex, high-dimensional ones. Although we did not explore

how different representations impact the performance of State Count in this

study, incorporating representation learning techniques presents an interesting

avenue for future research.

ICM exhibits favorable return performance and effectively explores the obser-

vation and position spaces, similarly to State Count, as they both prioritize

exploration within the state space. In environments characterized by low-

dimensional state spaces (Figure 4.3), ICM showcases consistent stability in

solving tasks across diverse scenarios. However, ICM’s convergence speed gen-

erally lags behind State Count due to the added computational complexity

of training both forward and inverse dynamics models. This additional over-

head likely introduces inefficiencies that slow down exploration, as shown in

heatmap analyses (Appendix A.4), where ICM’s slower rate of grid position

exploration is evident. These heatmaps illustrate that while ICM achieves

thorough state coverage, it does so at a slower rate, potentially limiting its

efficiency in tasks requiring rapid convergence. Moreover, similarly to State

Count, ICM encounters challenges in effectively processing RGB images (Fig-

4.4. Experimental Results and Discussion 95

ure 4.4). The pixel-based inputs add significant complexity, making it difficult

for ICM’s dynamics models to effectively process and encode meaningful fea-

tures. This limitation suggests that ICM’s performance may be hampered in

visually complex environments.

Max Entropy can solve most environments in the case of grid encoding ob-

servations (except DoorKey) (Figure 4.3). However, it does not converge faster

than State Count and shows a slightly lower average return because it fails for

some of the runs (such as on RedBlueDoors). This instability arises from the

algorithm’s tendency to promote high stochasticity in the policy, even when

a more deterministic approach would suffice, ultimately affecting the average

performance. By analyzing the heatmaps, we can see that Max Entropy ex-

plored unnecessarily or became confined to certain regions of the state space,

especially in easy environments such as FourRooms and RedBlueDoors (Fig-

ures A.5 and A.6 in Appendix A.4). This unnecessary exploration delays con-

vergence to optimal paths, as the agent is distracted from effectively reaching

the goal. The algorithm’s inclination to prompt the agent to try all possible

actions, including those rarely relevant to task success, can divert focus and

hinder progress. Additionally, a drawback of the Max Entropy approach is that

states with lower entropy may be visited less frequently or even overlooked.

As discussed by [172], the maximum entropy strategy, which optimizes poli-

cies to reach high-entropy states, does not always foster effective exploration.

Rather, it can create positive feedback loops where the agent becomes overly

focused on high-entropy areas, limiting its ability to comprehensively explore

the environment. This might reduce the likelihood of reaching less-visited yet

potentially critical states.

Nevertheless, in the case of partial RGB observations (Figure 4.4), Max

Entropy is less impacted by representation learning challenges. We observe

that on DoorKey and FourRooms, it slightly outperforms SimHash in terms

of return and shows a decrease in the policy entropy (see columns 1 and 4 of

Figure 4.4), as it succeeds in reaching the goal in several runs. Therefore, for

4.4. Experimental Results and Discussion 96

grid-based settings with high-dimensional state spaces, where simply counting

states becomes impractical, maximizing entropy can be a valuable alternative

exploration strategy to State Count. As a practical recommendation, Max

Entropy may not be the most effective exploration method in grid-like envi-

ronments with high-dimensional action spaces, where many actions are unused.

However, it performs adequately in environments with large state spaces and

small action spaces.

DIAYN generally has the worst average return compared to the other three

intrinsic rewards in both grid encodings and RGB scenarios. This is attributed

to the tradeoff between the ability to discriminate between different skills and

optimality. The need to generate distinguishable skills often leads DIAYN

to prioritize visits to easily discriminable states over achieving optimal explo-

ration. In the case of low-dimensional state space (Figure 4.3), it is surprising

that DIAYN finetuning has the highest observation and position coverages on

most environments (DoorKey, FourRooms and RedBlueDoors). The ease of

discriminating observations (due to distinct grid encodings reflecting differ-

ent object types, colors, or status) drives DIAYN to prioritize visiting them.

Unlike environments with distinct features, DIAYN struggles to cover the ob-

servation space in Empty 16x16 due to the difficulty of discriminating observa-

tions in a near-uniform grid (mostly walls). This further underscores DIAYN’s

reliance on environments with clear, discriminable features for effective explo-

ration. Moreover, the poor state space coverage by DIAYN (both pretrained

and finetuned) in the RGB setting (Figure 4.4) indicates limitations in the

discriminator’s ability to discriminate between RGB observations. This sug-

gests that the additional challenge of representation learning exacerbates the

discriminator’s learning difficulties. The presence of high-dimensional visual

data introduces an added layer of complexity as the agent must learn both

to distinguish visual features and navigate the space effectively. By further

analyzing the exploration pattern of DIAYN through the heatmaps, we notice

the following: DIAYN demonstrates uneven state coverage, often focusing on

4.4. Experimental Results and Discussion 97

corner areas or becoming restricted to specific regions within the grid that

contain easily distinguishable states (For example, see Figures A.4, A.6, A.9,

and A.10 in Appendix A.4). This suggests potential limitations in its ability to

explore diverse regions and acquire transferable skills. Without reaching differ-

ent target positions (e.g., door/key/goal), the skills lack meaningful variations

and adaptability. We hypothesize that this is due to DIAYN’s MI objective,

which does not explicitly maximize the entropy of the state distribution [173]

and does not promote broad state coverage [174]. The agent tends to receive

higher rewards for visiting known states rather than exploring novel ones,

as fully discriminable states yield a high MI reward [175]. This can hinder

novel state exploration and discourage the agent from learning far-reaching

skills [173]. Consequently, DIAYN might potentially constrain the diversity of

learned skills to those that are easier to distinguish but not necessarily effec-

tive for broad exploration or task relevance. In our particular setting, DIAYN

also encounters difficulty in learning the abstract skill space effectively. This

challenge might be particularly pronounced due to partial observability. As a

practical recommendation, learning unsupervised skills with DIAYN does not

help exploration in MiniGrid framework, especially in strategic tasks. Nev-

ertheless, pushing for diversity of skills can be useful for skill-chaining, fast

adaptation to environment changes, robustness, and generalization to differ-

ent tasks. We emphasize that our results hold only for our particular setting

where skill-learning turns out to be antagonistic to exploration and sample

efficiency in MiniGrid. This might not hold in other environments that could

benefit from such skills to converge faster. It is also worth noting that exploring

factors such as the skill space, the initial skill distribution, and incorporating

state abstraction techniques, along with auxiliary exploration mechanisms to

enhance state coverage of skills, could significantly improve DIAYN’s perfor-

mance. However, because this constitutes a substantial variation from the

original algorithm, we leave these considerations for future work.

4.4. Experimental Results and Discussion 98

Figure 4.5: Histogram of average frames needed by each exploration method to
collect rewards across environments. Observations are grid encodings.
Each bar’s three fading segments mark the frames at which the first,
second, and third rewards are collected; lower values are better. Re-
sults are averaged over five runs.

Figure 4.6: Analogous to Figure 4.5 but observations are partial RGB images.

4.4.3 RQ3: First, Second and Third Instances of Dis-

covering the Sparse Reward

We record the time steps at which the sparse reward is found by each of the

intrinsic rewards for the first, second, and third times in both grid encodings

(Figure 4.5) and RGB (Figure 4.6) scenarios. For more detailed results, in-

cluding averages and standard deviations, refer to Tables A.3, A.4, A.5, and

A.6 in Appendix A.4.1, as well as Tables A.7, A.8, A.9, and A.10 in Ap-

pendix A.4.2. We notice that in the case of low-dimensional observation space,

State Count (which has the highest return performance) finds the reward soon

on most environments, while DIAYN takes time to reach the goal, especially on

strategic tasks. For example, in the DoorKey environment, which represents a

strategic task, State Count is the first intrinsic reward to find the task reward,

while DIAYN finetuning is the last, and DIAYN pretraining does not reach

the goal at all within the pretraining time. This shows that DIAYN exhibits

limitations in acquiring skills that achieve the goal sequence of visiting the key,

the yellow door, and the green goal in this specified order. This limitation is

4.4. Experimental Results and Discussion 99

likely due to DIAYN’s focus on skill diversity rather than directed exploration,

making it less effective in tasks requiring structured sequences. Another inter-

esting observation is that the algorithm that discovers the reward the fastest

for the first time, might not be the fastest in visiting the rewarding state a

second and third time. This implies that diversity impacts credit assignment.

For example, on DoorKey (see Table A.4 in Appendix A.4), Max Entropy finds

the first reward before ICM for the first time, but it takes more time to learn

that it should go back to the reward for the third time. This is paramount

to designing a sample efficient algorithm because visiting rewards more often

provides more informative learning signals and allows learning credit faster,

more accurately and with less variance [26]. This implies that although Max

Entropy promotes policy exploration, it may lack mechanisms for prioritizing

or remembering rewarding states that consistently provide useful learning sig-

nals. In contrast, the results vary across other environments, highlighting how

different algorithms perform under varying conditions. Notably, in the Four-

Rooms environment (Figure 4.5), DIAYN pretraining is the first to find the

reward, as opposed to the case of strategic tasks. In an environment consisting

of several identical compartments, learning skills could lead to quick reward

discovery even though it does not directly maximize the task reward. This

suggests that DIAYN might be advantageous in environments with structural

similarity, where learned skills can be reused across similar compartments. For

the case of RGB observations (Figure 4.6), we observe that PPO and Max En-

tropy are among the fastest methods to find the reward on most environments,

surpassing SimHash. This reinforces the hypothesis that, when scaling to high

observation spaces, entropy might be a better strategy to push for exploration

rather than counting states. DIAYN finetuning also takes a long time to find

the reward, especially for strategic tasks such as DoorKey and RedBlueDoors.

This suggests that DIAYN’s emphasis on diversity may limit its ability to pri-

oritize reaching task-relevant states in complex, sequential tasks. Integrating

the MI objective of DIAYN with trajectory-based metrics between states to

4.5. Conclusion 100

enhance exploration could be a potential direction for handling strategic tasks.

4.5 Conclusion
In this chapter, we have reinterpreted intrinsic reward techniques in the liter-

ature using a diversity perspective (State, State + Dynamics, Policy, and Skill

levels of diversity). We conducted empirical studies on MiniGrid, to under-

stand the differences between these diversity levels in a partially observable

and procedurally generated framework.

The main outcome of the study is that State Count (representing State

level diversity) leads to the best exploration performance in the case of low-

dimensional observations. It improves the convergence speed in strategic tasks,

covers the state space homogeneously, and results in a rapid decrease in policy

entropy. However, State level diversity is fragile and requires good state repre-

sentations, while entropy maximization seems to be slightly more robust when

dealing with image-based observations. Learning good state representations

is challenging, so entropy maximization (representing Policy level diversity)

is a practical alternative. Lastly, DIAYN (representing Skill level diversity),

often associated with improved robustness and generalization, struggles with

exploration in MiniGrid due to the difficulty of learning the skill space and

exploring within it, in a procedurally generated partially observable setting.

4.5.1 Limitations and Future Work

This study serves as an initial exploration into the relationship between explo-

ration and diversity imposed by intrinsic rewards. While we provide insights

into this relationship, several limitations remain to be addressed in future work.

Firstly, we examine only one representative intrinsic reward method for

each level of diversity. This choice may not capture the full range of behaviors

within each category, potentially limiting the generalizability of our findings.

Expanding this work to benchmark a broader selection of intrinsic reward

methods would improve the applicability of our results.

Additionally, the effectiveness of intrinsic rewards is closely tied to the

4.5. Conclusion 101

environment in which they are applied. Our experiments are restricted to the

MiniGrid environment, specifically using grid encodings and RGB observa-

tions. Future studies could benefit from exploring more complex and varied

environments, such as Mujoco [176], Atari [162], MiniHack [166], and MiniMax

(Autocurricula) [177], where the impacts of different diversity levels might yield

more distinct behaviors. Some intrinsic reward methods may excel in certain

environments but perform poorly in others. Thus, identifying conditions under

which each intrinsic reward method performs best across diverse environments

would be a valuable contribution.

Moreover, while diversity can enhance exploration, it may also impede

performance as discussed in [178] in a phenomenon named the curse of diver-

sity. Therefore, pinpointing the conditions under which diversity aids rather

than hinders performance—or developing strategies to counterbalance the po-

tential negative effects of diversity—remains an open research question.

For the competence-based category, we employed DIAYN, a method that

learns a skill space autonomously. Other goal-conditioned approaches, such

as those learning different goal representations [179] or predefining goal ab-

stractions [180] may yield more efficient exploration strategies. Investigating

these approaches could offer further insights into competence-based intrinsic

rewards.

Finally, representation learning—especially as applied in conjunction with

intrinsic reward methods—also significantly impacts exploration efficacy. An-

alyzing how representation learning interacts with different levels of diversity

and affects exploration performance is an important direction for future re-

search.

Chapter 5

Near-Optimal Sample

Complexity in Reward-Free

Kernel-Based RL

In the previous chapter, we empirically examined the exploration problem in

deep RL. Our study showed that different exploration bonuses are effective in

different settings, and that exploration behavior can vary substantially across

RL scenarios. These findings highlighted both the potential and the limitations

of current empirical approaches: while they reveal important patterns, the

notion of optimal exploration (i.e., how an agent should explore efficiently to

learn an effective policy) remains poorly understood. Moreover, deep RL still

lacks a solid theoretical analysis of how many samples are required to explore

effectively and converge to a near-optimal policy. This gap between empirical

evidence and theoretical guarantees motivates our next step. In this chapter,

we build a solid theoretical framework aimed at bridging this gap and providing

deeper insight into the foundations of exploration in RL.

While tabular and linear models have been thoroughly explored in RL

theory, kernel-based models have recently gained traction for their strong rep-

resentational capacity and theoretical tractability. They also provide a step-

ping stone toward understanding more complex nonlinear models, including

neural networks, which remain largely theoretical black boxes. Therefore, in

5.1. Introduction 103

this chapter, we examine the question of statistical efficiency in kernel-based

RL within the reward-free RL framework. Existing work addresses this ques-

tion under restrictive assumptions about the class of kernel functions. We

begin our investigation under the assumption of a generative model, then relax

this assumption at the cost of increasing the sample complexity by a factor of

H, the length of the episode. Our approach uses a broad class of kernels and

a simpler learning algorithm for efficient reward-free exploration compared to

prior work, deriving new confidence intervals for kernel ridge regression tai-

lored to our RL setting. We further validate our theoretical findings through

simulations.

5.1 Introduction

RL with nonlinear function approximation is a powerful method for learning

general Markov Decision Processes (MDPs) through interactions with the en-

vironment. Kernel ridge regression for the prediction of the expected value

function is perhaps one of the most versatile methods that has gained traction

in recent years [31, 181, 182], and lends itself to theoretical analysis. As a bur-

geoning research area, there are still numerous open problems and challenges

in this topic.

We focus our work on statistical aspects of RL within the reward-free RL

framework [183, 184, 185], which involves an exploration phase and a planning

phase. In the exploration phase, the reward is unknown; the algorithm inter-

acts with the environment to gather information about the underlying MDP,

in the form of a dataset of transitions. In the planning phase, the reward is

revealed; the algorithm uses the knowledge of the reward and the dataset gath-

ered in the exploration phase to design a near-optimal policy. The planning

phase is thus akin to offline RL [186, 187, 188, 189, 190, 191].

From a practical standpoint, this reward-free RL paradigm is particularly

well-suited for scenarios involving multiple reward functions of interest, such

as in constrained RL [192, 193, 194]. In many applications, it is necessary to

5.1. Introduction 104

modify the reward function to encourage new or more desirable behaviors. For

instance, consider the task of training a robot to navigate through an environ-

ment while balancing competing objectives such as speed, energy consumption,

and safety. Initially, the designer may prioritize efficiency, only to later real-

ize that the policy violates safety constraints or consumes too much energy.

Tuning the reward function to encode these preferences typically requires re-

running RL from scratch, which involves additional costly interaction with the

environment. To avoid repeatedly invoking the learning algorithm and inter-

acting with the environment, it is desirable for the agent to efficiently explore

the environment without access to the reward, collecting a dataset with good

coverage over all possible scenarios in the environment. This dataset can then

be reused during planning to compute near-optimal policies for a variety of

reward functions.

In this chapter, we answer the following fundamental question: Under

some reasonable assumptions on the underlying MDP, what is the minimum

number of samples required to enable designing a near-optimal policy?

We refer to the number of samples as sample complexity and measure the

optimality of the eventual policy in terms of error in the value function. In

particular we refer to a policy as ϵ-optimal if its value function is at most a

small ϵ > 0 away from that of the optimal policy for all states.

The reward-free RL framework has been studied in tabular [183] and lin-

ear [184, 195, 196] settings. Under the tabular setting, it has been shown

that O(|S|2|A|H5/ϵ2) samples are sufficient to achieve an ϵ-optimal policy,

where S and A are the state and action spaces, respectively, and H repre-

sents the length of episode. In the linear setting, a sample complexity of

O(d3H6/ϵ2) has been established that does not scale with the size of the

state-action space, but the ambient dimension d of the linear model repre-

senting the transition structure of the MDP. With the limitations of the lin-

ear model (e.g., as shown in [197]), recent works have considered nonlinear

function approximation in RL. The work of [185] considered the reward-free

5.1. Introduction 105

RL framework with kernel-based function approximation. However, their re-

sults only apply to very smooth kernels with exponential eigendecay, such as

Squared Exponential (SE), but fail to provide finite sample complexity appli-

cable to a large class of kernels of interest with polynomial eigendecay (see

Definition 1), such as Matérn family or Neural Tangent kernels (NTK). This

shortcoming arises from the bias in the collected samples. Specifically in the

exploration phase of [185], the samples are adaptively collected to achieve a

high value with respect to a hypothetical reward—proportional to the uncer-

tainties of the kernel ridge regression—introducing bias to the samples and

inflating confidence intervals. Another closely related work on reward-free RL

in the kernel setting is [198], which, like [185], uses a hypothetical reward pro-

portional to the uncertainty of kernel ridge regression. However, it improves

upon [185] by providing order-optimal sample complexities for kernels with

polynomially decaying eigenvalues, where [185]’s results are unbounded. This

is achieved via an adaptive domain partitioning procedure inspired by [181]. In

this method, the state-action domain is adaptively divided into multiple sub-

domains as samples are collected, with kernel-based value function estimates

constructed based on samples from the same subdomain, while discarding pre-

vious observations from other subdomains. Although their approach offers

theoretical advantages, it is tedious to implement in practice due to complex

domain partitioning structure. Moreover, discarding samples may degrade the

empirical performance, a concern that is not addressed in [198]. Additionally,

their theoretical results depend on specific assumptions about the relationship

between kernel eigenvalues and domain size, which limits generality of their

work. A detailed comparison between our work and the two closely related

works of [185] and [198] is provided in Section 5.2.2 along with a more com-

prehensive literature review in Section 5.2.1.

In contrast to the existing work, this chapter establishes near-optimal sam-

ple complexities for the reward-free kernel-based RL framework over a general

class of kernels, without relying on restrictive assumptions. This is accom-

5.1. Introduction 106

plished via a simple algorithm and a novel confidence interval for unbiased

samples, broadly applicable to other RL settings (offline RL, model-based, in-

finite horizon), and supported by empirical evidence. Specifically, we start

with a case where a generative model [199] is present and it permits the al-

gorithm to sample state-actions of its choice during the exploration phase,

not limiting the algorithm to stay on the Markovian trajectory. This setting

has been extensively considered in previous work on statistical efficiency of

RL (see, e.g., [200, 201, 202, 203, 204, 205]). In the presence of a generative

model, we propose a simple algorithm that collects unbiased samples by choos-

ing the state-actions with highest kernel-based regression uncertainty at each

step. We derive order-optimal sample complexities for this algorithm in terms

of 1
ϵ , while [198] do not offer any particular advantages in the generative model

case. Generative models are applicable in scenarios like games where the al-

gorithm can manipulate the current state, offering insights into the statistical

aspects of RL. However, this may not be the case in other scenarios. Inspired

by the analysis of the exploration algorithm with a generative model, we pro-

pose a second online exploration algorithm that collects samples adhering to

the Markovian trajectory. We prove that this relaxing of generative model

requirement incurs merely an H factor increase in the sample complexity.

To highlight the significance of our results, we consider kernels with poly-

nomial eigendecay that are of practical and theoretical interest [67, 206, 207].

When the eigenvalues of the kernel decay polynomially as O(m−p)—see Defini-

tion 1—the results of [185] lead to possibly vacuous (infinite) sample complex-

ities, while we prove an Õ((H
3

ϵ)2+ 2
p−1) sample complexity for the generative

setting and Õ(H(H
3

ϵ)2+ 2
p−1) for the online setting. Our sample complexity

results are comparable to those of [198]. In a technical comparison, their

approach requires a specific assumption on the dependence between kernel

eigenvalues and domain size (see Definition 4.1 in [198]), which we do not.

Additionally, they employ a sophisticated domain partitioning algorithm that

is more difficult to implement and possibly inefficient in practice, whereas our

5.2. Related Work 107

algorithm is simpler and more straightforward. In the case of Matérn kernel

with smoothness parameter ν on a d-dimensional domain, where p = 1 + 2ν
d ,

our results translate to a sample complexity of Õ(H(H
3

ϵ)2+ d
ν), that matches

the Ω((1
ϵ)

2+ d
ν) lower bound proven in [65] for the degenerate case of bandits

with H = 1. Our sample complexities thus are not generally improvable in

their scaling with 1
ϵ .

To achieve these results, we establish a confidence interval applicable to

kernel ridge regression in our RL setting that may be of broader interest. The

key technical novelties of this confidence interval involves leveraging the struc-

ture of RKHS and the properties of unbiased, independent samples. The main

results regarding the confidence interval and sample complexities of the two

exploration algorithms, with and without the generative model, are presented

in Theorems 1, 2 and 3, respectively, in Section 5.5. We empirically validate

our analytical findings through numerical experiments comparing the perfor-

mance of our proposed exploration algorithms with that of [185], as detailed

in Section 5.6. Section 5.2 provides an overview of related work, Section 5.3

introduces episodic MDPs, the reward-free RL framework, and kernel-based

models. Section 5.4 presents our algorithms for both the exploration and plan-

ning phases. Detailed proofs of theorems, along with the details of experiments

and further experimental results, are included in Appendix B.

5.2 Related Work
In this section, we first present a more comprehensive literature review, in-

cluding related works that were not covered in Section 5.1. We also provide

a summary table of sample complexity results in the reward-free RL setting,

highlighting our key contributions. Following this, we offer a technical compar-

ison between our work and the two most relevant prior works, [185] and [198].

5.2.1 Literature Review

Numerous studies have addressed the sample complexity problem in the dis-

counted MDP framework with an infinite horizon, where the agent has sam-

5.2. Related Work 108

Table 5.1: Existing sample complexities in reward-free RL. S, A, H, d and p rep-
resent the state space, action space, episode length, state-action space
dimension and parameter of the kernel with polynomial eigendecay, re-
spectively. Last two rows correspond to the performance guarantees for
the algorithms proposed in this work.

Setting Sample complexity
Tabular [183] O

(
|S|2|A|H5

ϵ2

)
Linear [184] Õ

(
d3H6

ϵ2

)
Kernel-based (exponential eigendecay) [185] O

(
H6polylog(1

ϵ)
ϵ2

)
Kernel-based (polynomial eigendecay) [198] Õ

(
(H

3

ϵ)2+ 2
p−1

)
Kernel-based (exponential eigendecay) (this work) Õ

(
H7polylog(1

ϵ)
ϵ2

)
Kernel-based (polynomial eigendecay) (this work) Õ

(
H(H

3

ϵ)2+ 2
p−1

)

pling access to a generative model, such as [208, 201, 204]. Alternatively,

other research has focused on the episodic MDP framework, without re-

liance on a generative model or an exploratory policy. Both the tabular set-

ting [17, 18, 19] and the linear setting [20, 21, 22, 23, 24] have been thoroughly

examined. Recent literature has extended these techniques to the kernel set-

ting [31, 209, 210, 211, 181], although further improvements are needed in

achieving better regret bounds. In contrast to these prior works which as-

sume that the reward function is provided, we explore the episodic reward-free

setting in this work, both with and without a generative model. This set-

ting is significantly different from standard RL, rendering the existing sample

complexity results inapplicable to our context.

In the context of reward-free RL, numerous empirical studies have pro-

posed various exploration methods from a practical perspective, as demon-

strated by works such as [131, 135, 212]. Theoretically, researchers have ex-

plored the reward-free RL framework across different levels of complexity,

ranging from tabular to linear, kernel-based, and deep learning-based mod-

els [183, 184, 185] (Table 5.1). Although the existing literature adequately

covers the tabular and linear settings, it often provides only partial and in-

5.2. Related Work 109

complete findings when addressing the more intricate kernel-based and deep

learning settings. The most relevant work in the kernel setting is [185], which

provides a reward-free algorithm whose sample complexity is O
(
H6polylog(1

ϵ)
ϵ2

)
.

Their results however are only applicable to very smooth kernels with exponen-

tially decaying eigenvalues. The recent work of [198] proved a sample complex-

ity of Õ
(

(H
3

ϵ)2+ 2
p−1

)
for kernels with polynomial eigendecay. However, they

employ a niche domain partitioning technique that, despite its theoretical ap-

peal, is cumbersome to implement and raises practical concerns, as mentioned

earlier.

Finally, it’s important to mention that the planning phase of our proposed

algorithm is similar to the problem of learning a good policy from predefined

datasets, typically called batch or offline RL [189]. Many prior works on offline

RL make the coverage assumption on the dataset, requiring it to sufficiently

include any possible state-action pairs with a minimum probability [186, 187,

191, 188]. These works do not address the exploration needed to achieve such

good coverage, which is where our reward-free approach significantly differs.

Our goal is to demonstrate how to collect sufficient exploration data without

any reward information, enabling the design of a near-optimal policy for any

reward function during the planning phase.

5.2.2 Comparison to Existing Works

Here, we discuss the key differences between our approach and the closely re-

lated works of [185] and [198]. In [185], they conduct exploration by accumulat-

ing standard deviation over an episode, then they apply a planning phase-like

algorithm to maximize a reward proportional to β(δ)σh,n at each step of an

episode. However, this approach can inflate the confidence interval width mul-

tiplier β(δ) by a factor of
√

Γ(n), potentially leading to suboptimal or even

trivial sample complexities when
√

Γ(n) is large, as seen in [185]. Specifically,

their results are applicable to very smooth kernels like SE, with exponentially

decaying Mercer eigenvalues, for which Γ(n) =O(polylog(n)). For kernels with

polynomial eigendecay, where Γ(n) =O(n
1
p+1) grows polynomially with n, this

5.3. Preliminaries and Problem Formulation 110

algorithm possibly leads to trivial (infinite) sample complexities. Intuitively,

the inflation of β(δ) is due to the adaptive sampling creating statistical depen-

dencies among observations, specifically through next state transitions. When

such dependencies exist, the best existing confidence intervals are based on

a kernel adaptation of self-normalized vector values martingales [213]. The√
Γ(n) term cannot be removed in general for adaptive samples that introduce

bias, as was discussed in [32] and [214].

The work in [198] utilizes domain partitioning, relying on only a subset of

samples to obtain confidence intervals. This approach achieves order-optimal

sample complexity for kernels with polynomial eigendecay, offering an H-factor

improvement compared to our work in the online setting. However, firstly,

their results are limited by specific assumptions regarding the relationship

between kernel eigenvalues and domain size, which reduces the generality of

their findings. Secondly, their domain partitioning method is cumbersome to

implement and lacks practical justification, as it requires dropping samples

from other subdomains. In contrast, our algorithm achieves order-optimal

results for general kernels with a simpler approach that leverages statistical

independence. Moreover, our method is well-suited to the generative setting,

where their approach offers no clear advantages.

5.3 Preliminaries and Problem Formulation

In this section, we introduce the episodic MDP setting, describe the reward-

free RL framework, provide background on kernel methods, and outline our

technical assumptions.

5.3.1 Episodic MDP

An episodic MDP can be described by the tuple M = (S,A,H,P,r), where

S denotes the state space, A the action space, and the integer H the length

of each episode. Here, r = {rh}Hh=1 represents the reward functions, and P =

5.3. Preliminaries and Problem Formulation 111

{Ph}Hh=1 the transition probability distributions.1 The state-action space is

denoted by Z = S×A. The notation z = (s,a) is used throughout the chapter

for state-action pairs. For each step h∈ [H], the reward function rh :Z → [0,1]

is supposed to be deterministic for simplicity, and Ph(·|s,a) is the unknown

transition probability distribution on S for the next state given the current

state-action pair (s,a). A policy π = {πh : S → A}Hh=1 determines the action

πh(s)—possibly random—taken by the agent at state s during each step h.

At the beginning of each episode, the environment picks an arbitrary initial

state s1. The agent adopts a policy π = {πh}Hh=1. For each step h ∈ [H], the

agent observes the current state sh ∈ S, and selects an action ah = πh(sh).

The subsequent state, sh+1, is then drawn from the transition probability

distribution Ph(·|sh,ah). The episode ends when the agent receives the final

reward rH(sH ,aH).

