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ABSTRACT

Due to the massive size of test collections, a standard practice in IR
evaluation is to construct a ‘pool’ of candidate relevant documents
comprised of the top-k documents retrieved by a wide range of
different retrieval systems - a process called depth-k pooling. A
standard practice is to set the depth (k) to a constant value for each
query constituting the benchmark set. However, in this paper we
argue that the annotation effort can be substantially reduced if
the depth of the pool is made a variable quantity for each query,
the rationale being that the number of documents relevant to the
information need can widely vary across queries. Our hypothesis
is that a lower depth for queries with a small number of relevant
documents, and a higher depth for those with a larger number of
relevant documents can potentially reduce the annotation effort
without a significant change in IR effectiveness evaluation. We make
use of standard query performance prediction (QPP) techniques to
estimate the number of potentially relevant documents for each
query, which is then used to determine the depth of the pool. Our
experiments conducted on standard test collections demonstrate
that this proposed method of employing query-specific variable
depths is able to adequately reflect the relative effectiveness of IR
systems with a substantially smaller annotation effort.
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1 INTRODUCTION

The most widely used approach used in evaluating quality of re-
trieval systems is based on constructing test collections via the
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Cranfield paradigm [6], which assumes that relevance judgments
for each query are complete. However, due to the cost of obtaining
relevance judgments, it is often impractical to obtain relevance
judgments for all documents in a collection.

A commonly used approach to reduce the need for extensive
judging effort in test collection construction is depth-k pooling,
which is based on constructing a pool of documents that consists
of the top-k documents retrieved by various systems and then ob-
taining relevance judgments for these documents, assuming that
the rest of the documents are non-relevant. Most existing test col-
lections, such as the ones constructed by TREC are constructed
using depth-100 pools, i.e., using a value of k = 100 [24]. However,
depth-100 pools still tend to be quite large and hence significant
research has been devoted to reducing the number of judgments
needed in constructing test collections [5, 25]. In order to reduce the
pool depth, some recent test collections are, instead, constructed
using much shallower depths, such as depth-10 pools used by the
recent Deep Learning Track collections [9].

Most previous work assumes that a constant depth (k) should
be used across all the queries in the test collection. However, some
queries may contain more relevant documents than the others, and
using the same depth across all queries could lead to wasting a
significant proportion of annotation budget on those queries where
fewer judgments could have been sufficient [25, 26].

Some previous work based on active learning proposed approaches
employed deeper depths for systems that are more likely to retrieve
a higher number of relevant documents [7, 19, 22] - a process which
often leads to different rank cutoffs for different systems. Optimis-
ing the resultlist presentation to search system users motivated a
similar thread of work that involves chopping off a ranked list of
documents at different cut-off points based on the statistics of their
score distributions [2, 18]. More recently, supervised learning via
neural networks has been applied to address this problem [4].

While previous work has investigated cutting off ranked lists at
variable depths to reduce the information finding effort of search
engine users [2, 4, 7, 19, 22], we, in contrast, use the concept of
variable depths for reducing the assessment effort. The rationale
behind the idea is that some queries have a smaller number of
documents in the collection that are relevant to their corresponding
information needs, whereas for some other queries this number
may be substantially larger. Our hypothesis is that a lower depth
for the former class of queries and a higher depth for the latter
can potentially reduce the annotation effort without a significant
change in the relative evaluation of different retrieval systems.

In particular, to estimate the number of potentially relevant docu-
ments for each query we make use of a standard query performance
prediction (QPP) based approach (specifically, NQC [23] in this pa-
per). This number of relevant documents estimated for a query
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in the top-documents retrieved by an IR system is then used to
determine the number of documents that contribute to the pool for
that particular query and IR system combination.

2 PROPOSED METHODOLOGY
2.1 A Review of QPP

QPP approaches can broadly be categorized into the pre-retrieval
and post-retrieval types. A pre-retrieval estimator uses aggregated
collection-level statistics (e.g., maximum or average of the inverse
document frequencies of the query terms) as an estimated perfor-
mance measure of a query [16, 17, 28]. A post-retrieval estimator,
on the other hand, makes use of the information from the set of
top-retrieved documents to estimate the quality of the retrieved
list. In general, the QPP score for a post-retrieval estimator ¢ is a
function of the query and the set of top-retrieved documents, i.e.,

¢:0xMP(Q) >R, 1)

where M%) (Q) denotes the set of top-k documents retrieved for
query Q with a model M. From hereon, M (k) (Q) is abbreviated as
M®) the query being understood from the context.

