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Abstract

Sequential decision-making is at the core of everyday human activities and
complex real-world systems. Equipping machines with this capability has
enormous implications for advancing Artificial Intelligence (AI) and developing
autonomous systems that can reliably address real-world tasks, from robotics
and healthcare to traffic management and large-scale information systems.
Unlike machines, the human brain makes intelligent decisions in a remarkably
data- and energy-efficient manner. A long-term objective of Al research, often
associated with the vision of Artificial General Intelligence (AGI), is to ap-
proximate the human brain’s capabilities, paving the way for more practical

and sustainable ATl systems.

Reinforcement Learning (RL) is the mathematical framework that en-
ables machines to learn sequential decision-making through trial and error,
mirroring aspects of human learning. While RL has driven many recent ad-
vances, training RL agents remains highly data- and compute-intensive—far
from the efficiency of the human brain. A central bottleneck to data efficiency
is exploration: how machines gather informative experiences to learn effective
strategies. This thesis addresses the exploration challenge in RL, approaching
it from both empirical and theoretical perspectives, bridging the gap between

the two.

First, a proof-of-concept study is developed that provides a deeper under-
standing of how exploration bonuses shape the behavior of deep RL agents,
yielding new empirical insights into the mechanisms driving exploration in

practice. Second, a theoretical framework is introduced for the analytical
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study of RL in the kernel setting, leading to the development of provably
efficient exploration algorithms with regret bounds that are tighter than ex-
isting approaches. Third, the study of exploration in Bayesian Optimization
with preference-based feedback introduces a novel algorithm that, for the first
time, achieves order-optimal sample complexity in this setting. Together, these
contributions advance the development of sample-efficient decision-making al-
gorithms, bringing Al systems closer to the remarkable efficiency of human

learning.



Impact Statement

Al simulates human intelligence in machines, enabling them to learn from
experience, make decisions, and perform tasks traditionally requiring human
cognition. As a transformative force, Al has immense potential to reshape
industries and society. Its rapid advancement is already driving meaningful

progress across critical domains.

For instance, Al is revolutionizing healthcare by improving early diagnosis
of diseases like breast cancer [1]. In education, Al-powered personalized learn-
ing platforms adapt content and pacing to individual student needs, offering
crucial support for learners with ADHD, dyslexia, and other challenges [2]. In
disaster prediction, Al aids seismologists in detecting early earthquake warning

signs, safeguarding lives and infrastructure [3].

Yet, alongside these advances, Al faces fundamental challenges that limit
its broader impact. Many Al systems demand vast amounts of data and com-
putational resources. Among these, Reinforcement Learning (RL) stands out
as a powerful yet especially data-hungry subfield of AI. While RL has shown
great promise in solving sequential decision-making problems in domains such
as robotics, personalized education, and healthcare, its practical impact re-

mains constrained by inefficiency and high computational costs.

RL is notoriously data-inefficient, often requiring orders of magnitude
more data than humans need to achieve comparable performance. This inef-
ficiency slows progress toward Artificial General Intelligence (AGI) and raises
sustainability concerns due to the substantial carbon footprint of prolonged

training. Moreover, the high computational and financial costs limit RL’s
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accessibility for many researchers and practitioners.

This thesis tackles RL’s data inefficiency by addressing the exploration
challenge—a core mechanism determining how effectively an agent learns from
interacting with its environment. We investigate exploration from both theo-
retical and empirical perspectives, answering two central questions:

How can the agent explore efficiently in any environment, and how can it
determine whether sufficient exploration has been achieved?

Our research develops novel exploration strategies that significantly im-
prove RL’s data efficiency, bridging the gap between theory and real-world
deployment. By enabling RL systems to learn effectively with limited data,
this work expands their applicability in data-constrained domains while re-
ducing computational burdens. Ultimately, these contributions mark a step
toward more practical, inclusive, and environmentally responsible AI, unlock-
ing RL’s potential to drive progress in critical areas like healthcare, education,

and beyond.
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Chapter 1

Introduction

Artificial Intelligence (AI) is transforming nearly every facet of modern society,
from healthcare and education to transportation and scientific discovery. Cen-
tral to this transformation are Al agents—autonomous systems that perceive
their environment, reason about tasks, and take actions to achieve specific
goals. These agents leverage capabilities such as planning, memory, and adap-
tive learning, enabling them to improve over time through interaction with

their surroundings.

This process of improvement, known as agent learning, allows Al systems
to refine their decision-making, adapt to new conditions, and tackle increas-
ingly complex challenges. While recent advances in Al have shown impressive
capabilities, most Al systems today remain specialized and lack the flexibility
required for broader problem-solving. They typically struggle to generalize
knowledge, transfer skills between domains, or solve unfamiliar problems in
the way humans can. Achieving Artificial General Intelligence (AGI)—where
machines can learn, reason, and adapt as flexibly as humans—remains one of

the field’s most ambitious goals.

A critical component of AGI is sequential decision-making: the ability to
reason over time, handle uncertainty, and operate in dynamic environments.
The potential applications are vast. For instance, intelligent traffic manage-
ment systems could proactively mitigate congestion. Personalized healthcare

could continuously adapt treatment strategies to individual patients. Precision
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agriculture systems could optimize water usage, crop yields, and soil health by
dynamically adjusting to weather patterns and plant needs. Yet replicating the
depth and efficiency of human decision-making continues to pose a fundamen-
tal challenge for the advancement of Al systems. In fact, humans excel in tasks
that demand causal reasoning, conceptual understanding, and generalization
from limited experience—sKkills that enable adaptive behavior across diverse
and uncertain environments [6, 7]. Developing computational approaches that

approximate these abilities has therefore become central to Al research.

Reinforcement Learning (RL) plays a foundational role in this endeavor.
RL is the computational framework through which agents learn to make se-
quential decisions by interacting with an environment and receiving evaluative
feedback in the form of rewards [4]. Unlike supervised learning, where mod-
els learn from labeled datasets of correct input-output pairs, or unsupervised
learning, where models discover patterns within unlabeled data, RL focuses on
learning behavior through trial and error. An RL agent is not given explicit
instructions on the correct action to take; instead, it must explore, observe the
outcomes of its actions, and iteratively improve its decision-making policy to
maximize long-term reward. This paradigm closely mirrors how humans and

animals learn from experience.

RL has achieved remarkable success across a range of challenging domains.
A notable milestone was reached by AlphaGo, a system that combines deep
neural networks with advanced search algorithms, which defeated the world’s
top human players in the ancient game of Go—a game long considered resistant
to traditional AT due to its immense combinatorial complexity [8]. Building
on this progress, AlphaTensor used deep RL to autonomously discover faster
algorithms for matrix multiplication, a fundamental operation in scientific com-
puting [9]. RL has also been employed to control magnetic coils in tokamaks
for plasma confinement, advancing nuclear fusion research [10]. More recently,
RL has also found applications in training Large Language Models (LLMs);

for instance, DeepSeek-R1 demonstrated how RL techniques can be used to
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enhance the reasoning capabilities of LLMs [11].

Despite its impressive successes, RL continues to face significant
challenges—most notably in scalability, interpretability, safety, the sim-to-
real gap, and data inefficiency [12], the latter of which is the primary focus of
this thesis. RL agents typically require extensive interaction with the environ-
ment to learn effectively. In contrast to humans, who can learn from limited
samples, RL systems often depend on millions of samples, making them highly
data-inefficient [8, 12, 6]. This inefficiency hinders progress toward developing
generalist agents, as most RL models are trained from scratch for each task and
struggle to transfer knowledge across tasks or domains [13]. It also renders RL
impractical in domains where data is expensive, risky, or ethically sensitive
to collect—such as personalized medicine, autonomous driving, or educa-
tion. RL’s data inefficiency goes hand in hand with its heavy computational
requirements, amplifying both cost and environmental impact. Training high-
performing agents in complex environments often requires large-scale compute
clusters over extended periods, leading to substantial energy consumption
and carbon emissions. For example, training AlphaGo Zero is estimated to
have produced approximately 96 tonnes of CO2 over 40 days—equivalent to
nearly 1,000 hours of air travel [14]. These sustainability concerns are further
intensified by the trend toward increasingly large models and datasets, as seen
with LLMs whose compute budgets now reach tens of millions of dollars [15]
and require millions of human annotations [16]. Moreover, the high costs of
data collection, environment simulation, and compute infrastructure restrict

broader access to RL research and applications.

Taken together, these challenges highlight an urgent need to develop data-
efficient RL algorithms that deliver good performance while minimizing data
requirements. In this thesis, we address this need by proposing several ap-
proaches to improve data efficiency in RL, enabling agents to learn more ef-

fectively with fewer interactions.
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1.1 Main Challenges

As outlined in the introduction, data inefficiency poses a central obstacle to
the broader applicability of RL—particularly in settings where data is limited.
To address this problem, it is crucial to understand the underlying sources
of inefficiency. In this section, we highlight three core challenges that con-
tribute to poor sample efficiency in RL: exploration, credit assignment, and

generalization.

Exploration. A major contributor to data inefficiency in RL is exploration,
which plays a critical role in determining how efficiently an agent learns from
interactions with the environment. Exploration has both theoretical and em-
pirical dimensions. Theoretically, efficient exploration aims to guide the agent
toward informative samples in order to minimize sample complexity—the num-
ber of interactions needed to learn an optimal policy. While this goal is
well-understood and provably achievable in simple tabular [17, 18, 19] or lin-
ear [20, 21, 22, 23, 24] settings, it remains poorly understood in more complex
environments with large or continuous state and action spaces.

Moreover, exploration strategies that are well understood in theory often
fail to scale in practice. This gap between theoretical insight and empirical
performance is particularly apparent in deep RL, where exploration remains
one of the primary obstacles to sample-efficient learning. For example, in
sparse-reward settings—where the agent receives little to no feedback until a
task is completed—simple heuristics like e-greedy often fail to reach rewarding
states, leading to slow or unsuccessful learning [25]. This is known as the hard
exploration problem, and it often results in either poor policy performance or
the need for excessive interaction with the environment.

Bridging this theory-practice gap requires studying exploration from both
theoretical and empirical perspectives, and remains a central challenge on the

path toward data-efficient RL.

Credit Assignment. Another key factor contributing to data inefficiency in

RL is the credit assignment problem. In complex environments, the conse-
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quences of an agent’s actions are often delayed, making it difficult to identify
which actions led to the observed outcomes [26]. This temporal gap between
actions and their eventual rewards hinders learning, as the agent struggles to
assign credit to the appropriate decisions. Without accurate credit assignment,
the agent may require many episodes to discover beneficial actions. Ideally, an
agent should be able to trace outcomes back to the key decisions that caused
them—even across long time horizons—allowing it to update its policy more

effectively with fewer interactions.

Generalization. Humans excel at retaining and reusing knowledge, even in
tasks that differ substantially from past experiences [6, 7]. In contrast, most
RL agents are trained to solve a single, well-defined task in a stationary en-
vironment. This often leads to overfitting, where the agent performs well in
the training environment but fails to generalize beyond it. As a result, even
minor changes—such as variations in the environment, distributional shifts,
or task perturbations—can severely degrade performance. RL agents typically
lack the ability to transfer previously learned knowledge or skills to novel tasks
or dynamic environments. This inability to generalize limits the practical ap-
plicability of RL in real-world settings, where environments are often noisy,
non-stationary, and subject to unexpected changes (e.g., modeling errors, re-
ward misspecification, or adversarial attacks). To be truly data-efficient, RL
agents must be able to reuse prior experience, remain robust under uncertainty,

and adapt to new scenarios instead of tackling them from scratch [27].

Motivated by these challenges, this thesis presents several contributions
aimed at improving data efficiency in RL, with a particular focus on the first
challenge: exploration, examined from both theoretical and empirical perspec-

tives. Specifically, we investigate the following high-level research question:

How can the agent explore efficiently in any environment, and how can it

determine whether sufficient exploration has been achieved?



1.2. Contributions 30

1.2 Contributions

The key contributions of this thesis can be summarized as follows:

1. Conduct a proof-of-concept study of intrinsic rewards for ex-
ploration in deep RL: The first part of our research question—“How
can the agent explore efficiently in any environment?” is addressed from
an empirical perspective in Chapter 4. We focus on intrinsic rewards,
a prominent class of exploration strategies for tackling hard exploration
problem. Despite their widespread use in deep RL, there is little consen-
sus on which intrinsic rewards are most effective in different scenarios.
To clarify this, we reinterpret intrinsic rewards through the lens of di-
versity, classifying them based on the level of diversity they promote in
the agent’s behavior. We conduct an empirical study to compare dif-
ferent intrinsic rewards across various RL environments and exploration

metrics.

2. Provide empirical insights into the role of diversity in explo-
ration: From our proof-of-concept study, we analyze how different levels
of diversity in exploration behavior influence the efficiency of exploration.
Our results offer practical guidance on how to tailor exploration strate-
gies to specific tasks and environments, as presented in Chapter 4 of the

thesis.

3. Design exploration algorithms for reward-free kernel-based RL
with theoretical guarantees and empirical validation: The second
part of our research question—“How can the agent determine whether
sufficient exploration has been achieved”— is addressed theoretically in
Chapter 5. While RL theory is well-established in tabular and linear
settings, it is less developed for deep RL. To bridge this gap, we focus on
kernel methods, which provide a middle ground between simple models
and deep learning. Chapter 5 develops a rigorous theoretical framework

for the analysis of kernel-based RL. Within this framework, we propose
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novel exploration algorithms that collect unbiased samples and establish
tighter sample complexity bounds over a broad class of kernels, supported

by synthetic experiments.

. Introduce a novel confidence interval for unbiased samples in
kernel-based RL: In Chapter 5, we propose a new confidence interval
for kernel ridge regression in the RL setting. This confidence interval
underpins the theoretical guarantees of our exploration algorithms and
may be broadly applicable to other RL scenarios, including offline RL,

model-based RL, and infinite-horizon problems.

. Propose a novel algorithm for efficient exploration under
preference-based feedback: We extend the thesis’s central theme
of efficient exploration to settings where feedback is relative and lim-
ited. Motivated by applications such as prompt optimization, we study
exploration in the context of preference-based feedback, where agents
only observe comparisons between outcomes (e.g., “A is preferred to
B”) rather than numerical rewards. We formulate this as a preference-
based Bayesian Optimization (BO) problem and propose Multi-Round
Learning from Preference-based Feedback (MR-LPF) algorithm, which
iteratively selects action pairs based on the highest uncertainty in their
preference, achieving order-optimal sample complexity. This work ap-

pears in Chapter 6.

. Establish theoretical guarantees and practical utility for MR-
LPF algorithm: In Chapter 6, we prove regret bounds and derive
sample complexity results showing that our MR-LPF algorithm matches
conventional BO bounds with scalar feedback despite relying only on
preference queries. We further validate the algorithm on synthetic and

real-world datasets, demonstrating its practical effectiveness.
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1.3 Thesis outline

This thesis consists of seven chapters. Following this introductory chapter, the

remainder of the document is organized as follows:

1. Chapter 2 provides the necessary background on RL, covering founda-
tional concepts such as Markov Decision Processes (MDPs), value func-
tions, model-based and model-free approaches. This chapter also intro-
duces key algorithms and function approximation techniques, including
deep RL and policy gradient methods. It lays the groundwork essential

for understanding the methods developed in subsequent chapters.

2. Chapter 3 introduces the multi-armed bandit framework and explores
various extensions, including linear bandits, Gaussian Process bandits
(also knows as Bayesian Optimization), and dueling bandits, along with
associated algorithms and theoretical guarantees. This chapter pro-
vides essential theoretical background for understanding exploration-
exploitation trade-offs in simpler settings compared to RL such as bandits

problems.

3. Chapter 4 presents an empirical study on the impact of diversity on
exploration in deep RL, serving as a preliminary investigation into the
complex relationship between diversity and exploration. It introduces
a proposed taxonomy of diversity levels induced by intrinsic rewards,
conducts a comparative empirical analysis, and evaluates multiple ex-
ploration metrics. The chapter concludes with a discussion of the find-
ings, offering practical insights into the effectiveness of different intrinsic

rewards.

4. Chapter 5 introduces novel exploration algorithms for reward-free RL,
both with and without access to a generative model. It also provides
theoretical analyses of their sample complexity and validate the improved

bounds through synthetic experiments.
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5. Chapter 6 introduces the Bayesian Optimization from Human Feedback
(BOHF) framework and proposes the novel MR-LPF algorithm. A theo-
retical analysis of the algorithm is provided, and its performance is eval-
uated on various test functions, including both synthetic and real-world

cases.

6. Chapter 7 concludes the thesis with a concise summary of the main

contributions and outlines important directions for future research.

7. The appendices include proofs of the theoretical results presented in the

above chapters, as well as supplementary experimental details and plots.

1.4 Publications

The research conducted in the course of this dissertation has led to the follow-

ing publications:

« Aya Kayal, Eduardo Pignatelli, and Laura Toni. “Does behavioral
diversity in intrinsic rewards help exploration?” In NeurIPS 2023 Second

Agent Learning in Open-Endedness Workshop, 2023.

o Aya Kayal, Eduardo Pignatelli, and Laura Toni. “The impact of intrin-
sic rewards on exploration in reinforcement learning”. Neural Computing

and Applications, 37:16269-16303, 2025.

o Aya Kayal, Sattar Vakili, Laura Toni, and Alberto Bernacchia. “Near-
optimal sample complexity in reward-free kernel-based reinforcement
learning”. In Proceedings of the 28th International Conference on Ar-

tificial Intelligence and Statistics, volume 258. PMLR, 2025.

o« Aya Kayal, Sattar Vakili, Laura Toni, Da-Shan Shiu and Alberto
Bernacchia. “Bayesian optimization from human feedback: near-optimal
regret bounds”. In Proceedings of the International Conference on Ma-

chine Learning, volume 267. PMLR, 2025.



Chapter 2

Background on Reinforcement

Learning

In RL, an artificial agent interacts with an unknown environment to learn
how to solve a task. As illustrated in Figure 2.1, RL consists of two primary
components: the agent and the environment. During each interaction cycle,
the agent observes the current state of the environment and selects an action.
In response to the agent’s action, the environment transitions to a new state
according to its internal dynamics, potentially yielding a reward. The agent re-
ceives this reward as feedback, which it uses to adjust its behavior and improve
future decision-making. Over time, the agent aims to maximize the cumulative

reward by learning an optimal strategy through repeated interactions.

The key elements of an RL problem include the policy, value function, and
reward. The policy determines the agent’s action based on the current state.
Rewards provide immediate feedback, shaping the agent’s learning process by
signaling the desirability of specific actions. Value functions estimate the ex-
pected long-term return from a given state, accounting for future rewards and
transitions. Unlike in supervised learning, where the correct output is ex-
plicitly provided, RL agents learn through trial and error—exploring different
actions and refining their decision-making strategies based on the observed
outcomes. This process enables the agent to learn the optimal policy, defined

as the policy that maximizes the value function.
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Formally, RL is grounded in the framework of Markov Decision Processes
(MDPs), which model the agent-environment interaction in a probabilistic
manner. In this chapter, we theoretically introduce MDPs and key concepts
such as value functions and Bellman optimality equations, which are essential
for evaluating and optimizing policies. We then present the major categories
of RL problems: model-free vs. model-based, each offering distinct strategies
for learning optimal behavior. We explain the core ideas and principles behind

how these algorithms learn from experience and improve their decision-making

over time.
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Figure 2.1: RL agent-environment interaction [4].

2.1 Markov Decision Processes

MDPs provide a foundational framework for modeling sequential decision-
making under uncertainty [28, 4]. The most common formulation used in
pratical RL is the infinite-horizon discounted MDP, which captures ongoing
interaction between an agent and its environment over time. It is defined by

the tuple:
M = (S, A, P, ’y),

where:

o S is a set of states,
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A is a set of actions,

P:S8xAxS —[0,1] specifies the transition dynamics,

r: S x A— R is the expected immediate reward function, and

v € [0,1) is the discount factor.

The transition dynamics function P gives the probability of moving from state

s to state s’ when action a is taken:

P(s' | s,a) =P{sy11=5"| sy =s,a; = a}.

The expected immediate reward is defined as:

r(s,a) = E[Tt-i-l | st =s,a;= a],

where r¢y1 is the instantaneous immediate reward received at the next time
step. The discount factor v determines how future rewards are weighted: when
~v =0, only immediate rewards are considered, whereas as 7 — 1, future rewards
are valued more heavily.

At each discrete time step t, the agent observes the current state sy € S,
selects an action a; € A according to a policy 7, transitions to a new state
St+1 ~ P(-| s¢,a¢), and receives reward r,y1. The policy 7 is a mapping that,
for each state s, assigns to each action a € A the probability of taking that
action in state s. It is denoted by 7w(a | s) = P{a; = a | st = s}. A policy
can either be stochastic, in which case multiple actions may have nonzero
probability, or deterministic, in which case a single action has probability 1,

often denoted simply by 7(s) to indicate the action chosen in state s.

The Markov Property. A key assumption in MDPs is the Markov property,
which states that the future is conditionally independent of the past given the

present. Formally,

P(St-Fl | St,(lt) - P(St+1 | 807(107...,St,at)7



2.1. Markov Decision Processes 37

meaning that the current state s; contains all relevant information for predict-

ing future transitions and making optimal decisions.

MDPs can be categorized along several dimensions:

« Horizon:

— Flinite-horizon: each trajectory (of state-action-reward tuples) has

a fixed length of exactly H steps,
— Indefinite-horizon: each trajectory has finite but random length,

— Infinite-horizon: trajectories continue indefinitely.
e Discounting:

— Discounted: v < 1, future rewards are discounted,

— Undiscounted: v =1, all rewards are treated equally.
o Stationarity:

— Stationary: transition dynamics and rewards are time-invariant (do

not depend on time),

— Non-stationary: they vary across time steps.

The infinite-horizon discounted setting is more commonly used in the ap-
plied RL community due to its simplicity and real-world relevance. It guaran-
tees the existence of a stationary optimal policy (one that does not depend on
time), which simplifies the algorithm design and implementation. Discount-
ing also naturally aligns with economic and engineering applications, where
future rewards are uncertain. In contrast, the theoretical RL community has
largely focused on the finite-horizon undiscounted (also known as episodic)
setting, primarily due to the persistent challenges in analyzing infinite-horizon
MDPs. Episodic problems offer greater tractability in proofs, enabling cleaner
regret bounds—formal guarantees on the cumulative difference between an al-
gorithm’s total reward and that of the best possible performance—without the

complications introduced by discounted or unbounded time horizons.
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Figure 2.2: POMDP agent-interaction with the environment [5].

In the episodic formulation, the MDP is given by:
M = (87 A, {Ph}thla {rh}lIL{:b H)?

where H is the fixed episode length. The transition dynamics P, and reward
functions 7, may vary with the time index h, which denotes the position within
an episode (analogous to the time step ¢ in the infinite-horizon setting, but
ranging from 1 to H). This formulation allows for non-stationarity, where
the dynamics and rewards can change across the episode. A more detailed
description of the episodic MDP framework is provided in Section 5.3.1 of
Chapter 5.

2.1.1 Partially Observable Markov Decision Processes

The framework described above assumes that the environment’s states are
fully observable. However, this assumption is often unrealistic in real-world
scenarios, where certain aspects of the environment may be hidden from the
agent or affected by sensor noise. For example, in robotics applications, a
robot’s sensors may not precisely capture its exact location. This motivates
the use of Partially Observable Markov Decision Processes (POMDPs), where
the agent does not have direct access to the true state but instead receives

partial information through observations. Figure 2.2 illustrates this concept.
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Formally, a POMDP is defined as a tuple (S, A,P,r,v,Q,0), where
(S, A, P,r,7y) defines the underlying fully observable MDP, Q) is a finite set of
possible observations, and O is the observation function O : S x A x  — [0, 1],
which gives the probability of observing o € Q after taking action a € A and
arriving in state s’ € S, denoted as O(o | s',a) [29]. Although the agent cannot
directly observe the true state, it uses the received observations to infer a belief
over possible states and selects actions to maximize the expected cumulative

discounted reward over time.

2.2 Value Functions and Bellman Optimality

This section adopts the notation and framework presented in [4], which as-
sumes an infinite-horizon discounted MDP with stationary transition dynam-
ics and reward functions. The agent’s objective is to maximize the expected
discounted return over time. While this setting is widely used in practical RL,
the core ideas—such as value functions and Bellman optimality—are general
and can be readily applied to other MDP formulations. For example, they
naturally extend to finite-horizon settings (where 7"= H) and undiscounted
problems (where v =1). Let’s start by defining the expected discounted re-
turn Gy defined as:

T—t-1

Gi=rim+yree s+ o+ e = S AP (2.1)
k=0

A value function V7(s), defined with respect to policy m, estimates the ex-
pected return from a particular state s following 7, and it is defined as:
T—t-1
VT(s) =Ex[Gilst =s] =Er | > Y lsi=s|, forallseS, (2.2)
k=0
where G is the discounted total return and 7,451 are immediate rewards.

Similarly, the state-action value function is defined as the expected return
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from state s, taking action a and following policy 7:

T—-t—-1

Q" (s,a) =E;[Glsy = s,ap = a] = E, Z 'ykrt+k+1|st =s,ar=al. (2.3)
k=0

It is worth noting that the state value function V' and the state-action value

function @) are strictly correlated by the following relationship:

V7T(s) = Z m(als)Q7 (s,a). (2.4)

acA

A central recursive relationship in RL which relates the value of a state to the

value of its successor states is the Bellman equation:

VT(s) = Z m(als) {r(s,a) +7 Z P(s']s,a)V™(s")]. (2.5)

acA s'eS

Value functions define a partial ordering over policies. A policy 7 is better
than another policy 7’ if it has a higher expected return for all states, which

means a higher value function. In other terms:
> & V7 (s) ZV”I(S),‘V’SES. (2.6)

Thus, there is always at least one policy that is better than or equal to all other
policies. Such a policy is called an optimal policy, denoted by 7*. Although
multiple optimal policies may exist, they all share the same optimal state value
function V*, which gives the maximum expected return achievable from each

state:

V*(s) = max V" (s),Vs € S. (2.7)

Similarly, the optimal state-action value function QQ* gives the maximum ex-

pected return achievable from each state-action pair:

Q*(s,a) :m;rmXQ“(s,a),VseS,aeA. (2.8)
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Intuitively, the optimal value function V* is the state-action value function
with the best action from that state. It also satisfies the recursive property
of the Bellman equation (2.5). The Bellman equation for V*, known as the

Bellman optimality equation, can be written as:

V*(s) = maXQ7T (s,a)

1

Gt| = S§,ar = a}
= maXEW* |:7't+1 +YV* (s141) |8t = 8,00 = a]

= max [r(s,a) +9 > P(s'\s,a)V*(s/)} (2.9)
s'eS

The state-action value version of the Bellman optimality equation is:

Q*(s,a) =r(s,a)+v > P(s’\s,a)zrllgj(Q*(sl,a’). (2.10)

s'eS

Once the optimal value function or state-action value function is solved, the

optimal policy 7* can be determined:

(s) = argrgleaXQ (s,a). (2.11)

Solving the Bellman optimality equation requires accurate knowledge of the
environment’s dynamics, as well as substantial memory and computational
resources. These assumptions are rarely met in practice; therefore, RL tech-
niques aim to implement approximate solutions to the Bellman optimality

equation.

2.3 Model-Based vs Model-Free RL

In model-based RL, the agent either has access to a model of the environ-
ment or learns one through interaction. By “model”, we refer to the transition
dynamics and reward function, which together allow the agent to predict the

consequences of its actions. Model-based methods typically involve two compo-



2.4. Model-Based Learning: Dynamic Programming 42

nents: model learning, where the agent builds an estimate of the environment,
and planning, where it uses this model to compute value functions or improve

its policy through simulated experience.

In contrast, model-free RL assumes no prior or learned knowledge of the
environment’s dynamics or reward function. Instead, the agent interacts di-
rectly with the environment—selecting actions, observing state transitions,
and receiving rewards—to estimate value functions or learn policies through
trial-and-error. This approach forgoes model construction and planning, sim-
plifying the learning process at the cost of typically requiring more experience.

One key distinction between these paradigms lies in their use of experi-
ence. Model-based methods often make fuller use of limited interaction data
by generating simulated experience from the model, enabling more rapid pol-
icy improvement with fewer environmental interactions [4]. However, these
benefits come with trade-offs. Model-free methods are generally simpler and
not subject to modeling errors. In contrast, model-based methods depend on
the quality of the learned model. Inaccuracies in the model can introduce bias,
leading to compounding errors during planning and ultimately degrading the

agent’s performance when deployed [4].

2.4 Model-Based Learning: Dynamic Pro-

gramming

When the environment model is fully known, as in classical planning set-
tings, Dynamic Programming (DP) provides foundational algorithms for solv-
ing MDPs. Two canonical DP algorithms are policy iteration and value it-
eration. These algorithms operate by iteratively refining value functions and

policies based on the known environment dynamics.

2.4.1 Policy Iteration

In policy iteration, the agent alternates between two steps: policy evaluation

and policy improvement. During policy evaluation, the value function is up-
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dated for the current policy until convergence. In the improvement step, a new
policy is derived by acting greedily with respect to the updated value function.
This process continues until the policy stabilizes. For a pseudocode, please see

Algorithm 1.

Algorithm 1 Policy Iteration

Initialization:
Initialize V'(s) € R and n(s) € A arbitrarily for all s € S
Policy Evaluation:
repeat
A+0
for each s € S do
v+ V(s)
V(s) < r(s,m(s)) +7Eges P(s" | s,m(s))V(s)
A +—max(A, v -V (s)|)
end for
until A < 6 {a small positive number}
Policy Improvement:
policy-stable < true
for each s € S do
a<—7(s)
7(s) < argmaxge 4 [r(s,a) +73ges P(s' | s,a)V (s
if a # m(s) then policy-stable < false

end for
if policy-stable then return V' and 7 else go to Policy Evaluation

2.4.2 Value Iteration

An important special case occurs when only a single sweep over all states
is performed. This leads to the value iteration algorithm (see Algorithm 2),

which merges policy evaluation and policy improvement into a single update.

2.5 Model-Free Prediction

Two foundational classes of model-free prediction methods are Monte Carlo
(MC) and Temporal Difference (TD) learning. Both aim to estimate the value
function, but they differ in how they use sampled data and when they update

their estimates.
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Algorithm 2 Value Iteration

Initialize V' (s) arbitrarily (e.g., V(s) =0 for all s € S)
repeat
A<+0
for each s € S do
v+ V(s)
V (s) < max, {r(s,a) +vYges P(s | s,a)V(s’)}
A+ max (A, |v—V(s)])
end for

until A < 6 {a small positive number}
Output: A deterministic policy 7 such that:

m(s) = argmax [T(s,a) +v Y P(s' | s,a)V(s)
s'eS

2.5.1 Monte Carlo Methods

MC methods learn directly from experience by collecting complete episodes—
that is, trajectories of states, actions, and rewards from the beginning to the
end of an episode. The underlying idea is straightforward: the value of a state
is estimated by averaging the empirical returns (i.e., discounted cumulative
rewards) observed after each visit to that state. As the number of sampled
episodes increases, this estimate converges to the true expected value function.
Let Gt =rep1+y7e42 +72rt+3 +... +7T*t*1rT denote the return following time
step ¢ until the terminal step T'. In MC methods, the value function is updated

according to:

V(St) (—V(St)—f—()z(Gt—V(St)), (2.12)

where « is the learning rate (step size).

2.5.2 Temporal Difference Learning

TD learning employs the concept of bootstrapping, where the value estimate
of a state is updated based on the estimated value of its successor state. In
other words, TD learning updates V(s;) toward an estimated return G; =

ree1+7V (Se41). After each time step, the agent performs the following update:
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V(st) < V(st) +a(ripr +7V(sep1) —V(st)). (2.13)

The term 7441 +vV (s¢41) — V(s¢) is known as the T'D error, and the objective
of TD learning is to minimize this error.

Unlike MC methods, which must wait until the end of an episode to
compute returns, TD learning updates value estimates online at each step,
without requiring the final outcome. This allows TD to update more efficiently.
TD methods generally exhibit lower variance but higher bias compared to MC
methods. The higher bias arises because TD uses the estimate V' (s¢41) instead
of the actual return. Its lower variance stems from the fact that the TD target
re+1+ 7V (si4+1) is based on a single reward and a learned estimate, rather
than a complete return composed of many random variables. This reduces the
variability introduced by long-term stochastic transitions.

Two of the most widely used TD algorithms are SARSA and Q-learning.
SARSA is an on-policy method, whereas Q-learning is off-policy. The distinc-

tion between these two learning paradigms is as follows:

¢ On-policy learning evaluates and improves the same policy that is used
to generate experience. That is, it learns about policy 7 using samples

collected from 7.

o Off-policy learning evaluates and improves a target policy 7 using data
collected from a different behavior policy #’. In other words, it learns

about 7 from experiences generated by 7.

SARSA updates the state-action value function using the TD error while fol-
lowing the current policy 7 (e.g., an e-greedy policy derived from Q). The

update rule is:

Q(st,a1) + Q(s¢,a1) + |41 +7Q(5¢41,a141) — Q(St,a1) |- (2.14)

The main difference between SARSA and Q-learning lies in how they compute
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the value of the next state-action pair. SARSA uses the action a;11 sampled
from the current policy, while Q-learning uses the greedy action that maximizes

the Q-function at the next state. The Q-learning update rule is:

Q(st,a¢) < Q(s¢,at) +a |regq —|—7H§}XQ(SH1,(L/) —Q(s¢,at)] - (2.15)

SARSA is generally more conservative than Q-learning. For example, in sce-
narios where a large penalty exists near the optimal path, SARSA tends to
avoid it and prefer safer actions, whereas Q-learning aggressively learns the

optimal (but potentially riskier) policy.