We are interested in maximizing the expected total reward in the episode,

starting at step h. This is quantified by the value function, which is defined

as follows:

V π
h (s) = E

 H∑
h′=h

rh′(sh′ ,ah′)
∣∣∣∣∣sh = s

 ,∀s ∈ S,h ∈ [H], (5.1)

where the expectation is taken with respect to the randomness in the trajectory

{(sh,ah)}Hh=1 obtained by the policy π. It can be shown that under mild

assumptions (e.g., continuity of Ph, compactness of Z, and boundedness of r),

there exists an optimal policy π⋆ which attains the maximum possible value of

V π
h (s) at every step and at every state (see, e.g., [215]). We use the notation

V ⋆
h (s) = maxπ V π

h (s), ∀s ∈ S,h ∈ [H]. By definition V π⋆

h = V ⋆
h . An ϵ-optimal

policy is defined as follows.

Definition 2. (ϵ-optimal policy) For ϵ > 0, a policy π is called ϵ-optimal if it

achieves near-optimal values from any initial state as follows: V π
1 (s)≥ V ⋆

1 (s)−

ϵ, ∀s ∈ S.
1We deliberately do not use the standard term transition kernel for Ph, to avoid confusion

with kernel in kernel-based learning.

5.3. Preliminaries and Problem Formulation 112

Policy design often relies on the expected value of a value function with re-

spect to the transition probability distribution, presented using the following

notation:

[PhV](s,a) := Es′∼Ph(·|s,a)[V (s′)]. (5.2)

We also define the state-action value function Qπh : Z → [0,H] as follows:

Qπh(s,a) = Eπ

 H∑
h′=h

rh′(sh′ ,ah′)
∣∣∣∣∣sh = s,ah = a

 , (5.3)

where the expectation is taken with respect to the randomness in the trajectory

{(sh,ah)}Hh=1 obtained by the policy π. The Bellman equation associated with

a policy π is then represented as

Qπh(s,a) = rh(s,a)+ [PhV π
h+1](s,a),

V π
h (s) = E[Qπh(s,πh(s))], V π

H+1 = 0.

The notation V = 0 is used for V (s) = 0, for all s ∈ S. We may specify the

reward function in V π,Qπ,V ⋆,Q⋆ notations for clarity, for example, V π(s;r)

and Q⋆(z;r).

5.3.2 Reward-Free RL Framework

We aim to learn ϵ-optimal policies while minimizing the samples collected

during exploration. Specifically, we employ the reward-free RL framework,

which consists of two phases: exploration and planning. In the explo-

ration phase, we collect a dataset DN = {Dh,N}h∈[H], where each Dh,N ={(
sh,n,ah,n, s

′
h+1,n ∼ Ph(·|sh,n,ah,n)

)}
n∈[N]

consists of N transition samples at

step h. Then, in the planning phase, once the reward r is revealed, we design

a policy specific to reward r using the data collected during the exploration

phase. The number N denotes the sample complexity required to design an ϵ-

optimally performing policy. A critical question arises: How many exploration

episodes are necessary to achieve ϵ-optimal policies? We provide an answer in

this chapter.

5.3. Preliminaries and Problem Formulation 113

5.3.3 Kernel Ridge Regression

As introduced in Section 2.6.2, kernel-based methods are effective for estimat-

ing the expected value function in RL. In this section, we present the kernel

ridge regression formulation used in our setting, focusing on its role in deriving

statistical predictions and confidence intervals.

Keeping the Bellman equation in mind, we derive statistical predictions

and bounds for the expected value function [PV] :Z →R, for some given value

function V : S →R and conditional probability distribution P (·|z). Let us use

the notation f = [PV]. Suppose that we are given n noisy observations of f ,

represented as {(zi,yi)}i∈[n], where yi = f(zi) + εi, and εi denotes zero-mean

random noise. Provided a positive definite kernel k :Z×Z →R and employing

kernel ridge regression, we can make the following prediction for f :

f̂n(z) = k⊤
n (z)(Kn+ τ2I)−1yn, (5.4)

where kn(z) = [k(z,z1),k(z,z2), · · · ,k(z,zn)]⊤ is the pairwise kernel values be-

tween z and observation points, Kn = [k(zi, zj)]i,j∈[n] is the Gram matrix,

yn = [y1,y2, · · · ,yn]⊤ is the vector of observations, τ > 0 is a free parameter,

and I is the identity matrix, appropriately sized to match the dimensions of

Kn. In addition, the following uncertainty estimate can be utilized to bound

the prediction error:

σ2
n(z) = k(z,z)−k⊤

n (z)(Kn+ τ2I)−1kn(z) (5.5)

In particular, various 1− δ confidence intervals of the form |f(z)− f̂n(z)| ≤

β(δ)σn(z), under various assumptions, are proven, where β(δ) is a confi-

dence interval width multiplier that depends on the setting and assump-

tions [213, 66, 70, 72]. One of our primary contributions is establishing novel

confidence intervals for f = [PV], applicable to our RL setting. Equipped with

the confidence intervals, we are able to design policies using least squares value

iteration or its optimistic variant.

5.4. Algorithm Description 114

Reproducing Kernel Hilbert Spaces (RKHS) and Mercer Represen-

tation. We briefly recall the definitions of RKHS and the Mercer theorem

from Chapter 3, Section 3.3.2. Given a positive definite kernel k, the associated

RKHSHk consists of functions f that can be written as f =∑∞
m=1wm

√
γmφm,

where {γm,φm} are the Mercer eigenpairs of k. The RKHS norm is given by

∥f∥2Hk
=∑∞

m=1w
2
m, that is, the ℓ2-norm of the weight vector w = [w1,w2, · · ·]⊤.

For formal statements and further details, please refer to Appendix B.5.

To effectively use the confidence intervals established by the kernel-based mod-

els on f , we require the following assumption.

Assumption 1. We assume Ph(s|·, ·) ∈ Hk, for some positive definite kernel

k, and ∥Ph(s|·, ·)∥Hk
≤ 1, for all s ∈ S and h ∈ [H].

Consequently, for all V : S → [0,H], we have ∥[PV]∥Hk
= O(H). See [216],

Lemma 3, for a proof.

Information Gain and Eigendecay. As introduced in Chapter 3 (see Sec-

tion 3.3.5), the maximum information gain Γ(n) quantifies the complexity of

kernel-based RL and bandit problems [67, 68]:

Γ(n) = sup
{zi}ni=1⊂Z

1
2 logdet

(
I+ Kn

τ2

)
. (5.6)

Its growth is governed by the decay rate of the eigenvalues of the kernel (Def-

inition 1). In particular, as discussed in Chapter 3, Γ(n) =O(polylog(n)) for

kernels with exponential eigendecay (e.g., SE kernels), and Γ(n) = Õ(n1/p)

for kernels with polynomial eigendecay (e.g., Matérn kernels), with important

implications for regret bounds in RL and bandits [68].

5.4 Algorithm Description
We now present our algorithms for both the exploration and planning phases.

We begin by presenting the algorithm for the planning phase, as it remains

unchanged across various exploration algorithms.

5.4. Algorithm Description 115

5.4.1 Planning Phase

In the planning phase, the reward function r is revealed to the learner. In addi-

tion, a dataset DN = {Dh,N}h∈[H] is available, with Dh,N = {sh,n,ah,n, s′
h+1,n∼

Ph(·|sh,n,ah,n)}n∈[N] for each step h ∈ [H]. The objective is to leverage the

knowledge of the reward function and utilize the dataset to design a near-

optimal policy. As mentioned in the introduction, the planning phase com-

prises of an offline RL design without further interaction with the environment.

In the planning phase of our algorithm, we derive a policy using least

squares value iteration. Specifically, at step h, we compute a prediction, ĝh,

for the expected value function in the next step [PhVh+1]. We then define

Qh(·, ·) = Π[0,H]
[
rh(·, ·)+ ĝh(·, ·)+β(δ)σh,N (·, ·)

]
, (5.7)

where Π[a,b] denotes projection on [a,b] interval. The policy π is then obtained

as a greedy policy with respect to Q. For each h ∈ [H],

πh(·) = argmax
a∈A

Qh(·,a).

We now detail the computation of ĝh. Keeping the Bellman equation in mind

and starting with VH+1 = 0, ĝh is the kernel ridge predictor for [PhVh+1]. This

prediction uses N observations

yh = [Vh+1(s′
h+1,1),Vh+1(s′

h+1,2), · · · ,Vh+1(s′
h+1,N)]⊤

at points {zh,n}Nn=1. Recall that Es′∼P (·|zh,n) [Vh+1(s′)] = [PhVh+1](zh,n). The

observation noise Vh+1(s′
h+1,n)− [PhVh+1](zh,n) is due to random transitions

and is bounded by H−h≤H. Specifically,

ĝh(z) = k⊤
h,N (z)(τ2I+Kh,N)−1yh, (5.8)

where kh,N (z) = [k(z,zh,1),k(z,zh,2), · · · ,k(z,zh,N)]⊤ is the pairwise kernel val-

ues between z and observation points and Kh,N = [k(zh,i, zh,j)]i,j∈[N] is the

5.4. Algorithm Description 116

Gram matrix. Also, σh,N in (5.7) is specified as follows:

σ2
h,N (z) = k(z,z)−k⊤

h,N (z)(τ2I+Kh,N)−1kh,N (z). (5.9)

We then define Qh according to (5.7) and set

Vh(s) = max
a∈A

Qh(s,a).

The values of ĝh, σh,N , Qh and Vh are obtained recursively for h = H,H −

1, · · · ,1. For a pseudocode, see Algorithm 7.

Algorithm 7 Planning Phase
Input: τ , β, δ, k, M(S,A,H,P,r), and exploration dataset DN .
for h=H,H−1, · · · ,1, do

Compute the prediction ĝh according to (5.8);
Let Qh(·, ·) = Π[0,H][ĝh(·, ·)+ rh(·, ·)+β(δ)σh,N (., .)];
Vh(·) = maxa∈AQh(·,a);
πh(·) = argmaxa∈AQh(·,a);

end for
Output: {πh}h∈[H].

5.4.2 Exploration Phase

In the exploration phase, the algorithm collects a dataset DN = {Dh,N}h∈[H],

where Dh,N = {sh,n,ah,n, s′
h+1,n}h∈[H],n∈[N] for each h ∈ [H], later used in the

planning phase to design a near-optimal policy. The primary goal during this

phase is to gather the most informative observations.

Initially, we consider a preliminary case where a generative model [199]

is present that can produce transitions for the state-actions selected by the

algorithm. Under this setting, we demonstrate that a simple rule for data

collection leads to improved and desirable sample complexities. Inspired by

these results, we introduce a novel algorithm that completely relaxes the re-

quirement for a generative model, at the price of increasing the number of

exploration episodes by a factor of H. The key aspect of our algorithms is the

unbiasedness–statistical independence of the collected samples, which means

5.4. Algorithm Description 117

that the observation points do not depend on previous transitions.

Algorithm 8 Exploration Phase with Generative Model
Require: τ , k, S, A, H, P , N ;

1: Initialize Dh,0 = {}, for all h ∈ [H];
2: for n= 1,2, · · · ,N do
3: for h= 1,2, · · · ,H do
4: Let sh,n,ah,n = argmaxs∈S,a∈Aσh,n−1(s,a);
5: Observe s′

h+1,n ∼ Ph(·|sh,n,ah,n);
6: Update Dh,n =Dh,n−1

⋃{sh,n,ah,n, s′
h+1,n}.

7: end for
8: end for
9: Output: DN .

Algorithm 9 Exploration Phase without Generative Model
Require: τ , k, β, δ, S, A, H, P , N ;

Initialize Dh,0 = {}, for all h ∈ [H];
for n= 1,2, · · · ,N do

for h0 = 1,2, · · · ,H do
Initialize Vh0+1,n = 0
for h= h0,h0−1, · · · ,1 do

Obtain f̂h,(n,h0); Qh,(n,h0), and Vh,(n,h0)(·) according to (5.12) and
(5.13), respectively.

end for
for h= 1,2, · · · ,h0 do

Observe sh,n; Take action ah,n = argmaxa∈AQh,n(sh,n,a);
end for
Update Dh0,n =Dh0,n−1

⋃{sh0,n,ah0,n, sh0+1,n}
end for

end for

5.4.2.1 Exploration with a Generative Model
In this section, we outline the exploration phase when a generative model is

present. At each step h of the current exploration episode, uncertainties de-

rived from kernel ridge regression are employed to guide exploration. Specifi-

cally, let

σ2
h,n(z) = k(z,z)−k⊤

h,n(z)(τ2I+Kh,n)−1kh,n(z) (5.10)

where kh,n(z) = [k(z,zh,1),k(z,zh,2), · · · ,k(z,zh,n)]⊤ is the vector of kernel val-

ues between the state-action of interest and past observations in Dh,n, and

5.4. Algorithm Description 118

Kh,n = [k(zh,i, zh,j)]ni,j=1 is the Gram matrix of pairwise kernel values between

past observations in Dh,n. Equipped with σh,n(z), at step h, we select

sh,n,ah,n = argmax
s∈S,a∈A

σh,n−1(s,a), (5.11)

and observe the next state s′
h+1,n ∼ Ph(·|sh,n,ah,n). We then add this data

point to the dataset and update Dh,n = Dh,n−1 ∪{(sh,n,ah,n, s′
h+1,n)}. For a

pseudocode, see Algorithm 8.

We highlight that the selection rule (5.11) relies on the generative model

that allows the algorithm to deviate from the Markovian trajectory and move

to a state of its choice. Since observations (sh,n,ah,n) are selected based on

maximizing σh,n−1, which by definition (5.10) does not depend on previous

transitions {s′
h+1,i}

n−1
i=1 , the statistical independence conveniently holds. The

generative model setting is feasible in contexts such as games, where the player

can manually set the current state. However, this may not always be possible

in other scenarios. Next, we introduce our online algorithm, which strictly

stays on the Markovian trajectory.

5.4.2.2 Exploration without Generative Models

In this section, we show that a straightforward algorithm, in contrast to exist-

ing approaches, achieves near-optimal performance in an online setting with-

out requiring a generative model. Compared to the scenario with a generative

model, the sample complexity of this algorithm increases by a factor of H.

For a detailed and technical comparison with existing work, please refer to

Section 5.2.2.

Our online algorithm operates as follows: in each exploration episode, only

one data point specific to a step h is collected—this accounts for the H scaling

in sample complexity. This observation however is collected in an unbiased

way, which eventually leads to tighter performance guarantees. Specifically,

at episode nH + h0, where n ∈ [N] and h0 ∈ [H], the algorithm collects an

informative sample for the transition at step h0. This results in a total of N

5.4. Algorithm Description 119

samples at each step over NH episodes. The algorithm initializes Vh0+1,(n,h0) =

0. Let f̂h,(n,h0) and σh,n represent the predictor and uncertainty estimator for

[PhVh+1,(n,h0)], respectively. These are derived from the historical data Dh,n−1

of observations at step h. Specifically,

f̂h,(n,h0)(z) = k⊤
h,n(z)(Kh,n+ τ2I)−1yh,n,

σ2
h,n(z) = k(z,z)−k⊤

h,n(z)(Kh,n+ τ2I)−1kh,n(z), (5.12)

where kh,n(z) = [k(z,zh,1),k(z,zh,2), · · · ,k(z,zh,n)]⊤ is the vector of kernel

values between the state-action of interest and past observations in Dh,n,

Kh,n = [k(zh,i, zh,j)]ni,j=1 is the Gram matrix of pairwise kernel values between

past observations in Dh,n, and

yh,(n,h0) = [Vh+1,(n,h0)(sh+1,1),Vh+1,(n,h0)(sh+1,2), · · · ,Vh+1,(n,h0)(sh+1,n)]⊤

is the vector of observations. We then have

Qh,(n,h0) = Π0,H
[
f̂h,(n,h0) +β(δ)σh,n

]
,

Vh,(n,h0)(·) = max
a∈A

Qh,(n,h0)(·,a). (5.13)

The values ofQh,(n,h0) and Vh,(n,h0) are obtained recursively for all h∈ [h0]. The

exploration policy at episode nH +h0 is then the greedy policy with respect

to Qh,(n−1,h0). The dataset is updated by adding the new observation to the

dataset for step h0, such that Dh0,n =Dh0,n−1∪{(sh0,n,ah0,n, sh0+1,n)}, while

datasets for all other steps remain unchanged: Dh,n = Dh,n−1 for all h ̸= h0.

This specific update ensures that the collected samples are unbiased. More

specifically, the sample collected at h0 solely relies on the uncertainty σh0,n,

due to the initialization Vh0+1,(n,h0) = 0 which implies f̂h0,(n,h0) = 0. Since σh0,n

does not depend on previous transitions s(h0+1,i) for any i ≤ n, the samples

at h = h0 are unbiased. However, for h < h0, the samples depend on both

the uncertainty σh,n and the prediction f̂h,(n,h0) (5.12). Since the prediction

5.4. Algorithm Description 120

depends on the transitions s(h+1,i) for i ≤ n, these samples are biased. As a

result, we discard them and only retain the unbiased samples at h= h0. This

approach improves the rates in our analysis, albeit at the cost of a factor of H.

For a pseudocode, see Algorithm 9, and for a diagram sketch, see Figure 5.1.

Figure 5.1: High-level illustration of sample collection in the exploration algorithm
without a generative model (Algorithm 9). At each episode, only one
unbiased sample corresponding to step h0 (shown inside the rectangle)
is collected. The backward arrows indicate the recursive computation
of the value functions.

5.4.3 Computational Complexity

The main computational bottleneck is the matrix inversion in kernel ridge re-

gression, which incurs a cost of O(n3), leading to a total complexity of O(N4)

for our algorithms. This is comparable to the complexities in related work, such

as [181] and [185]. Notably, the O(n3) cost of matrix inversion is not unique

to RL but is common across kernel-based supervised learning and bandit lit-

erature. Sparse approximation methods, such as Sparse Variational Gaussian

Processes (SVGP) and the Nyström method, can significantly reduce this com-

plexity (in some cases, to linear time) while preserving kernel-based confidence

intervals and corresponding rates (e.g., [217]). However, since these methods

are broadly applicable rather than specific to our setting, we chose to maintain

5.5. Analysis of the Sample Complexity 121

a clear, notation-light presentation focused on our main contributions.

5.5 Analysis of the Sample Complexity
In this section, we present our main results on the sample complexity of the

algorithms. We first establish a novel confidence interval that is applicable to

the unbiased samples collected by our exploration algorithms. We then provide

theorems detailing the performance of these algorithms.

5.5.1 Confidence Intervals

We introduce a novel confidence interval that is tighter than existing ones in

our RL setting and can also be applied to other RL problems such as offline

RL and infinite-horizon settings.

Theorem 1 (Confidence Bounds). Consider compact sets S ⊂ Rds ,A⊂ Rda,

and define Z =S×A, d= da+ds. Consider two Mercer kernels kφ :Z×Z→R

and kψ : S×S →R. Assume that functions f :Z →R and V : S →R, and for

each z ∈Z, a conditional probability distribution P (·|z) over S, are given such

that f(z) = Es∼P (·|z)[V (s)], ∥f∥Hkφ
≤ B1, ∥V ∥Hkψ

≤ B2, and maxs∈S V (s) ≤

vmax, for some B1,B2,vmax > 0. Assume a dataset of {zi, s′
i}ni=1 is provided,

where each zi is independent of the set {s′
j}nj=1, and s′

i ∼ P (·|zi). Let f̂n

and σn be the kernel ridge predictor and uncertainty estimator of f using the

observations:

f̂n(z) = k⊤
φn(z)(τ2I+Kφn)−1yn,

σ2
n(z) = kφ(z,z)−k⊤

φn(z)(τ2I+Kφn)−1kφn(z), (5.14)

where yn = [V (s′
1),V (s′

2), · · · ,V (s′
n))]⊤. In addition, let λm, m = 1,2, · · · rep-

resent the Mercer eigenvalues of kψ in a decreasing order, and ψm the corre-

sponding Mercer eigenfunctions. Assume ψm ≤ ψmax for some ψmax > 0. Fix

M ∈ N, and let C be a constant such that C ≥∑M
m=1λm.

Then, for a fixed z ∈Z, and for all V , with ∥V ∥Hkψ
≤B2, each of the following

5.5. Analysis of the Sample Complexity 122

holds with probability at least 1− δ:

|f(z)− f̂n(z)| ≤ β(δ)σn(z)

with β(δ) =

B1 + CB2ψmax
τ

√
2log(M

δ
)+ 2B2ψmax

τ

√√√√n ∞∑
m=M+1

λm .

Theorem 1 provides a confidence bound for kernel ridge regression that is appli-

cable to our RL setting, and is a key result in deriving our sample complexities.

Proof sketch. To derive our confidence bounds, we use the Mercer represen-

tation of V and decompose the prediction error f(z)− f̂n(z) into error terms

corresponding to each Mercer eigenfunction ψm. We then divide these terms

into two groups: the first M elements, corresponding to eigenfunctions with

the largest eigenvalues, and the remainder. For the top M eigenfunctions, we

establish high-probability bounds using standard kernel-based confidence in-

tervals from [70]. The remaining terms are bounded based on eigendecay, and

we sum over all m to obtain β(δ).

Remark 1. Under some mild conditions, for example, the polynomial eigen-

decay given in Definition 1, the following expression can be derived for β:

β(δ) =O
(
B1 + B2ψmax

τ

√
log

(
n

δ

))
. (5.15)

With polynomial eigendecay, the remark follows from setting M to ⌈n
1
p−1 ⌉ in

the expression of β in Theorem 1.

The confidence interval presented in Theorem 1 is applicable to a fixed

z ∈ Z. Over a discrete domain this can be easily extended to all z ∈ Z using

a probability union bound and replacing δ with δ
|Z| in the expression of β(δ).

Using standard discretization techniques, we can also prove a variation of the

confidence interval that holds true uniformly over continuous domains. In par-

ticular, under the following assumption, we present a variation of the theorem

5.5. Analysis of the Sample Complexity 123

over continuous domains.

Assumption 2. For each n ∈ N, there exists a discretization Z of Z such

that, for any f ∈Hk with ∥f∥Hk
≤B1, we have f(z)−f([z])≤ 1

n , where [z] =

argminz′∈Z||z′− z||l2 is the closest point in Z to z, and |Z| ≤ cBd
1n

d, where c

is a constant independent of n and B1.

Assumption 2 is a mild technical assumption that holds for typical kernels [67,

66, 70].

Corollary 1. Under the setting of Theorem 1, and under Assumption 2, the

following inequalities each hold uniformly in z ∈Z and V : ∥V ∥Hkψ
≤B2, with

probability at least 1− δ

f(z)≤ f̂n(z)+ 2
n

+ β̃(δ)(σn(z)+ 2√
n

),

f(z)≥ f̂n(z)− 2
n
− β̃(δ)(σn(z)+ 2√

n
),

with β̃(δ) = β(δ
2cn), cn = c(un(δ2))dnd, and un(δ) =O(

√
n+log(1

δ)).

Remark 2. Under some mild conditions, for example, the polynomial eigen-

decay given in Definition 1, the following expression can be derived for β̃:

β̃(δ) =O
(
B1 + CB2ψmax

τ

√
d log

(
n

δ

))
. (5.16)

5.5.2 Sample Complexities
We have the following theorem on the performance of Algorithm 8. The weak-

est assumption one can pose on the value functions is realizability, which asserts

that the optimal value functions V ⋆
h for h ∈ [H] belong to the RKHS Hkψ for

some kernel kψ : S ×S → R, or at least can be well-approximated by Hkψ .

For stateless MDPs or multi-armed bandits (MAB) where H = 1, realizability

alone is enough to guarantee provably efficient algorithms [67, 66, 70]. How-

ever, when H > 1, this assumption appears insufficient [218, 219], and stronger

assumptions are typically made in these settings [20, 220, 182]. Following these

5.5. Analysis of the Sample Complexity 124

works, our main assumption is a closure property for all value functions in the

following class:

V =
{
s 7→min

{
H,max

a∈A

{
r(s,a)+φ⊤(s,a)w+

β
√
φ⊤(s,a)Σ−1φ(s,a)

}}}
, (5.17)

where 0< β <∞, ∥w∥ ≤∞, and Σ is an ∞×∞ matrix with Σ≻ τ2I.

Assumption 3 (Optimistic Closure). For any V ∈ V, for some positive con-

stant cv, we have ∥V ∥Hkψ ⩽ cv.

This is the same assumption as Assumption 1 in [182] and can be relaxed

to value functions ϵ away from this class as described in Section 4.3 of [182].

The assumption ensures that the proxy value functions (Vh,n) lie within the

RKHS of a suitable kernel kψ. Notably, the RKHS of widely used kernels,

such as Matérn and NT kernels, can uniformly approximate any continuous

function over compact subsets of Rd [67]. We have the following theorem on

the sample complexity of the exploration algorithm with a generative model.

Theorem 2. Consider the reward-free RL framework described in Section 5.3.

Assume the existence of a generative model in the exploration phase that allows

the algorithm to select state-action pairs of its choice at each step. Let N0 be

the smallest integer satisfying

2Hβ(δ)

√√√√ 2Γ(N0)
N0 log(1+1/τ2) + 4β(δ)H√

N0
+ 4H
N0
≤ ϵ,

with β(δ) = O(Hτ
√
d log(NHδ)) with a sufficiently large constant. Run Algo-

rithm 8 for N ≥N0 episodes to obtain the dataset DN . Then, use the obtained

samples to design a policy π using Algorithm 7 with β(δ) =O(Hτ
√
d log(NHδ))

with a sufficiently large constant. Then, under Assumptions 1, 2 and 3, with

probability at least 1− δ, π is guaranteed to be an ϵ-optimal policy.

The following theorem presents the sample complexity for exploration

5.5. Analysis of the Sample Complexity 125

without generative models.

Theorem 3. Consider the reward free RL framework described in Section 5.3.

Let N0 be the smallest integer satisfying

3H(H+1)β(δ)

√√√√ 2Γ(N0)
N0 log(1+1/τ2) + 8β(δ)H(H+1)√

N0

+ 4H(H+1)(log(N0)+1)
N0

+2H
√
N0(H+1)log

(2
δ

)
≤ ϵ (5.18)

with β(δ) = O(Hτ
√
d log(NHδ)) with a sufficiently large constant. Run Algo-

rithm 9 for NH ≥ N0H episodes to obtain the dataset DN . Then, use the

obtained samples to design a policy π using Algorithm 7. Then, under As-

sumptions 1, 2 and 3, with probability at least 1− δ, π is guaranteed to be an

ϵ-optimal policy.

The proof of theorems are provided in Appendices B.2 and B.3.

The expression of suboptimality gap after N samples, given in (5.18), can be

simplified as

O

H3
√

Γ(N) log(NH/δ)
N

 .

Remark 3. Replacing Γ(N) = Õ(N
1
p) in the case of kernels with polynomial

eigendecay, we obtain a sample complexity of N = Õ((H
3

ϵ)2+ 2
p−1). We also

recall that without a generative model, we interact with H times more episodes

to collect these samples. Specifically, the number of episodes in the exploration

phase is NH = Õ
(
H(H

3

ϵ)2+ 2
p−1

)
.

When specialized for the case of Matérn kernels with p= 1+ 2ν
d , we obtain

NH = Õ(H(H
3

ϵ)2+ d
ν) that matches the lower bound for the degenerate case

of bandits with H = 1 proven in [65]. Our sample complexity is thus order

optimal in terms of ϵ dependency. We also recall that the existing results lead

to possibly vacuous (infinite) sample complexities for these kernels.

5.6. Experiments 126

(a) Squared Exponential Kernel (b) Matérn Kernel with ν = 2.5

(c) Matérn kernel with ν = 1.5

Figure 5.2: Average suboptimality gap against N . The error bars indicate stan-
dard deviation.

5.6 Experiments

We numerically validate our proposed algorithms and compare with the base-

line algorithms. From the literature, we implement [185], in which the ex-

ploration aims at maximizing a hypothetical reward of βσn/H over each

episode n. The planning phase is similar to Algorithm 7. We also imple-

ment our exploration algorithms with and without a generative model: Algo-

rithms 8 and 9 respectively. Additionally, we implement a heuristic variation

of Algorithm 9, which collects the exploration samples in a greedy manner

ah,n = argmaxa∈Aσh,n(sh,n,a) while remaining on the Markovian trajectory

by sampling sh+1 ∼ Ph(·|sh,ah). We refer to this heuristic as Greedy Max

Variance. For all these algorithms, we use Algorithm 7 to obtain a planning

policy. In the experimental setting, we choose H = 10 and S =A= [0,1] con-

sisting of 100 evenly spaced points. We choose r and P from the RKHS of a

5.7. Conclusion 127

fixed kernel. For the detailed framework and hyperparameters, please refer to

Appendix B.4. We run the experiment for three different kernels across all 4

algorithms for 80 independent runs, and plot the average suboptimality gap

V ⋆
1 (s)−V π

1 (s) for N = 10,20,40,80,160, as shown in Figure 5.2. Our proposed

Algorithm 9, without generative model, demonstrates better performance com-

pared to prior work [185] across all three kernels, validating the improved sam-

ple efficiency. Notably, [185] performs poorly with nonsmooth kernels. Greedy

Max Variance is a heuristic that in many of our experiments performs close

to Algorithm 9. Furthermore, with access to a generative model, Algorithm 8

performs the best. This is anticipated, as the generative model provides the

flexibility to select the most informative state-action pairs, unconstrained by

Markovian transitions.