Various evidences extracted from the top-retrieved documents
have been shown to be useful for different post-retrieval QPP esti-
mation methods, such as the KL divergence between the language
model of the top-retrieved documents and the collection model as in
Clarity [11], the aggregated values of the information gains of each
top-retrieved document with respect to the collection as in WIG
(Weighted Information Gain) [29], the skewness of the retrieval sta-
tus values (RSVs) measured with variance as in NQC (Normalized
Query Commitment) [23], ideas based on the clustering hypothesis
for a pairwise document similarity matrix [15], topology of the
embedded word vectors [21] and even supervised approaches using
neural networks [12, 14].

In our work, as an unsupervised QPP approach we employ NQC
(Normalized Query Commitment) [23], which is a simple yet effec-
tive post-retrieval QPP method [13, 27] (we leave the investigation
with other QPP approaches as future work). NQC predicts the re-
trieval effectiveness of a query using the variance of the document
scores, the rationale being that a query with a well-defined infor-
mation need is likely to lead to a more non-uniform (heavy-tailed)
distribution of the RSVs. Formally speaking, the generic ¢ function
of Equation 1 takes the form

0y s VA T (PO ~PDIO)Y
Pnoc(Q M) = P0I0) ,

where P(D;|Q) denotes the RSV of the document D; for Q, P(D|Q)
denotes the mean of the RSVs, and P(Q|C) denotes the similarity
of Q to the collection, which is computed by aggregating collection
statistics (e.g., idf) over the query terms.

Although for our experiments we specifically use the NQC method,
our proposed method of variable depth pooling strategy (to be dis-
cussed in the next section) is a general one allowing application of
any other QPP model as a concrete realisation of ¢ (Equation 2).
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2.2 Depth Estimation using QPP

Given a set of n queries Q = {Q1,...,0Qn}, a standard depth-k
pooling process first involves employing a number of different
retrieval systems (models), say M = {My, ..., Mp} to construct a
pool of the top-k documents retrieved with each M; (i = 1,..., p).
Formally speaking, this pool of depth k, Py (Q) for query Q € Q is
constructed as

P(Q) = Ur_ MF) (3)

where Ml.(k) denotes the top-k documents retrieved with model M;.

The key idea now is to make this depth k a function of Q itself
rather than it being a constant across all queries. We propose to
make this integer-valued depth of a query a function of the generic
form of the real-valued QPP estimate ¢ (which also depends on
M i(k)) as shown in Equation 1, and denote this integer-valued depth
function as {(Q, M;) € Z*.

One important point to note is that we make the variable depth
a function of the query and of the retrieval model. As a next step
after computing the depth {(Q, M;) for a ‘query and system’ com-
bination (Q, M;), we use this depth to determine the number of top
documents from M l.@(Q’M")) to add to the pool. In other words, we
obtain a more generic version of Equation 3 as

Prio) = UMM, (4)

We now explore two different ways by which this variable depth
of a query-model combination may depend on the QPP estimator.
Each of these two choices of {(Q, M) has its own set of supporting
arguments; more details follow.

2.2.1 Inverse Linear Dependence. The first choice for {(Q, M) is a
linearly inverse proportional function, the intuition for which is
that the higher the value of the estimate - the higher is the likelihood
of the ranked list (as retrieved by M) to contain a higher proportion
of relevant documents towards the top ranks. This, in turn, means
that a smaller depth for such a query is likely to be adequate to
include an adequate set of potentially relevant documents in the
constructed pool for a robust evaluation of IR systems.

On the other hand, a relatively low value of the QPP estimate for
a query potentially indicates that more documents should perhaps
be included in the pool by employing a higher depth value for that
query. Formally speaking, using the generic notation of the QPP
function of Equation 1, the depth of a query Q is then

L(Q.Mi) = dmin + L(1 = $(Q M ™)) (dax — dmin) ], (5)

where the parameters dp,in denotes the minimum depth, and dpax
denotes the maximum depth (dmin, dmax € Z7, i.e., they both are
positive integers).