2.6 Function Approximation in RL

The methods discussed in Sections 2.5.1 and 2.5.2—namely MC and TD learn-
ing—use explicit lookup tables to represent value functions, maintaining a
separate entry for every state or state-action pair. While effective in small
environments, this approach becomes impractical as the dimensionality grows,
due to the computational and memory demands that scale poorly—a problem
known as the curse of dimensionality. To overcome this, function approxima-
tion techniques have been introduced [30], which estimate the value function
with a parameterized function. For instance, instead of directly storing V'(s),
these methods learn an approximation V,(s), where w is a vector of weights.
Similarly, action-value functions can be approximated as Q(s,a). This ap-
proach offers two major advantages. First, it significantly reduces memory
requirements by representing the value function compactly through a set of
parameters. Second, it enables generalization across states: the function can
provide reasonable estimates for states that have not been explicitly visited
during training. This is particularly important in environments where the
state space is continuous or extremely large. In the following, we will briefly
introduce methods for function approximation, including linear function ap-
proximation, kernel-based function approximation and deep neural networks

(deep RL).
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2.6.1 Linear Function Approximation

A fundamental and widely studied case of function approximation in RL is lin-
ear function approximation, where the approximate value function is expressed
as a linear function of the weight vector w [4]. For each state s, we define a
feature vector ¢(s) = [p1(s),p2(s),...,04(s)]", where d is the dimension of the

feature space. The approximate state value function is then defined as:
- d
Vie(s) =w ' o(s) =D wigi(s)
i=1

Each component ¢;(s) corresponds to a real-valued feature function, and to-
gether, these functions act as basis functions [4].
Similarly, when approximating the state-action value function, we define a

joint feature vector ¢(s,a), and write the approximation as:
- d
Qw(s,a) =w ¢(s,a) = wi¢i(s,a)
i=1

Constructing the feature vectors ¢(s) or ¢(s,a) is equivalent to selecting a
set of basis functions, which plays a crucial role in the performance of linear
methods. There is a long line of classical work on RL with linear function
approximation, encompassing both diverse strategies for constructing feature
vectors and a variety of algorithms for learning the weight vector w; we refer

the reader to [4] for further reading on the subject.

2.6.2 Kernel-Based Reinforcement Learning

Kernel-based methods form a powerful class of function approximation tech-
niques in RL, extending linear models to infinite-dimensional Reproducing Ker-
nel Hilbert Spaces (RKHS) induced by positive definite kernels. These meth-
ods serve as a conceptual bridge between well-understood linear approaches
and more complex neural-network-based models, particularly in light of recent
insights from Neural Tangent kernel (NTK) theory [31]. Their appeal lies in

combining expressive nonlinear representation capacity with strong theoretical



2.6. Function Approximation in RL 48

foundations, making them especially suitable for value function approximation
in RL [32] .

To illustrate this, consider the common value estimation task in RL: com-
puting the expected value of the next state given a current state-action pair.
Formally, we define the target function as f(s,a) = Eg. p(.|sq)[V (s)]. To ap-
proximate f, we introduce a kernel function & : (S x A) x (§ x . A) — R that
captures similarity between state-action pairs. This kernel implicitly defines a

feature map ¢ into a high- or infinite-dimensional RKHS H},, such that

k((saa)’ (S/7a/)) = <¢(S’ a),gb(s’, a/)>’Hk~

In this lifted feature space, we can apply linear methods, even though the
resulting approximation is nonlinear in the original state-action space. This
makes kernel methods particularly attractive in RL, since we often expect
similar state-action pairs to yield similar future returns.

Given a dataset of n transitions {(s;,a;),s,}" 1, where s, ~ P(- | s;,a;),
kernel ridge regression [33| provides a principled way to estimate f(s,a). For-
mally, the kernel ridge regression solution minimizes the regularized empirical
risk:

f=arg min 3 (#(si.) = VD) + 72 I

where 72 > 0 is a regularization parameter and ||.||3;, denotes the RKHS norm.

The key advantage of the kernel function is that it enables generalization
to unseen state-action pairs by assuming that similar inputs should produce
similar outputs. If k is smooth (like a Squared Exponential (SE) kernel), the
learned function will also be smooth, meaning small changes in the input lead

to small changes in the prediction.

A more detailed treatment of kernel ridge regression—including its connections
to Bayesian Optimization (BO) and Gaussian Process (GP) regression—is de-
ferred to Section 3.3.3. In the RL context, we focus on its role in value function

approximation, with the explicit form of the estimator and its associated un-



2.6. Function Approximation in RL 49

certainty quantification presented in Section 5.3.3.

2.6.3 Deep Reinforcement Learning

Deep RL refers to the use of Artificial Neural Networks (ANNs) for nonlinear
function approximation in RL. By leveraging the representational power of neu-
ral architectures, deep RL extends the capabilities of linear and kernel-based
methods, enabling the modeling of complex, high-dimensional patterns. ANNs
support automatic feature extraction directly from raw input data, which is es-
pecially beneficial in environments with unstructured or high-dimensional ob-
servations. Recent advancements in deep neural network training have driven
significant progress in RL, leading to notable empirical successes across diverse
domains—including game playing [8, 34, 35], robotic control [36], autonomous
driving [37], microchip design [38], and algorithmic problem solving [9]. De-
spite these achievements, deep RL methods remain theoretically challenging
to analyze due to their high model capacity and the non-convex nature of their

optimization landscapes.

In the next paragraph, we describe Deep Q-Networks (DQN), a foun-
dational algorithm in deep RL, first introduced by [39], using a deep neural
network to approximate the state-action value function. DQN marked a ma-
jor milestone by demonstrating the powerful synergy between RL and modern

deep learning techniques.

Deep Q-Networks. DQN approximate the state-action value function
Qu(s,a) using a deep neural network parameterized by w, which takes a
state s as input and outputs a value for each possible discrete action a. Unlike
supervised learning, the target values used to train the network are not fixed
ground-truth labels but are instead bootstrapped from the network’s own prior
estimates. This reliance on self-generated targets gives rise to semi-gradient
descent, where the target is treated as fixed and the gradient is taken only with
respect to the parameters of the current Q-network. The network is trained

to minimize the TD error, leading to the following update rule:
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W= W+ | T4 +’YH1GB,LXQw(St+1,a’) = Qu(st,at)| VwQu(st,ar).  (2.16)

The original DQN algorithm by [39], combined RL with convolutional neural
networks (CNNs) to learn directly from high-dimensional sensory inputs, such
as raw pixels in Atari games. It achieved superhuman performance on many
games but exhibited instability during training due to the non-stationarity of
targets and strong correlations in sequential data.

Several improvements were proposed to address these issues, including:

« Target Network: A separate, periodically updated network Q is used
to compute target values, which stabilizes learning by decoupling the
target calculation from the current network parameters. The target net-

work is synchronized with the main network every fixed number of steps:
Q< Q.

e Double Q-Learning: To mitigate overestimation bias in Q-values,
Double DQN uses the main network to select the best action in the

next state, but evaluates that action using the target network:

Y ="Tt41 +’YQ@(SHLarng?XQw(StH?a))-

This separation improves the accuracy of value estimates and contributes

to more stable learning.

In the following, we present the Double DQN algorithm (see Algorithm 3),
which incorporates both the target network and Double Q-learning to improve

training stability and reduce overestimation errors.

2.7 Policy-Based Methods

The algorithms presented in the previous sections focused primarily on learn-

ing the value function (VF). In this section, we introduce policy gradient al-
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Algorithm 3 Double Deep Q-Networks (DDQN)

Initialize Q,, with random weights w
Initialize Q4 with random weights @ = w
Initialize replay buffer D to ()
for each episode do
S < Sinit
for each step of the episode do
Choose a from s using policy derived from Q,, (e.g e-greedy)
Take action a, observe r and s’
Store the transition (s,a,r,s’) in D
Sample a minibatch B from D of size N

W= W — ijif Z(s,a,r,s’)wB Vulr +7Q1E(Sla argax Qw(slv a)) = Qu(s, a)]2
every K steps, set 0 =w
s¢ s
end for
end for

gorithms which aim to optimize the policy directly, without relying on value

functions, by modeling the policy as a parameterized function my(a | s).

2.7.1 Policy Gradient Theorem

Policy gradient methods seek to maximize performance based on the gradient

of an objective function J(#) which can be written as:

Vo (0) x 3 p(s) Q7 (s5,0)Vomg(a] 5). (2.17)

where p(s) denotes the on-policy state distribution under 7 (i.e., the normal-
ized fraction of time the agent spends in state s), and the gradients are taken
with respect to the policy parameter #. The symbol o« means “proportional

b

to”. The proportionality constant is 1 in infinite-horizon tasks, and equal to
the average episode length in episodic tasks. This expression is known as the

Policy Gradient Theorem.

2.7.2 REINFORCE Algorithm

To derive the first policy-gradient learning algorithm (REINFORCE), we use
stochastic gradient ascent, which relies on sample gradients that are propor-

tional to the true gradient of the objective function. The policy gradient
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theorem provides such an expression proportional to the true gradient:

Vg J(0) Zs:p(s)%:Q”(S,a)Veﬂe(a | s) (2.18)
_E, Z Q”(st,a)VQWQ(abt)} (2.19)
[ mlals) Q"0 VA (220)
—E, :GN(; logﬂg(at|st)] (2.21)

Here, the last equality follows from replacing a by a sample a; ~ mg(- | s¢) and
by applying E {Gt | st,at] = Q" (s¢,ar). Hence, the policy parameter update
1

equation in the general discounted case’ is:

0 < 0+ ay'Gilogmg(ayse), (2.22)

where « is the step size. This shows that REINFORCE algorithm updates the
policy parameters in the direction that favors actions with the highest return.
Note that REINFORCE relies on the full return from time ¢, incorporating all
future rewards until the episode ends. This makes it an MC method, as it uses

complete episodes to estimate returns.

2.7.3 REINFORCE with Baseline

REINFORCE algorithm has low bias but high variance due to the use of MC
estimation. One common approach to reduce this variance is to subtract a
baseline b(s;) from the return G;. A commonly chosen baseline is the estimate
of the state value function denoted by V,,(s¢), where w represents a learned

parameter:

b(st) = Elresr +yrepe 7 res + 97 T rr] = Vig(se). (2.23)

IThe discount factor was omitted in the previous derivations for simplicity and is rein-
troduced here in the update rule.
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Using this baseline, the log-probability of an action increases proportionally
to how much its return exceeds the expected return. In the following, the

pseudo-code is provided for the REINFORCE algorithm with baseline:

Algorithm 4 REINFORCE with Baseline

Input: a differentiable policy parameterized by 6: mg(als)

Input: a differentiable value function parameterized by w : V,(s)
Algorithm parameters: step sizes ag > 0, iy >0

Initialize policy parameter 6 € R? and state value function parameter w € R?

for each episode do
Generate an episode sg,aq,71,...,S7_1,ar_1,r7 following the policy my
for each step t of the episode do
Gt ¢ Shmp1 VM
0+ Gt — Vw(St)
W — W+ ;6 VViy(8¢t)
0 < 0+ g6V logmg(ar|st)
end for
end for

2.7.4 Actor-Critic Algorithms
Although the REINFORCE with baseline method involves learning both a

policy and a state value function, it is not typically classified as an Actor-
Critic (AC) method, since the value function serves only as a baseline for
variance reduction rather than a critic.

AC algorithms, by contrast, simultaneously learn both the policy and
the value function in a tightly coupled manner and leverage bootstrapping to
estimate the value function, making the TD error central to learning. The

main components of AC are:

o Critic: it learns the parameters w for the state value function Vi, (s) or

the state-action value function Q,(s,a).

o Actor: it learns the policy parameters 6 for my(s|a), guided by the value

estimates provided by the critic.

Unlike methods that must wait until the end of an episode to compute the
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return, AC algorithms update incrementally using the TD error. The pseudo-

code for an AC algorithm is as follows:

Algorithm 5 One-step Actor-Critic (episodic) algorithm

Input: a differentiable policy parameterized by 6: my(als)

Input: a differentiable value function parameterized by w : Vi, (s)
Algorithm parameters: step sizes ag > 0, iy >0

Initialize policy parameter 6 € R? and state value function parameter w € RY

for each episode do
Initialize the start state s
I+1
for each step of the episode do
Sample action a from my(.|s)
Take action a, observe reward r and next state s’
§ 1 +yV(s) = Vi(s)
W 4— W+ ay, 0V Vi (8)
0 < 0+ agléVlogmy(als)
I <~I
s+ s
end for
end for

Asynchronous Advantage Actor-Critic (A3C) [40] is a variant of Actor-
Critic methods in which multiple agents (actors) interact with separate in-
stances of the environment and are trained in parallel, typically across differ-
ent CPU cores. Each actor periodically synchronizes with the global network
parameters. After interacting with its environment, an actor accumulates gra-
dients using its local parameters and sends them to the global network, which
updates its weights slightly in the direction of each training thread’s gradients.
The actor’s parameters are then reset to match the updated global parame-
ters. This process is asynchronous because updates occur at different times
for different actors.

More recently, researchers introduced Advantage Actor-Critic (A2C), a
synchronous and deterministic version of A3C. The key difference is the in-
clusion of a coordinator that synchronizes all actors and updates the global

parameters only after all actors have completed their interactions. This re-
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moves the inconsistency caused by asynchronous updates. Empirical results
have shown that A2C converges faster and achieves better performance than
A3C [41].

Proximal Policy Optimization (PPO) [42] is a widely-used AC method
designed to achieve reliable and stable policy updates. Unlike A3C or A2C,
PPO focuses on improving the training stability of policy gradients through a
surrogate objective function that limits large policy updates. The core idea is
to ensure that the new policy does not diverge significantly from the old one
by clipping the probability ratio between the new and old policies. The main

clipped surrogate objective objective is defined as follows [42]:

L?LIP(Q) =, lmin (W(%’St)zlt’ clip <7T9(at‘8t), 1 —€cpip, 1+ 6clz‘p> At)] ,
Thgq (at]st) Thgq (@t]St)
where flt is an estimator of the advantage function and €., is a small positive
hyperparameter (e.g., €qi, = 0.2). The clipping prevents the probability ratio
from deviating too far from 1, ensuring conservative updates.
In practice, PPO combines this clipped objective with a value function

loss and an entropy bonus, forming the total objective function:
L?LIPJrVFJrEntrOp}’(e) =FE, [LtCLIP ((9) o ClL}/F(Q) + CQH(79<.|S1§)):| 7

where:
2
o LYF(0) = <V9(st) — Vtarget(st)> is the squared error loss between Vjy(s;)
and the target value function V'8t (s,).

o H(mg(.|s¢)) is the entropy of the policy, encouraging exploration.

e c1,cy are coefficients for the value loss and entropy bonus, respectively.

Note that we used the notation Vjy(s) for simplicity, since PPO typically uses
a shared parameter vector # for both the policy and value function.
For the advantage estimate flt, it can be computed using Generalized Advan-

tage Estimation (GAE) [42]. Assuming the policy is run for a fix number of T
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time steps, the advantage function can be written as:
Ay =0+ (YAgae)Opg1+ -+ (’Mgae)T—tHdT—l?

where 0; = 1 +vVp(si41) — Vo(se), and Agee € [0,1] controls the trade-off be-

tween bias and variance.

The PPO algorithm proceeds as follows [42]:

Algorithm 6 PPO, Actor-Critic Style

for iteration = 1, 2, ... do
for actor =1, ..., N do
Run policy 7y, in the environment for 7" time steps
Compute advantage estimates 1211, . ,AT
end for

LCLIP+VE+Entropy  pt ¢ using minibatch

Optimize the objective
stochastic gradient descent (SGD) for K epochs
Update Oyq + 0

end for

2.8 Summary and Conclusion

This chapter offered an overview of foundational RL concepts, including
MDPs and POMDPs, value functions and Bellman optimality, model-based
vs. model-free approaches, function approximation from linear to deep RL,
value- and policy-based methods, and key algorithm pseudocode central to
RL research. While much of the material draws from established sources such
as [4], it establishes the essential language and tools needed to understand
and situate contemporary RL research. In particular, the frameworks and al-
gorithms presented in this chapter directly frame the context for the studies
discussed later in this thesis, including the impact of intrinsic rewards on ex-
ploration in deep RL (Chapter 4) and the analysis of sample complexity in
reward-free, kernel-based RL (Chapter 5). By providing these foundational
principles, this chapter ensures that the subsequent work can be interpreted

both rigorously and intuitively within the broader RL framework.



Chapter 3

Background on Bandits

Another fundamental framework for sequential decision-making under uncer-
tainty is the family of bandit problems. In contrast to RL problems, which
involve multiple states and transitions among them, bandit problems focus
on a single state with multiple actions (referred to as arms), each produc-
ing stochastic rewards. They also serve as a key theoretical foundation for
RL, often representing the first step toward understanding more complex RL
problems. This simplified setting allows researchers to isolate and study the
exploration-exploitation tradeoff, a central challenge in machine learning and
decision theory. In addition to serving as a foundational framework, bandits
have found broad applications in a variety of domains, such as clinical tri-
als, dynamic spectrum allocation in wireless networks, online advertising, web
search optimization, and social networking analysis [43]. This wide range of

applications underscores the importance of bandits as a critical area of study.

In this chapter, we cover several main classes of bandit models. We begin
with multi-armed bandits (MAB), characterized by a finite set of actions, each
providing independent stochastic rewards. We then discuss linear bandits,
where the expected reward of each action is modeled as a linear function of
the action’s feature vector. Next, we cover Gaussian Process (GP) bandits,
which model the unknown reward function using a GP and form the core of
many Bayesian Optimization (BO) algorithms. Finally, we present dueling

bandits, a variant where feedback is provided through pairwise comparisons
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instead of absolute rewards.

Together, these classes of bandits provide the foundation for much of mod-
ern bandit theory and its applications. They also serve as essential building

blocks for our theoretical work in subsequent chapters.

3.1 Multi-Armed Bandits

In the classic MAB setup, a player sequentially selects one arm a; € A at
each time step t € {1,...,T}, where A is a finite set of K arms. Each arm
a € A yields a random reward r; € R, drawn independently from an unknown
distribution with mean u, = E[r; | a; = a]. Rewards from different arms are
assumed to be independent. The goal is to design an arm selection policy that

maximizes the total expected reward over a finite horizon T

A major challenge in MAB problems is managing the exploration—exploitation
tradeoff: exploration involves selecting under-sampled arms to better estimate
their reward distributions, while exploitation focuses on choosing the arm
believed to offer the highest expected reward based on historical data.

The performance of a policy is commonly evaluated through cumulative
regret, defined as the expected loss in cumulative reward compared to an omni-
scient player who always selects the arm a*, which is the arm with the highest

expected reward:

R(T) = T[La* —E

T

> Tt
t=1
where a* is given by

a® = argmax i .
acA

Achieving sublinear regret in 7' guarantees that the policy’s reward converges
to the optimal reward as the number of plays grows.

In [44], authors showed that the minimum regret has a logarithmic order
in T. Under the assumption that the reward distribution family is known, [44]
have introduced policies achieving this logarithmic order for several reward

distributions, including Bernoulli, Poisson, Gaussian, and Laplace. Later, [45]
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proposed the Upper Confidence Bound (UCB) algorithm known for its simplic-
ity and strong theoretical guarantees. At each time step ¢, the UCB algorithm

selects the arm

210gt]
Ny(t) |’

a; = argmax [ﬂa(t) +
where [i4(t) denotes the empirical mean reward of arm a, and Ng(t) is the
number of times arm a has been selected up to time ¢. The confidence term en-
courages exploration by favoring arms with greater uncertainty. UCB ensures
each arm is sampled sufficiently—on the order of logt—to achieve logarith-
mic regret. The original UCB algorithm assumes reward distributions with
bounded support [45]. This approach has since been extended to light-tailed
distributions [46] and a later variant of UCB was developed to achieve opti-
mal logarithmic regret for heavy-tailed rewards with finite p-th moments [47].
Moreover, a different approach, termed the deterministic sequencing of explo-

ration and exploitation (DSEE), was proposed by [48] to achieve logarithmic
regret for both light-tailed and heavy-tailed cases.

Another important class of algorithms for the MAB problem is Thomp-
son Sampling (TS), also known as posterior sampling. First introduced by
W. R. Thompson in 1933 [49], it is a Bayesian approach that maintains a
posterior distribution over the expected reward of each arm. At each time
step, the algorithm samples a value from each posterior and selects the arm
with the largest sampled value. This posterior reflects all rewards observed
so far and is updated after each time step, becoming the prior for the next
time step. This means that actions are chosen with a probability proportional
to their likelihood of being optimal under the current posterior. TS has been
analyzed in the literature [50, 51], with theoretical guarantees demonstrating
its effectiveness. In particular, the analysis by [50] showed that TS achieves
logarithmic expected cumulative regret in the stochastic MAB setting. Fur-
thermore, for the specific case of Bernoulli bandits, TS was shown in [51] to

attain the asymptotic lower bound on regret established by [44].

While the standard stochastic MAB problem is well understood in the
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case of finite set of arms, it becomes intractable as the number of arms grows

large—and essentially unmanageable for infinite arm sets.

3.2 Linear Bandits

Stochastic linear bandits extend the classical MAB setting by assuming that
the reward is a linear function of the chosen action. Specifically, the action set
is A R? and at each time step ¢, the learner selects an action a; € A and
receives a reward

Ty = <at,9) —|-€t,

where 6 € R% is an unknown parameter vector and ¢; is random zero-mean
noise term.

The linear bandit problem was first introduced by [52] under the name
linear reinforcement learning. In this formulation, the set of available ac-
tions changes from time step to time step but has a fixed finite cardinality.
Their work proposed two algorithms: LINREL, a simpler algorithm without
formal regret analysis, and SUPLINREL, which achieves a regret upper bound
of O(logg/ 2 K\dT )1, where d is the dimensionality of the unknown parame-
ter and K is the number of actions. This approach was later studied by [53]
and [54] in the context of web advertisement.

A more general setting, where the action set remains fixed over time but
may be infinite (subject to being a bounded subset of a finite-dimensional
vector space), was studied by [55, 56, 57, 58]. For instance, [55] introduced
the Confidence Ball algorithm and proved a regret bound of O(d\/f ), also
showing this bound to be tight by proving a lower bound of the same order.
The apparent difference from the earlier upper bound O(v/dT) by [52] arises
from variations in the underlying settings and constraints.

A unifying concept across all these formulations is the Optimism in the

Face of Uncertainty (OFU) principle. The learner maintains a confidence set

IThroughout this thesis, we use the @ and O notations to hide constants and logarithmic
terms, respectively, for simplicity of presentation.
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for the unknown parameter vector based on past observations and, at each
time step, selects the action that would yield the highest reward under the
optimistic plausible parameter. Building on the work of [55], [58] introduced
smaller confidence set constructions by addressing the dependence between
arms through a novel tail inequality for vector-valued martingales and tech-
niques from the theory of self-normalized processes [59, 60]. Their algorithm,
called Optimism in the face of Uncertainty Linear bandits (OFUL), produced
tighter confidence sets that hold uniformly over time, resulting in improved
regret bounds and enhanced empirical performance.

Another family of approaches applies TS to the linear bandit setting. A
study by [61] considered the contextual linear bandit problem, where each
arm is associated with a d-dimensional feature vector (context). The authors
proposed an algorithm which maintains a Gaussian posterior over the unknown
parameter vector, updating it with observed rewards and contexts. At each
time step, it selects the arm with the highest expected reward under a sample
from this posterior. A regret bound of O(d%?\/T) was established for this
algorithm. In related work, [62] provided an alternative proof of the regret
bound for TS in the stochastic linear bandit setting. They achieved the same
regret bound, while offering new insights into the behavior and underlying

mechanisms of TS.

3.3 Gaussian Process Bandits / Bayesian Op-
timization

An alternative and powerful approach to modeling bandit problems with a con-

tinuum set of arms is based on the framework of GPs [63]. GP bandit optimiza-

tion has developed under two distinct approaches with different philosophies

and terminologies (see, e.g., [64]). On the one hand, the Bayesian approach

models the unknown reward function as a GP, treats the problem probabilisti-

cally, and produces a posterior distribution with predictive uncertainty. This

viewpoint is commonly referred to as BO [65]. On the other hand, the frequen-
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tist approach assumes that the unknown reward function is deterministic and
lies in a Reproducing Kernel Hilbert Space (RKHS) associated with a known
positive definite kernel. It leverages kernel ridge regression, where predictions
are obtained by minimizing a regularized empirical loss. Although histori-
cally distinct, these approaches are intimately connected and lead to the same

regression solution.

Theoretically, GP bandits can also be seen as a generalization of the linear
bandit setting, extending it to infinite-dimensional feature spaces and allowing
nonlinear functions to be treated as linear in a high-dimensional RKHS [66].
In what follows, we first review background on GPs, RKHS, and kernel ridge
regression. We then discuss common kernels and complexity measures such as
information gain, summarize existing confidence intervals, and finally present

algorithms for GP bandits along with their regret bounds.

3.3.1 Gaussian Processes (Bayesian View)

GPs provide a flexible nonparametric framework for modeling functions with
uncertainty. A GP {f(x)}zex is a collection of random variables, any finite
subset of which is jointly Gaussian. A GP is fully specified by a mean function

m: X — R and a covariance (kernel) function k: X x X — R, such that:

E[f(x)] =m(x), E[(f(x:i) —m(z:))(f(zj) —mlz;)] = k(zi,z5),

where z;,z; € X. In practice, the mean is often assumed to be zero without

loss of generality.

The Bayesian view of GP-bandit optimization generally considers the
problem of optimizing a fixed and unknown function f: X — R, where X C R?
is a compact domain. The function f is assumed to be a sample from a GP
prior. At each time step, the algorithm selects a point xz; € X and observes
a noisy evaluation y; = f(xy) +&; where g; is i.i.d. zero-mean Gaussian noise.
The goal is to rapidly identify the maximum of f through the sequence of noisy

observations. To guide the search for the maximizer of f, the algorithm must
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continually update its belief about the function as data accumulate. Condi-
tioning on the history of observations yields a posterior distribution for the
function f, characterized by a mean and variance. This procedure is referred
to as GP regression. These posterior quantities (mean and variance) coin-
cide with those obtained from kernel ridge regression; the explicit forms are

presented in Section 3.3.3.

3.3.2 Reproducing Kernel Hilbert Spaces (frequentist

view)

Let k be a positive definite kernel, and let H; be the RKHS associated with
k. The RKHS consists of functions f: X — R with finite norm || f||3,, and

satisfies the reproducing property:

f(@) = (FRC0)w,, VI €Hy

Mercer’s theorem guarantees that £ admits a spectral decomposition:
o0
k(wil) = Z ’Ym@m(@@m(ml),
m=1

with eigenvalues 7, > 0 and orthonormal eigenfunctions {y,,}. Functions

f € H;. can be written as:

o0

oo
f= 3 wny/Amom, - with || £y, = 3 wii.
m=1 m=1

The frequentist view of GP bandit optimization assumes that the objective
function f has a bounded norm in the RKHS: || f|3y, < B, and that the noise
terms ¢; are sub-Gaussian random variables. This approach leverages kernel
ridge regression, which combines least-squares fitting with RKHS regulariza-
tion. We introduce kernel ridge regression next and then highlight its connec-

tion to GP regression.
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3.3.3 Kernel Ridge Regression

Given t noisy observations {(z;,y;)}!_;, where y; = f(x;) +&;, the kernel ridge
regression estimator is defined as the solution to the regularized least-squares

problem:
t
Je= arg}nin {Z (f (z:) _yi)2+72||f||%{k} ;

€ty im1

where 72 > 0 is a regularization parameter. The resulting closed-form predictor

and uncertainty estimate are:

fula) = K] (@) (K +7°1) "y,

-1
o2(z) = k(x,z)— k' () (Kt +T2I) ki(z), (3.1)
where ki(x) = [k(z,z1),... k(z,z)] ", K = [k(xi,xj)]aj:l is the kernel matrix,
yi=[y1,...,]", and I is the identity matrix.

Equivalence with GP Regression. These expressions for f;(z) and o2 ()
coincide exactly with the posterior mean and variance of a zero-mean GP
with the same covariance function and Gaussian noise of variance 72 [63]. In
this thesis, we adopt the RKHS-based frequentist view, framing estimators
and regret bounds in terms of kernel ridge regression. Nonetheless, the GP

interpretation remains valuable for intuition, particularly in algorithm design.

3.3.4 Common Kernels and their Properties

In practice, the Matérn and Squared Exponential (SE) kernels are among the

most widely used choices in BO. These kernels are defined as follows:

kMatérn(ajaml) = g(y)12,/1 <\/2Z_Vp> Bz/ <\/2Z_Vp> s (32)
2
ksg(z,2') = exp <_2pl2) : (3.3)

where [ > 0 is the lengthscale, p = ||z — 2’||2 is the Euclidean distance between
x and 2’, v > 0 is the smoothness parameter, G denotes the Gamma function,

and B, is the modified Bessel function of the second kind. The SE kernel can
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be interpreted as a special case of the Matérn kernel as v — oc.

3.3.5 Maximum Information Gain and Eigendecay

We introduce a kernel specific complexity term referred to as maximum in-
formation gain that helps characterize the regret of algorithms in bandits and

kernel-based RL. It is defined as follows? [67, 68]:

1
I'(t) = max —logdet(I+7 %K) (3.4)

L1, 2

where K; is the kernel matrix, and 72 is the regularization parameter (as
defined in Section 3.3.3). The maximum information gain depends on the

eigendecay defined as follows.

Definition 1. A kernel k is said to have a polynomial (resp. exponential)
eigendecay if ym = O(m™P) (resp. ym = O(c™)), for somep>1 (c<1), where

Ym are the Mercer eigenvalues in decreasing order.

In particular, for smooth kernels with exponentially decaying eigenvalues—
such as the SE kernel—the maximum information gain grows polylogarithmi-
cally in 7" [68]. In contrast, for broader classes of kernels with polynomial
eigendecay that are of both practical and theoretical importance, including
the Matérn family [69], the information gain grows polynomially in 7". In such
cases, the resulting regret bounds may no longer be sublinear (i.e., become
vacuous), and therefore do not guarantee that the algorithm’s performance

improves over time.

3.3.6 Confidence Intervals

GP modeling enables the construction of confidence intervals for complex func-
tions defined over continuous domains. In particular, we utilize the GP’s

predictive mean f;(x) and uncertainty estimate oy(z) to construct confidence

2In later chapters, we use slight variations of the maximum information gain notation to
reflect local context. In Chapter 5, we denote the number of observations by n instead of
t. In Chapter 6, we replace 72 by A. This is purely a notational change; the definitions
are equivalent.
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bounds of the form:

[f (@) = fe(2)] < Bi(8) o (),

where ¢(d) is a confidence width multiplier corresponding to confidence level
of 1—4¢. Confidence intervals formally quantify our uncertainty about the
unknown function at any input, with high probability guarantees. The key
goal of the theoretical analysis is to derive expressions for ;(J) that are as

tight as possible while still ensuring the bound holds with high probability.

Under the assumption that the observation noise is ¢-sub-Gaussian and
the function f € Hy, Theorem 1 in [70] provides a high-probability bound in the
non-adaptive setting—where the observation points {z; }2:1 are independent
of the observation noise. Specifically, for any fixed z € X', with probability at

least 1 — ¢, the confidence width multiplier is:

) =11, + 521 (3. 5

In the adaptive setting—where the observation points {z; }321 are adap-
tively selected based on prior observation values—the standard concentration
inequalities cannot be applied directly because the data exhibit temporal de-
pendence. This challenge was addressed in the linear case where f(z) =0Tz,
by the work of [58], who derived high-probability confidence intervals using self-
normalized concentration inequalities for vector-valued martingales. Specifi-
cally, for all x € X', with probability at least 1 — 9, the confidence width mul-

tiplier is given by:

(3.6)

S 1+tz2 /72
T Y

8:9) = 1, + Jdlog( :

and T = maxgecy ||z||2- Their analysis is based on bounding the martingale
sequence Sy = Z§:1 g;ix;, leading to the following confidence ellipsoid for the

unknown parameter 6:

16— bellvi < 75:(6),
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where V; = 727 +Z§:1 xlsz This confidence ellipsoid for € can then be repre-
sented in terms of the confidence interval for f [71].

Building on this framework, an extension to the RKHS (kernel) setting was
provided by [66] through an analogous self-normalized bound for vector-valued
martingales. Under the assumptions on sub-Gaussian noise and bounded
RKHS norm, it is shown that, with probability at least 1 — ¢, the confidence
interval bound holds uniformly for all x € X' [72, 32]:

) = g+ 2108 (1) 4100, (37)

where I'(¢) defined in (3.4), denotes the maximum information gain at time t.

These results highlight a key difference between non-adaptive and adap-
tive sampling. In the non-adaptive case, §;(d) scales only with /log(1/9) (see
Equation (3.5)), giving tighter confidence intervals since observation points are
independent of the noise. In adaptive sampling, each z; depends on past data,
creating statistical dependencies that standard concentration results cannot
handle. To compensate, 5;(9) must also scale with the maximum information
gain I'(¢), which measures how much information ¢ samples can reveal about
the function under the GP prior. Consequently, adaptive confidence intervals
are inflated by an additional \/ﬁ factor (see Equation (3.7)). Intuitively,
larger I'(t) means greater potential dependence among observations, requiring
more conservative bounds to ensure the true function remains within them
with high probability.

