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1 Introduction

Since the direct observation of atmospheric and solar neutrino oscillations over a quarter
of a century ago [1, 2], it is well-known that neutrinos are massive fermions. However, the
Standard Model (SM) of particle physics in its current form does not include right-handed
(RH) neutrinos, N , forbidding renormalisable Yukawa terms that generate neutrino masses
after electroweak (EW) symmetry breaking. Physics beyond the SM is therefore necessary
to explain the non-zero neutrino masses.

Adding at least two RH neutrinos is the most straightforward extension of the SM to
explain the neutrino oscillation data. No gauge symmetry forbids a Majorana mass term for
the RH neutrinos if one allows the violation of total lepton number, L, which is conserved
accidentally in the SM. In the standard type-I seesaw mechanism [3–7], one obtains three
light Majorana active neutrinos and an arbitrary number of sterile neutrinos or heavy neutral
leptons (HNLs). While the minimal type-I seesaw mechanism has some other appealing
features, such as the viable generation of the baryon asymmetry of the universe via high-scale
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Figure 1. Single and pair production of HNLs at FCC-ee via the EFT operators considered in this
work: four-fermion operators (left) and effective W± (centre) and Z (right) interactions. The active-
sterile mixing VeN induces the W± and Z diagrams, while VµN and VτN induce the Z diagram only.

thermal leptogenesis [8–11], it is difficult to probe the sterile states at collider and neutrinoless
double beta (0νββ) decay experiments. For HNLs kinematically accessible at colliders, the
mixing between active and sterile states implied by the neutrino oscillation data would be
too small to produce an observable number of HNLs.

This has spurred interest in other low-scale seesaw mechanisms such as the inverse
seesaw [12–15]. There, the light neutrino masses are proportional to small approximately
lepton number violating Majorana masses among the RH neutrinos. Consequently, pairs of
heavy Majorana states form nearly degenerate pseudo-Dirac states. An attractive feature of
this scenario is that the mixing between the active neutrinos and the pseudo-Dirac states
is decoupled from the light neutrino masses and can in principle be large. These states
can be produced in collider and beam dump experiments [16–26], and also generate the
baryon asymmetry via the resonant leptogenesis mechanism [27–36]. In the lepton number
conserving limit, the contribution of this mechanism to the light neutrino masses vanishes
and the pseudo-Dirac pairs become exactly Dirac fermions. The standard type-I and inverse
seesaw mechanisms can be seen as different limits of the RH neutrino parameter space, with
intermediate scenarios also being possible [24, 37].

Given the large number of SM extensions involving RH neutrinos, a phenomenological
study of HNLs can benefit from a model-independent effective field theory (EFT) approach.
The EFT valid for the unbroken phase of the SM (SMEFT) has been studied in detail, with
a complete basis of non-redundant operators and their renormalisation group (RG) running
examined in [38–50]. Likewise, the EFT of the SM broken phase (LEFT) has been explored
in [51–56]. In the EFT framework, models giving rise to neutrino masses are those that
generate the d = 5 Weinberg operator and other ∆L = ±2 operators [57–61]. If the Majorana
masses of RH neutrinos are at or below the energy scale of interest, N must also be included
as a light degree of freedom in the EFT. This has motivated studies of the so-called νSMEFT
and νLEFT in the unbroken and broken phases of the SM, respectively [62–68], which extend
the usual operator bases to include RH neutrinos. Operators in the νSMEFT can result in
phenomenology distinct from the active-sterile mixing.

In this work, we consider the phenomenology of HNLs in the presence of νSMEFT
operators at the Future Circular e+e− Collider (FCC-ee) [69]. Like the proposed Circular
Electron-Positron Collider (CEPC) [70], FCC-ee will significantly improve on measurements
made at the Large Electron Positron (LEP) collider. Operating at the Z pole and three
higher centre-of-mass energies, FCC-ee and/or CEPC will enable precision tests of physics
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Figure 2. A selection of decays of HNLs via the same EFT operators in figure 1. The active-sterile
mixing VαN also induces the W± and Z diagrams.

at the EW scale, which may be sensitive to the effects of TeV-scale new physics. Global
constraints on SMEFT operators impacting EW precision observables (EWPOs) have been
placed using LEP and SLD data [71–83], and forecasted for the future e+e− colliders [83–86].

In this study, we instead target two general final states to constrain the νSMEFT
at FCC-ee; monophoton plus missing energy (mono-γ plus /E) and displaced vertex (DV)
signatures. We first note that FCC-ee will be able to improve on LEP measurements of the
invisible Z decay width Γinv and therefore the number of active neutrinos Nν [87–92] via
direct measurements at the Z pole [93] and the radiative return process e+e− → Zγ, leading
to a mono-γ plus /E signature at higher centre-of-mass energies [94]. The measured value of
Γinv can also be interpreted as a constraint on the presence of heavy sterile neutrinos from
non-unitarity [95–100]. Furthermore, direct measurements of Γinv and the mono-γ plus /E

signature can be used to constrain new light degrees of freedom, including viable dark matter
candidates [101, 102]. The light new states must be effectively stable for such signatures
to be relevant. However, if they do decay and are long-lived, FCC-ee will also be highly
constraining via searches for displaced vertices [103–107].

Here, we aim to leverage the large luminosity and clean environment of FCC-ee to assess
the ability of mono-γ plus /E and DV signatures to constrain the active-sterile mixing VαN and
the more general νSMEFT landscape. For the latter, we consider d ≤ 7 operators which may
be generated at tree-level in ultra-violet (UV) complete extensions of the SM. At an e+e−

collider, the active-sterile mixing VαN can permit the single production of HNLs, e+e− → νN ,
via t-channel W± exchange (figure 1, centre) and s-channel Z exchange (figure 1, right). The
considered νSMEFT operators induce all of the diagrams in figure 1, with pair production
of HNLs, e+e− → NN , also possible.

If the HNLs do not decay inside the FCC-ee detector, the processes e+e− → νNγ/NNγ

with an initial state photon can give the sought-after mono-γ plus /E signature. However, the
active-sterile mixing VαN and/or νSMEFT operators that trigger the production of HNLs
can also cause their decay, as shown in figure 2. Given these decay modes, the HNLs must
be sufficiently long-lived to appear as missing energy. Decreasing the coupling responsible
for the decay, however, comes at the cost of suppressing the production cross section. Two
viable scenarios are if the HNLs are sufficiently light (with masses below the GeV scale) or
are pair produced, so that decays are kinematically forbidden. Alternatively, a pair of HNLs
with a small mass splitting (such as in the pseudo-Dirac scenario) can be effectively stable
over the detector length. Clearly, there is also ample room in the parameter space for the
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HNLs to decay over a macroscopic distance in the detector, and the DV signature will be
more constraining. It is therefore interesting to ask how the constraints depend not only
on the overall HNL mass scale, but on the HNL mass splittings.

A number of works in the literature have already examined the phenomenology of νSMEFT
operators at colliders [62, 63, 108–131]. Signatures related to the direct production of HNLs
at LEP (e+e− → νN/NN) and LHC (pp → ℓN/νN/NN) include prompt and displaced
decays, same-sign leptons and missing energy accompanied by photons, leptons or jets. HNLs
can also be produced from rare decays of top quarks (t → q + ℓN/νN/NN), tau leptons
(τ → ℓ + νN/NN,MN), light and heavy mesons (M → (M ′+)ℓN/νN/NN) at colliders,
contributing to missing energy or decaying downstream at a proposed far detector experiment.
Other studies of the specific operators we consider in this work are refs. [113, 119, 125] and
ref. [120], which use the mono-γ plus /E and DV signatures at LEP/FCC-ee, respectively. We
intend to add to these analyses by exploring the effects of d = 7 operators in the νSMEFT, the
Dirac or Majorana nature of the HNLs, and different mass splittings between a pair of HNLs.

This paper is organised as follows. In section 2, we outline the d ≤ 7 νSMEFT operators
considered in this work, examining their impact, in addition to the active-sterile mixing, on
the production and decay of HNLs at FCC-ee (more details are given in appendices B and C,
respectively). We briefly explore which simple UV models can produce these operators at
tree-level in appendix A. In section 3.1, we then explore the sensitivity of mono-γ plus /E

searches at FCC-ee to the electron-flavour mixing strength, VeN , for a single Dirac HNL,
comparing to current constraints and previously estimated sensitivities from DV searches
at FCC-ee [103, 105–107]. In section 3.2, we estimate the sensitivity of the mono-γ plus /E
signature to the EFT operators of interest, assuming vanishingly small active-sterile mixing
and a pair of Majorana or Dirac HNLs. The sensitivities for different mass splittings between
the HNL pair are examined. Next, in section 4, we perform a sensitivity analysis for the same
operators using DV searches at FCC-ee. Finally, in section 5, we translate the maximum reach
of FCC-ee via mono-γ plus /E and DV searches to the scale of new physics of the νSMEFT
operators. We compare and contrast to other experimental probes of these operators. We
summarise our findings in section 6.

2 Heavy neutral leptons in the νSMEFT

The νSMEFT consists of a basis of SU(3)c × SU(2)L ×U(1)Y invariant operators built from
SM degrees of freedom and the RH neutrino field N . The effective Lagrangian for this
theory can be written as

L = LSM + N̄i/∂N −
[
L̄YνNH̃ + 1

2N̄
cMN + h.c.

]
+
∑
i

C
(d)
i Q

(d)
i , (2.1)

where C
(d)
i = 1/Λd−4 are Wilson coefficients (WCs) and N = CN̄T , with C the charge

conjugation matrix. A complete basis of independent operators in the νSMEFT, taking into
account redundancies from Fierz identities, integration by parts and equations of motion,
can be found in refs. [63–66].
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2.1 Active-sterile mixing

In eq. (2.1), the terms in the square brackets are the renormalisable Yukawa coupling and
RH neutrino Majorana mass term, respectively. After EW symmetry breaking, these terms
induce mixing between the left-handed (active) and RH (sterile) neutrino fields as(

ν

N c

)
= PL

(
1− 1

2ΘΘ† Θ
−Θ† 1− 1

2Θ†Θ

)(
ν ′

N ′

)
; Θαi ≡ VαNi =

v(Yν)αi√
2Mi

, (2.2)

where we have assumed that Θ is small, permitting an expansion up to O(Θ2) terms (leading
to non-unitarity effects in lepton mixing), and we have taken M to be diagonal without
loss of generality. We note that the mixing in eq. (2.2) receives further modifications from
the higher-dimensional operators in eq. (2.1). A further rotation ν ′α = Uαiν

′
i, with U the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, is required to diagonalise the 3× 3 light
neutrino mass matrix. The resulting massive states are Majorana fermions (N ′ = N ′c) and
the active-sterile mixing VαNi couples the heavy neutral leptons (HNLs) N ′

i to the SM via
the charged and neutral currents. In the type-I seesaw scenario, the typical expectation
for the active-sterile mixing is |VαNi | ∼

√
mν/mNi for the light neutrino mass scale mν and

HNL mass mNi ≈Mi. The phenomenology of Majorana HNLs with non-zero active-sterile
mixing has been reviewed in refs. [17, 24, 125].

It is also interesting to consider the lepton number conserving (∆L = 0) limit of eq. (2.1).
To do this, it is convenient to introduce the SM gauge-singlet fermion field S and assign the
lepton numbers L(ν) = L(N) = L(S) = +1. For simplicity, we assume an equal number of
N and S fields. In the ∆L = 0 limit, the effective Lagrangian becomes

L = LSM + N̄i/∂N + S̄i/∂S −
[
L̄YνNH̃ + S̄M ′N + h.c.

]
+
∑
i

C
(d)
i Q

(d)
i , (2.3)

where the sum is over ∆L = 0 operators constructed from SM degrees of freedom plus N and
S. Active-sterile mixing is again induced in the broken phase, up to O(Θ2), as

 ν

N c

S

 = PL

1−
1
2ΘΘ† 0 Θ
0 1 0
−Θ† 0 1− 1

2Θ†Θ


 ν ′

N ′c

N ′

 ; Θαi ≡ VαNi =
v(Yν)αi√

2M ′
i

. (2.4)

The physical states are three massless Weyl fermions (ν ′) and massive Dirac fermions
(N ′). Modifications to this picture are required to generate the observed neutrino masses.
For example, small ∆L = ±2 terms can be added such as the d = 5 Weinberg operator
Q5 = (L̄H̃)(H̃TLc) or the Majorana mass −1

2µS̄S
c. The heavy states are then expected to be

pseudo-Dirac fermions, equivalent to a pair of Majorana fermions with a small mass splitting.
Alternatively, the light neutrinos may themselves be Dirac fermions if additional RH neutrino
fields N are present. Models where such a situation arises often involve additional discrete
symmetries to forbid ∆L = ±2 terms [132–134]. The phenomenology of (pseudo-)Dirac HNLs
with active-sterile mixing is similar to the Majorana HNL case, apart from the (suppression)
absence of lepton number violating (∆L = ±2) signatures [135–137].
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ψ4 ψ2H2D

Qll (L̄γµL)(L̄γµL) Q
(1)
Hl (L̄γµL)(H†i

←→
D µH)

Qle (L̄γµL)(ēγµe) Q
(3)
Hl (L̄γµτ IL)(H†i

←→
D IµH)

QlNle ϵij(L̄iN)(L̄je) QHN (N̄γµN)(H†i
←→
D µH)

QlN (L̄γµL)(N̄γµN) QHNe (N̄γµe)(H̃†iDµH)
QeN (ēγµe)(N̄γµN)

ψ4H ψ2H3D

QllleH ϵijϵmn(ēLi)(L̄jcLm)Hn QNl1 ϵij(N̄ cγµL
i)(iDµHj)(H†H)

QlNlH ϵij(L̄γµL)(N̄ cγµLi)Hj QNl2 ϵij(N̄ cγµL
i)Hj(H†i

←→
D µH)

QeNlH ϵij(ēγµe)(N̄ cγµLi)Hj QleHD ϵijϵmn(L̄icγµe)HjHmDµHn

QlNeH (L̄N)(N̄ ce)H
QelNH H†(ēL)(N̄ cN)

Table 1. (ν)SMEFT operators at d = 6 (above) and d = 7 (below) which contribute to the four-
fermion operators in eq. (2.5) and effective W± and Z interactions in eq. (2.6). The tree-level matching
conditions are given in appendix A.

2.2 EFT operators

In this work, we consider the νSMEFT operators of dimension d ≤ 7 listed in table 1. At
FCC-ee, these operators modify the SM process e+e− → νν, contribute to the single and
pair production of HNLs, e+e− → νN/NN , and induce HNL decays. These operators can be
generated at tree-level in simple SM extensions, as reviewed in appendix A.

At the energies relevant for FCC-ee, the SU(2)L ×U(1)Y gauge group is spontaneously
broken by the non-zero Higgs VEV, but the W±, Z and Higgs fields remain as dynamical
degrees of freedom. Thus, we expand the Higgs doublet in the νSMEFT operators around
v and rotate the EW gauge fields to the mass basis. The WCs of the resulting operators
are in principle determined by the size of the νSMEFT WCs at Λ, run down to the EW
scale via the appropriate RG equations.

In table 1, the νSMEFT operators of type ψ4Hn result in the following vector, scalar
and tensor four-fermion operators,

L ⊃
[1
2C

V,LX
νe (ν̄γµν) + CV,RXνNe (ν̄cγµN) + 1

2C
V,RX
Ne (N̄γµN)

]
(ēγµPXe)

+
[1
2C

S,LX
νe (ν̄cν) + CS,RXνNe (ν̄N) + 1

2C
S,RX
Ne (N̄ cN)

]
(ēPXe)

+
[1
2C

T,LX
νe (ν̄cσµνν) + CT,RXνNe (ν̄σµνN) + 1

2C
T,RX
Ne (N̄ cσµνN)

]
(ēσµνPXe) + h.c. , (2.5)

for X ∈ {L,R}, where PX is the chirality projection operator and we omit the weak basis
indices p, r, s, t for simplicity. Furthermore, the operators of type ψ2HnD2 generate the
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effective W± and Z interactions,

L ⊃ − g√
2

[
WL
ν (ν̄γµe) +WR

ν (ν̄cγµe) +WL
N (N̄ cγµe) +WR

N (N̄γµe)
]
W+µ

− g

cw

[1
2Z

L
ν (ν̄γµν) + ZRνN (ν̄cγµN) + 1

2Z
R
N (N̄γµN)

]
Zµ + h.c. , (2.6)

where g is the SU(2)L gauge coupling, cw = cos θw with θw the weak mixing angle, and we
again omit the weak basis indices p, r. The tree-level matching conditions between the WCs
in eqs. (2.5) and (2.6) and the (ν)SMEFT WCs are given in tables 6 and 5 of appendix A,
respectively. The interactions above are relevant in the Majorana HNL scenario, i.e. eq. (2.1),
because we allow ∆L = ±2 operators, identified as the operators containing the charge
conjugate fields νc and N c. The ∆L = 0 and ∆L = ±2 operators are generated by the
d = 6 and d = 7 operators in table 1, respectively.

In table 1, we do not include all d ≤ 7 operators relevant for the production and decay of
HNLs at FCC-ee. Firstly, there are operators of type ψ2Hn, e.g. QN = (N̄ cN)(H†H), which
modify the extended neutrino mass matrix but also couple the Higgs boson to HNLs. However,
the process e+e− → h → νN/NN is suppressed by the small electron Yukawa coupling.
Other ways to constrain these operators include e+e− → Zh/νeν̄eh followed by h→ νN/NN ,
which has been studied in ref. [114]. There are also dipole operators of type ψ2XHn, e.g.
QNNB = (N̄ cσµνN)Bµν , which vanishes for a single RH neutrino. Some studies have already
examined the impact of these operators at FCC-ee, for example refs. [114, 119, 120, 127]. For
QNNB , a sensitivity of Λ ≳ 4× 103 TeV is found from the mono-γ plus /E signal at the Z pole.
As QNNB can only be generated at first-loop order (or higher), including a loop factor yields
the equivalent mass scale M ∼ Λ/16π2 ∼ 25TeV, which is comparable to sensitivities of the
operators considered in this analysis. Thus, the operators considered by us can be relevant in
generic UV completions, and be of comparable importance. The dipole operators also display
interesting phenomenology in other contexts [138–141]. For d ≥ 7, we note that there are
derivative operators of type ψ2D2Hn and ψ4DHn which can also be relevant. Finally, there
are νSMEFT operators which cannot contribute to the production of HNLs at FCC-ee, but
can enable their decay, such as QlNqd = (L̄N)ϵ(Q̄dR) and other operators involving quarks. A
full analysis of all operators is beyond the scope of this work. Nevertheless, such an analysis
could benefit from the distinction of different HNL scenarios, as done in this work.