Normalized values of the QPP ¢(Q, Ml.(d'"“")) estimates ensure
that the depth of a query is an integer between the integer bounds
dmin and dmax. Note that, in particular, for computing the QPP
estimates themselves we use k = dp;qx (the maximum depth), and
we apply max-normalization for the QPP estimates.

2.2.2  Linear Dependence. The argument for this choice of {(Q, M)
is that a higher value of ¢(Q, M )y s likely to indicate that a
higher number of potentially relevant documents for Q exists in
the collection. This, in turn, means that one may consider probing
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at higher depths to collect those candidates for assessment for a
more comprehensive evaluation of IR systems. Similarly, a smaller
estimate for ¢ (Q, M (4max)) means that it is not worthwhile to use a
high depth for Q because the candidates collected from lower down
the ranked lists of such IR systems may end up in the ground-truth
set indicating wasted manual effort. Formally,

dmax

év(Qa M;) = dmin + 19(0, Mi( ))(dmax = dmin) |, (6)
where the only difference of Equation 6 with that of 5 is that in
the former an increase in the ¢(Q, M l.(d’"“")) increases the depth to

a higher integer value within the bounds [dpin, dmax] instead of
decreasing it as is the case for the latter.

3 EVALUATION

3.1 Experiment Details

3.1.1 Research Questions. We conduct experiments to investigate
the following two research questions.

o RQ-1:Is an NQC-based variable depth pooling strategy beneficial
to reduce annotation effort without causing significant changes
in the relative system ranks?

o RQ-2: Which depth selection function (linear or inverse linear -
Equations 5 or 6) turns out to be the more effective of the two?

3.1.2  Datasets. Our retrieval experiments are conducted on two
standard datasets used for the ad-hoc IR task, namely the TREC
Robust [24] and the TREC DL datasets [20]. While the former is
comprised of news articles, the latter is a collection of passages
accumulated with Bing queries. The set of relevant documents
comprising the ground-truth of the TREC Robust dataset was con-
structed via depth-100 pooling [24]. On the other hand, in TREC
DL a combination of depth-10 pooling and an active learning based
strategy [1] was used to compile the ground-truth [8, 10]. We leave
out TREC 6 topic sets from our experiments for consistency with
the remaining topic sets, the ground-truths of which do not include
the congressional records (CR). Table 1 summarises the datasets
used for our experiments.

3.1.3  Setup. For each topic set used in our experiments, we make
use of the officially submitted runs as downloaded from the TREC
archive!. We conduct our experiments on each topic set separately
so as to compute the effect of the relative changes in the systems
(officially submitted runs) in each.

In each experiment, the value of the minimum depth (dpin of
Equations 5 and 6) was set to 10% of the true depth used to construct
the pool of the respective datasets, i.e., 0.1 X 100 = 10 for TREC
Robust, and 0.1 X 10 = 1 for TREC DL. Similarly, the value of
the maximum depth (dmax) Was set to half the value of the true
depths, i.e., 100/2 = 50 and 10/2 = 5 for TREC Robust and TREC
DL datasets, respectively. As the QPP estimate ¢(Q, M (%)), we use
the standard unsupervised QPP approach - NQC.

3.1.4  Pooling Methods Investigated. As baselines, we employ the
standard procedure of constant-depth pooling (CDP) (Equation 3).
Since our proposed methodology uses depths that varies across
queries, for a fair comparison we compare our proposed approach
with several CDP baselines, as enumerated below.

Ihttps://trec.nist.gov/results/
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Table 1: Summary of the datasets used in our experiments. The
columns ‘|Q|’ and ‘#Rel’ denote the average number of query terms
and average number of relevant documents, respectively. The col-
umn p denotes the number of official runs submitted, all of which is
used to construct the pools (Equation 3) for each topic set.