These high-probability confidence intervals are not merely theoretical con-
structs; they form the core mechanism behind many BO and bandit algorithms.
They quantify how much we can trust GP predictions and how conservative we
must be when selecting points adaptively. The guarantee that the true function
f lies within the bounds allows these algorithms to strategically balance ex-
ploration and exploitation, with formal regret guarantees. Tighter confidence
intervals directly translate to faster convergence and better performance of

these algorithms.
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3.3.7 Algorithms for GP Bandits and Regret Bounds

Among the most widely studied algorithms for GP bandits is GP-UCB [67],
which maintains a kernel ridge regression estimate of the unknown function
together with a confidence ellipsoid around this estimate. At each time step, it
optimistically selects the point that maximizes the predicted mean plus a scaled
standard deviation, thereby balancing exploration and exploitation. Alterna-
tive acquisition strategies, such as Expected Improvement (EI) [73, 74, 75],
Probability of Improvement (PI) [76], and Thompson Sampling (GP-TS) [66],
follow different selection rules but achieve comparable cumulative regret guar-
antees of order O(I'(T)/T), where T'(T) is the maximum information gain of
the kernel [67].

This bound, however, is often loose [77]. For common kernels such as
Matérn, I'(T") can grow polynomially with 7', leading to regret that may fail
to be sublinear and is known to be a factor \/ﬁ worse than the minimax
rate [65].

To mitigate this limitation, several algorithmic refinements have been pro-
posed. For instance, Local Polynomial GP-UCB (LP-GP-UCB) [78] augments
GP models with local polynomial estimators, improving performance in cer-
tain regimes while retaining the same regret bound O(I'(T)v/T). The Par-
tioned Improved GP-UCB (7-GP-UCB) algorithm [79] instead partitions the
search space into hypercubes and fits an independent GP to each, achieving a

sublinear regret across all parameters of the Matérn kernel family.

More substantial progress was achieved by SupKernelUCB [80], which
achieves O(,/T(T)T) regret on discrete domains, and extends to continu-
ous domains under mild Lipschitz-style assumptions. When combined with
tighter bounds on I'(T") [68], this nearly matches the lower bounds for SE
and Matérn kernels. However, SupKernelUCB is often regarded as impracti-
cal [81]. Subsequent works proposed more practical algorithms that achieve
the same O(,/T'(T)T) scaling: Robust Inverse Propensity Score (RIPS) [82]
achieves the bound while requiring only O(logT') batches and being robust to
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model misspecification. GP-Thresholded Domain Shrinking (GP-ThreDS) [83]
adopts a tree-based domain shrinking strategy that performs well empirically
while meeting the theoretical guarantee. Batched Pure Exploration (BPE) [84]
employs a structured, multiround batching scheme that leverages uncertainty

information across rounds to balance exploration and exploitation.

Beyond cumulative regret, another performance metric studied in the GP
bandit literature is simple regret, which evaluates the quality of the final rec-
ommendation rather than the entire sequence of actions. Formally, it measures
the gap between the optimal reward and the reward obtained at the point se-
lected as best after T iterations. Although [67] did not analyze simple regret
explicitly, their cumulative regret bound of O(T(T)V/T) for GP-UCB implies
a simple regret bound of O(I'(T)/+/T) [65]. This rate of simple regret was
later established directly under the RKHS setting with noisy observations in
several works [65, 78, 85]. A sharper analysis was provided by [70], who in-
troduced the Maximum Variance Reduction (MVR) algorithm and proved a

['(T)-factor improvement, bringing the achievable simple regret closer to
the known information-theoretic lower bounds. Importantly, these results are
often framed in terms of sample complexity, i.e., the number of evaluations
required to guarantee that the simple regret is below a target threshold with

high probability.

3.4 Dueling Bandits

The assumption of a numerical reward signal is a potential limitation of the
standard MAB setting. In many real-world applications, it is hard—or even
impossible—to quantify the quality of an option numerically. For instance,
consider crowdsourcing services like Amazon Mechanical Turk, where annota-
tors are asked to make pairwise comparisons between alternatives. The goal
is to approximate an underlying preference ordering based on these (possibly
noisy and inconsistent) comparisons [86]. Preferential feedback also arises in

various online learning tasks such as information retrieval [87], recommenda-
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tion systems [88], and skill rating/player ranking [89].

To address such scenarios, the dueling bandits framework extends the
MAB framework to handle preference-based feedback [87]. In this setting,
the learner selects two arms at each time step and receives binary feedback
indicating which arm is preferred, in contrast to the traditional MAB setting
where a single arm is chosen and a numerical reward is observed. We refer
the reader to [90] for a comprehensive survey. Formally, at each time step

=1,...,T, the interaction in the dueling bandits setting proceeds as follows:

+ The algorithm selects a pair of actions/arms a; and a; from the available

set of actions.

e The environment returns preference-based feedback: action a; is pre-
ferred over a; with probability P(a; > a;), and vice versa with probability

IP’(aj - CLZ') =1 —]P’(a,- - CLj).

The central goal in the dueling bandits framework is to design algorithms
that identify the “optimal” arm as efficiently as possible, typically measured
in terms of cumulative regret. Unlike standard MAB, defining optimality in
dueling bandits is more nuanced due to the preference-based feedback. Sev-
eral notions of optimality have been proposed in the literature, including the
Copeland Winner [91], Borda Winner [92], and von Neumann Winner [93],
each offering a different interpretation of the optimal arm. In utility-based du-
eling bandits, preferences are assumed to stem from latent utility values, and
the optimal arm is defined as the one maximizing this utility. Consequently,
regret is defined relative to the chosen notion of optimality. In general, cu-
mulative regret measures how much the learner’s selected arms underperform
compared to the optimal arm over time. Depending on the model, regret
may be expressed in terms of the utility gap, Borda score, Copeland score, or
expected outcomes against the von Neumann winner.

A wide range of algorithms has been developed to address these problems

under various assumptions. The initial works on dueling bandits focused on
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scenarios with a finite number K of arms. Here, the problem instance can
be fully described by a K x K preference probability matrix, where each en-
try pij = P(a; > a;) denotes the probability that arm ¢ is preferred over arm
j. Many algorithms attempted to learn this pairwise preference matrix by
leveraging noisy sorting or tournament procedures, or by generalizing classical
MAB algorithms to the preference-based setting. Examples include Interleaved
Filter [94], Beat the Mean (BTM) [95], Relative Confidence Sampling [96],
Relative Upper Confidence Bound (RUCB) [97], Doubler, MultiSBM, Spar-
ring [98], and mergeRUCB [99]. These methods typically impose various
structural assumptions on the problem, such as strong stochastic transitiv-
ity (SST) [94, 100], stochastic triangle inequality (STI) [95], weak or relaxed
stochastic transitivity [101, 95], or the presence of a Condorcet winner (an arm
preferred over every other arm) [97, 99, 96]. These algorithms usually guaran-
tee regret bounds that grow logarithmically in the number of time steps but
at least linearly with respect to the number of arms, limiting their scalability

to large or infinite arm sets.

To address settings with infinitely many arms, utility-based dueling ban-
dits have gained popularity. Instead of a preference matrix, preferences are
modeled via an unknown latent utility function. Preference feedback is in-
terpreted as arising from the difference in utilities of the chosen arms, passed
through a link function. A common choice is the logistic function, as in the
Bradley-Terry-Luce (BTL) model [102], where the probability of preferring one

arm over another is given by the logistic function of the utility difference.

The simplest structured variant is the linear contextual dueling bandit,
studied in [103, 104, 105, 106, 107], which allows a large action set but assumes
a linear utility function. Here, the utility of an arm a is modeled as f(a) =
0" ¢(a) for some unknown parameter vector # € R? and a known feature map
¢(-) € R%. Preference-based bandit optimization with linear utilities is well
understood and has even been extended to RL settings involving preference

feedback on trajectories [108, 109, 110, 111, 112]. However, such linear models
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have limited applicability in practice, as they cannot capture the complex

nonlinear utility functions typical of many real-world problems.

Alternatively, RKHS offer a rich class of models for representing the
utility function. This has motivated several extensions of the dueling ban-
dit problem to kernel-based settings. Recent works have investigated the
convergence of kernelized algorithms for preference-based bandits. For in-
stance, [113, 114, 115] focus on the Borda score, which quantifies the proba-
bility that a given action is preferred over a uniformly sampled action from
the domain. However, these approaches typically rely on strong assumptions
about the Borda function, effectively reducing the problem to a conventional
BO setting. Moreover, these works model the problem using a regression like-
lihood, which assumes that both the latent utility function and the probability
of preference lie in an RKHS. This regression-based modeling approach is some-
what misaligned with the inherently classification-based nature of preference
learning. While the model is valid, it often does not lead to sample efficient

algorithms.

In contrast, other methods [116, 117] adopt a kernelized logistic negative
log-likelihood loss to infer the utility function. These works provide confidence
sets for the minimizer of the logistic loss and establish tighter regret guarantees,

offering more principled and efficient approaches.

Finally, a recent extension [118] introduces neural dueling bandits, where
wide neural networks are used for preference prediction instead of kernels.
Although the theoretical analysis relies on connections to the Neural Tangent
kernel (NTK), this approach demonstrates an alternative modeling strategy.
Importantly, the guarantees and assumptions remain largely analogous to those

in kernel-based methods.

3.5 Summary and Conclusion

This chapter provided a structured overview of bandit models, tracing their

development from classical MAB to more advanced frameworks. We started
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with finite MAB, progressed to linear bandits and then to GP bandits, which
allow more general nonlinear rewards. Finally, we covered dueling bandits,
where scalar feedback is replaced by binary comparisons.

This progression from simple to complex bandit models lays the founda-
tion for the techniques developed in this thesis. We introduced core algorithmic
families and key principles—such as the exploration—exploitation trade-off, re-
gret, OFU, GPs, kernel ridge regression, confidence intervals, and complexity
measures—that underpin the theoretical analysis of these models. These con-
cepts are essential for the subsequent chapters: near-optimal sample complex-
ity in reward-free, kernel-based RL (Chapter 5) and Bayesian Optimization
from Human Feedback (Chapter 6), with dueling bandits providing crucial
background for the latter. Overall, this chapter equips the reader with the
theoretical framework and technical tools that connect classical bandit theory

to the advanced methods explored in this thesis.



Chapter 4

The Impact of Intrinsic

Rewards on Exploration in RL

Following the background on RL and bandit problems, this chapter turns to the
exploration problem in RL, focusing on an empirical proof-of-concept study.
A persistent challenge in deep RL is exploration in sparse-reward environ-
ments, where rewards are provided to the agent only rarely—for example,
when accomplishing a task. As a consequence, the agent often fails to discover
rewarding behaviors. To address this challenge, researchers have proposed var-
ious types of intrinsic rewards that encourage diversity in exploration. Such
diversity can be imposed at different levels, favoring the agent to explore dif-
ferent states, policies, or behaviors (State, Policy, and Skill level diversity,
respectively). Yet, the actual impact of these different types of diversity on
exploration behavior remains unclear. In this chapter, we aim to fill this gap by
studying how intrinsic rewards operating at different levels of diversity affect
the exploration patterns of RL agents. We select four intrinsic rewards (State
Count, Intrinsic Curiosity Module (ICM), Maximum Entropy, and Diversity is
All You Need (DIAYN)), each favoring different levels of diversity. We conduct
an empirical study on MiniGrid environments to compare their impact on ex-
ploration considering various metrics related to the agent’s exploration. This
study sheds light on how diversity influences exploration and offers practical

implications for selecting and applying intrinsic rewards in environments with
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varying levels of exploration difficulty.

4.1 Introduction

The sparsity of rewards is a major hurdle for RL algorithms [25, 119]. With
infrequent feedback, the probability of the agent randomly discovering a re-
warding sequence of actions becomes low. Therefore, a large number of samples
is needed to explore and stumble into a successful sequence of actions leading to
the desired outcome [120]. This is known as the hard exploration problem [25].
Classical exploration strategies, e.g., epsilon-greedy and Boltzmann distribu-
tion [121] fail to explore the environment efficiently enough to find the optimal
solution when the feedback is sparse [122]. Among the possible solutions to
address this limitation [25, 123, 124], intrinsic rewards [125, 126] have been pro-
posed. Intrinsic rewards are signals that encourage the agent to explore novel
experiences, with the aim of enhancing learning efficiency in environments with
sparse external rewards [125, 126]. They are a part of the larger notion of in-
trinsic motivation defined by [127] as the tendency to “seek out novelty and
challenges, to extend and exercise one’s capacity, to explore, and to learn”.
Intrinsic rewards are often categorized in the literature into knowledge-based
and competence-based [128, 129, 124, 130]. The first category encourages the
agent to gain new knowledge about the environment. It compares the agent’s
experiences to its existing knowledge, and rewards the agent for encountering
unexpected situations. This includes methods that reward novelty in states or
state transitions [131, 132, 133, 134], the prediction error [135] or the informa-
tion gain [136]. The second category, also called “skill learning” in [124, 137],
rewards the agent for learning a diverse repertoire of skills in an unsupervised
way. [t mainly includes goal-conditioned RL approaches, which generate and
achieve their own goals to explore the environment [138, 139, 140]. In [129], a
detailed survey on goal-conditioned RL is presented, highlighting the different

types of goal representations and goal-sampling strategies.

This categorization uncovers a potential link between diversity and explo-
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ration, where intrinsic rewards promote diverse agent behaviors to efficiently
explore the environment. While diversity is acknowledged as crucial in RL,
it has mainly been explored in relation to robustness, generalization, hierar-
chical learning or generation tasks [141, 142, 143, 144, 145, 146, 147, 148].
However, its role in driving effective exploration remains underexplored and
not empirically validated yet. In this chapter, we take an initial step toward
understanding whether mechanisms that encourage diversity through skill dis-
covery can also drive more effective exploration. To address this gap, we
propose a rigorous methodology to empirically compare knowledge-based and
competence-based intrinsic rewards, which has not been thoroughly investi-
gated in prior research. Our work focuses on examining how different levels
of diversity in exploration behavior impact exploration, driven by the need
to address the following open questions: i) What is, in practice, an effective
exploration in environments with low- and high-dimensional state spaces? i)
How does the level of diversity imposed by intrinsic rewards affect exploration
performance across different scenarios? i) Does behavioral diversity through
skill discovery, known to help robustness and fast adaptation [143, 144], also

helps exploration? Our key contributions are as follows:

1. We introduce a refined categorization of intrinsic rewards based on four
diversity levels—State, State + Dynamics, Policy, and Skill—offering a

more granular understanding of their influence on exploration.

2. We design an empirical study that assesses how these different diversity
levels impact exploration by incorporating multiple complementary ex-
ploration metrics such as return, coverage, entropy, reward findings, and

state visitation maps.

3. We provide empirical insights into the role of diversity in exploration,
offering practical guidance to leverage intrinsic rewards for environments

with varying exploration challenges.
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To achieve this, we evaluate representative intrinsic reward methods from each
diversity level on MiniGrid [158], using both grid encodings and RGB (Red,
Green, Blue) observations. This setup allows us to analyze how diversity
shapes agent behavior in exploration-critical environments. To the best of our
knowledge, this is the first systematic evaluation of diversity levels in intrinsic
rewards within a unified framework, offering novel insights into their influence

on exploration and performance.

4.2 Related Works

While numerous intrinsic reward formulations have been proposed to address
complex sparse-reward tasks, a comprehensive understanding of their compar-
ative advantages and challenges remains elusive, leaving this an open question
in the field. Here, we review previous works that have attempted to categorize
or empirically compare intrinsic rewards. Table 4.1 provides an overview of

these studies, highlighting the pros and cons of each approach.

Existing surveys [137, 25, 124, 123, 129, 149, 130] offer slightly differ-
ent taxonomies of intrinsic rewards, often using varied terminology. However,
most include two broad categories: one focused on increasing knowledge about
the environment (e.g., prediction error, information gain, learning progress,
and state novelty), and another focused on learning diverse skills. Yet, these
surveys lack empirical validation and none of them explore the different lev-
els of diversity that these intrinsic rewards can introduce within each cate-
gory. In this work, we build on the categorization proposed by [129], which
clearly distinguishes between knowledge-based and competence-based intrinsic
rewards, and we further subdivide them into different diversity levels (state/s-

tate4+dynamics/policy /skill).

We are now interested in the works provided in the literature aimed
at benchmarking different intrinsic rewards. A few studies have compared
methods within the knowledge-based category. For instance, [150] compared

State Count [159], Random Network Distillation (RND) [133], Intrinsic Cu-
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riosity Module (ICM) [135], Reward Impact Driven Exploration (RIDE) [160]
on MiniGrid environment. The study aimed to evaluate the impact that
weighting intrinsic rewards has on performance, as well as the effect of us-
ing different neural network architectures. The main insight from this work
was that no single intrinsic reward method consistently outperforms the oth-
ers across all tasks, and the performance is highly sensitive to the choice of
network architecture and reward scaling. Another study by [151] evaluated
pseudo-counts [131], RND, ICM and Noisy Networks [161] within the Arcade
Learning Environment (ALE) [162], and suggested that none of these meth-
ods outperform the epsilon-greedy exploration. A more recent work by [152]
introduced RLeXplore, a comprehensive plug-and-play framework that imple-
ments ICM [135], RND [133], Disagreement [163], Never Give Up (NGU) [134],
pseudo-counts [131], RIDE [160], Random Encoders for Efficient Exploration
(RE3) [164], and Exploration via Elliptical Episodic Bonuses (E3B) [165].
Their framework addressed critical design, implementation, and optimization
issues related to intrinsic rewards, including reward and observation normal-
ization, co-learning dynamics of policies and representations, weight initial-
ization, and the combined optimization of intrinsic and extrinsic rewards.
The study most similar to ours is by [153] which evaluated intrinsic rewards
across knowledge-based (ICM, Disagreement, RND), competence-based (DI-
AYN, State Marginal Matching (SMM), Active Pretraining with Successor
Features (APS)), and data-based (Active Pretraining (APT), ProtoRL) cate-
gories on the DeepMind Control Suite. However, their primary objective was
to assess the generalization of unsupervised RL algorithms by measuring how
quickly they adapted to diverse downstream tasks. To achieve this, they used
a reward-free pretraining phase followed by supervised finetuning. In contrast,
our study focuses on the standard RL setting, where both intrinsic and ex-
trinsic rewards are optimized simultaneously (except for skill-based learning).
Instead of concentrating on adaptation, we address the exploration challenge,

evaluating intrinsic rewards from a diversity perspective and employing various



4.2. Related Works 80
metrics to measure exploration quality.

Other works have examined a different taxonomy of intrinsic rewards:
global vs. episodic bonuses. Global bonuses are calculated using the entire
training experience, while episodic bonuses are calculated using only the expe-
rience from the current episode. The work by [154] found that episodic bonuses
are more crucial than global bonuses to improve exploration in procedurally
generated environments such as MiniGrid. A later study by [155] found that
episodic bonuses tend to yield better results in situations where there is min-
imal shared structure across various contexts in MiniHack [166], while global
bonuses tend to be effective in cases where there is a greater degree of shared

structure.

Additionally, some works aimed to unify different intrinsic reward for-
mulations under a general framework. For instance, [156] proposed a unified
framework for intrinsic rewards, showing that existing methods can be viewed
as special cases of conditional prediction with different mask distributions.
Building on this, they introduced a novel trajectory-level exploration intrinsic
reward, which extends beyond the typical one-step future prediction to capture
transition dynamics across longer time horizons. In a related line of work, [157]
reformulated the convex MDP problem as a convex-concave game between an
agent and an adversarial player generating costs (negative rewards). They uni-
fied a broad range of RL algorithms, including methods for unsupervised skill
discovery, by interpreting them as instances of this generalized game-theoretic

framework.

Despite these significant advances in categorizing, evaluating, and inter-
preting intrinsic rewards in RL, a critical gap remains: the impact of diver-
sity in intrinsic rewards on the exploration performance has not been thor-
oughly examined. Specifically, it is unclear how the exploration performance
of competency-based methods, which encourage various behaviors, compares
to knowledge-based methods that promote various states. In this study, we

provide an initial empirical investigation into the impact of different levels of
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diversity on exploration across several MiniGrid environments, serving as a
preliminary effort to understand the complex relation between diversity and

exploration in RL.

4.3 Methodology

In the following, we subclassify the knowledge and competence-based intrinsic
reward methods according to the level of diversity they impose on the agent’s
exploration (Section 4.3.1). Then, we select four intrinsic rewards, one for
each level (Section 4.3.2), and we test them empirically on MiniGrid environ-
ment, explained and motivated in Section 4.3.3. Section 4.3.4 outlines the
experimental protocol used in the study, while Section 4.3.5 details the model

architecture. Finally, Section 4.3.6 introduces the evaluation metrics.

4.3.1 Taxonomy of Diversity Levels Imposed by Intrin-
sic Reward

We systematize the types of diversity imposed by intrinsic rewards into four
levels: State level diversity encourages exploration of unseen states, push-
ing the agent towards areas where its knowledge is most limited. State -+
Dynamics level diversity also focuses on diverse states, but additionally
considers the novelty of the dynamics between those states for a more compre-
hensive exploration. Policy level diversity explores the impact of different
actions from given states, while Skill level diversity explores the effectiveness
of diverse skills (policy-goal association) in achieving goals [129]. For a more

detailed description of these diversity levels, please refer to Appendix A.1.

4.3.2 The Selected Intrinsic Reward Algorithms

We augment the task reward with an intrinsic reward such that the total reward
becomes: rtotal = pext 4 gint y pint where €%t ig the extrinsic reward, ™ is the
intrinsic reward and 3" is the intrinsic reward coefficient [25]. The best-
performing 3" values, either sourced from the literature [150] or determined

through a grid search (details provided in Appendix A.3), are presented in
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Table A.1, also located in Appendix A.3. We select four different intrinsic

reward methods, each representative of one of the four diversity levels:

State Count (State level diversity) builds an intrinsic reward inversely
proportional to the state visitation count [159]. For a transition (s¢,at, S¢+1),
where s; is the current state, a; is the current action and syy1 is the next
state, i = 1/\/N(s4+1), where N(s;11) represents the number of times s, 1
has been visited during training. This algorithm considers only discrete, low-
dimensional state space. However, for RGB observations, where the state space
is much larger and State Count is not feasible, we use SimHash [132] to hash
states before counting them. SimHash maps the pixel observations to hash
codes according to the following equation, with 1 as the hashing function:
W(se41) = sgn(Ax ¢(se+1)) € {—1,1}"™. Here, ¢ is an embedding function, A
is a matrix with i.i.d. entries drawn from a standard normal distribution, m
is the size of the hashed key, and sgn(-) maps a number to its sign. Then,

the same intrinsic reward formula is applied but using the hashed observation:
T{ént =1/\/N(@(st41))-

ICM (State + Dynamics level diversity) uses curiosity as an intrinsic
reward. Curiosity is formulated as the error in the agent’s ability to pre-
dict the outcome of its own actions in a learned state embedding space [135].
Specifically, ICM trains a state embedding network, a forward and an inverse
dynamic model. For a transition tuple (s¢,a¢,S¢+1), the embedding network
¢ : S — F projects the current state s; and next state s;+1 into the feature
space F to get the embeddings ¢(s;) and ¢(si+1) respectively. Then, the in-
verse dynamics model g : F x F — A takes as input the current and next state
embeddings, ¢(s¢) and ¢(s¢+1) respectively, and predicts the action a; taken by
the agent to move from state s; to state s;11. The state embedding network
is updated, such that it only captures the features of the environment that
are controlled by the agent’s actions, and ignores the uncontrollable factors.
The forward dynamics model f:F x A — F predicts the next state embed-

ding ¢(s¢+1) given the current state embedding ¢(s;) and current action ay.
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The intrinsic reward is the prediction error of the forward dynamics model:
™ =1 f(o(se), ar) — (se+1) 13 [135].

Max Entropy RL (Policy level diversity) augments the extrinsic reward
with the policy entropy ri™ = H(n(.|s;)) to favor stochastic policies [167, 168)].

DIAYN (Skill level diversity) aims to discover a set of diverse skills with-
out supervision [138]. A skill is defined as a policy 7(als,z) conditioned on
the state s and latent variable/goal z!. DIAYN’s objective is to maximize the
mutual information (MI) between z and every state in the trajectory generated
by m(als,z). The intuition is to infer the skill from the state. At the start of
each episode, a latent variable z is sampled from a uniform distribution p(z),
then the agent acts according to that skill 7(a|s, z) throughout the episode. A
discriminator g, (z|s) parametrized by « is trained to estimate the skill z from
the state s. The intrinsic reward, defined by 7" = log(qa(2|s¢+1)) —log(p(2)),
is used to push the agent to visit states that are easily distinguishable in
terms of skills. Then, the discriminator is updated to better predict the skill,
and the policy is updated to maximize 7 using any RL algorithm. It is
worth mentioning that DIAYN has been proposed as an unsupervised skill
discovery method to favor robustness, fast adaptation to new tasks and hier-
archical learning. Therefore, exploration is not the main goal of DIAYN. As a
consequence, DIAYN’s intrinsic reward can conflict with the agent’s extrinsic
reward, potentially jeopardizing convergence if combined directly. To address
this, we split the training budget between pretraining and finetuning phases.
During pretraining, skills are learned using only intrinsic rewards. The learned
weights are then used to initialize the policy and value networks for the finetun-
ing phase with task-specific extrinsic rewards. The rationale for this approach
is further explained in Appendix A.5, where we evaluate the performance of

DIAYN when combined with extrinsic rewards.

In this chapter, z denotes a latent skill variable. The symbol z may have different
meanings in other chapters: in Chapter 5, it denotes a state-action pair (s,a); in Chapter 6,
it denotes a pair of actions (z,z’).
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4.3.3 Environment

We test on MiniGrid [158], a widely used procedurally generated environment
in RL exploration benchmarks [160, 150, 154] suitable for experimenting with
sparse rewards, as its tasks provide rewards only upon reaching goals, encour-
aging agents to explore efficiently. We consider two types of observations:
partially observable grid encodings, and partially observable RGB images (see
Appendix A.2). The latter has a much larger state space, allowing us to inves-
tigate the scenarios challenging for State level diversity algorithms. To study
the impact of different diversity levels on exploration, we select four environ-
ments with varying grid layouts and tasks, that highlight the strengths and

weaknesses of various intrinsic reward methods:

1. Empty: We choose this environment as a control and it is the only one
not procedurally generated (fixed initial and goal positions). The setup
imposes minimal constraints, providing freedom to solve the task in dif-
ferent ways. Consisting of one big homogeneous room, this environment
is interesting since it can lead to state aliasing: different MDP states,
for example, different (x,y) positions of the agent, appear as identical
observations [169]. This creates a challenge for state count-based meth-
ods, which count the observations they encounter and therefore cannot

differentiate between the true underlying states.

2. DoorKey: This environment requires strategic exploration to locate
keys and unlock doors. It stresses the importance of a trajectory to visit
states in particular order. Methods that can learn skills and recognize
these dependencies might perform better than state count-based meth-
ods, which treat all state visits equally without taking into account the

order.

3. FourRooms: This environment is characterized by its sparsity of re-
wards. The presence of multiple rooms encourages the agent to devise

different strategies for navigation, fostering diversity in the trajectories
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or paths taken by the agent to achieve the goal.

4. RedBlueDoors: This environment also requires strategic exploration,
but it is an easier task than DoorKey. It introduces color-coded doors,

requiring agents to exhibit high levels of cognitive flexibility.

More details about the tasks, observation and action spaces are included in

Appendix A.2.

4.3.4 Experimental Protocol

We test the four algorithms in each environment for each observation space.
We select Proximal Policy Optimization (PPO) [42] as our baseline algorithm.
PPO is a widely accepted and popular choice in RL research, known for its sta-
bility, robustness, and relatively high sample efficiency. Its simple implemen-
tation offers manageable computational costs, which enhances reproducibility
and facilitates validation of results. Beyond its theoretical strengths, PPO has
demonstrated success in complex real-world applications, such as Large Lan-
guage Model (LLM) research, underscoring its versatility and reliability for
our study. For the pseudocode of the algorithm, please refer to Algorithm 6 in
Chapter 2.

We adopt the default hyperparameters from [150], listed in Table A.2 of
Appendix A.3. This baseline algorithm comes with an entropy regularization
in the objective function to encourage a minimum level of exploration [170].
Such regularization is essential to avoid overfitting [171] and to stabilize the
training process [168]. We set the entropy regularization coefficient to 0.0005
in all simulated algorithms. The selected value is large enough to guarantee
a minimum level of stable convergence but small enough to not affect our
experiments. We train each algorithm for 40M frames on all environments.
For DIAYN exclusively, we use 25M for pretraining and 15M for finetuning.
Training curves, averaged over five runs with different seeds, are provided
for all algorithms. The simulations in this study were conducted on a high-

performance computing node equipped with an NVIDIA TITAN X (Pascal)
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GPU featuring 12 GB of VRAM, an Intel Xeon E5-2640 v4 CPU operating at
2.40 GHz with 40 cores, and 62 GB of RAM.

Intrinsic rewards

8 @
Count int
Gl

|

&
St+1 ext int .int
£+ BT
‘= environmer/ N

S~

Figure 4.1: Overview of the empirical study pipeline, illustrating the flow from
input observations to action selection, and reward computation (both
extrinsic and intrinsic) within the PPO framework.

=

4.3.5 Model Architecture

Figure 4.1 illustrates the pipeline of the empirical study, depicting the sequen-
tial flow of inputs, outputs, and reward computations within the model. At
each time step ¢, the input observation s; (either a grid encoding or an RGB
image) is processed by the PPO algorithm, which outputs an estimated policy
and value function. The agent then takes an action a; based on the estimated
policy, transitions to the next state s;; 1, and receives an extrinsic reward r{*’.
Depending on the intrinsic reward method applied (State Count/SimHash,
ICM, DIAYN, or Max Entropy), the agent computes an intrinsic reward "
for the transition (s¢,at,si+1), following the formulations in Section 4.3.2. The
intrinsic and extrinsic rewards are combined 7{°/ = r¢rt 1 gint  pint and fed
back into the Actor-Critic PPO network to refine the policy and value function.
For DIAYN exclusively, we avoid combining intrinsic and extrinsic rewards, as
discussed in Section 4.3.2.

The Actor-Critic (AC) model architecture used in PPO employs a shared

CNN to process observations, which can be either grid encodings or RGB
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Figure 4.2: Neural Network Architectures.

images. This CNN consists of three convolutional layers: the first layer has 16
filters of size 2 x 2 with Rectified Linear Unit (ReLU) activation, followed by a

2 x 2 max-pooling layer; the second layer has 32 filters of size 2 x 2 with ReLLU
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activation; and the third layer has 64 filters of the same size and activation
function. The CNN output then branches into two fully connected networks,
designated as the actor and critic networks. Each network includes a hidden
layer with 64 units and Tanh activation. The actor network produces action
probabilities, while the critic network outputs the value function. Figure 4.2a
provides an overview of this architecture.

The PPO architecture remains consistent across all intrinsic rewards.
Some methods, however, require additional auxiliary networks, such as the
embedding networks ¢ for ICM, DIAYN, and SimHash (see Figure 4.2b), for-
ward (f) and inverse (g) dynamics networks in ICM (Figures 4.2¢ and 4.2d),
and the discriminator network g, in DIAYN (Figure 4.2¢). For ICM and DI-
AYN; the state embedding network follows the same CNN architecture as PPO
to extract features from observations (see Figure 4.2b). SimHash further ap-
pends a fully connected layer to the embedding network, reducing the RGB

image embedding to a 512-dimensional vector prior to hashing.

4.3.6 Evaluation Metrics

We analyze each of the intrinsic rewards, according to five metrics:
Episodic return: This metric measures the total extrinsic reward accumu-

lated within a single episode: SH 7t where r§*t

is the extrinsic reward
received at timeframe ¢t and H is the length of the episode. We report the
average episodic return for all actors. This metric captures the convergence

speed and learning ability of the intrinsic reward method.

Observation coverage: This metric offers insight into the extent of exploring
the observation space. We count how many unique observations (grid encod-
ings or RGB) have been visited during training. We normalize this metric over

the highest coverage achieved by the intrinsic reward methods.

Agent’s position coverage: This metric indicates the proportion of (x,y)

grid positions visited by the agent so far during training, calculated as:

Nuisited(myy)
Ntotal(mvy) ’

agent has visited, and Ny (2,y) is the total number of possible grid positions

Here, Nyisiteqa(z,y) is the number of unique grid positions the
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the agent can visit. This metric captures how well the agent has explored
the position space, which is different from the observation space in a partially

observable framework.

Policy Entropy: This metric evaluates the stochasticity of the policy. For a
given state s, the Shannon entropy of the policy is defined as H (7 (- | s¢)) =
- Z'jﬂl m(a’ | s;) logm(a’ | s¢), where a/ denotes one of the |A| possible actions
in the MiniGrid environment (|A| =7 in our case). In practice, we report the

average of H(7(-| s¢)) across visited states and actors during training.

Time steps of the first, second, and third reward discoveries: We
record the number of frames at which the agent, using a particular intrinsic
reward method, successfully reaches a sparse reward for the first, second, and
third time. Note that “number of frames” refers to the number of times the
agent interacted with the environment throughout the training. This metric
sheds light on the speed and effectiveness of the exploration method to discover

the high-reward states, as well as learning to revisit these states.