The Lagrangians in eqs. (2.5) and (2.6) are applicable to the Majorana HNL scenario.
For the Dirac HNL scenario, as described in the previous section, we add the field S and
forbid ∆L = ±2 operators. As such, we need to consider the additional ∆L = 0 operators
in the νSMEFT shown in table 2. At the energies probed at FCC-ee, these lead to the
additional four-fermion interactions,

L ⊃
[
CV,LXνSe (ν̄γµS) +

1
2C

V,LX
Se (S̄γµS)

]
(ēγµPXe)

+ CS,RXSNe (S̄N)(ēPXe) + CS,RXSNe (S̄σµνN)(ēσµνPXe) + h.c. , (2.7)

and effective W± and Z interactions

L ⊃ − g√
2
WL
S (S̄γµe)W+µ − g

cw

[
ZLνS(ν̄γµS) +

1
2Z

L
S (S̄γµS)

]
Zµ + h.c. , (2.8)

– 7 –
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ψ4 ψ2H2D

QlS (L̄γµL)(S̄γµS) QHS (S̄γµS)(H†i
←→
D µH)

QeS (ēγµe)(S̄γµS)

ψ4H ψ2H3D

QlSlH ϵij(L̄γµL)(S̄γµLi)Hj QSl1 ϵij(S̄γµLi)(iDµHj)(H†H)
QeSlH ϵij(ēγµe)(S̄γµLi)Hj QSl2 ϵij(S̄γµLi)Hj(H†i

←→
D µH)

QlSNeH (L̄Sc)(N̄ ce)H
QelSNH H†(ēL)(S̄N)

Table 2. Additional ∆L = 0 νSMEFT operators at d = 6 (above) and d = 7 (below) when the gauge
singlet field S is present.

in addition to the ∆L = 0 interactions in eqs. (2.5) and (2.6). Again, the tree-level matching
conditions between the WCs in eqs. (2.7) and (2.8) and the νSMEFT WCs are provided
in tables 6 and 5 of appendix A, respectively.

The interactions above are written in the weak basis. For phenomenology in the broken
phase, we must rotate to the mass basis according to eqs. (2.2) and (2.4) in the Majorana
and Dirac cases, respectively. However, to simplify the analyses of sections 3.2 and 4.1, we
will take one EFT coefficient to be non-zero at a time with vanishing active-sterile mixing,
Θ = 0. Thus, the rotations in eqs. (2.2) and (2.4) are trivial. Nevertheless, we can write
the four-fermion operators in the mass basis as

L ⊃
(1
2

)[
Ci,XYνe (ν̄ ΓiPXν)(ēΓiPY e) + Ci,XYνNe (ν̄ ΓiPXN)(ēΓiPY e)

+ Ci,XYNνe (N̄ ΓiPXν)(ēΓiPY e) + Ci,XYNe (N̄ ΓiPXN)(ēΓiPY e)
]
, (2.9)

where Γi ∈ {γµ, 1, σµν} for i ∈ {V, S, T} and for simplicity we rewrite the mass eigenstate
fields as ν ′ → ν and N ′ → N . The effective W± and Z interactions are given by

L ⊃ − g√
2

[
WX
ν (ν̄γµPXe) +WX

N (N̄γµPXe)
]
W+µ + h.c.

−
(1
2

)
g

cw

[
ZXν (ν̄γµPXν) + ZXνN (ν̄γµPXN)

+ ZXNν(N̄γµPXν) + ZXN (N̄γµPXN)
]
Zµ . (2.10)

The Lagrangians above are applicable in both the Majorana and Dirac scenarios, i.e. N can
represent a Majorana or Dirac HNL. However, in the Majorana case, the factor of 1/2 in
parentheses is present. In the Dirac case, the following WCs vanish,

CV,RXνe = CV,RXνNe = CS,XYνe = CS,LXνNe = CT,XXνe = CT,LLνNe =WR
ν = ZRν = ZRνN = 0 , (2.11)

because we take the limit where the three light neutrinos are massless Weyl fermions with LH
components only. In the Dirac and Majorana scenarios, there are further relations between
the WCs in eqs. (2.9) and (2.10), given in appendix A.
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Before moving the main analysis, we note that WL
ν and ZLν contain the SM charged-

and neutral-current interactions involving neutrinos. They can be split up into contributions
from the SM and heavy new physics as

WL
ν =WL

ν

∣∣
SM + δWL

ν , ZLν = ZLν
∣∣
SM + δZLν , (2.12)

where WL
ν

∣∣
SM = I and ZLν

∣∣
SM = gνLI, with gνL = 1/2. With only the SM interactions, rotating

the active and sterile neutrino fields to the mass basis according to eq. (2.2) or (2.4) yields,
up to O(Θ2),

L ⊃ − g√
2

[(
1− 1

2ΘΘ†
)
(ν̄γµPLe) + Θ†(N̄γµPLe)

]
W+µ + h.c.

− g

cw
gνL

[(
1−ΘΘ†)(ν̄γµPLν) + Θ(ν̄γµPLN)

+ Θ†(N̄γµPLν) + Θ†Θ(N̄γµPLN)
]
Zµ , (2.13)

in both the Majorana and Dirac HNL scenarios, where the light neutrino fields ν are those
before diagonalisation via the PMNS matrix. Eq. (2.13) shows that if the HNLs are heavy,
i.e. not kinematically accessible at FCC-ee, their impact is still felt in the non-unitarity of the
light neutrino mixing. This is equivalent to generating the operators Q(1)

Hl and Q(3)
Hl , with WCs

C
(1)
Hl = −C

(3)
Hl =

YνY
†
ν

4M2 = ΘΘ†

2v2 , (2.14)

after integrating the HNLs out of the theory [142, 143].

3 Monophoton constraints at FCC-ee

Here, we establish the sensitivity of the mono-γ plus /E search at FCC-ee. To keep the analysis
straightforward, we consider the presence of one HNL interaction at a time. In section 3.1,
we first examine the scenario where all EFT WCs are zero, Ci = 0, and the active-sterile
mixing is significant for Dirac HNLs, VαN ̸= 0. In section 3.2, we then explore the opposite
limit, where the active-sterile mixing is negligible and the EFT WCs are important for
either Majorana or Dirac HNLs.

We consider two of the proposed centre-of-mass energies at FCC-ee,
√
s = 91.2GeV

(Tera-Z) and
√
s = 240GeV (Zh) with the forecasted integrated luminosities L = 100 ab−1

and L = 5 ab−1, respectively. The two other possible centre-of-mass energies,
√
s = 161GeV

(W+W−) and
√
s = 350/365GeV (tt̄) can also be considered, but are likely to provide

intermediate or weaker sensitivities with respect to
√
s = 91.2GeV and 240GeV due to the

smaller luminosity in the tt̄ scenario [144] and a reduced HNL mass reach for the intermediate
W+W− centre-of-mass energy.

3.1 Active-sterile mixing

At FCC-ee, the active-sterile mixing VαN can lead to e+e− → νN(γ) via the centre and
right diagrams of figure 1, with each circle denoting an insertion of VαN . The t-channel W±

exchange is only present for α = e, while the s-channel Z exchange is present for α = e, µ, τ .
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The general 2 → 2 cross section for ℓ+α ℓ−β → νiNj (Majorana) and ℓ+α ℓ
−
β → νiN̄j + ν̄iNj

(Dirac) is given in eq. (B.16), which can be calculated from the Lagrangian in eq. (2.13).
The corresponding 2→ 3 cross sections with a final-state photon may be approximated by
applying eq. (B.19) to eq. (B.16). To observe an exclusive monophoton plus /E signal, we
require that the HNL does not decay inside the detector. For VαN ̸= 0, e+e− → NN(γ)
can also proceed via the Z exchange diagram, but the cross section is suppressed by two
additional powers of VαN and is thus neglected.

We also note that in general VαN modifies (leads to a decrease in the cross section for)
the SM process e+e− → νν(γ) via the non-unitary modifications in eq. (2.13). In the limit of
large HNL masses, this becomes the only impact of the active-sterile mixing. Being equivalent
to the WCs C(1)

Hl = −C
(3)
Hl , we indirectly constrain the active-sterile in the νSMEFT analysis,

discussed in more detail in section 5. The non-unitarity also affects the massless HNL limit;
when the HNL masses are negligible with respect to the centre-of-mass energy, the decrease in
the cross section for e+e− → νν(γ) exactly cancels the increase from e+e− → νN(γ)/NN(γ).
This is simply due to the unitarity of the extended mixing matrix. The active-sterile mixing
thus leads to no deviation from the SM prediction for e+e− → νν(γ), and any constraints on
VαN must vanish. However, non-unitarity also induces shifts in input parameters to the cross
section, also discussed in section 5. For the purposes of this section, we neglect the effect
of non-unitarity in the light neutrino mixing and input scheme, treating the SM prediction
for e+e− → ννγ as a background to e+e− → νNγ.

To simulate the e+e− → νNγ process in MadGraph5_aMC@NLO, we use the UFO output
of the Feynrules model file SM HeavyN Dirac CKM Masses LO [145]. The model file adds
three generations of Dirac HNLs, N1,2,3, with N ≡ N1 taken to be the lightest. For now we
only consider a Dirac HNL; the difference in the sensitivities for Dirac and Majorana HNLs is
similar to that the EFT operators, so we defer that comparison to section 3.2. For simplicity,
we consider only the electron-flavour mixing, with the mono-γ plus /E signature constraining
the (mN , |VeN |2) parameter space. Similar constraints can be placed on the other flavour
mixing strengths, |VµN |2 and |VτN |2, with small differences arising from the smaller cross
sections in those scenarios (only Z exchange contributing).

3.1.1 Sensitivity estimate

Using MadGraph5_aMC@NLO, we simulate the signal process e+e− → νeN̄γ + ν̄eNγ alongside
the irreducible SM background process e+e− →

∑
νν̄γ, each with Ntot = 5 × 104 events,

requiring pγT > 1GeV at generator level. In the case of the signal process, the simulation is
carried out for HNL masses up to the kinematic threshold mN ≤

√
s.

For the simulated signal and backgrounds at
√
s = 91.2GeV and 240GeV, we apply

the kinematic acceptance cuts shown in table 3 to the outgoing photon angle θγ and energy
Eγ . These cuts are designed to maximise the signal-to-background ratio given the different
signal and background distributions in cos θγ and Eγ (or equivalently, xγ = 2Eγ/

√
s), shown

in figure 3. In the third column of this table, we show the ratios of signal-to-background
ratios before and after implementing the kinematic cuts for a benchmark scenario with
mN = 10GeV and |VeN | = 10−3. Due to the similarity between the signal and background
on the Z resonance, no significant improvement is achieved. The distribution in xγ in units
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√
s [GeV] Cuts

(
S
B

)
cuts

/
(
S
B

)
91.2 | cos θγ | < 0.9, Eγ < 4GeV 1.03
240 | cos θγ | < 0.95, Eγ < 90GeV 1.50

Table 3. Kinematic cuts used to maximise the signal-to-background ratio for each
√
s in the active-

sterile mixing sensitivity analysis. The improvement in the signal-to-background ratios after cuts is
shown in the last column for the benchmark scenario mN = 10GeV and |VeN | = 10−3.

of the maximum possible photon energy,

xmax
γ =

2Emax
γ√
s

= 1− m2
N

s
. (3.1)

For mN = 10GeV (solid, blue), the distributions are compared to the SM background (grey
dashed, shaded). The distributions for mN close to the kinematic threshold are also shown.

Along with these cuts, we note that the HNL can decay to SM particles via the active-
sterile mixing with diagrams such as those in figure 2, which show the contribution of VαN
to the leptonic decays N → νℓ−ℓ+. Other leptonic and semi-leptonic decays channels are
open, such as N → ννν̄, N → νqq̄ and N → ℓ−ud̄, with the quarks hadronising to form
single pseudoscalar and vector mesons for HNL masses below the QCD scale, and forming
multi-hadron final states/jets above. The total Dirac HNL width can be found from the
general decay rates in appendix C by rotating the SM charged and neutral-current interactions
to the mass basis. After this, we find the same total width ΓN for the Dirac HNL as explored
in [17, 22, 25, 146]. The total decay width in the Majorana HNL scenario is twice as large.

We first consider mono-γ plus /E signal, and do not consider HNL decays, effectively
treating it as a stable particle. However, for the parameter space considered in this analysis,
HNLs can indeed decay inside the detector, which results in a displaced vertex (DV) signature.
Therefore, the mono-γ analysis can be considered as an inclusive analysis if the HNL decays
are not considered, while it can be considered as an exclusive analysis if mono-γ has no DV
signature associated with it, i.e, when HNLs decay outside the detector volume. The HNL
decay probability therefore needs to be appropriately accounted for.

The HNL decay probability is a function of detector geometry and boost. Based on
the preliminary FCC-ee proposal [94], we approximate the detector geometry and consider
it as a spherical detector of radius L = 5 m. The probability of the HNL decaying within
the interval {L1, L2} can be written as,

Pin(L1, L2,
√
s,mN , VαN ) =

∫
db f(

√
s,mN , b)

[
e−L1/bτN − e−L2/bτN

]
, (3.2)

where b ≡ βγ is the boost factor of the HNL with the probability distribution f(
√
s,mN , b)

and τN = 1/ΓN is the proper lifetime of the HNL. As we consider a 2→ 3 scattering process,
the boost distribution does not have a simple analytical form like the equivalent 2 → 2
process without the photon, where f(

√
s,mN , b) = δ(b− b′), with b′ = (s−m2

N )/(2mN
√
s).

We follow a simple approach to overcome this difficulty; on an event-by-event basis for
mono-γ events that pass the kinematic cuts in table 3, we take the boost factor of the
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Figure 3. Normalised binned distributions in the outgoing photon angle cos θγ (above) and energy
xγ = 2Eγ/

√
s (below) for mono-γ processes induced by the electron-flavour mixing VeN and SM

background in the Dirac HNL scenario. Distributions are shown for
√
s = 91.2GeV (left) and√

s = 240GeV (right). Solid lines indicate the scenario with mN = 10GeV. We also show the
distributions for mN close to the kinematic threshold using dashed and dot-dashed lines.

HNL directly from the MadGraph simulation. For each event i, the probability of the
HNL decaying outside the FCC-ee fiducial volume is obtained as P iout ≡ 1 − P iin, where
P iin is found by setting f(

√
s,mN , b) = δ(b − bi) in eq. (3.2). Then, the overall geometric

acceptance can be approximated as Pout ≈ (bmax − bmin)
∑
i P iout/(ϵkNtot), where ϵkNtot is

the number of events surviving the kinematic cuts. Through the boost distribution f and
the proper lifetime τN , the estimated probability Pout depends the HNL mass mN and the
active-sterile mixing strength VαN .

The method above defines sensitivity for the exclusive mono-γ plus /E signature at FCC-ee.
Complementary to this, the inclusive mono-γ search relaxes the condition of HNL stability in
the fiducial volume. Clearly, for the inclusive search one cannot identify the photon energy
with the missing energy due to the presence of additional potentially prompt visible final
states. This also implies that the inclusive analysis may have additional backgrounds, which
we do not account for. Our sensitivity estimate is still applicable if the HNLs can decay to
additional exotic invisible final states, thereby suppressing the branching ratios for visible
decays in the detector. For the inclusive search, we set Pout = 1. We generally assume
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that the HNLs decay outside the detector or have lifetimes long enough to be considered
stable. An example scenario with a potentially dominant invisible decay mode is discussed in
ref. [147] where the HNL couples to a light axion-like pseudoscalar particle a, leading to the
two-body decay N → aν. Satisfying experimental and cosmological constraints, this decay
mode can be dominant for HNL masses 1 GeV ≲ mN ≲ 100GeV in our region of interest
with branching ratios to invisible states suppressed by factors of 10−6 (mN ≈ 1GeV) to 10−2

(mN ≈ 100GeV). While the presence of an extra light exotic state a would result in additional
operators within an EFT framework, the operators discussed here will still be present.

After applying the kinematic cuts and estimating the geometric acceptance, the total
number of surviving mono-γ plus /E signal events is given by,

S = L × σ × Pout × ϵk , (3.3)

which depends on the HNL mass and active-sterile mixing through the cross section for the
signal process, σ, and Pout. The number of background events, B, is similarly found by
multiplying the SM cross section by the integrated luminosity and the associated kinematic
efficiency. To determine the sensitivity to the active-sterile mixing, VeN , we compute the
median significance for a counting experiment of known background [148],

S =
√
2
(
(S +B) ln

(
1 + S

B

)
− S

)
≈ S√

B
, (3.4)

where in the second equality, we assume that for relevant parameter space the cross section
for e+e− →

∑
νν̄γ is much larger than that for e+e− →

∑
i νiN̄γ + ν̄iNγ, such that S ≪ B.

For each HNL mass point up to mN ≤
√
s, the expected significance is computed for different

values of the active-sterile mixing strength; bounds at 90% CL are then placed by determining
the value(s) of |VeN |2 corresponding to S = 1.28, which delimit an excluded region of the
parameter space with S > 1.28.

3.1.2 Results

Using the procedure outlined above, we present in figure 4 the estimated sensitivity of the
mono-γ plus /E search at FCC-ee to the electron-flavour mixing strength, |VeN |2, for HNL
masses mN between 500MeV and 240GeV. The sensitivities are shown for the exclusive
(solid) and inclusive searches (dashed) for

√
s = 91.2GeV (red) and

√
s = 240GeV (black),

for a detector length of L = 5 m. The shaded regions indicate the excluded regions of the
parameter space from complementary beam dump, prompt and displaced vertex collider
searches; BEBC [149], CHARM [150, 151], DELPHI [152], ATLAS [153], CMS [154], Higgs
decays [155] and electroweak precision data (EWPD) [156].