5.7 Conclusion

In this chapter, we proposed novel algorithms for the kernel-based reward-free

RL problem, both with and without generative models, designed to efficiently

gather informative data that facilitates near-optimal policy planning once the

reward function becomes available. We demonstrated that, with a genera-

tive model, a simple algorithm can achieve near-optimal sample complexities.

Without the generative model requirement, we showed that an online algo-

rithm requires a sample complexity greater by a factor of H, implying that

online sampling is H times more costly. Our results apply to a general class

of kernels, including those with polynomial eigendecay, where existing meth-

ods may either lead to vacuous sample complexities [185] or require additional

assumptions and a sophisticated, difficult-to-implement domain partitioning

method [198]. Our experimental results support these analytical findings.

When compared to the lower bounds established in the degenerate case of

bandits with H = 1 for the Matérn kernel, the order optimality of our results

with respect to ϵ becomes evident. Nonetheless, an important limitation of

our analysis is the additional scaling with H that arises as the price of online

5.7. Conclusion 128

samples, in contrast to the case where a generative model is present.

For our experiments, we considered very general environments by arbi-

trarily selecting the reward and the transition probability distribution from

the RKHS of a kernel. As a limitation, we did not provide experiments on

RL benchmarks. This is a deliberate choice that allowed us to focus on the

theoretical framework and, for example, experiment with various kernels with

different levels of smoothness. This approach facilitates a finer comparison

among algorithms. Investigating the performance of our methods on widely

used RL benchmarks constitutes an interesting and valuable direction for fu-

ture research.

Chapter 6

Bayesian Optimization from

Human Feedback

In the previous chapter, we studied exploration in RL from a theoretical per-

spective, contributing to the development of sample-efficient exploration al-

gorithms with convergence guarantees. Continuing with exploration as the

central theme, we now shift to settings where scalar reward signals are absent

and the agent instead receives feedback in the form of preferences between out-

comes. This perspective extends the study of exploration to scenarios where

learning must be driven by relative and limited feedback. Such preference-

based exploration is increasingly relevant in practical applications, most no-

tably in the alignment of LLMs, where specifying a reward function is difficult,

but preferences can provide powerful learning signals.

To study this problem formally, we adopt the framework of Bayesian

Optimization with preference-based feedback—referred to as Bayesian Op-

timization from Human Feedback (BOHF). Unlike conventional BO, where

the learner observes scalar-valued outcomes, BOHF relies solely on the pref-

erence between two candidate actions. The objective is to identify the best

action using a limited number of preference queries, which are often costly.

Existing work, which adopts the Bradley-Terry-Luce (BTL) feedback model,

provides regret bounds for the performance of several algorithms. In this chap-

ter, within the same framework, we develop tighter performance guarantees.

6.1. Introduction 130

Specifically, we derive regret bounds of Õ(
√

Γ(T)T), where Γ(T) represents

the maximum information gain and T is the number of queries. Our results

significantly improve upon existing bounds and, importantly, recover the order-

optimal sample complexities of conventional BO with scalar feedback. In other

words, preference-based learning can achieve the same order-optimal sample

complexity as reward-based learning, despite operating with a more restrictive

feedback model.

6.1 Introduction

Optimizing a black-box function using only preference-based feedback between

pairs of candidate solutions has recently emerged as an interesting problem.

This approach finds application, for instance, in prompt optimization [221],

which aims to efficiently identify the best prompt for black-box LLMs, thereby

significantly enhancing their performance [222, 221, 223]. Obtaining a numeric

score to evaluate each prompt’s performance is often unrealistic, but human

users are generally much more reliable at providing preference feedback be-

tween pairs of prompts [221]. Since human feedback is costly, it becomes

essential to develop efficient methods that can sequentially select favorable

pairs of actions while minimizing the number of feedback instances required.

The theoretical framework for learning from preference-based feedback

(see, e.g., [116, 117]) can be modeled as Bayesian Optimization from Human

Feedback (BOHF). Similarly to conventional BO [224, 225, 67], the learner

leverages previously collected samples through kernel-based regression to learn

an unknown black-box function. However, unlike conventional BO methods

that rely on direct evaluations of the target function, this approach collects

pairwise comparisons instead of direct evaluation feedback, adding further

complexities to the problem.

In the BOHF framework, at each time step t= 1,2, · · · ,T , the learner se-

lects a pair of actions (xt,x′
t) and receives binary feedback yt ∈ {0,1} represent-

ing the preference between the two actions. This binary feedback is modeled

6.1. Introduction 131

as a Bernoulli random variable, where the parameter is determined by apply-

ing a link function (here, sigmoid) to the difference in the unobserved utilities

corresponding to each action, quantifying the preference between them. Per-

formance is measured in terms of regret, defined as the cumulative loss in the

selected pairs of actions compared to the optimal action (details are provided

in Section 6.2). Kernel-based models employed within the BOHF framework

allow for powerful and versatile modeling of preferences among actions, lever-

aging structures, and handling continuous domains or very large action spaces.

Existing work establishes a regret bound of Õ
(
Γ(T)κ2√T

)
for the BOHF

problem [116]. In this expression, κ is the maximum of the derivative of the in-

verse link function (see Equation (6.2)) and Γ(T) is the maximum information

gain, a kernel-specific and algorithm-independent complexity term (see Equa-

tion (6.11) for a slightly different notation compared to previous chapters).

It is insightful to compare the existing BOHF regret bound with the order-

optimal regret bounds of Õ
(√

Γ(T)T
)

in conventional BO. In comparison, an

additional κ2 factor arises due to the feedback model. While this constant

is independent of T , it can be very large. There is also an extra
√

Γ(T)

factor, which introduces potential challenges. As discussed in Section 3.3.5,

the information gain Γ(T) is polylogarithmic in T for smooth kernels like the

Squared Exponential (SE), but grows polynomially for more general kernels

such as the Matérn family [69] and Neural Tangent kernels (NTK) [226]. In

such cases, the regret can grow linearly with T , making the bound potentially

vacuous.

Our contribution is that we establish regret bounds of Õ
(√

Γ(T)T
)

for

the BOHF problem (Theorem 4), achieving a
√

Γ(T) improvement and elim-

inating the dependency on κ, resolving both issues and matching the regret

bounds of conventional BO. From our regret bounds, we derive the sample

complexities—the number of preference query samples required to identify

near-optimal actions. Our sample complexities match the lower bounds ob-

tained in [65] for conventional BO, which benefits from a richer feedback model

6.1. Introduction 132

with a different noise distribution. We will provide a technical discussion on

this in Section 6.4.

In summary, we establish the intriguing result that the number of pref-

erential feedback samples required to identify near-optimal actions is of the

same order as the number of scalar-valued feedback samples. This is in sharp

contrast and a significant improvement over the existing work [116, 117]. To

obtain the improved regret bounds, we propose an algorithm referred to as

Multi-Round Learning from Preference-based Feedback (MR-LPF). The pro-

posed algorithm proceeds in rounds. In each round, pairs of actions are se-

quentially selected based on the highest uncertainty in their preference. This

method effectively reduces uncertainties about the preferences between actions

by the end of each round. The uncertainties are represented by kernel-based

standard deviations. At the end of each round, the kernel-based confidence

intervals are used to eliminate actions unlikely to be the best. Our multi-round

structure is inspired by the BPE algorithm of [84], though the details and anal-

ysis differ significantly due to the preference-based feedback model. Details are

provided in Section 6.3. We show that this structure allows for a more efficient

use of kernel-based confidence intervals, contributing to improvements in both

Γ(T) and κ.

We present experimental results on the performance of MR-LPF on syn-

thetic functions that closely align with the analytical assumptions, as well as on

a dataset of Yelp reviews, demonstrating the utility of the proposed algorithm

in real-world applications (Section 6.5).

6.1.1 Related Work

Two works closely related to ours are [116] and [117], which consider the exact

same BOHF framework. The work by [116] proposed the MaxMinLCB algo-

rithm, which takes a game-theoretic approach to selecting the pair of actions

(xt,x′
t) at each time step t. Specifically, xt and x′

t are selected according to a

game, with the objective function defined as a lower confidence bound (LCB)

on the probability of favoring xt over x′
t. Hence, the name: xt is chosen to

6.1. Introduction 133

Max imize and x′
t to Minimize the LCB (see [116], Algorithm 1). Their regret

bound scales as Õ
(
Γ(T)κ2√T

)
, which may be vacuous for some commonly

used kernels and scales with κ2, which can be a large constant.

Another closely related work is [117], which develops Principled Opti-

mistic Preferential Bayesian Optimization (POP-BO), an algorithm based on

the optimism principle. Specifically, at each time step t, x′
t is set to xt−1, one

of the actions from the previous time step, and xt is set to the maximizer of

an upper confidence bound (UCB) on the preference between the two actions

(see [117], Algorithm 1). They establish a regret bound of Õ
(
(Γ(T)T)3/4

)
,

which is larger than the one in [116] by a factor of (T/Γ(T))1/4 and similarly

may be vacuous for many cases of interest.1 Their definition of regret is based

directly on the utility function and slightly differs from ours. However, it re-

mains equivalent to our regret definition up to a constant factor, as discussed

in [116].

Table 6.1: Comparison of regret bounds in BOHF.

[116] [117] This work
Õ
(
Γ(T)κ2√T

)
Õ
(
(Γ(T)T)3/4

)
Õ
(√

Γ(T)T
)

Some other preferential BO methods mainly propose heuristics without

formal theoretical guarantees on regret or convergence proofs [227, 228, 229].

6.1.1.1 Conventional BO
Theoretical aspects of classical BO algorithms have been reviewed in Sec-

tion 3.3.7. Notably, methods such as GP-UCB [67] and GP-TS [66] achieve

cumulative regret bounds of O(Γ(T)
√
T).

To improve upon this rate, several algorithmic refinements have been pro-

posed. For example, SupKernelUCB [80], GP-ThreDS [83], and Batched Pure

Exploration (BPE) [84] attain tighter bounds of O(
√

Γ(T)T). Among these,

BPE is especially relevant to our work, as it introduces a multi-round ex-

ploration structure that has inspired the design of our MR-LPF algorithm.
1[117] does not explicitly report the scaling of the regret bound with κ.

6.1. Introduction 134

However, there are differences in the inference procedure and analysis, due

to the use of a reduced preference-based feedback model, which introduces

additional complexities in both algorithm design and theoretical analysis.

6.1.1.2 Dueling Bandits

The BOHF framework can be viewed as an extension of bandits with

preference-based feedback, also known as dueling bandits [87, 94]. For a de-

tailed review of this framework—see Section 3.4. In summary, earlier work

in this area largely focused on finite-action settings and aimed to learn a

pairwise preference matrix using tournament-based strategies or noisy sort-

ing procedures [98, 230, 231, 99]. These methods do not scale well to in-

finite or large action spaces. To address this, linear contextual dueling

bandits [93, 103, 232, 104, 105] introduced parametric utility models that

generalize across actions, albeit under the restrictive assumption of linear-

ity. More recent work has extended the dueling bandit problem to kernel-

based settings, though these still differ from our BOHF framework. For in-

stance, [113, 114, 115] reduce the problem to conventional BO by making strong

assumptions on the Borda function. In contrast, our analytical requirements

are significantly different from these approaches. A recent extension by [118]

considers neural dueling bandits with a wide neural network for preference

prediction. Their approach differs from ours in both modeling and action se-

lection, with regret bounds that depend on the model’s effective dimension

and the curvature parameter κ.

6.1.1.3 Reinforcement Learning from Human Feedback (RLHF)

Another related line of work is RLHF [233, 234, 235, 236, 108, 237], which has

gained popularity due to its success in finetuning LLMs [238]. In this context,

preference-based feedback is provided for MDP trajectories or policies rather

than pairs of actions. However, these results are primarily limited to tabular

(finite state-action) or linear settings and are not directly related to our kernel-

based setting.

6.2. Preliminaries and Problem Formulation 135

6.2 Preliminaries and Problem Formulation
In this section, we provide details of the BOHF framework. We also outline the

methods used to predict preference functions and estimate uncertainty, which

form the foundation of our algorithm’s design and analysis.2

6.2.1 BOHF Framework

At each step t = 1,2, · · · ,T , the agent selects a pair of actions xt and x′
t,

from the set X , which can either be a continuous space or a (possibly very

large) discrete set. We consider the following feedback model: Let yt ∈ {0,1}

be a binary random variable indicating the preference between xt and x′
t,

defined as yt = 1{xt ≻ x′
t}. The notation xt ≻ x′

t denotes that action xt is

preferred over action x′
t and 1 is the indicator function. Specifically, following

the existing work, for each pair (x,x′) ∈ X ×X , the random variable y =

1{x≻ x′} is modelled as a Bernoulli random variable satisfying P(y= 1|x,x′) =

µ(f(x)−f(x′)). P(yt = 1|xt,x′
t) = µ(f(xt)−f(x′

t)) = µ(h(xt,x′
t)). Here, µ :

R→ [0,1] is a known monotonically increasing link function satisfying µ(0) = 1
2

that is assumed to be the sigmoid function µ(·) = (1+e−·)−1, and f :X →R is

an unknown latent utility function that quantifies the value of each action. This

preference feedback model is referred to as the Bradeley-Terry-Luce (BTL)

model [102] and is widely utilized in bandit and RL problems with preference

feedback [116, 117, 109, 236].

We note that when f(x) > f(x′), we have P(x ≻ x′) = P(y = 1|x,x′) =

µ(f(x)−f(x′)) > 1
2 , and vice versa. We also emphasize that this feedback

model is weaker than the standard BO where the per-step utility signal (the

quantitative value of f) is revealed, typically as a scalar value.

The goal is to sequentially select favorable action pairs over a horizon of

2Several symbols used in this chapter take on meanings that differ from earlier chapters:
(i) z = (x,x′) denotes a pair of actions in BOHF (cf. Chapter 4, where z is a latent skill,
and Chapter 5, where z = (s,a) is a state-action pair); (ii) h denotes a preference function
h : X ×X → R, in contrast to its use as the episode step in Chapter 5; (iii) r is used to
denote the round index in the BOHF setting, not to be confused with the reward variable
used in the previous chapters; (iv) the regularization parameter τ2 in kernel ridge regression
is denoted as λ in this chapter. All notations are defined locally when first introduced.

6.2. Preliminaries and Problem Formulation 136

T steps, and converge to the globally preferred action x⋆, defined as x⋆ =

argmaxx∈X f(x). A common objective adopted in the literature is to design

an algorithm with sublinear cumulative regret over the horizon T , defined as

the sum of the average sub-optimality gap between the selected pair and the

globally optimal action:

R(T) =
T∑
t=1

P(x⋆ ≻ xt)+P(x⋆ ≻ x′
t)−1

2 . (6.1)

It can be shown that the value of regret above is equivalent to a variation of

regret defined on the utility function: ∑T
t=1 (f(x⋆)− (f(xt)+f(x′

t))/2)—used

in [117]—up to constants that depend on the link function [107].

The notion of regret accounts for the entire sequence of query points

throughout steps t= 1,2, . . . ,T . Alternatively, one may be interested solely in

the final performance. In this case, the algorithm outputs x̂T at the end of

T samples, and the performance is measured in terms of P(x⋆ ≻ x̂T)− 1
2 . We

refer to the number of samples T required to ensure P(x⋆ ≻ x̂T)− 1
2 ≤ ϵ, for

some 0 < ϵ < 1/2, as the sample complexity and also remark on the sample

complexity of different algorithms.

An important quantity that appears in the analysis is

κ= sup
x,x′∈X

1
µ̇(f(x)−f(x′)) , (6.2)

where µ̇ denotes the derivative of the link function µ and κ captures its cur-

vature. The dependence on κ has been extensively studied in linear logistic

bandits, with recent works successfully removing the regret dependency on

κ [239]. To emphasize the significance of this quantity, consider the case where

f is bounded within the interval [−5,5]. In this scenario, κ can become ex-

tremely large (> 22028). When the algorithm selects an action pair (x,x′) that

are nearly equally favorable, f(x)−f(x′) will be close to 0, in which case the

inverse derivative of the sigmoid function is almost a constant 4. However,

when one action is clearly preferred over the other, |f(x)− f(x′)| becomes

6.2. Preliminaries and Problem Formulation 137

large, making the inverse derivative of the sigmoid function very large. There-

fore, a crucial aspect of algorithm design is to remove the dependency on κ

defined in (6.2) by ensuring that the algorithm gradually queries only closely

preferred actions.

6.2.2 Preliminaries and Assumptions
Similar to [116, 117], we assume that the utility function f belongs to a known

Reproducing Kernel Hilbert Space (RKHS). This is a very general assumption,

considering that the RKHS of common kernels can approximate almost all

continuous functions on the compact subsets of Rd [67] . Consider a positive

definite kernel k : X ×X → R. Let Hk be the RKHS induced by k, where Hk
contains a family of functions defined on X . Let ⟨·, ·⟩Hk

:Hk×Hk → R and

∥·∥Hk
:Hk→R denote the inner product and the norm ofHk, respectively. For

a formal statement on RKHS and Mercer Theorem, please see Appendix B.5.

Let us use the notation z = (x,x′) and h(z) = f(x)−f(x′), for (x,x′) ∈X ×X .

As shown in [116], we can define a dueling kernel

k(z1, z2) = k(x1,x2)+k(x′
1,x

′
2)−k(x1,x

′
2)−k(x′

1,x2), (6.3)

where, we have: ∥f∥Hk
= ∥h∥Hk

(see [116], Proposition 4).

Below is a formal statement of our assumptions on f .

Assumption 4. We assume that the utility function is in the RKHS of a

known kernel k satisfying ∥f∥Hk
≤ B for some constant B > 0. Without loss

of generality, we assume that the kernel function is normalized k(., .) ≤ 1 ev-

erywhere in the domain.

6.2.3 Preference Function Prediction and Uncertainty

Estimation
The preference-based feedback model in BOHF is weaker than the standard

BO, where quantitative observations of utility are available at each step. Before

discussing the case with preference feedback, we briefly recall kernel ridge

6.2. Preliminaries and Problem Formulation 138

regression in the standard BO setting from Chapter 3, Section 3.3.3.

Hypothetically, assume a dataset {(xi,oi)}ti=1 of observations of f is avail-

able, where oi = f(xi) + εi, with observation noise εi. As described in Sec-

tion 3.3.3, kernel ridge regression provides a predictor f̂t and an uncertainty

estimate σ2
t (x) by minimizing a regularized least-squares error optimization,

leading to closed-form expressions for both quantities:

f̂t(x) = k⊤
t (x)(Kt+λI)−1ot

σ2
t (x) = k(x,x)−k⊤

t (x)(Kt+λI)−1kt(x), (6.4)

where kt(x) = [k(x,xi)]ti=1 represents the pairwise kernel values between the

prediction point x and the observation points, Kt = [k(xi,xj)]ti,j=1 is the kernel

(or covariance) matrix, λ > 0 is a free parameter, and ot = [oi]ti=1 is the vector

of observation values.

Confidence intervals of the form |f(z)− f̂t(z)| ≤ β(δ) σt(z), where β(δ) is

a confidence interval width multiplier for a 1− δ confidence level, have been

shown in several works [213, 66, 70, 72] under various assumptions, and serve

as key building blocks in the analysis and algorithm design of standard BO.

In the absence of straightforward observations ot and with preference-

based feedback, a closed-form prediction is no longer available. Intuitively,

this case resembles a classification-like problem with binary outputs, where we

can employ a logistic negative log-likelihood loss. Specifically, for a history

of preference feedback Ht = (x1,x′
1,y1), . . . ,(xt,x′

t,yt) in the BOHF framework,

we define the following loss:

Lk(h,Ht) =
t∑
i=1
−yi logµ(h(xi,x′

i))

− (1−yi) log(1−µ(h(xi,x′
i))+ λ

2 ||h||
2
Hk

A prediction ht of the preference function h (difference in the utilities) can be

6.2. Preliminaries and Problem Formulation 139

obtained as:

ht = arg min
h∈Hk

Lk(h,Ht), (6.5)

which represents the minimizer of the regularized negative log-likelihood loss.

To solve this minimization problem, we apply the Representer Theorem,

similar to [116], which provides a parametric representation of ht:

ht(·) =
t∑
i=1

θik
(
·,(xi,x′

i)
)
, (6.6)

in terms of θt = [θ1, θ2, · · · , θt]⊤ ∈ Rt. With a slight abuse of notation, replac-

ing h with θ in Lk, the regularized negative log-likelihood loss can then be

rewritten in terms of the parameter vector θ as follows:

Lk(θ,Ht) =
t∑
i=1
−yi logµ(θ⊤kt(xi,x′

i))

− (1−yi) log(1−µ(θ⊤kt(xi,x′
i))+ λ

2 ||θ||
2
2, (6.7)

where kt(z) = [k(z,(xj ,x′
j))]tj=1 is the kernel values between the pair z and

observation pairs.

Similar to (6.4), we have an uncertainty estimation for each z ∈ X ×X as

follows

σ2
t (z) = k(z,z)−k⊤

t (z)(Kt+λκI)−1kt(z), (6.8)

where the notation Kt = [k
(
(xi,x′

i),(xj ,x′
j)
)
]ti,j=1 represents the (dueling) ker-

nel matrix on the space of pair observations X ×X . Note the subtle difference

in the definition of σ2
t above for the preference-based feedback case compared

to the conventional kernel-based regression case, where the free parameter λ is

multiplied by κ, reflecting the effect of the sigmoid nonlinearity on the quality

of prediction.

Centered around the prediction µ(ht(·)) and incorporating the uncertainty

estimate from kernel ridge regression, as defined in Equation (6.8), we can

6.3. Algorithm Description 140

construct 1− δ confidence intervals of the form:

|µ(ht(z))−µ(h(z))| ≤ βt(δ)σt(z),

for a pair of interest z = (x,x′). In Theorem 5, we prove a novel confidence

interval of this form applicable to the analysis of our algorithm.

6.3 Algorithm Description
In this section, we present the MR-LPF algorithm, inspired by [84], designed

to achieve low regret within the BOHF framework described in Section 6.2.1.

The algorithm partitions the time horizon T into R rounds, indexed by

r = 1,2, . . . ,R. During each round r, a total of Nr samples are collected,

ensuring that the cumulative number of samples across all rounds equals T , i.e.,∑R
r=1Nr = T . We define tr =∑r

j=1Nj as the time step at the end of round r.

The size of each round is determined as follows: N1 = ⌈
√
T ⌉, Nr = ⌈

√
Nr−1T ⌉

for 1< r < R, and NR = min{⌈
√
NR−1T ⌉,T − tR−1}.

We introduce the notations σ(n,r)(x,x′) and h(n,r)(x,x′) to represent the

kernel-based uncertainty estimate and prediction, respectively, from the first

n samples in round r according to Section 6.2.3.

MR-LPF maintains a set Mr of actions in each round that are likely to

be the most preferable. Initially,M1 is set to X and is updated at the end of

each round while satisfying a nested structure, Mr ⊆Mr−1, as subsequently

described.

Within each round r, the n-th sample is chosen as the pair of actions

within Mr that maximizes uncertainty :

(x(n,r),x
′
(n,r)) = arg max

x,x′∈Mr

σ(n−1,r)(x,x′). (6.9)

The preference feedback for this pair y(n,r) = 1{x(n,r) ≻ x′
(n,r)} is then revealed

to the algorithm. The tuple (x(n,r),x
′
(n,r),y(n,r)) is added to the observations

specific to round r: Hn,r = Hn−1,r∪{(x(n,r),x
′
(n,r),y(n,r))}, which is initialized

6.4. Analysis of MR-LPF 141

as an empty set at the beginning of the round: H0,r = ∅.

At the end of round r, we compute the prediction function h(Nr,r) based

on observations HNr,r, following the method of minimizing the regularized

negative log-likelihood loss described in Section 6.2.3. Subsequently, we update

Mr according to the following rule:

Mr+1 = {x ∈Mr|∀x′ ∈Mr :

µ(h(Nr,r)(x,x
′))+β(r)σ(Nr,r)(x,x

′)≥ 0.5}. (6.10)

The round specific parameters β(r) are designed in a way that the left hand

side of the inequality is a UCB on the probability of favoring x over x′ (the

values are given in Theorem 4). The rationale here is that when a UCB on

the probability of preferring x to any x′ is greater than 0.5, x is plausible to

be the most preferred action. Therefore, we keep it in the update of Mr+1.

All other actions are removed as they are unlikely to be the most preferred.

More precisely, as we will show in the analysis, with high probability, the

removed actions are not the most preferred, while the most preferred actions

remain within the setsMr and are not removed. A pseudocode is provided in

Algorithm 10.

When the confidence intervals shrink at a sufficiently fast rate, only near-

optimal actions remain in Mr as the rounds progress. This is a key aspect

of our algorithm’s design, which eliminates the dependency of regret scaling

on κ by ensuring that the algorithm gradually queries only closely preferred

actions. Recall the discussion following Equation (6.2). In the next section,

we provide an analysis of the performance guarantees of the algorithm.

6.4 Analysis of MR-LPF

In this section, we present our main results on the performance of MR-LPF

(Algorithm 10). The performance is given in terms of the maximum informa-

6.4. Analysis of MR-LPF 142

Algorithm 10 MR-LPF
Require: ∀r,β(r); time horizon T
M1←X , t← 1
for r = 1,2, · · · ,R do

Initialize H0,r = {}
for n= 1,2, · · · ,Nr do

Select the pair of actions (x(n,r),x
′
(n,r)) that maximizes the variance,

with ties broken arbitrarily:
(x(n,r),x

′
(n,r)) = argmaxx,x′∈Mr σ(n−1,r)(x,x′)

t← t+1
if t≥ T then

Terminate
end if
Observe y(n,r) = 1{x(n,r) ≻ x′

(n,r)}
Hn,r = Hn−1,r ∪{(x(n,r),x

′
(n,r),y(n,r))}

end for
Update h(Nr,r) based on observations in HNr,r

Update the set of maximizers Mr+1 by removing actions unlikely to be
optimal:
Mr+1 = {x ∈Mr|∀x′ ∈Mr : µ(h(Nr,r)(x,x′))+β(r)σ(Nr,r)(x,x′)≥ 0.5}

end for

tion gain defined as

Γλ(T) = max
(x1,x′

1),...(xT ,x′
T)

1
2 logdet

(
I+λ−1KT

)
, (6.11)

where KT is the kernel matrix of T observations.3

Theorem 4 (Regret bound for MR-LPF). Consider the BOHF framework de-

scribed in Section 6.2.1 and the MR-LPF algorithm presented in Algorithm 10.

For δ ∈ (0,1), in MR-LPF, let

β(r)(δ) = L

B+
√
κr
λ

log(2R|X |
δ

)
 , (6.12)

where, B is the upper bound on the RKHS norm of f given in Assumption 4,

L = maxx,x′∈X µ̇(h(x,x′)), κ1 = κ defined in Equation (6.2), ∀r > 1,κr = 6, λ
3This is the same maximum information gain formula introduced in Section 3.3.5, Equa-

tion (3.4), except that we use λ instead of τ2. The two definitions are mathematically
equivalent. Unlike in Section 6.1, where λ was omitted from the expression of Γ, we include
it here for clarity.

6.4. Analysis of MR-LPF 143

is the regularization parameter of the kernel-based regression. Then, for some

constant T0 > 0, independent of T (specified in Appendix C.1), and for all

T ≥ T0, with probability at least 1− δ:

R(T)≤ 2CRβ(R)(δ)
√

Γ(4λ)(T)
(
T 1/2 +1

)
,

where R ≤ ⌈log2 log2(T)⌉+ 1 is the maximum number of rounds and C =

2
√

2
log(1+4(6λ)−1) is a constant.

Remark 4. The value of Γλ(T) is kernel-specific and algorithm-independent.

This term is a common complexity measure that appears in the analysis of both

BO and BOHF in the existing literature (see e.g., [67, 116, 117]). Bounds on

Γλ(T) have been established for various kernels, as discussed in Chapter 3

(Section 3.3.5). In particular, for linear kernels, Γλ(T) = O(d log(T)). For

kernels with exponentially decaying Mercer eigenvalues, such as the SE kernel,

Γλ(T) = O(poly log(T)). For kernels with polynomially decaying eigenvalues,

Γλ(T) grows polynomially (though sublinearly) with T . For example, in the

case of the Matérn family of kernels, Γλ(T) = Õ(T
d

2ν+d), where d is the in-

put dimension and ν > 0.5 is the smoothness parameter (see, e.g., [68]). In

Proposition 4 of [116], it is shown that the eigenvalues of the dueling kernel k

are exactly twice those of the original kernel k (see their Appendix C.1). Since

the maximum information gain Γλ(T) scales with the decay rate of the kernel

eigenvalues [68], both kernels exhibit the same scaling of the information gain

with T .