Collection #Docs Topics  #Topics |Q| #Rel p

Robust 528155 TREC 7 50 242 9348 103

(disks 4,5 - CR) ’ TREC 8 50 238 9456 129

MS MARCO DL’19 43 5.40 58.16 37
8,841,823

Passage T DL’20 54 6.04 3085 59

e CDP-Max involves setting k = dpqx in Equation 3, where dpqx
is the upper bound of the depth used in the VDP approach (dmax
in Equations 5 and 6). This method thus represents an apex-line
(AL) scenario with a larger pool size, thus implying a larger effort
for relevance assessments.

e CDP-Min is a baseline which sets k = d;;;,, in Equation 3 thus
implying that this represents the lower end of the spectrum with
a much smaller pool size.

o CDP-Avg is a baseline with the depth of the pool being set to the
closest integer of the mid-point of the interval [dmin, dmax], i-€.,
setting k = | (dmax —dmin) /2] in Equation 3. This baseline yields
a pool that is expected to be of a size similar to those obtained
by the VDP-based methods.

As variants of our proposed methodology of variable-depth pooling
(VDP), we explore the following.

e VDP-IL: this denotes variable-depth pooling by means of an
inverse linear dependence (Equation 5).

o VDP-L: this denotes variable-depth pooling with a linear depen-
dence (Equation 6).

3.1.5 Evaluation Metrics. As per the standard practice of a simu-
lated pooling setup [3], the pool of documents obtained with each
method is a subset of the existing relevance assessments. This al-
lows provision to compute the quality of a pool by comparing the
correlation of the relative system ranks measured via the ground-
truth induced on the subset as against the entire existing pool of
the respective datasets.

A smaller pool is considered to be of good quality if the relative
system ranks measured via an IR metric (e.g., AP) on this smaller
set of ground-truth does not change substantially the metrics as
measured on the larger pool. In particular, as correlation measures
between IR models we employ Pearson’s r and Kendall’s 7. We
employed mean average precision (MAP) to induce an order on the
different officially submitted runs (systems). As per the standard
practice, AP on the TREC DL dataset considered graded judgments
higher than or equal to 2 as relevant [8, 10].

In addition to the relative rank stability of systems, we also
report the recall or coverage, measured as the fraction of relevant
documents found in a depth restricted pool averaged across all the

The implementation of all the methods investigated is available at https://github.com/
gdebasis/vardepthpooling
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Table 2: A comparison of QPP-based VDP with CDP approaches
(including the oracle case, denoted as ‘AL’ or apex-line, shown in
green) on the TREC Robust topic sets. The best results along each
column of the non-oracle results are bold-faced. A higher value of all
the metrics except | P| (average pool size) indicates a more effective
pooling strategy.

Avg. Evaluation Metrics
Set Type Pool Depth P-r K- C W PNC
g CDP-Min 10 09897 09261 03988 187.66 0.0762
- CDP-Avg 30 09988 09714 06711 48400  0.1086
é o VDP-L 1636 09985 0.9760 0.7021 579.52 0.1104
= YIS ypPIL 4272 09986 09718  0.6467 41450  0.1073
AL CDP-Max 50 09996 09886  0.8223  759.00  0.1240
g CDP-Min 10 09922 09215 04052 239.54  0.0740
- CDP-Avg 30 09987 0.9683 0.6596 620.96  0.1026
é ours VDPL 2290 09978 09680 0.6827 721.00  0.1037
= VDP-IL 3614 0.9991 0.9714 0.6600 540.00 0.1049
AL CDP-Max 50 09997 09864 08201 959.62  0.1194

queries of a benchmark topic set. Formally,

1
c-_ Z Z I(Rel(D, Q) = 1), (7)
|Rmax(Q)| QGQDE?SV(Q)

where Pg(Q) is defined in Equation 4, Rel(D, Q) = 1 if a document
D is judged as relevant to Q, Q is a set of benchmark queries, I(.)
denotes the indicator function, and Ry, (Q) represents the total
number of relevant documents known for a collection, e.g., the ones
obtained by employing {(Q) = 100 VQ € Q, i.e, the true depth used
to compile the ground-truth of the TREC Robust topic sets.