We immediately observe that the
√
s = 91.2GeV run is more sensitive by an order of

magnitude with respect to
√
s = 240GeV. This is expected from the enhancement of the

cross section at the Z pole and the ∼ 20 times larger integrated luminosity. For the exclusive
mono-γ plus /E search, we see that the reach of FCC-ee is severely impacted for HNL masses
above mN = 1GeV, where the HNLs are very unlikely to decay outside the detector and
appear as missing energy. For each HNL mass, competing effects yield two |VeN |2 solutions
for the condition S = 1.28; for large values of the active-sterile mixing strength, both the
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Figure 4. Sensitivity of mono-γ plus /E searches at FCC-ee to the electron-flavour mixing strength
as a function of the HNL mass at 90% CL, for

√
s = 91.2GeV (red) and

√
s = 240GeV (black).

Shown are the results of the exclusive signal analysis (solid), taking into account the probability of the
HNL decaying outside the detector of length L = 5 m, and inclusive signal analysis (dashed), where
this requirement is relaxed. The shaded regions correspond to the currently excluded regions of the
parameter space.

cross section and the decay rate are large, leading to a small probability to decay outside the
detector and a reduced value of S. Conversely, for small values of the active-sterile mixing
strength, the probability of decaying outside the fiducial volume is enhanced, but the cross
section and therefore S is suppressed. For the inclusive signal, no such suppression from
the geometric acceptance applies, removing the lower limits on |VeN |2 and extending the
bounds up to the kinematic thresholds.

Overall, the reaches of the exclusive and inclusive searches are around |VeN |2 ∼ 10−4 and
|VeN |2 ∼ 10−3 for

√
s = 91.2GeV and

√
s = 240GeV, respectively. In the parameter space

depicted in figure 4, the sensitivities therefore lie almost entirely within the region excluded
by existing searches, unlike the proposed displaced vertex searches for HNLs, which can probe
|VeN |2 ∼ 10−11 for mN ∼ 30− 60GeV [103, 105–107]. Only the unconstrained region around
mN ∼ 80− 130GeV, below the reach of EWPD constraints, can be excluded by the inclusive
mono-γ search at

√
s = 240GeV. However, we note that the exclusive and inclusive search

sensitivities both extend to lower values of the HNL mass. For mN ∼ 10 eV − 2.5 MeV,
bounds from kink searches in β decay spectra, excluding |VeN |2 ≳ 10−4 − 10−3, are generally
less stringent than the sensitivities presented here for the FCC-ee mono-γ plus /E search
at
√
s = 91.2GeV.

3.2 EFT operators

Given the wide range of existing constraints on the active-sterile mixing strength, it is now
interesting to explore the mono-γ plus /E constraints on the WCs considered in section 2,
which are generally less constrained.
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At FCC-ee, the four-fermion operators and effective W±/Z interactions can lead to the
single and pair production of HNLs, e+e− → νN(γ) and e+e− → NN(γ), respectively, via
the diagrams in figure 1. Heavy new physics may also contribute to operators involving
two active neutrino fields, modifying the SM process e+e− → νν(γ). For Majorana and
Dirac HNLs, the general 2 → 2 scattering cross sections via the EFT operators are in
eqs. (B.9) and (B.8), respectively. The cross sections with an additional final-state photon
can be approximated through the use of eq. (B.19). For the analysis, we simulate the
2 → 3 process in MadGraph5_aMC@NLO, implementing the relevant operators in Feynrules
and obtaining the necessary UFO input. The technical difficulty in MadGraph5_aMC@NLO
related to four-fermion operators containing two Majorana fermions is solved using the
method described in appendix B.

In this analysis, we turn on a single EFT operator coefficient Ci in section 2.2 at a
time. The operators are taken to be in the mass basis, with the diagonalisation of the
extended neutrino mass matrix resulting in two Majorana or Dirac HNLs, N1 and N2, with
mN1 < mN2 . We consider:

• Diagonal WCs of the four-fermion and effective Z interactions with two HNLs:

Ci ∈
{
CV,RRNe

iiee

, CS,RRNe
iiee

, CT,RRNe
iiee

,
2
v2 [Z

R
N ]ii

}
, (3.5)

with i = 2, which induce the pair production of HNLs via e+e− → N2N2γ (Majorana)
or e+e− → N2N̄2γ (Dirac). As the HNLs cannot decay via these WCs, only the mono-γ
plus /E signal can constrain these operators at FCC-ee.

• Off-diagonal WCs of four-fermion and effective Z interactions with two HNLs:

Ci ∈
{
CV,RRNe

ijee

, CS,RRNe
ijee

, CT,RRNe
ijee

,
2
v2 [Z

R
N ]ij

}
, (3.6)

with i = 1 and j = 2, leading to HNL pair production via e+e− → N1N2γ (Majorana)
or e+e− → N1N̄2γ + N̄1N2γ (Dirac). We consider three different mass splitting ratios,
δ ≡ (mN2 −mN1)/mN2 , between the HNLs: δ = 0.01, 0.1, and 1. Because N2 can decay
to N1 via these WCs, the DV signature can also provide complementary constraints, as
explored in section 4.

• WCs of the four-fermion and effective Z interactions involving a light neutrino and
HNL, and effective W± interactions involving an HNL;

Ci ∈
{
CV,RRνNe

αjee

, CS,RRνNe
αjee

, CT,RRνNe
αjee

,
2
v2 [W

R
N ]je ,

2
v2 [W

L
N ]je ,

2
v2 [Z

R
νN ]αj

}
, (3.7)

with α = e, µ, τ and j = 2, which lead to the single production of HNLs via the processes
e+e− →

∑
i νiN2γ (Majorana) and e+e− →

∑
i νiN̄2γ + ν̄iN2γ (Dirac). While the WCs

CV,RRνNe and ZRνN are not present in the Dirac case, we take them in the following as
shorthand for CV,LRνNe and ZLνN , which are non-vanishing. For the four-fermion and
effective Z interaction WCs in eq. (3.7), the mono-γ plus /E constraints can be obtained
from those for the off-diagonal WCs in eq. (3.6), with δ = 1.
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√
s [GeV] Cuts

(
S
B

)
cuts

/
(
S
B

)
CV,RRNe CS,RRNe CT,RRNe WR

N ZRN

91.2 | cos θγ | < 0.4, | cos θγ | > 0.8 1.21 1.20 1.20 1.22 1.01
240 | cos θγ | < 0.95, Eγ < 40GeV 2.30 2.30 2.23 2.00 0.05

Table 4. Universal kinematic cuts for maximising the signal-to-background ratio for each
√
s in the

EFT operator sensitivity analysis, in both the Majorana and Dirac HNL scenarios. The improvement
in the signal-to-background ratios after cuts is shown in the last column, for benchmark scenarios
involving a Dirac HNL with mN2 = 10GeV.

• WCs of the four-fermion and effective Z interactions with two light neutrinos and the
effective W± interactions involving a light neutrino;

Ci ∈
{
CV,LLνe

αβee

, CV,LRνe
αβee

, CS,LLνe
αβee

, CT,LLνe
αβee

,
2
v2 [W

R
ν ]αe ,

2
v2 [δW

L
ν ]αe ,

2
v2 [δZ

L
ν ]αβ

}
, (3.8)

with α, β = e, µ, τ , modifying the SM process e+e− →
∑
νν̄γ. We note that the WCs

CS,LLνe , CT,LLνe and WR
ν are not present in the Dirac case. In the Majorana case, these

operators do not interfere with the SM; thus, constraints on them can be obtained from
the limits on the diagonal and off-diagonal WCs in eqs. (3.5) and (3.6), respectively,
in the limit mN2 → 0. New physics contributions to CV,LLνe , CV,LRνe , δWL

ν and δZLν ,
meanwhile, interfere with the SM, depending on the flavour of the fields involved.
Interference with the SM can be the leading effect of these operators, and must be
taken into account when deriving limits on the associated νSMEFT WCs in section 5.

3.2.1 Sensitivity estimate

The sensitivity analysis for the EFT operators now proceeds similarly to the active-sterile
mixing analysis in section 3.1.1, with the simulation performed in MadGraph5_aMC@NLO.
Firstly, for the four-fermion operators, we simulate the signal processes e+e− → N2N̄2γ and
e+e− → N1N̄2γ + N̄1N2γ for the diagonal and off-diagonal WCs, respectively. As described
in appendix B, Majorana HNLs are treated as Dirac HNLs in the simulation, with the
definition of WCs in the FeynRules model file ensuring the correct behaviour of the Majorana
four-fermion operators. For the effective W± and Z interactions, the HNLs can instead be
treated as Majorana fermions in MadGraph5_aMC@NLO. For the former, the processes e+e− →
νeN2γ + ν̄eN2γ and e+e− → νeN̄2γ + ν̄eN2γ are simulated in the Majorana and Dirac cases,
respectively. For the latter, we simulate e+e− → N2N2γ (Majorana) and e+e− → N2N̄2γ

(Dirac) for the diagonal WCs and e+e− → N1N2γ (Majorana) and e+e− → N1N̄2γ + N̄1N2γ

(Dirac) for the off-diagonal WCs. For all signal scenarios, Ntot = 5× 104 events are generated.
For the irreducible SM background, we use the same simulated events as in section 3.1.1.

We generate signal and background samples with a generator level cut of pγT > 1GeV. For
the signal processes, we repeat the simulation for HNL masses up to the kinematic threshold
mN2 ≤

√
s/(2 − δ), with δ = 0 for the diagonal WCs. In table 4, we show the universal

kinematic cuts applied to the signals and backgrounds for
√
s = 91.2GeV and

√
s = 240GeV.
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These cuts are informed by the distributions in the outgoing photon energy Eγ and angle
θγ . In the third column of this table, we show the improvement in the signal-to-background
ratios after implementing the kinematic cuts for the diagonal four-fermion, effective W+,
and diagonal effective Z interactions involving a Dirac HNL with mN2 = 10GeV. Similar to
the active-sterile mixing scenario, the implemented cuts eliminate a significant fraction of
background events, except for ZRN at

√
s = 240GeV. In figure 5, we illustrate the normalised

cos θγ (top panel) and xγ ≡ 2Eγ/
√
s (bottom panel) distributions in the Dirac HNL scenario

for
√
s = 91.2GeV (left) and

√
s = 240GeV (right). As in figure 3, the distributions in xγ

are shown in units of the maximum possible photon energy,

xmax
γ ≡

2Emax
γ√
s

= 1−
m2
N2

(2− δ)2

s
. (3.9)

In figure 5, the solid lines show the normalised distributions for mN2 = 10GeV and non-zero
values of the diagonal WCs in eq. (3.5), which induce e+e− → N2N̄2γ, and a non-zero value
of the coefficient [WR

N ]2e, leading to e+e− →
∑
i νiN̄2γ + ν̄iN2γ. These are compared to the

distributions for the SM background (grey dashed and shaded).
The distributions in cos θγ show the expected behaviour for initial state radiation, with

peaks in the forwards and backwards directions. As discussed in appendix B, the distributions
can be approximated by multiplying the 2→ 2 cross sections by a radiator function, as in
eq. (B.19). This predicts identical cos θγ distributions for all of the processes in question, and
we see that this is the case for the four-fermion and effective W± interactions. However, we
observe that for the SM background and the effective Z interaction, the cos θγ distribution is
less prominent for | cos θγ | ≳ 0.8 and | cos θγ | ≲ 0.95 for

√
s = 91.2GeV and

√
s = 240GeV,

respectively; as a consequence of the pγT > 1GeV cut on these s-channel processes. Thus,
for the four-fermion and effective W± interactions, | cos θγ | > 0.8 and | cos θγ | < 0.95 are
sensible universal cuts to minimise the SM background.

However, we note that for HNL masses near the kinematic threshold, the distributions
in cos θγ change considerably. In figure 5, we plot the normalised distributions for non-zero
values of the vector four-fermion coefficient CV,RRNe with mN2 = 44.5GeV (dashed) and 45GeV
(dot-dashed) for

√
s = 91.2GeV and mN2 = 119GeV (dashed) and 119.4GeV (dot-dashed)

for
√
s = 240GeV. The distributions now peak at cos θγ = 0 and lose support at cos θγ ∼ ±1.

For
√
s = 91.2GeV, the cut | cos θγ | > 0.8 therefore removes too much of the signal. To

avoid this, we also allow events with | cos θγ | < 0.4.
The distributions in xγ also agree with the approximate expression in eq. (B.19), with

the distributions for the four-fermion and effective W± interactions all decreasing up to the
threshold xγ = xmax

γ . For the SM background and effective Z interactions, the replacement
s→ s(1−xγ) in the 2→ 2 cross section results in a peak at s(1−xγ) =M2

Z , or xγ = 1−M2
Z/s.

As there is no peak for
√
s = 91.2GeV, we find that a further cut on Eγ does not noticeably

improve the signal-to-background ratio. For
√
s = 240GeV case, the peak occurs at xγ ≈ 0.85;

we therefore apply the universal cut Eγ < 40GeV. As mentioned previously, this improves
the signal-to-background ratio for all scenarios except the effective Z interaction. In figure 5,
the Eγ distribution for Eγ < 40GeV (or xγ/xmax

γ < 0.33) can be seen to be suppressed with
respect to the SM background. While different cuts could be placed on cos θγ and Eγ to
obtain increased kinematic efficiencies in this case, we do not expect a large improvement in
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Figure 5. Normalised binned distributions in the cosine of the outgoing photon angle cos θγ (above)
and energy xγ = 2Eγ/

√
s (below) for mono-γ processes induced by the four-fermion, effective W±

and Z interactions and SM background in the Dirac HNL scenario. Distributions are shown for√
s = 91.2GeV (left) and

√
s = 240GeV (right). Solid lines indicate the scenario with mN2 = 10GeV.

For the vector four-fermion operator, we also show the distributions for mN2 close to the kinematic
threshold, see text for details.

the sensitivity. The universal cuts in table 4 are applied in both the Majorana and Dirac
HNL scenarios, as there are only minor differences in the cos θγ and Eγ distributions. They
are also applied for all considered HNL masses; for each HNL mass, tailored cuts can be
used to further improve the signal-to-background ratios. However, we find that these do not
significantly increase the sensitivities with respect to the universal cuts.

The method used to obtain the geometric acceptance in this analysis is identical to that
used in section 3.1.1. For the diagonal WCs in eq. (3.5), N2 cannot decay and is therefore
stable, giving Pout = 1. For the off-diagonal WCs in eqs. (3.6) and (3.7), however the heavier
HNL N2 can decay. For example, the decays N2 → νe−e+/N1e

−e+ are possible, as shown in
figure 2. Additional decay modes are present for the effective W± and Z interactions, such as
N2 → ννν̄/N1νν̄, N2 → νqq̄/N1qq̄ and N2 → ℓ−ud̄. In appendix C, we give expressions for
the total decay width of N2 in the Majorana and Dirac HNL scenarios. These can be used in
eq. (3.2) to calculate the probability of the HNL decaying outside the detector on an event-
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by-event basis, and finally the overall geometric acceptance Pout for the exclusive mono-γ
plus /E signal. As in section 3.1, we also consider an inclusive mono-γ search, with Pout = 1.

To estimate the sensitivity of mono-γ plus /E searches at FCC-ee to the EFT operator
WCs in eqs. (3.5)–(3.7), the total number of signal events, S, after kinematic and geometric
cuts, can be found as in eq. (3.3) for each simulated HNL mass. Combining with the surviving
SM background after kinematic cuts, B, the median sensitivity S is calculated as in eq. (3.4).
In the next section, we show the bounds at 90% CL by excluding the (mN2 , Ci) parameter
space with S > 1.28.

In this analysis, we take the active-sterile mixing of N1 and N2 to be negligible. There
are three main advantages of this limit:

• Firstly, to simplify the matching in section 5 of the coefficients Ci in eqs. (3.5)–(3.8) to
the coefficients of the νSMEFT operators in tables 1 and 2. In the limit of vanishingly
small active-sterile mixing, |VαNi | ≪ 1, the weak and mass eigenstate fields are related
by ν = PLν

′ and N = PRN
′ in the Majorana scenario and ν = PLν

′, N = PRN
′ and

S = PLN
′ in the Dirac scenario. Accordingly, there is a one-to-one mapping of the

WCs Ci and the νSMEFT WCs of interest, as described in more detail in section 5.

• Secondly, to ensure that the EFT operators dominate the production of HNLs. This
is practically assured for the pair production process, e+e− → NN(γ), because the
contributions from the active-sterile mixing via the SM charged- and neutral-current
interactions are suppressed by two powers of |VαNi | ≪ 1 in the amplitude. However,
for the single production process, e+e− → νN(γ), the active-sterile mixing can play a
more important role; now, the contributions from the SM interactions are proportional
to a single power of |VαNi | and can compete in size with the EFT WCs in eq. (3.7). For
example, taking Ci = CV,RRνNe ̸= 0 and VeN2 ̸= 0, we can make use of the expressions for
the 2→ 2 cross sections1 in eqs. (B.8) and (B.9) of appendix B to compare the sizes of
the contributions. At the Z pole, the active-sterile mixing does not dominate the cross
section for

|VeN2 | ≲
|Ci|

2
√
2GF

√
(geR)2 + (geL)2

ΓZ
MZ

= 2× 10−3
( |Ci|
10−6 GeV−2

)
, (3.10)

where we have neglected interference terms, which is just below the current upper limits
on |VeN2 |2 shown in figure 4. Similar conditions can be found for the other EFT WCs
in eq. (3.7). For

√
s = 240GeV and away from the Z pole in general, the condition in

eq. (3.10) is further relaxed.

• Finally, for non-negligible values of the active-sterile mixing strength, the decay width
of N2 is increased. This is inconsistent with our assumption that N2 is stable for
the diagonal WCs in eq. (3.5). Likewise, the results of the exclusive mono-γ plus /E

analysis for the off-diagonal WCs in eqs. (3.6) and (3.7) should be modified. To obtain
1In principle, the 2 → 3 cross section with a final-state photon should be used, by applying eq. (B.19) to

eqs. (B.8) and (B.9) and integrating over cos θγ and Eγ according to the cuts in table 4. However, this gives
qualitatively the same result as in eq. (3.10).
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Figure 6. Sensitivities of mono-γ plus /E searches at FCC-ee to the diagonal four-fermion and
effective Z interaction WCs as a function of the HNL mass at 90% CL, for

√
s = 91.2GeV (left) and√

s = 240GeV (right). Limits are shown for N2 being a Majorana (dashed) or Dirac (solid) HNL. The
parameter space where the EFT is not valid is indicated by the grey shaded region.

a qualitative understanding of the size of this effect, in the following section we examine
how the electron-flavour mixing strength VeN2 modifies the HNL decay length in the
(mN2 , Ci) parameter space.