Finally, we include further visualizations (heatmaps) of the state visita-
tion count ((x,y) positions) in Appendix A.4. These heatmaps represent the
proportion of visits to each grid position (z,y) relative to the total number
of frames. To generate them, we train the agent for 10M frames in singleton
environments, where the maze layout remains fixed across training episodes.
This setup highlights the agent’s exploration patterns on a consistent grid map.
Figures A.3, A4, A5, and A.6 in Appendix A.4.1 display results for grid-
encoded observations, while Figures A.7, A.8, A.9, and A.10in Appendix A.4.2
show results for RGB observations. These visualizations illustrate the areas of
the grid explored by the agent during training across the four environments:

Empty, DoorKey, FourRooms, and RedBlueDoors.

4.4 Experimental Results and Discussion

We discuss the following three questions to analyze the performance of the

exploration algorithms:
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- RQ1: Do different intrinsic rewards lead to different return perfor-
mance/sample efficiency for both grid encodings and RGB partial obser-

vations?

— RQ2: What are the characteristics (strengths/weaknesses) of each intrin-
sic reward method, and what are the practical recommendations to select

intrinsic rewards?

— RQ3: How do different intrinsic rewards impact efficiency in discovering the

sparse reward? Is there any link with credit assignment?

4.4.1 RQ1: Return Performance of the Different Intrin-

sic Rewards

In terms of episodic return, State Count has the best performance with low-
dimensional observations (grid encodings) on all environments (see column 1
of Figure 4.3). It converges to the maximum return with the least number
of frames. In the case of DoorKey 16x16, where many algorithms—including
PPO, Max Entropy, and DIAYN—struggle to solve the task, State Count
emerges as the top performer, successfully obtaining the key and attaining the
highest return. Following closely, ICM demonstrates lower sample efficiency.
However, this is not the case for RGB observations (refer to column 1 of Figure
4.4), in which SimHash (equivalent to State Count) performs poorly on most
environments. The failure of SimHash in the case of RGB observations can be
attributed to the challenge in adequately representing the significant features
present in the high-dimensional states. RGB images contain an abundance
of extraneous pixel-level details that are irrelevant to the task, requiring the
agent to represent only the meaningful features. SimHash, which uses a sim-
ple hashing mechanism to represent states, struggles to capture the essential
features in RGB states due to their sparse and coarse encoding mechanisms.
This limitation is especially evident in environments that require high level
of feature abstraction and attention to object relationships, such as DoorKey

16x16, where misrepresenting critical details hinders the agent’s navigation.
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Max Entropy is less impacted by such representation learning difficulties.
It achieves a slightly higher return on DoorKey 8x8 and FourRooms environ-
ments in the case of RGB observations (Figure 4.4). This robustness can be
attributed to Max Entropy’s tendency to encourage diverse policy exploration
without heavily relying on specific state representations, which provides a cer-
tain level of resilience to noisy feature extraction. All other intrinsic rewards
struggle to solve the tasks (except for Empty 16x16) and consistently maintain
a high level of non-decreasing policy entropy. This is likely because these meth-
ods rely on high-quality state representations to produce meaningful novelty
signals. In high-dimensional RGB observations, however, they tend to gener-
ate less informative intrinsic rewards. This results in difficulty differentiating
between truly novel states and irrelevant pixel-level variations, causing policy
learning to stagnate.

DIAYN finetuning has a worse average return compared to the baseline
PPO in both grid encodings and RGB scenarios. This shows that initializing
the AC weights with DIAYN skills does not improve sample efficiency com-
pared to random initialization. Note that DIAYN pretraining does not collect
any extrinsic reward because it is trained to maximize the intrinsic reward
generated by the discriminator and not the true task reward. We hypothesize
that the limited skill label space, compared to the vast state space, promotes
the learning of static skills that lack adaptability and fail to transfer effec-
tively to the target task. Specifically, the states encountered by different skills
tend to vary only slightly, enabling skill differentiation but not necessarily the

development of semantically meaningful or broadly transferable skills.

4.4.2 RQ2: Characteristics of Each Intrinsic Reward
Algorithm

State Count / SimHash demonstrates the best sample efficiency in grid
encodings, enabling efficient task-solving in small state/action spaces. Addi-
tionally, it ensures a fast coverage of observations and grid positions compared

to other algorithms, as depicted in columns 2 and 3 of Figures 4.3 and 4.4.
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Furthermore, as it converges to the optimal policy, it exhibits a fast decreasing
policy entropy due to the diminishing intrinsic reward effect with increas-
ing state counts. Examination of the heatmaps (Appendix A.4) reveals that
State Count offers the most uniform coverage of the state space across all en-
vironments. This enables the algorithm to identify the optimal path, while
maintaining a balanced approach between exploration and reward maximiza-
tion. Remarkably, in the DoorKey environment (Figure A.4 in Appendix A.4),
State Count demonstrates a tendency to revisit the area around the key more
frequently. However, despite these strengths, a notable limitation arises in its
inability to effectively handle RGB images. In such cases, the algorithm strug-
gles to accurately count or represent pixels, thereby limiting its applicability
in scenarios with high-dimensional state spaces. As a practical recommen-
dation, State Count is a good choice for small, discrete environments, but
struggles with complex, high-dimensional ones. Although we did not explore
how different representations impact the performance of State Count in this
study, incorporating representation learning techniques presents an interesting

avenue for future research.

ICM exhibits favorable return performance and effectively explores the obser-
vation and position spaces, similarly to State Count, as they both prioritize
exploration within the state space. In environments characterized by low-
dimensional state spaces (Figure 4.3), ICM showcases consistent stability in
solving tasks across diverse scenarios. However, I[CM’s convergence speed gen-
erally lags behind State Count due to the added computational complexity
of training both forward and inverse dynamics models. This additional over-
head likely introduces inefficiencies that slow down exploration, as shown in
heatmap analyses (Appendix A.4), where ICM’s slower rate of grid position
exploration is evident. These heatmaps illustrate that while ICM achieves
thorough state coverage, it does so at a slower rate, potentially limiting its
efficiency in tasks requiring rapid convergence. Moreover, similarly to State

Count, ICM encounters challenges in effectively processing RGB images (Fig-
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ure 4.4). The pixel-based inputs add significant complexity, making it difficult
for ICM’s dynamics models to effectively process and encode meaningful fea-
tures. This limitation suggests that ICM’s performance may be hampered in

visually complex environments.

Max Entropy can solve most environments in the case of grid encoding ob-
servations (except DoorKey) (Figure 4.3). However, it does not converge faster
than State Count and shows a slightly lower average return because it fails for
some of the runs (such as on RedBlueDoors). This instability arises from the
algorithm’s tendency to promote high stochasticity in the policy, even when
a more deterministic approach would suffice, ultimately affecting the average
performance. By analyzing the heatmaps, we can see that Max Entropy ex-
plored unnecessarily or became confined to certain regions of the state space,
especially in easy environments such as FourRooms and RedBlueDoors (Fig-
ures A.5 and A.6 in Appendix A.4). This unnecessary exploration delays con-
vergence to optimal paths, as the agent is distracted from effectively reaching
the goal. The algorithm’s inclination to prompt the agent to try all possible
actions, including those rarely relevant to task success, can divert focus and
hinder progress. Additionally, a drawback of the Max Entropy approach is that
states with lower entropy may be visited less frequently or even overlooked.
As discussed by [172], the maximum entropy strategy, which optimizes poli-
cies to reach high-entropy states, does not always foster effective exploration.
Rather, it can create positive feedback loops where the agent becomes overly
focused on high-entropy areas, limiting its ability to comprehensively explore
the environment. This might reduce the likelihood of reaching less-visited yet

potentially critical states.

Nevertheless, in the case of partial RGB observations (Figure 4.4), Max
Entropy is less impacted by representation learning challenges. We observe
that on DoorKey and FourRooms, it slightly outperforms SimHash in terms
of return and shows a decrease in the policy entropy (see columns 1 and 4 of

Figure 4.4), as it succeeds in reaching the goal in several runs. Therefore, for
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grid-based settings with high-dimensional state spaces, where simply counting
states becomes impractical, maximizing entropy can be a valuable alternative
exploration strategy to State Count. As a practical recommendation, Max
Entropy may not be the most effective exploration method in grid-like envi-
ronments with high-dimensional action spaces, where many actions are unused.
However, it performs adequately in environments with large state spaces and

small action spaces.

DIAYN generally has the worst average return compared to the other three
intrinsic rewards in both grid encodings and RGB scenarios. This is attributed
to the tradeoff between the ability to discriminate between different skills and
optimality. The need to generate distinguishable skills often leads DIAYN
to prioritize visits to easily discriminable states over achieving optimal explo-
ration. In the case of low-dimensional state space (Figure 4.3), it is surprising
that DIAYN finetuning has the highest observation and position coverages on
most environments (DoorKey, FourRooms and RedBlueDoors). The ease of
discriminating observations (due to distinct grid encodings reflecting differ-
ent object types, colors, or status) drives DIAYN to prioritize visiting them.
Unlike environments with distinct features, DIAYN struggles to cover the ob-
servation space in Empty 16x16 due to the difficulty of discriminating observa-
tions in a near-uniform grid (mostly walls). This further underscores DIAYN’s
reliance on environments with clear, discriminable features for effective explo-
ration. Moreover, the poor state space coverage by DIAYN (both pretrained
and finetuned) in the RGB setting (Figure 4.4) indicates limitations in the
discriminator’s ability to discriminate between RGB observations. This sug-
gests that the additional challenge of representation learning exacerbates the
discriminator’s learning difficulties. The presence of high-dimensional visual
data introduces an added layer of complexity as the agent must learn both
to distinguish visual features and navigate the space effectively. By further
analyzing the exploration pattern of DIAYN through the heatmaps, we notice

the following: DIAYN demonstrates uneven state coverage, often focusing on
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corner areas or becoming restricted to specific regions within the grid that
contain easily distinguishable states (For example, see Figures A.4, A.6, A.9,
and A.10 in Appendix A.4). This suggests potential limitations in its ability to
explore diverse regions and acquire transferable skills. Without reaching differ-
ent target positions (e.g., door/key/goal), the skills lack meaningful variations
and adaptability. We hypothesize that this is due to DIAYN’s MI objective,
which does not explicitly maximize the entropy of the state distribution [173]
and does not promote broad state coverage [174]. The agent tends to receive
higher rewards for visiting known states rather than exploring novel ones,
as fully discriminable states yield a high MI reward [175]. This can hinder
novel state exploration and discourage the agent from learning far-reaching
skills [173]. Consequently, DIAYN might potentially constrain the diversity of
learned skills to those that are easier to distinguish but not necessarily effec-
tive for broad exploration or task relevance. In our particular setting, DIAYN
also encounters difficulty in learning the abstract skill space effectively. This
challenge might be particularly pronounced due to partial observability. As a
practical recommendation, learning unsupervised skills with DIAYN does not
help exploration in MiniGrid framework, especially in strategic tasks. Nev-
ertheless, pushing for diversity of skills can be useful for skill-chaining, fast
adaptation to environment changes, robustness, and generalization to differ-
ent tasks. We emphasize that our results hold only for our particular setting
where skill-learning turns out to be antagonistic to exploration and sample
efficiency in MiniGrid. This might not hold in other environments that could
benefit from such skills to converge faster. It is also worth noting that exploring
factors such as the skill space, the initial skill distribution, and incorporating
state abstraction techniques, along with auxiliary exploration mechanisms to
enhance state coverage of skills, could significantly improve DIAYN’s perfor-
mance. However, because this constitutes a substantial variation from the

original algorithm, we leave these considerations for future work.
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Empty-16x16 DoorKey-16x16 RedBlueDoors-8x8 FourRooms
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Figure 4.5: Histogram of average frames needed by each exploration method to
collect rewards across environments. Observations are grid encodings.
Each bar’s three fading segments mark the frames at which the first,
second, and third rewards are collected; lower values are better. Re-
sults are averaged over five runs.
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Figure 4.6: Analogous to Figure 4.5 but observations are partial RGB images.

4.4.3 RQ3: First, Second and Third Instances of Dis-

covering the Sparse Reward

We record the time steps at which the sparse reward is found by each of the
intrinsic rewards for the first, second, and third times in both grid encodings
(Figure 4.5) and RGB (Figure 4.6) scenarios. For more detailed results, in-
cluding averages and standard deviations, refer to Tables A.3, A.4, A.5, and
A.6 in Appendix A.4.1, as well as Tables A.7, A.8, A.9, and A.10 in Ap-
pendix A.4.2. We notice that in the case of low-dimensional observation space,
State Count (which has the highest return performance) finds the reward soon
on most environments, while DIAYN takes time to reach the goal, especially on
strategic tasks. For example, in the DoorKey environment, which represents a
strategic task, State Count is the first intrinsic reward to find the task reward,
while DIAYN finetuning is the last, and DIAYN pretraining does not reach
the goal at all within the pretraining time. This shows that DIAYN exhibits
limitations in acquiring skills that achieve the goal sequence of visiting the key,

the yellow door, and the green goal in this specified order. This limitation is
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likely due to DIAYN’s focus on skill diversity rather than directed exploration,
making it less effective in tasks requiring structured sequences. Another inter-
esting observation is that the algorithm that discovers the reward the fastest
for the first time, might not be the fastest in visiting the rewarding state a
second and third time. This implies that diversity impacts credit assignment.
For example, on DoorKey (see Table A.4 in Appendix A.4), Max Entropy finds
the first reward before ICM for the first time, but it takes more time to learn
that it should go back to the reward for the third time. This is paramount
to designing a sample efficient algorithm because visiting rewards more often
provides more informative learning signals and allows learning credit faster,
more accurately and with less variance [26]. This implies that although Max
Entropy promotes policy exploration, it may lack mechanisms for prioritizing
or remembering rewarding states that consistently provide useful learning sig-
nals. In contrast, the results vary across other environments, highlighting how
different algorithms perform under varying conditions. Notably, in the Four-
Rooms environment (Figure 4.5), DIAYN pretraining is the first to find the
reward, as opposed to the case of strategic tasks. In an environment consisting
of several identical compartments, learning skills could lead to quick reward
discovery even though it does not directly maximize the task reward. This
suggests that DIAYN might be advantageous in environments with structural
similarity, where learned skills can be reused across similar compartments. For
the case of RGB observations (Figure 4.6), we observe that PPO and Max En-
tropy are among the fastest methods to find the reward on most environments,
surpassing SimHash. This reinforces the hypothesis that, when scaling to high
observation spaces, entropy might be a better strategy to push for exploration
rather than counting states. DIAYN finetuning also takes a long time to find
the reward, especially for strategic tasks such as DoorKey and RedBlueDoors.
This suggests that DIAYN’s emphasis on diversity may limit its ability to pri-
oritize reaching task-relevant states in complex, sequential tasks. Integrating

the MI objective of DIAYN with trajectory-based metrics between states to



4.5. Conclusion 100

enhance exploration could be a potential direction for handling strategic tasks.

4.5 Conclusion

In this chapter, we have reinterpreted intrinsic reward techniques in the liter-
ature using a diversity perspective (State, State + Dynamics, Policy, and Skill
levels of diversity). We conducted empirical studies on MiniGrid, to under-
stand the differences between these diversity levels in a partially observable
and procedurally generated framework.

The main outcome of the study is that State Count (representing State
level diversity) leads to the best exploration performance in the case of low-
dimensional observations. It improves the convergence speed in strategic tasks,
covers the state space homogeneously, and results in a rapid decrease in policy
entropy. However, State level diversity is fragile and requires good state repre-
sentations, while entropy maximization seems to be slightly more robust when
dealing with image-based observations. Learning good state representations
is challenging, so entropy maximization (representing Policy level diversity)
is a practical alternative. Lastly, DIAYN (representing Skill level diversity),
often associated with improved robustness and generalization, struggles with
exploration in MiniGrid due to the difficulty of learning the skill space and

exploring within it, in a procedurally generated partially observable setting.

4.5.1 Limitations and Future Work

This study serves as an initial exploration into the relationship between explo-
ration and diversity imposed by intrinsic rewards. While we provide insights
into this relationship, several limitations remain to be addressed in future work.

Firstly, we examine only one representative intrinsic reward method for
each level of diversity. This choice may not capture the full range of behaviors
within each category, potentially limiting the generalizability of our findings.
Expanding this work to benchmark a broader selection of intrinsic reward
methods would improve the applicability of our results.

Additionally, the effectiveness of intrinsic rewards is closely tied to the
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environment in which they are applied. Our experiments are restricted to the
MiniGrid environment, specifically using grid encodings and RGB observa-
tions. Future studies could benefit from exploring more complex and varied
environments, such as Mujoco [176], Atari [162], MiniHack [166], and MiniMax
(Autocurricula) [177], where the impacts of different diversity levels might yield
more distinct behaviors. Some intrinsic reward methods may excel in certain
environments but perform poorly in others. Thus, identifying conditions under
which each intrinsic reward method performs best across diverse environments
would be a valuable contribution.

Moreover, while diversity can enhance exploration, it may also impede
performance as discussed in [178] in a phenomenon named the curse of diver-
sity. Therefore, pinpointing the conditions under which diversity aids rather
than hinders performance—or developing strategies to counterbalance the po-
tential negative effects of diversity—remains an open research question.

For the competence-based category, we employed DIAYN, a method that
learns a skill space autonomously. Other goal-conditioned approaches, such
as those learning different goal representations [179] or predefining goal ab-
stractions [180] may yield more efficient exploration strategies. Investigating
these approaches could offer further insights into competence-based intrinsic
rewards.

Finally, representation learning—especially as applied in conjunction with
intrinsic reward methods—also significantly impacts exploration efficacy. An-
alyzing how representation learning interacts with different levels of diversity
and affects exploration performance is an important direction for future re-

search.



Chapter 5

Near-Optimal Sample

Complexity in Reward-Free
Kernel-Based RL

In the previous chapter, we empirically examined the exploration problem in
deep RL. Our study showed that different exploration bonuses are effective in
different settings, and that exploration behavior can vary substantially across
RL scenarios. These findings highlighted both the potential and the limitations
of current empirical approaches: while they reveal important patterns, the
notion of optimal exploration (i.e., how an agent should explore efficiently to
learn an effective policy) remains poorly understood. Moreover, deep RL still
lacks a solid theoretical analysis of how many samples are required to explore
effectively and converge to a near-optimal policy. This gap between empirical
evidence and theoretical guarantees motivates our next step. In this chapter,
we build a solid theoretical framework aimed at bridging this gap and providing
deeper insight into the foundations of exploration in RL.

While tabular and linear models have been thoroughly explored in RL
theory, kernel-based models have recently gained traction for their strong rep-
resentational capacity and theoretical tractability. They also provide a step-
ping stone toward understanding more complex nonlinear models, including

neural networks, which remain largely theoretical black boxes. Therefore, in
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this chapter, we examine the question of statistical efficiency in kernel-based
RL within the reward-free RL framework. Existing work addresses this ques-
tion under restrictive assumptions about the class of kernel functions. We
begin our investigation under the assumption of a generative model, then relax
this assumption at the cost of increasing the sample complexity by a factor of
H, the length of the episode. Our approach uses a broad class of kernels and
a simpler learning algorithm for efficient reward-free exploration compared to
prior work, deriving new confidence intervals for kernel ridge regression tai-
lored to our RL setting. We further validate our theoretical findings through

simulations.

5.1 Introduction

RL with nonlinear function approximation is a powerful method for learning
general Markov Decision Processes (MDPs) through interactions with the en-
vironment. Kernel ridge regression for the prediction of the expected value
function is perhaps one of the most versatile methods that has gained traction
in recent years [31, 181, 182], and lends itself to theoretical analysis. As a bur-
geoning research area, there are still numerous open problems and challenges
in this topic.

We focus our work on statistical aspects of RL within the reward-free RL
framework [183, 184, 185], which involves an exploration phase and a planning
phase. In the exploration phase, the reward is unknown; the algorithm inter-
acts with the environment to gather information about the underlying MDP,
in the form of a dataset of transitions. In the planning phase, the reward is
revealed; the algorithm uses the knowledge of the reward and the dataset gath-
ered in the exploration phase to design a near-optimal policy. The planning

phase is thus akin to offline RL [186, 187, 188, 189, 190, 191].
From a practical standpoint, this reward-free RL paradigm is particularly
well-suited for scenarios involving multiple reward functions of interest, such

as in constrained RL [192, 193, 194]. In many applications, it is necessary to
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modify the reward function to encourage new or more desirable behaviors. For
instance, consider the task of training a robot to navigate through an environ-
ment while balancing competing objectives such as speed, energy consumption,
and safety. Initially, the designer may prioritize efficiency, only to later real-
ize that the policy violates safety constraints or consumes too much energy.
Tuning the reward function to encode these preferences typically requires re-
running RL from scratch, which involves additional costly interaction with the
environment. To avoid repeatedly invoking the learning algorithm and inter-
acting with the environment, it is desirable for the agent to efficiently explore
the environment without access to the reward, collecting a dataset with good
coverage over all possible scenarios in the environment. This dataset can then
be reused during planning to compute near-optimal policies for a variety of

reward functions.

In this chapter, we answer the following fundamental question: Under
some reasonable assumptions on the underlying MDP, what is the minimum

number of samples required to enable designing a near-optimal policy?

We refer to the number of samples as sample complerity and measure the
optimality of the eventual policy in terms of error in the value function. In
particular we refer to a policy as e-optimal if its value function is at most a

small € > 0 away from that of the optimal policy for all states.

The reward-free RL framework has been studied in tabular [183] and lin-
ear [184, 195, 196] settings. Under the tabular setting, it has been shown
that O(|S|?|A|H?/e?) samples are sufficient to achieve an e-optimal policy,
where § and A are the state and action spaces, respectively, and H repre-
sents the length of episode. In the linear setting, a sample complexity of
O(d®H®/e?) has been established that does not scale with the size of the
state-action space, but the ambient dimension d of the linear model repre-
senting the transition structure of the MDP. With the limitations of the lin-
ear model (e.g., as shown in [197]), recent works have considered nonlinear

function approximation in RL. The work of [185] considered the reward-free
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RL framework with kernel-based function approximation. However, their re-
sults only apply to very smooth kernels with exponential eigendecay, such as
Squared Exponential (SE), but fail to provide finite sample complexity appli-
cable to a large class of kernels of interest with polynomial eigendecay (see
Definition 1), such as Matérn family or Neural Tangent kernels (NTK). This
shortcoming arises from the bias in the collected samples. Specifically in the
exploration phase of [185], the samples are adaptively collected to achieve a
high value with respect to a hypothetical reward—proportional to the uncer-
tainties of the kernel ridge regression—introducing bias to the samples and
inflating confidence intervals. Another closely related work on reward-free RL
in the kernel setting is [198], which, like [185], uses a hypothetical reward pro-
portional to the uncertainty of kernel ridge regression. However, it improves
upon [185] by providing order-optimal sample complexities for kernels with
polynomially decaying eigenvalues, where [185]’s results are unbounded. This
is achieved via an adaptive domain partitioning procedure inspired by [181]. In
this method, the state-action domain is adaptively divided into multiple sub-
domains as samples are collected, with kernel-based value function estimates
constructed based on samples from the same subdomain, while discarding pre-
vious observations from other subdomains. Although their approach offers
theoretical advantages, it is tedious to implement in practice due to complex
domain partitioning structure. Moreover, discarding samples may degrade the
empirical performance, a concern that is not addressed in [198]. Additionally,
their theoretical results depend on specific assumptions about the relationship
between kernel eigenvalues and domain size, which limits generality of their
work. A detailed comparison between our work and the two closely related
works of [185] and [198] is provided in Section 5.2.2 along with a more com-

prehensive literature review in Section 5.2.1.

In contrast to the existing work, this chapter establishes near-optimal sam-
ple complexities for the reward-free kernel-based RL framework over a general

class of kernels, without relying on restrictive assumptions. This is accom-
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plished via a simple algorithm and a novel confidence interval for unbiased
samples, broadly applicable to other RL settings (offline RL, model-based, in-
finite horizon), and supported by empirical evidence. Specifically, we start
with a case where a generative model [199] is present and it permits the al-
gorithm to sample state-actions of its choice during the exploration phase,
not limiting the algorithm to stay on the Markovian trajectory. This setting
has been extensively considered in previous work on statistical efficiency of
RL (see, e.g., [200, 201, 202, 203, 204, 205]). In the presence of a generative
model, we propose a simple algorithm that collects unbiased samples by choos-
ing the state-actions with highest kernel-based regression uncertainty at each
step. We derive order-optimal sample complexities for this algorithm in terms
of %, while [198] do not offer any particular advantages in the generative model
case. Generative models are applicable in scenarios like games where the al-
gorithm can manipulate the current state, offering insights into the statistical
aspects of RL. However, this may not be the case in other scenarios. Inspired
by the analysis of the exploration algorithm with a generative model, we pro-
pose a second online exploration algorithm that collects samples adhering to
the Markovian trajectory. We prove that this relaxing of generative model

requirement incurs merely an H factor increase in the sample complexity.

To highlight the significance of our results, we consider kernels with poly-
nomial eigendecay that are of practical and theoretical interest [67, 206, 207].
When the eigenvalues of the kernel decay polynomially as O(m™P)—see Defini-
tion 1—the results of [185] lead to possibly vacuous (infinite) sample complex-

2

((%3)2+1ﬁ) sample complexity for the generative

ities, while we prove an O
setting and O(H (H?S)Qﬂ%) for the online setting. Our sample complexity
results are comparable to those of [198]. In a technical comparison, their
approach requires a specific assumption on the dependence between kernel
eigenvalues and domain size (see Definition 4.1 in [198]), which we do not.

Additionally, they employ a sophisticated domain partitioning algorithm that

is more difficult to implement and possibly inefficient in practice, whereas our
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algorithm is simpler and more straightforward. In the case of Matérn kernel
with smoothness parameter v on a d-dimensional domain, where p =1+ 27”,
our results translate to a sample complexity of O(H (%3)2+g), that matches
the Q((%)%g) lower bound proven in [65] for the degenerate case of bandits
with H = 1. Our sample complexities thus are not generally improvable in
their scaling with %

To achieve these results, we establish a confidence interval applicable to
kernel ridge regression in our RL setting that may be of broader interest. The
key technical novelties of this confidence interval involves leveraging the struc-
ture of RKHS and the properties of unbiased, independent samples. The main
results regarding the confidence interval and sample complexities of the two
exploration algorithms, with and without the generative model, are presented
in Theorems 1, 2 and 3, respectively, in Section 5.5. We empirically validate
our analytical findings through numerical experiments comparing the perfor-
mance of our proposed exploration algorithms with that of [185], as detailed
in Section 5.6. Section 5.2 provides an overview of related work, Section 5.3
introduces episodic MDPs, the reward-free RL framework, and kernel-based
models. Section 5.4 presents our algorithms for both the exploration and plan-
ning phases. Detailed proofs of theorems, along with the details of experiments

and further experimental results, are included in Appendix B.

5.2 Related Work

In this section, we first present a more comprehensive literature review, in-
cluding related works that were not covered in Section 5.1. We also provide
a summary table of sample complexity results in the reward-free RL setting,
highlighting our key contributions. Following this, we offer a technical compar-

ison between our work and the two most relevant prior works, [185] and [198].

5.2.1 Literature Review

Numerous studies have addressed the sample complexity problem in the dis-

counted MDP framework with an infinite horizon, where the agent has sam-



5.2. Related Work 108

Table 5.1: Existing sample complexities in reward-free RL. S, A, H, d and p rep-
resent the state space, action space, episode length, state-action space
dimension and parameter of the kernel with polynomial eigendecay, re-
spectively. Last two rows correspond to the performance guarantees for
the algorithms proposed in this work.

Setting Sample complexity
Tabular [183] o (st
Linear [184] O d3€16

€

6 1
Kernel-based (exponential eigendecay) [185] (@ deg;log(ﬁ))
Kernel-based (polynomial eigendecay) [198] O (HTB)QJ’p%l

= 7 T

Kernel-based (exponential eigendecay) (this work) O %;Og(f)
Kernel-based (polynomial eigendecay) (this work) O (H (Iis)ﬂpzl)

pling access to a generative model, such as [208, 201, 204]. Alternatively,
other research has focused on the episodic MDP framework, without re-
liance on a generative model or an exploratory policy. Both the tabular set-
ting [17, 18, 19] and the linear setting [20, 21, 22, 23, 24] have been thoroughly
examined. Recent literature has extended these techniques to the kernel set-
ting [31, 209, 210, 211, 181], although further improvements are needed in
achieving better regret bounds. In contrast to these prior works which as-
sume that the reward function is provided, we explore the episodic reward-free
setting in this work, both with and without a generative model. This set-
ting is significantly different from standard RL, rendering the existing sample

complexity results inapplicable to our context.

In the context of reward-free RL, numerous empirical studies have pro-
posed various exploration methods from a practical perspective, as demon-
strated by works such as [131, 135, 212]. Theoretically, researchers have ex-
plored the reward-free RL framework across different levels of complexity,
ranging from tabular to linear, kernel-based, and deep learning-based mod-
els [183, 184, 185] (Table 5.1). Although the existing literature adequately

covers the tabular and linear settings, it often provides only partial and in-
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complete findings when addressing the more intricate kernel-based and deep
learning settings. The most relevant work in the kernel setting is [185], which

H6polylog(%) >
2 .

provides a reward-free algorithm whose sample complexity is O < .

Their results however are only applicable to very smooth kernels with exponen-
tially decaying eigenvalues. The recent work of [198] proved a sample complex-
ity of O ((Pf)%le) for kernels with polynomial eigendecay. However, they
employ a niche domain partitioning technique that, despite its theoretical ap-
peal, is cumbersome to implement and raises practical concerns, as mentioned
earlier.

Finally, it’s important to mention that the planning phase of our proposed
algorithm is similar to the problem of learning a good policy from predefined
datasets, typically called batch or offline RL [189]. Many prior works on offline
RL make the coverage assumption on the dataset, requiring it to sufficiently
include any possible state-action pairs with a minimum probability [186, 187,
191, 188]. These works do not address the exploration needed to achieve such
good coverage, which is where our reward-free approach significantly differs.
Our goal is to demonstrate how to collect sufficient exploration data without
any reward information, enabling the design of a near-optimal policy for any

reward function during the planning phase.

5.2.2 Comparison to Existing Works

Here, we discuss the key differences between our approach and the closely re-
lated works of [185] and [198]. In [185], they conduct exploration by accumulat-
ing standard deviation over an episode, then they apply a planning phase-like
algorithm to maximize a reward proportional to 3(d)oy,, at each step of an
episode. However, this approach can inflate the confidence interval width mul-
tiplier 5(d) by a factor of m , potentially leading to suboptimal or even
trivial sample complexities when m is large, as seen in [185]. Specifically,
their results are applicable to very smooth kernels like SE, with exponentially
decaying Mercer eigenvalues, for which I'(n) = O(polylog(n)). For kernels with

1
polynomial eigendecay, where I'(n) = O(np+1) grows polynomially with n, this
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algorithm possibly leads to trivial (infinite) sample complexities. Intuitively,
the inflation of 3(¢) is due to the adaptive sampling creating statistical depen-
dencies among observations, specifically through next state transitions. When
such dependencies exist, the best existing confidence intervals are based on
a kernel adaptation of self-normalized vector values martingales [213]. The

['(n) term cannot be removed in general for adaptive samples that introduce

bias, as was discussed in [32] and [214].

The work in [198] utilizes domain partitioning, relying on only a subset of
samples to obtain confidence intervals. This approach achieves order-optimal
sample complexity for kernels with polynomial eigendecay, offering an H-factor
improvement compared to our work in the online setting. However, firstly,
their results are limited by specific assumptions regarding the relationship
between kernel eigenvalues and domain size, which reduces the generality of
their findings. Secondly, their domain partitioning method is cumbersome to
implement and lacks practical justification, as it requires dropping samples
from other subdomains. In contrast, our algorithm achieves order-optimal
results for general kernels with a simpler approach that leverages statistical
independence. Moreover, our method is well-suited to the generative setting,

where their approach offers no clear advantages.

5.3 Preliminaries and Problem Formulation

In this section, we introduce the episodic MDP setting, describe the reward-
free RL framework, provide background on kernel methods, and outline our

technical assumptions.

5.3.1 Episodic MDP

An episodic MDP can be described by the tuple M = (S, A, H, P,r), where
S denotes the state space, A the action space, and the integer H the length

of each episode. Here, r = {rh}hH:1 represents the reward functions, and P =
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1 The state-action space is

{Ph}hH:1 the transition probability distributions.
denoted by Z =S8 x A. The notation z = (s,a) is used throughout the chapter
for state-action pairs. For each step h € [H], the reward function r : Z — [0, 1]
is supposed to be deterministic for simplicity, and Pj(-|s,a) is the unknown
transition probability distribution on S for the next state given the current
state-action pair (s,a). A policy = {m;, : S — A}L, determines the action
7 (s)—possibly random—taken by the agent at state s during each step h.
At the beginning of each episode, the environment picks an arbitrary initial
state s1. The agent adopts a policy 7 = {m, }/L,. For each step h € [H], the
agent observes the current state s, € S, and selects an action aj = m,(sp).
The subsequent state, sp11, is then drawn from the transition probability
distribution Py (+|sp,ap). The episode ends when the agent receives the final
reward rg(Sg,am).

We are interested in maximizing the expected total reward in the episode,
starting at step h. This is quantified by the value function, which is defined

as follows:

H

Z T’h'(Shuah')

h'=h

Vi(s)=E

sh:3] ,VseS,h e [H], (5.1)

where the expectation is taken with respect to the randomness in the trajectory
{(sn,an)} L, obtained by the policy m. It can be shown that under mild
assumptions (e.g., continuity of Pj,, compactness of Z, and boundedness of r),
there exists an optimal policy 7* which attains the maximum possible value of
ViT(s) at every step and at every state (see, e.g., [215]). We use the notation
Vi (s) = max, V/"(s), Vs € S,h € [H]. By definition V;™ = V. An e-optimal

policy is defined as follows.