We also measure the average pool size |P], as the number
of unique documents occurring in a depth restricted pool - again
averaged over the queries. Note that this measure is related to the
assessment effort. Formally,

P
— 1
Pl=5 > ILUM L (®)
Qe i=1

Since a high coverage (Equation 7) and a low average pool size
(Equation 8) indicate an effective pooling strategy, for the sake of
convenient comparisons we combine these two measures into a
single metric. Since the average pool size per query is much larger
than the recall values (bounded in [0, 1]), we compute the ratio after
taking a log of the average pool size, akin to the tf-idf combination
where the document frequencies being much larger than the tfs
are used with a log transformation. Formally, we define Pool-size
Normalized Coverage (PNC) as C/log W, a higher value of which
indicates a better coverage obtained with a low average pool size.

3.2 Results

Tables 2 and 3 present the results of our experiments on the TREC
Robust and the TREC DL datasets. We observe the following trends
in the results. First, our proposed variable-depth pooling (VDP)
approaches outperform the constant depth pooling approaches with
the depth being set to minimum and average values of the depth
range, as can be seen from the better correlation values measured
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Table 3: Evaluation on TREC DL topic sets, the organization of the
table being identical to that of Table 2.

Avg. Evaluation Metrics

Set Type Pool Depth P-r K-r C 1P| PNC
o BL CDP-Min 1 09022 0.6336  0.2229 8.65 0.1033
.: CDP-Avg 3 09559 0.7147  0.4703  20.46  0.1558
8 Ours VDP-L 3.37 0.9686 0.8559 0.5398 24.76 0.1682
E VDP-IL 1.67 09241  0.7297 0.2814 10.83  0.1181

AL CDP-Max 5 09850 0.9399  0.6542 30.67  0.1911
- BL CDP-Min 1 09760 0.8656  0.2448 12.27  0.0976
S CDP-Avg 309944 09299 04878 2948  0.1442
8 Ours VDP-L 3.87 0.9960 0.9334 0.5740 37.50 0.1584
g “ VDP-IL 116  0.9866  0.9030  0.3161 15.75  0.1146
F

AL CDP-Max 5 09977 09568  0.6671 4524  0.1750

with r and 7. Moreover, these high correlations are observed with
better coverage and PNC, which answers RQ-1 in affirmative. CDP-
Max, the apex-line setting (shown as the green rows in the tables)
yields better results at the cost of higher annotation effort (W)

Second, in relation to RQ-2, it can be observed that there is no
clear winner between the VDP-L (Equation 6) and VDP-IL (Equation
5) variants. While the linear dependence method works better than
its inverse-linear counterpart for 3 topic-sets (TREC 7 and the two
TREC DL sets as seen by the higher rank correlation, coverage and
PNC), the inverse linear works slightly better for TREC 8.

Third, it can be seen that VDP approaches are more suitable in
cases where the depth range used for VDP is comprised of smaller
values, as is the case for the TREC DL ([1,5]) vs. TREC Robust
([10, 50]); this can be seen from the better improvements in the
Kendall’s 7 rank correlations of systems on the TREC DL topic sets
compared to the TREC Robust ones (compare the relative gains
of the VDP approaches with the CDP-Avg ones). Lastly, the VDP
methods consistently yield better values of PNC (Pool-size normal-
ized coverage) in comparison to the baseline CDP approaches. This
means that a higher number of relevant documents can be found
with reduced manual assessment effort.

Concluding Remarks. In this initial investigation of employ-
ing variable depth-pooling (VDP) strategies for constructing ground-
truth relevance data, our experiments demonstrated encouraging
trends. Specifically, we observe that a standard unsupervised QPP
method, such as NQC, leads to satisfactory results in terms of high
correlation of relative system ranks (as measured with respect to
larger pool sizes). We also observed that our proposed method
leads to higher coverage at the expense of smaller average pool-
size. These observations indicate stable evaluation results with
minimized annotation effort. There are a number of ways in which
we can extend this initial exploration. First, it would be interesting
to compare the relative effects of different QPP methods on VDP. It
would also be interesting to see if the use of query variants, such
as [13, 27], can further optimise the depth prediction of VDP.

Acknowledgement. The first author thanks Procheta Sen (Uni-
versity of Liverpool) for suggesting this idea during an informal
conversation.
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