3.2.2 Results

In figure 6, we present the estimated sensitivities of mono-γ plus /E searches at FCC-ee to the
diagonal four-fermion and effective Z interaction WCs in eq. (3.5), for masses of N2 between
200 MeV and 500 GeV. The 90% CL sensitivities for the vector (blue), scalar (orange) and
tensor (green) four-fermion and effective Z (red) interactions are shown for

√
s = 91.2GeV

(left) and
√
s = 240GeV (right) in the Majorana (dashed) and Dirac (solid) HNL scenarios.

For the effective Z interaction, the sensitivity is shown for Ci = 2
v2 [ZRN ]ii to maintain units of

GeV−2. The grey shaded region indicates where the EFT description is no longer valid. As
explained in appendix B, we assume this to be the case for Λ < 3

√
s, or Ci ≡ 1/Λ2 > 1/(9s).

Firstly, we see that
√
s = 240GeV is more sensitive to the four-fermion operators

by a factor of ∼ 3 with respect to
√
s = 91.2GeV, as the reduced SM background and

increased cross section compensate for the lower luminosity. The opposite is true for the
effective Z interaction, which benefits from the resonant behaviour of the cross section at√
s = 91.2GeV. For the vector four-fermion and effective Z interactions, the sensitivities

in the Majorana case fall off faster as a function of mN2 compared to the Dirac case. This
is a result of interference terms further suppressing the Majorana cross sections near the
kinematic threshold, mN2 <

√
s/2, seen also in figure 17. Finally, no constraint is shown for

the tensor four-fermion coefficient in the Majorana scenario, which vanishes identically.
The future sensitivities in figure 6 assume VαNi = 0 and therefore that N2 is stable. To

determine how large the active-sterile mixing can be for these results to remain valid, we
consider two values of the electron-flavour mixing strength:2 |VeN2 | = 10−3 and 10−7. For

2As seen in figure 4, |VeN2 | = 10−3 is roughly the maximum active-sterile mixing strength still allowed by
current experiments in the HNL mass range of interest.
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these two values, we calculate the HNL lifetime τN2 = 1/ΓN2 and decay length in the lab
frame L = βγτN2 , taking the boost factor βγ ∼

√
s/(2mN2). In figure 6, the grey dashed

(solid) lines indicate where the Majorana (Dirac) HNL decay length satisfies L = 5 m, with
L < 5 m to the right. For |VeN2 | = 10−3 and 10−7, respectively, the mono-γ plus /E bounds
are therefore no longer applicable for mN2 ≳ 5GeV and 80GeV. Ultimately, for |VeN2 | ≲ 10−6

(10−8), we find that the sensitivities for
√
s = 91.2GeV (240GeV) are unaffected by the

mixing-induced decays of N2. For the active-sterile mixing strength expected in the type-I
seesaw, |VeN2 | ∼

√
mν/mN2 , which is a well motivated scenario for Majorana HNLs, L > 5 m

is satisfied for mN2 ≲ 50GeV.
For the off-diagonal WCs in eqs. (3.6) and (3.7), we show the 90% CL sensitivities of

the exclusive and inclusive FCC-ee mono-γ plus /E searches in figures 7 and 8. We give the
results of the

√
s = 91.2GeV (left) and

√
s = 240GeV (right) analyses for the vector (blue),

scalar (orange) and tensor (green) four-fermion operators in figure 7 and the effective W±

(purple and pink) and Z (red) interactions in figure 8. For comparison with figure 6, the
normalisations Ci = 2

v2 [WR
N ]je, 2

v2 [WL
N ]je and 2

v2 [ZRN ]ij are also used in figure 8. For the
exclusive (inclusive) search, the Majorana and Dirac HNL scenarios are shown as dashed
(dotted) and solid (dot-dashed) lines, respectively. The sensitivities for the three values
δ = 0.01, 0.1 and 1 are depicted as light, medium, and dark shaded lines, respectively.

The results of the inclusive mono-γ plus /E search appear similar to the sensitivities
for the diagonal WCs in figure 6, with the upper bounds on |Ci| now extending up to the
kinematic threshold, mN2 <

√
s/(2 − δ). The

√
s dependencies of the cross sections again

ensure that
√
s = 91.2GeV and 240GeV are more constraining for the effective Z and four-

fermion interactions, respectively. For the vector four-fermion and effective Z interactions,
the sensitivities in the Majorana case again fall off faster as a function of mN2 compared to
the Dirac case. Finally, for the effective W± interactions, the sensitivities are marginally
stronger for

√
s = 240GeV, reflecting the logarithmic scaling of the cross sections with

√
s.

The bounds on the WC [WR
N ]je are slightly more stringent than for [WL

N ]je, as the cross
section for the former is larger if the WCs are of equal size.

For the exclusive mono-γ plus /E search, we see that the constraints on the off-diagonal
WCs are impacted substantially by the decays of N2, similar to the active-sterile mixing
sensitivity in figure 4. This is most pronounced in the δ = 1 case, which corresponds to the
WCs in eq. (3.6) for mN1 = 0 and the WCs in eq. (3.7). For HNL masses up to certain size,
a range of |Ci| values are excluded, because the HNL is very unlikely to decay outside the
detector if |Ci| is too large. However, for δ ≪ 1, the sensitivities can extend to much larger
values of mN2 , because the HNL decay rate via N2 → N1e

−e+ (and additional decays such as
N2 → N1νν̄, N2 → N1µ

−µ+, N2 → N1τ
−τ+ and N2 → N1qq̄ for the effective Z interaction)

is suppressed, increasing the HNL lifetime sufficiently for heavier HNLs to be long-lived.
As for the diagonal WCs, we have assumed VαNi = 0 to determine the exclusive mono-

γ plus /E sensitivities in figures 7 and 8. To explore the possible impact of the active-
sterile mixing, we again compute the HNL lifetime τN2 and decay length L = βγτN2 , with
βγ ∼

√
s/(2mN2), as a function of mN2 and Ci, for VαNi ̸= 0. The exclusive mono-γ plus

/E sensitivities for the δ = 0.1 and 1 scenarios, which do not reach up to mN2 ∼ 20GeV,
remain unaffected for |VeN2 | ≲ 10−4 and 10−2, respectively. The effective W± interactions
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Figure 7. Sensitivities of the exclusive and inclusive mono-γ plus /E searches at FCC-ee to the
off-diagonal four-fermion interaction WCs as a function of the HNL mass at 90% CL, for

√
s = 91.2GeV

(left) and
√
s = 240GeV (right). Limits are shown for Majorana (dashed) and Dirac (solid) HNLs for

three different mass splitting ratios δ = (mN2 −mN1)/mN2 . The sensitivity of the inclusive search is
also shown for the Majorana (dotted) and Dirac (dot-dashed) cases. The parameter space where the
EFT is not valid is indicated by the grey shaded region.
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Figure 8. Sensitivities of the exclusive and inclusive mono-γ plus /E searches at FCC-ee to the effective
W± and (off-diagonal) Z interactions as a function of the HNL mass, at 90% CL, for

√
s = 91.2GeV

(left) and
√
s = 240GeV (right). The benchmark scenarios for the mass splitting ratio δ are the same

as in figure 7.

are likewise unaffected for |VeN2 | ≲ 10−2. The δ = 0.01 sensitivities meanwhile remain valid
for |VeN2 | ≲ 10−6 (10−7) for

√
s = 91.2GeV (240 GeV). All exclusive sensitivities remain

unaffected by the seesaw prediction for the active-sterile mixing, |VeN2 | ∼
√
mν/mN2 .

4 Displaced vertex constraints at FCC-ee

In this section, we examine the sensitivity of DV searches at FCC-ee to the EFT operators in
section 2. Again, we consider the presence of one HNL interaction at a time. The scenario
where all EFT WCs are zero, Ci = 0, and the active-sterile mixing is non-negligible, VαNi ̸= 0,
has already been considered in [103, 105–107]. Here, we consider VαNi = 0 and Ci ̸= 0 for
Majorana and Dirac HNLs. As for the mono-γ plus /E analysis in section 3, we consider the√
s = 91.2GeV and 240GeV runs at FCC-ee with the integrated luminosities L = 100 ab−1

and 5 ab−1, respectively.
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4.1 EFT operators

The following benchmark scenarios are taken in this analysis. As discussed in section 3.2,
the diagonal four-fermion and effective Z interaction WCs in eq. (3.5) cannot induce decays
of N2 in the VαNi = 0 limit, and therefore are not considered further here. Likewise, the
WCs of the operators in eq. (3.8) containing two active neutrino fields cannot be probed
by DV searches. Therefore, we only consider the off-diagonal four-fermion and effective Z
interaction WCs in eqs. (3.6) and (3.7) and the effective W± interaction WCs in eq. (3.7).
For the off-diagonal WCs involving N1 and N2 in eq. (3.6), we consider three mass splitting
ratios; δ = 0.1, 0.5, and 1. The results for δ = 1 are equally applicable for the WCs of the
off-diagonal operators containing an active neutrino and N2 in eq. (3.7).

4.1.1 Sensitivity estimate

This sensitivity analysis proceeds as follows. Using MadGraph5_aMC@NLO, we simulate for
the four-fermion operators the 2 → 2 signal process e+e− → N1N̄2 + N̄1N2, in both the
Majorana and Dirac HNL scenarios. As in section 3.2.1, the definition of the WCs in the
Majorana FeynRules model file reproduces in the expected behaviour of the cross section
in MadGraph5_aMC@NLO for the Majorana four-fermion operators. The HNLs can instead
be treated as Majorana fermions for the effective W± and Z interactions, for which we
simulate e+e− → νeN2 + ν̄eN2 and e+e− → N1N2 in the Majorana scenario, respectively, and
e+e− → νeN̄2 + ν̄eN2 and e+e− → N1N̄2 + N̄1N2 in the Dirac scenario. All signal processes
are simulated with Ntot = 5 × 104 events.

In the simulation, we further require N2 (and N̄2 in the Dirac HNL scenario) to decay
via the operators of interest to a di-electron final state; specifically, N2 → N1e

−e+ for the
four-fermion and effective Z interactions and N2 → νe−e+ for the effective W± interactions.
The total width of N2 and the branching ratios of these channels are calculated using the
expressions of appendix C and inputted by hand. The detector response is once again
simulated with Delphes3, using the Innovative Detector for Electron-positron Accelerators
(IDEA) FCC-ee detector card [157].

We estimate the DV final state reach in a background-free approach. The SM backgrounds
are predominantly prompt and, if necessary, can be reduced by using a cut on the electron-
track transverse impact parameter, e.g. |d0| > 0.6 mm [106, 107]. In addition, we require
peT > 0.7GeV as the minimum momentum necessary to identify an electron at the FCC-ee.
The kinematic efficiency ϵk is found by dividing the number of events surviving the cut by
Ntot. For the geometric acceptance, we use eq. (3.2) with f(

√
s,mN1 ,mN2 , b) = δ(b− b′) and

the boost factor of N2 fixed to b′ = λ(s,m2
N1
,m2

N2
)/(2mN2

√
s), which gives the probability

of N2 decaying inside the detector, Pin. The FCC-ee detector is taken as spherical, with the
minimum and maximum radii L1 = 0.1 mm and L2 = 5 m, respectively.

With the kinematic cuts and geometric acceptance described above, we estimate the
total number of DV signal events as,

S = L × σ × BR(N2 → νe−e+/N1e
−e+)× Pin × ϵk . (4.1)

Given zero background, we determine the excluded regions at 90% CL in the (mN2 , Ci)
parameter space by identifying where the condition S > 2.3 is met for the signal events.
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Figure 9. Sensitivities of the of DV search at FCC-ee to the off-diagonal four-fermion interaction
WCs as a function of the HNL mass at 90% CL, for

√
s = 91.2GeV (left) and

√
s = 240GeV (right).

Limits are shown for Majorana (dashed) and Dirac (solid) HNLs for three different mass splitting
ratios δ = (mN2 −mN1)/mN2 . The parameter space where the EFT is not valid is indicated by the
grey shaded region.

4.1.2 Results

In figures 9 and 10, we show the resulting 90% CL sensitivities of the DV search at FCC-ee to
the WCs in eqs. (3.6) and (3.7), for masses of N2 between 200 MeV and

√
s. For

√
s = 91.2GeV
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Figure 10. Sensitivities of the DV search at FCC-ee to the effective W± and (off-diagonal) Z
interactions as a function of the HNL mass at 90% CL, for

√
s = 91.2GeV (left) and

√
s = 240GeV

(right). The benchmark scenarios for the mass splitting ratio δ are the same as in figure 9.

(left) and
√
s = 240GeV (right), we show the sensitivities for the vector (blue), scalar (orange)

and tensor (green) four-fermion operators in figure 9 and the effective W± (purple and pink)
and Z (red) interactions (with the same normalisations as in section 3.2.2, Ci = 2

v2 [WR
N ]je,

2
v2 [WL

N ]je and 2
v2 [ZRN ]ij) in figure 10. The sensitivities for the three values δ = 0.1, 0.5 and 1

are depicted as light, medium, and dark shaded lines, respectively. The same EFT validity
regions are indicated as in figures 7 and 8.

We first note that, like the active-sterile mixing, the DV search can probe much smaller
values of the WCs |Ci| with respect to the mono-γ plus /E search. Firstly, for the four-fermion
operators with δ = 1, both the

√
s = 91.2GeV and 240GeV runs can reach |Ci| ∼ 10−9 GeV−2

for mN2 ∼ 20–70GeV and mN2 ∼ 20–90GeV, respectively. Instead, for δ = 0.1 and 0.5, the
sensitivities become bounded for

√
s = 91.2GeV by the kinematic threshold, mN2 <

√
s/(2−δ),

which can be seen as vertical slices on the right-hand side of the excluded regions. For√
s = 240GeV, the opposite behaviour can be seen, with the sensitivities reaching larger

values of mN2 for successively smaller values of δ, until the bounds again hit the kinematic
threshold. Unlike the mono-γ plus /E sensitivities, the bounds weaken as mN2 → 0, because in
this limit N2 becomes too long-lived, with the decay length in the lab frame L = βγτN2 > 5 m.
On the upper side of the excluded regions, N2 instead decays too promptly, with L < 0.1 mm.
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The sensitivities for the effective W± interactions, like the four-fermion operators, are
slightly more stringent for

√
s = 91.2GeV compared to 240GeV. Even though the cross

sections are larger for these operators at higher
√
s, the reduced luminosity at

√
s = 240GeV

does not compensate enough. Furthermore, the sensitivities for
√
s = 240GeV do not benefit

from the reduced SM background with respect to
√
s = 91.2GeV, like the mono-γ plus /E

search. Smaller values of the WC [WR
N ]je are probed compared to [WL

N ]je, as the former
induces a larger cross section for equal values of the WCs. The sensitivities overlap at larger
values of |Ci| because the rates for N2 → νe−e+ are equal. For the effective Z interaction,
the resonant cross section at

√
s = 91.2GeV clearly provides a more stringent limit compared

to
√
s = 240GeV, reaching almost to |Ci| ∼ 10−10 GeV−2 for mN2 ∼ 30GeV. The cross

section is insufficient for the δ = 0.1 scenario to reach the kinematic threshold, as was the
case for the four-fermion operators.

Finally, as in section 3, we have considered the impact of non-zero active-sterile mixing
on the results of this analysis. For the δ = 1 sensitivities, |VeN2 | ≲ 10−5 is typically required
for the active-sterile mixing to not significantly alter the results. Generally, we find that
|VeN2 | ≲ 10−7 and 10−6 must be satisfied for the δ = 0.1 and 0.5 sensitivities in figures 9
and 10 to remain fully applicable.

5 Discussion

Having presented the sensitivities of FCC-ee to the EFT WCs Ci from mono-γ plus /E searches
in section 3.2 and DV searches in section 4.1, we now assess the corresponding constraints
on the WCs of the νSMEFT operators in tables 1 and 2, which can further be translated to
lower bounds on the scale of new physics Λ, shown in figures 12, 13 and 14. We also compare
the sensitivities of FCC-ee to existing constraints on the νSMEFT operators in figure 11.

As discussed previously, the analyses of sections 3.2 and 4.1 assume the active-sterile
mixing to be negligible, such that the EFT operators dominate the production and decay
of the Majorana or Dirac HNLs N1 and N2. This assumption furthermore streamlines the
matching of the WCs Ci in the HNL mass basis and the νSMEFT WCs in the weak basis.
For non-negligible VαNi , multiple νSMEFT operators can contribute to an operator Ci after
EW symmetry breaking, albeit with the contributions arising from VαNi ̸= 0 being suppressed
both by |VαNi | ≪ 1 and the scale of new physics Λ ≫ v. Therefore, in the following, we
simply take the leading contributions to Ci with |VαNi | = 0.

5.1 d = 6 νSMEFT operators

Using the matching relations in appendix A, the d = 6 νSMEFT operators in table 1 contribute
to the WCs Ci in eqs. (3.5)–(3.8). In the |VαNi | = 0 limit, we have the trivial relations
between the weak and mass eigenstates N = PRN

′ in the Majorana scenario and N = PRN
′

and S = PLN
′ in the Dirac scenario. The WCs Ci in eqs. (3.7)–(3.8) are also defined for the

flavour eigenstate active neutrinos, which by definition are the weak eigenstates. Thus, the
indices of the νSMEFT operators can be interchanged with the flavour indices ρ, σ = e, µ, τ

for the active neutrinos and the mass indices i, j = 1, 2 for the HNLs.
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For the WCs Ci in eqs. (3.5) and (3.6), the matching with the d = 6 νSMEFT operators
is therefore given by,

CV,RRNe
ijee

= CeN
eeij

,
2
v2 [Z

R
N ]ij = CHN

ij

, (5.1)

and for the WCs Ci in eq. (3.7) by,

CS,RRνNe
αjee

= ClNle
αjee

+ 1
2ClNleejρe

, CT,RRνNe
αjee

= 1
8ClNleejρe

,
2
v2 [W

R
N ]je = CHNe

je

. (5.2)

The constraints on the WCs Ci in figures 6–10 can now be translated to bounds on the
d = 6 νSMEFT operators.