Remark 5. By substituting the value of β(R)(δ), the expression of the regret

bound can be simplified to

R(T) = Õ

√√√√Γλ(T)T log

(
|X |
δ

) , (6.13)

as T becomes large. This represents a sublinear regret growth rate for a broad

class of commonly used kernels where Γλ(T) grows sublinearly with T .

6.4. Analysis of MR-LPF 144

Our regret bounds eliminate the dependency on κ. MR-LPF gradually

queries only closely preferred actions, reducing the effective impact of the cur-

vature of the link function. Our regret bounds also show an O
(√

Γ(T)
)

im-

provement compared to [116] and an O
(
(Γ(T)T)1/4

)
improvement over [117].

This becomes particularly crucial for kernels with polynomially decaying eigen-

values, where existing results may become vacuous, failing to guarantee sub-

linear regret in T .

6.4.1 Sample Complexity and Simple Regret
In certain applications, the learner may be primarily concerned with eventual

performance, specifically the simple regret after T observations. Accordingly,

we can pose the dual question: How many samples are required to achieve ϵ

simple regret? This aspect of our algorithm’s performance is formalized in the

following corollary.

Corollary 2. Under the setting of Theorem 4, assume T = tR, the time step

at the end of round R. For any action x̂T ∈MR+1, we have, with probability

at least 1− δ,

P(x⋆ ≻ x̂T)− 1
2 ≤ 2β(R)(δ)C

√
RΓ(4λ)(T)

T
. (6.14)

The proof is given in Appendix C.1, that follows from Theorem 4.

Corollary 3. As a consequence of Corollary 2, assume we run MR-LPF for

T = tR rounds and select x̂T ∈MR+1 arbitrarily. In the case of a linear kernel

with some T = Õ
(
d log(1

δ)
ϵ2

)
, an SE kernel with some T = Õ

(
log(1

δ)
ϵ2

)
, and a

Matérn kernel with some T = Õ
(

log(1
δ)

ϵ2+ d
ν

)
, with probability at least 1− δ, at

most ϵ error is guaranteed: P(x⋆ ≻ x̂T)− 1
2 ≤ ϵ.

Remark 6. Our sample complexities match the Ω
(

1
ϵ2+ d

ν

)
lower bounds for

conventional BO with Matérn kernels, as established in [65] (up to logarithmic

terms). These bounds apply to scalar-valued feedback, which is richer than the

binary preference feedback used in BOHF.

For technical details, consider a standard BO setting with scalar obser-

vations oi = f(xi) + εi, where εi are i.i.d., zero-mean noise terms (following

6.4. Analysis of MR-LPF 145

the notation in Section 6.2.3). Suppose that at each step t, instead of observ-

ing ot = f(xt) + εt and o′
t = f(x′

t) + ε′
t, we receive binary preference feedback

yt = 1{ot > o′
t}. Under the BTL model, this corresponds to the case where

the noise difference ε′
t− εt follows a logistic distribution, which can arise if

the individual noise terms εt are Gumbel-distributed. Thus, the lower bound

on sample complexity in the BOHF setting should be at least half of that of

conventional BO under Gumbel noise for achieving at most ϵ loss in the value

of the target function.

Since the lower bound construction in [65] assumes Gaussian noise, a for-

mal comparison is not strictly valid (as the BTL model corresponds to Gumbel

noise). We therefore present this connection as an informal justification of the

tightness of our bounds, rather than a formal optimality proof.

6.4.2 Confidence Intervals and Proofs
An important building block in analyzing the performance of MR-LPF is the

confidence intervals applied to the samples collected in each round. We now

present a formal statement of this result.

Theorem 5 (Confidence Bounds). Consider the kernel-based prediction ht and

uncertainty estimate σt for a dataset Ht and a known kernel k, as given in

Equations (6.5) and (6.8) satisfying Assumption 4. Assume the observation

points {(xi,x′
i)}ti=1 are independent of the observation values {yi}ti=1. For a

fixed (x,x′) ∈ X ×X and for any δ ∈ (0,1), we have, with probability at least

1− δ,

|µ(ht(x,x′))−µ(h(x,x′))| ≤ β(δ)σt(x,x′), (6.15)

where β(δ) = L
(
B+ 1

2

√
2κ
λ log(2/δ)

)
, L = supx,x′∈X µ̇(h(x,x′)) as defined in

Theorem 4, B is the RKHS norm bound specified in Assumption 4, λ is the

parameter in kernel-based regression, and κ is defined in Equation (6.2).

A key distinction in our results is that our confidence interval is tighter

than the one presented in [116] by a factor of O(
√

Γ(T)). This improvement

comes from the multi-round structure and action selection rule within each

6.5. Experiments 146

round of the algorithm, which ensures that the observation points used for

confidence intervals at the end of rounds are independent of the observation

values within that round. This removes certain intricate dependencies in deriv-

ing the confidence interval. Recall that the observation points in each round,

(x(n,r),x
′
(n,r)), are collected solely based on the variance, which is independent

of the observation values by definition. In contrast, both the MaxMinLCB

algorithm in [116] and the POP-BO algorithm in [117] select observation point

at step t based on statistics that depend on {yi}t−1
i=1. We emphasize that our

algorithm is by no means a pure exploration algorithm; it effectively balances

exploration and exploitation by learning and updatingMr at the end of each

round.

Given the confidence intervals in Theorem 5, the update rule of Mr in

MR-LPF ensures that the best action is not eliminated (Lemma 10). Ad-

ditionally, we can use the confidence intervals to bound the regret for each

action in Mr, based on the maximum variance in predictions from previous

rounds. By summing up the regret over all rounds, we achieve the overall

regret bound, with details provided in Appendix C.1. For proof of Theorem 5,

see Appendix C.2.

6.5 Experiments
We run numerical experiments to evaluate the performance of MR-LPF and

compare it to MaxMinLCB (see [116], Algorithm 1) on various test functions,

including both synthetic and real-world cases. Our implementation is publicly

available.4

We first select the test function f as an arbitrary function in the RKHS

of a known kernel. To do this, we choose 10 points in the [0,1] interval and

assign them random values. We then fit a standard kernel ridge regression to

these samples using a kernel k and use its mean as f . The kernel k is set to

the SE kernel and Matérn kernels with smoothness parameters ν = 2.5 and

4https://github.com/ayakayal/BOHF_code_submission

https://github.com/ayakayal/BOHF_code_submission

6.5. Experiments 147

(a) SE kernel (RKHS) (b) SE kernel (Ackley)

(c) Matérn kernel with ν = 2.5 (RKHS) (d) Matérn kernel with ν = 2.5 (Ackley)

(e) Matérn kernel with ν = 1.5 (RKHS) (f) Matérn kernel with ν = 1.5 (Ackley)

Figure 6.1: Average Regret against T with RKHS test functions (left column) and
Ackley test function (right column). The shaded area represents the
standard error.

ν = 1.5. This is a common approach to constructing functions in an RKHS

(see, e.g., [66]). We also test the algorithms on the Ackley function, similar

to [116]. The Ackley function has a diverse optimization landscape, featuring

multiple local minima, flat plateaus, and valleys, making it a popular choice

in non-convex optimization literature [240].

To showcase the utility of our approach in real-world applications, we ex-

perimented using the Yelp Open Dataset5 of restaurant reviews. This serves as

a proof of concept, demonstrating both the potential integration of BOHF with

LLM-generated vector embeddings and the scalability of the method to higher-
5Yelp Open Dataset

https://www.yelp.com/dataset

6.5. Experiments 148

dimensional domains. The objective is to learn user preferences from compara-

tive feedback and recommend restaurants tailored to each user’s choices. After

data filtering and pre-processing, the dataset consists of 275 restaurants, 20

users, and 2563 reviews. Each restaurant is represented by a 32-dimensional

vector embedding of its text-based reviews, generated using OpenAI’s text-

embedding-3-large model6. Users rate restaurants on a scale from 1 to 5. We

adopt the experimental setup and Yelp data preprocessing from [116] to en-

sure a fair evaluation. While we implemented our own version instead of using

their code7 directly, we acknowledge their contribution in establishing this

benchmark, which inspired our experiment. We frame this problem within the

BOHF framework, where the action set X consists of 275 restaurants, each

represented as a 32-dimensional vector, and the utility values f correspond

to user ratings. SE kernel is used for these experiments. For details on the

experimental setup, see Appendix C.3.

Figure 6.2: Average regret against T for the experiment with Yelp Open Dataset.
The shaded area represents the standard error.

We plot the average regret at each time step, averaged over 60 independent

runs. Figure 6.1 shows the results on the RKHS and Ackley test functions,

while Figure 6.2 presents the results on the Yelp Open Dataset. MR-LPF

consistently achieves lower regret than MaxMinLCB across all test functions.

The initial regret of MR-LPF reflects highly exploratory behavior during the

early rounds. At the end of each round r, suboptimal actions are removed
6OpenAI Vector Embeddings
7https://github.com/lasgroup/MaxMinLCB.

https://platform.openai.com/docs/guides/embeddings
https://github.com/lasgroup/MaxMinLCB

6.6. Conclusion 149

from Mr, leading to the sharp drops that eventually result in near-optimal

actions in later rounds. Relatively constant behavior within rounds represents

exploration, while sharp drops indicate exploitation.

6.6 Conclusion
In this chapter, we proposed an algorithm, referred to as MR-LPF (Algo-

rithm 10), to address the BOHF problem. We provided a comprehensive per-

formance analysis under relatively general assumptions, demonstrating that

MR-LPF achieves a regret bound of Õ
(√

Γλ(T)T
)

for general kernels. This

result represents a significant improvement over existing approaches, effectively

tightening the regret by a factor of
√

Γ(T) and eliminating the dependence on

κ. Our results recover the order-optimal sample complexities achieved by con-

ventional BO, showing they are not improvable in general. In particular, this

implies that the number of preferential feedback samples required to identify

near-optimal actions is of the same order as the number of scalar-valued feed-

back samples. To validate these findings, we conducted numerical experiments

on both synthetic benchmarks and real-world examples. The results consis-

tently corroborate our theoretical guarantees and demonstrate that MR-LPF

outperforms the most competitive existing algorithm.

While our experiments were designed to align closely with the theoretical

analysis, there are exciting opportunities to further explore the practical im-

pact of MR-LPF. A natural next step is to demonstrate its utility in larger-scale

applications. For example, applying our method to scenarios where preference

feedback is elicited from interactions with LLMs—such as prompt optimization

or text summarization comparison—would provide a compelling extension. Al-

though such experiments require extensive setup and careful implementation,

we view them as a promising direction for future work.

Chapter 7

Conclusions

Efficiency is a cornerstone on the path toward AGI, as progress will ultimately

depend not only on raw computational power but also on the ability to learn

and reason effectively from limited data and resources. In this thesis, we

focused on advancing data-efficient strategies for sequential decision-making,

with a particular emphasis on improving exploration. In this final chapter, we

summarize the key contributions of the thesis and discuss potential directions

for future research arising from our findings.

7.1 Summary of Contributions
This thesis first addressed fundamental questions in deep RL that the com-

munity has yet to answer definitively. In particular: What constitutes good

exploration in practice? Can different exploration methods be directly com-

pared? How can an RL agent efficiently explore its environment? Since no

consensus exists on the optimal exploration strategy, in Chapter 4 we pre-

sented a re-interpretation of exploration bonuses (intrinsic rewards) based on

the level of diversity they promote—namely, state, policy, and skill diversity.

We conducted an empirical study to examine how these different levels of diver-

sity affect exploration. Our results showed that state-level diversity led to the

best exploration performance in environments with low-dimensional observa-

tions. In contrast, policy-level diversity was more effective in high-dimensional

settings, possibly owing to its robustness to challenges in representation learn-

7.1. Summary of Contributions 151

ing. To the best of our knowledge, Skill-level diversity, often linked to robust-

ness, did not contribute positively to exploration in MiniGrid environments.

These findings deepened our understanding of how exploration strategies can

be adapted to different environments. They also motivated our shift toward a

theoretical analysis of exploration, as the empirical definition of optimal explo-

ration remains elusive. In Chapter 5, we strengthened the theoretical founda-

tions of exploration in RL. We extended the analytical study of RL beyond the

well-studied tabular and linear settings to the more flexible kernel-based set-

ting, which supports nonlinear function approximation and provides a stepping

stone toward understanding RL in neural network-based settings. We studied

reward-free RL with kernel-based models and proposed two algorithms for data

collection and optimal policy derivation, under both the presence and absence

of a generative model. Each algorithm was supported by a sample complexity

analysis and empirical validation. Our contributions included relaxed assump-

tions compared to prior work and the derivation of novel confidence intervals

for kernel ridge regression, which have broader applications beyond RL. Fi-

nally, based on the insights gained from previous chapters and the growing

importance of learning from preference feedback—particularly for finetuning

and aligning LLMs—we investigated how to efficiently explore in order to learn

from human preferences with minimal feedback. In Chapter 6, we framed this

problem as Bayesian Optimization from Human Feedback (BOHF). We pro-

posed a novel algorithm, Multi-Round Learning from Preference-based Feed-

back (MR-LPF), that efficiently solves this problem. We proved an improved

regret bound for MR-LPF compared to existing algorithms and showed that

it matched the lower bound of conventional BO, despite relying on a weaker

preferential feedback model. We validated our approach through experiments

on both synthetic and real-world datasets.

7.2. Future Work 152

7.2 Future Work
Building on the findings of this thesis, several directions for future research

emerge, which we outline in the following section.

7.2.1 Theoretical Framework Unifying Exploration

Strategies

While Chapter 4 presents an empirical study of various exploration bonuses

across different types of environments—highlighting the strengths and limi-

tations of each—there remains a lack of a unified theoretical framework that

connects these diverse approaches. To deepen our understanding of how these

methods function, it is necessary to formalize them within a common the-

oretical structure by deriving a general objective function that encapsulates

multiple exploration strategies as special cases.

Such a framework would enable a principled comparison of intrinsic re-

ward mechanisms in terms of sample complexity, computational efficiency, and

robustness to environmental perturbations. Ultimately, this would not only

clarify existing strategies but also guide the development of novel and more

efficient exploration methods.

7.2.2 Exploration as Key to Generalization in RL

Effective exploration in RL is not just about finding optimal policies for the

training environments—it also helps in acquiring behaviors that generalize

to unseen tasks, highlighting the deep connection between exploration and

generalization [241]. One concrete approach to studying this connection is

through the exploration of task-agnostic skills—general-purpose, reusable be-

haviors that can serve as building blocks for solving diverse downstream tasks.

This perspective aligns with the discussion on skill learning in Chapter 4 and

parallels the rationale behind foundation models: just as large models are pre-

trained to capture broadly useful knowledge, RL agents discover a repertoire of

skills (goal-conditioned policies) through intrinsically motivated exploration.

These skill repertoires can act as behavioral priors, allowing agents to adapt

7.2. Future Work 153

faster to novel tasks by composing and refining pre-existing skills.

A central challenge in skill learning is balancing diversity, efficiency, and

generalization. Skills must be diverse, covering a broad range of behaviors

to maximize transfer potential. Exploration should also be efficient, priori-

tizing informative behaviors, avoiding redundancy, and not wasting effort on

unachievable goals. Ultimately, the acquired skill set should generalize ef-

fectively, enabling agents to rapidly solve new tasks with minimal additional

learning.

Open questions include: How can we quantify a skill set’s diversity, ef-

ficiency, and generalization? How can we design richer goal representations

and mechanisms for long-horizon goals? What strategies can support efficient

skill adaptation and composition? Equally important are robust benchmarks

and principled metrics to evaluate whether skill repertoires truly facilitate

exploration and zero-shot generalization. Progress will require a deeper un-

derstanding of how exploration shapes transferable behaviors and how such

behaviors can be composed, refined, and reused across tasks.

7.2.3 Active Exploration for LLM Alignment

LLMs have revolutionized AI, yet aligning them with human values remains

a critical challenge. LLM alignment ensures that these models generate re-

sponses that are not only coherent but also align with human intent, eth-

ical considerations, and safety constraints [238, 242]. The first method in-

troduced for alignment has been Reinforcement Learning from Human Feed-

back (RLHF), which involves training a reward model (RM) based on human

preference comparisons and then optimizing a policy against this RM using

RL [243, 244]. More recently, direct preference-based alignment methods have

gained traction as simpler and more efficient alternatives to RLHF. One promi-

nent example is Direct Preference Optimization (DPO), which directly updates

the language model (policy) using pairwise preference data without requiring

a separate RM [245]. These methods offer improvements in stability and sam-

ple efficiency. However, DPO relies on a fixed, pre-collected dataset, and

7.2. Future Work 154

often struggles with generalization, especially when confronted with out-of-

distribution data [246]. To address this, recent research has explored online

alignment techniques, which incorporate interactive feedback from humans or

AI systems during training [247, 248, 114]. Nevertheless, acquiring human

feedback at scale remains expensive and time-consuming. This challenge nat-

urally leads to the question of active preference learning, where the goal is

to make alignment more sample-efficient by strategically selecting which com-

parisons to query. Our recent work on BOHF contributes to this direction

by proposing a framework that seeks to learn efficiently with minimal prefer-

ence data. Building on this, we identify several open questions and promising

avenues for future research:

1. How can active preference learning methods be adapted to operate in

the vastly larger and more complex action spaces encountered in LLM

alignment, while maintaining computational tractability?

2. Which acquisition strategies yield the greatest improvements in sample

efficiency when selecting preference comparisons?

3. What sample complexity guarantees can be established for preference-

based alignment in realistic LLM settings?

4. How robust are active preference learning strategies to noisy, inconsis-

tent, or adversarial human feedback and what mechanisms can improve

their resilience?

These and related questions highlight the need for continued research at the in-

tersection of preference learning, alignment, and sample-efficient optimization.

As LLMs continue to evolve, developing principled, scalable, and cost-effective

alignment methods remains a central challenge for the field.

Appendix A

Appendix of Chapter 4

A.1 Diversity Levels Categorization
We divide intrinsic rewards into two categories: “Where to explore” and “How

to explore?”, as described in the following and shown in Figure A.1.

A.1.1 “Where to Explore?”

State level diversity:

In this subcategory, we collect all the works that encourage the exploration of

unseen states. The most common method is “State Count”, which stores the

visitation count of each state, and gives high intrinsic rewards to encourage

revisiting states with low counts. Algorithms that implement this approach

include UCB, Model-based Interval Estimation (MBIE-EB), and Bayesian Ex-

ploration Bonus (BEB) [17, 159, 249]. While counting works well in tabular

cases, it becomes difficult in vast state spaces. Several methods were proposed

to extend State Count to large or continuous state spaces, such as pseudo-

counts [131] and hashing [132].

Besides count-based methods, feature prediction error can be used as a

measure of state novelty. For example, in [133], the authors assessed state nov-

elty by distilling a fixed, randomly initialized neural network (target network)

into another neural network (predictor network) trained on the data collected

by the agent. This technique is called Random Network Distillation (RND),

and the main motivation behind it is that the prediction error should be small

A.1. Diversity Levels Categorization 156

Figure A.1: Categorization of the different levels of diversity incurred by intrinsic
rewards for exploration in RL.

for frequently visited states. Similarly, the NovelD algorithm [250] uses RND

as a measure of state novelty but defines the intrinsic reward as the difference

in RND prediction errors at two consecutive states, st and st+1, in a trajectory.

Finally, this level of diversity includes methods that aim to maximize the

entropy of the state distribution induced by the policy over a finite or infinite

horizon by estimating the state density distribution [212, 251] or by relying on

the K-Nearest Neighbors (KNN) distance as an approximation of state entropy

[252, 253, 164, 254].

A.1. Diversity Levels Categorization 157

State + Dynamics level diversity:

This class also aims to visit diverse states, but the difference with respect to

State level is that the agent considers the novelty of the dynamics as well

(not only states) to drive exploration. The agent either tries to build an

accurate dynamical model of the environment or learns a dynamics-relevant

state representation for exploration.

This subcategory mainly includes curiosity-driven methods that use the

forward dynamics prediction error as an intrinsic reward, such as [135] and

[255]. The key intuition is to encourage the agent to revisit unfamiliar state

transitions where the prediction error is high (high mismatch between the

agent’s expectation and true experience). Another curiosity-driven technique is

Variational Information Maximizing Exploration (VIME) [136], which pushes

the agent to explore states that lead to a larger change in the dynamics model

(higher information gain).

Moreover, this subcategory includes techniques that estimate the state

novelty within a feature space designed to capture the temporal or dynamical

aspects of states. For instance, Exploration via Elliptical Episodic Bonuses

(E3B) [165] and RIDE [160] both utilize an inverse dynamics model to learn

state embeddings that represent the controllable dynamics of the environment.

While RIDE encourages the agent to select actions that produce substantial

changes in the state embedding, E3B applies an elliptical episodic bonus to

guide exploration. Additional examples include Never Give Up (NGU) [134],

Agent 57 [256], and Episodic Curiosity (EC) [257], all of which employ memory-

based methods using distance-based metrics in a dynamics-aware feature space

to approximate State + Dynamics novelty. Similarly, [258] propose the LIB-

ERTY approach, which utilizes an inverse dynamic bisimulation metric to

measure distances between states in a latent space, ensuring effective explo-

ration and policy invariance. The work of [259] also presents a novel behavioral

metric with Cyclic Dynamics (BCD), leveraging successor features and vector

quantization to evaluate behavioral similarity between states and capture in-

A.1. Diversity Levels Categorization 158

terrelations among environmental dynamics. Finally, [260] propose using the

inverse of the norm of the successor representation (SR) as an intrinsic reward

to account for transition dynamics. More recently, [261] developed the SPIE

approach (Successor-Predecessor Intrinsic Exploration), which constructs an

intrinsic reward by integrating both prospective and retrospective information

from previous trajectories, also based on SR.

A.1.2 “How to Explore?”

Policy/Action level diversity:

Algorithms in this subcategory aim to explore diverse actions from the same

state. What makes it different from the State + Dynamics algorithms intro-

duced in A.1.1 is that the previous category uses knowledge about the states

and dynamics of the environment and pushes for exploring the areas where the

agent knows the least (high uncertainty). In contrast, this level of diversity

considers the previous exploration behavior represented by the policy (how the

agent has explored) and pushes it to explore differently, inducing diversity in

the policy learned. For example, in Maximum Entropy RL (Max Entropy),

the aim is to learn the optimal behavior while acting as randomly as possible.

The objective function becomes the sum of expected rewards and conditional

action entropy [262]. Soft Actor-Critic (SAC) [167] is a popular RL algorithm

implementing the Max Entropy RL framework. Diversity-driven exploration

strategy [263] is another exploration technique that encourages the agent to

behave differently in similar states. It maximizes the divergence between the

current policy and prior policies. Similarly, Adversarially Guided Actor-Critic

(AGAC) [264] maximizes the divergence between the prediction of the policy

and an adversary policy trained to mimic the behavioral policy. The main

motivation is to encourage the policy to explore different behaviors by re-

maining different from the adversary. Another branch that belongs to this

diversity level is population-based exploration, which combines evolutionary

strategies with Reinforcement Learning. These approaches train a population

of agents to learn diverse behaviors that are high scoring at the same time,

A.1. Diversity Levels Categorization 159

in order to effectively explore the environment [265, 266]. For more details on

the connection between evolutionary approaches and RL, please refer to the

comprehensive survey by [267].

Skill level diversity:

Skill level diversity disentangles diverse behaviors into different latent-

conditioned policies (also called skills). The policy π is conditioned on a

latent variable z ∼ p(z), and each z defines a different policy denoted by

π(a|s,z) [139]. This category aims to discover diverse skills, and the intrinsic

reward is a function of the skill. Most methods falling into this category come

from the domain of unsupervised skill discovery and use a discriminator-based

architecture, such as Diversity is All You Need (DIAYN) [138]. DIAYN re-

places the task reward with a learned discriminator term qα(z|s) that infers

the behavior from the current state in order to generate diverse policies vis-

iting different sets of states. It also uses the Max Entropy RL framework to

learn skills that are as random as possible [138]. Maximum Entropy Diverse

Exploration (MEDE) [139] is very similar to “DIAYN + extrinsic reward”,

with the small difference of conditioning the discriminator on the state-action

pair qα(z|s,a) instead of the state only. Moreover, MEDE uses the discrim-

inator term as a prior in the objective function instead of adding it as an

intrinsic reward. Structured Max Entropy RL (SMERL) is another algorithm

with the same approach as DIAYN, but it adds the intrinsic reward to the

task reward only when the policies have achieved at least near-optimal returns

[143]. DOMINO (Diversity Optimization Maintaining Near Optimally) also

learns diverse policies while remaining near-optimal; it uses an intrinsic reward

that maximizes the diversity of policies by measuring the distance between the

expected features of the policies’ state-action occupancies [144]. It is impor-

tant to mention that skills in the literature can be called options or goals. For

example, Variational Intrinsic Control (VIC) is an algorithm that provides the

agent with an intrinsic reward that relies on modeling options and learning

policies conditioned on these options [140]. Instead of sampling options from

A.2. MiniGrid Environments 160

a fixed prior distribution as in DIAYN, VIC learns the prior distribution of

options and updates it to choose options that yield higher rewards [140]. Both

DIAYN and VIC are part of goal-conditioned RL methods, where goals are

internally generated by agents and achieved via self-generated rewards [129].

More recent unsupervised skill-learning methods have emerged, such as [173]

which proposed Behavior Contrastive Learning (BeCL), a novel competence-

based method that uses contrastive learning to encourage similar behaviors

within the same skill and diverse behaviors across different skills. This is done

by maximizing the mutual information (MI) between different states gener-

ated by the same skill as an intrinsic reward. Another recent work by [175]

proposed skill discovery with guidance (DISCO-DANCE) which identifies the

guide skill most likely to reach unexplored states, directs other skills to follow

it, and disperses them to maximize distinctiveness. Moreover, [174] proposed

Learning Diverse Skills through Successor States (LEADS), which maximizes

a variant of the MI between skills and states, by leveraging the successor state

measure to tailor skills toward less-visited states while also maximizing the

disparity between skills.

A.2 MiniGrid Environments
We use the following MiniGrid environments shown in Figure A.2:

1. Empty: This is an empty grid where the agent is always placed in the

corner opposite to the goal. The task is to get to the green goal square.

We use the regular variant “MiniGrid-Empty-16x16-v0”.

2. DoorKey: This is a sparse reward environment that requires a specific

order of visiting the states to solve the task; the agent needs to pick up

the key, open the door, then get to the green goal square. It does not

receive any reward after picking up the key or unlocking the door; it is

rewarded only at the end of the task. We use “MiniGrid-DoorKey-16x16-

v0” in the case of grid encodings and “MiniGrid-DoorKey-8x8-v0” in the

case of RGB observations.

A.2. MiniGrid Environments 161

(a) Empty 16x16 (b) DoorKey 16x16 (c) DoorKey 8x8

(d) RedBlueDoors 8x8 (e) FourRooms

Figure A.2: MiniGrid environments.

3. FourRooms: In this environment, the agent must navigate a maze con-

sisting of four rooms, with both its initial position and goal position

being randomized. We use “MiniGrid-FourRooms-v0” where each of the

four rooms consists of a grid of size 8×8.

4. RedBlueDoors: The agent is randomly placed in a room where there are

one red and one blue door facing opposite directions. The task consists

of opening the red door before opening the blue door. The agent must

rely on its memory of whether it has previously opened the other door to

successfully complete the task, as it cannot see the door behind it. We

use “MiniGrid-RedBlueDoors-8x8-v0”.

For all tasks, a maximum number of steps tmax is assigned, to encourage

the agent to solve the task as quickly as possible. When the agent succeeds after

t steps, it receives a reward rt = 1−0.9t/tmax in all three environments. The

episode ends when the agent collects the final reward or when the maximum

A.3. Hyperparameters 162

number of steps is exceeded.

Observation and Action spaces. The observations are egocentric and par-

tially observable. We first considered the grid encoding observations of size

7×7×3. The first two dimensions (7×7) compose the tile set, and the last di-

mension encodes the object type (wall, door, · · ·), the object color (red, green,

· · ·) and the object status (door open, door closed, door locked). Specifically,

object type ∈ {0,1,2,3,4,5,6,7,8,9,10}, object color ∈ {0,1,2,3,4,5}, and ob-

ject status ∈ {0,1,2}. Then, we used partial RGB visual observations of size

56×56×3 (7 tiles of 8×8 pixels each) to increase the complexity of the task,

as agents must extract features directly from the images. There are 7 actions

available to the agent: turn left, turn right, move forward, pick up an object,

drop an object, toggle and done. Some of these actions are unused in certain

tasks.

A.3 Hyperparameters
For State Count and ICM, we use the hyperparameters from the previous

study [150]. Since Max Entropy + PPO and DIAYN were not tested before

on MiniGrid, we run a grid search over βint ∈ [0.1,0.01,0.001,0.0005] and pick

the best values of βint that result in the highest return during training. The

chosen values of βint are summarized in Table A.1. For DIAYN, we choose to

train 10 skills, which is the number used in the study by [268], and we use a

discriminator learning rate of 3×e−4 following the implementation of the DI-

AYN paper [138] (Table A.2). Note that we reused the same hyperparameters

for the second part, where we tested on RGB observations.