Definition 2. (e-optimal policy) For € >0, a policy m is called e-optimal if it
achieves near-optimal values from any initial state as follows: Vi*(s) > Vi*(s) —

e, VseS.

I'We deliberately do not use the standard term transition kernel for Pj,, to avoid confusion
with kernel in kernel-based learning.
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Policy design often relies on the expected value of a value function with re-
spect to the transition probability distribution, presented using the following

notation:

[PaV(s,a) = Egop,(fs.0) [V (s)]. (5:2)
We also define the state-action value function QF : Z — [0, H] as follows:

H

Z Th/(Sh',ah')

h'=h

QZ(S,CL) :Eﬂ'

Sp = Ss,ap = a] , (5.3)

where the expectation is taken with respect to the randomness in the trajectory
{(sn,an) YL, obtained by the policy 7. The Bellman equation associated with

a policy 7 is then represented as

QZ(S,CL) = T’h(S,(I) + [PhViZTJrl](Sva)v

Vi (8) = E[QR(s,mn(s))], Vi1 =0.

The notation V' =0 is used for V(s) =0, for all s € S. We may specify the
reward function in V7™ Q™ V* @Q* notations for clarity, for example, V™ (s;r)

and Q*(z;r).

5.3.2 Reward-Free RL Framework

We aim to learn e-optimal policies while minimizing the samples collected
during exploration. Specifically, we employ the reward-free RL framework,
which consists of two phases: exploration and planning. In the explo-
ration phase, we collect a dataset Dy = {Dj n}pen], Where each Dy y =
{(Sh,mah,mS;HLn ~ Ph('|5h,mah,n)) }nE[N] consists of N transition samples at
step h. Then, in the planning phase, once the reward r is revealed, we design
a policy specific to reward r using the data collected during the exploration
phase. The number N denotes the sample complexity required to design an e-
optimally performing policy. A critical question arises: How many exploration
episodes are necessary to achieve e-optimal policies? We provide an answer in

this chapter.



5.3. Preliminaries and Problem Formulation 113
5.3.3 Kernel Ridge Regression

As introduced in Section 2.6.2, kernel-based methods are effective for estimat-
ing the expected value function in RL. In this section, we present the kernel
ridge regression formulation used in our setting, focusing on its role in deriving

statistical predictions and confidence intervals.

Keeping the Bellman equation in mind, we derive statistical predictions
and bounds for the expected value function [PV]: Z — R, for some given value
function V' : § — R and conditional probability distribution P(-|z). Let us use
the notation f = [PV]. Suppose that we are given n noisy observations of f,

represented as {(zi,vi)} where y; = f(z;) + ¢, and €; denotes zero-mean

i€[n]»
random noise. Provided a positive definite kernel k£ : Z x Z — R and employing

kernel ridge regression, we can make the following prediction for f:

A

Jal2) = by (2) (K +721) "y, (5.4)

where ky,(2) = [k(2,21),k(2,22),-- ,k(2,2,)] " is the pairwise kernel values be-
tween z and observation points, K; = [k(2;,2))]; je[n is the Gram matrix,
Yn = y1,92," ,yn]T is the vector of observations, 7 > 0 is a free parameter,
and [ is the identity matrix, appropriately sized to match the dimensions of
K,,. In addition, the following uncertainty estimate can be utilized to bound
the prediction error:

02(2) =k(z,2) =k} (2)(Kp+72) " kp(2) (5.5)

n

In particular, various 1 —d confidence intervals of the form |f(z) — fn(2)| <
B(0)on(2), under various assumptions, are proven, where [((J) is a confi-
dence interval width multiplier that depends on the setting and assump-
tions [213, 66, 70, 72]. One of our primary contributions is establishing novel
confidence intervals for f = [PV], applicable to our RL setting. Equipped with
the confidence intervals, we are able to design policies using least squares value

iteration or its optimistic variant.
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Reproducing Kernel Hilbert Spaces (RKHS) and Mercer Represen-
tation. We briefly recall the definitions of RKHS and the Mercer theorem
from Chapter 3, Section 3.3.2. Given a positive definite kernel k, the associated
RKHS H, consists of functions f that can be written as f = >77_1 Wi/ Ym ©m,
where {7V, pm} are the Mercer eigenpairs of k. The RKHS norm is given by
||f||%_lk = %_ w2, that is, the £2-norm of the weight vector w = [w1,ws, -] .
For formal statements and further details, please refer to Appendix B.5.

To effectively use the confidence intervals established by the kernel-based mod-

els on f, we require the following assumption.

Assumption 1. We assume Py(s|-,-) € Hy, for some positive definite kernel
k, and ||Py(s|-,-)||2, <1, for all s€ S and h € [H].

Consequently, for all V : S — [0, H], we have ||[PV]|y, = O(H). See [216],

Lemma 3, for a proof.

Information Gain and Eigendecay. As introduced in Chapter 3 (see Sec-
tion 3.3.5), the maximum information gain I'(n) quantifies the complexity of

kernel-based RL and bandit problems [67, 68]:

1 K,
I['(n)= sup —logdet ([—I— 2) : (5.6)
{m)p,c22 T

Its growth is governed by the decay rate of the eigenvalues of the kernel (Def-
inition 1). In particular, as discussed in Chapter 3, I'(n) = O(polylog(n)) for
kernels with exponential eigendecay (e.g., SE kernels), and T'(n) = O(n!/?)
for kernels with polynomial eigendecay (e.g., Matérn kernels), with important

implications for regret bounds in RL and bandits [68].

5.4 Algorithm Description

We now present our algorithms for both the exploration and planning phases.
We begin by presenting the algorithm for the planning phase, as it remains

unchanged across various exploration algorithms.
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5.4.1 Planning Phase

In the planning phase, the reward function r is revealed to the learner. In addi-
tion, a dataset Dy = {Dj N }pe(m) 18 available, with Dy, x = {sp 5, ap.n, S;L+1,n ~
P(“|8hmns@hn) fnen) for each step h € [H]. The objective is to leverage the
knowledge of the reward function and utilize the dataset to design a near-
optimal policy. As mentioned in the introduction, the planning phase com-
prises of an offline RL design without further interaction with the environment.

In the planning phase of our algorithm, we derive a policy using least
squares value iteration. Specifically, at step h, we compute a prediction, §j,

for the expected value function in the next step [P,V}41]. We then define

Qn(+) = Mo,y [rn( ) +3n () + B@)onn (-] (5.7)

where IIj, 3 denotes projection on [a,b] interval. The policy 7 is then obtained

as a greedy policy with respect to Q. For each h € [H],

7(2) = argmax Qs (-a).
acA

We now detail the computation of ;. Keeping the Bellman equation in mind
and starting with Vi1 = 0, gy, is the kernel ridge predictor for [PV}, 1]. This

prediction uses /N observations

-
Yn = [Var1(8h1.1): Va1 (Shi12) - Vi (Shoa )]

at points {25, }2_;. Recall that Egp(lzp ) Vie1(8)] = [PuVit1](2h,n). The
observation noise Vj,41(s}, +17n) — [PnVh41l(2n,n) is due to random transitions

and is bounded by H —h < H. Specifically,

an(2) = ky N () (T T+ Ky n) yn, (5.8)

where kp v (2) = [k(2,2n,1),k(2, 2n.2), -+, k(2, zhw)]T is the pairwise kernel val-

ues between z and observation points and Kj n = [k(zni, 2h,j)]i je(n) is the
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Gram matrix. Also, oy, y in (5.7) is specified as follows:
oi N (2) = k(2,2) =k N (2) (P21 + K )~ kv (2). (5.9)

We then define @), according to (5.7) and set

Vi(s) = Teaj( Qn(s,a).

The values of gy, o v, Qn and Vj, are obtained recursively for h = H, H —

1,---,1. For a pseudocode, see Algorithm 7.

Algorithm 7 Planning Phase
Input: 7, 5, 9, k, M(S, A, H, P,r), and exploration dataset Dy.
forh=H,H—1,---,1,do
Compute the prediction g, according to (5.8);
Let Qn(-,-) =10 mgn () +ral )+ B0)onn(.,.)];
Vi() = maxaea@nl-,a):
() = argmax e 4 Qnl-,a);
end for
Output: {Wh}he[H]'

5.4.2 Exploration Phase

In the exploration phase, the algorithm collects a dataset Dy = {Dp N }pe[n),
where Dy, y = {sh’n,ah’n,s;LJan}he[H]’ne[N} for each h € [H], later used in the
planning phase to design a near-optimal policy. The primary goal during this
phase is to gather the most informative observations.

Initially, we consider a preliminary case where a generative model [199]
is present that can produce transitions for the state-actions selected by the
algorithm. Under this setting, we demonstrate that a simple rule for data
collection leads to improved and desirable sample complexities. Inspired by
these results, we introduce a novel algorithm that completely relaxes the re-
quirement for a generative model, at the price of increasing the number of
exploration episodes by a factor of H. The key aspect of our algorithms is the

unbiasedness—statistical independence of the collected samples, which means
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that the observation points do not depend on previous transitions.

Algorithm 8 Exploration Phase with Generative Model
Require: 7, k, S, A, H, P, N;

1: Initialize Dy o = {}, for all h € [H];

2: forn=1,2,---,N do

33 for h=12---,H do

4: Let spp,apn =argmaxges ge 4 Ohn—1(8,0);
5: Observe i, 1, ~ Ph(“|Shn: ann);

6: Update Dhm = Dh,n—l U{Sh,nu Qhn, S;H-Ln}'
7. end for

8: end for

9: Output: Dy.

Algorithm 9 Exploration Phase without Generative Model
Require: 7, k, 3,6, S, A, H, P, N,
Initialize Dy, o = {}, for all h € [H];
forn=1,2,---,N do
for hp=1,2,--- ,H do
Initialize Vjy11, =0
for h=hg,hg—1,---,1 do
Obtain fh7(n7h0); Qh,(n,ho)» aANd Vi, (n.h0)(+) according to (5.12) and
(5.13), respectively.
end for
for h=1,2,--- ,hg do
Observe sp, ,; Take action ap,, = argmax,c 4 Qn.n(Sh.n,a);
end for
Update Dho,n - Dho,n—l U{Sho,naaho,na 3h0+1,n}
end for
end for

5.4.2.1 Exploration with a Generative Model

In this section, we outline the exploration phase when a generative model is
present. At each step h of the current exploration episode, uncertainties de-
rived from kernel ridge regression are employed to guide exploration. Specifi-
cally, let

o7 n(2) = k(2,2) =k (2) (T2 L+ K )~ ko (2) (5.10)

where kyp, ,,(2) = [k(2,2n1),k(2,2n,2), - ,k(z,zhm)]T is the vector of kernel val-

ues between the state-action of interest and past observations in Dy, ,, and
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Kpp= [k(zh7i,zh7j)]§fj:1 is the Gram matrix of pairwise kernel values between

past observations in Dy, ,. Equipped with oy, ,(2), at step h, we select

Shyn, Qhp = ATEMAX 0}, 1 (8, a), (5.11)
seS,acA
and observe the next state SZ_H,R ~ Py(|shn,ann). We then add this data
point to the dataset and update Dy, , = D1 U {(sh,n,ahm,sﬁlﬂm)}. For a
pseudocode, see Algorithm 8.

We highlight that the selection rule (5.11) relies on the generative model
that allows the algorithm to deviate from the Markovian trajectory and move
to a state of its choice. Since observations (sp ,,ap,) are selected based on
maximizing oy, ,—1, which by definition (5.10) does not depend on previous
transitions {s), 41 ?:_11, the statistical independence conveniently holds. The
generative model setting is feasible in contexts such as games, where the player
can manually set the current state. However, this may not always be possible
in other scenarios. Next, we introduce our online algorithm, which strictly

stays on the Markovian trajectory.

5.4.2.2 Exploration without Generative Models

In this section, we show that a straightforward algorithm, in contrast to exist-
ing approaches, achieves near-optimal performance in an online setting with-
out requiring a generative model. Compared to the scenario with a generative
model, the sample complexity of this algorithm increases by a factor of H.
For a detailed and technical comparison with existing work, please refer to

Section 5.2.2.

Our online algorithm operates as follows: in each exploration episode, only
one data point specific to a step h is collected—this accounts for the H scaling
in sample complexity. This observation however is collected in an unbiased
way, which eventually leads to tighter performance guarantees. Specifically,
at episode nH + hg, where n € [N] and hg € [H], the algorithm collects an

informative sample for the transition at step hg. This results in a total of N
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samples at each step over VH episodes. The algorithm initializes V}, 1 (5,h0) =
0. Let fh,(n,ho) and oy, , represent the predictor and uncertainty estimator for
[thh+1,(n,ho)]v respectively. These are derived from the historical data Dy, ,_q

of observations at step h. Specifically,

A

fh,(n,h()) (Z> - klIn(Z)(Kh,n + TZI)_lyh,m

0';21771(2) = k(zv z) - kl—zr,n(z) (Kh,n +T2])_1kh,n<z)> (5'12)

where kj,,(2) = [k(2,2n,1),k(2,2n,2), - ,k(z,zh,n)]—r is the vector of kernel
values between the state-action of interest and past observations in Dy, ,,
Kp = [k(2n,i, 2n,5)]7 j—1 18 the Gram matrix of pairwise kernel values between

past observations in Dy, ,,, and

Yn o) = Vit (mho) (5h41,0) Vi1 0uhg) (Sh1.2)s - Vi1 (mohg) (Sh1n)] -

is the vector of observations. We then have

Q@h,(n,ho) = Ho,m [fh7(n,h0) +6(5>0h,n} ,

Vi (n.ho) (+) = MAX Q (1,1g) (+,)- (5.13)

The values of Qp, (. o) and Vj, (1) are obtained recursively for all h € [ho]. The
exploration policy at episode nH + hg is then the greedy policy with respect
t0 Qp,(n—1,hy)- The dataset is updated by adding the new observation to the
dataset for step hg, such that Dy, ,, = Dpyn—1U{(Shgn,Choms Sho+1,n)}, While
datasets for all other steps remain unchanged: Dy, ,, = Dy, ,—1 for all h # hy.
This specific update ensures that the collected samples are unbiased. More
specifically, the sample collected at hy solely relies on the uncertainty oy, ,,
due to the initialization Vj, 41 (n,5,) = 0 which implies fho,(n,ho) =0. Since op
does not depend on previous transitions s(;,41,) for any ¢ <n, the samples
at h = hg are unbiased. However, for h < hg, the samples depend on both

the uncertainty oy, , and the prediction fh,(n,ho) (5.12). Since the prediction
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depends on the transitions s(;41 ;) for ¢ <n, these samples are biased. As a
result, we discard them and only retain the unbiased samples at h = hg. This
approach improves the rates in our analysis, albeit at the cost of a factor of H.

For a pseudocode, see Algorithm 9, and for a diagram sketch, see Figure 5.1.

-~

. a1
Episode 1 @—-@ Keep step-1 only, set V, ;) = 0

(ho=1)

N ~
) ay |~ 022
Episode 2 @4’@—’@ Keep step-2 only, set Vy ¢, = 0
(ho=2)
N ™~ ~

i a3 az3 asz3
Episode 3 @_.@—v Keep step-3 only, set V 33, = 0
(he=3)
. . .

. ~ ~ ~ ~ ~

' a a. a a . a
Episode H 1,H 2,H 3,H 4.H H,

p(h - @—»@—»@ss,y — > - Keep step-H only, set Vy+1,mm =0
o=

f Q1 H+
EF()IhSCEF; H+1 Keep step-1 only, set V3 (5744,1y = 0

o= (1,

Figure 5.1: High-level illustration of sample collection in the exploration algorithm
without a generative model (Algorithm 9). At each episode, only one
unbiased sample corresponding to step hy (shown inside the rectangle)
is collected. The backward arrows indicate the recursive computation
of the value functions.

5.4.3 Computational Complexity

The main computational bottleneck is the matrix inversion in kernel ridge re-
gression, which incurs a cost of O(n3), leading to a total complexity of O(N%)
for our algorithms. This is comparable to the complexities in related work, such
as [181] and [185]. Notably, the O(n?) cost of matrix inversion is not unique
to RL but is common across kernel-based supervised learning and bandit lit-
erature. Sparse approximation methods, such as Sparse Variational Gaussian
Processes (SVGP) and the Nystrom method, can significantly reduce this com-
plexity (in some cases, to linear time) while preserving kernel-based confidence
intervals and corresponding rates (e.g., [217]). However, since these methods

are broadly applicable rather than specific to our setting, we chose to maintain
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a clear, notation-light presentation focused on our main contributions.

5.5 Analysis of the Sample Complexity

In this section, we present our main results on the sample complexity of the
algorithms. We first establish a novel confidence interval that is applicable to
the unbiased samples collected by our exploration algorithms. We then provide

theorems detailing the performance of these algorithms.

5.5.1 Confidence Intervals

We introduce a novel confidence interval that is tighter than existing ones in
our RL setting and can also be applied to other RL problems such as offline

RL and infinite-horizon settings.

Theorem 1 (Confidence Bounds). Consider compact sets S C R% A C R,
and define Z=8x A, d=dq+ds. Consider two Mercer kernels ky,: Zx Z —R
and ky, : S xS — R. Assume that functions f: Z =R and V : S — R, and for
each z € Z, a conditional probability distribution P(-|z) over S, are given such
that f(2) = Eswp() V() [1fllme, < Brs IV, < B2, and maxsesV(s) <
Umax, for some Bi, B2, vmax > 0. Assume a dataset of {z;,si} is provided,
where each z; is independent of the set {s}}]_;, and s; ~ P(:|z). Let fn
and o" be the kernel ridge predictor and uncertainty estimator of f using the

observations:

fu(2) =k, () (T T+ Ky,)  y,
JTQL(Z) =ky(2,2) — k;n(z)(rzl—i-K n)_lk%(z), (5.14)

where y, = [V (s)),V(sh), -, V(! )]". In addition, let A, m =1,2,--- rep-
resent the Mercer eigenvalues of ky, in a decreasing order, and vy, the corre-
sponding Mercer eigenfunctions. Assume by, < Ymax for some YPmax > 0. Fiz

M €N, and let C be a constant such that C' > 2%21 Am-

Then, for a fized z € Z, and for all V', with ||V||ka < By, each of the following
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holds with probability at least 1 —9:

1£(2) = fu(2)] < B(8)on(2)

with B(0) =

C'Bathmax M. 2By¥max —
Bl+ﬁ 2]Og(7)+ﬁ n E A, -
T 0 T
m=M-+1

Theorem 1 provides a confidence bound for kernel ridge regression that is appli-

cable to our RL setting, and is a key result in deriving our sample complexities.

Proof sketch. To derive our confidence bounds, we use the Mercer represen-
tation of V and decompose the prediction error f(z)— f,(z) into error terms
corresponding to each Mercer eigenfunction ,,,. We then divide these terms
into two groups: the first M elements, corresponding to eigenfunctions with
the largest eigenvalues, and the remainder. For the top M eigenfunctions, we
establish high-probability bounds using standard kernel-based confidence in-
tervals from [70]. The remaining terms are bounded based on eigendecay, and

we sum over all m to obtain ().

Remark 1. Under some mild conditions, for example, the polynomial eigen-

decay given in Definition 1, the following expression can be derived for (3:

B(5) =0 <31 + % log (Z)) . (5.15)

With polynomial eigendecay, the remark follows from setting M to (np%ﬂ in
the expression of 8 in Theorem 1.

The confidence interval presented in Theorem 1 is applicable to a fixed
z € Z. Over a discrete domain this can be easily extended to all z € Z using
a probability union bound and replacing § with % in the expression of 5(d).
Using standard discretization techniques, we can also prove a variation of the
confidence interval that holds true uniformly over continuous domains. In par-

ticular, under the following assumption, we present a variation of the theorem



5.5. Analysis of the Sample Complexity 123

over continuous domains.

Assumption 2. For each n € N, there exists a discretization Z of Z such
that, for any f € Hy, with || f||3, < B1, we have f(z)— f([z]) < L, where [z] =

argmin,cz||2’ — z||;2 s the closest point in Z to z, and |Z| < cBin?, where c

is a constant independent of n and By.

Assumption 2 is a mild technical assumption that holds for typical kernels [67,

66, 70].

Corollary 1. Under the setting of Theorem 1, and under Assumption 2, the
following inequalities each hold uniformly in z € Z and V : HVHH;% < Bs, with

probability at least 1 — ¢

with B(8) = B, cn = c(un(3))n?, and u,(5) = O(\/n+1log(3).

Remark 2. Under some mild conditions, for example, the polynomial eigen-

decay given in Definition 1, the following expression can be derived for f3:

B(5) :O(Bﬁ% dlog (g)) (5.16)

5.5.2 Sample Complexities

We have the following theorem on the performance of Algorithm 8. The weak-
est assumption one can pose on the value functions is realizability, which asserts
that the optimal value functions V;* for h € [H] belong to the RKHS Hj, , for
some kernel ky : S xS — R, or at least can be well-approximated by Hj, "
For stateless MDPs or multi-armed bandits (MAB) where H = 1, realizability
alone is enough to guarantee provably efficient algorithms [67, 66, 70]. How-
ever, when H > 1, this assumption appears insufficient [218, 219], and stronger

assumptions are typically made in these settings [20, 220, 182]. Following these
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works, our main assumption is a closure property for all value functions in the
following class:

V= {s — min {H,max {r(s,a) +¢ ' (s,a)w+
acA

B\/ng(s,a)E_lcp(s,a)}}}, (5.17)

where 0 < 3 < 0o, ||lw| < oo, and ¥ is an oo x co matrix with X = 721.

Assumption 3 (Optimistic Closure). For any V €V, for some positive con-

stant ¢,, we have ||V||ka < ¢p.

This is the same assumption as Assumption 1 in [182] and can be relaxed
to value functions € away from this class as described in Section 4.3 of [182].
The assumption ensures that the proxy value functions (V3 ,) lie within the
RKHS of a suitable kernel ky. Notably, the RKHS of widely used kernels,
such as Matérn and NT kernels, can uniformly approximate any continuous
function over compact subsets of R? [67]. We have the following theorem on

the sample complexity of the exploration algorithm with a generative model.

Theorem 2. Consider the reward-free RL framework described in Section 5.3.
Assume the existence of a generative model in the exploration phase that allows
the algorithm to select state-action pairs of its choice at each step. Let Ny be

the smallest integer satisfying

9T (No) AB(O)H  AH
QHB((S)J Nolog(1+1/7%) VN Ny =€

with B(5) = O(gwdbg%)) with a sufficiently large constant. Run Algo-
rithm 8 for N > Ny episodes to obtain the dataset Dy . Then, use the obtained

samples to design a policy © using Algorithm 7 with 5(6) = (’)(gy/dlog(%))
with a sufficiently large constant. Then, under Assumptions 1, 2 and 3, with

probability at least 1 — 0, 7 is guaranteed to be an e-optimal policy.

The following theorem presents the sample complexity for exploration
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without generative models.

Theorem 3. Consider the reward free RL framework described in Section 5.3.

Let Ng be the smallest integer satisfying

2T (Np) 88(0)H (H +1)
3H(H + 1)6(5)J Nolog(1+ 1/72) VN
+4H(H+1)](\17;)g(No)+1) +2H\/N0(H+1)10g (?) < (5.18)

with B(5) = O(ﬁm) with a sufficiently large constant. Run Algo-
rithm 9 for NH > NoH episodes to obtain the dataset Dy. Then, use the
obtained samples to design a policy ™ using Algorithm 7. Then, under As-
sumptions 1, 2 and 3, with probability at least 1 — 0, w is guaranteed to be an

e-optimal policy.

The proof of theorems are provided in Appendices B.2 and B.3.

The expression of suboptimality gap after N samples, given in (5.18), can be

o (H3\/F(N)log(NH/6)) |

simplified as

N

~ 1
Remark 3. Replacing I'(N) = O(N?) in the case of kernels with polynomial
~ 2
eigendecay, we obtain a sample complexity of N = O((H?S)%Iﬁ). We also
recall that without a generative model, we interact with H times more episodes

to collect these samples. Specifically, the number of episodes in the exploration

phase is NH = O (H(ff))Z‘LpEl).

When specialized for the case of Matérn kernels with p=1+ 27”, we obtain
NH =0O(H (H?S)H%) that matches the lower bound for the degenerate case
of bandits with H = 1 proven in [65]. Our sample complexity is thus order
optimal in terms of € dependency. We also recall that the existing results lead

to possibly vacuous (infinite) sample complexities for these kernels.
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Figure 5.2: Average suboptimality gap against N. The error bars indicate stan-
dard deviation.

5.6 Experiments

We numerically validate our proposed algorithms and compare with the base-
line algorithms. From the literature, we implement [185], in which the ex-
ploration aims at maximizing a hypothetical reward of o, /H over each
episode n. The planning phase is similar to Algorithm 7. We also imple-
ment our exploration algorithms with and without a generative model: Algo-
rithms 8 and 9 respectively. Additionally, we implement a heuristic variation
of Algorithm 9, which collects the exploration samples in a greedy manner
Ahp = AIGMAX,e A O p(Shpn,a) while remaining on the Markovian trajectory
by sampling sp,11 ~ Py(|sp,ap). We refer to this heuristic as Greedy Maz
Variance. For all these algorithms, we use Algorithm 7 to obtain a planning
policy. In the experimental setting, we choose H =10 and § =.A = [0,1] con-
sisting of 100 evenly spaced points. We choose r and P from the RKHS of a



5.7. Conclusion 127

fixed kernel. For the detailed framework and hyperparameters, please refer to
Appendix B.4. We run the experiment for three different kernels across all 4
algorithms for 80 independent runs, and plot the average suboptimality gap
Vi(s) =V (s) for N = 10,20,40,80,160, as shown in Figure 5.2. Our proposed
Algorithm 9, without generative model, demonstrates better performance com-
pared to prior work [185] across all three kernels, validating the improved sam-
ple efficiency. Notably, [185] performs poorly with nonsmooth kernels. Greedy
Max Variance is a heuristic that in many of our experiments performs close
to Algorithm 9. Furthermore, with access to a generative model, Algorithm 8
performs the best. This is anticipated, as the generative model provides the
flexibility to select the most informative state-action pairs, unconstrained by

Markovian transitions.

5.7 Conclusion

In this chapter, we proposed novel algorithms for the kernel-based reward-free
RL problem, both with and without generative models, designed to efficiently
gather informative data that facilitates near-optimal policy planning once the
reward function becomes available. We demonstrated that, with a genera-
tive model, a simple algorithm can achieve near-optimal sample complexities.
Without the generative model requirement, we showed that an online algo-
rithm requires a sample complexity greater by a factor of H, implying that
online sampling is H times more costly. Our results apply to a general class
of kernels, including those with polynomial eigendecay, where existing meth-
ods may either lead to vacuous sample complexities [185] or require additional
assumptions and a sophisticated, difficult-to-implement domain partitioning

method [198]. Our experimental results support these analytical findings.

When compared to the lower bounds established in the degenerate case of
bandits with H =1 for the Matérn kernel, the order optimality of our results
with respect to € becomes evident. Nonetheless, an important limitation of

our analysis is the additional scaling with H that arises as the price of online
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samples, in contrast to the case where a generative model is present.

For our experiments, we considered very general environments by arbi-
trarily selecting the reward and the transition probability distribution from
the RKHS of a kernel. As a limitation, we did not provide experiments on
RL benchmarks. This is a deliberate choice that allowed us to focus on the
theoretical framework and, for example, experiment with various kernels with
different levels of smoothness. This approach facilitates a finer comparison
among algorithms. Investigating the performance of our methods on widely
used RL benchmarks constitutes an interesting and valuable direction for fu-

ture research.



Chapter 6

Bayesian Optimization from

Human Feedback

In the previous chapter, we studied exploration in RL from a theoretical per-
spective, contributing to the development of sample-efficient exploration al-
gorithms with convergence guarantees. Continuing with exploration as the
central theme, we now shift to settings where scalar reward signals are absent
and the agent instead receives feedback in the form of preferences between out-
comes. This perspective extends the study of exploration to scenarios where
learning must be driven by relative and limited feedback. Such preference-
based exploration is increasingly relevant in practical applications, most no-
tably in the alignment of LLMs, where specifying a reward function is difficult,

but preferences can provide powerful learning signals.

To study this problem formally, we adopt the framework of Bayesian
Optimization with preference-based feedback—referred to as Bayesian Op-
timization from Human Feedback (BOHF). Unlike conventional BO, where
the learner observes scalar-valued outcomes, BOHF relies solely on the pref-
erence between two candidate actions. The objective is to identify the best
action using a limited number of preference queries, which are often costly.
Existing work, which adopts the Bradley-Terry-Luce (BTL) feedback model,
provides regret bounds for the performance of several algorithms. In this chap-

ter, within the same framework, we develop tighter performance guarantees.
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Specifically, we derive regret bounds of O(,/T'(T)T), where I'(T) represents
the maximum information gain and 7' is the number of queries. Our results
significantly improve upon existing bounds and, importantly, recover the order-
optimal sample complexities of conventional BO with scalar feedback. In other
words, preference-based learning can achieve the same order-optimal sample
complexity as reward-based learning, despite operating with a more restrictive

feedback model.

6.1 Introduction

Optimizing a black-box function using only preference-based feedback between
pairs of candidate solutions has recently emerged as an interesting problem.
This approach finds application, for instance, in prompt optimization [221],
which aims to efficiently identify the best prompt for black-box LLMs, thereby
significantly enhancing their performance [222, 221, 223]. Obtaining a numeric
score to evaluate each prompt’s performance is often unrealistic, but human
users are generally much more reliable at providing preference feedback be-
tween pairs of prompts [221]. Since human feedback is costly, it becomes
essential to develop efficient methods that can sequentially select favorable

pairs of actions while minimizing the number of feedback instances required.

The theoretical framework for learning from preference-based feedback
(see, e.g., [116, 117]) can be modeled as Bayesian Optimization from Human
Feedback (BOHF). Similarly to conventional BO [224, 225, 67|, the learner
leverages previously collected samples through kernel-based regression to learn
an unknown black-box function. However, unlike conventional BO methods
that rely on direct evaluations of the target function, this approach collects
pairwise comparisons instead of direct evaluation feedback, adding further

complexities to the problem.
In the BOHF framework, at each time step t =1,2,---,T, the learner se-

lects a pair of actions (z¢,x}) and receives binary feedback y; € {0,1} represent-

ing the preference between the two actions. This binary feedback is modeled
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as a Bernoulli random variable, where the parameter is determined by apply-
ing a link function (here, sigmoid) to the difference in the unobserved utilities
corresponding to each action, quantifying the preference between them. Per-
formance is measured in terms of regret, defined as the cumulative loss in the
selected pairs of actions compared to the optimal action (details are provided
in Section 6.2). Kernel-based models employed within the BOHF framework
allow for powerful and versatile modeling of preferences among actions, lever-

aging structures, and handling continuous domains or very large action spaces.

Existing work establishes a regret bound of O (F(T V2T ) for the BOHF
problem [116]. In this expression, & is the maximum of the derivative of the in-
verse link function (see Equation (6.2)) and I'(T’) is the maximum information
gain, a kernel-specific and algorithm-independent complexity term (see Equa-

tion (6.11) for a slightly different notation compared to previous chapters).

It is insightful to compare the existing BOHF regret bound with the order-
optimal regret bounds of @( F(T)T) in conventional BO. In comparison, an
additional x? factor arises due to the feedback model. While this constant
is independent of T', it can be very large. There is also an extra /I'(T)
factor, which introduces potential challenges. As discussed in Section 3.3.5,
the information gain I'(T") is polylogarithmic in 7" for smooth kernels like the
Squared Exponential (SE), but grows polynomially for more general kernels
such as the Matérn family [69] and Neural Tangent kernels (NTK) [226]. In
such cases, the regret can grow linearly with 7', making the bound potentially

vacuous.

Our contribution is that we establish regret bounds of @( INVRVA ) for
the BOHF problem (Theorem 4), achieving a /I'(T") improvement and elim-
inating the dependency on k, resolving both issues and matching the regret
bounds of conventional BO. From our regret bounds, we derive the sample
complexities—the number of preference query samples required to identify
near-optimal actions. Our sample complexities match the lower bounds ob-

tained in [65] for conventional BO, which benefits from a richer feedback model
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with a different noise distribution. We will provide a technical discussion on
this in Section 6.4.

In summary, we establish the intriguing result that the number of pref-
erential feedback samples required to identify near-optimal actions is of the
same order as the number of scalar-valued feedback samples. This is in sharp
contrast and a significant improvement over the existing work [116, 117]. To
obtain the improved regret bounds, we propose an algorithm referred to as
Multi-Round Learning from Preference-based Feedback (MR-LPF). The pro-
posed algorithm proceeds in rounds. In each round, pairs of actions are se-
quentially selected based on the highest uncertainty in their preference. This
method effectively reduces uncertainties about the preferences between actions
by the end of each round. The uncertainties are represented by kernel-based
standard deviations. At the end of each round, the kernel-based confidence
intervals are used to eliminate actions unlikely to be the best. Our multi-round
structure is inspired by the BPE algorithm of [84], though the details and anal-
ysis differ significantly due to the preference-based feedback model. Details are
provided in Section 6.3. We show that this structure allows for a more efficient
use of kernel-based confidence intervals, contributing to improvements in both
['(T) and k.