In figure 11, we show in the upper two panels the bounds on the coefficient CeN of the
d = 6 νSMEFT operator QeN = (ēγµe)(N̄Riγ

µNRj) as a function of mN2 , for i = j = 2
(left) and i = 1, j = 2 (right), in the Dirac HNL scenario, with N1 assumed to be massless
(i.e., δ = 1). In all panels of figure 11, the same colour scheme is used as in figure 4, with
the
√
s = 91.2GeV (red) and

√
s = 240GeV (black) FCC-ee runs shown for the exclusive

(solid) and inclusive (dashed) mono-γ plus /E searches and the DV search (dotted), which
are taken directly from the constraints in figures 6, 7 and 9, according to the matching
relation in CV,RRNe = CeN .

An existing bound on CeN originates from mono-γ plus /E searches at LEP. As in [125],
we obtain these bounds by recasting the constraint in [101] on a purely vector four-fermion
operator coupling a Dirac fermion dark matter candidate to electrons, (N̄γµN)(ēγµe), using
DELPHI data for

√
s values between 180 GeV and 209 GeV [158, 159]. We follow the same

procedure as [125], rescaling the bound on the purely vector operator by equating the cross
sections for e+e− → NNγ, i.e.

|Ci|2σ̂i = |Cj |2σ̂j , (5.3)

where the hat denotes that the dependence on the coefficient Ci is removed from the cross
section σi. The cross section for the purely vector operator can be found by setting the
WCs to CV,RRNe = CV,RLNe = CV,LRNe = CV,LLNe ≡ CV in eq. (B.8) and inserting the result into
eq. (B.19), integrating over the photon signal region 0.06 < xγ < 1 −m2

N2
(2 − δ)2/s and

|cγ | < 1/
√
2, for

√
s = 200GeV. The cross section for CeN ̸= 0 can be found by repeating

the same procedure, with CV,RRNe = CeN . In figure 11, the resulting constraints on |CeN |
are shown as grey shaded regions. We note that for i ≠ j, we do not take into account the
decay N2 → N1e

−e+ via CeN , which would modify the LEP bound similarly to the exclusive
mono-γ plus /E bounds at FCC-ee. For both i = j and i ̸= j, the FCC-ee mono-γ plus /E

search at
√
s = 240GeV improves on the LEP bound by over an order of magnitude, and

also extends the sensitivity to larger values of mN2 . For i ≠ j, the DV searches at FCC-ee
increase the sensitivity much further for 400 MeV ≲ mN2 ≲ 110 GeV.

In the centre-left panel of figure 11, we instead show the bounds on the coefficient ClNle
for the d = 6 νSMEFT operator QlNle = (L̄ρNRj)ϵ(L̄σe), with ρ = σ = e and j = 2. From
eq. (5.2), ClNle contributes to both the scalar and tensor four-fermion interaction WCs as
CS,RRνNe = 12CT,RRνNe = 3ClNle/2. However, in the analyses of sections 3.2 and 4.1, we considered
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Figure 11. FCC-ee sensitivities to the d = 6 νSMEFT operator WCs CeN (top), ClNle and CHNe

(centre) and CHN (bottom), in the Dirac HNL scenario, compared to existing constraints. The red
(black) curves correspond to

√
s = 91.2GeV (240 GeV), while the solid (dashed) and dot-dashed lines

show the exclusive (inclusive) mono-γ plus /E and DV analyses, respectively. Existing bounds (shaded)
are discussed in the main text.
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only one non-zero coefficient Ci ∈ {CS,RRνNe , C
T,RR
νNe } at a time. In general, it is not possible

to obtain the exact limits on ClNle from the individual constraints on CS,RRνNe and CT,RRνNe in
figures 7 and 9, because this cannot account for one coefficient dominating the production
and another the decay, or both being equally important. Fortunately, with the particular
relation CS,RRνNe = 12CT,RRνNe , the scalar coefficient dominates both the production and decay
of N2. In figure 11, we thus show the limits found by rescaling the mono-γ plus /E and DV
bounds on the scalar coefficient only, according to CS,RRνNe = 3ClNle/2. For the LEP bound,
we again rescale the purely vector operator, with the cross section for ClNle ̸= 0 found by
setting CS,RRνNe = 12CT,RRνNe = 3/(2Λ2) in eq. (B.8). The improvement of the FCC-ee bounds
over LEP can be seen to be similar to that for the coefficient CeN for i ̸= j.

Before moving on, we note that ref. [113] also derives limits on ClN , CeN and ClNle of
Λ ≳ 1TeV from the signal e+e− → γ(γ) +Emiss at L3 [160], but assumes that the HNL decay
is prompt and proceeds dominantly via N → νγ, induced by the d = 6 dipole operators. The
same assumption is used in ref. [120] to assess the sensitivity of FCC-ee, finding Λ ≳ 10 TeV
(7 TeV) for OlN and OeN (OlNle) at

√
s = 91.2GeV and Λ ≳ 5TeV (4 TeV) at

√
s = 240GeV.

These constraints are not directly comparable to our analysis, which assumes one operator at
a time and therefore that the photon originates from an incoming e+/e−. In ref. [120], the
authors also consider DV signatures caused by HNL decay via N → 3f , which is analogous
to our DV sensitivities with δ = 1. Ref. [120] finds a maximum FCC-ee reach of Λ ∼ 30TeV,
which is qualitatively similar to the DV sensitivities for CeN (i ≠ j) and ClNle in figure 11.

Next, in the centre-right panel of figure 11, we show the bounds on the coefficient CHNe
of the d = 6 νSMEFT operator QHNe = (N̄Rjγµe)(H̃†iDµH), for j = 2. From the matching
condition in eq. (5.2), the sensitivities of the mono-γ plus /E and DV searches at FCC-ee can be
taken directly from figures 8 and 10. We note that any charged-current process that leads to
the production and decay of HNLs via the active-sterile mixing can also do so via the effective
W± interaction, with the rates for these processes found by replacing VeN by WR

N = v2

2 CHNe.
The constraints from signal processes involving only charged-current interactions can therefore
be rescaled trivially. Many constraints on the active-sterile mixing also arise from signal
processes involving neutral-current HNL decays. These bounds must be rescaled by the
ratio of decay rates for the active-sterile mixing and effective W± interaction scenarios, as
performed in [125]. From the rescaling of bounds on the electron-flavour mixing VeN2 , we
show in figure 11 the bounds from NA62 [161], T2K [162], BEBC [149], CHARM [150, 151],
Belle [163], ATLAS [153], CMS [154] and PMNS unitarity [164]. As we consider Dirac HNLs
in figure 11, we do not show constraints taken from searches for lepton number violating
signals, such as 0νββ decay and same-sign lepton signatures at colliders. The constraints on
CHNe from 0νββ decay experiments have been explored in detail in [165, 166].

Finally, the lower two panels of figure 11 depict the bounds on the coefficient CHN of
the d = 6 νSMEFT operator QHN = (N̄RiγµNRj)(H†i

←→
D µH), for i = j = 2 (left) and i = 1,

j = 2 (right). Again, from the matching condition in eq. (5.1), the FCC-ee sensitivities can
be directly transferred from figures 8 and 10. We compare these to the current limit from
LEP, found by rescaling the upper bound on the purely vector four-fermion coefficient by
the ratio of cross sections for e+e− → NNγ; our result for i = j is in good agreement with
the calculation of [125]. Also shown is the constraint from decays Υ(1S)→ NN at BaBar,
which enforced the upper limit BR(Υ(1S)→ inv) < 3× 10−4 at 90% CL [167]. Bounds from
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the invisible decays of other neutral mesons (π0, η, η′, ω, ϕ, J/ψ) are less stringent, and
therefore do not appear in the parameter space of figure 11. Indirect bounds from supernova
cooling [125, 168] are also present at smaller HNL masses than those shown in figure 11.

The coefficient CHN can contribute to the invisible decays of the Z boson at LEP
and FCC-ee. At LEP, the invisible Z width was inferred from the peak hadronic cross
section, σpeak,0

had , and ratio of hadronic and leptonic partial widths, R0
ℓ = Γhad/Γℓℓ, assuming

lepton universality, to be Γinv|exp = 499.0± 1.5MeV [92]. Compared to the SM prediction,
Γinv|SM = 501.48 ± 0.04MeV [169], this constrains the contribution of additional invisible
final states. Using the decay rate for Z → NN in appendix C, we perform a simple χ2 fit to
the LEP invisible width, excluding the blue shaded region at 90% CL in figure 11. A similar
measurement can be performed at FCC-ee, with a relative precision of 10−4 expected for
the invisible Z width, being limited by the uncertainty in the luminosity [93]. Assuming
the measured invisible width to be agreement with the SM, we find the dashed blue lines
in figure 11 to be the sensitivity of FCC-ee. Taking instead the same experimental value as
LEP, we obtain the dotted blue lines. Note that for i ≠ j, we again do not take into account
the impact of N2 decays on the LEP and BaBar constraints, which would render the bounds
invalid for large mN2 values. Comparing all of the constraints and sensitivities in figure 11,
we can see that the FCC-ee mono-γ plus /E searches at

√
s = 91.2GeV and

√
s = 240GeV

provide the most stringent limits below and above mN2 ≲ 91.2/(2 − δ), respectively. For
i ̸= j, the DV search at

√
s = 91.2GeV can extend the limits to much smaller values of

CHN for 100 MeV ≲ mN2 ≲ 80 GeV.
This concludes the review of the constraints on the d = 6 operators in table 1. However,

for completion, we summarise in figures 12–14 the sensitivities of FCC-ee to all d ≤ 7 operators
considered in this work. In the Majorana HNL scenario, these are the ∆L = 0 and ∆L = ±2
operators in table 1. Meanwhile, in the Dirac HNL scenario, the ∆L = 0 operators in
tables 1 and 2 are relevant. For the FCC-ee sensitivities in figures 6–10, we take the smallest
value of |Ci| that can be probed, which occurs in the mN2 → 0 limit for the mono-γ plus
/E sensitivities and at the tip of the DV sensitivities. These values are then related to the
d = 6 and d = 7 νSMEFT operator WCs using the relations in appendix A, assuming that
the active-sterile mixing is negligible. Then, the νSMEFT WCs are related to the scale of
new physics as C(6)

i = 1/Λ2 and C
(7)
i = 1/Λ3 for the d = 6 and d = 7 operators, respectively.

In figures 12–14, we therefore show the maximum reach of FCC-ee for each operator, which
may occur at different values of mN2 . For comparison, we also show in figures 12, 13 and 14
the current constraints from mono-γ plus /E searches at LEP.

5.2 Two HNL νSMEFT operators at d ≤ 7

Firstly, in figure 12, we show the maximum reach of FCC-ee to the d = 6 and d = 7 νSMEFT
operators inducing effective interactions at the EW scale involving two HNLs N1 and N2
in the Majorana (left) and Dirac (right) scenarios, assuming the benchmark mass splitting
ratio δ = (mN2 −mN1)/mN2 = 0.1. For each operator, the left bar shows the maximum
reach of FCC-ee to the i = j coefficient from the mono-γ plus /E search. The centre and
right bars instead indicate the reach to the i ̸= j coefficient from the mono-γ plus /E and DV
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Figure 12. Maximum reach to the scale of new physics Λ for the d = 6 and d = 7 νSMEFT operators
involving two HNLs, inducing e+e− → NN(γ), in the Majorana (left) and Dirac (right) scenarios. For
each operator, the FCC-ee sensitivities from the mono-γ plus /E search are shown for i = j (left) and
i ̸= j (centre) and the DV search for i ̸= j (right). The LEP mono-γ plus /E constraints are shown as
black striped bars.

searches, respectively. The light and dark shaded bars, respectively, illustrate the reaches
for
√
s = 91.2GeV and 240GeV.

Most νSMEFT operators are matched to a single effective interaction at the EW scale.
However, the d = 6 operator QlN generates both of the operators (N̄γµPRN)(ēγµPLe) and
(N̄γµPRN)(ν̄eγµPLνe) at the EW scale, giving the decay mode N2 → N1νν̄ which was not
considered for the bound on |Ci| in figure 9. For the DV bound in figure 12, we take this into
account, resulting in Λ being at a slightly lower value with respect to CeN . Additionally, the
d = 7 operator QlSNeH contributes to both the scalar and tensor four-fermion operators in
the Dirac HNL scenario, with CS,RRNe = 4CT,RRNe = −vClSNeH/(2

√
2). If we assume that the

FCC-ee sensitivities are limited by the production cross section,3 we can convert the scalar
and tensor coefficient limits separately as |CS,RRNe | = v/(2

√
2Λ3

S) and |CT,RRNe | = v/(8
√
2Λ3

T )
and determine the scale of new physics for the νSMEFT coefficient as ClSNeH = 1/Λ3, with
Λ6 = Λ6

S + Λ6
T . This simple relation arises because the scalar and tensor operators do not

interfere at the level of the total cross section σ. As can be seen in eq. (B.2), there is a
scalar-tensor interference term in dσ/d cos θ, but it is proportional to cos θ and therefore
vanishes in σ. The mono-γ plus /E (DV) sensitivities can be seen to reach Λ ∼ 1–2TeV
(Λ ∼ 20–30TeV) for the d = 6 operators and Λ ∼ 600–900GeV (Λ ∼ 3–5TeV) for the d = 7
operators.4 The FCC-ee sensitivities are seen to be a large improvement over the mono-γ
plus /E constraints at LEP (black striped bars), which exclude up to Λ ∼ 300–500GeV.

3This is always true for the maximum mono-γ plus /E sensitivity in the limit mN2 → 0, where the HNL
decay length satisfies L≫ 5 m and the probability to decay outside the detector is Pout ≈ 1, but not for the
maximum DV sensitivity for δ = 0.1. In figure 9, the δ = 0.1 sensitivities are cut off at the kinematic threshold
mN2 =

√
s/(2− δ), unlike the δ = 0.5 and 1 sensitivities which reach the cross section-limited regime at the

tips of the excluded regions, where the probability to decay inside the detector satisfies Pin ≈ 1. Nevertheless,
we have verified that Λ6 ≈ Λ6

S + Λ6
T still approximately holds for δ = 0.1.

4We emphasise that the DV reaches are taken at the mass of N2 which maximises the sensitivity. Not all
values of Λ smaller than the reach shown in figure 12 would be excluded for this particular value of mN2 , but
would instead be ruled out for other values.
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Figure 13. Maximum reach to the scale of new physics Λ for the d = 6 and d = 7 νSMEFT operators
involving a single HNL, inducing e+e− → νN(γ), in the Majorana (left) and Dirac (right) scenarios.
For each operator, the FCC-ee sensitivities from the mono-γ plus /E (left) and the DV (right) searches
are shown. The LEP mono-γ plus /E constraints are shown as black striped bars.

5.3 Single HNL νSMEFT operators at d ≤ 7

Next, in figure 13, we show the maximum reach of FCC-ee to the d = 6 and d = 7 νSMEFT
operators leading to effective interactions with a single HNL at the EW scale, shown for the
Majorana (left) and Dirac (right) scenarios. For each operator, the left and right bars show
the maximum sensitivity of the mono-γ plus /E and DV searches at FCC-ee, respectively. For
example, QlNle = (L̄ρNRj)ϵ(L̄σe) can contribute to both the scalar and tensor four-fermion
interaction WCs, as already discussed in the context of figure 11. For ρ = µ, τ and σ = e,
only the scalar coefficient is generated, with CS,RRνNe = ClNle. However, for ρ = e and σ = µ, τ ,
the matching condition is now given by CS,RRνNe = 4CT,RRνNe = ClNle/2. Assuming that the
maximum FCC-ee sensitivities are cross section-limited, the scalar and tensor four-fermion
interaction WCs are again converted separately as |CS,RRνNe | = 1/(2Λ2

S) and |CT,RRνNe | = 1/(8Λ2
T ),

and the scale for the d = 6 νSMEFT coefficient found as ClNle = 1/Λ2, with Λ4 = Λ4
S + Λ4

T .
We note that, again, there is no interference between the scalar and tensor operators. For
ρ = σ = e, we instead convert the scalar coefficient as CS,RRνNe = 3/(2Λ2

S).
The d = 7 νSMEFT operator QNl1 also contributes to both the effective W± and Z

interactions in the Majorana HNL scenario, with the matching condition WL
N = −2ZRνN =

−v3CNl1/(2
√
2). In this case, we must also take into account that the contributions of WL

N

and ZRνN to the process e+e− → νN(γ) interfere. Taking the sensitivities to again be cross
section limited, the effective W± and Z interaction WCs can be converted to separate scales
of new physics as |WL

N | = v3/(2
√
2Λ3

W ) and |ZRνN | = v3/(4
√
2Λ3

Z), respectively, and then to
a scale for the d = 7 operator as CNl1 = 1/Λ3, with

Λ6 = Λ6
W

(
1− σ̂WZ

2(σ̂W − σ̂Z)

)
+ Λ6

Z

(
1 + 2σ̂WZ

σ̂W − σ̂Z

)
. (5.4)

Here, σ̂W and σ̂Z are the cross sections for e+e− → νN(γ) via W± and Z exchange,
respectively, while σ̂WZ is the contribution from the interference. The hats again denote that
the dependence on the WCs WL

N and ZRνN is removed from the cross sections. For the DV
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sensitivities, we simply compute these from the 2→ 2 cross section in eq. (B.9), while for the
mono-γ plus /E sensitivities, we insert eq. (B.9) into eq. (B.19) and integrate over the relevant
photon signal region. For LEP, this is given below eq. (5.3), while for FCC-ee we account
for the cuts in table 4. Ultimately, we find that the sensitivities on the effective W± and Z

interactions dominate at
√
s = 240GeV and

√
s = 91.2GeV, respectively. The procedure is

equivalent for the d = 7 operator QSl1 which contributes to the WCs WL
N and ZLνN at the

EW scale. We note that the coefficient CNl1 is heavily constrained in the Majorana case
by the non-observation of 0νββ decay [165].