Table A.1: Best intrinsic reward coefficients βint.

Empty DoorKey RedBlueDoors FourRooms
State Count 0.005 0.005 0.005 0.005
Max Entropy 0.0005 0.0005 0.0005 0.0005
ICM 0.05 0.05 0.05 0.05
DIAYN 0.01 0.01 0.01 0.01

A.4. Additional Experimental Results 163

Table A.2: List of hyperparameters.

Number of parallel actors 16
Number of frames per rollout 128
Number of epochs 4
Batch size 256
Discount γ 0.99
Learning rate 0.0001
λgae 0.95
Entropy regularization coefficient 0.0005
Value loss coefficient 0.5
Clipping factor PPO 0.2
Gradient clipping 0.5
Forward dynamics loss coefficient 10
Inverse dynamics loss coefficient 0.1
Learning rates (state embedding, forward, and inverse dynamics) 0.0001
Number of skills 10
Discriminator learning rate 0.0003
SimHash key size 16

A.4 Additional Experimental Results

In this section, we present supplementary analyses to complement the main

results. Specifically, we provide reward discovery statistics and state vis-

itation heatmaps across multiple environments and two observation spaces

(grid encoding and RGB). The tables report the frame number at which each

exploration method discovers the reward for the first, second, and third time.

Results are averaged across five independent runs, with mean and standard

deviation reported as µ±σ. If the reward is never found, the frame number

is set to the training budget (40M). The heatmaps visualize state visitation

counts accumulated during 10M frames of training on singleton environments.

For each intrinsic reward method, snapshots are taken at three representa-

tive points in training: T1 = 100K frames, T2 = 500K frames, and T3 =

10M frames. Color intensity indicates the proportion of frames spent in each

state, with high values capped to enhance visibility. Results are organized by

observation space: Section A.4.1 presents experiments with grid encoding

observations, while Section A.4.2 reports results with RGB observations.

A.4. Additional Experimental Results 164

A.4.1 Grid Encoding Observation Space

Table A.3: Frame number at which the reward is discovered for the first, second
and third time in Empty 16x16 environment with grid encodings.

Empty 16x16 First reward Second Reward Third reward
PPO 15 452 ± 7112 21 273 ± 11539 28 304 ± 14785

PPO + State Count 18 428 ± 9119 25 340 ± 11537 32 483 ± 12888
PPO + Max Entropy 16 841 ± 6916 22 768 ± 6736 27 318 ± 10355

PPO + ICM 8 918 ± 3565 13 436 ± 6830 18 281 ± 9467
PPO + DIAYN pretraining 12 668 ± 7030 20 076 ± 13898 326 963 ± 662300
PPO + DIAYN finetuning 1 001 862 ± 1187338 1 130 208 ± 1082785 1 207 600 ± 1038924

Table A.4: Frame number at which the reward is discovered for the first, second
and third time in DoorKey 16x16 environment with grid encodings.

DoorKey 16x16 First reward Second Reward Third reward
PPO 1 242 342 ± 529863 2 276 508 ± 917486 3 186 537 ± 1616226

PPO + State Count 496 486 ± 550012 558 204 ± 548684 783 075 ± 615917
PPO + Max Entropy 594 649 ± 696956 1 067 401 ± 743704 3 300 668 ± 3108002

PPO + ICM 1 089 286 ± 734419 1 287 632 ± 674758 1 683 612 ± 539173
PPO + DIAYN Pretraining 40 000 000 ± 0 40 000 000 ± 0 40 000 000 ± 0
PPO + DIAYN finetuning 2 087 398 ± 449537 2 221 756 ± 447746 2 516 739 ± 689340

Table A.5: Frame number at which the reward is discovered for the first, second
and third time in RedBlueDoors environment with grid encodings.

RedBlueDoors First reward Second Reward Third reward
PPO 13 136 ± 5647 17 568 ± 8303 26 553 ± 6733

PPO + State Count 13 180 ± 8236 25 923 ± 11537 33 545 ± 19115
PPO + Max Entropy 9 417 ± 2678 20 464 ± 10420 24 432 ± 10339

PPO + ICM 37 721 ± 68636 129 043 ± 175 507 162 060 ± 193005
PPO + DIAYN pretraining 19 244 ± 10004 24 611 ± 12661 39 280 ± 25334
PPO + DIAYN finetuning 2 992 614 ± 2118551 3 006 659 ± 2114575 3 033 043 ± 2096962

Table A.6: Frame number at which the reward is discovered for the first, second
and third time in FourRooms environment with grid encodings.

FourRooms First reward Second Reward Third reward
PPO 25 222 ± 32606 97 033 ± 41446 150 188 ± 104821

PPO + State Count 15 465 ± 9712 34 649 ± 11090 51 820 ± 23054
PPO + Max Entropy 2 479 424 ± 5498212 5 327 913 ± 5306632 6 874 905 ± 5056693

PPO + ICM 89 433 ± 111832 197 312 ± 171435 274 883 ± 171782
PPO + DIAYN pretraining 2 089 ± 1178 9 049 ± 5350 14 531 ± 9099
PPO + DIAYN finetuning 29 238 ± 27103 41 376 ± 35912 69 737 ± 53656

A.4. Additional Experimental Results 165

Empty

Figure A.3: State visitation heatmap for singleton Empty 16x16 environment with
grid encoding observations.

DoorKey
16x16

Figure A.4: State visitation heatmap for singleton DoorKey 16x16 environment
with grid encoding observations.

A.4. Additional Experimental Results 166

Four-
Rooms

Figure A.5: State visitation heatmap for singleton FourRooms environment with
grid encoding observations.

RedBlue-
Doors

Figure A.6: State visitation heatmap for singleton RedBlueDoors environment
with grid encoding observations.

A.4. Additional Experimental Results 167

A.4.2 RGB Observation Space

Table A.7: Frame number at which the reward is discovered for the first, second,
and third time in Empty 16x16 environment with RGB observations.

Empty 16x16 RGB First reward Second Reward Third reward
PPO 48 256 ± 85183 103 401 ± 112583 115 148 ± 117261

PPO + SimHash 71 132 ± 9119 75 686 ± 95328 79 699 ± 96431
PPO + Max Entropy 43 072 ± 76270 49 033 ± 79868 59 494 ± 81361

PPO + ICM 448 121 ± 500641 493 401 ± 522557 509 750 ± 509223
PPO + DIAYN pretraining 896 963 ± 1257009 2 262 649 ± 3635427 2 267 164 ± 3639831
PPO + DIAYN finetuning 69 712 ± 102945 94 240 ± 138306 110 710 ± 135551

Table A.8: Frame number at which the reward is discovered for the first, second,
and third time in DoorKey 8x8 environment with RGB observations.

DoorKey 8x8 RGB First reward Second Reward Third reward
PPO 31 430 ± 39987 49 257 ± 44984 75 587 ± 32508

PPO + SimHash 93 494 ± 75207 115 529 ± 80404 143 840 ± 71717
PPO + Max Entropy 26 870 ± 34213 100 931 ± 96891 124 828 ± 114469

PPO + ICM 445 222 ± 433991 655 200 ± 384520 713 795 ± 381101
PPO + DIAYN pretraining 32 003 513 ± 17880687 40 000 000 ± 0 40 000 000 ± 0
PPO + DIAYN finetuning 40 000 000 ± 0 40 000 000 ± 0 40 000 000 ± 0

Table A.9: Frame number at which the reward is discovered for the first, second,
and third time in RedBlueDoors environment with RGB observations.

RedBlueDoors RGB First reward Second Reward Third reward
PPO 18 504 ± 12321 28 179 ± 19650 44 342 ± 36719

PPO + SimHash 35 516 ± 38700 49 548 ± 48897 60 643 ± 58630
PPO + Max Entropy 51 871 ± 51587 71 776 ± 59120 97 907 ± 88967

PPO + ICM 18 355 ± 26236 206 547 ± 420774 219 718 ± 419780
PPO + DIAYN pretraining 16 012 892 ± 21897134 16 015 049 ± 21895167 24 011 241 ± 21893513
PPO + DIAYN finetuning 24 212 716 ± 21618947 24 212 716 ± 21618947 24 219 180 ± 21610106

Table A.10: Frame number at which the reward is discovered for the first, second,
and third time in FourRooms environment with RGB observations.

FourRooms RGB First reward Second Reward Third reward
PPO 6 057 ± 7369 27 203 ± 34679 41 766 ± 47238

PPO + SimHash 7 561 ± 13820 13 171 ± 11599 20 406 ± 17137
PPO + Max Entropy 7 654 ± 13591 9 014 ± 13184 13 907 ± 12435

PPO + ICM 7 491 ± 10928 10 060 ± 12737 16 912 ± 16744
PPO + DIAYN pretraining 3 276 505 ± 7322741 3 290 252 ± 7342741 3 296 742 ± 7343739
PPO + DIAYN finetuning 4 470 ± 2384 6 854 ± 4956 8 166 ± 4735

A.4. Additional Experimental Results 168

Empty

Figure A.7: State visitation heatmap for singleton Empty 16x16 environment with
RGB observations.

DoorKey
8x8

Figure A.8: State visitation heatmap for singleton DoorKey 8x8 environment with
RGB observations.

A.4. Additional Experimental Results 169

Four-
Rooms

Figure A.9: State visitation heatmap for singleton FourRooms environment with
RGB observations.

RedBlue-
Doors

Figure A.10: State visitation heatmap for singleton RedBlueDoors environment
with RGB observations.

A.5. DIAYN Extrinsic 170

A.5 DIAYN Extrinsic
Initially, we evaluated DIAYN combined with extrinsic rewards, but it did

not perform well because of the imbalance between discriminability and re-

ward maximization (see Figure A.11). Recognizing that DIAYN is primarily

intended for unsupervised pretraining of skills rather than simultaneous use

with return maximization, we decided to split the training budget between

pretraining and finetuning.

Figure A.11: Analogous to Figure. 4.3, but showing DIAYN combined with ex-
trinsic rewards on grid encoding observations. Metrics are plotted
against the number frames and averaged over five seeds.

Appendix B

Appendix of Chapter 5

B.1 Proof of Theorem 1 and Corollary 1
For the proof of Theorem 1, we leverage the fact that V belongs to an RKHS.

Specifically, we use the Mercer representation of V

V (s) =
∞∑
m=1

wmλ
1
2
mψm(s). (B.1)

We can also rewrite the observations in the observation vector yn as the sum

of a noise term and the expected value of the observation (noise free part).

V (s′
i) = (V (s′

i)−f(zi))︸ ︷︷ ︸
Observation noise

+ f(zi)︸ ︷︷ ︸
Noise-free observation

(B.2)

Using the notation ψm(z) = Es′∼P (·|z)ψm(s′), we can rewrite f(zi) as follows

f(zi) = Es∼P (·|zi)[V (s)]

= Es∼P (·|zi)

[∞∑
m=1

wmλ
1
2
mψm(s)

]

=
∞∑
m=1

wmλ
1
2
mEs∼P (·|zi)[ψm(s)]

=
∞∑
m=1

wmλ
1
2
mψm(zi) (B.3)

B.1. Proof of Theorem 1 and Corollary 1 172

We then use the following notations, εi = V (s′
i)− f(zi), εn = [ε1, ε2, · · · , εn]⊤,

fn = [f(z1),f(z2), · · · ,f(zn)]⊤, to rewrite the prediction error

f(z)− f̂n(z) = f(z)−k⊤
n (z)(τ2I+Kn)−1yn

= f(z)−k⊤
n (z)(τ2I+Kn)−1(εn+fn)

= f(z)−k⊤
n (z)(τ2I+Kn)−1fn︸ ︷︷ ︸

Prediction error from noise-free observations

−k⊤
n (z)(τ2I+Kn)−1εn︸ ︷︷ ︸
The error due to noise

The first term is deterministic (not random) and can be bounded following the

standard approaches in kernel-based models, for example using the following

result from [70]. Let us use the notations ζn(z) = k⊤
n (z)(τ2I +Kn)−1 and

ζi(z) = [ζn(z)]i.

Lemma 1 (Proposition 1 in [70]). We have

σ2
n(z) = sup

f :∥f∥H≤1
(f(z)−ζ⊤

n (z)fn)2 + τ2∥ζn(z)∥2ℓ2 .

Based on this lemma, the first term can be deterministically bounded by

B1σn(z) :

|f(z)−k⊤
n (z)(τ2I+Kn)−1fn| ≤B1σn(z) (B.4)

We next bound the second term, the error due to noise.

k⊤
n (z)(τ2I+Kn)−1εn =

n∑
i=1

ζi(z)εi

=
n∑
i=1

ζi(z)(
∞∑
m=1

wmλ
1
2
mψm(s′

i)−
∞∑
m=1

wmλ
1
2
mψm(zi))

=
∞∑
m=1

wmλ
1
2
m

n∑
i=1

ζi(z)(ψm(s′
i)−ψm(zi))

=
M∑
m=1

wmλ
1
2
m

n∑
i=1

ζi(z)(ψm(s′
i)−ψm(zi))

+
∞∑

m=M+1
wmλ

1
2
m

n∑
i=1

ζi(z)(ψm(s′
i)−ψm(zi))

B.1. Proof of Theorem 1 and Corollary 1 173

We note that ψm(s′
i)−ψm(zi) are bounded random variables with a range of

2ψmax. Using Chernoff-Hoeffding inequality and the bound on the norm of ζn

provided in Lemma 1, we have that with probability at least 1− δ/M

n∑
i=1

ζi(z)(ψm(s′
i)−ψm(zi))≤

ψmaxσn(z)
τ

√
2log

(
M

δ

)
.

Using a probability union bound, with probability 1− δ

M∑
m=1

wmλ
1
2
m

n∑
i=1

ζi(z)(ψm(s′
i)−ψm(zi))

≤
M∑
m=1

wmλ
1
2
m
ψmaxσn(z)

τ

√
2log

(
M

δ

)

≤

 M∑
m=1

λm


1
2
 M∑
m=1

w2
m


1
2
ψmaxσn(z)

τ

√
2log

(
M

δ

)

≤

 M∑
m=1

λm


1
2

B2
ψmaxσn(z)

τ

√
2log

(
M

δ

)

≤ CB2
ψmaxσn(z)

τ

√
2log

(
M

δ

)

The second inequality is based on the Cauchy-Schwarz inequality. In the third

inequality, we used that B2 is the upper bound on the RKHS norm of V . In the

last inequality, we used the observation that under both polynomial eigenvalue

decay with p > 1 and exponential eigendecay, the sum of the eigenvalues is

bounded by an absolute constant C.

Also, for the second term, we have

∞∑
m=M+1

wmλ
1
2
m

n∑
i=1

ζi(z)
(
ψm(s′

i)−ψm(zi)
)

≤ 2ψmax
∞∑

m=M+1
wmλ

1
2
m

n∑
i=1

ζi(z)

≤ 2ψmax
∞∑

m=M+1
wmλ

1
2
m

(
n

n∑
i=1

ζ2
i (z)

) 1
2

≤ 2σn(z)ψmax
√
n

τ

∞∑
m=M+1

wmλ
1
2
m

B.1. Proof of Theorem 1 and Corollary 1 174

≤ 2σn(z)ψmax
√
n

τ

 ∞∑
m=M+1

w2
m

 ∞∑
m=M+1

λm


1
2

≤ 2B2σn(z)ψmax
τ

n ∞∑
m=M+1

λm


1
2

.

The first inequality holds by definition of ψmax. The second inequality is based

on the Cauchy-Schwarz inequality. The third inequality uses Lemma 1. The

fourth inequality utilizes the Cauchy-Schwarz inequality again, and the last

inequality results from the upper bound on the RKHS norm of V .

Putting together, with probability 1− δ,

k⊤
n (z)(τ2I+Kn)−1εn ≤

CB2ψmaxσn(z)
τ

√
2log

(
M
δ

)
+ 2B2σn(z)ψmax

τ

√√√√n ∞∑
m=M+1

λm. (B.5)

Proof of Corollary 1 To extend the confidence interval given in Theorem 1

to hold uniformly on Z, we use a discretization argument. For this purpose,

we apply Assumption 2 to f and f̂n, and also use Assumption 2 to bound the

discrimination error in σn. The following lemma provides a high probability

bound on ∥f̂n∥kφ .

Lemma 2. For function f defined in Theorem 1, the RKHS norm of f̂n sat-

isfies the following with probability at least 1− δ:

∥f̂n∥Hkφ
≤B1 + vmax

τ

√
2
(

Γkφ(n)+1+ log
(1
δ

))
. (B.6)

For a proof see Lemma 5 in [181].

Let B3(δ) = B1 + vmax
τ

√
2(Γkφ(n)+1+ log(1

δ)) denote the 1− δ upper confi-

dence bound on ∥f̂n∥Hkφ . Let Z be the discretization of Z specified in As-

sumption 2 with RKHS norm bound B3(δ2). That is for any g ∈ Hkφ with

∥g∥Hkφ
≤ B3(δ2), we have g(z)− g([z])≤ 1

n , where [z] = argminz′∈Z ∥z′− z∥ is

the closest point in Z to z, and |Z| ≤ cn, where cn = c(B3(δ2))dnd. Applying

B.1. Proof of Theorem 1 and Corollary 1 175

Assumption 2 to f and f̂n with this discretization, it holds for all z ∈ Z that

|f(z)−f([z])| ≤ 1
n
. (B.7)

In addition, by Lemma 2, with probability eat least 1− δ

|f̂n(z)− f̂n([z])≤ 1
n
. (B.8)

Furthermore, we have the following lemma, which can roughly be viewed as a

Lipschitz continuity property for σn.

Lemma 3. Under Assumption 2, with the discrimination Z described above,

it holds for all z ∈ Z that

σn(z)−σn([z])≤ 2√
n
.

Proof of Lemma 3. Using the reproducing property of RKHS, we have

∥k⊤
n (z)(Kn+ τ2I)−1kn(·)∥Hk

≤ kmax
√
n

τ
, (B.9)

where kmax is the maximum value of the kernel. Let us define q(·, ·′) =

k⊤
n (·)(Kn+ τ2I)−1kn(·′). We can write

|σ2
n(z)−σ2

n([z])|

=
∣∣∣(k(z,z)− q(z,z))− (k([z], [z])− q([z], [z]))

∣∣∣
=
∣∣∣(k(z,z)− q(z,z))− (k(z, [z])− q(z, [z]))+(k(z, [z])− q(z, [z]))− (k([z], [z])− q([z], [z]))

∣∣∣
≤ |k(z,z)−k(z, [z])|+ |k(z, [z])−k([z], [z])|+ |q(z,z)− q(z, [z])|+ |q(z, [z])− q([z], [z])|

≤ 4
n
.

To obtain a discretization error bound for the standard deviation from that of

B.2. Proof of Theorem 2 176

the variance, we write

(σn(z)−σ([z]))2 ≤ |σn(z)−σ([z])|(σn(z)+σ([z]))

= |σ2
n(z)−σ2([z])|

≤ 4
n
.

Therefore,

|σn(z)−σ([z])| ≤ 2√
n
.

Applying a probability union bound on the discretization Z to Theorem 1,

and considering the error bounds in (B.7), (B.8) and Lemma 3, we arrive at

Corollary 1.

B.2 Proof of Theorem 2
First, we define the following high-probability event :

E =
{
∀h ∈ [H], |ĝh(z)− [PhVh+1](z)| ≤ β(δ)

(
σh,N (z)+ 2√

n

)
+ 2
n

}
, (B.10)

where β(δ) = O
(
H
τ

√
d log(NHδ)

)
as specified in Corollary 1 with B1 = O(H)

and B2 = cv. Using Corollary 1, we have P[E]≥ 1− δ.

We divide the rest of the analysis into several steps, as outlined next.

Step 1: Under E , with reward r, we bound V ⋆
1 (s)−V π

1 (s) using V1(s)−V π
1 (s),

based on the following lemma. Recall that V π
h and V ⋆

h are the value functions

of policy π and the optimal policy, respectively, and Vh is the proxy value

functions used in Algorithm 7.

Lemma 4. Under E, we have

V ⋆
h (s)−Vh(s)≤ (H+1−h)(2β(δ)√

N
+ 2
N

). (B.11)

Proof of Lemma 4. The lemma is proven by induction over h, starting from

B.2. Proof of Theorem 2 177

V ⋆
H+1 = VH+1 = 0. We have

Q⋆h(s,a)−Qh(s,a) = rh(s,a)+ [PhV ⋆
h+1](s,a)− rh(s,a)− ĝh(s,a)−β(δ)σh,N (s,a)

≤ [PhV ⋆
h+1](s,a)− [PhVh+1](s,a)+ 2β(δ)√

N
+ 2
N

= [Ph(V ⋆
h+1−Vh+1)](s,a)+ 2β(δ)√

N
+ 2
N

≤ (H+1−h)(2β(δ)√
N

+ 2
N

)

The first inequality holds by E , and the second inequality by induction as-

sumption. Then, we have

V ⋆
h (sh)−Vh(sh) = max

a∈A
Q⋆h(s,a)−max

a∈A
Qh(s,a)

≤max
a∈A
{Q⋆h(s,a)−Qh(s,a)}

≤ (H+1−h)(2β(δ)√
N

+ 2
N

).

That proves the lemma.

Step 2: We also bound V1(s)−V π
1 (s) using the sum of standard deviations for

the trajectory generated by the policy.

Lemma 5. Under E, we have

V1(s1)−V π
1 (s1)≤ E

 H∑
h=1

2β(δ)σh,N (sh,ah)
+ 2Hβ(δ)√

N
+ 2H
N
,

where the expectation is taken with respect to the trajectory generated by the

policy.

Proof of Lemma 5. Note that VH+1 = V π
H+1 = 0. We next obtain a recursive

relationship for the difference Vh(s)−V π
h (s).

B.2. Proof of Theorem 2 178

Vh(sh)−V π
h (sh) =Qh (sh,π(sh))−Qπh (sh,π(sh))

= r (sh,π(sh))+ ĝh (sh,π(sh))+β(δ)σh,N (sh,π(sh))

− r (sh,π(sh))− [PhV π
h+1] (sh,π(sh))

≤ [PhVh+1] (sh,π(sh))+2β(δ)σh,N (sh,π(sh))

+ 2β(δ)√
N

+ 2
N
− [PhV π

h+1] (sh,π(sh)) ,

where the inequality is due to E . Recursive application of the above inequality

over h=H,H−1, · · · ,1, we obtain

V1(s1)−V π
1 (s1)≤ Esh+1∼P (·|sh,π(sh)),h<H

 H∑
h=1

2β(δ)σh,N (sh,π(sh))
+ 2Hβ(δ)√

N
+ 2H
N
.

Step 3: By definition, we have V π
1 (s1;β(δ)σN) ≤ V ⋆

1 (s1;β(δ)σN). Note that

V π
1 (s1;β(δ)σN) = β(δ)∑H

h=1σh,N (sh,π(sh)).

Step 4: We have V ⋆
1 (s;β(δ)σN) ≤ V ⋆

1 (s;β(δ)σn). This is due to the observa-

tion that σh,n is decreasing in the number n of observations. We note that

conditioning on observations only reduces the variance. That is seen from

the positive definiteness of the Gram matrix and the formula for kernel ridge

uncertainty estimator given in (5.5).

Step 5: Recall the selection rule in Algorithm 8: sh,n,ah,n = argmaxs,aσh,n−1(s,a).

When exploring with generative model, with this rule of selection, we have

V ⋆
1 (s1;β(δ)σn−1)≤ β(δ)∑H

h=1σh,n−1(sh,n,ah,n).

Step 6: Combining all previous steps, we conclude that, under E ,

V ⋆
1 (s)−V π

1 (s)≤ 2β(δ)
N

N∑
n=1

H∑
h=1

σh,n−1(sh,n,ah,n)+ 4β(δ)H√
N

+ 4H
N
. (B.12)

B.3. Proof of Theorem 3 179

Step 7: We bound the sum of standard deviations according to the following

lemma that is a kernel based version of elliptical potential lemma [213].

Lemma 6. For each h, we have

N∑
n=1

σ2
h,n−1(sh,n,ah,n)≤ 2Γ(N)

log(1+1/τ2) . (B.13)

See, e.g., [67] for a proof. Using Cauchy–Schwarz inequality, we obtain

N∑
n=1

σh,n−1(sh,n,ah,n)≤

√√√√ 2NΓ(N)
log(1+1/τ2) .

Step 8: From Steps 6 and 7, we conclude that, π is an ϵ-optimal policy with

ϵ no larger than

V ⋆
1 (s)−V π

1 (s)≤ 2Hβ(δ)

√√√√ 2Γ(N)
N log(1+1/τ2) + 4β(δ)H√

N
+ 4H
N
.

A simpler expression can be given as

V ⋆
1 (s)−V π

1 (s) =O
H2

√
Γ(N) log(NH/δ)

N

 .
Now, let N0 be the smallest integer such that the right hand side less than

ϵ. For any N ≥ N0 the suboptimality gap of the policy is at most ϵ. This

completes the proof of Theorem 2.

B.3 Proof of Theorem 3

We define the event E similar to the proof of Theorem 2. The first 4 steps

related to the planning phase are exactly the same as in the proof of Theorem 2.

The rest of the proof is different and we will present it here.

In addition to E , we define another high-probability event E ′ where all the

confidence intervals utilized in the exploration hold true. Specifically, we define

B.3. Proof of Theorem 3 180

the following:

E ′ = {∀n∈ [N],∀h∈ [H], |f̂h,n(z)−fh,n(z)| ≤ β(δ)(σh,n(z)+ 2√
n

)+ 2
n
}, (B.14)

where β(δ) =O
(
H
τ

√
d log(NHδ)

)
. Using Corollary 1, we have P[E ′]≥ 1− δ.

The following steps are specific to the exploration without the generative

model. We define a reward sequence using σ̃h0
h,n such that σ̃h0

h,n = σh,n when

h= h0 and σ̃h0
h,n = 0 for all h ̸= h0.

Step 5b: We have V ⋆
1 (s;β(δ)σn)≤∑H

h0=1V
⋆

1 (s;β(δ)σ̃h0
n). Note that the opti-

mal policy with rewards σ̃h0
h,n optimizes σh,n at step h= h0, while the optimal

policy with rewards σn optimizes the sum of σh,n over all steps.

Step 6b: We bound V ⋆
1 (s;β(δ)σ̃h0

n) using V1,(n,h0)(s) where Vh,(n,h0) is the

proxy for the value function used in Algorithm 9.

Lemma 7. Under event E ′, for all s ∈ S,

V ⋆
h (s;β(δ)σ̃h0

n)≤ Vh,(n,h0)(s)+(h0 +1−h)(2β(δ)√
n

+ 2
n

).

Proof of Lemma 7. The lemma is proven by induction, starting from

V ⋆
h0+1(·;β(δ)σ̃h0

n) = Vh0+1,(n,h0) = 0. We have, for h≤ h0

V ⋆
h (s;β(δ)σ̃h0

n)−Vh,(n,h0)(s) = max
a∈A

Q⋆h(s,a;β(δ)σ̃h0
n)−max

a∈A
Qh,(n,h0)(s,a)

≤max
a∈A

{
Q⋆h(s,a;β(δ)σ̃h0

n)−Qh,(n,h0)(s,a)
}

≤max
a∈A

{
[PhV ⋆

h+1](s,a;β(δ)σ̃h0
n)

− [PhVh+1,n](s,a)+ 2β(δ)√
n

+ 2
n

}

≤ (h0 +1−h)
(2β(δ)√

n
+ 2
n

)
.

The first inequality is due to rearrangement of max, the second inequality

holds under E ′, and the third inequality is by the base of induction. We thus

prove the lemma.

B.3. Proof of Theorem 3 181

Step 7b: Fix n and h0. Let πn,h0 denote the exploration policy in

episode nH + h0. We bound V1,(n,h0)(s1) − V
πn,h0

1 (s1;β(δ)σ̃h0
n−1) using

2β(δ)∑h0
h=1σh,n−1(sh,ah). Here for simplicity of notation, we use sh and

ah for the state and action at step h of episode corresponding to n and h0. In

a richer notation, n and h0 should be specified.

Lemma 8. Under event E ′, we have

V1,(n,h0)(s1)−V πn,h0
1 (s1;β(δ)σ̃h0

n−1)≤
h0∑
h=1

(
2β(δ)σh,n−1(sh,ah)+ 2β(δ)√

n
+ 2
n

)

+
h0∑
h=1

(
[PhVh+1,n](sh,ah)−Vh+1,n(sh+1)

)

+
h0∑
h=1

(
V
πn,h0
h+1 (sh+1;β(δ)σ̃h0

n−1)

− [PhV
πn,h0
h+1](sh,ah;β(δ)σ̃h0

n−1)
)
.