We present experimental results on the performance of MR-LPF on syn-
thetic functions that closely align with the analytical assumptions, as well as on
a dataset of Yelp reviews, demonstrating the utility of the proposed algorithm

in real-world applications (Section 6.5).

6.1.1 Related Work

Two works closely related to ours are [116] and [117], which consider the exact
same BOHF framework. The work by [116] proposed the MaxMinL.CB algo-
rithm, which takes a game-theoretic approach to selecting the pair of actions
(x¢,27) at each time step ¢. Specifically, z; and x} are selected according to a
game, with the objective function defined as a lower confidence bound (LCB)

on the probability of favoring z; over zj. Hence, the name: x; is chosen to
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Mazimize and z; to Minimize the LCB (see [116], Algorithm 1). Their regret
bound scales as O (F(T V2T ), which may be vacuous for some commonly
used kernels and scales with x2, which can be a large constant.

Another closely related work is [117], which develops Principled Opti-
mistic Preferential Bayesian Optimization (POP-BO), an algorithm based on
the optimism principle. Specifically, at each time step ¢, x} is set to x4_1, one
of the actions from the previous time step, and x; is set to the maximizer of
an upper confidence bound (UCB) on the preference between the two actions
(see [117], Algorithm 1). They establish a regret bound of O ((F(T)T)3/4>,
which is larger than the one in [116] by a factor of (7/T'(T))"/* and similarly
may be vacuous for many cases of interest.! Their definition of regret is based
directly on the utility function and slightly differs from ours. However, it re-

mains equivalent to our regret definition up to a constant factor, as discussed

in [116].

Table 6.1: Comparison of regret bounds in BOHF.

[116] [117] This work
O (r(1)x*VT) | O((r(D)T)**) | O (VT(T)T)

Some other preferential BO methods mainly propose heuristics without

formal theoretical guarantees on regret or convergence proofs [227, 228, 229].

6.1.1.1 Conventional BO

Theoretical aspects of classical BO algorithms have been reviewed in Sec-
tion 3.3.7. Notably, methods such as GP-UCB [67] and GP-TS [66] achieve
cumulative regret bounds of O(T'(T)v/T).

To improve upon this rate, several algorithmic refinements have been pro-
posed. For example, SupKernelUCB [80], GP-ThreDS [83], and Batched Pure
Exploration (BPE) [84] attain tighter bounds of O(/I'(T)T"). Among these,
BPE is especially relevant to our work, as it introduces a multi-round ex-

ploration structure that has inspired the design of our MR-LPF algorithm.

1[117] does not explicitly report the scaling of the regret bound with .
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However, there are differences in the inference procedure and analysis, due
to the use of a reduced preference-based feedback model, which introduces

additional complexities in both algorithm design and theoretical analysis.

6.1.1.2 Dueling Bandits

The BOHF framework can be viewed as an extension of bandits with
preference-based feedback, also known as dueling bandits [87, 94]. For a de-
tailed review of this framework—see Section 3.4. In summary, earlier work
in this area largely focused on finite-action settings and aimed to learn a
pairwise preference matrix using tournament-based strategies or noisy sort-
ing procedures [98, 230, 231, 99]. These methods do not scale well to in-
finite or large action spaces. To address this, linear contextual dueling
bandits [93, 103, 232, 104, 105] introduced parametric utility models that
generalize across actions, albeit under the restrictive assumption of linear-
ity. More recent work has extended the dueling bandit problem to kernel-
based settings, though these still differ from our BOHF framework. For in-
stance, [113, 114, 115] reduce the problem to conventional BO by making strong
assumptions on the Borda function. In contrast, our analytical requirements
are significantly different from these approaches. A recent extension by [118]
considers neural dueling bandits with a wide neural network for preference
prediction. Their approach differs from ours in both modeling and action se-
lection, with regret bounds that depend on the model’s effective dimension

and the curvature parameter .

6.1.1.3 Reinforcement Learning from Human Feedback (RLHF)

Another related line of work is RLHF [233, 234, 235, 236, 108, 237], which has
gained popularity due to its success in finetuning LLMs [238]. In this context,
preference-based feedback is provided for MDP trajectories or policies rather
than pairs of actions. However, these results are primarily limited to tabular
(finite state-action) or linear settings and are not directly related to our kernel-

based setting.
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6.2 Preliminaries and Problem Formulation

In this section, we provide details of the BOHF framework. We also outline the

methods used to predict preference functions and estimate uncertainty, which

form the foundation of our algorithm’s design and analysis.?
6.2.1 BOHF Framework
At each step t = 1,2,--- T, the agent selects a pair of actions x; and x},

from the set X', which can either be a continuous space or a (possibly very
large) discrete set. We consider the following feedback model: Let y; € {0,1}
be a binary random variable indicating the preference between x; and x},
defined as y; = 1{xy > x;}. The notation x; = x} denotes that action x; is
preferred over action z; and 1 is the indicator function. Specifically, following
the existing work, for each pair (z,2') € X x X, the random variable y =
1{z > 2’} is modelled as a Bernoulli random variable satisfying P(y = 1|z,2’) =
p(f(@)=f@). Py = Uar,zi) = p(f(2e) = f(1)) = p(h(ze,21)). Here, p
R — [0, 1] is a known monotonically increasing link function satisfying p(0) = %
that is assumed to be the sigmoid function u(-) = (14+e~ )71 and f: X - R s
an unknown latent utility function that quantifies the value of each action. This
preference feedback model is referred to as the Bradeley-Terry-Luce (BTL)
model [102] and is widely utilized in bandit and RL problems with preference
feedback [116, 117, 109, 236].

We note that when f(z) > f(2'), we have P(z > ') = P(y = 1]z,2') =
p(f(x)—f(2") > %, and vice versa. We also emphasize that this feedback
model is weaker than the standard BO where the per-step utility signal (the

quantitative value of f) is revealed, typically as a scalar value.

The goal is to sequentially select favorable action pairs over a horizon of

2Several symbols used in this chapter take on meanings that differ from earlier chapters:
(i) z = (z,2") denotes a pair of actions in BOHF (cf. Chapter 4, where z is a latent skill,
and Chapter 5, where z = (s,a) is a state-action pair); (ii) h denotes a preference function
h: X x X — R, in contrast to its use as the episode step in Chapter 5; (iii) r is used to
denote the round index in the BOHF setting, not to be confused with the reward variable
used in the previous chapters; (iv) the regularization parameter 72 in kernel ridge regression
is denoted as A in this chapter. All notations are defined locally when first introduced.
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T steps, and converge to the globally preferred action x*, defined as x* =
argmaxgcy f(z). A common objective adopted in the literature is to design
an algorithm with sublinear cumulative regret over the horizon 7', defined as
the sum of the average sub-optimality gap between the selected pair and the

globally optimal action:

(x* = ) + P(a* = 2p) — 1
5 :

P
R(T) =Y (6.1)
t=1
It can be shown that the value of regret above is equivalent to a variation of

regret defined on the utility function: 1, (f(z*) — (f(x¢) + f(x})) /2)—used

in [117)]—up to constants that depend on the link function [107].

The notion of regret accounts for the entire sequence of query points
throughout steps t =1,2,...,T. Alternatively, one may be interested solely in
the final performance. In this case, the algorithm outputs 7 at the end of
T samples, and the performance is measured in terms of P(z* > Zp) — % We
refer to the number of samples 7' required to ensure P(z* = Z7) —% <, for
some 0 < € < 1/2; as the sample complexity and also remark on the sample

complexity of different algorithms.

An important quantity that appears in the analysis is

1
K= sup (6.2)

zx'eX M(f(m) - f(:t}/»,

where fi denotes the derivative of the link function p and x captures its cur-
vature. The dependence on x has been extensively studied in linear logistic
bandits, with recent works successfully removing the regret dependency on
k [239]. To emphasize the significance of this quantity, consider the case where
f is bounded within the interval [—5,5]. In this scenario, k can become ex-
tremely large (> 22028). When the algorithm selects an action pair (z,2’) that
are nearly equally favorable, f(x)— f(x’) will be close to 0, in which case the
inverse derivative of the sigmoid function is almost a constant 4. However,

when one action is clearly preferred over the other, |f(z) — f(z’)| becomes
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large, making the inverse derivative of the sigmoid function very large. There-
fore, a crucial aspect of algorithm design is to remove the dependency on
defined in (6.2) by ensuring that the algorithm gradually queries only closely

preferred actions.

6.2.2 Preliminaries and Assumptions

Similar to [116, 117], we assume that the utility function f belongs to a known
Reproducing Kernel Hilbert Space (RKHS). This is a very general assumption,
considering that the RKHS of common kernels can approximate almost all
continuous functions on the compact subsets of R? [67] . Consider a positive
definite kernel k : X x X — R. Let Hj be the RKHS induced by k, where H;,
contains a family of functions defined on X. Let (-,-)y, : Hi x Hr — R and
|| 124, : Hi — R denote the inner product and the norm of Hy, respectively. For
a formal statement on RKHS and Mercer Theorem, please see Appendix B.5.
Let us use the notation z = (x,2’) and h(z) = f(z) — f(2'), for (z,2') € X x X.

As shown in [116], we can define a dueling kernel
k(z1,22) = k(x1,22) + k(2), 25) — k(x1,25) — k(2] 22), (6.3)

where, we have: || f|l2, = |||, (see [116], Proposition 4).

Below is a formal statement of our assumptions on f.

Assumption 4. We assume that the utility function is in the RKHS of a
known kernel k satisfying || f|l2, < B for some constant B > 0. Without loss
of generality, we assume that the kernel function is normalized k(.,.) <1 ev-

erywhere in the domain.

6.2.3 Preference Function Prediction and Uncertainty

Estimation

The preference-based feedback model in BOHF is weaker than the standard
BO, where quantitative observations of utility are available at each step. Before

discussing the case with preference feedback, we briefly recall kernel ridge
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regression in the standard BO setting from Chapter 3, Section 3.3.3.

Hypothetically, assume a dataset {(x;,0;)}i_; of observations of f is avail-
able, where o; = f(z;)+¢;, with observation noise €;. As described in Sec-
tion 3.3.3, kernel ridge regression provides a predictor ft and an uncertainty
estimate o7(x) by minimizing a regularized least-squares error optimization,

leading to closed-form expressions for both quantities:

filw) =k (@) (K + A1) oy
ol (x) = k(z,x) — k] (2)(K;+ M) Yke(z), (6.4)

where ki(z) = [k(z,7;)]i_; represents the pairwise kernel values between the
prediction point z and the observation points, K; = [k(x;, :17]-)]2 j=1 is the kernel
(or covariance) matrix, A > 0 is a free parameter, and o; = [0;]!_; is the vector

of observation values.

Confidence intervals of the form |f(z) — fi(2)| < B(0) o4(2), where 5(8) is
a confidence interval width multiplier for a 1 — 9 confidence level, have been
shown in several works [213, 66, 70, 72] under various assumptions, and serve

as key building blocks in the analysis and algorithm design of standard BO.

In the absence of straightforward observations o; and with preference-
based feedback, a closed-form prediction is no longer available. Intuitively,
this case resembles a classification-like problem with binary outputs, where we
can employ a logistic negative log-likelihood loss. Specifically, for a history
of preference feedback Hy = (1, 2],41),. .., (x¢, 2}, y¢) in the BOHF framework,

we define the following loss:

Ly (h,Hy) = Z yilog p(h(zi,z}))
=1

— (1= yi)log(1 — (h(az ) + 1Rl

A prediction hy of the preference function h (difference in the utilities) can be
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obtained as:

ht = al'ghﬂelqi_ﬂk E]k(h,Ht% (65)
which represents the minimizer of the regularized negative log-likelihood loss.

To solve this minimization problem, we apply the Representer Theorem,

similar to [116], which provides a parametric representation of hy:
t
hi(-) = >0k (- (z4,27)) (6.6)
i=1

in terms of 8y = [01,02,---,6;] " € RY. With a slight abuse of notation, replac-
ing A with 0 in Ly, the regularized negative log-likelihood loss can then be

rewritten in terms of the parameter vector 0 as follows:

t
L1 (0. Hy) = > —y;log (0 ke (x;,2}))
=1

A
— (1= i) log(1 — (@ b)) + S 018, (67)

where Ik (2) = [k(z, (z;,2%))]5_; is the kernel values between the pair z and

observation pairs.

Similar to (6.4), we have an uncertainty estimation for each z € X x X’ as
follows

02(2) = k(z,2) =K/ (2)(K; + MeD) ke (2), (6.8)

where the notation K; = [k ((:cz, z;), (xj, x"y))];f j—1 represents the (dueling) ker-
nel matrix on the space of pair observations X x X'. Note the subtle difference
in the definition of o7 above for the preference-based feedback case compared
to the conventional kernel-based regression case, where the free parameter X is
multiplied by k, reflecting the effect of the sigmoid nonlinearity on the quality

of prediction.

Centered around the prediction u(hy(-)) and incorporating the uncertainty

estimate from kernel ridge regression, as defined in Equation (6.8), we can
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construct 1 —§ confidence intervals of the form:

|1(he(2)) = u(h(2))] < Be(d) o (2),

for a pair of interest z = (z,2”). In Theorem 5, we prove a novel confidence

interval of this form applicable to the analysis of our algorithm.

6.3 Algorithm Description

In this section, we present the MR-LPF algorithm, inspired by [84], designed
to achieve low regret within the BOHF framework described in Section 6.2.1.

The algorithm partitions the time horizon 7" into R rounds, indexed by
r=1,2,...,R. During each round r, a total of N, samples are collected,
ensuring that the cumulative number of samples across all rounds equals 7', i.e.,
25:1 N, =T. We define t, = ;?:1 Nj as the time step at the end of round r.
The size of each round is determined as follows: Ny = [T, N, = [/N,_1T|
for 1 <r < R, and Ng = min{[/Nr_1T],T —tgp_1}.

We introduce the notations o, ,)(z,2') and h, ,)(z,2") to represent the
kernel-based uncertainty estimate and prediction, respectively, from the first
n samples in round r according to Section 6.2.3.

MR-LPF maintains a set M, of actions in each round that are likely to
be the most preferable. Initially, M is set to X and is updated at the end of
each round while satisfying a nested structure, M, C M, _1, as subsequently
described.

Within each round r, the n-th sample is chosen as the pair of actions

within M, that maximizes uncertainty :

(x(n,r)ax/(n,r)) = argx g’lgj\(/l T(n—1,r) (%’, ZL‘/). (69)

The preference feedback for this pair y,, ;) = 1{z(, ) = x'(njr)} is then revealed
to the algorithm. The tuple (a:(mr),yc’(n r)v?/(n,r)) is added to the observations
specific to round r: H,, , =H,—1,U {(x(mr),x’(n 7q),y(n,r))}, which is initialized
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as an empty set at the beginning of the round: Hp, = 0.

At the end of round r, we compute the prediction function %y, ;) based
on observations Hy, ,, following the method of minimizing the regularized
negative log-likelihood loss described in Section 6.2.3. Subsequently, we update

M, according to the following rule:

M1 ={x € M, |V2' e M, :

1(hin, (2, 2") + Bryon, r(@,27) > 0.5} (6.10)

The round specific parameters [,y are designed in a way that the left hand
side of the inequality is a UCB on the probability of favoring = over z’ (the
values are given in Theorem 4). The rationale here is that when a UCB on
the probability of preferring = to any 2’ is greater than 0.5, x is plausible to
be the most preferred action. Therefore, we keep it in the update of M, .
All other actions are removed as they are unlikely to be the most preferred.
More precisely, as we will show in the analysis, with high probability, the
removed actions are not the most preferred, while the most preferred actions
remain within the sets M, and are not removed. A pseudocode is provided in

Algorithm 10.

When the confidence intervals shrink at a sufficiently fast rate, only near-
optimal actions remain in M, as the rounds progress. This is a key aspect
of our algorithm’s design, which eliminates the dependency of regret scaling
on k by ensuring that the algorithm gradually queries only closely preferred
actions. Recall the discussion following Equation (6.2). In the next section,

we provide an analysis of the performance guarantees of the algorithm.

6.4 Analysis of MR-LPF

In this section, we present our main results on the performance of MR-LPF

(Algorithm 10). The performance is given in terms of the maximum informa-



6.4. Analysis of MR-LPF 142

Algorithm 10 MR-LPF
Require: Vr,[,); time horizon T
M+ X, t+1
forr=1,2,--- R do
Initialize Hg, = {}
forn=1,2,---,N, do
Select the pair of actions (x(mr),xzn,r)) that maximizes the variance,

with ties broken arbitrarily:

(Z(n,r) x’(n’r)) = argmaxy ;e M, O(n—1,)(2,2")

t+—1t+1

if t > T then

Terminate

end if

Observe Y, ;) = 1{z () > m'(nyr)}

Hp,r = Hp—1,, U {(x(n,r) ) 517/(”77«) ) ?/(n,r))}
end for
Update h( Npyr) based on observations in Hy;,
Update the set of maximizers M, 1 by removing actions unlikely to be
optimal:
My ={z € My V2" € My - (b, (2, 2) + By o (v, ) (2,27) = 0.5}

end for

tion gain defined as

1
O\(T) = max —logdet (I+)\_1]KT) : (6.11)

(l’l,mll),...(l'T7{E{1—v)

where K7 is the kernel matrix of T' observations.?

Theorem 4 (Regret bound for MR-LPF). Consider the BOHF framework de-
scribed in Section 6.2.1 and the MR-LPF algorithm presented in Algorithm 10.
For § € (0,1), in MR-LPF, let

By (6) =1 <B+ *X"mg”%m)) , (6.12)

where, B is the upper bound on the RKHS norm of f given in Assumption 4,
L =max, yex fi(h(x,2")), k1 =k defined in Equation (6.2), Vr > 1,k =6, A

3This is the same maximum information gain formula introduced in Section 3.3.5, Equa-
tion (3.4), except that we use A instead of 72. The two definitions are mathematically
equivalent. Unlike in Section 6.1, where A was omitted from the expression of I', we include
it here for clarity.
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is the reqularization parameter of the kernel-based regression. Then, for some
constant Ty > 0, independent of T (specified in Appendiz C.1), and for all
T > Ty, with probability at least 1 —46:

R(T) < 2CRBgy(9)\/Tan)(T) (TY? + 1),

where R < [logylogs(T)| + 1 is the mazimum number of rounds and C =

2 .
2 Tog (406N Ty 1S a constant.

Remark 4. The value of I'\(T) is kernel-specific and algorithm-independent.
This term is a common complexity measure that appears in the analysis of both
BO and BOHF in the existing literature (see e.g., [67, 116, 117]). Bounds on
I'A(T) have been established for various kernels, as discussed in Chapter 3
(Section 3.3.5). In particular, for linear kernels, I'x(T) = O(dlog(T)). For
kernels with exponentially decaying Mercer eigenvalues, such as the SE kernel,
I'\(T) = O(polylog(T)). For kernels with polynomially decaying eigenvalues,
CA(T) grows polynomially (though sublinearly) with T'. For example, in the
case of the Matérn family of kernels, T'\(T) = @(Tﬁ), where d is the in-
put dimension and v > 0.5 is the smoothness parameter (see, e.g., [68]). In
Proposition 4 of [116], it is shown that the eigenvalues of the dueling kernel k
are exactly twice those of the original kernel k (see their Appendiz C.1). Since
the mazimum information gain U\(T') scales with the decay rate of the kernel

eigenvalues [68], both kernels exhibit the same scaling of the information gain

with T'.

Remark 5. By substituting the value of B(R)(5), the expression of the regret

bound can be simplified to

R(T)=0 (J I\ (T)Tlog <R§’>) : (6.13)

as T becomes large. This represents a sublinear regret growth rate for a broad

class of commonly used kernels where T'(T') grows sublinearly with T .
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Our regret bounds eliminate the dependency on x. MR-LPF gradually
queries only closely preferred actions, reducing the effective impact of the cur-
vature of the link function. Our regret bounds also show an (’)( r(r )) im-
provement compared to [116] and an O ((F (T)T)"/ 4) improvement over [117].
This becomes particularly crucial for kernels with polynomially decaying eigen-
values, where existing results may become vacuous, failing to guarantee sub-

linear regret in 7.

6.4.1 Sample Complexity and Simple Regret

In certain applications, the learner may be primarily concerned with eventual
performance, specifically the simple regret after T observations. Accordingly,
we can pose the dual question: How many samples are required to achieve €
simple regret? This aspect of our algorithm’s performance is formalized in the

following corollary.

Corollary 2. Under the setting of Theorem 4, assume T =tg, the time step
at the end of round R. For any action 27 € Mpy1, we have, with probability

at least 1 —90,

RT 40(T)
—7

The proof is given in Appendix C.1, that follows from Theorem 4.

P(a* > Z7) — ; < 25(3)((5)0 (6.14)

Corollary 3. As a consequence of Corollary 2, assume we run MR-LPF for

T =tg rounds and select T € Mpy1 arbitrarily. In the case of a linear kernel

. 1 - 1
with some T = O (dlogz(é)), an SE kernel with some T = O (l°i§6)>, and a

€

~ 1
Matérn kernel with some T = O (loifz)), with probability at least 1 —9, at

€
most € error is guaranteed: P(x* = Zp) — % <e.

Remark 6. Our sample complexities match the Q( 21d> lower bounds for

e“TU
conventional BO with Matérn kernels, as established in [65] (up to logarithmic

terms). These bounds apply to scalar-valued feedback, which is richer than the
binary preference feedback used in BOHF.
For technical details, consider a standard BO setting with scalar obser-

vations 0; = f(x;) +&;, where €; are i.i.d., zero-mean noise terms (following
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the notation in Section 6.2.3). Suppose that at each step t, instead of observ-
ing or = f(x¢) +e¢ and of = f(x})+ ¢}, we receive binary preference feedback
yr = 1{o; > o}}. Under the BTL model, this corresponds to the case where
the noise difference €, — ey follows a logistic distribution, which can arise if
the individual noise terms ¢ are Gumbel-distributed. Thus, the lower bound
on sample complexity in the BOHF' setting should be at least half of that of
conventional BO under Gumbel noise for achieving at most € loss in the value
of the target function.

Since the lower bound construction in [65] assumes Gaussian noise, a for-
mal comparison is not strictly valid (as the BTL model corresponds to Gumbel
noise). We therefore present this connection as an informal justification of the

tightness of our bounds, rather than a formal optimality proof.

6.4.2 Confidence Intervals and Proofs

An important building block in analyzing the performance of MR-LPF is the
confidence intervals applied to the samples collected in each round. We now

present a formal statement of this result.

Theorem 5 (Confidence Bounds). Consider the kernel-based prediction hy and
uncertainty estimate o; for a dataset H; and a known kernel k, as given in
Equations (6.5) and (6.8) satisfying Assumption 4. Assume the observation
points {(x;,25)}Y._, are independent of the observation values {y;}!_,. For a
fized (x,2") € X x X and for any 6 € (0,1), we have, with probability at least
1—90,

ha(a,2')) — p(h(z,2)] < B(6)os(x,a") (6.15)
where B(0) = L (B—i— %\/W> , L =sup, yeyft(h(z,2")) as defined in

Theorem 4, B is the RKHS norm bound specified in Assumption 4, \ is the

parameter in kernel-based regression, and k is defined in Equation (6.2).

A key distinction in our results is that our confidence interval is tighter
than the one presented in [116] by a factor of O(y/I'(T")). This improvement

comes from the multi-round structure and action selection rule within each
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round of the algorithm, which ensures that the observation points used for
confidence intervals at the end of rounds are independent of the observation
values within that round. This removes certain intricate dependencies in deriv-
ing the confidence interval. Recall that the observation points in each round,
(x(nm),x’(n’ 7,)), are collected solely based on the variance, which is independent
of the observation values by definition. In contrast, both the MaxMinL.CB
algorithm in [116] and the POP-BO algorithm in [117] select observation point
at step t based on statistics that depend on {yz}ﬁ;% We emphasize that our
algorithm is by no means a pure exploration algorithm; it effectively balances
exploration and exploitation by learning and updating M, at the end of each

round.

Given the confidence intervals in Theorem 5, the update rule of M, in
MR-LPF ensures that the best action is not eliminated (Lemma 10). Ad-
ditionally, we can use the confidence intervals to bound the regret for each
action in M,., based on the maximum variance in predictions from previous
rounds. By summing up the regret over all rounds, we achieve the overall
regret bound, with details provided in Appendix C.1. For proof of Theorem 5,
see Appendix C.2.

6.5 Experiments

We run numerical experiments to evaluate the performance of MR-LPF and
compare it to MaxMinLLCB (see [116], Algorithm 1) on various test functions,
including both synthetic and real-world cases. Our implementation is publicly

available.?

We first select the test function f as an arbitrary function in the RKHS
of a known kernel. To do this, we choose 10 points in the [0,1] interval and
assign them random values. We then fit a standard kernel ridge regression to
these samples using a kernel k£ and use its mean as f. The kernel £ is set to

the SE kernel and Matérn kernels with smoothness parameters v = 2.5 and

‘https://github.com/ayakayal/BOHF_code_submission


https://github.com/ayakayal/BOHF_code_submission

6.5. Experiments 147

—— MaxMinLCB —— MaxMinLCB
— MR-LPF — MR-LPF
L e
I &
g e Do
o o
o &
© @© o1
g g
g g
™ <
@
Time Step: T Time Step: T
(a) SE kernel (RKHS) (b) SE kernel (Ackley)
—— MaxMinLCB —— MaxMinLCB
—— MR-LPF —— MRLPF
4 02 - o2
[ [
o o
e D
o =4
Q [V}
D)o jo)]
g Daw
g e
g g
.
< <
w“ N

o & 250 2% 7 2% o0 S oo 2o
Time Step: T Time Step: T

(c) Matérn kernel with v = 2.5 (RKHS) (d) Matérn kernel with v = 2.5 (Ackley)

— MaxMinLCB — MaxMinLCB
—— MR-LPF — MR-LPF

Average Regret
Average Regret

Time Step: T Time Step: T

(e) Matérn kernel with v = 1.5 (RKHS) (f) Matérn kernel with v = 1.5 (Ackley)

Figure 6.1: Average Regret against 7" with RKHS test functions (left column) and
Ackley test function (right column). The shaded area represents the
standard error.

v =1.5. This is a common approach to constructing functions in an RKHS
(see, e.g., [66]). We also test the algorithms on the Ackley function, similar
to [116]. The Ackley function has a diverse optimization landscape, featuring
multiple local minima, flat plateaus, and valleys, making it a popular choice
in non-convex optimization literature [240].

To showcase the utility of our approach in real-world applications, we ex-
perimented using the Yelp Open Dataset® of restaurant reviews. This serves as
a proof of concept, demonstrating both the potential integration of BOHF with
LLM-generated vector embeddings and the scalability of the method to higher-

>Yelp Open Dataset


https://www.yelp.com/dataset
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dimensional domains. The objective is to learn user preferences from compara-
tive feedback and recommend restaurants tailored to each user’s choices. After
data filtering and pre-processing, the dataset consists of 275 restaurants, 20
users, and 2563 reviews. Each restaurant is represented by a 32-dimensional
vector embedding of its text-based reviews, generated using OpenAl’s text-
embedding-3-large model®. Users rate restaurants on a scale from 1 to 5. We
adopt the experimental setup and Yelp data preprocessing from [116] to en-
sure a fair evaluation. While we implemented our own version instead of using
their code’ directly, we acknowledge their contribution in establishing this
benchmark, which inspired our experiment. We frame this problem within the
BOHF framework, where the action set X consists of 275 restaurants, each
represented as a 32-dimensional vector, and the utility values f correspond
to user ratings. SE kernel is used for these experiments. For details on the

experimental setup, see Appendix C.3.

— MaxMinLCB
—— MR-LPF

Average Regret

0.10

0.05

0 250 500 750 1000 1250 1500 1750

Time Step: T

Figure 6.2: Average regret against T' for the experiment with Yelp Open Dataset.
The shaded area represents the standard error.

We plot the average regret at each time step, averaged over 60 independent
runs. Figure 6.1 shows the results on the RKHS and Ackley test functions,
while Figure 6.2 presents the results on the Yelp Open Dataset. MR-LPF
consistently achieves lower regret than MaxMinLCB across all test functions.
The initial regret of MR-LPF reflects highly exploratory behavior during the

early rounds. At the end of each round r, suboptimal actions are removed

60penAl Vector Embeddings
"https://github.com/lasgroup/MaxMinLCB.
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from M., leading to the sharp drops that eventually result in near-optimal
actions in later rounds. Relatively constant behavior within rounds represents

exploration, while sharp drops indicate exploitation.

6.6 Conclusion

In this chapter, we proposed an algorithm, referred to as MR-LPF (Algo-
rithm 10), to address the BOHF problem. We provided a comprehensive per-
formance analysis under relatively general assumptions, demonstrating that
MR-LPF achieves a regret bound of O( O\(T) T) for general kernels. This
result represents a significant improvement over existing approaches, effectively
tightening the regret by a factor of \/ﬁ and eliminating the dependence on
k. Our results recover the order-optimal sample complexities achieved by con-
ventional BO, showing they are not improvable in general. In particular, this
implies that the number of preferential feedback samples required to identify
near-optimal actions is of the same order as the number of scalar-valued feed-
back samples. To validate these findings, we conducted numerical experiments
on both synthetic benchmarks and real-world examples. The results consis-
tently corroborate our theoretical guarantees and demonstrate that MR-LPF
outperforms the most competitive existing algorithm.

While our experiments were designed to align closely with the theoretical
analysis, there are exciting opportunities to further explore the practical im-
pact of MR-LPF. A natural next step is to demonstrate its utility in larger-scale
applications. For example, applying our method to scenarios where preference
feedback is elicited from interactions with LLMs—such as prompt optimization
or text summarization comparison—would provide a compelling extension. Al-
though such experiments require extensive setup and careful implementation,

we view them as a promising direction for future work.



Chapter 7

Conclusions

Efficiency is a cornerstone on the path toward AGI, as progress will ultimately
depend not only on raw computational power but also on the ability to learn
and reason effectively from limited data and resources. In this thesis, we
focused on advancing data-efficient strategies for sequential decision-making,
with a particular emphasis on improving exploration. In this final chapter, we
summarize the key contributions of the thesis and discuss potential directions

for future research arising from our findings.

7.1 Summary of Contributions

This thesis first addressed fundamental questions in deep RL that the com-
munity has yet to answer definitively. In particular: What constitutes good
exploration in practice? Can different exploration methods be directly com-
pared? How can an RL agent efficiently explore its environment? Since no
consensus exists on the optimal exploration strategy, in Chapter 4 we pre-
sented a re-interpretation of exploration bonuses (intrinsic rewards) based on
the level of diversity they promote—namely, state, policy, and skill diversity.
We conducted an empirical study to examine how these different levels of diver-
sity affect exploration. Our results showed that state-level diversity led to the
best exploration performance in environments with low-dimensional observa-
tions. In contrast, policy-level diversity was more effective in high-dimensional

settings, possibly owing to its robustness to challenges in representation learn-



7.1. Summary of Contributions 151

ing. To the best of our knowledge, Skill-level diversity, often linked to robust-
ness, did not contribute positively to exploration in MiniGrid environments.
These findings deepened our understanding of how exploration strategies can
be adapted to different environments. They also motivated our shift toward a
theoretical analysis of exploration, as the empirical definition of optimal explo-
ration remains elusive. In Chapter 5, we strengthened the theoretical founda-
tions of exploration in RL. We extended the analytical study of RL beyond the
well-studied tabular and linear settings to the more flexible kernel-based set-
ting, which supports nonlinear function approximation and provides a stepping
stone toward understanding RL in neural network-based settings. We studied
reward-free RL with kernel-based models and proposed two algorithms for data
collection and optimal policy derivation, under both the presence and absence
of a generative model. Each algorithm was supported by a sample complexity
analysis and empirical validation. Our contributions included relaxed assump-
tions compared to prior work and the derivation of novel confidence intervals
for kernel ridge regression, which have broader applications beyond RL. Fi-
nally, based on the insights gained from previous chapters and the growing
importance of learning from preference feedback—particularly for finetuning
and aligning LLMs—we investigated how to efficiently explore in order to learn
from human preferences with minimal feedback. In Chapter 6, we framed this
problem as Bayesian Optimization from Human Feedback (BOHF). We pro-
posed a novel algorithm, Multi-Round Learning from Preference-based Feed-
back (MR-LPF), that efficiently solves this problem. We proved an improved
regret bound for MR-LPF compared to existing algorithms and showed that
it matched the lower bound of conventional BO, despite relying on a weaker
preferential feedback model. We validated our approach through experiments

on both synthetic and real-world datasets.
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7.2 Future Work

Building on the findings of this thesis, several directions for future research

emerge, which we outline in the following section.

7.2.1 Theoretical Framework Unifying Exploration
Strategies

While Chapter 4 presents an empirical study of various exploration bonuses
across different types of environments—highlighting the strengths and limi-
tations of each—there remains a lack of a unified theoretical framework that
connects these diverse approaches. To deepen our understanding of how these
methods function, it is necessary to formalize them within a common the-
oretical structure by deriving a general objective function that encapsulates
multiple exploration strategies as special cases.

Such a framework would enable a principled comparison of intrinsic re-
ward mechanisms in terms of sample complexity, computational efficiency, and
robustness to environmental perturbations. Ultimately, this would not only
clarify existing strategies but also guide the development of novel and more

efficient exploration methods.