To summarise, the mono-γ plus /E (DV) sensitivities can be seen to reach Λ ∼ 1–2TeV
(Λ ∼ 20–40TeV) for the d = 6 operators and Λ ∼ 600–900GeV (Λ ∼ 5–10TeV) for the
d = 7 operators. The reach of the DV search is greater compared to figure 12 because the
δ = 1 sensitivities in figures 9 and 10 are used.

5.4 SMEFT operators at d ≤ 7

Finally, in figure 14, we show the maximum reach of FCC-ee to the d = 6 and d = 7 SMEFT
operators generating effective interactions at the EW scale involving no HNLs. The only
distinction between the Majorana and Dirac HNL scenarios is that the ∆L = ±2 operators
QllleH and QleHD are assumed to vanish in the latter scenario. The results shown for these
operators only apply in the Majorana case. The translation of the FCC-ee mono-γ plus /E
bounds in figures 6, 7 and 8 to the SMEFT WCs is now slightly more involved, because the
WCs can interfere with the SM contribution to e+e− → νν(γ).

For the WCs that do not interfere with the SM, the appropriate matching condition
can be used to rescale the constraint on |Ci| in the mN2 → 0 limit, as for the operators in
figures 12 and 13. This is the case for the d = 7 SMEFT operators,

CS,LLνe
ρσee

= −
√
2v
(
C llleH

ee{ρσ}
+ 1

2C llleH
e{ρeσ}

)
, CT,LLνe

ρσee

= v

4
√
2
CllleH

e[ρeσ]
,

2
v2 [W

R
ν ]ρe = −

v√
2
CleHD

ρe

, (5.5)

where the curly (square) brackets denote the (anti-)symmetrisation of the flavour indices.
As can be seen in figure 14, the constraints on CllleH depend on ρ, σ = e, µ, τ ; in each
case, the left and right bars show ρ = σ and ρ ̸= σ, respectively. The tensor operators
relevant to e+e− → νν(γ) are only generated when the first and third flavour indices are of
electron flavour and the second and fourth indices are different. When the coefficient for the
tensor operator is non-zero, the maximum reach for the SMEFT operator is determined as
CllleH = 1/Λ3, with Λ6 = Λ6

S + Λ6
T , where ΛS and ΛT are found separately from eq. (5.5).

For the SMEFT coefficient CleHD, we show the maximum reach for ρ = e (left) and ρ ̸= e

(right) as purple bars. This coefficient is also constrained considerably by the non-detection
of 0νββ decay [170].

We next examine the maximum reach for the remaining d = 6 SMEFT operators, which
can interfere with the SM depending on the flavour indices of the coefficient. Firstly, the
operators Qll and Qle contribute to the vector four-fermion operators as

CV,LLνe
ρσee

= C ll
ρσee

+ C ll
eeρσ

, CV,LRνe
ρσee

= C le
ρσee

. (5.6)
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Figure 14. Maximum reach to the scale of new physics Λ for the d = 6 and d = 7 νSMEFT operators
involving the active neutrinos, inducing e+e− → νν(γ). For each operator, the FCC-ee sensitivities
from the mono-γ plus /E search are shown for ρ = σ (left) and ρ ≠ σ (right). The mono-γ plus /E

constraints from LEP are shown as black striped bars.

Using either eq. (B.8) or eq. (B.9) in the mi,mj → 0 limit, the contribution of these WCs
to the total cross section for e+e− →

∑
νν̄ is

σ = σ
∣∣
SM +

∑
ρ,σ

[
s

48π
(∣∣CV,LLνe

ρσee

∣∣2 + ∣∣CV,LRνe
ρσee

∣∣2)+ GFM
2
Z

6
√
2π

δρσχ2Re
[
geLC

V,LL
νe

ρσee

+ geRC
V,LR
νe

ρσee

]
+ GFM

2
W

4
√
2π

δρeδσeRe
[
CV,LLνe

ρσee

](
3 + 2ω − 2(1 + ω)2 log

(1 + ω

ω

))]
, (5.7)

with ω ≡M2
W /s and χ2 is given in eq. (B.15). The second and third terms in the summation

are the interference of the WCs with the SM Z and W± exchange diagrams, respectively.
The WCs Cll and Cle with ρ = σ interfere with the SM Z diagram away from the Z pole,
where the interference vanishes, while Cll with ρ = σ = e interferes with the SM W± diagram.
For ρ ≠ σ, there is no interference with the SM.

The maximum reach of mono-γ plus /E searches FCC-ee can be found as in eq. (5.3),
but now including the interference terms if present,

|Ci|2σ̂i = Re
[
Cj
]
κ̂j + |Cj |2σ̂j + . . . . (5.8)

On the LH side we write the cross section for e+e− → NNγ in the mN2 → 0 limit, with the
coefficient CV,RRNe extracted. The RH side is the cross section for e+e− →

∑
νν̄γ, split into

interference and non-interference terms, with the coefficient CV,LLνe or CV,LRνe removed. The
hatted cross sections are computed at leading order (LO) by inserting the relevant 2 → 2
cross sections into eq. (B.19) and integrating over the photon energy and angle accordingly.
For the LEP bounds, we integrate over 0.06 < xγ < 1−m2

N2
(2− δ)2/s and |cγ | < 1/

√
2 for√

s = 200GeV. For FCC-ee, we instead integrate over the phase space that is not removed by
the cuts in table 4 and pγT > 1GeV, for

√
s = 91.2GeV and 240GeV. Incorporating the pγT cut

is easiest with the change of variables (xγ , cγ)→ (pγT , cγ) in the differential cross section, as
explained below eq. (B.19). The pγT cut has the advantage of shifting where the interference
between Cll and Cle and the SM Z diagram vanishes to a value of

√
s sufficiently above the Z
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pole. The cross section κ̂j is therefore not as sensitive of the value of
√
s in the vicinity of the

Z pole as for e+e− →
∑
νν̄. This also reduces the importance of next-to-leading order (NLO)

corrections to e+e− →
∑
νν̄γ for the evaluation of κ̂j . In the following, we do not take into

account the NLO corrections to remain consistent with the analysis of section 3, where we
simulate the signals and background at LO. The corrections decrease and increase the SM
contribution to e+e− →

∑
νν̄γ at

√
s = 91.2GeV and 240GeV, respectively, and decrease

the interference contributions at both
√
s values. We expect this to have a non-negligible

but small impact on the obtained limits. With the hatted cross sections now evaluated,
we set Ci in eq. (5.8) to the maximum reach of LEP or FCC-ee and rearrange to find the
maximum reach for Cj . The resulting reaches for Cll and Cle are shown as blue bars in
figure 14. We comment here that the Cll and Cle sensitivities can be improved if a shape
analysis is considered instead of the counting analysis performed here. This is particularly
applicable to these operators due to the existence and dominance of the interference terms,
which modifies the shape of the pγT distribution.

Next, we consider the d = 6 SMEFT operators Q(1)
Hl and Q

(3)
Hl , which contribute to the

effective W± and Z interactions involving light neutrinos. However, the situation is further
complicated by contribution of Q(3)

Hl to the process µ− → e−ν̄eνµ, which is used to determine
the value of the input parameter GF . As such, we make use of the {M̂W , M̂Z , ĜF } input
scheme [171], where the canonically normalised values of these quantities are shifted linearly
by the d = 6 coefficients. While the masses MW and MZ are shifted by operators not
considered further here, the operator Q(3)

Hl shifts the Fermi constant as,

δGF = 1
2ĜF

(
C

(3)
Hl
ee

+ C
(3)
Hl
µµ

)
, (5.9)

where ĜF = 1.1663787× 10−5 GeV−2 is the measured value. This shift enters the deviations
to the SM W± and Z interactions in eq. (2.12), along with the direct contributions from
Q

(1)
Hl and Q

(3)
Hl , as

[δWL
ν ]ρe = −

δGF√
2
δρe + v̂2C

(3)
Hl
ρe

, [δZLν ]ρσ = −δGF√
2
gνLδρσ −

v̂2

2
(
C

(1)
Hl
ρσ

− C(3)
Hl
ρσ

)
, (5.10)

respectively, where v̂2 = 1/(
√
2ĜF ). To determine the cross section for e+e− →

∑
νν̄γ, the

shifts in eq. (5.10) are added to the SM contributions [WL
ν ]SM
ρe = δρe and [ZLν ]SM

ρσ = gνLδρσ
and inserted into eq. (B.8). Here, one must also take into account the deviation of the Z
coupling to electrons, i.e.

[δZRe ]αβ = −δGF√
2
geRδαβ , [δZLe ]αβ = −δGF√

2
geLδαβ −

v̂2

2
(
C

(1)
Hl
αβ

+ C
(3)
Hl
αβ

)
, (5.11)

with α = β = e. Finally, eq. (B.8) is inserted into eq. (B.19), where we account for the
QED coupling constant e also being shifted by δe/ê = −δGF /

√
2. For particular values

of C(1)
Hl and C

(3)
Hl , we can integrate over the photon energy and angle to obtain the total

cross section. We cross-check the accuracy of the analytical results by using the UFO file
SMEFTsim_general_MwScheme provided by the SMEFTsim package [172, 173] to simulate the
process e+e− →

∑
νν̄γ in MadGraph5_aMC@NLO for C(1)

Hl , C
(3)
Hl ̸= 0.
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The maximum reach of mono-γ plus /E searches FCC-ee to C(1)
Hl and C

(3)
Hl can now be

found as in eq. (5.8). Integrating over the photon phase space with the relevant cuts for
LEP and FCC-ee included, we obtain a function of the coefficient C(1)

Hl or C(3)
Hl on the RH

side of eq. (5.8). As before, there is a term linear in the WCs if they interfere with the SM,
while a quadratic term is always present. However, there are now additional higher-order
terms, denoted as ellipsis in eq. (5.8). These terms, being further suppressed by Λ, have a
negligible impact on the maximum reach, which we have verified numerically. The resulting
reaches for C(1)

Hl and C
(3)
Hl are shown in figure 14, with the colors indicating whether W±

(purple) and Z (red) exchange contributes.
Before concluding this section, we note that the d = 6 SMEFT operators considered here

are constrained by other present and future observables, at low and high energies. However,
given the vast number of additional d = 6 SMEFT WCs which can also contribute to these
and other probes, previous works [71–86] have opted to perform global fits to ensure sufficient
model independence, usually limiting the number of operators by enforcing a flavour symmetry
such as the minimal flavour violation hypothesis. A complete analysis of the bounds from
mono-γ plus /E searches at FCC-ee in the context of global constraints is beyond the scope
of this work, but we nevertheless list the relevant observables below and conduct a naive
comparison of our results with the upper bounds extracted from the global fits.

The WCs Cll and Cle are constrained by lepton pair production e+e− → ℓ+ℓ−, with
data available for the differential Bhabha scattering cross section dσe/d cos θ, the total cross
sections σℓ and forward-backward asymmetries AℓFB for ℓ = µ, τ , and the τ polarisation
Pτ , measured at different

√
s values by LEP, SLD and VENUS [92, 174, 175]. At low

energies, the coefficient Cll is constrained by the parity violating asymmetry APV in Møller
scattering, e−e− → e−e−, measured by the SLAC E158 experiment [176]. Both Cll and Cle
can also be probed by neutrino-electron scattering, such as νee− → νe− and νµe

− → νe− at
CHARM [177] and CHARM II [178]. Using these measurements, the global fit of [75] sets
the lower limit at 90% CL of Λ ≳ 2–4TeV for the diagonal WCs of Cll and Cle, depending
on the flavour. The off-diagonal WCs of Cll and Cle are subject to stringent bounds from
charged lepton flavour violating (cLFV) processes, µ→ eee at SINDRUM [179] and τ → eee,
τ → µee at Belle [180]. The former sets Λ > 207TeV and Λ > 164TeV for the ρ = e and
σ = µ WCs of Cll and Cle, respectively, while the latter imposes Λ ≳ 8–11TeV for the other
off-diagonal WCs [181–183]. Evidently, the bounds on Cll and Cle from mono-γ plus /E

searches at FCC-ee are more stringent than current bounds on the diagonal WCs, but are
not competitive with those on the off-diagonal WCs. Future measurements at FCC-ee and
CEPC of e+e− → ℓ+ℓ− in the vicinity and above the Z pole are also expected to improve
the bounds on the diagonal WCs [84–86].

The WCs C(1)
Hl and C

(3)
Hl are constrained by all of the observables discussed above, in

addition to the following probes. Firstly, at low energies, the WCs contribute to the neutrino
scattering processes νeN → νX at CHARM [184], νµN → νX at CCFR [185], and CEνNS
at COHERENT [186, 187]. Experiments measuring atomic parity violation [188] and parity-
violating electron-proton [189] and nucleus [190, 191] scattering constrain the effective weak
charge QW , which can be expressed in terms of the WCs C(1)

Hl and C
(3)
Hl . However, it is well

known that EWPOs at the Z pole, i.e., the total Z width ΓZ , peak hadronic cross section
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σpeak,0
had and ratios of hadronic and leptonic partial widths, provide the dominant constraints.

The global fit of [84] requires Λ ≳ 6–10TeV at 90% CL for C(1)
Hl and C

(3)
Hl . The same work

considers the future sensitivity FCC-ee and CEPC to EWPOs and additional processes such
as e+e− → qq̄, e+e− → Zh, e+e− → νν̄h and e+e− → W+W− away from the Z pole. The
sensitivities for the diagonal WCs are extended up to the tens of TeV. Intriguingly, with
the exception of C(3)

Hl for ρ = σ = e, we find that mono-γ plus /E searches at FCC-ee can
reach beyond these limits. The greatest potential improvement is seen in the third generation
couplings C(1)

Hl and C
(3)
Hl for ρ = σ = τ . For the off-diagonal WCs of C(1)

Hl and C
(3)
Hl , we find

that cLFV bounds already constrain the scale of new physics to be Λ > 164TeV for ρ = e

and σ = µ and Λ ≳ 8TeV for the other off-diagonal combinations, already more stringent
than the forecasted mono-γ plus /E FCC-ee bounds.

6 Conclusions

HNLs are a well-motivated extension of the SM particle content, which, depending on their
masses, can provide a mechanism that naturally leads to the light neutrino masses, serve as
potential dark matter candidates, and offer insights into the matter-antimatter asymmetry
of the universe via leptogenesis. In general, Majorana or Dirac HNLs can couple to the
SM via active-sterile mixing (VαN ) and/or EFT operator WCs (Ci) generated by heavy
dynamics at the high scale Λ. In this context, we analyse the production and decay of HNLs
for two proposed centre-of-mass energies at FCC-ee,

√
s = 91.2GeV (L = 100 ab−1) and√

s = 240GeV (L = 5 ab−1), and subsequent final states leading to distinct mono-γ plus
/E and DV signatures. Simple cut-based analyses are proposed to take advantage of these
signatures. Firstly, in section 3.1, the sensitivity of mono-γ plus /E searches to VαN for a
single Dirac HNL (N) is investigated. In section 3.2, the sensitivity of mono-γ plus /E searches
to vector, scalar and tensor four-fermion operators and effective W± and Z interactions is
examined for a pair of Majorana or Dirac HNLs (Ni, i = 1, 2) in the limit of vanishing VαN .
Sensitivities to diagonal (i = j) and off-diagonal (i ≠ j) WCs are studied alongside the effects
of different mass splittings between the HNL pair. Finally, in section 4, the sensitivity of DV
searches is analysed for the same EFT operators and particle content.

The reach of mono-γ plus /E searches at FCC-ee to the electron-flavour active-sterile
mixing VeN (figure 4) lies almost entirely within the region already excluded by existing
searches. However, the EFT operators are generally less constrained by current data, with
mono-γ plus /E and DV searches probing unconstrained regions of the parameter space for
VαN = 0. The impact of non-vanishing mixing (VαN ̸= 0) on the projected sensitivities is
discussed in section 3.2.2 (mono-γ plus /E search) and section 4.1.2 (DV search). In section 5,
we map the maximum reach of our proposed searches at FCC-ee to the basis of νSMEFT
operators in tables 1 and 2, using the matching conditions in appendix A. The maximal
sensitivities to the scale of new physics Λ, assuming one operator at a time, are summarised
in figures 12, 13 and 14 for the processes e+e− → NN(γ), νN(γ) and νν(γ), respectively.

Of the νSMEFT operators contributing to e+e− → NN(γ), it can be seen from figure 12
that FCC-ee is more sensitive to the less-suppressed d = 6 vector four-fermion operators QeN
and QlN and the d = 6 bosonic current operator QHN (in addition to QeS , QlS and QHS in
the Dirac scenario), with Λ ∼ 1–2TeV probed by mono-γ plus /E searches (an improvement
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by a factor of ∼ 5 with respect to existing LEP bounds) and Λ ∼ 20–35TeV by DV searches.
The DV search sets completely new sensitivities with no equivalent existing bounds. For the
coefficient CHN of the d = 6 operator QHN = (N̄γµN)(H†i

←→
D µH), FCC-ee also improves

considerably on bounds from invisible decays of Υ(1S) (BaBar) and Z (LEP), shown in
figure 11. The bounds on the d = 7 operators QelNH and QlNeH (QelSNH and QlSNeH in
the Dirac scenario) are less stringent due to the additional suppression by Λ, but are still
appreciable, especially from the DV search.

The situation is analogous for the νSMEFT operators contributing to e+e− → νN(γ),
with the reaches for the d = 6 scalar four-fermion operator QlNle and d = 6 bosonic operator
QHNe being the most optimistic in figure 13, probing Λ ∼ 1.5–2.5TeV (mono-γ plus /E search)
and Λ ∼ 30–40TeV (DV search). The mono-γ plus /E reaches are again ∼ 4–5 times stronger
than existing LEP constraints. While the operator QHNe = (N̄γµe)(H̃†iDµH) in the Dirac
HNL scenario is heavily constrained by existing bounds from NA62, T2K, BEBC, CHARM,
Belle, ATLAS, CMS and PMNS unitarity constraints (figure 11), the DV search at FCC-ee
can still reach to currently untested parts of the parameter space. In the Majorana HNL
scenario, the DV search at FCC-ee is expected to not be competitive with bounds from
0νββ decay on QHNe. The reaches for the d = 7 operators QlNlH , QeNlH and QNl1(2) in the
Majorana scenario (QlSlH , QeSlH and QSl1(2) in the Dirac scenario) are also considerable.