The second and third terms are martingale sums which can be bounded using

Azuma-Hoeffding inequality, we refer to them as

ζh,(n,h0) = [PhVh+1,n](sh,ah)−Vh+1,n(sh+1)

ξh,(n,h0) = V
πn,h0
h+1 (sh+1;β(δ)σ̃h0

n−1)− [PhV
πn,h0
h+1](sh,ah;β(δ)σ̃h0

n−1)

Proof of Lemma 8. We obtain a iterative relation over h. In particular

Vh,(n,h0)(sh)−V πn,h0
h (sh;β(δ)σ̃h0

n−1) =Qh,(n,h0)(sh,ah)−Qπn,h0
h (sh,ah;β(δ)σ̃h0

n−1)

≤ [PhVh+1,n](sh,ah)− [PhV
πn,h0
h+1](sh,ah;β(δ)σ̃h0

n−1)

+2β(δ)σh,n−1(sh,ah)+ 2β(δ)√
n

+ 2
n

= Vh+1,(n,h0)(sh)−V πn,h0
h+1 (sh;β(δ)σ̃h0

n−1)

+2β(δ)σh,n−1(sh,ah)+ 2β(δ)√
n

+ 2
n

+ ζh,(n,h0) + ξh,(n,h0).

B.4. Experimental Details 182

Iterating over h and noticing Vh0+1,(n,h0)−V
πn,h0
h0+1 (·;β(δ)σ̃h0

n−1) = 0 the lemma

is proven.

Step 8b: We note that V πn,h0
1,(n,h0)(s) = β(δ)σh,n−1(sh0,(n,h0),ah0,(n,h0)).

Step 9b: Combining Steps 5b-8b we conclude that

V ⋆
1 (s;β(δ)σn−1)≤

H∑
h0=1

h0∑
h=1

3β(δ)σh,n−1(sh,(n,h0),ah,(n,h0))+ 4β(δ)√
n

+ 4
n

+ ζh,(n,h0) + ξh,(n,h0)

.
(B.15)

Step 10b: Combining with previous steps similar to the proof of Theorem 2,

and using Azuma-Hoeffding inequality on ζh,(n,h0) and ξh,(n,h0), we get, with

probability 1− δ

V ⋆
1 (s)−V π

1 (s)≤ 3H(H+1)β(δ)

√√√√ 2Γ(N)
N log(1+1/τ2) + 8β(δ)H(H+1)√

N

+ 4H(H+1)(log(N)+1)
N

+2H
√
N(H+1)log

(2
δ

)
.

The expression can be simplified as

V ⋆
1 (s)−V π

1 (s) =O
H3

√
Γ(N) log(NH/δ)

N

 .
Now, let N0 be the smallest integer such that the right hand side less than

ϵ. For any N ≥ N0 the suboptimality gap of the policy is at most ϵ. This

completes the proof of Theorem 3.

B.4 Experimental Details
Here, we outline the procedure for generating r and P test functions from

the RKHS, the finetuning process of the confidence interval width multiplier

β, and the computational resources utilized for the simulations. Additionally,

we present further experimental results when various samples of r and P are

B.4. Experimental Details 183

drawn from the RKHS.

B.4.1 Synthetic Test Functions from the RKHS

Our reward function r and transition probability P are arbitrarily chosen func-

tions from an RKHS. For the reward function r, we draw a Gaussian Process

(GP) sample on a subset of the domain Z. This subset is generated by sam-

pling a set of evenly spaced points on a 10×10 grid spanning the range [0,1] in

both dimensions. We then fit kernel ridge regression to these samples and scale

the resulting predictions to fit the [0,1] range to obtain r. For P (s′|s,a), we

similarly draw a GP sample on a subset of the domain Z×S, fit kernel ridge

regression to these samples, and then shift and rescale for each z to obtain

P (·|z) as a conditional probability distribution. We use the same kernel as

the one used in the algorithm. This is a common approach to create functions

belonging to an RKHS (e.g., see, [66]). Examples of r and P are visualized in

Figures B.1, B.2 and B.3 using SE and Matérn kernels with parameter ν = 2.5

and ν = 1.5, respectively. For all kernels, we use lengthscale of 0.1. With SE

kernel, we use τ = 0.01, and with Matérn kernels, we use τ = 0.5.

(a) Reward function r(s,a) (b) P (s′|(s= 0,a= 0) (c) P (s′|(s= 0,a= 0.5051)

(d) P (s′|(s= 0,a= 1) (e) P (s′|(s= 0.5051,a= 0) (f) P (s′|(s= 1,a= 1)

Figure B.1: Reward and transition probability functions generated by kernel ridge
regression using SE Kernel with lengthscale = 0.1 and τ = 0.01.

B.4. Experimental Details 184

(a) Reward function r(s,a) (b) P (s′|(s= 0,a= 0) (c) P (s′|(s= 0,a= 0.5051)

(d) P (s′|(s= 0,a= 1) (e) P (s′|(s= 0.5051,a= 0) (f) P (s′|(s= 1,a= 1)

Figure B.2: Reward and transition probability functions generated by kernel ridge
regression using Matérn kernel with ν = 2.5, lengthscale = 0.1 and
τ = 0.5.

(a) Reward function r(s,a) (b) P (s′|(s= 0,a= 0) (c) P (s′|(s= 0,a= 0.5051)

(d) P (s′|(s= 0,a= 1) (e) P (s′|(s= 0.5051,a= 0) (f) P (s′|(s= 1,a= 1)

Figure B.3: Reward and transition probability functions generated by kernel ridge
regression using Matérn kernel with ν = 1.5, lengthscale = 0.1 and
τ = 0.5.

B.4. Experimental Details 185

B.4.2 Tuning the Confidence Interval Width Multiplier

We perform hyperparameter tuning for the confidence interval width multiplier

β. The theoretical analysis, especially in [185], leads to high values for β. To

ensure a fair comparison between algorithms, we finetune β for [185], our

algorithm without a generative model, our algorithm with generative model

and Greedy Max Variance, selecting the best value for each. Figures B.4, B.5,

B.6 show the simulation results for various values of β ∈ [0.1,1,10,100] for

several kernels. The value β = 0.1 yields the best performance consistently.

(a) (Qiu et al., 2021) (b) Without generative model

(c) With generative model (d) Greedy Max Variance

Figure B.4: Average suboptimality gap plotted against the number of episodes N
for different values of β in the case of SE kernel.

B.4. Experimental Details 186

(a) (Qiu et al., 2021) (b) Without generative model

(c) With generative model (d) Greedy Max Variance

Figure B.5: Average suboptimality gap plotted against the number of episodes N
for different values of β in the case of Matérn kernel with ν = 2.5.

(a) (Qiu et al., 2021) (b) Without generative model

(c) With generative model (d) Greedy Max Variance

Figure B.6: Average suboptimality gap plotted against the number of episodes N
for different values of β in the case of Matérn kernel with ν = 1.5.

B.4. Experimental Details 187

B.4.3 Implementation and Computational Resources
For kernel ridge regression, we used Sickit-Learn library [269], which offers

robust and efficient tools for implementing and tuning kernel-based machine

learning models. The simulations were executed on a cluster which has 376.2

GiB of RAM, and an Intel(R) Xeon(R) Gold 5118 CPU running at 2.30 GHz.

The algorithm by [185], our algorithm without a generative model, and the

Greedy Max Variance algorithm typically require approximately 2 minutes of

CPU time on average per run. However, our algorithm with a generative model

requires around 7 minutes per run due to the cost of increasing the number of

exploration episodes by a factor of H.

B.4.4 Repeated Experiments for Different Draws of r

and P
To validate the robustness of the results against specific environment realiza-

tions, we ran the experiments three times, with each repetition using different

reward and transition probability functions drawn from the RKHS. We kept

the hyperparameters (lengthscale, τ , and β) identical to the ones used in

the main text of the thesis. The results remained consistent across all repeti-

tions, as shown in Figures B.7, B.8 and B.9 for different kernels and algorithms.

(a) SE Kernel (b) Matérn with ν = 2.5 (c) Matérn with ν = 1.5

Figure B.7: Average suboptimality gap plotted against N for experiment 1.

B.5. RKHS and Mercer Theorem 188

(a) SE Kernel (b) Matérn with ν = 2.5 (c) Matérn with ν = 1.5

Figure B.8: Average suboptimality gap plotted against N for experiment 2.

(a) SE Kernel (b) Matérn with ν = 2.5 (c) Matérn with ν = 1.5

Figure B.9: Average suboptimality gap plotted against N for experiment 3.

B.5 RKHS and Mercer Theorem
Mercer theorem [270] provides a representation of the kernel in terms of an

infinite dimensional feature map (e.g., see, [271], Theorem 4.49). Let Z be

a compact metric space and µ be a finite Borel measure on Z (we consider

Lebesgue measure in a Euclidean space). Let L2
µ(Z) be the set of square-

integrable functions on Z with respect to µ. We further say a kernel is square-

integrable if ∫
Z

∫
Z
k2(z,z′)dµ(z)dµ(z′)<∞.

Theorem 6. (Mercer Theorem) Let Z be a compact metric space and µ be a

finite Borel measure on Z. Let k be a continuous and square-integrable kernel,

inducing an integral operator Tk : L2
µ(Z)→ L2

µ(Z) defined by

(Tkf)(·) =
∫

Z
k(·, z′)f(z′)dµ(z′) ,

where f ∈L2
µ(Z). Then, there exists a sequence of eigenvalue-eigenfeature pairs

{(γm,φm)}∞m=1 such that γm > 0, and Tkφm = γmφm, for m ≥ 1. Moreover,

B.5. RKHS and Mercer Theorem 189

the kernel function can be represented as

k
(
z,z′

)
=

∞∑
m=1

γmφm(z)φm
(
z′
)
,

where the convergence of the series holds uniformly on Z×Z.

According to the Mercer representation theorem (e.g., see, [271], Theorem

4.51), the RKHS induced by k can consequently be represented in terms of

{(γm,φm)}∞m=1.

Theorem 7. (Mercer Representation Theorem) Let {(γm,φm)}∞i=1 be the Mer-

cer eigenvalue-eigenfeature pairs. Then, the RKHS of k is given by

Hk =
{
f(·) =

∞∑
m=1

wmγ
1
2
mφm(·) : wm ∈ R,∥f∥2Hk

:=
∞∑
m=1

w2
m <∞

}
.

Mercer representation theorem indicates that the scaled eigenfeatures

{√γmφm}∞m=1 form an orthonormal basis for Hk.

Appendix C

Appendix of Chapter 6

C.1 Proof of The Regret Bound and Sample

Complexities

In this section, we provide a detailed proof of Theorem 4 on the regret bound

of MR-LPF and following corollaries.

C.1.1 Proof of Theorem 4

To prove this theorem, we bound the regret for each round and then sum these

bounds over all the rounds.

Regret in the first round: The first round consists of N1 = ⌈
√
T ⌉ samples.

We note that for all t,

P(x⋆ ≻ xt)+P(x⋆ ≻ x′
t)−1

2 ≤ 1
2 . (C.1)

Consequently, the regret incurred in the first round in bounded by 1
2⌈
√
T ⌉.

For the second round onwards (r ≥ 2), we introduce some notation and pre-

liminaries that will assist in bounding the regret.

High probability events: Let us define the event Er as the event that all the

confidence intervals used in the round r of the MR-LPF algorithm hold true.

C.1. Proof of The Regret Bound and Sample Complexities 191

Specifically,

Er =
{
∀x,x′ ∈Mr :

∣∣∣µ(h(Nr,r)(x,x
′))−µ(h(x,x′))

∣∣∣≤ β(r)(δ)σ(Nr,r)(x,x
′)
}

(C.2)

Recall that β(r)(δ) = L
(
B+

√
κr
λ log

(2R|X |
δ

))
. We also define E = ⋃R

r=1Er.

Sum of the posterior variances for a sequence of observations: We

apply the following bound on the sum of posterior variances in each round

(see, e.g., [116], Lemma 14]).

Nr∑
n=1

σ2
(n−1,r)(x(n,r),x

′
(n,r))≤

8
log(1+4(λκr)−1)Γ(λκr)(Nr). (C.3)

By the selection rule of (x(n,r),x
′
(n,r)) in MR-LPF as the points with the

highest variance, we have that ∀x,x′ ∈ Mr, and ∀n ≤ Nr, σ(Nr,r)(x,x′) ≤

σ(n−1,r)(x(n,r),x
′
(n,r)). Combining this with Equation (C.3), we conclude that

∀x,x′ ∈Mr,

σ(Nr,r)(x,x
′)≤

√
8

log(1+4(λκr)−1)

√√√√Γ(λκr)(Nr)
Nr

. (C.4)

The value of κr, r ≥ 2: Recall the update rule for Mr in MR-LPF:

Mr+1 = {x ∈Mr|∀x′ ∈Mr : µ(h(Nr,r)(x,x
′))+β(r)σ(Nr,r)(x,x

′)≥ 1
2} (C.5)

Assuming E1, for all x,x′ ∈M2, we have

µ(h(x,x′))+2β(1)σ(N1,1)(x,x′)≥ µ(h(N1,1)(x,x′))+β(1)σ(N1,1)(x,x′)

≥ 1
2 , (C.6)

where the first inequality holds under E1 and the second inequality is a conse-

quence of the update rule. Similarly, we have

µ(h(x′,x))+2β(1)σ(N1,1)(x′,x)≥ 1
2 . (C.7)

C.1. Proof of The Regret Bound and Sample Complexities 192

We note that ∀x,x′ ∈ X , µ(h(x′,x)) = 1−µ(h(x,x′)). Thus, Equation (C.7)

implies that

µ(h(x,x′))≤ 1
2 +2β(1)σ(N1,1)(x′,x). (C.8)

Combining with (C.6), we obtain that

−2β(1)σ(N1,1)(x,x′)≤ µ(h(x,x′))− 1
2 ≤ 2β(1)σ(N1,1)(x′,x). (C.9)

We previously established a bound on the standard deviation at the end of

rounds in (C.4). Applying this to the first round, with length N1 = ⌈
√
T ⌉, we

can bound µ(h(x,x′)) for all x,x′ ∈M2 within the interval [1
4 ,

3
4] by ensuring

2β(1)σ(N1,1)(x′,x)≤ 1
4 . Specifically, let T0 be the smallest integer satisfying

2β(1)(δ)
√

8
log(1+4(λκ)−1)

√√√√Γ(λκ)(⌈
√
T0⌉)

⌈
√
T0⌉

≤ 1
4 . (C.10)

Then, for any T ≥ T0, for all x,x′ ∈M2, we have µ(h(x,x′)) ∈ [1
4 ,

3
4]. Recall

that the derivative of the sigmoid function is given by µ̇(x) = µ(·)(1−µ(·)).

Consequently, the inverse of the derivative of the sigmoid applied to h, for the

values of x,x′ ∈M2, is bounded as follows. For all x,x′ ∈M2,

1
µ(h(x,x′))(1−µ(h(x,x′))) ≤

16
3 < 6. (C.11)

Thus, we can use κr = 6 for all r≥ 2, maintaining the validity of the confidence

intervals.

Lemma 9. For T ≥ T0 specified in Equation (C.10), we have P(E)≤ 1− δ.

The proof follows from Theorem 5, a union bound over all action pairs and

rounds, and the bound on κr derived above. We condition the remainder of

the proof on the event T ≥ T0 and E .

The best action x⋆ will not be removed. Assuming E , the best action will

not be removed from the sets Mr by the MR-LPF algorithm in any round.

We formalize this observation in the following lemma.

C.1. Proof of The Regret Bound and Sample Complexities 193

Lemma 10. Under event E, x⋆ ∈MR.

The proof follows from the observation that µ(h(x⋆,x)) ≥ 1
2 for all x. Com-

bining with the confidence intervals in E , ∀r, ∀x ∈ Mr, µ(h(Nr,r)(x⋆,x)) +

β(r)(δ)σ(Nr,r)(x⋆,x)≥ 1
2 . Consequently, the best action x⋆ will not be removed.

We are now ready to bound the regret in rounds r ≥ 2.

Regret bound in each round r ≥ 2: For each x ∈Mr, we use the update

rule ofMr in MR-LPF to bound the regret with respect to the optimal action.

Recall that in Lemma 10, we showed that the optimal action remains in Mr

for all r. We have

µ(h(x,x⋆))+2β(r−1)(δ)σ(Nr−1,r−1)(x,x⋆)

≥ µ(h(Nr−1,r−1)(x,x⋆))+β(r−1)(δ)σ(Nr−1,r−1)(x,x⋆)

≥ 1
2 , (C.12)

where the first inequality holds under E , and the second inequality follows from

the update rule of Mr. Then, we have

µ(h(x⋆,x)) = 1−µ(h(x,x⋆))

≤ 1
2 +2β(r−1)(δ)σ(Nr−1,r−1)(x,x⋆), (C.13)

The equality follows from µ(−·) = 1 − µ(·), and the inequality follows

from (C.12).

We thus have for all x ∈Mr,

µ(h(x⋆,x))− 1
2 ≤ 2β(r−1)(δ)σ(Nr−1,r−1)(x,x⋆)

≤ 2β(r−1)(δ)C

√√√√Γ(λκr−1)(Nr−1)
Nr−1

, (C.14)

where the second inequality is proven in (C.4), and we use C =
√

8
log(1+4(6λ)−1)

to simplify the notation. This bound holds for all points in round r. Therefore,

to obtain the regret in round r, it is sufficient to multiply this bound by Nr.

C.1. Proof of The Regret Bound and Sample Complexities 194

This results in the following bound on the regret in round r:

Regret in Round r ≤ 2β(r−1)(δ)CNr

√√√√Γ(λκr−1)(Nr−1)
Nr−1

≤ 2β(r−1)(δ)C
(√

TΓ(4λ)(T)+ 1√
Nr−1

√
Γ(4λ)(T)

)

≤ 2β(r−1)(δ)C
(√

TΓ(4λ)(T)+T−1/4
√

Γ(4λ)(T)
)
, (C.15)

where the second inequality is obtained by substituting Nr = ⌈
√
Nr−1T ⌉ and

using ⌈·⌉ ≤ ·+ 1. We also use that Γ(λκr−1)(.) ≤ Γ(4λ)(.) since κr−1 ≥ 4. The

third inequality follows from Nr ≥
√
T for all r ≥ 1.

Total regret: The number of rounds R is at most ⌈log log2(T)⌉+1, see Propo-

sition 1 of [84]. Using the bound on regret in each round, we can bound the

total regret of MR-LPF algorithm as follows

R(T)≤ 2CRβ(R)(δ)
√
TΓ(4λ)(T)+2CRβ(R)(δ)T−1/4

√
Γ(4λ)(T). (C.16)

This completes the proof of Theorem 4.

C.1.2 Proof of Corollary 2

Since the size Nr of rounds increase with r, we have NR ≥ T/R. In the proof

of Theorem 4, in (C.14), we showed that, for all x ∈Mr

µ(h(x⋆,x))− 1
2 ≤ 2β(r−1)(δ)C

√√√√Γ(λκr−1)(Nr−1)
Nr−1

Thus, for x ∈MR+1, we have

µ(h(x⋆,x))− 1
2 ≤ 2β(R)(δ)C

√√√√Γ(4λ)(NR)
NR

≤ 2β(R)(δ)C
√
RΓ(4λ)(NR)

T
(C.17)

≤ 2β(R)(δ)C
√
RΓ(4λ)(T)

T
, (C.18)

C.2. Proof of Theorem 5 195

where, for the second inequality, we used NR ≥ T
R , and for the third inequality,

we used NR ≤ T .

C.1.3 Proof of Corollary 3

Following the bounds obtained in Corollary 2, we determine T that ensures

µ(h(x̂T ,x))− 1
2 ≤ ϵ, after T steps. For this, we need specification of Γλ(T).

In the case of linear kernels, we have Γλ(T) = O(d log(T)). Consequently, a

choice of T = Õ
(
d log(1

δ)
ϵ2

)
ensures µ(h(x⋆,x))− 1

2 ≤ ϵ.

In the case of SE kernel, we have Γλ(T) = O(logd+1(T)). Consequently, a

choice of T = Õ
(

log(1
δ)

ϵ2

)
ensures µ(h(x⋆,x))− 1

2 ≤ ϵ.

In the case of Matérn kernel, we have Γλ(T) = Õ(T
d

2ν+d). Consequently, a

choice of T = Õ
(

log(1
δ)

ϵ2+ d
ν

)
ensures µ(h(x⋆,x))− 1

2 ≤ ϵ.

For the bound on Γλ(T) see, e.g., [68].

C.2 Proof of Theorem 5
Recall the conventional kernel-based regression discussed in Section 6.2. Var-

ious confidence intervals of the form |f(z)− f̂t(z)| ≤ β(δ)σt(z), where f̂t(z)

and σt(z) are the conventional prediction and standard deviation, and β(δ) is

a confidence interval width multiplier for a 1− δ confidence level, have been

demonstrated in several works [213, 66, 70, 72]. As discussed in the preference-

based case, the problem becomes more similar to a classification problem with

binary feedback, and these confidence intervals are not directly applicable.

Moreover, a closed-form solution for ht is not available, as it is only provided

as the minimizer of the loss function given in Equation (6.5). Additionally, as

discussed, this loss and its solution can be parameterized using the representer

theorem.

Lk(θ,Ht) =
t∑
i=1
−yi logµ(θ⊤kt(xi,x′

i))

− (1−yi) log(1−µ(θ⊤kt(xi,x′
i))+ λ

2 ||θ||
2
2, (C.19)

C.2. Proof of Theorem 5 196

and

ht(·) =
t∑
i=1

θik
(
·,(xi,x′

i)
)
. (C.20)

For the remainder of the proof, and for simplicity of presentation, we use the

notation z = (x,x′) and similarly zi = (xi,x′
i).

In both [235] and [116], confidence intervals for |h(z)−ht(z)| are derived,

with [116] establishing tighter bounds. Their confidence intervals are based

on the results of [239] for logistic bandits and [72] for confidence intervals in

kernel bandits. In comparison, our confidence intervals are tighter than those

presented in [116] by a factor of O(
√

Γλ(T)). We achieve this improvement

by assuming that the sequence of observation points {zi}ti=1 is independent

of the observation values {yi}ti=1, inspired by [70]. This assumption is made

possible in our work due to the design of the MR-LPF algorithm, where within

each round, the observation points are selected based solely on kernel-based

variance, which, by definition, does not depend on the observation values.

The main steps of the proof are similar to those in the proof of the confi-

dence interval in [116], and we will highlight the key differences in our proof.

The key idea is that the derivative of the loss Lk, as given in Equation (C.19),

is the null operator at the minimizer of the loss:

∇L(θt,Ht) =
t∑
i=1
−yik(zi, ·)+gt(θt) = 0, (C.21)

where gt(θ) :Hk→Hk is a linear operator defined as

gt(θ) =
t∑
i=1
k(zi, ·)µ(θ⊤k(zi, ·))+λθ. (C.22)

Recall that θt is the minimizer of the loss in Equation (C.19). Consequently,

we have gt(θt) =∑t
i=1 yik(zi, ·).

Then, confidence intervals are proven for the gradient and extended

to the preference function itself. We now introduce some auxiliary no-

tation that will be helpful throughout the rest of the proof. Let Φt =

C.2. Proof of Theorem 5 197

[k(z1, ·),k(z2, ·), . . . ,k(zt, ·)]⊤, from which we define the kernel matrix Kt =

ΦtΦ⊤
t and the operator St = Φ⊤

t Φt. We also use It to denote the t-dimensional

identity matrix and IH to denote the identity operator in the RKHS. Finally,

we define Vt = St+κλIH.

We also use the auxiliary notation Gt as in Appendix B of [116], where

Gt(θ1,θ2) = λIH +
t∑
i=1

α(zi;θ1,θ2)ϕ(zi)ϕ⊤(zi),

and

α(z,θ1,θ2) =
∫ 1

0
µ̇
(
ν θ⊤

2 ϕ(z)+(1−ν)θ⊤
1 ϕ(z)

)
dν

is the coefficient arising from the mean value theorem, such that

µ(θ⊤
2 ϕ(z))−µ(θ⊤

1 ϕ(z)) = α(z,θ1,θ2)(θ2−θ1)⊤ϕ(z).

See, [116], Lemma 11 for details. It then follows that

gt(θ2)−gt(θ1) =Gt(θ1,θ2)(θ2−θ1), (C.23)

as shown in the proof of Lemma 12 in [116]. We use this relation, along with

the inequality

Gt(θ1,θ2)⪰ κ−1Vt, (C.24)

where ⪰ denotes the Loewner order, also from the proof of Lemma 12, in our

analysis.

We use the notation h(z) = ϕ⊤(z)θ⋆ for the underlying preference function

and εi = yi−µ(h(zi)) to represent the sequence of observation noise.

Inspired by the proof of confidence intervals in [70], we express the prediction

error as:

C.2. Proof of Theorem 5 198

|µ(ht(z))−µ(h(z))|

≤ L |ht(z)−h(z)|

= L
∣∣∣ϕ⊤(z)(θt−θ⋆)

∣∣∣
= L

∣∣∣ϕ⊤(z)Gt(θ⋆,θt)−1 (gt(θt)−gt(θ⋆))
∣∣∣

= L

∣∣∣∣∣ϕ⊤(z)Gt(θ⋆,θt)−1
(

t∑
i=1

(yi−µ(h(zi)))ϕ(zi)−λθ⋆
)∣∣∣∣∣

= L

∣∣∣∣∣ϕ⊤(z)Gt(θ⋆,θt)−1
(

t∑
i=1

εiϕ(zi)−λθ⋆
)∣∣∣∣∣

≤ L
∣∣∣∣∣ϕ⊤(z)Gt(θ⋆,θt)−1

(
t∑
i=1

εiϕ(zi)
)∣∣∣∣∣︸ ︷︷ ︸

Stochastic Term

+Lλ
∣∣∣ϕ⊤(z)Gt(θ⋆,θt)−1θ⋆

∣∣∣︸ ︷︷ ︸
Bias Term

The first line follows from the Lipschitz continuity of the sigmoid function.

The second line uses the representer theorem to express ht(z) = ϕ⊤(z)θt and

h(z) = ϕ⊤(z)θ⋆, where ϕ(z) = k(z, ·), defined similarly to Appendix A of [116].

The third line uses (C.23). The fourth line uses that θt is the minimizer of

the loss in Equation (C.19). The fifth line uses the notation εi = yi−µ(h(zi))

for the observation noise. Finally, the expression is split into a stochastic term

and a bias term, allowing us to follow the proof structure of the confidence

bound in Theorem 1 of [70].

The stochastic term is a sub-Gaussian random variable and can be

bounded with high probability using standard concentration results. In par-

ticular, the sub-Gaussian parameter is determined by the norm of the coeffi-

cients applied to the independent noise terms εi, which are 1/2-sub-Gaussian.

This follows from the fact that εi = yi−µ(h(zi)) ∈ [−µ(h(zi)),1−µ(h(zi))],

and therefore the noise sequence has bounded support of length 1.

1
2L

∥∥∥ϕ⊤(z)Gt(θ⋆,θt)−1Φt

∥∥∥≤ 1
2L∥ϕ(z)∥Gt(θ⋆,θt)−1∥ΦtGt(θ⋆,θt)−1Φ⊤

t ∥1/2op

≤ 1
2Lκ∥ϕ(z)∥V −1

t
∥ΦtV

−1
t Φ⊤

t ∥1/2op

C.2. Proof of Theorem 5 199

≤ 1
2L
√
κ

λ
σt(z), (C.25)

where ∥ · ∥op denotes the operator (spectral) norm. The first inequality fol-

lows from matrix arithmetic and the definition of operator norm. The sec-

ond uses (C.24). The third uses the identity ∥ϕ(z)∥V −1
t

= 1√
λκ
σt(z) (see, e.g.,

[116]), along with ∥ϕtV
−1
t ϕ⊤

t ∥op≤ 1, which follows from the eigenvalue bounds

of ϕtϕ
⊤
t and V −1

t .

Therefore, by the concentration inequality for sub-Gaussian random variables

(see, e.g., [272]), with probability at least 1− δ,

L

∣∣∣∣∣ϕ⊤(z)Gt(θ⋆,θt)−1
(

t∑
i=1

εiϕ(zi)
)∣∣∣∣∣≤ 1

2L
√
κ

λ
σt(z)

√
2log(2/δ).

The bias term is bounded as:

Lλ
∣∣∣ϕ⊤(z)Gt(θ⋆,θt)−1θ⋆

∣∣∣≤ Lλ∥ϕ(z)∥Gt(θ⋆,θt)−1∥θ⋆∥Gt(θ⋆,θt)−1

≤ Lλκ∥ϕ(z)∥V −1
t
∥θ⋆∥V −1

t

≤ LBσt(z), (C.26)

where the second line uses (C.24), and the third line uses ∥ϕ(z)∥V −1
t

=
1√
λκ
σt(z), as discussed above. It also uses the bound ∥θ⋆∥V −1

t
≤ 1√

λκ
B, which

follows from:

λ∥θ⋆∥V −1
t
≤ λ√

λκ
∥θ⋆∥ ≤

√
λ

κ
B, (C.27)

where the first inequality follows from the fact that the smallest eigenvalue of

Vt is at least λκ, and the second follows from the RKHS norm bound ∥θ⋆∥≤B.