7.2.2 Exploration as Key to Generalization in RL

Effective exploration in RL is not just about finding optimal policies for the
training environments—it also helps in acquiring behaviors that generalize
to unseen tasks, highlighting the deep connection between exploration and
generalization [241]. Omne concrete approach to studying this connection is
through the exploration of task-agnostic skills—general-purpose, reusable be-
haviors that can serve as building blocks for solving diverse downstream tasks.
This perspective aligns with the discussion on skill learning in Chapter 4 and
parallels the rationale behind foundation models: just as large models are pre-
trained to capture broadly useful knowledge, RL agents discover a repertoire of
skills (goal-conditioned policies) through intrinsically motivated exploration.

These skill repertoires can act as behavioral priors, allowing agents to adapt
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faster to novel tasks by composing and refining pre-existing skills.

A central challenge in skill learning is balancing diversity, efficiency, and
generalization. Skills must be diverse, covering a broad range of behaviors
to maximize transfer potential. Exploration should also be efficient, priori-
tizing informative behaviors, avoiding redundancy, and not wasting effort on
unachievable goals. Ultimately, the acquired skill set should generalize ef-
fectively, enabling agents to rapidly solve new tasks with minimal additional
learning.

Open questions include: How can we quantify a skill set’s diversity, ef-
ficiency, and generalization? How can we design richer goal representations
and mechanisms for long-horizon goals? What strategies can support efficient
skill adaptation and composition? Equally important are robust benchmarks
and principled metrics to evaluate whether skill repertoires truly facilitate
exploration and zero-shot generalization. Progress will require a deeper un-
derstanding of how exploration shapes transferable behaviors and how such

behaviors can be composed, refined, and reused across tasks.

7.2.3 Active Exploration for LLM Alignment

LLMs have revolutionized Al, yet aligning them with human values remains
a critical challenge. LLM alignment ensures that these models generate re-
sponses that are not only coherent but also align with human intent, eth-
ical considerations, and safety constraints [238, 242]. The first method in-
troduced for alignment has been Reinforcement Learning from Human Feed-
back (RLHF), which involves training a reward model (RM) based on human
preference comparisons and then optimizing a policy against this RM using
RL [243, 244]. More recently, direct preference-based alignment methods have
gained traction as simpler and more efficient alternatives to RLHF. One promi-
nent example is Direct Preference Optimization (DPO), which directly updates
the language model (policy) using pairwise preference data without requiring
a separate RM [245]. These methods offer improvements in stability and sam-

ple efficiency. However, DPO relies on a fixed, pre-collected dataset, and
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often struggles with generalization, especially when confronted with out-of-
distribution data [246]. To address this, recent research has explored online
alignment techniques, which incorporate interactive feedback from humans or
AT systems during training [247, 248, 114]. Nevertheless, acquiring human
feedback at scale remains expensive and time-consuming. This challenge nat-
urally leads to the question of active preference learning, where the goal is
to make alignment more sample-efficient by strategically selecting which com-
parisons to query. Our recent work on BOHF contributes to this direction
by proposing a framework that seeks to learn efficiently with minimal prefer-
ence data. Building on this, we identify several open questions and promising

avenues for future research:

1. How can active preference learning methods be adapted to operate in
the vastly larger and more complex action spaces encountered in LLM

alignment, while maintaining computational tractability?

2. Which acquisition strategies yield the greatest improvements in sample

efficiency when selecting preference comparisons?

3. What sample complexity guarantees can be established for preference-

based alignment in realistic LLM settings?

4. How robust are active preference learning strategies to noisy, inconsis-
tent, or adversarial human feedback and what mechanisms can improve

their resilience?

These and related questions highlight the need for continued research at the in-
tersection of preference learning, alignment, and sample-efficient optimization.
As LLMs continue to evolve, developing principled, scalable, and cost-effective

alignment methods remains a central challenge for the field.



Appendix A

Appendix of Chapter 4

A.1 Diversity Levels Categorization

We divide intrinsic rewards into two categories: “Where to explore” and “How

to explore?”, as described in the following and shown in Figure A.1.

A.1.1 “Where to Explore?”

State level diversity:

In this subcategory, we collect all the works that encourage the exploration of
unseen states. The most common method is “State Count”, which stores the
visitation count of each state, and gives high intrinsic rewards to encourage
revisiting states with low counts. Algorithms that implement this approach
include UCB, Model-based Interval Estimation (MBIE-EB), and Bayesian Ex-
ploration Bonus (BEB) [17, 159, 249]. While counting works well in tabular
cases, it becomes difficult in vast state spaces. Several methods were proposed
to extend State Count to large or continuous state spaces, such as pseudo-
counts [131] and hashing [132].

Besides count-based methods, feature prediction error can be used as a
measure of state novelty. For example, in [133], the authors assessed state nov-
elty by distilling a fixed, randomly initialized neural network (target network)
into another neural network (predictor network) trained on the data collected
by the agent. This technique is called Random Network Distillation (RND),

and the main motivation behind it is that the prediction error should be small
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Figure A.1l: Categorization of the different levels of diversity incurred by intrinsic
rewards for exploration in RL.

for frequently visited states. Similarly, the NovelD algorithm [250] uses RND

as a measure of state novelty but defines the intrinsic reward as the difference

in RND prediction errors at two consecutive states, s; and s¢y1, in a trajectory.

Finally, this level of diversity includes methods that aim to maximize the

entropy of the state distribution induced by the policy over a finite or infinite

horizon by estimating the state density distribution [212, 251] or by relying on

the K-Nearest Neighbors (KNN) distance as an approximation of state entropy

[252, 253, 164, 254].



A.1. Diversity Levels Categorization 157

State + Dynamics level diversity:

This class also aims to visit diverse states, but the difference with respect to
State level is that the agent considers the novelty of the dynamics as well
(not only states) to drive exploration. The agent either tries to build an
accurate dynamical model of the environment or learns a dynamics-relevant

state representation for exploration.

This subcategory mainly includes curiosity-driven methods that use the
forward dynamics prediction error as an intrinsic reward, such as [135] and
[255]. The key intuition is to encourage the agent to revisit unfamiliar state
transitions where the prediction error is high (high mismatch between the
agent’s expectation and true experience). Another curiosity-driven technique is
Variational Information Maximizing Exploration (VIME) [136], which pushes
the agent to explore states that lead to a larger change in the dynamics model

(higher information gain).

Moreover, this subcategory includes techniques that estimate the state
novelty within a feature space designed to capture the temporal or dynamical
aspects of states. For instance, Exploration via Elliptical Episodic Bonuses
(E3B) [165] and RIDE [160] both utilize an inverse dynamics model to learn
state embeddings that represent the controllable dynamics of the environment.
While RIDE encourages the agent to select actions that produce substantial
changes in the state embedding, E3B applies an elliptical episodic bonus to
guide exploration. Additional examples include Never Give Up (NGU) [134],
Agent 57 [256], and Episodic Curiosity (EC) [257], all of which employ memory-
based methods using distance-based metrics in a dynamics-aware feature space
to approximate State + Dynamics novelty. Similarly, [258] propose the LIB-
ERTY approach, which utilizes an inverse dynamic bisimulation metric to
measure distances between states in a latent space, ensuring effective explo-
ration and policy invariance. The work of [259] also presents a novel behavioral
metric with Cyclic Dynamics (BCD), leveraging successor features and vector

quantization to evaluate behavioral similarity between states and capture in-
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terrelations among environmental dynamics. Finally, [260] propose using the
inverse of the norm of the successor representation (SR) as an intrinsic reward
to account for transition dynamics. More recently, [261] developed the SPIE
approach (Successor-Predecessor Intrinsic Exploration), which constructs an
intrinsic reward by integrating both prospective and retrospective information

from previous trajectories, also based on SR.

A.1.2 “How to Explore?”

Policy/Action level diversity:

Algorithms in this subcategory aim to explore diverse actions from the same
state. What makes it different from the State + Dynamics algorithms intro-
duced in A.1.1 is that the previous category uses knowledge about the states
and dynamics of the environment and pushes for exploring the areas where the
agent knows the least (high uncertainty). In contrast, this level of diversity
considers the previous exploration behavior represented by the policy (how the
agent has explored) and pushes it to explore differently, inducing diversity in
the policy learned. For example, in Maximum Entropy RL (Max Entropy),
the aim is to learn the optimal behavior while acting as randomly as possible.
The objective function becomes the sum of expected rewards and conditional
action entropy [262]. Soft Actor-Critic (SAC) [167] is a popular RL algorithm
implementing the Max Entropy RL framework. Diversity-driven exploration
strategy [263] is another exploration technique that encourages the agent to
behave differently in similar states. It maximizes the divergence between the
current policy and prior policies. Similarly, Adversarially Guided Actor-Critic
(AGAC) [264] maximizes the divergence between the prediction of the policy
and an adversary policy trained to mimic the behavioral policy. The main
motivation is to encourage the policy to explore different behaviors by re-
maining different from the adversary. Another branch that belongs to this
diversity level is population-based exploration, which combines evolutionary
strategies with Reinforcement Learning. These approaches train a population

of agents to learn diverse behaviors that are high scoring at the same time,
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in order to effectively explore the environment [265, 266]. For more details on
the connection between evolutionary approaches and RL, please refer to the

comprehensive survey by [267].

Skill level diversity:

Skill level diversity disentangles diverse behaviors into different latent-
conditioned policies (also called skills). The policy 7 is conditioned on a
latent variable z ~ p(z), and each z defines a different policy denoted by
m(als,z) [139]. This category aims to discover diverse skills, and the intrinsic
reward is a function of the skill. Most methods falling into this category come
from the domain of unsupervised skill discovery and use a discriminator-based
architecture, such as Diversity is All You Need (DIAYN) [138]. DIAYN re-
places the task reward with a learned discriminator term ¢, (z|s) that infers
the behavior from the current state in order to generate diverse policies vis-
iting different sets of states. It also uses the Max Entropy RL framework to
learn skills that are as random as possible [138]. Maximum Entropy Diverse
Exploration (MEDE) [139] is very similar to “DIAYN + extrinsic reward”,
with the small difference of conditioning the discriminator on the state-action
pair g (z|s,a) instead of the state only. Moreover, MEDE uses the discrim-
inator term as a prior in the objective function instead of adding it as an
intrinsic reward. Structured Max Entropy RL (SMERL) is another algorithm
with the same approach as DIAYN, but it adds the intrinsic reward to the
task reward only when the policies have achieved at least near-optimal returns
[143]. DOMINO (Diversity Optimization Maintaining Near Optimally) also
learns diverse policies while remaining near-optimal; it uses an intrinsic reward
that maximizes the diversity of policies by measuring the distance between the
expected features of the policies’ state-action occupancies [144]. It is impor-
tant to mention that skills in the literature can be called options or goals. For
example, Variational Intrinsic Control (VIC) is an algorithm that provides the
agent with an intrinsic reward that relies on modeling options and learning

policies conditioned on these options [140]. Instead of sampling options from
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a fixed prior distribution as in DIAYN, VIC learns the prior distribution of
options and updates it to choose options that yield higher rewards [140]. Both
DIAYN and VIC are part of goal-conditioned RL methods, where goals are
internally generated by agents and achieved via self-generated rewards [129].
More recent unsupervised skill-learning methods have emerged, such as [173]
which proposed Behavior Contrastive Learning (BeCL), a novel competence-
based method that uses contrastive learning to encourage similar behaviors
within the same skill and diverse behaviors across different skills. This is done
by maximizing the mutual information (MI) between different states gener-
ated by the same skill as an intrinsic reward. Another recent work by [175]
proposed skill discovery with guidance (DISCO-DANCE) which identifies the
guide skill most likely to reach unexplored states, directs other skills to follow
it, and disperses them to maximize distinctiveness. Moreover, [174] proposed
Learning Diverse Skills through Successor States (LEADS), which maximizes
a variant of the MI between skills and states, by leveraging the successor state
measure to tailor skills toward less-visited states while also maximizing the

disparity between skills.

A.2 MiniGrid Environments

We use the following MiniGrid environments shown in Figure A.2:

1. Empty: This is an empty grid where the agent is always placed in the
corner opposite to the goal. The task is to get to the green goal square.

We use the regular variant “MiniGrid-Empty-16x16-v0”.

2. DoorKey: This is a sparse reward environment that requires a specific
order of visiting the states to solve the task; the agent needs to pick up
the key, open the door, then get to the green goal square. It does not
receive any reward after picking up the key or unlocking the door; it is
rewarded only at the end of the task. We use “MiniGrid-DoorKey-16x16-
v0” in the case of grid encodings and “MiniGrid-DoorKey-8x8-v0” in the

case of RGB observations.
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a) Empty 16x oorKey 16x c) DoorKey 8x
E 16x16 b) DoorKey 16x16 DoorKey 8x8

(d) RedBlueDoors 8x8 (e) FourRooms

Figure A.2: MiniGrid environments.

3. FourRooms: In this environment, the agent must navigate a maze con-
sisting of four rooms, with both its initial position and goal position
being randomized. We use “MiniGrid-FourRooms-v0” where each of the

four rooms consists of a grid of size 8 x 8.

4. RedBlueDoors: The agent is randomly placed in a room where there are
one red and one blue door facing opposite directions. The task consists
of opening the red door before opening the blue door. The agent must
rely on its memory of whether it has previously opened the other door to
successfully complete the task, as it cannot see the door behind it. We

use “MiniGrid-RedBlueDoors-8x8-v0”.

For all tasks, a maximum number of steps t,,4, is assigned, to encourage
the agent to solve the task as quickly as possible. When the agent succeeds after
t steps, it receives a reward 1 = 1 —0.9¢/t,4, in all three environments. The

episode ends when the agent collects the final reward or when the maximum
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number of steps is exceeded.

Observation and Action spaces. The observations are egocentric and par-
tially observable. We first considered the grid encoding observations of size
7x 7x 3. The first two dimensions (7 x 7) compose the tile set, and the last di-
mension encodes the object type (wall, door, ---), the object color (red, green,

--) and the object status (door open, door closed, door locked). Specifically,
object type € {0,1,2,3,4,5,6,7,8,9,10}, object color € {0,1,2,3,4,5}, and ob-
ject status € {0,1,2}. Then, we used partial RGB visual observations of size
56 x 56 x 3 (7 tiles of 8 x 8 pixels each) to increase the complexity of the task,
as agents must extract features directly from the images. There are 7 actions
available to the agent: turn left, turn right, move forward, pick up an object,
drop an object, toggle and done. Some of these actions are unused in certain

tasks.

A.3 Hyperparameters

For State Count and ICM, we use the hyperparameters from the previous
study [150]. Since Max Entropy + PPO and DIAYN were not tested before
on MiniGrid, we run a grid search over 3 € [0.1,0.01,0.001,0.0005] and pick
the best values of 3 that result in the highest return during training. The
chosen values of 8 are summarized in Table A.1. For DIAYN, we choose to
train 10 skills, which is the number used in the study by [268], and we use a
discriminator learning rate of 3 x e~ following the implementation of the DI-
AYN paper [138] (Table A.2). Note that we reused the same hyperparameters

for the second part, where we tested on RGB observations.

Table A.1: Best intrinsic reward coefficients 5.

Empty | DoorKey | RedBlueDoors | FourRooms

State Count | 0.005 | 0.005 0.005 0.005
Max Entropy | 0.0005 | 0.0005 0.0005 0.0005
ICM 0.05 0.05 0.05 0.05

DIAYN 0.01 0.01 0.01 0.01
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Table A.2: List of hyperparameters.

Number of parallel actors 16
Number of frames per rollout 128
Number of epochs 4
Batch size 256
Discount 0.99
Learning rate 0.0001
Agae 0.95
Entropy regularization coefficient 0.0005
Value loss coefficient 0.5
Clipping factor PPO 0.2
Gradient clipping 0.5
Forward dynamics loss coefficient 10
Inverse dynamics loss coefficient 0.1
Learning rates (state embedding, forward, and inverse dynamics) 0.0001
Number of skills 10
Discriminator learning rate 0.0003
SimHash key size 16

A.4 Additional Experimental Results

In this section, we present supplementary analyses to complement the main
results. Specifically, we provide reward discovery statistics and state vis-
itation heatmaps across multiple environments and two observation spaces
(grid encoding and RGB). The tables report the frame number at which each
exploration method discovers the reward for the first, second, and third time.
Results are averaged across five independent runs, with mean and standard
deviation reported as pu+o. If the reward is never found, the frame number
is set to the training budget (40M). The heatmaps visualize state visitation
counts accumulated during 10M frames of training on singleton environments.
For each intrinsic reward method, snapshots are taken at three representa-
tive points in training: T1 = 100K frames, T2 = 500K frames, and T3 =
10M frames. Color intensity indicates the proportion of frames spent in each
state, with high values capped to enhance visibility. Results are organized by
observation space: Section A.4.1 presents experiments with grid encoding

observations, while Section A.4.2 reports results with RGB observations.
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A.4.1 Grid Encoding Observation Space
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Table A.3: Frame number at which the reward is discovered for the first, second
and third time in Empty 16x16 environment with grid encodings.

Empty 16x16

First reward

Second Reward

Third reward

PPO

15 452 £ 7112

21 273 £ 11539

28 304 £ 14785

PPO + State Count

18 428 £ 9119

25 340 £+ 11537

32 483 £ 12888

PPO + Max Entropy

16 841 £ 6916

22 768 £ 6736

27 318 £ 10355

PPO + ICM

8 918 + 3565

13 436 + 6830

18 281 + 9467

PPO + DIAYN pretraining

12 668 £ 7030

20 076 + 13898

326 963 £ 662300

PPO + DIAYN finetuning

1 001 862 + 1187338

1 130 208 £ 1082785

1 207 600 £ 1038924

Table A.4: Frame number at which the reward is discovered for the first, second
and third time in DoorKey 16x16 environment with grid encodings.

DoorKey 16x16

First reward

Second Reward

Third reward

PPO

1 242 342 £ 529863

2 276 508 £ 917486

3 186 537 + 1616226

PPO + State Count

496 486 + 550012

558 204 + 548684

783 075 + 615917

PPO + Max Entropy

594 649 £ 696956

1 067 401 £ 743704

3 300 668 + 3108002

PPO + ICM

1 089 286 £ 734419

1 287 632 £ 674758

1 683 612 £ 539173

PPO + DIAYN Pretraining

40 000 000 £ 0

40 000 000 £ 0

40 000 000 £ 0

PPO + DIAYN finetuning

2 087 398 + 449537

2 221 756 £ 447746

2 516 739 £ 689340

Table A.5: Frame number at which the reward is discovered for the first, second
and third time in RedBlueDoors environment with grid encodings.

RedBlueDoors

First reward

Second Reward

Third reward

PPO

13 136 £ 5647

17 568 + 8303

26 553 £ 6733

PPO + State Count

13 180 £ 8236

25 923 + 11537

33 545 £+ 19115

PPO + Max Entropy

9 417 + 2678

20 464 £ 10420

24 432 £ 10339

PPO + ICM

37 721 £ 68636

129 043 £ 175 507

162 060 £ 193005

PPO + DIAYN pretraining

19 244 + 10004

24 611 £ 12661

39 280 £ 25334

PPO + DIAYN finetuning

2992 614 £ 2118551

3 006 659 £ 2114575

3 033 043 £ 2096962

Table A.6: Frame number at which the reward is discovered for the first, second
and third time in FourRooms environment with grid encodings.

FourRooms

First reward

Second Reward

Third reward

PPO

25 222 £ 32606

97 033 £ 41446

150 188 £ 104821

PPO + State Count

15 465 £ 9712

34 649 £+ 11090

51 820 £ 23054

PPO + Max Entropy

2 479 424 £ 5498212

5 327 913 £ 5306632

6 874 905 £ 5056693

PPO + ICM

89 433 £+ 111832

197 312 £ 171435

274 883 + 171782

PPO + DIAYN pretraining

2089 £ 1178

9 049 £ 5350

14 531 £ 9099

PPO + DIAYN finetuning

29 238 £+ 27103

41 376 £ 35912

69 737 £+ 53656
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Figure A.3: State visitation heatmap for singleton Empty 16x16 environment with
grid encoding observations.

DoorKey
16x16

State Count Max Entro.

Training

500K frames T1=100K frames
°
2

o
S

€
ES
o
o
c
2
®
£
2
>
L
©
8
&
~ °
i 2
©
E
S
z

14
o
2

10 M frames

T3=

0.00

Figure A.4: State visitation heatmap for singleton DoorKey 16x16 environment
with grid encoding observations.
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A.4.2 RGB Observation Space

Table A.7: Frame number at which the reward is discovered for the first, second,
and third time in Empty 16x16 environment with RGB observations.

Third reward
115 148 £+ 117261
79 699 + 96431
59 494 4+ 81361
509 750 + 509223
2 267 164 + 3639831
110 710 £+ 135551

Second Reward
103 401 £ 112583
75 686 £+ 95328
49 033 + 79868
493 401 + 522557
2 262 649 + 3635427
94 240 + 138306

First reward
48 256 + 85183
71132 £ 9119
43 072 £+ 76270
448 121 4+ 500641
896 963 + 1257009
69 712 + 102945

Empty 16x16 RGB
PPO
PPO + SimHash
PPO + Max Entropy
PPO + ICM
PPO + DIAYN pretraining
PPO + DIAYN finetuning

Table A.8: Frame number at which the reward is discovered for the first, second,
and third time in DoorKey 8x8 environment with RGB observations.

Third reward
75 587 + 32508
143 840 + 71717
124 828 + 114469
713 795 4+ 381101
40 000 000 + 0
40 000 000 + 0

Second Reward
49 257 + 44984
115 529 + 80404
100 931 + 96891
655 200 + 384520
40 000 000 + 0
40 000 000 £+ 0

First reward
31 430 + 39987
93 494 + 75207
26 870 + 34213
445 222 4+ 433991
32 003 513 4+ 17880687
40 000 000 4+ 0

DoorKey 8x8 RGB
PPO
PPO + SimHash
PPO + Max Entropy
PPO + ICM
PPO + DIAYN pretraining
PPO + DIAYN finetuning

Table A.9: Frame number at which the reward is discovered for the first, second,
and third time in RedBlueDoors environment with RGB observations.

Third reward
44 342 + 36719
60 643 + 58630
97 907 + 88967
219 718 + 419780
24 011 241 + 21893513
24 219 180 + 21610106

Second Reward
28 179 + 19650
49 548 + 48897
71 776 + 59120
206 547 + 420774
16 015 049 + 21895167
24 212 716 + 21618947

RedBlueDoors RGB
PPO
PPO + SimHash
PPO + Max Entropy
PPO + ICM
PPO + DIAYN pretraining
PPO + DIAYN finetuning

First reward
18 504 £ 12321
35 516 + 38700
51 871 + 51587
18 355 + 26236
16 012 892 4+ 21897134
24 212 716 £ 21618947

Table A.10: Frame number at which the reward is discovered for the first, second,
and third time in FourRooms environment with RGB observations.

FourRooms RGB First reward Second Reward Third reward

PPO

6 057 £+ 7369

27 203 £ 34679

41 766 £ 47238

PPO + SimHash

7 561 £ 13820

13 171 £ 11599

20 406 £+ 17137

PPO + Max Entropy

7 654 £ 13591

9014 + 13184

13 907 £ 12435

PPO + ICM

7491 £+ 10928

10 060 £ 12737

16 912 + 16744

PPO + DIAYN pretraining

3 276 505 £ 7322741

3290 252 £ 7342741

3296 742 £ 7343739

PPO + DIAYN finetuning

4 470 + 2384

6 854 + 4956

8 166 + 4735
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Figure A.7: State visitation heatmap for singleton Empty 16x16 environment with
RGB observations.
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Figure A.9: State visitation heatmap for singleton FourRooms environment with
RGB observations.
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with RGB observations.
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Initially, we evaluated DIAYN combined with extrinsic rewards, but it did

not perform well because of the imbalance between discriminability and re-

ward maximization (see Figure A.11). Recognizing that DIAYN is primarily

intended for unsupervised pretraining of skills rather than simultaneous use

with return maximization, we decided to split the training budget between

pretraining and finetuning.
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Figure A.11: Analogous to Figure. 4.3, but showing DIAYN combined with ex-
trinsic rewards on grid encoding observations. Metrics are plotted
against the number frames and averaged over five seeds.
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Appendix of Chapter 5

B.1 Proof of Theorem 1 and Corollary 1

For the proof of Theorem 1, we leverage the fact that V' belongs to an RKHS.

Specifically, we use the Mercer representation of V'

i w /\mem (B.1)
m=1

We can also rewrite the observations in the observation vector y, as the sum

of a noise term and the expected value of the observation (noise free part).

V= (Ve 1) (B.2)

Observation noise  Noise-free observation

Using the notation ¢,,(2) = Eyp(.|)¥m(s"), we can rewrite f(2;) as follows

f(zi) =Egopi 2V (s)]

=Eowp(|2) [i Wi N (3 )1

= 3 WA, p o [ ()]

m=1

= " wn AT (22) (B.3)
m=1
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We then use the following notations, e; = V(s}) — f(2;), €, = [e1,89,-+ ,en] |,

Fo=1[f(21), f(22),--+, f(z2)]", to rewrite the prediction error

F(2) = fu(2) = f(2) =k (2) (7T + Kp) 'y
= f(2) =k (2) (T + Kp) " (en + fn)
= f(&) =k Q@+ EK) T =k () (T4 K,) ey,

Prediction error from noise-free observations The error due to noise

The first term is deterministic (not random) and can be bounded following the
standard approaches in kernel-based models, for example using the following

result from [70]. Let us use the notations ¢,(z) = k,} (2)(7%I + K,,)~! and
Gi(2) = [Cn(2)]:-

Lemma 1 (Proposition 1 in [70]). We have

oa(z)= sup (f(2)=Cn (2)Fa)? +7206n(2)l|2-
Fllflln <1

Based on this lemma, the first term can be deterministically bounded by

Bion(2) :

£ (2) =k (2) (T2 1+ K) ™' ful < Bio(2) (B-4)

We next bound the second term, the error due to noise.
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We note that ¢, (s;) —1,,(z;) are bounded random variables with a range of
2¢max- Using Chernoff-Hoeffding inequality and the bound on the norm of ¢,
provided in Lemma 1, we have that with probability at least 1—4§/M

ZQ — P (2i)) < M 2log (%4)

T

Using a probability union bound, with probability 1 —4d

nfjlwm;i_ilm )W (55) — T (2)

< 3w af o] oo (41)

(B () =t
< élAm)zBﬂma""”@ 210g<]\54)
SoBﬁma’f”(Z) 21og(]\54>

The second inequality is based on the Cauchy-Schwarz inequality. In the third
inequality, we used that By is the upper bound on the RKHS norm of V. In the
last inequality, we used the observation that under both polynomial eigenvalue
decay with p > 1 and exponential eigendecay, the sum of the eigenvalues is

bounded by an absolute constant C.

Also, for the second term, we have

Z wm)\2 ZCZ ( ) wm(zl))
m=M-+1 =1
< 2¢max Z wm)\él Z Cz(z)
m=M+1 =1
< 2¢max io: wm)\él (nzn:CE(z)> '
m=M+1 L

20n( )wmax\/ﬁ i

m=M+1
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cmtn (£ ) (£ )

- QBzan(Tszax (n i )\m)z.

m=M+1

The first inequality holds by definition of 1)ax. The second inequality is based
on the Cauchy-Schwarz inequality. The third inequality uses Lemma 1. The
fourth inequality utilizes the Cauchy-Schwarz inequality again, and the last

inequality results from the upper bound on the RKHS norm of V.

Putting together, with probability 1 —9,

B max®“¥n
(T4 ) < CE2 O nlE) oo (31}

QB n max >
28200 @ | 5y (g
T m=M+1

Proof of Corollary 1 To extend the confidence interval given in Theorem 1
to hold uniformly on Z, we use a discretization argument. For this purpose,
we apply Assumption 2 to f and fn, and also use Assumption 2 to bound the
discrimination error in ¢,. The following lemma provides a high probability

bound on ||fn||k¢

Lemma 2. For function [ defined in Theorem 1, the RKHS norm of fn sat-

isfies the following with probability at least 1 —0:

T

ollig, < By + 2 \/2 (ka(n)—i—l—i—log ((15)) (B.6)

For a proof see Lemma 5 in [181].

Let B3(0) = By + @\/Q(ka (n)+1+41log(3)) denote the 1 —§ upper confi-
dence bound on || f|| Hy,- Let Z be the discretization of Z specified in As-
sumption 2 with RKHS norm bound Bg(%). That is for any g € Hy, with
l9ll34,,, < Bs(5), we have g(2) = g([2]) < 5, where [2] = argmin ez [|2 —2|| is

the closest point in Z to z, and |Z| < ¢, where ¢, = c(Bg(%))dnd. Applying



B.1. Proof of Theorem 1 and Corollary 1 175

Assumption 2 to f and f,, with this discretization, it holds for all z € Z that

1
() = F([=D] = - (B.7)
In addition, by Lemma 2, with probability eat least 1 — 9
2 A 1
Fale) = Fulla]) < - B3

Furthermore, we have the following lemma, which can roughly be viewed as a

Lipschitz continuity property for o,.

Lemma 3. Under Assumption 2, with the discrimination Z described above,

it holds for all z € Z that

Proof of Lemma 3. Using the reproducing property of RKHS, we have

K (2) (K + 720 " k() |30, < Finax /1 (B.9)

)
T

where kpax is the maximum value of the kernel. Let us define ¢(-,-) =

k) () (Kp+721) " k(). We can write

To obtain a discretization error bound for the standard deviation from that of
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the variance, we write

(on(2) =0 ([2])? < lon(2) = o ([2])] (on(2) + 0 ([2])

Therefore,

O

Applying a probability union bound on the discretization Z to Theorem 1,
and considering the error bounds in (B.7), (B.8) and Lemma 3, we arrive at

Corollary 1.

B.2 Proof of Theorem 2

First, we define the following high-probability event :

£ = {vhe 1HL101(2) - (P2 < 90) () + =) + 2} (@10
where §(0) = O (I;I \/m> as specified in Corollary 1 with By = O(H)
and Bz = ¢,,. Using Corollary 1, we have P[E] > 1—6.
We divide the rest of the analysis into several steps, as outlined next.
Step 1: Under &, with reward r, we bound V{*(s) — V{"(s) using Vi(s) — V" (s),
based on the following lemma. Recall that V;" and V;* are the value functions
of policy m and the optimal policy, respectively, and V}, is the proxy value

functions used in Algorithm 7.

Lemma 4. Under £, we have

28(9) |, 2

ViE(s) = Vi(s) < (H+1 —h)(W N) (B.11)

Proof of Lemma 4. The lemma is proven by induction over h, starting from
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Vi1 =VHa+1=0. We have

Q);L(Sa&) - Qh(sa&) = Th(S,CL) + [PhV};_]_](S,@) - Th(sua) -
2

n(s,a) —B(0)onn(s,a)
) 2
N

>

=

< [PuVial(s,a) = [P Viga](s,a) +

= [Po(Vis1 = Vir1)(s,0) + 260) | 2

vV IN
26(5) 2
N

_l_

E

=|

<(H+1-h)(

The first inequality holds by &, and the second inequality by induction as-

sumption. Then, we have

Vic(sn) — Va(sp) = max Q7 (s,a) — max Qn(s,a)

< r(]lneaj({QZ(S, a) —Qn(s,a)}

26(0) , 2

< (H+1-h) (2 + 30

That proves the lemma.

Step 2: We also bound Vj(s) — V{"(s) using the sum of standard deviations for
the trajectory generated by the policy.

Lemma 5. Under £, we have

2HB(S) 2H

+—
VN N

H
> 26(8)on, N (sh,an)

h=1

Vi(s1) =V (s1) <E +

where the expectation is taken with respect to the trajectory generated by the

policy.

Proof of Lemma 5. Note that Vg1 = V7, ; =0. We next obtain a recursive

relationship for the difference V3 (s) —Vj(s).
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Vi(sn) = Vi (sn) = Qn (sn,7(s1)) — QF (sh,7(s1))
=7 (8, 7(81)) + G (8h, 7 (1)) + B(8)on N (s, 7(51))
=7 (8p,7(58)) = [PnVii1] (sn,7(sn))

< [PnVit1] (Shaﬁ(Sh)) +28(8)on,n (sh,7(s1))

+ 25\/%) +5 — [PuVial (snsm(sn)) s

where the inequality is due to £. Recursive application of the above inequality
over h=H,H—1,---,1, we obtain

H 2HAB(6
Vi(s1) =Vi"(s1) < B, ~P(fspor(sn) h<H Z 8)onn (sh.m(sn)) | + \/N( )

]

Step 3: By definition, we have V" (s1;8(0)on) < V*(s1;8(6)on). Note that
VI (513 8(8)on) = B(8) Ziy on v (sn,w(sn))-

Step 4: We have Vi*(s;5(0)on) < Vi*(s;5(8)oy). This is due to the observa-
tion that oy, is decreasing in the number n of observations. We note that
conditioning on observations only reduces the variance. That is seen from
the positive definiteness of the Gram matrix and the formula for kernel ridge

uncertainty estimator given in (5.5).

2
8

Step 5: Recall the selection rule in Algorithm 8: sp, ,, ap,n = argmax; , op pn— 1(s,a).

When exploring with generative model, with this rule of selection, we have
V1*<31§6(5)0'n71) < B((S) Zthl Uh,n—l(sh,na ah,n)-

Step 6: Combining all previous steps, we conclude that, under &,

) 26(0) &L E AB(0)H  4H
Vi'(s) = Vi"(s San_:lhz::thn 1 Shmahn)"}_W_}_W‘ (B.12)
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Step 7: We bound the sum of standard deviations according to the following

lemma that is a kernel based version of elliptical potential lemma [213].