Finally, there are d ≤ 7 operators in the SMEFT which contribute to e+e− → νν(γ). For
these, we take into account the interference with the SM when present, which increases the
mono-γ plus /E reach for the d = 6 operators Qll, Qle, Q(1)

Hl and Q
(3)
Hl considerably, as seen

in figure 14. For example, the scale of new physics that can be probed for C(1)
Hl and C

(3)
Hl

is Λ ∼ 40–60TeV, depending on the flavours involved. This can be an order of magnitude
improvement over previous LEP bounds. Furthermore, these sensitivities are comparable
with those from future FCC-ee and CEPC bounds from EWPOs, with bounds on the third
generation couplings from this analysis potentially being an improvement. While they do
not benefit from interference, the scale of new physics Λ ∼ 0.6–1TeV can still be probed
for the d = 7 operators QllleH and QleHD. In conclusion, this work highlights the potential
of FCC-ee to probe a wide range of extensions leading to operators in the (ν)SMEFT at
low energies. We have performed a comprehensive study of d ≤ 7 operators that can be
probed by mono-γ plus /E and DV signatures.
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A Operators matching and UV completions

Here, we give the tree-level matching conditions between the WCs of the EFT operators at
the EW scale Oi and the WCs of the d ≤ 7 νSMEFT operators Qi in tables 1 and 2. Firstly,
in table 5, we give the matching conditions for the vector, scalar and tensor four-fermion
interactions in eqs. (2.5) and (2.7). In table 6, we instead give the matching conditions for
the effective W± and Z interactions in eqs. (2.6) and (2.8). For each operator, we give the
total number of parameters (in addition to those which are CP-even) for nν active neutrinos
ν and ns gauge-singlet fields N and S.

The WCs in the Majorana and Dirac HNL scenarios can be rotated to the mass basis
according to eqs. (2.2) and (2.4), respectively, to obtain eqs. (2.9) and (2.10). As the light
neutrinos are further diagonalised as ν ′α = Uαiν

′
i with α = e, µ, τ and i = 1, 2, 3, we can

consider WCs for operators containing ν ′α or ν ′i. We use the former in this work.
In eqs. (2.9) and (2.10), the WCs satisfy

CV,XYνe
αβρσ

= CV,XY ∗
νe

βασρ

, CV,XYνNe
αjρσ

= CV,XY ∗
Nνe
jασρ

, CV,XYNe
ijρσ

= CV,XY ∗
Ne
jiσρ

,

CS,XYνe
αβρσ

= CS,Y X∗
νe

βασρ

, CS,XYνNe
αjρσ

= CS,Y X∗
Nνe
jασρ

, CS,XYNe
ijρσ

= CS,Y X∗
Ne
jiσρ

,

CT,XXνe
αβρσ

= CT,Y Y ∗
νe

βασρ

, CT,XYνNe
αjρσ

= CT,Y X∗
Nνe
jασρ

, CT,XXNe
ijρσ

= CT,Y Y ∗
Ne
jiσρ

,

[ZXν ]αβ = [ZXν ]∗βα , [ZXνN ]αj = [ZXNν ]∗jα , [ZXN ]ij = [ZXN ]∗ji , (A.1)

in both the Majorana and Dirac cases. In the Majorana scenario, the following relations
also apply,

CV,XYνe
αβρσ

= −CV,Y Yνe
βαρσ

, CV,XYνNe
αjρσ

= −CV,Y YNνe
jαρσ

, CV,XYNe
ijρσ

= −CV,Y YNe
jiρσ

,

CS,XYνe
αβρσ

= CS,XYνe
βαρσ

, CS,XYνNe
αjρσ

= CS,XYNνe
jαρσ

, CS,XYNe
ijρσ

= CS,XYNe
jiρσ

,

CT,XXνe
αβρσ

= −CT,XXνe
βαρσ

, CT,XYνNe
αjρσ

= −CT,XYNνe
jαρσ

, CT,XXNe
ijρσ

= −CT,XXNe
jiρσ

,

[ZXν ]αβ = −[ZYν ]βα , [ZXνN ]αj = −[ZYNν ]jα , [ZXN ]ij = −[ZYN ]ji . (A.2)

In this analysis we do not include the effects of RG running. The anomalous dimension
matrix from gauge and Yukawa couplings for the d = 6 νSMEFT operators in table 1 has been
calculated in [67, 192, 193] and implemented numerically in [194]. For us, the running due to
the Yukawa couplings vanishes as we consider the Yν = 0 limit in this work. Meanwhile, the
running and mixing proportional to the U(1)Y gauge coupling g′ is negligible for Λ ∼ 1TeV.
The same argument can be made for the d = 7 operators. The bounds on the WCs in this
work are nevertheless valid at the EW scale.

The νSMEFT operators of dimension d ≤ 7 in tables 1 and 2 can be generated by heavy
new degrees of freedom at the scale Λ≫ v. Given the large number of possible representations
of heavy new fields under the SM gauge group, which may contribute to the operators at
tree-level, one-loop or a higher number of loops, it is practical to consider only a subset of
UV complete models. We therefore examine only the general extensions of [195]: the lowest
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Vector Four-Fermion Operators

Operator Coefficient
Parameters

Matching (X = R,L)
Total CP-even

OV,LXνe CV,LXνe
prst

n2
νn

2
e

1
2nνne(nνne + 1) C le

prst

, C ll
prst

+ C ll
stpr

OV,RXνNe + h.c. CV,RXνNe
prst

2nνnsn2
e nνnsn

2
e − v√

2CeNlHstrp

, − v√
2ClNlHstrp

OV,RXNe CV,RXNe
prst

n2
sn

2
e

1
2nsne(nsne + 1) C eN

stpr

, C lN
stpr

OV,LXνSe + h.c. CV,LXνSe
prst

2nνnsn2
e nνnsn

2
e

v√
2C

∗
eSlH
tsrp

, v√
2C

∗
lSlH
tsrp

OV,LXSe CV,LXSe
prst

n2
sn

2
e

1
2nsne

(
nsne + 1

)
C eS

stpr

, C lS
stpr

Scalar Four-Fermion Operators (+ h.c.)

Operator Coefficient
Parameters

Matching (X = R,L)
Total CP-even

OS,LXνe
1
2C

S,LX
νe

prst

nν(nν + 1)n2
e

1
2nν(nν + 1)n2

e 0 , − v√
2
(
C llleH

st{pr}
+ 1

2C llleH
s{ptr}

)
OS,RXνNe CS,RXνNe

prst

2nνnsn2
e nνnsn

2
e ClNle

prst

+ 1
2ClNle

srpt

, 0

OS,RXNe
1
2C

S,RX
Ne
prst

ns(ns + 1)n2
e

1
2ns(ns + 1)n2

e − v
2
√

2ClNeHs{pr}t

, v√
2CelNHstpr

OS,RXSNe CS,RXSNe
prst

2nνnsn2
e nνnsn

2
e − v

2
√

2ClSNeHsprt

, v√
2CelSNHstpr

Tensor Four-Fermion Operators (+ h.c.)

Operator Coefficient
Parameters

Matching
Total CP-even

OT,LLνe
1
2C

T,LL
νe

prst

nν(nν − 1)n2
e

1
2nν(nν − 1)n2

e
v

8
√

2CllleHs[ptr]

OT,RRνNe CT,RRνNe
prst

2nνnsn2
e nνnsn

2
e

1
8ClNle

srpt

OT,RRNe
1
2C

T,RR
Ne
prst

ns(ns − 1)n2
e

1
2ns(ns − 1)n2

e
v

8
√

2ClNeHs[pr]t

OT,RRSNe CT,RRSNe
prst

2nνnsn2
e nνnsn

2
e − v

8
√

2ClSNeHsprt

Table 5. Matching between the vector (top), scalar (centre) and tensor (bottom) four-fermion
interactions and the d ≤ 7 νSMEFT operators.
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Effective W± Interactions (+ h.c.)

Operator Coefficient
Parameters

Matching
Total CP-even

OLνeW , ORνeW [WL
ν ]pr, [WR

ν ]pr 2nνne nνne δpr + v2C
(3)
Hl
pr

, − v3

2
√

2CleHDpr

ORNeW , OLNeW [WR
N ]pr, [WL

N ]pr 2nsne nsne
v2

2 CHNe
pr

, − v3

2
√

2CNl1pr

OLSeW [WL
S ]pr 2nsne nsne − v3

2
√

2CSl1pr

Effective Z Interactions

Operator Coefficient
Parameters

Matching
Total CP-even

OLνZ [ZLν ]pr n2
ν

1
2nν(nν + 1) gνLδpr − v2

2
(
C

(1)
Hl
pr

− C(3)
Hl
pr

)
ORνNZ + h.c. [ZRνN ]pr 2nνns nνns

v3

4
√

2
(
CNl1

rp

+ 2CNl2
rp

)
ORNZ [ZRN ]pr n2

s
1
2ns(ns + 1) −v2

2 CHN
pr

OLνSZ [ZLνS ]pr 2nνns nνns − v3

4
√

2
(
C∗
Sl1
rp

+ 2C∗
Sl2
rp

)
OLSZ [ZLS ]pr n2

s
1
2ns

(
ns + 1

)
−v2

2 CHS
pr

Table 6. Matching between the effective W± (top) and Z (bottom) interactions and the d ≤ 7
νSMEFT operators.

Scalar S S1 φ Ξ Ξ1

Irrep. (1, 1)0 (1, 1)1 (1, 2) 1
2

(1, 3)0 (1, 3)1

Fermion N E ∆1 ∆3 Σ Σ1

Irrep. (1, 1)0 (1, 1)−1 (1, 2)− 1
2

(1, 2)− 3
2

(1, 3)0 (1, 3)−1

Vector B B1 W W1 L1 L3

Irrep. (1, 1)0 (1, 1)1 (1, 3)0 (1, 3)1 (1, 2) 1
2

(1, 2)− 3
2

Table 7. New scalar (top), fermion (middle) and vector (bottom) fields with tree-level matching to
the νSMEFT operators in tables 1 and 2, following the naming convention of [195]. The irreducible
representations under the SM gauge group are indicated.
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ψ2H2

Q5 Ξ1, N , Σ
QN S, ∆1

ψ2H3 ψ4

QlNH

φ, E, ∆1, Σ, Σ1, Qll S1, Ξ1, B, W
(S,N ) Qle φ, B, L1, L3

ψ2H2D QlNle S1, φ
Q

(1),(3)
Hl N , E, Σ, Σ1 QlN φ, B, L1

QHN ∆1, B QeN S1, B, B1

QHNe ∆1, B1

ψ2H4 ψ4H

QlH Ξ1, N , Σ
QllleH

N , Σ,

QNH

S, (S1, φ), (S1,∆3), (φ,Ξ1), (Ξ1,∆3)
(φ,∆1), (Ξ,∆1), (Ξ,Σ), (Ξ1,∆1),

QlNlH

(S1, φ), (S1, E), (S1,∆1), (φ,Ξ1),
(Ξ1,Σ1), (N ,∆1), (∆1,Σ), (∆1,Σ1) (φ,N ), (φ,Σ), (Ξ1,∆1), (Ξ1,Σ1),

ψ2H3D (N ,B), (N ,L1), (E,L1), (∆1,B),

QNl1(2)

(S,N ), (S,∆1), (S,L1), (Ξ,∆1), (∆1,W), (Σ,W), (Σ,L1), (Σ1,L1)
(Ξ,Σ), (Ξ,L1), (Ξ1,∆1), (Ξ1,Σ1),

QeNlH

(S1, φ), (S1,N ), (S1,∆3), (φ,∆1),
(Ξ1,L1), (N ,∆1), (N ,B), (∆1,Σ), (N ,B), (N ,B1), (∆1,B), (∆1,B1),

(∆1,Σ1), (∆1,B), (∆1,B1), (∆1,W), (∆1,L1), (∆1,L3), (∆3,L1), (∆3,L3)
(∆1,W1), (Σ,W), (Σ1,W1)

QlNeH

(S, φ), (S, E), (S,∆1), (S1, φ),

QleHD

N , Σ, (S1, E), (S1,∆1), (φ,∆1)
(Ξ1,∆1), (∆1,B1), (B1,L3)

QelNH

(S, φ), (S,∆1), (φ,∆1), (S1, E),
(E,B1), (∆1,B1), (∆1,L1)

Table 8. One- and two-particle tree-level UV completions of the νSMEFT operators which can be
probed by FCC-ee. Two-particle UV completions are gathered in parentheses and are only shown if
the fields cannot induce the operator individually.

irreducible representations of scalar boson, vector-like fermion and vector boson fields under
the SM, shown in table 7, which generate the operators at tree-level.

The tree-level matching of these fields to d = 6 and d = 7 SMEFT operators has been
systematically performed in [195, 196], while the matching to d = 7 in the νSMEFT has been
studied in [197]. In table 8, we show the single- and two-particle UV completions of each
νSMEFT operator in table 1. These tree-level UV completions also apply to the operators in
table 2; as N and S are SM gauge singlets, any diagram inducing an operator containing
N will also generate an operator with N → Sc.

We now consider two particularly simple UV scenarios. If one adds the singly-charged
scalar S1 to the SM field content, it is possible to write the renormalisable terms,

L ⊃ −[yllS1 ]prϵijL̄
ic
p L

j
rS1 − [yNeS1 ]prN̄ c

RpeRrS1 + h.c. , (A.3)

with [yllS1
]pr = −[yllS1

]rp. Integrating out S1 yields the matching relations

C ll
prst

=
[yllS1

]∗ps[yllS1
]rt

M2
S1

, ClNle
prst

= −
2[yllS1

]∗ps[yNeS1
]rt

M2
S1

, C eN
prst

=
[yNeS1

]∗sp[yNeS1
]tr

2M2
S1

. (A.4)

Thus, the heavy singly-charged scalar S1 can modify the SM process e+e− → νν(γ) via
Cll and result in the e+e− → νN(γ) and e+e− → NN(γ) processes via ClNle and CeN ,
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e+

e−

νi/Ni

νj/Nj

S1

e+

e−

Ni

Nj

B

Figure 15. Two UV complete scenarios generating at tree-level the processes e+e− → νν, e+e− → νN

and e+e− → NN ; a singly-charged scalar S1 (left) and gauge-singlet vector boson B (right).

respectively, shown in figure 15 (left). We note that, at one-loop, integrating out S1 also
generates the d = 5 dipole operator QNNB. Thus, stringent Z pole bounds on the dipole
operator [127] can also constrain this model.

Alternatively, a TeV-scale gauge-singlet vector boson B may be present. Such a field
naturally arises as the gauge boson of an additional U(1)X gauge group, such as the Z ′ of
a gauged U(1)B−L. The generic scenario allows to write the terms

L ⊃ −[gfB]pr(f̄pγµfr)B
µ − gHB (H†i

←→
D µH)Bµ , (A.5)

with f = Q, u, d, L, e,N and [gfB]pr = [gfB]∗rp. If B is associated with an extra gauge symmetry,
the couplings [gfB] and [gHB ] correspond to the charges of the fields under U(1)X . For
U(1)B−L, the couplings are [gfB] = gB−LY

f
B−L, with gB−L the new gauge coupling and

Y f
B−L = −1 (1/3) for leptons (quarks). One can consider U(1)B−L to be an unbroken

symmetry, requiring the neutrinos to be Dirac fermions and for Z ′ to obtain its mass via
the Stückelberg mechanism [198, 199]. Alternatively, U(1)B−L can be broken, with the RH
neutrino mass MR proportional to the symmetry breaking scale [200–202] and the neutrinos
being Majorana fermions. Regardless of this distinction, integrating out Z ′ induces a large
number of effective operators, leading to stringent constraints from collider experiments [203].
A scenario where mono-γ or DV searches at FCC-ee could provide competitive constraints
would be if B couples only to N and e. It is straightforward to find the following matching
conditions after integrating out B,

C ee
prst

= −
[geB]∗pr[geB]st

2M2
B

, C eN
prst

= −
[geB]∗pr[gNB ]st

M2
B

, CNN
prst

= −
[gNB ]∗pr[gNB ]st

2M2
B

, (A.6)

with Qee = (ēγµe)(ēγµe) and QNN = (N̄γµN)(N̄γµN). The operator QeN induces the
e+e− → NN(γ) process, shown in figure 15 (right).

B HNL production cross sections

In this appendix we provide analytical expressions for the cross sections of e+e− → νν(γ),
e+e− → νN(γ) and e+e− → NN(γ), which can be induced by the νSMEFT operators in
tables 1 and 2. For complete generality, we derive the leading order (LO) cross sections
for the scattering processes,

ℓ+α ℓ
−
β →

∑
i≤j
NiNj(γ) (Majorana) , ℓ+α ℓ

−
β →

∑
i,j

NiN̄j(γ) (Dirac) , (B.1)

with the four-momenta pα + pβ = pi + pj . In the Majorana case, Ni = νi for i = 1, 2, 3 and
Ni+3 = Ni for i = 1, . . . ns, where both νi and Ni are Majorana fermions. In the Dirac case,
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Ni = νi for i = 1, 2, 3 and Ni+3 = Ni for i = 1, . . . ns, where νi are massless Weyl fermions
and Ni are Dirac fermions. To derive the following expressions, we work in the Feynman
gauge and use the Feynman rule prescription for Majorana fermions in ref. [204].