Combining both bounds gives the following expression for β(δ):

β(δ) = LB+ L

2

√
2κ
λ

log(2/δ). (C.28)

C.3. Experimental Details 200

C.3 Experimental Details

In this section, we provide details on the experimental setting. We describe the

RKHS test functions, the Ackley function, and the Yelp Open Dataset used in

our experiments. Additionally, we outline the selected hyperparameters and

the computational resources utilized in our simulations. We also present the

MaxMinLCB algorithm of [116].

RKHS test functions: In Section 6.5, we outlined the procedure for gen-

erating the test function f as an arbitrary function within the RKHS of a

given kernel. In Figure C.1, we display the test functions generated in the

RKHS for the SE kernel and the Matérn kernels with ν = 2.5 and ν = 1.5.

The figure includes plots of the utility function f , the preference function

h(x,x′) = f(x)−f(x′), and the probability of preference µ(h(x,x′)).

Ackley test function: It is defined as follows (with d= 1 and X = [−5,5]):

f(x) =−20exp
−0.2

√√√√1
d

d∑
i=1

x2
i

exp
1
d

d∑
i=1

cos(2πxi)
+20+exp(1)

The preference function h (difference in utilities) is then scaled to the range

[−3,3]. The Ackley function is shown in Figure C.1.

Yelp Dataset: We use a subset of the Yelp Dataset, filtering it to include

only restaurants in Philadelphia, USA, with at least 500 reviews and users who

review at least 90 restaurants. The final dataset consists of 275 restaurants,

20 users, and 2563 reviews. Reviews for each restaurant are concatenated

and processed using OpenAI’s TEXT-EMBEDDING-3-LARGE model to generate

32-dimensional vector embeddings, which serve as the action set in the BOHF

framework. User ratings (ranging from 1 to 5) are considered as the utility

function f , which are then scaled to the range [−3,3]. Missing ratings are

handled using collaborative filtering. In each experimental run, we sample a

random user from the set of 20 and conduct the experiment independently.

We average the regret over 60 runs to produce the final plot.

C.3. Experimental Details 201

(a) f(x),
SE kernel

(b) h(x,x′),
SE kernel

(c) µ(h(x,x′)),
SE kernel

(d) f(x),
Matérn (ν = 2.5)

(e) h(x,x′),
Matérn (ν = 2.5)

(f) µ(h(x,x′)),
Matérn (ν = 2.5)

(g) f(x),
Matérn (ν = 1.5)

(h) h(x,x′),
Matérn (ν = 1.5)

(i) µ(h(x,x′)),
Matérn (ν = 1.5)

(j) f(x),
Ackley function

(k) h(x,x′),
Ackley function

(l) µ(h(x,x′)),
Ackley function

Figure C.1: Plots of the utility function f(x), the preference function h(x,x′) =
f(x)−f(x′), and the probability of preference µ(h(x,x′)) for synthetic
experiments. The rows correspond to: (1st row) SE kernel (RKHS),
(2nd row) Matérn kernel with ν = 2.5 (RKHS), (3rd row) Matérn
kernel with ν = 1.5 (RKHS), and (4th row) Ackley function.

C.3. Experimental Details 202

Loss function optimization: To minimize the loss function given in (6.7)

and obtain the parameters θ, any standard optimization algorithm can be

used. In our experiments, we employ gradient descent. The learning rate is

individually tuned for each algorithm, kernel, and test function by selecting

the best-performing value from the grid {0.01,0.005,0.001,0.0005,0.0001} in

each scenario.

Hyperparameters: We choose l = 0.1 as the length scale and λ = 0.05 as

the kernel-based learning parameter across all cases. The horizon T is set to

300 for RKHS test functions and 2000 for the Ackley function and the Yelp

Dataset. For the RKHS and Ackley functions, the confidence interval width

β is fixed at 1 for both MR-LPF and MaxMinLCB. For the Yelp dataset, we

conduct a grid search to tune β over {0.01,0.1,0.5,1,2} for both MR-LPF and

MaxMinLCB algorithms. We determine β = 2 as optimal for MaxMinLCB

and β = 0.1 for MR-LPF.

Computational Resources: For the experiments with the synthetic RKHS

and Ackley functions, we utilize the Scikit-Learn library [269] for implementing

Gaussian Process (GP) regression. The code is executed on a cluster with 376.2

GiB of RAM and an Intel(R) Xeon(R) Gold 5118 CPU running at 2.30 GHz. In

the case of the Yelp Dataset experiments, we use the BoTorch library [273] and

its dependencies, including GPyTorch [274], which offer efficient GP regression

tools with GPU support. The simulations are carried out on a computing node

equipped with an NVIDIA GeForce RTX 2080 Ti GPU featuring 11 GB of

VRAM, an Intel(R) Xeon(R) Gold 5118 CPU running at 2.40 GHz with 24

cores, and 92 GB of RAM.

MaxMinLCB algorithm: [116] proposed a zero-sum Stackelberg (Leader–Follower)

game for action selection, where the leader xt maximizes the lower confidence

bound (LCB), and the follower x′
t minimizes it, according to the following:

xt = arg max
x∈Mt

µ(ht(x,x′(x))−βtσt(x,x′(x)),

x′(x) = arg min
x′∈Mt

µ(ht(x,x′))−βtσt(x,x′).

Bibliography

[1] Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan God-

win, Natasha Antropova, Hutan Ashrafian, et al. International evalua-

tion of an AI system for breast cancer screening. Nature, 577(7788):89–

94, 2020.

[2] Prabal Datta Barua, Jahmunah Vicnesh, Raj Gururajan, Shu Lih Oh,

Elizabeth Palmer, Muhammad Mokhzaini Azizan, et al. Artificial in-

telligence enabled personalised assistive tools to enhance education of

children with neurodevelopmental disorders—a review. International

Journal of Environmental Research and Public Health, 19(3):1192, 2022.

[3] Qingkai Kong, Daniel T Trugman, Zachary E Ross, Michael J Bianco,

Brendan J Meade, and Peter Gerstoft. Machine learning in seismology:

Turning data into insights. Seismological Research Letters, 90(1):3–14,

2019.

[4] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. MIT press, 2018.

[5] Shirin Akbarinasaji, Can Kavaklioglu, Ayşe Başar, and Adam Neal. Par-

tially observable markov decision process to generate policies in software

defect management. Journal of Systems and Software, 163:110518, 2020.

[6] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J

Gershman. Building machines that learn and think like people. Behav-

ioral and Brain Sciences, 40:e253, 2017.

Bibliography 204

[7] Andreas Holzinger, Anna Saranti, Alessa Angerschmid, Bettina Finzel,

Ute Schmid, and Heimo Mueller. Toward human-level concept learning:

Pattern benchmarking for AI algorithms. Patterns, 4(8), 2023.

[8] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,

Aja Huang, Arthur Guez, et al. Mastering the game of Go without human

knowledge. Nature, 550(7676):354–359, 2017.

[9] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino

Romera-Paredes, Mohammadami Barekatain, et al. Discovering faster

matrix multiplication algorithms with reinforcement learning. Nature,

610(7930):47–53, 2022.

[10] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan

Tracey, Francesco Carpanese, et al. Magnetic control of tokamak plasmas

through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

[11] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,

Runxin Xu, et al. Deepseek-R1: Incentivizing reasoning capability

in LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948,

2025.

[12] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cos-

min Paduraru, Sven Gowal, et al. Challenges of real-world reinforce-

ment learning: Definitions, benchmarks and analysis. Machine Learning,

110(9):2419–2468, 2021.

[13] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schul-

man. Quantifying generalization in reinforcement learning. In Interna-

tional Conference on Machine Learning, pages 1282–1289. PMLR, 2019.

[14] Aimee Van Wynsberghe. Sustainable AI: AI for sustainability and the

sustainability of AI. AI and Ethics, 1(3):213–218, 2021.

Bibliography 205

[15] Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor Maslej, Tamay

Besiroglu, and David Owen. The rising costs of training frontier AI

models. arXiv preprint arXiv:2405.21015, 2024.

[16] Kate Gibson. AI data startup turing triples revenue to $300 million.

Reuters, 2025.

[17] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is

Q-learning provably efficient? Advances in Neural Information Process-

ing Systems, 31, 2018.

[18] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret

bounds for reinforcement learning. Advances in Neural Information Pro-

cessing Systems, 21, 2008.

[19] Peter L Bartlett and Ambuj Tewari. Regal: A regularization based

algorithm for reinforcement learning in weakly communicating MDPs.

arXiv preprint arXiv:1205.2661, 2012.

[20] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably

efficient reinforcement learning with linear function approximation. In

Conference on Learning Theory, pages 2137–2143. PMLR, 2020.

[21] Hengshuai Yao, Csaba Szepesvári, Bernardo Avila Pires, and Xinhua

Zhang. Pseudo-MDPs and factored linear action models. In IEEE Sym-

posium on Adaptive Dynamic Programming and Reinforcement Learning,

pages 1–9. IEEE, 2014.

[22] Daniel Russo. Worst-case regret bounds for exploration via randomized

value functions. Advances in Neural Information Processing Systems, 32,

2019.

[23] Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo

Pirotta, and Alessandro Lazaric. Frequentist regret bounds for ran-

Bibliography 206

domized least-squares value iteration. In International Conference on

Artificial Intelligence and Statistics, pages 1954–1964. PMLR, 2020.

[24] Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in

episodic reinforcement learning. Advances in Neural Information Pro-

cessing Systems, 33:1392–1403, 2020.

[25] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Explo-

ration in deep reinforcement learning: A survey. Information Fusion,

85:1–22, 2022.

[26] Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard,

Hado van Hasselt, and Laura Toni. A survey of temporal credit assign-

ment in deep reinforcement learning. Transactions on Machine Learning

Research, 2024. Survey Certification.

[27] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A

survey of zero-shot generalisation in deep reinforcement learning. Journal

of Artificial Intelligence Research, 76:201–264, 2023.

[28] Richard Bellman. A markovian decision process. Journal of Mathematics

and Mechanics, pages 679–684, 1957.

[29] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra.

Planning and acting in partially observable stochastic domains. Artificial

Intelligence, 101(1-2):99–134, 1998.

[30] Dimitri Bertsekas and John N Tsitsiklis. Neuro-dynamic programming.

Athena Scientific, 1996.

[31] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael

Jordan. Provably efficient reinforcement learning with kernel and neural

function approximations. Advances in Neural Information Processing

Systems, 33:13903–13916, 2020.

Bibliography 207

[32] Sattar Vakili. Open problem: Order optimal regret bounds for kernel-

based reinforcement learning. In The 37th Annual Conference on Learn-

ing Theory, pages 5340–5344. PMLR, 2024.

[33] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: Sup-

port vector machines, regularization, optimization, and beyond. MIT

press, 2002.

[34] Kyowoon Lee, Sol-A Kim, Jaesik Choi, and Seong-Whan Lee. Deep rein-

forcement learning in continuous action spaces: a case study in the game

of simulated curling. In International Conference on Machine Learning,

pages 2937–2946. PMLR, 2018.

[35] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu,

Andrew Dudzik, Junyoung Chung, et al. Grandmaster level in starcraft

ii using multi-agent reinforcement learning. Nature, 575(7782):350–354,

2019.

[36] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander

Herzog, Eric Jang, et al. Scalable deep reinforcement learning for vision-

based robotic manipulation. In Conference on Robot Learning, pages

651–673. PMLR, 2018.

[37] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey

Levine. Uncertainty-aware reinforcement learning for collision avoidance.

arXiv preprint arXiv:1702.01182, 2017.

[38] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang,

Ebrahim Songhori, Shen Wang, et al. A graph placement methodology

for fast chip design. Nature, 594(7862):207–212, 2021.

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-

nis Antonoglou, Daan Wierstra, et al. Playing Atari with deep reinforce-

ment learning. arXiv preprint arXiv:1312.5602, 2013.

Bibliography 208

[40] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex

Graves, Timothy Lillicrap, Tim Harley, et al. Asynchronous methods for

deep reinforcement learning. In International Conference on Machine

Learning, pages 1928–1937. PMLR, 2016.

[41] Yuhuai Wu, Elman MansimovShun, Shun Liao, Alec Radford, and John

Schulman. OpenAI baselines: ACKTR & A2C. https://openai.com/

blog/baselines-acktr-a2c/, 2017.

[42] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[43] Aditya Mahajan and Demosthenis Teneketzis. Multi-armed bandit prob-

lems. In Foundations and Applications of Sensor Management, pages

121–151. Springer, 2008.

[44] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive

allocation rules. Advances in Applied Mathematics, 6(1):4–22, 1985.

[45] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis

of the multi-armed bandit problem. Machine Learning, 47:235–256, 2002.

[46] Robert David Kleinberg. Online decision problems with large strategy

sets. PhD thesis, Massachusetts Institute of Technology, 2005.

[47] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gábor Lugosi. Bandits with

heavy tail. IEEE Transactions on Information Theory, 59(11):7711–

7717, 2013.

[48] Sattar Vakili, Keqin Liu, and Qing Zhao. Deterministic sequencing of

exploration and exploitation for multi-armed bandit problems. IEEE

Journal of Selected Topics in Signal Processing, 7(5):759–767, 2013.

https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/

Bibliography 209

[49] William R Thompson. On the likelihood that one unknown probability

exceeds another in view of the evidence of two samples. Biometrika,

25(3-4):285–294, 1933.

[50] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the

multi-armed bandit problem. In Conference on Learning Theory, pages

39–1. JMLR Workshop and Conference Proceedings, 2012.

[51] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sam-

pling: an asymptotically optimal finite-time analysis. In International

Conference on Algorithmic Learning Theory, pages 199–213. Springer,

2012.

[52] Peter Auer. Using confidence bounds for exploitation-exploration trade-

offs. Journal of Machine Learning Research, 3:397–422, 2002.

[53] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A

contextual-bandit approach to personalized news article recommenda-

tion. In Proceedings of the 19th International Conference on World Wide

Web, pages 661–670, 2010.

[54] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual ban-

dits with linear payoff functions. In Proceedings of the 14th Interna-

tional Conference on Artificial Intelligence and Statistics, pages 208–214.

JMLR Workshop and Conference Proceedings, 2011.

[55] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear

optimization under bandit feedback. In Proceedings of the 21st Annual

Conference on Learning Theory, pages 355–366, 2008.

[56] Yasin Abbasi-Yadkori, András Antos, and Csaba Szepesvári. Forced-

exploration based algorithms for playing in stochastic linear bandits. In

COLT Workshop on Online Learning with Limited Feedback, volume 92,

page 236, 2009.

Bibliography 210

[57] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized

bandits. Mathematics of Operations Research, 35(2):395–411, 2010.

[58] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved al-

gorithms for linear stochastic bandits. Advances in Neural Information

Processing Systems, 24, 2011.

[59] Victor H Peña, Michael Klass, and Tze Leung Lai. Self-normalized pro-

cesses: exponential inequalities, moment bounds and iterated logarithm

laws. The Annals of Probability, 32(3):1902–1933, 2004.

[60] Victor H Peña, Tze Leung Lai, and Qi-Man Shao. Self-normalized pro-

cesses: limit theory and statistical applications. Springer Science & Busi-

ness Media, 2008.

[61] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual

bandits with linear payoffs. In International Conference on Machine

Learning, pages 127–135. PMLR, 2013.

[62] Marc Abeille and Alessandro Lazaric. Linear thompson sampling revis-

ited. In International Conference on Artificial Intelligence and Statistics,

pages 176–184. PMLR, 2017.

[63] Christopher KI Williams and Carl Edward Rasmussen. Gaussian pro-

cesses for machine learning, volume 2. MIT press Cambridge, MA, 2006.

[64] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K

Sriperumbudur. Gaussian processes and kernel methods: A review on

connections and equivalences. arXiv preprint arXiv:1807.02582, 2018.

[65] Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. Lower bounds

on regret for noisy gaussian process bandit optimization. In Conference

on Learning Theory, pages 1723–1742. PMLR, 2017.

Bibliography 211

[66] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed

bandits. In International Conference on Machine Learning, pages 844–

853. PMLR, 2017.

[67] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias

Seeger. Gaussian process optimization in the bandit setting: No re-

gret and experimental design. In International Conference on Machine

Learning, 2010.

[68] Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and

regret bounds in gaussian process bandits. In International Conference

on Artificial Intelligence and Statistics, pages 82–90. PMLR, 2021.

[69] Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and

Marc Peter Deisenroth. Matérn gaussian processes on Riemannian man-

ifolds. Advances in Neural Information Processing Systems, 33:12426–

12437, 2020.

[70] Sattar Vakili, Nacime Bouziani, Sepehr Jalali, Alberto Bernacchia, and

Da-shan Shiu. Optimal order simple regret for gaussian process bandits.

Advances in Neural Information Processing Systems, 34:21202–21215,

2021.

[71] Sattar Vakili, Jonathan Scarlett, and Tara Javidi. Open problem: Tight

online confidence intervals for RKHS elements. In Conference on Learn-

ing Theory, pages 4647–4652. PMLR, 2021.

[72] Justin Whitehouse, Aaditya Ramdas, and Steven Z Wu. On the sublinear

regret of GP-UCB. Advances in Neural Information Processing Systems,

36, 2023.

[73] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient

global optimization of expensive black-box functions. Journal of Global

Optimization, 13:455–492, 1998.

Bibliography 212

[74] Hung Tran-The, Sunil Gupta, Santu Rana, and Svetha Venkatesh. Re-

gret bounds for expected improvement algorithms in gaussian process

bandit optimization. In International Conference on Artificial Intelli-

gence and Statistics, pages 8715–8737. PMLR, 2022.

[75] Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh.

Regret for expected improvement over the best-observed value and stop-

ping condition. In Asian Conference on Machine Learning, pages 279–

294. PMLR, 2017.

[76] Matthew Hoffman, Eric Brochu, and Nando De Freitas. Portfolio alloca-

tion for bayesian optimization. In Conference on Uncertainty in Artificial

Intelligence, volume 11, pages 327–336, 2011.

[77] Sattar Vakili. Open problem: Regret bounds for noise-free kernel-based

bandits. In Conference on Learning Theory, pages 5624–5629. PMLR,

2022.

[78] Madison Lee, Shubhanshu Shekhar, and Tara Javidi. Multi-scale zero-

order optimization of smooth functions in an RKHS. In IEEE Interna-

tional Symposium on Information Theory (ISIT), pages 288–293. IEEE,

2022.

[79] David Janz, David Burt, and Javier González. Bandit optimisation of

functions in the matérn kernel RKHS. In International Conference on

Artificial Intelligence and Statistics, pages 2486–2495. PMLR, 2020.

[80] Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello

Cristianini. Finite-time analysis of kernelised contextual bandits. In

Conference on Uncertainty in Artificial Intelligence, 2013.

[81] Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko,

and Lorenzo Rosasco. Gaussian process optimization with adaptive

sketching: scalable and no regret. In Conference on Learning Theory,

pages 533–557. PMLR, 2019.

Bibliography 213

[82] Romain Camilleri, Kevin Jamieson, and Julian Katz-Samuels. High-

dimensional experimental design and kernel bandits. In International

Conference on Machine Learning, pages 1227–1237. PMLR, 2021.

[83] Sudeep Salgia, Sattar Vakili, and Qing Zhao. A domain-shrinking based

bayesian optimization algorithm with order-optimal regret performance.

Advances in Neural Information Processing Systems, 34:28836–28847,

2021.

[84] Zihan Li and Jonathan Scarlett. Gaussian process bandit optimization

with few batches. In International Conference on Artificial Intelligence

and Statistics, pages 92–107. PMLR, 2022.

[85] Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher.

Truncated variance reduction: A unified approach to bayesian optimiza-

tion and level-set estimation. Advances in Neural Information Processing

Systems, 29, 2016.

[86] Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz.

Pairwise ranking aggregation in a crowdsourced setting. In Proceedings of

the 6th ACM International Conference on Web Search and Data Mining,

pages 193–202, 2013.

[87] Yisong Yue and Thorsten Joachims. Interactively optimizing information

retrieval systems as a dueling bandits problem. In Proceedings of the 26th

International Conference on Machine Learning, pages 1201–1208, 2009.

[88] Yanan Sui and Joel Burdick. Clinical online recommendation with sub-

group rank feedback. In Proceedings of the 8th ACM Conference on

Recommender Systems, pages 289–292, 2014.

[89] Tom Minka, Ryan Cleven, and Yordan Zaykov. Trueskill 2: An improved

bayesian skill rating system. Technical Report, 2018.

Bibliography 214

[90] Viktor Bengs, Róbert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke

Hüllermeier. Preference-based online learning with dueling bandits: A

survey. Journal of Machine Learning Research, 22(7):1–108, 2021.

[91] Tanguy Urvoy, Fabrice Clerot, Raphael Féraud, and Sami Naamane.

Generic exploration and k-armed voting bandits. In International Con-

ference on Machine Learning, pages 91–99. PMLR, 2013.

[92] Yue Wu, Tao Jin, Hao Lou, Farzad Farnoud, and Quanquan Gu. Borda

regret minimization for generalized linear dueling bandits. arXiv preprint

arXiv:2303.08816, 2023.

[93] Miroslav Dudík, Katja Hofmann, Robert E Schapire, Aleksandrs

Slivkins, and Masrour Zoghi. Contextual dueling bandits. In Confer-

ence on Learning Theory, pages 563–587. PMLR, 2015.

[94] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims.

The k-armed dueling bandits problem. Journal of Computer and System

Sciences, 78(5):1538–1556, 2012.

[95] Yisong Yue and Thorsten Joachims. Beat the mean bandit. In Proceed-

ings of the 28th International Conference on Machine Learning, pages

241–248, 2011.

[96] Masrour Zoghi, Shimon Whiteson, Maarten De Rijke, and Rémi Munos.

Relative confidence sampling for efficient online ranker evaluation. In

Proceedings of the 7th ACM International Conference on Web Search

and Data Mining, pages 73–82, 2014.

[97] Masrour Zoghi, Shimon Whiteson, Rémi Munos, and Maarten De Rijke.

Relative upper confidence bound for the k-armed dueling bandit prob-

lem. In International Conference on Machine Learning, pages 10–18.

PMLR, 2014.

Bibliography 215

[98] Nir Ailon, Zohar Karnin, and Thorsten Joachims. Reducing dueling

bandits to cardinal bandits. In International Conference on Machine

Learning, pages 856–864. PMLR, 2014.

[99] Masrour Zoghi, Shimon Whiteson, and Maarten De Rijke. MergeRUCB:

a method for large-scale online ranker evaluation. In Proceedings of the

8th ACM International Conference on Web Search and Data Mining,

pages 17–26, 2015.

[100] Moein Falahatgar, Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati, and

Vaishakh Ravindrakumar. Maxing and ranking with few assumptions.

Advances in Neural Information Processing Systems, 30, 2017.

[101] Moein Falahatgar, Ayush Jain, Alon Orlitsky, Venkatadheeraj Pichap-

ati, and Vaishakh Ravindrakumar. The limits of maxing, ranking, and

preference learning. In International Conference on Machine Learning,

pages 1427–1436. PMLR, 2018.

[102] Ralph Allan Bradley and Milton E Terry. Rank analysis of incom-

plete block designs: I. the method of paired comparisons. Biometrika,

39(3/4):324–345, 1952.

[103] Aadirupa Saha and Akshay Krishnamurthy. Efficient and optimal al-

gorithms for contextual dueling bandits under realizability. In Inter-

national Conference on Algorithmic Learning Theory, pages 968–994.

PMLR, 2022.

[104] Xuheng Li, Heyang Zhao, and Quanquan Gu. Feel-good thompson sam-

pling for contextual dueling bandits. In The 41st International Confer-

ence on Machine Learning, 2024.

[105] Viktor Bengs, Aadirupa Saha, and Eyke Hüllermeier. Stochastic contex-

tual dueling bandits under linear stochastic transitivity models. In In-

ternational Conference on Machine Learning, pages 1764–1786. PMLR,

2022.

Bibliography 216

[106] Qiwei Di, Tao Jin, Yue Wu, Heyang Zhao, Farzad Farnoud, and Quan-

quan Gu. Variance-aware regret bounds for stochastic contextual dueling

bandits. In The 12th International Conference on Learning Representa-

tions, 2024.

[107] Aadirupa Saha. Optimal algorithms for stochastic contextual preference

bandits. Advances in Neural Information Processing Systems, 34:30050–

30062, 2021.

[108] Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling RL: Rein-

forcement learning with trajectory preferences. In International Confer-

ence on Artificial Intelligence and Statistics, pages 6263–6289. PMLR,

2023.

[109] Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D. Lee, and

Wen Sun. Provable offline preference-based reinforcement learning. In

The 12th International Conference on Learning Representations, 2024.

[110] Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforce-

ment learning with human feedback from pairwise or k-wise comparisons.

In International Conference on Machine Learning, pages 43037–43067.

PMLR, 2023.

[111] Xiang Ji, Huazheng Wang, Minshuo Chen, Tuo Zhao, and Mengdi Wang.

Provable benefits of policy learning from human preferences in contextual

bandit problems. arXiv preprint arXiv:2307.12975, 2023.

[112] Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Ghesh-

laghi Azar, Mark Rowland, Zhaohan Daniel Guo, et al. Nash learning

from human feedback. arXiv preprint arXiv:2312.00886, 18, 2023.

[113] Yichong Xu, Aparna Joshi, Aarti Singh, and Artur Dubrawski. Zeroth

order non-convex optimization with dueling-choice bandits. In Confer-

ence on Uncertainty in Artificial Intelligence, pages 899–908. PMLR,

2020.

Bibliography 217

[114] Viraj Mehta, Vikramjeet Das, Ojash Neopane, Yijia Dai, Ilija Bogunovic,

Jeff Schneider, and Willie Neiswanger. Sample efficient reinforcement

learning from human feedback via active exploration. arXiv preprint

arXiv:2312.00267, 2023.

[115] Viraj Mehta, Ojash Neopane, Vikramjeet Das, Sen Lin, Jeff Schneider,

and Willie Neiswanger. Kernelized offline contextual dueling bandits.

In ICML Workshop on The Many Facets of Preference-Based Learning,

2023.

[116] Barna Pásztor, Parnian Kassraie, and Andreas Krause. Bandits with

preference feedback: A stackelberg game perspective. In Advances in

Neural Information Processing Systems, 2024.

[117] Wenjie Xu, Wenbin Wang, Yuning Jiang, Bratislav Svetozarevic, and

Colin Jones. Principled preferential bayesian optimization. In Inter-

national Conference on Machine Learning, pages 55305–55336. PMLR,

2024.

[118] Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan

Kian Hsiang Low. Neural dueling bandits: Preference-based optimiza-

tion with human feedback. In The 13th International Conference on

Learning Representations, 2025.

[119] David Abel, Cameron Allen, Dilip Arumugam, D Ellis Hershkowitz,

Michael L Littman, and Lawson LS Wong. Bad-policy density:

A measure of reinforcement learning hardness. arXiv preprint

arXiv:2110.03424, 2021.

[120] Stephen Zhen Gou and Yuyang Liu. DQN with model-based exploration:

Efficient learning on environments with sparse rewards. arXiv preprint

arXiv:1903.09295, 2019.

[121] Marco Alexander Wiering. Explorations in efficient reinforcement learn-

ing. PhD thesis, University of Amsterdam, 1999.

Bibliography 218

[122] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Belle-

mare, and Joelle Pineau. An introduction to deep reinforcement learning.

Foundations and Trends® in Machine Learning, 11(3-4):219–354, 2018.

[123] Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and

Doina Precup. A survey of exploration methods in reinforcement learn-

ing. arXiv preprint arXiv:2109.00157, 2021.

[124] Arthur Aubret, Laetitia Matignon, and Salima Hassas. A survey

on intrinsic motivation in reinforcement learning. arXiv preprint

arXiv:1908.06976, 2019.

[125] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg.

Intrinsically motivated reinforcement learning: An evolutionary perspec-

tive. IEEE Transactions on Autonomous Mental Development, 2(2):70–

82, 2010.

[126] Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically

motivated reinforcement learning. Advances in Neural Information Pro-

cessing Systems, 17, 2004.

[127] Richard M Ryan and Edward L Deci. Self-determination theory and the

facilitation of intrinsic motivation, social development, and well-being.

American Psychologist, 55(1):68–78, 2000.

[128] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation?

a typology of computational approaches. Frontiers in Neurorobotics, 1:6,

2007.

[129] Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer.

Autotelic agents with intrinsically motivated goal-conditioned reinforce-

ment learning: A short survey. Journal of Artificial Intelligence Research,

74:1159–1199, 2022.

Bibliography 219

[130] Nazmul Siddique, Paresh Dhakan, Inaki Rano, and Kathryn Merrick. A

review of the relationship between novelty, intrinsic motivation and rein-

forcement learning. Paladyn, Journal of Behavioral Robotics, 8(1):58–69,

2017.

[131] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David

Saxton, and Remi Munos. Unifying count-based exploration and intrinsic

motivation. Advances in Neural Information Processing Systems, 29,

2016.

[132] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen,

Yan Duan, et al. # exploration: A study of count-based exploration for

deep reinforcement learning. Advances in Neural Information Processing

Systems, 30, 2017.

[133] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Explo-

ration by random network distillation. arXiv preprint arXiv:1810.12894,

2018.