Lemma 6. For each h, we have

N 2T'(N)

Z U%l,n—l (Sh,na ah,n) <
n=1

See, e.g., [67] for a proof. Using Cauchy—Schwarz inequality, we obtain

i ( ) < INT(N)
Ohn—1Shn:sQhn) S AT 77 77 9~
o Pl B S = g (14-1/72)

Step 8: From Steps 6 and 7, we conclude that, 7 is an e-optimal policy with

€ no larger than

2T(N) AB(8)H 4H
Nlog(1—|—1/72)+ VN TN

Vi(s) =V (s) < 2H5(5)J

A simpler expression can be given as

Vir(s) = ViT(s) = O (HZ fwnojgvgw/&) |

Now, let Ng be the smallest integer such that the right hand side less than
€. For any N > Ny the suboptimality gap of the policy is at most e. This

completes the proof of Theorem 2.

B.3 Proof of Theorem 3

We define the event £ similar to the proof of Theorem 2. The first 4 steps
related to the planning phase are exactly the same as in the proof of Theorem 2.
The rest of the proof is different and we will present it here.

In addition to &, we define another high-probability event £ where all the

confidence intervals utilized in the exploration hold true. Specifically, we define
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the following:

€' = {9 € [N].V € [H]. | fun(2)= fun ()] < B(0) 0n0(2)+ =)+ ). (B4
where 5(6) = O (fW) Using Corollary 1, we have P[] > 1.
The following steps are specific to the exploration without the generative
model. We define a reward sequence using 5,’;’0” such that 5,};?”/ = op,, When
h = hy and 5,};071 =0 for all h # hg.

Step 5b: We have V{*(s; 5(0)oy,) < Z%:l Vi*(s; 8(6)5"0). Note that the opti-
mal policy with rewards &Z?n optimizes oy, , at step h = hg, while the optimal

policy with rewards o, optimizes the sum of oy, , over all steps.

Step 6b: We bound Vi(s; 5(0)5/0) using Vi, (n,ho)(8) where Vj, ¢, oy is the

proxy for the value function used in Algorithm 9.

Lemma 7. Under event &', for all s € S,

26(5) | 2
o)

Vit (51 B(8)610) < Vi () (8) + (o + 1= R)(

Proof of Lemma 7. The lemma is proven by induction, starting from

V,;0+1(-;5(5)&,’;0) = Vig1,(n.hg) = 0. We have, for h < hg

Vi (5:8(0)57%) = Vi, (o) () = max Qi (5,0; B(8)571°) — max Q) (5.0)
< max { Q7 (5,3 5(0)31°) — Q. (n.ho) (5:) |

< gleaj{{[th;+11<s,a;ﬁ<5>62°>

— [PhVht1,0)(s,a) + 25\/(%5) + 2}
g(ho+1—h)<2€(g>+i).

The first inequality is due to rearrangement of max, the second inequality
holds under £’, and the third inequality is by the base of induction. We thus

prove the lemma. O
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Step 7b:Fix n and hg. Let m,, denote the exploration policy in
episode nH + ho. ~ We bound Vi, 40y(51) — VI (s1:8(8)670 ) using
25(6) 220:1 Ohn—1(sh,ap). Here for simplicity of notation, we use sj, and
ay, for the state and action at step h of episode corresponding to n and hg. In

a richer notation, n and hg should be specified.

Lemma 8. Under event £, we have

ho
Vi) (51) = Vi (1 B(6)510 1) < Z (25( Thn— 1(3h7ah)+2ﬁ\/(ﬁ)—|— n)

(thh—Hn ($h:an) = Vi1 (5h41) )

<Vi::1h sn1:B(8)510 1)

-—[faxclza0]<sh,ah;ﬁ<a>&221>)-

The second and third terms are martingale sums which can be bounded using

Azuma-Hoeffding inequality, we refer to them as

Chy(nsho) = [Pn Vi 1,0l (Shsan) = Vi 1,n(Sha1)

Tn,hq

Entnig) = Vi 1® (5541 B(8)F10 1) — [PaVi 1] (s, an: B(8)510 1)

Proof of Lemma 8. We obtain a iterative relation over h. In particular

Vi tmho) (50) = Vi ™" (53 B(O)G1 1) = Qo) (k@) — Q1" (sh, s B(9)510 )

< [PuVihy1nl(sh,an) — [PhV,fﬁihO](Sh,ah;ﬁ(5)6ﬁ‘il)
+2B(8)on n—1(sh,an) + er*

N
= Vi1 (o) (31) = Va1 (s B(8)50% 1)

+25(0)oh,n- 1(8h,ah)+£()+*

vnooon

+ Chy(n,ho) T Eh,(nho)-
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[terating over h and noticing Vi, 11, (n,n) — V,:)T;hlo( '6(5)620_1) = 0 the lemma

is proven. ]

Step 8b: We note that V; Elnhg )( s) = 5(6)0h,n—1(3h0,(n,h0)aahm(n,ho))'

Step 9b: Combining Steps 5b-8b we conclude that

 Jo 10) |
(3 6 Un 1 Z Z 36 Uh,nfl(sh,(n,ho) ap,(n,ho) ) \/—
ho=1h=1
+ Ch,(n,ho) T £h7(n,h0)> :
(B.15)

Step 10b: Combining with previous steps similar to the proof of Theorem 2,
and using Azuma-Hoeffding inequality on (p, (n 1o) and & (n,n), We get, with

probability 1—9

2T(N) 8B(8)H (H +1)
Nlogl+1/72) VN

L AHUE Y 1)](\1[°g<N) D, 2H\/N(H+ 1)log <§>

The expression can be simplified as

Vi(s)— Vi(s) = O <H3 f(N)logWH/é)) |

Vi'(s) = Vi"(s) <3H(H + 1)5@)%

N

Now, let Ny be the smallest integer such that the right hand side less than
€. For any N > Ny the suboptimality gap of the policy is at most e. This

completes the proof of Theorem 3.

B.4 Experimental Details

Here, we outline the procedure for generating r» and P test functions from
the RKHS, the finetuning process of the confidence interval width multiplier
[, and the computational resources utilized for the simulations. Additionally,

we present further experimental results when various samples of r and P are
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drawn from the RKHS.

B.4.1 Synthetic Test Functions from the RKHS

Our reward function r and transition probability P are arbitrarily chosen func-
tions from an RKHS. For the reward function r, we draw a Gaussian Process
(GP) sample on a subset of the domain Z. This subset is generated by sam-
pling a set of evenly spaced points on a 10 x 10 grid spanning the range [0,1] in
both dimensions. We then fit kernel ridge regression to these samples and scale
the resulting predictions to fit the [0,1] range to obtain r. For P(s'|s,a), we
similarly draw a GP sample on a subset of the domain Z x &, fit kernel ridge
regression to these samples, and then shift and rescale for each z to obtain
P(-|z) as a conditional probability distribution. We use the same kernel as
the one used in the algorithm. This is a common approach to create functions
belonging to an RKHS (e.g., see, [66]). Examples of r and P are visualized in
Figures B.1, B.2 and B.3 using SE and Matérn kernels with parameter v = 2.5
and v = 1.5, respectively. For all kernels, we use lengthscale of 0.1. With SE

kernel, we use 7 = 0.01, and with Matérn kernels, we use 7 = 0.5.

o

(c) P(s'|(s=0,a=0.5051)

10

(d) P(s'|(s=0,a=1) (e) P(s'|(s=0.5051,a =0) ) P |(s=1,a=1)

Figure B.1: Reward and transition probability functions generated by kernel ridge
regression using SE Kernel with lengthscale = 0.1 and 7 = 0.01.
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(a) Reward function r(s,a) (b) P(s'|(s=0,a=0) (c) P(s'|(s=0,a=0.5051)

Ps'[s=0.0.a=1.0)
[

(d) P(s'|(s=0,a=1) (e) P(s'|(s=0.5051,a =0) ) P(|(s=1,a=1)

Figure B.2: Reward and transition probability functions generated by kernel ridge
regression using Matérn kernel with v = 2.5, lengthscale = 0.1 and
7 =0.5.

(a) Reward function r(s,a) (b) P(s'|(s=0,a=0) (c) P(s'|(s=0,a=0.5051)

P(s's=0.0,2=1.0)

00000

(d) P(s'|(s=0,a=1) (e) P(s'|(s=0.5051,a =0) (f) P(s'|[(s=1,a=1)

Figure B.3: Reward and transition probability functions generated by kernel ridge
regression using Matérn kernel with v = 1.5, lengthscale = 0.1 and
T=0.5.
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B.4.2 Tuning the Confidence Interval Width Multiplier

We perform hyperparameter tuning for the confidence interval width multiplier
B. The theoretical analysis, especially in [185], leads to high values for 5. To
ensure a fair comparison between algorithms, we finetune § for [185], our
algorithm without a generative model, our algorithm with generative model
and Greedy Max Variance, selecting the best value for each. Figures B.4, B.5,
B.6 show the simulation results for various values of g € [0.1,1,10,100] for

several kernels. The value 8 = 0.1 yields the best performance consistently.

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160

N N
(a) (Qiu et al., 2021) (b) Without generative model
35 L | | | 35 | | | |
3.0 | | 3.0 | |
“w W
= 25 = 25
> >
I 2.0 I 2.0
E 154 | E 15 m
> 1 —— B=0.1 > 1 - B=0.1
B=1 p=1
051 o g=10 051 = p=10
00 —— B=100 | 0ol ™ B=100 |
Zb 4‘0 5'0 Bb 160 12‘0 lAﬂ 1‘50 Zb 4‘0 Gb Bb 160 12‘0 14‘0 1‘50

N N
(¢) With generative model (d) Greedy Max Variance

Figure B.4: Average suboptimality gap plotted against the number of episodes N
for different values of 8 in the case of SE kernel.
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26 - B=01 25 |
—o— B=1
—e— f=10
24 —e— f=100 20
a < — &)
(< 2.2 = -
~ >~ s : J;;i'l
| 20 I ™~ —e— f=10
0 \ W\ 10 .\, —e B=100
T e b = “"\.
> >
05
16
14 0.0
Zb 4‘0 ﬁlﬂ Eb 160 12‘0 14:".) 1‘50 Zb 4‘0 ﬁb Eb 160 12‘0 l“lO 1‘50
N N
(a) (Qiu et al., 2021) (b) Without generative model
o[ |
—_ 2.0
)
1
> 15
|
0 10
> 05 -8 B=0.1
s B=1
—e— B=10
001 —e— B=100

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160

N N
(c) With generative model (d) Greedy Max Variance

Figure B.5: Average suboptimality gap plotted against the number of episodes N
for different values of 8 in the case of Matérn kernel with v = 2.5.

2.00
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—e— =100 1.50
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08 —e— =10
0.004 &= B=100

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
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(a) (Qiu et al., 2021) (b) Without generative model
2.00 2.00
175 175
__ 150 "\—\_\_\ _ 150
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> >
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> os0 o p=01 ,,/ > os0 —e— p=0.1 \—\\
0251 —* B=1 025 * B=1
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0.001 _¢— B=100 0.00{ —&— B=100
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
N N
(c) With generative model (d) Greedy Max Variance

Figure B.6: Average suboptimality gap plotted against the number of episodes N
for different values of 5 in the case of Matérn kernel with v = 1.5.
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B.4.3 Implementation and Computational Resources

For kernel ridge regression, we used Sickit-Learn library [269], which offers
robust and efficient tools for implementing and tuning kernel-based machine
learning models. The simulations were executed on a cluster which has 376.2
GiB of RAM, and an Intel(R) Xeon(R) Gold 5118 CPU running at 2.30 GHz.
The algorithm by [185], our algorithm without a generative model, and the
Greedy Max Variance algorithm typically require approximately 2 minutes of
CPU time on average per run. However, our algorithm with a generative model
requires around 7 minutes per run due to the cost of increasing the number of

exploration episodes by a factor of H.

B.4.4 Repeated Experiments for Different Draws of r
and P

To validate the robustness of the results against specific environment realiza-
tions, we ran the experiments three times, with each repetition using different
reward and transition probability functions drawn from the RKHS. We kept
the hyperparameters (lengthscale, 7, and () identical to the ones used in
the main text of the thesis. The results remained consistent across all repeti-

tions, as shown in Figures B.7, B.8 and B.9 for different kernels and algorithms.

V' (s) = V(s)
V*(s) = V(s)
V' (s) = V(s)

20 4 60 8 100 120 140 160 20 4 60 80 10 120 140 160

2 @ e 8 100 10 10 160
N N N

(a) SE Kernel (b) Matérn with v =2.5  (c) Matérn with v =1.5

Figure B.7: Average suboptimality gap plotted against N for experiment 1.



B.5. RKHS and Mercer Theorem 188

V' (s) = V(s)
V*(s) = V(s)
V' (s) = V(s)

8 100 120 10 160 20 6 80 100 120 140 160 0 4 e 8 100

(a) SE Kernel (b) Matérn with v =2.5  (c) Matérn with v =1.5

Figure B.8: Average suboptimality gap plotted against N for experiment 2.

V' (s) = V(s)
V*(s) = V(s)
V' (s) = V(s)

20 4 60 8 100 120 140 160 20 4 60 80 100 120 140 160

Y 20 4 e 8 100 10 10 160
N N N

(a) SE Kernel (b) Matérn with v =2.5  (c) Matérn with v =1.5

Figure B.9: Average suboptimality gap plotted against N for experiment 3.

B.5 RKHS and Mercer Theorem

Mercer theorem [270] provides a representation of the kernel in terms of an
infinite dimensional feature map (e.g., see, [271], Theorem 4.49). Let Z be
a compact metric space and p be a finite Borel measure on Z (we consider
Lebesgue measure in a Euclidean space). Let Li(Z) be the set of square-
integrable functions on Z with respect to u. We further say a kernel is square-

integrable if
k:2 ! d/t du " < 0.

Theorem 6. (Mercer Theorem) Let Z be a compact metric space and p be a
finite Borel measure on Z. Let k be a continuous and square-integrable kernel,

inducing an integral operator Ty, : Li(Z) — Li(Z) defined by

(Tef) () = [ kG F ) dn(),

where f € LZ(Z) Then, there exists a sequence of eigenvalue-eigenfeature pairs

{(Ym, om) foneq such that v >0, and Tippm = Ym@m, for m > 1. Moreover,
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the kernel function can be represented as
o
k(22) =3 ymem(2)om (7)),
m=1
where the convergence of the series holds uniformly on Z X Z.

According to the Mercer representation theorem (e.g., see, [271], Theorem

4.51), the RKHS induced by k can consequently be represented in terms of

{('7m;§0m)}$nozl'

Theorem 7. (Mercer Representation Theorem) Let {(Ym,pm) iy be the Mer-
cer eigenvalue-eigenfeature pairs. Then, the RKHS of k is given by

Ho— {f(-) S wnhem()  wm € R, = 3 wd < oo}.
m=1 m=1

Mercer representation theorem indicates that the scaled eigenfeatures

{VTmem}oo_; form an orthonormal basis for Hy.



Appendix C

Appendix of Chapter 6

C.1 Proof of The Regret Bound and Sample
Complexities

In this section, we provide a detailed proof of Theorem 4 on the regret bound

of MR-LPF and following corollaries.

C.1.1 Proof of Theorem 4

To prove this theorem, we bound the regret for each round and then sum these

bounds over all the rounds.

Regret in the first round: The first round consists of Nj = [v/T] samples.
We note that for all ¢,

P(z* > a) + P(a* = 2}) — 1
2

<. (C.1)

DN | —

Consequently, the regret incurred in the first round in bounded by %[\/T 1.
For the second round onwards (r > 2), we introduce some notation and pre-

liminaries that will assist in bounding the regret.

High probability events: Let us define the event &, as the event that all the
confidence intervals used in the round r of the MR-LPF algorithm hold true.
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Specifically,

6 = {0’ € Mo b 0,0)) = )] < oo ) |
(C.2)

Recall that ((,)(0) = L <B—|— 5 log (2R|X)). We also define £ = U2 | &,.
Sum of the posterior variances for a sequence of observations: We
apply the following bound on the sum of posterior variances in each round

(see, e.g., [116], Lemma 14]).

N,
" 8
2 /
E < . .
2 Tln1) () = 15517 +4(m)*1)r(“’")(N’") €3

By the selection rule of (x(n#),a:’(nw)) in MR-LPF as the points with the
highest variance, we have that Va,2’ € M,, and Vn < N;, oy, »)(2,2") <
O (n—1,r) (x(njr),a:’(nyr)). Combining this with Equation (C.3), we conclude that
Vo, 7' € M,,

8 T ey (V)
/ < T ) )
TNy (,27) < \/log(l +4(Akp)~h) N, (C4)

The value of k,,r > 2: Recall the update rule for M, in MR-LPF:

Miy1 = {x € M V2" € My (b, oy (@,2") + Byo(n, ) (,2) > }< 5)

Assuming &1, for all z,2" € My, we have

ph(@,2)) +280y0 (v, 1) (@,2) = i, 1y (@,27) + Bayo g 1 (2,27)

1
> — .
> ()

where the first inequality holds under &£ and the second inequality is a conse-

quence of the update rule. Similarly, we have

ph(a’,2)) +260)0 (1) (@', 2) =

l\:)\»—
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We note that Va,2' € X, pu(h(2/,2)) =1 — u(h(x,2’)). Thus, Equation (C.7)
implies that
1
w(h(z,2')) < 5 +25(1)0(N171)(x’,x). (C.8)

Combining with (C.6), we obtain that

1
=280y 1y (@,2") < p(h(z,2")) - 3 < 280 (v 1) (@', 7). (C.9)

We previously established a bound on the standard deviation at the end of
rounds in (C.4). Applying this to the first round, with length Ny = [v/T'], we
can bound p(h(z,2’)) for all x,2” € Mo within the interval [1,2] by ensuring

2Byo (w2 1) < %. Specifically, let Ty be the smallest integer satisfying

8 Cowy([vTol) 1
<-. .
250(0) log<1+4<m>—1>J v ca O
Then, for any T > Ty, for all z,2’ € May, we have p(h(x,2’)) € [5,%]. Recall

L—p(-))-
Consequently, the inverse of the derivative of the sigmoid applied to h, for the

values of z,2’ € My, is bounded as follows. For all z,2’ € Mo,

1 1
<% (C.11)

pu(h(z, o)) (1 = p(h(z,a"))) = 3

Thus, we can use x, = 6 for all » > 2, maintaining the validity of the confidence

intervals.
Lemma 9. For T > Ty specified in Equation (C.10), we have P(£) <1—4.

The proof follows from Theorem 5, a union bound over all action pairs and
rounds, and the bound on k, derived above. We condition the remainder of
the proof on the event 7' > Ty and &.

The best action z* will not be removed. Assuming &, the best action will
not be removed from the sets M, by the MR-LPF algorithm in any round.

We formalize this observation in the following lemma.
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Lemma 10. Under event £, x* € Mp.

The proof follows from the observation that p(h(z*,z)) > 3 for all 2. Com-
bining with the confidence intervals in &, Vr, Vo € M;, p(h, ) (z*,2)) +
By (0)o(n, »y (™, 2) > $. Consequently, the best action 2* will not be removed.
We are now ready to bound the regret in rounds r > 2.

Regret bound in each round r > 2: For each x € M,., we use the update
rule of M, in MR-LPF to bound the regret with respect to the optimal action.
Recall that in Lemma 10, we showed that the optimal action remains in M,

for all r. We have

pu(h(z,2*)) +284-1)(0) o, r—1) (2, 27)
>

(b, ey (@,2%) + By (0) o, | r—1)(T,2%)
1
2

v

(C.12)

’

where the first inequality holds under £, and the second inequality follows from

the update rule of M,.. Then, we have

p(h(a”, ) =1 = p(h(z,2"))

+26(7’—1)(5)U(Nr,1,r—1)($’x*)’ (C.13)

IN

1
2
The equality follows from p(—-) = 1— u(-), and the inequality follows

from (C.12).
We thus have for all x € M,

1

N(h(x*vr)) - 5 < 26(r—1)(5)0-(NT_1,T—1)(I71:*)

Lo,y (Nr—1)
<2 ) = 14
where the second inequality is proven in (C.4), and we use C' = W

to simplify the notation. This bound holds for all points in round r. Therefore,

to obtain the regret in round r, it is sufficient to multiply this bound by N,.
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This results in the following bound on the regret in round r:

Lo,y (NVr—1)
Ny—1

1
< 26-1)(0)C (\/TF(4A) (T)+ NV Lian) (T)>

< 28,1y (0)C (TTax)(T) + T4 /T4y (1)), (C.15)

Regret in Round r < 25(r1)(5)0NrJ

where the second inequality is obtained by substituting N, = [\/N,_1T] and
using [-] <-+1. We also use that I'(y,, _)(.) < Ty () since x,—1 > 4. The
third inequality follows from N, > VT for all r > 1.

Total regret: The number of rounds R is at most [loglogy (7)) + 1, see Propo-
sition 1 of [84]. Using the bound on regret in each round, we can bound the

total regret of MR-LPF algorithm as follows

R(T) < 2CRBp) () TF(4,\)(T)+20R6(R)(6)T_1/4./F(4A)(T). (C.16)

This completes the proof of Theorem 4.

C.1.2 Proof of Corollary 2

Since the size N, of rounds increase with r, we have Ng > T'/R. In the proof

of Theorem 4, in (C.14), we showed that, for all x € M,

L e, 1) (Nr-1)
Ny

uw@ﬁx»—;szmpnwxd

Thus, for x € Mp,1, we have

(C.17)

(C.18)
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where, for the second inequality, we used Np > %, and for the third inequality,

we used Np <T.

C.1.3 Proof of Corollary 3

Following the bounds obtained in Corollary 2, we determine 7' that ensures
p(h(27,2)) — 5 < e, after T steps. For this, we need specification of I'y(T).
In the case of linear kernels, we have I'y(7") = O(dlog(T)). Consequently, a
choice of T = O <dlog()> ensures p(h(z*,z)) — 3 < e

In the case of SE kernel, we have T'y(T) = O(log?™(T)). Consequently, a

choice of T = O <log< )) ensures pu(h(x*,x)) — % <e.

In the case of Matérn kernel, we have T'\(T) = O(T ﬁ) Consequently, a
choice of T = O <102g(d)) ensures pu(h(z*,z)) — % <e.
For the bound on I'y(7) see, e.g., [68].

C.2 Proof of Theorem 5

Recall the conventional kernel-based regression discussed in Section 6.2. Var-
ious confidence intervals of the form |f(z) — fi(2)| < B(8)oy(2), where fi(z)
and o4(z) are the conventional prediction and standard deviation, and ((d) is
a confidence interval width multiplier for a 1 —¢ confidence level, have been
demonstrated in several works [213, 66, 70, 72]. As discussed in the preference-
based case, the problem becomes more similar to a classification problem with
binary feedback, and these confidence intervals are not directly applicable.
Moreover, a closed-form solution for h; is not available, as it is only provided
as the minimizer of the loss function given in Equation (6.5). Additionally, as
discussed, this loss and its solution can be parameterized using the representer

theorem.

t
Li(0,Hy) = > —y;log (0 ke (x;,2}))
=1

— (1= y;)log(1 — (8 " ke (s, 7)) + |!9||27 (C.19)
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and
t

hi() = > 0% (-, (wi,25)) (C.20)
=1
For the remainder of the proof, and for simplicity of presentation, we use the

notation z = (z,2) and similarly z; = (z;,2}).

In both [235] and [116], confidence intervals for |h(z) — h¢(2)| are derived,
with [116] establishing tighter bounds. Their confidence intervals are based
on the results of [239] for logistic bandits and [72] for confidence intervals in
kernel bandits. In comparison, our confidence intervals are tighter than those
presented in [116] by a factor of O(/T'x(T)). We achieve this improvement
by assuming that the sequence of observation points {z;}{_; is independent
of the observation values {y;}!_;, inspired by [70]. This assumption is made
possible in our work due to the design of the MR-LPF algorithm, where within
each round, the observation points are selected based solely on kernel-based

variance, which, by definition, does not depend on the observation values.

The main steps of the proof are similar to those in the proof of the confi-
dence interval in [116], and we will highlight the key differences in our proof.
The key idea is that the derivative of the loss Ly, as given in Equation (C.19),

is the null operator at the minimizer of the loss:
t
L(6;,H;) = Z k(2i,) +g:(8:) = 0, (C.21)

where ¢4(0) : Hi — H is a linear operator defined as

t
90(0) = > K(zi, (6 k(2. )) + A6 (C.22)
=1

Recall that 6; is the minimizer of the loss in Equation (C.19). Consequently,
we have g¢(6;) = 20— yilk(zi,-).
Then, confidence intervals are proven for the gradient and extended

to the preference function itself. We now introduce some auxiliary no-

tation that will be helpful throughout the rest of the proof. Let ®; =
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[k(z1,-),k(22,-),...,k(2,-)] ", from which we define the kernel matrix K; =
@t@; and the operator Sy = <I>tT ®P;. We also use I; to denote the t-dimensional
identity matrix and I3 to denote the identity operator in the RKHS. Finally,
we define V; = Sy + kA Iy.

We also use the auxiliary notation Gy as in Appendix B of [116], where

¢
G(61,02) = My + Y a(2i:01,02)(2) " (21),

1=1

and

1
a(z,61,62) :/0 i1 (63 6(2) + (1—1) 0] 6(2)) dv
is the coefficient arising from the mean value theorem, such that
(63 ¢(2)) — (81 6(2)) = (2,01,62)(62— 61) " (2).

See, [116], Lemma 11 for details. It then follows that

91(02) — g1(01) = G1(01,62)(02 — 61), (C.23)

as shown in the proof of Lemma 12 in [116]. We use this relation, along with
the inequality
G1(01,02) = 'V, (C.24)

where > denotes the Loewner order, also from the proof of Lemma 12, in our

analysis.

We use the notation h(z) = ¢ (2)@* for the underlying preference function

and g; = y; — u(h(z;)) to represent the sequence of observation noise.

Inspired by the proof of confidence intervals in [70], we express the prediction

eITror as:



C.2. Proof of Theorem 5 198

|u(he(2)) — p(h(2))]
< L|h(2) — h(z)]

=L|¢'(2)(6,—6")
= L|p" (2)Gi(6",6,) " (9

—~

0:) gt<e*>>\

) 61) 30"

(-]

< L[6T()6l000 ! (0l |+ LAl () Guer.0) o

Bias Term

=Ll (2)Gy(6%,6;) 7"

MN

Il
_

=L|¢"(2)Gy(6%,6,)7*

(-
(o0

HHMH

Stochastic Term

The first line follows from the Lipschitz continuity of the sigmoid function.
The second line uses the representer theorem to express hy(2) = ¢ ' (2)6; and
h(z) =@ (2)0*, where ¢(z) =k(z,-), defined similarly to Appendix A of [116].
The third line uses (C.23). The fourth line uses that 6; is the minimizer of
the loss in Equation (C.19). The fifth line uses the notation ¢; = y; — u(h(z;))
for the observation noise. Finally, the expression is split into a stochastic term
and a bias term, allowing us to follow the proof structure of the confidence

bound in Theorem 1 of [70].

The stochastic term is a sub-Gaussian random variable and can be
bounded with high probability using standard concentration results. In par-
ticular, the sub-Gaussian parameter is determined by the norm of the coeffi-
cients applied to the independent noise terms ¢;, which are 1/2-sub-Gaussian.
This follows from the fact that ¢; = y; — u(h(z)) € [—p(h(z:)), 1 — p(h(z))],

and therefore the noise sequence has bounded support of length 1.

th\¢ ) G+(67,6:) 1@t\\< SLIB() | cyor00 1 [BGe(0%,0) 7 8] |1 3f

< SLRlg(:) o [0, @] 12
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< ;L\/fat(z), (C.25)

where || - [|op denotes the operator (spectral) norm. The first inequality fol-
lows from matrix arithmetic and the definition of operator norm. The sec-
ond uses (C.24). The third uses the identity H(;b(z)Hth = ﬁat(z) (see, e.g.,
[116]), along with || @V, '@/ |lop < 1, which follows from the eigenvalue bounds

of ¢y and V7!

Therefore, by the concentration inequality for sub-Gaussian random variables

(see, e.g., [272]), with probability at least 1 —4,

‘ng ) Go(6%,6,)" <252 zl> < L\fat )y/2108(2/6).

The bias term is bounded as:

< LAo(2) G, (6%,6,)-1 110"l (6+,60)1

< L] 6(2) 1167

LA|¢" (2)Gi(6%,6:)"6*

< LBoy(2), (C.26)

where the second line uses (C.24), and the third line uses [|@(z)[;,-1 =
t

ﬁat(z), as discussed above. It also uses the bound H9*||Vt_1 < ﬁB, which

follows from:

* * )\
A[67]ly, 1 < \/_||0 | < \/>B (C.27)

where the first inequality follows from the fact that the smallest eigenvalue of

V; is at least Ak, and the second follows from the RKHS norm bound ||6*|| < B.

Combining both bounds gives the following expression for 5():

B(5) = LB+§ 2;10g(2/5). (C.28)
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C.3 Experimental Details

In this section, we provide details on the experimental setting. We describe the
RKHS test functions, the Ackley function, and the Yelp Open Dataset used in
our experiments. Additionally, we outline the selected hyperparameters and
the computational resources utilized in our simulations. We also present the

MaxMinLLCB algorithm of [116].

RKHS test functions: In Section 6.5, we outlined the procedure for gen-
erating the test function f as an arbitrary function within the RKHS of a
given kernel. In Figure C.1, we display the test functions generated in the
RKHS for the SE kernel and the Matérn kernels with v = 2.5 and v = 1.5.
The figure includes plots of the utility function f, the preference function

h(z,2") = f(x) — f(2'), and the probability of preference p(h(x,z")).

Ackley test function: It is defined as follows (with d =1 and X = [-5,5]):

f(z)=—20exp (—0.24 ;Zd:xf) exp (cll zd:cos(%m:i)) +20+exp(1)
i=1 i=1

The preference function h (difference in utilities) is then scaled to the range

[—3,3]. The Ackley function is shown in Figure C.1.

Yelp Dataset: We use a subset of the Yelp Dataset, filtering it to include
only restaurants in Philadelphia, USA, with at least 500 reviews and users who
review at least 90 restaurants. The final dataset consists of 275 restaurants,
20 users, and 2563 reviews. Reviews for each restaurant are concatenated
and processed using OpenAl’s TEXT-EMBEDDING-3-LARGE model to generate
32-dimensional vector embeddings, which serve as the action set in the BOHF
framework. User ratings (ranging from 1 to 5) are considered as the utility
function f, which are then scaled to the range [—3,3]. Missing ratings are
handled using collaborative filtering. In each experimental run, we sample a
random user from the set of 20 and conduct the experiment independently.

We average the regret over 60 runs to produce the final plot.
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(a) f(=), (b) h(z,z'), (c) p(h(z,2')),
SE kernel SE kernel SE kernel
(d) f(=), (e) h(z,z"), () p(h(z,2")),
Matérn (v = 2.5) Matérn (v = 2.5) Matérn (v = 2.5)
(8) f(2), (h) h(z,"), (@) plh(z,2"),
Matérn (v = 1.5) Matérn (v = 1.5) Matérn (v = 1.5)
] | "‘*‘

x

() f(x), (k) h(z,z'), @) plh(z,z"),
Ackley function Ackley function Ackley function

Figure C.1: Plots of the utility function f(x), the preference function h(z,z') =
f(z)— f(2'), and the probability of preference u(h(z, ")) for synthetic
experiments. The rows correspond to: (1st row) SE kernel (RKHS),
(2nd row) Matérn kernel with v = 2.5 (RKHS), (3rd row) Matérn
kernel with v = 1.5 (RKHS), and (4th row) Ackley function.
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Loss function optimization: To minimize the loss function given in (6.7)
and obtain the parameters 0, any standard optimization algorithm can be
used. In our experiments, we employ gradient descent. The learning rate is
individually tuned for each algorithm, kernel, and test function by selecting
the best-performing value from the grid {0.01,0.005,0.001,0.0005,0.0001} in

each scenario.

Hyperparameters: We choose | = 0.1 as the length scale and A = 0.05 as
the kernel-based learning parameter across all cases. The horizon 7' is set to
300 for RKHS test functions and 2000 for the Ackley function and the Yelp
Dataset. For the RKHS and Ackley functions, the confidence interval width
S is fixed at 1 for both MR-LPF and MaxMinLCB. For the Yelp dataset, we
conduct a grid search to tune 3 over {0.01,0.1,0.5,1,2} for both MR-LPF and
MaxMinLCB algorithms. We determine 5 = 2 as optimal for MaxMinLLCB
and # =0.1 for MR-LPF.

Computational Resources: For the experiments with the synthetic RKHS
and Ackley functions, we utilize the Scikit-Learn library [269] for implementing
Gaussian Process (GP) regression. The code is executed on a cluster with 376.2
GiB of RAM and an Intel(R) Xeon(R) Gold 5118 CPU running at 2.30 GHz. In
the case of the Yelp Dataset experiments, we use the BoTorch library [273] and
its dependencies, including GPyTorch [274], which offer efficient GP regression
tools with GPU support. The simulations are carried out on a computing node
equipped with an NVIDIA GeForce RTX 2080 Ti GPU featuring 11 GB of
VRAM, an Intel(R) Xeon(R) Gold 5118 CPU running at 2.40 GHz with 24
cores, and 92 GB of RAM.

MaxMinLCB algorithm: [116] proposed a zero-sum Stackelberg (Leader—Follower)
game for action selection, where the leader x; maximizes the lower confidence

bound (LCB), and the follower 2 minimizes it, according to the following:

7y = arg max p(he(z,2' () — Broy(z, 2 (),

a'(z) = arg min p(hy(z,2")) — froy(z,2").
x/EMt
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