[134] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel

Guo, Bilal Piot, Steven Kapturowski, et al. Never give up: Learning

directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

[135] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell.

Curiosity-driven exploration by self-supervised prediction. In Interna-

tional Conference on Machine Learning, pages 2778–2787. PMLR, 2017.

[136] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck,

and Pieter Abbeel. VIME: Variational information maximizing explo-

ration. Advances in Neural Information Processing Systems, 29, 2016.

[137] Arthur Aubret, Laetitia Matignon, and Salima Hassas. An information-

theoretic perspective on intrinsic motivation in reinforcement learning:

A survey. Entropy, 25(2):327, 2023.

Bibliography 220

[138] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine.

Diversity is all you need: Learning skills without a reward function.

arXiv preprint arXiv:1802.06070, 2018.

[139] Andrew Cohen, Lei Yu, Xingye Qiao, and Xiangrong Tong. Maximum

entropy diverse exploration: Disentangling maximum entropy reinforce-

ment learning. arXiv preprint arXiv:1911.00828, 2019.

[140] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational

intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

[141] Matteo Bettini, Ryan Kortvelesy, and Amanda Prorok. Controlling be-

havioral diversity in multi-agent reinforcement learning. arXiv preprint

arXiv:2405.15054, 2024.

[142] Takayuki Osa and Tatsuya Harada. Discovering multiple solutions

from a single task in offline reinforcement learning. arXiv preprint

arXiv:2406.05993, 2024.

[143] Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One

solution is not all you need: Few-shot extrapolation via structured Max-

Ent RL. Advances in Neural Information Processing Systems, 33:8198–

8210, 2020.

[144] Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Se-

bastian Flennerhag, Shaobo Hou, and Satinder Singh. Discovering poli-

cies with domino: Diversity optimization maintaining near optimality.

arXiv preprint arXiv:2205.13521, 2022.

[145] Luca Grillotti, Maxence Faldor, Borja G León, and Antoine Cully.

Quality-diversity actor-critic: Learning high-performing and diverse

behaviors via value and successor features critics. arXiv preprint

arXiv:2403.09930, 2024.

Bibliography 221

[146] Kevin R McKee, Joel Z Leibo, Charlie Beattie, and Richard Everett.

Quantifying the effects of environment and population diversity in multi-

agent reinforcement learning. Autonomous Agents and Multi-Agent Sys-

tems, 36(1):21, 2022.

[147] Wentse Chen, Shiyu Huang, Yuan Chiang, Tim Pearce, Wei-Wei Tu,

Ting Chen, and Jun Zhu. DGPO: discovering multiple strategies with

diversity-guided policy optimization. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 38, pages 11390–11398, 2024.

[148] Geoffrey Cideron, Andrea Agostinelli, Johan Ferret, Sertan Girgin, Ro-

muald Elie, Olivier Bachem, et al. Diversity-rewarded CFG distillation.

arXiv preprint arXiv:2410.06084, 2024.

[149] Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu,

Zhaopeng Meng, et al. Exploration in deep reinforcement learning: From

single-agent to multi-agent domain. IEEE Transactions on Neural Net-

works and Learning Systems, 2023.

[150] Alain Andres, Esther Villar-Rodriguez, and Javier Del Ser. An evalu-

ation study of intrinsic motivation techniques applied to reinforcement

learning over hard exploration environments. In International Cross-

Domain Conference for Machine Learning and Knowledge Extraction,

pages 201–220. Springer, 2022.

[151] Adrien Ali Taiga, William Fedus, Marlos C Machado, Aaron Courville,

and Marc G Bellemare. On bonus-based exploration methods in the

arcade learning environment. arXiv preprint arXiv:2109.11052, 2021.

[152] Mingqi Yuan, Roger Creus Castanyer, Bo Li, Xin Jin, Glen Berseth, and

Wenjun Zeng. Rlexplore: Accelerating research in intrinsically-motivated

reinforcement learning. arXiv preprint arXiv:2405.19548, 2024.

Bibliography 222

[153] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin

Lu, et al. URLB: Unsupervised reinforcement learning benchmark. arXiv

preprint arXiv:2110.15191, 2021.

[154] Kaixin Wang, Kuangqi Zhou, Bingyi Kang, Jiashi Feng, and Shuicheng

Yan. Revisiting intrinsic reward for exploration in procedurally gener-

ated environments. In The 11th International Conference on Learning

Representations, 2022.

[155] Mikael Henaff, Minqi Jiang, and Roberta Raileanu. A study of global

and episodic bonuses for exploration in contextual MDPs. arXiv preprint

arXiv:2306.03236, 2023.

[156] Toru Lin and Allan Jabri. MIMEx: Intrinsic rewards from masked input

modeling. Advances in Neural Information Processing Systems, 36, 2024.

[157] Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satin-

der Singh. Reward is enough for convex MDPs. Advances in Neural

Information Processing Systems, 34:25746–25759, 2021.

[158] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Laz-

cano, Lucas Willems, Salem Lahlou, et al. Minigrid & Miniworld: Modu-

lar & customizable reinforcement learning environments for goal-oriented

tasks. CoRR, abs/2306.13831, 2023.

[159] Alexander L Strehl and Michael L Littman. An analysis of model-based

interval estimation for markov decision processes. Journal of Computer

and System Sciences, 74(8):1309–1331, 2008.

[160] Roberta Raileanu and Tim Rocktäschel. RIDE: Rewarding impact-

driven exploration for procedurally-generated environments. arXiv

preprint arXiv:2002.12292, 2020.

Bibliography 223

[161] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob

Menick, Ian Osband, Alex Graves, et al. Noisy networks for exploration.

arXiv preprint arXiv:1706.10295, 2017.

[162] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.

The arcade learning environment: An evaluation platform for general

agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

[163] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised

exploration via disagreement. In International Conference on Machine

Learning, pages 5062–5071. PMLR, 2019.

[164] Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel,

and Kimin Lee. State entropy maximization with random encoders for

efficient exploration. In International Conference on Machine Learning,

pages 9443–9454. PMLR, 2021.

[165] Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel.

Exploration via elliptical episodic bonuses. Advances in Neural Informa-

tion Processing Systems, 35:37631–37646, 2022.

[166] Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder,

Minqi Jiang, Eric Hambro, et al. MiniHack the planet: A sandbox for

open-ended reinforcement learning research. In The 35th Conference on

Neural Information Processing Systems Datasets and Benchmarks Track,

2021.

[167] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning

with a stochastic actor. In International Conference on Machine Learn-

ing, pages 1861–1870. PMLR, 2018.

[168] Jingbin Liu, Xinyang Gu, and Shuai Liu. Policy optimization re-

inforcement learning with entropy regularization. arXiv preprint

arXiv:1912.01557, 2019.

Bibliography 224

[169] Andrew Kachites McCallum. Reinforcement learning with selective per-

ception and hidden state. PhD thesis, University of Rochester, 1996.

[170] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schu-

urmans. Understanding the impact of entropy on policy optimization. In

International Conference on Machine Learning, pages 151–160. PMLR,

2019.

[171] Zhuang Liu, Xuanlin Li, Kang Bingyi, and Trevor Darrell. Regularization

matters in policy optimization. arXiv preprint arXiv:1910.09191, 2019.

[172] Seungyul Han and Youngchul Sung. A max-min entropy framework for

reinforcement learning. Advances in Neural Information Processing Sys-

tems, 34:25732–25745, 2021.

[173] Rushuai Yang, Chenjia Bai, Hongyi Guo, Siyuan Li, Bin Zhao, Zhen

Wang, Peng Liu, and Xuelong Li. Behavior contrastive learning for

unsupervised skill discovery. In International Conference on Machine

Learning, pages 39183–39204. PMLR, 2023.

[174] Paul-Antoine Le Tolguenec, Yann Besse, Florent Teichteil-Konigsbuch,

Dennis G Wilson, and Emmanuel Rachelson. Exploration by learn-

ing diverse skills through successor state measures. arXiv preprint

arXiv:2406.10127, 2024.

[175] Hyunseung Kim, Byung Kun Lee, Hojoon Lee, Dongyoon Hwang, Sejik

Park, Kyushik Min, et al. Learning to discover skills through guidance.

Advances in Neural Information Processing Systems, 36, 2024.

[176] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics

engine for model-based control. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.

Bibliography 225

[177] Minqi Jiang, Michael Dennis, Edward Grefenstette, and Tim Rock-

täschel. Minimax: Efficient baselines for autocurricula in jax. arXiv

preprint arXiv:2311.12716, 2023.

[178] Zhixuan Lin, Pierluca D’Oro, Evgenii Nikishin, and Aaron Courville.

The curse of diversity in ensemble-based exploration. arXiv preprint

arXiv:2405.04342, 2024.

[179] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl,

and Sergey Levine. Skew-fit: State-covering self-supervised reinforce-

ment learning. arXiv preprint arXiv:1903.03698, 2019.

[180] Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and

Pierre-Yves Oudeyer. Curious: Intrinsically motivated modular multi-

goal reinforcement learning. In International Conference on Machine

Learning, pages 1331–1340. PMLR, 2019.

[181] Sattar Vakili and Julia Olkhovskaya. Kernelized reinforcement learn-

ing with order optimal regret bounds. Advances in Neural Information

Processing Systems, 36, 2023.

[182] Sayak Ray Chowdhury and Rafael Oliveira. Value function approxi-

mations via kernel embeddings for no-regret reinforcement learning. In

Asian Conference on Machine Learning, pages 249–264. PMLR, 2023.

[183] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu.

Reward-free exploration for reinforcement learning. In International

Conference on Machine Learning, pages 4870–4879. PMLR, 2020.

[184] Ruosong Wang, Simon S Du, Lin Yang, and Russ R Salakhutdinov. On

reward-free reinforcement learning with linear function approximation.

Advances in Neural Information Processing Systems, 33:17816–17826,

2020.

Bibliography 226

[185] Shuang Qiu, Jieping Ye, Zhaoran Wang, and Zhuoran Yang. On reward-

free RL with kernel and neural function approximations: Single-agent

MDP and markov game. In International Conference on Machine Learn-

ing, pages 8737–8747. PMLR, 2021.

[186] Doina Precup. Eligibility traces for off-policy policy evaluation. Com-

puter Science Department Faculty Publication Series, page 80, 2000.

[187] András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-

optimal policies with bellman-residual minimization based fitted policy

iteration and a single sample path. Machine Learning, 71:89–129, 2008.

[188] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value

iteration. Journal of Machine Learning Research, 9(5), 2008.

[189] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline rein-

forcement learning: Tutorial, review, and perspectives on open problems.

arXiv preprint arXiv:2005.01643, 2020.

[190] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh

Agarwal. Bellman-consistent pessimism for offline reinforcement learn-

ing. Advances in Neural Information Processing Systems, 34:6683–6694,

2021.

[191] Jinglin Chen and Nan Jiang. Information-theoretic considerations in

batch reinforcement learning. In International Conference on Machine

Learning, pages 1042–1051. PMLR, 2019.

[192] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Con-

strained policy optimization. In International Conference on Machine

Learning, pages 22–31. PMLR, 2017.

[193] Eitan Altman. Constrained markov decision processes. Routledge, 2021.

[194] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward con-

strained policy optimization. arXiv preprint arXiv:1805.11074, 2018.

Bibliography 227

[195] Pihe Hu, Yu Chen, and Longbo Huang. Towards minimax optimal

reward-free reinforcement learning in linear MDPs. In The 11th Inter-

national Conference on Learning Representations, 2022.

[196] Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, and

Kevin Jamieson. Reward-free RL is no harder than reward-aware RL in

linear markov decision processes. In International Conference on Ma-

chine Learning, pages 22430–22456. PMLR, 2022.

[197] Joongkyu Lee and Min-hwan Oh. Demystifying linear MDPs and novel

dynamics aggregation framework. In The 12th International Conference

on Learning Representations, 2023.

[198] Sattar Vakili, Farhang Nabiei, Da-shan Shiu, and Alberto Bernacchia.

Reward-free kernel-based reinforcement learning. In 41st International

Conference on Machine Learning, 2024.

[199] Sham Machandranath Kakade. On the sample complexity of reinforce-

ment learning. University of London, University College London (United

Kingdom), 2003.

[200] Michael Kearns and Satinder Singh. Finite-sample convergence rates for

Q-learning and indirect algorithms. In Advances in Neural Information

Processing Systems, volume 11, 1998.

[201] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Min-

imax PAC bounds on the sample complexity of reinforcement learning

with a generative model. Machine Learning, 91:325–349, 2013.

[202] Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-

optimal time and sample complexities for solving markov decision pro-

cesses with a generative model. Advances in Neural Information Pro-

cessing Systems, 31, 2018.

Bibliography 228

[203] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance re-

duced value iteration and faster algorithms for solving markov decision

processes. In Proceedings of the 29th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 770–787. SIAM, 2018.

[204] Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforce-

ment learning with a generative model is minimax optimal. In Conference

on Learning Theory, pages 67–83. PMLR, 2020.

[205] Lin Yang and Mengdi Wang. Sample-optimal parametric Q-learning

using linearly additive features. In International Conference on Machine

Learning, pages 6995–7004. PMLR, 2019.

[206] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent

kernel: Convergence and generalization in neural networks. Advances in

Neural Information Processing Systems, 31, 2018.

[207] Sattar Vakili, Michael Bromberg, Jezabel Garcia, Da-shan Shiu, and

Alberto Bernacchia. Information gain and uniform generalization bounds

for neural kernel models. In 2023 IEEE International Symposium on

Information Theory (ISIT), pages 555–560. IEEE, 2023.

[208] Michael Kearns and Satinder Singh. Finite-sample convergence rates

for Q-learning and indirect algorithms. Advances in Neural Information

Processing Systems, 11, 1998.

[209] Lin Yang and Mengdi Wang. Reinforcement learning in feature space:

Matrix bandit, kernels, and regret bound. In International Conference

on Machine Learning, pages 10746–10756. PMLR, 2020.

[210] Sayak Ray Chowdhury and Aditya Gopalan. Online learning in kernel-

ized markov decision processes. In The 22nd International Conference

on Artificial Intelligence and Statistics, pages 3197–3205. PMLR, 2019.

Bibliography 229

[211] Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie

Kaufmann, and Michal Valko. Kernel-based reinforcement learning: A

finite-time analysis. In International Conference on Machine Learning,

pages 2783–2792. PMLR, 2021.

[212] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably

efficient maximum entropy exploration. In International Conference on

Machine Learning, pages 2681–2691. PMLR, 2019.

[213] Yasin Abbasi-Yadkori. Online learning for linearly parametrized control

problems. 2013.

[214] Tor Lattimore. A lower bound for linear and kernel regression with

adaptive covariates. In The 36th Annual Conference on Learning Theory,

pages 2095–2113. PMLR, 2023.

[215] Martin L Puterman. Markov decision processes: Discrete stochastic dy-

namic programming. John Wiley & Sons, 2014.

[216] Sing-Yuan Yeh, Fu-Chieh Chang, Chang-Wei Yueh, Pei-Yuan Wu, Al-

berto Bernacchia, and Sattar Vakili. Sample complexity of kernel-based

Q-learning. In International Conference on Artificial Intelligence and

Statistics, pages 453–469. PMLR, 2023.

[217] Sattar Vakili, Jonathan Scarlett, Da-shan Shiu, and Alberto Bernacchia.

Improved convergence rates for sparse approximation methods in kernel-

based learning. In International Conference on Machine Learning, pages

21960–21983. PMLR, 2022.

[218] Gellért Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower

bounds for planning in MDPs with linearly-realizable optimal action-

value functions. In Algorithmic Learning Theory, pages 1237–1264.

PMLR, 2021.

Bibliography 230

[219] Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a

good representation sufficient for sample efficient reinforcement learning?

arXiv preprint arXiv:1910.03016, 2019.

[220] Yining Wang, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy.

Optimism in reinforcement learning with generalized linear function ap-

proximation. arXiv preprint arXiv:1912.04136, 2019.

[221] Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick

Jaillet, and Bryan Kian Hsiang Low. Prompt optimization with human

feedback. In ICML 2024 Workshop on Models of Human Feedback for

AI Alignment, 2024.

[222] Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi

Zhou. Instructzero: Efficient instruction optimization for black-box large

language models. In International Conference on Machine Learning,

pages 6503–6518. PMLR, 2024.

[223] Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu,

See-Kiong Ng, et al. Use your instinct: Instruction optimization using

neural bandits coupled with transformers. In NeurIPS 2023 Workshop

on Instruction Tuning and Instruction Following, 2023.

[224] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint

arXiv:1807.02811, 2018.

[225] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando

De Freitas. Taking the human out of the loop: A review of bayesian

optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

[226] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov,

and Ruosong Wang. On exact computation with an infinitely wide neural

net. Advances in Neural Information Processing Systems, 32, 2019.

Bibliography 231

[227] Javier González, Zhenwen Dai, Andreas Damianou, and Neil D

Lawrence. Preferential bayesian optimization. In International Con-

ference on Machine Learning, pages 1282–1291. PMLR, 2017.

[228] Petrus Mikkola, Milica Todorović, Jari Järvi, Patrick Rinke, and Samuel

Kaski. Projective preferential bayesian optimization. In International

Conference on Machine Learning, pages 6884–6892. PMLR, 2020.

[229] Shion Takeno, Masahiro Nomura, and Masayuki Karasuyama. Towards

practical preferential bayesian optimization with skew gaussian pro-

cesses. In International Conference on Machine Learning, pages 33516–

33533. PMLR, 2023.

[230] Masrour Zoghi, Shimon Whiteson, Rémi Munos, and Maarten Rijke.

Relative upper confidence bound for the k-armed dueling bandit prob-

lem. In International Conference on Machine Learning, pages 10–18.

PMLR, 2014.

[231] Moein Falahatgar, Alon Orlitsky, Venkatadheeraj Pichapati, and

Ananda Theertha Suresh. Maximum selection and ranking under noisy

comparisons. In International Conference on Machine Learning, pages

1088–1096. PMLR, 2017.

[232] Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray

Chowdhury. Active preference optimization for sample efficient RLHF. In

ICML 2024 Workshop on Theoretical Foundations of Foundation Models,

2024.

[233] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L Isbell,

and Andrea L Thomaz. Policy shaping: Integrating human feedback

with reinforcement learning. Advances in Neural Information Processing

Systems, 26, 2013.

[234] Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick.

Dueling posterior sampling for preference-based reinforcement learning.

Bibliography 232

In Conference on Uncertainty in Artificial Intelligence, pages 1029–1038.

PMLR, 2020.

[235] Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur

Dubrawski. Preference-based reinforcement learning with finite-time

guarantees. Advances in Neural Information Processing Systems,

33:18784–18794, 2020.

[236] Runzhe Wu and Wen Sun. Making RL with preference-based feedback

efficient via randomization. In The 12th International Conference on

Learning Representations, 2024.

[237] Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei

Wang. Human-in-the-loop: Provably efficient preference-based reinforce-

ment learning with general function approximation. In International

Conference on Machine Learning, pages 3773–3793. PMLR, 2022.

[238] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wain-

wright, Pamela Mishkin, et al. Training language models to follow in-

structions with human feedback. Advances in Neural Information Pro-

cessing Systems, 35:27730–27744, 2022.

[239] Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Im-

proved optimistic algorithms for logistic bandits. In International Con-

ference on Machine Learning, pages 3052–3060. PMLR, 2020.

[240] Momin Jamil and Xin-She Yang. A literature survey of benchmark func-

tions for global optimisation problems. International Journal of Mathe-

matical Modelling and Numerical Optimisation, 4(2):150–194, 2013.

[241] Yiding Jiang, J Zico Kolter, and Roberta Raileanu. On the importance

of exploration for generalization in reinforcement learning. Advances in

Neural Information Processing Systems, 36, 2024.

Bibliography 233

[242] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen,

Nova DasSarma, et al. Training a helpful and harmless assistant

with reinforcement learning from human feedback. arXiv preprint

arXiv:2204.05862, 2022.

[243] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg,

and Dario Amodei. Deep reinforcement learning from human preferences.

Advances in Neural Information Processing Systems, 30, 2017.

[244] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe,

Chelsea Voss, et al. Learning to summarize with human feedback. Ad-

vances in Neural Information Processing Systems, 33:3008–3021, 2020.

[245] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning,

Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your

language model is secretly a reward model. Advances in Neural Infor-

mation Processing Systems, 36:53728–53741, 2023.

[246] Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker,

Leo Gao, Leopold Aschenbrenner, et al. Weak-to-strong generaliza-

tion: Eliciting strong capabilities with weak supervision. arXiv preprint

arXiv:2312.09390, 2023.

[247] Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman,

Felipe Llinares, et al. Direct language model alignment from online AI

feedback. arXiv preprint arXiv:2402.04792, 2024.

[248] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo

Zhou, et al. RLHF workflow: From reward modeling to online RLHF.

arXiv preprint arXiv:2405.07863, 2024.

[249] J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in poly-

nomial time. In International Conference on Machine Learning, pages

513–520, 2009.

Bibliography 234

[250] Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer,

Joseph E Gonzalez, et al. NovelD: A simple yet effective exploration

criterion. Advances in Neural Information Processing Systems, 34:25217–

25230, 2021.

[251] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey

Levine, and Ruslan Salakhutdinov. Efficient exploration via state

marginal matching. arXiv preprint arXiv:1906.05274, 2019.

[252] Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. A policy gradient

method for task-agnostic exploration. In 4th Lifelong Machine Learning

Workshop at ICML, 2020.

[253] Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised ac-

tive pre-training. Advances in Neural Information Processing Systems,

34:18459–18473, 2021.

[254] Dongyoung Kim, Jinwoo Shin, Pieter Abbeel, and Younggyo Seo. Ac-

celerating reinforcement learning with value-conditional state entropy

exploration. Advances in Neural Information Processing Systems, 36,

2024.

[255] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Dar-

rell, and Alexei A Efros. Large-scale study of curiosity-driven learning.

arXiv preprint arXiv:1808.04355, 2018.

[256] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo

Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, et al. Agent57: Out-

performing the Atari human benchmark. In International Conference on

Machine Learning, pages 507–517. PMLR, 2020.

[257] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent,

Marc Pollefeys, Timothy Lillicrap, et al. Episodic curiosity through

reachability. arXiv preprint arXiv:1810.02274, 2018.

Bibliography 235

[258] Yiming Wang, Ming Yang, Renzhi Dong, Binbin Sun, Furui Liu, and

Leong Hou U. Efficient potential-based exploration in reinforcement

learning using inverse dynamic bisimulation metric. Advances in Neural

Information Processing Systems, 36, 2024.

[259] Anjie Zhu, Peng-Fei Zhang, Ruihong Qiu, Zetao Zheng, Zi Huang, and

Jie Shao. Abstract and explore: A novel behavioral metric with cyclic

dynamics in reinforcement learning. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 38, pages 17150–17158, 2024.

[260] Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-

based exploration with the successor representation. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 34, pages 5125–

5133, 2020.

[261] Changmin Yu, Neil Burgess, Maneesh Sahani, and Samuel J Gershman.

Successor-predecessor intrinsic exploration. Advances in Neural Infor-

mation Processing Systems, 36, 2024.

[262] Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (prov-

ably) solves some robust RL problems. arXiv preprint arXiv:2103.06257,

2021.

[263] Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-

Jui Fu, and Chun-Yi Lee. Diversity-driven exploration strategy for deep

reinforcement learning. Advances in Neural Information Processing Sys-

tems, 31, 2018.

[264] Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux,

and Matthieu Geist. Adversarially guided actor-critic. arXiv preprint

arXiv:2102.04376, 2021.

[265] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman,

Kenneth Stanley, and Jeff Clune. Improving exploration in evolution

Bibliography 236

strategies for deep reinforcement learning via a population of novelty-

seeking agents. Advances in Neural Information Processing Systems, 31,

2018.

[266] Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and

Stephen J Roberts. Effective diversity in population-based reinforcement

learning. Advances in Neural Information Processing Systems, 33:18050–

18062, 2020.

[267] Pengyi Li, Jianye Hao, Hongyao Tang, Xian Fu, Yan Zhen, and Ke Tang.

Bridging evolutionary algorithms and reinforcement learning: A compre-

hensive survey on hybrid algorithms. IEEE Transactions on Evolutionary

Computation, 2024.

[268] Jean-Baptiste Gaya, Laure Soulier, and Ludovic Denoyer. Learning

a subspace of policies for online adaptation in reinforcement learning.

arXiv preprint arXiv:2110.05169, 2021.

[269] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, et al. Scikit-learn: Machine learning in python. Journal of

Machine Learning Research, 12:2825–2830, 2011.

[270] J. Mercer. Functions of positive and negative type, and their connection

with the theory of integral equations. Philosophical Transactions of the

Royal Society of London. Series A, Containing Papers of a Mathematical

or Physical Character, 209:415–446, 1909.

[271] Andreas Christmann and Ingo Steinwart. Support vector machines.

Springer New York, NY, 2008.

[272] Roman Vershynin. High-dimensional probability: An introduction with

applications in data science, volume 47. Cambridge University Press,

2018.

Bibliography 237

[273] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton,

Benjamin Letham, Andrew Gordon Wilson, et al. BoTorch: A framework

for efficient monte-carlo bayesian optimization. In Advances in Neural

Information Processing Systems, volume 33, 2020.

[274] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and

Andrew Gordon Wilson. GPyTorch: Blackbox matrix-matrix gaussian

process inference with GPU acceleration. In Advances in Neural Infor-

mation Processing Systems, 2018.

	Introduction
	Main Challenges
	Contributions
	Thesis outline
	Publications

	Background on Reinforcement Learning
	Markov Decision Processes
	Partially Observable Markov Decision Processes

	Value Functions and Bellman Optimality
	Model-Based vs Model-Free RL
	Model-Based Learning: Dynamic Programming
	Policy Iteration
	Value Iteration

	Model-Free Prediction
	Monte Carlo Methods
	Temporal Difference Learning

	Function Approximation in RL
	Linear Function Approximation
	Kernel-Based Reinforcement Learning
	Deep Reinforcement Learning

	Policy-Based Methods
	Policy Gradient Theorem
	REINFORCE Algorithm
	REINFORCE with Baseline
	Actor-Critic Algorithms

	Summary and Conclusion

	Background on Bandits
	Multi-Armed Bandits
	Linear Bandits
	Gaussian Process Bandits / Bayesian Optimization
	Gaussian Processes (Bayesian View)
	Reproducing Kernel Hilbert Spaces (frequentist view)
	Kernel Ridge Regression
	Common Kernels and their Properties
	Maximum Information Gain and Eigendecay
	Confidence Intervals
	Algorithms for GP Bandits and Regret Bounds

	Dueling Bandits
	Summary and Conclusion

	The Impact of Intrinsic Rewards on Exploration in RL
	Introduction
	Related Works
	Methodology
	Taxonomy of Diversity Levels Imposed by Intrinsic Reward
	The Selected Intrinsic Reward Algorithms
	Environment
	Experimental Protocol
	Model Architecture
	Evaluation Metrics

	Experimental Results and Discussion
	RQ1: Return Performance of the Different Intrinsic Rewards
	RQ2: Characteristics of Each Intrinsic Reward Algorithm
	RQ3: First, Second and Third Instances of Discovering the Sparse Reward

	Conclusion
	Limitations and Future Work

	Near-Optimal Sample Complexity in Reward-Free Kernel-Based RL
	Introduction
	Related Work
	Literature Review
	Comparison to Existing Works

	Preliminaries and Problem Formulation
	Episodic MDP
	Reward-Free RL Framework
	Kernel Ridge Regression

	Algorithm Description
	Planning Phase
	Exploration Phase
	Computational Complexity

	Analysis of the Sample Complexity
	Confidence Intervals
	Sample Complexities

	Experiments
	Conclusion

	Bayesian Optimization from Human Feedback
	Introduction
	Related Work

	Preliminaries and Problem Formulation
	BOHF Framework
	Preliminaries and Assumptions
	Preference Function Prediction and Uncertainty Estimation

	Algorithm Description
	Analysis of MR-LPF
	Sample Complexity and Simple Regret
	Confidence Intervals and Proofs

	Experiments
	Conclusion

	Conclusions
	Summary of Contributions
	Future Work
	Theoretical Framework Unifying Exploration Strategies
	Exploration as Key to Generalization in RL
	Active Exploration for LLM Alignment

	Appendices
	Appendix of Chapter 4
	Diversity Levels Categorization
	``Where to Explore?''
	``How to Explore?''

	MiniGrid Environments
	Hyperparameters
	Additional Experimental Results
	Grid Encoding Observation Space
	RGB Observation Space

	DIAYN Extrinsic

	Appendix of Chapter 5
	Proof of Theorem 1 and Corollary 1
	Proof of Theorem 2
	Proof of Theorem 3
	Experimental Details
	Synthetic Test Functions from the RKHS
	Tuning the Confidence Interval Width Multiplier
	Implementation and Computational Resources
	Repeated Experiments for Different Draws of r and P

	RKHS and Mercer Theorem

	Appendix of Chapter 6
	Proof of The Regret Bound and Sample Complexities
	Proof of Theorem 4
	Proof of Corollary 2
	Proof of Corollary 3

	Proof of Theorem 5
	Experimental Details

	Bibliography