The differential cross section for the processes in eq. (B.1), without a final-state photon
and neglecting the masses of the initial-state charged leptons, can be written at LO as

dσ

dcθ
=
(1
2

) 1
128π

3+ns∑
i,j

λ
1
2 (s,m2

i ,m
2
j )

×
[(

1−
(m2

i −m2
j )2

s2 +
λ(s,m2

i ,m
2
j )

s2 c2
θ

)(∣∣LV,RRN e
ijαβ

∣∣2 + ∣∣LV,RLN e
ijαβ

∣∣2)

+
(
1−

m2
i +m2

j

s

)(∣∣LS,RRN e
ijαβ

∣∣2 + ∣∣LS,RLN e
ijαβ

∣∣2)
+ 16

(
m2
i +m2

j

s
−

(m2
i −m2

j )2

s2 +
λ(s,m2

i ,m
2
j )

s2 c2
θ

)∣∣LT,RRN e
ijαβ

∣∣2
+ 4mimj

s
Re
[
2LV,LRN e

ijαβ

LV,RR∗
N e
ijαβ

− LS,LRN e
ijαβ

LS,RR∗
N e
ijαβ

]

+
2λ 1

2 (s,m2
i ,m

2
j )

s
cθ
(∣∣LV,RRN e

ijαβ

∣∣2 − ∣∣LV,RLN e
ijαβ

∣∣2 − 4Re
[
LS,RRN e

ijαβ

LT,RR∗
N e
ijαβ

])]
+ (L↔ R) , (B.2)

where s = (pα + pβ)2 = (pi + pj)2 is the centre-of-mass energy, λ(x, y, z) = (x− y− z)2 − 4yz
is the Källén function and cθ = cos θ, with θ the angle between the incoming charged lepton
ℓ−β and the outgoing Ni. In the Dirac case, the coefficients in eq. (B.2) are given by

LV,XXN e
ijαβ

∣∣∣
Dirac

≡ CV,XXN e
ijαβ

+ χZ [ZXN ]ij [ZXe ]αβ + χαW [WXX
N ]ijαβ ,

LV,XYN e
ijαβ

∣∣∣
Dirac

≡ CV,XYN e
ijαβ

+ χZ [ZXN ]ij [ZYe ]αβ + χαW
mimj

2M2
W

[W Y Y
N ]ijαβ ,

LS,XXN e
ijαβ

∣∣∣
Dirac

≡ CS,XXN e
ijαβ

+ χαW
mimj

2M2
W

[WXY
N ]ijαβ ,

LS,XYN e
ijαβ

∣∣∣
Dirac

≡ CS,XYN e
ijαβ

− 2χαW [W Y X
N ]ijαβ ,

LT,XXN e
ijαβ

∣∣∣
Dirac

≡ CT,XXN e
ijαβ

+ χαW
mimj

8M2
W

[WXY
N ]ijαβ , (B.3)

for X ̸= Y = R,L. The final line in eq. (B.2) indicates that, for each term, a term with
L ↔ R should be added. We define for convenience,

[WXY
N ]ijαβ ≡ [WX

N ]iβ [W Y
N ]∗jα , (B.4)

and use the charged lepton neutral-current couplings,

[ZRe ]αβ = geRδαβ , [ZLe ]αβ = geLδαβ −
v2

2
(
C

(1)
Hl
αβ

+ C
(3)
Hl
αβ

)
, (B.5)

where geR = s2
w and geL = −1/2 + s2

w, with sw = sin θw. The propagator factors

χαW = g2

2
1

t2α −M2
W + iΓWMW

, χZ = g2

c2
w

1
s−M2

Z + iΓZMZ
, (B.6)
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account for the t-channel exchange of W± and s-channel exchange of Z, respectively. The
t-channel combination of four-momenta appearing in χαW is tα = (pj − pα)2.

In the Majorana case, the coefficients in eq. (B.2) are instead given by

LV,XXN e
ijαβ

∣∣∣
Maj
≡ LV,XXN e

ijαβ

∣∣∣
Dirac

− χβW
mimj

2M2
W

[WXX
N ]jiαβ ,

LV,XYN e
ijαβ

∣∣∣
Maj
≡ LV,XYN e

ijαβ

∣∣∣
Dirac

− χβW [W Y Y
N ]jiαβ ,

LS,XXN e
ijαβ

∣∣∣
Maj
≡ LS,XXN e

ijαβ

∣∣∣
Dirac

+ χβW
mimj

2M2
W

[WXY
N ]jiαβ ,

LS,XYN e
ijαβ

∣∣∣
Maj
≡ LS,XYN e

ijαβ

∣∣∣
Dirac

− 2χβW [W Y X
N ]jiαβ ,

LT,XXN e
ijαβ

∣∣∣
Maj
≡ LT,XXN e

ijαβ

∣∣∣
Dirac

− χβW
mimj

8M2
W

[WXY
N ]jiαβ , (B.7)

for X ̸= Y = R,L. The additional terms with respect to eq. (B.3) involving the effective
W± couplings arise from diagrams where Ni and Nj are interchanged in the final state. The
Majorana cross section should also be multiplied by the factor of 1/2 in parenthesis, which
takes into account that the sum over i, j in eq. (B.2) double counts the process ℓ+α ℓ−β → NiNj
for i ≠ j. Furthermore, the factor of 1/2 provides the necessary symmetry factor for identical
final state particles, i.e. ℓ+α ℓ−β → NiNj for i = j.

To compute the total cross sections as a function of the centre-of-mass energy, the
differential cross section dσ/dcθ in eq. (B.2) is integrated over the cθ range [−1, 1].5 In the
Dirac case, the LO cross section for ℓ+α ℓ−β →

∑
i,j NiN̄j , including all interference terms, is

σ(s)
∣∣
Dirac =

1
192π

∑
i,j

λ
1
2 (s,m2

i ,m
2
j )

×
[192G2

FM
4
W

s2

(
F ijW

∣∣[WRR
N ]ijαβ

∣∣2 +GijW
∣∣[WRL

N ]ijαβ
∣∣2)

+ 4
(
1−

m2
i +m2

j

2s −
(m2

i −m2
j )2

2s2

)(∣∣LV,RRN e
ijαβ

∣∣2 + ∣∣LV,RLN e
ijαβ

∣∣2)
+ 3

(
1−

m2
i +m2

j

s

)(∣∣LS,RRN e
ijαβ

∣∣2 + ∣∣LS,RLN e
ijαβ

∣∣2)
+ 16

(
1 +

m2
i +m2

j

s
−

2(m2
i −m2

j )2

s2

)∣∣LT,RRN e
ijαβ

∣∣2
+ 12mimj

s
Re
[
2LV,LRN e

ijαβ

LV,RR∗
N e
ijαβ

− LS,LRN e
ijαβ

LS,RR∗
N e
ijαβ

]
+ 48GFM2

W√
2s

Re
[(
F ijV WL

V,RR
N e
ijαβ

+GijV WL
V,LR
N e
ijαβ

)
[WRR

N ]∗ijαβ

+
(
F ijSWL

S,RR
N e
ijαβ

+GijSWL
S,LR
N e
ijαβ

+ F ijTWL
T,RR
N e
ijαβ

)
[WRL

N ]∗ijαβ
]]

+ (L↔ R) , (B.8)
5We take the limit ΓW ≪ MW so that the terms originating from the t-channel W± exchange can be

performed analytically.
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where GF = 1/(
√
2v2) is the Fermi constant and the final line again indicates that additional

terms with L ↔ R are required. In the Majorana case the cross section given by,

σ(s)
∣∣
Maj =

1
192π

∑
i≤j

(
1− δij

2

)
λ

1
2 (s,m2

i ,m
2
j )

×
[192G2

FM
4
W

s2

(
F ijW

(∣∣[WRR
N ]ijαβ

∣∣2 + ∣∣[WLL
N ]ijαβ

∣∣2)
+GijW

(∣∣[WRL
N ]ijαβ

∣∣2 + ∣∣[WLR
N ]ijαβ

∣∣2)
+ F ijWW Re

[
[WRR

N ]ijαβ [WRR
N ]ijβα + [WLL

N ]ijαβ [WLL
N ]ijβα

]
+GijWW Re

[
[WLR

N ]ijαβ [WRL
N ]ijβα

])
+ 4

(
1−

m2
i +m2

j

2s −
(m2

i −m2
j )2

2s2

)(∣∣LV,RRN e
ijαβ

∣∣2 + ∣∣LV,RLN e
ijαβ

∣∣2)
+ 3

(
1−

m2
i +m2

j

s

)(∣∣LS,RRN e
ijαβ

∣∣2 + ∣∣LS,RLN e
ijαβ

∣∣2)
+ 16

(
1 +

m2
i +m2

j

s
−

2(m2
i −m2

j )2

s2

)∣∣LT,RRN e
ijαβ

∣∣2
− 12mimj

s
Re
[
LV,RRN e

ijαβ

LV,RRN e
ijβα

+ LV,RLN e
ijαβ

LV,RLN e
ijβα

+ LS,RLN e
ijαβ

LS,RRN e
ijβα

]
+ 48GFM2

W√
2s

Re
[
LV,RRN e

ijαβ

(
F ijV W [WRR

N ]∗ijαβ −G
ij
V W [WRR

N ]∗jiαβ
)

+ LV,RLN e
ijαβ

(
GijV W [WLL

N ]∗ijαβ − F
ij
V W [WLL

N ]∗jiαβ
)

+ F ijSWL
S,RR
N e
ijαβ

[WRL
N ]∗{ij}αβ +GijSWL

S,RL
N e
ijαβ

[WLR
N ]∗{ij}αβ

+ F ijTWL
T,RR
N e
ijαβ

[WRL
N ]∗[ij]αβ

]]
+ (α↔ β, χ↔ χ∗) , (B.9)

where [WXY
N ]{ij}αβ ≡ [WXY

N ]ijαβ + [WXY
N ]jiαβ and [WXY

N ][ij]αβ ≡ [WXY
N ]ijαβ − [WXY

N ]jiαβ.
In both eqs. (B.8) and (B.9), the coefficients are given by

LV,XYN e
ijαβ

≡ CV,XYN e
ijαβ

+ χZ [ZXN ]ij [ZYe ]αβ ,

LS,XYN e
ijαβ

≡ CS,XYN e
ijαβ

,

LT,XXN e
ijαβ

≡ CT,XXN e
ijαβ

. (B.10)

The final line in eq. (B.9) indicates that for each term, an additional term must be included
with α↔ β and χ↔ χ∗ in the coefficients in eq. (B.10). The factors F ijX and GijX are given by,

F ijW = 1 + 1
2ω − (1 + ωij)Lij +A2

ij

(
1− 2ω

(1 + 2ωij)2 − λij
− ωijLij

)
,

GijW = 1
2ω −

2ω
(1 + 2ωij)2 − λij

+A2
ij

(
1− 2ω

(1 + 2ωij)2 − λij
− ωijLij

)
,

– 47 –



J
H
E
P
1
0
(
2
0
2
5
)
1
9
9

F ijWW = Aij

(
1− 2ω

1 + 2ωij

( 1
2ω + ωij

ω
+ (1 + 2ωij)2 − λij

4ω −A2
ij

)
Lij

)
,

GijWW = 2
(
1− 2ω

1 + 2ωij

)
Lij +A2

ij

(
1 + ω

1 + 2ωij

(
8− (1 + 2ωij)2 − λij

2ω

)
Lij

)
,

F ijV W = 3 + 2ωij − 2
(
(1 + ω)(1 + 2ωij − ω) + 2ω(1 + 2ω)A2

ij

)
Lij ,

GijV W = −Aij
(
1− 2ωij + 2ω

(
1 + (1 + 2ωij)2 − λij

4ω

)
Lij

)
,

F ijSW = −Aij
(
1 + 3ωLij

)
,

GijSW =
(
1 + 2ωij − 2ω

(
1−A2

ij

))
Lij ,

F ijTW = 8Aij
(
ωij +

ω

2

(
1− (1 + 2ωij)2 − λij

2ω

)
Lij

)
, (B.11)

where we define,

λij ≡ λ
(
1, m

2
i

s
,
m2
j

s

)
, ωij ≡ ω −

m2
i +m2

j

2s , Aij ≡
mimj

2M2
W

, (B.12)

and,

Lij ≡
1√
λij

log
(1 + 2ωij +

√
λij

1 + 2ωij −
√
λij

)
, (B.13)

for convenience.
Using eq. (B.8), we can calculate the cross section for the SM process ℓ+α ℓ−β →

∑
νν̄,

where the neutrinos are massless Weyl fermions with νLp = PLδpiνi. The SM charged- and
neutral-current couplings in eq. (2.12) are inserted into eq. (B.8) and the limit mi,mj → 0
taken. This yields

σ(s)
∣∣
SM = G2

FM
4
Z

6πs

[
χ1Nν

(
(geR)2 + (geL)2)δαβ + 6c4

w

(
1 + 1

2ω − (1 + ω) log
(1 + ω

ω

))
+ 3χ2g

e
Lc

2
wδαβ

(
3 + 2ω − 2(1 + ω)2 log

(1 + ω

ω

))]
, (B.14)

with ω ≡ M2
W /s and

χ1 ≡
s2

(s−M2
Z)2 + (ΓZMZ)2 , χ2 ≡

s(s−M2
Z)

(s−M2
Z)2 + (ΓZMZ)2 . (B.15)

The first term in eq. (B.14) corresponds to s-channel Z exchange, the second to t-channel
W± exchange, and the last to the interference between the two contributions. The cross
section in eq. (B.14) is also applicable for light Majorana or Dirac neutrinos with non-zero
active-sterile mixing, as long as the PMNS mixing matrix is approximately unitary. For
non-zero EFT interactions, eqs. (B.8) and (B.9) provide the leading interference effects
between the SM and heavy new physics contributions to the process ℓ+α ℓ−β →

∑
νν̄, which

we make use of in section 5.
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The expressions in eqs. (B.8) and (B.9) can also be used to compute the cross section for
the processes ℓ+α ℓ−β →

∑
ij νiNj (Majorana) and ℓ+α ℓ

−
β →

∑
ij νiN̄j + ν̄iNj (Dirac) induced by

the active-sterile mixing VαNj . In both cases, the total cross section is

σ(s)
∣∣
mix = G2

FM
4
Z

6πs
∑
ρ,j

|VρNj |2(1− yj)

×
[
(1− yj)(2 + yj)χ1

(
(geR)2 + (geL)2)δαβ

+ 6c4
w(δαρ + δβρ)

(
1 + 1

2ω −
(
1 + ω − yj

2

)
Lij

)
+ 6χ2g

e
Lc

2
wδαβδαρ

(
3 + 2ω − yj − 2(1 + ω)(1 + ω − yj)Lij

)]
, (B.16)

where Lij ≡ log[(1+ω− yj)/ω]/(1− yj), and χ1, χ2 are given in eq. (B.15). As in eq. (B.14),
the first and second terms in parenthesis in eq. (B.16) correspond to Z and W± exchange,
respectively, and the last term to Z −W± interference.

Using eqs. (B.8) and (B.9), we now explore the contributions of EFT operators to the
single and pair production of HNLs. In figure 16 (left) we plot the LO cross section for the
process e+e− → N1N2 as a function of

√
s, turning on one off-diagonal four-fermion and

effective Z interaction at a time. In the same plot, we show the cross section for e+e− → νeN2
induced by the effective W± coupling. The benchmark values of the WCs are

CV,RRNe
12ee

, CS,RRNe
12ee

, CT,RRNe
12ee

= 1 TeV−2 , [WR
N ]2e , [ZRN ]12 = 10−2 , (B.17)

and two mass splitting ratios δ are chosen for Majorana or Dirac HNLs; δ = 1 (or equivalently,
mN1 = 0) and δ = 0.1. For comparison, we also plot the SM prediction for e+e− →

∑
νν̄

in eq. (B.14) and the total hadronic cross section e+e− → qq̄, neglecting quark masses
and QCD corrections.

As expected, the impact of the effective Z interaction is maximised near the Z pole,
while the cross sections for the four-fermion and effective W± interactions grow linearly and
logarithmically with s, respectively. In figure 16 (right), we plot the same cross sections as a
function of mN2 for a fixed value of the centre-of-mass energy,

√
s = 91.2GeV. In both plots,

the impact of the mass splitting δ is apparent. In the left plot, the minimum value of
√
s

required to produce N1 and N2,
√
s > mN1 +mN2 = mN2(2− δ), can be seen. In the right

plot, this is equivalent to the upper limit mN2 <
√
s/(2 − δ) for fixed

√
s and δ.

In figure 16, the cross sections for the production of Dirac (solid and dashed lines) and
Majorana HNLs (dot-dashed and dotted lines) are compared. With the normalisation of the
Lagrangians in eqs. (2.9) and (2.10) (in particular, the prefactor of 1/2 for the Majorana
four-fermion and effective Z operators), the cross sections for ℓ+α ℓ−β → NiNj (Majorana)
and ℓ+α ℓ

−
β → NiN̄j + NjN̄i (Dirac) with i ̸= j, coincide6 in the limit mi,mj → 0 for the

6There is an interesting exception for the cross sections ℓ+
α ℓ

−
β → νiνj (Majorana) and ℓ+

α ℓ
−
β → νiν̄j + νj ν̄i

(Dirac). If the coefficients [WR
ν ]iα are non-zero for general i and α, t-channel diagrams with the SM charged-

current at one vertex and WR
ν at the other give different overall cross sections in the Majorana and Dirac

cases, even neglecting the neutrino masses. This is the result of the additional term in eq. (B.9) with respect
to eq. (B.8) that is proportional to Gij

W W , which does not vanish in the mi,mj → 0 limit.
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Figure 16. (Left) LO total cross sections σ(s) as a function of
√
s for e+e− → N1N2, induced by

the off-diagonal four-fermion and effective Z interactions, and e+e− → νeN2, induced by the effective
W± interaction. (Right) The same cross sections, but as a function of mN2 for

√
s = 91.2GeV. The

cross sections are plotted for Dirac and Majorana N and two values of the mass splitting ratio δ.
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Figure 17. LO cross sections for e+e− → N2N2, induced by the diagonal four-fermion and effective
Z interactions, shown as a function of mN2 for

√
s = 91.2GeV and the Dirac and Majorana scenarios.

same values of CV,RRN e , CS,RRN e , CT,RRN e , WR
N and ZRN . The differences in the cross sections now

arise solely from the Dirac versus Majorana nature of the HNLs. For δ = 1, the Dirac and
Majorana cross sections are identical, while for δ = 0.1, the vector four-fermion and effective
Z interaction induced cross sections fall off faster in the Majorana case compared to the
Dirac case. This is because, in the Majorana case, there are additional interference terms
proportional to ∼ mimjRe

[
(CV,RRNe )2] and ∼ mimjRe

[
(ZRN )2], which vanish when one of the

outgoing states is massless (δ = 1), but result in a reduced cross section for mi ∼ mj . Such
terms are not present for single scalar or tensor coefficients.

In figure 17, we plot the cross sections for the processes e+e− → N2N2 (Majorana) and
e+e− → N2N̄2 (Dirac) induced by the diagonal four-fermion and effective Z interactions,
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taking the benchmark WC values

CV,RRNe
22ee

, CS,RRNe
22ee

, CT,RRNe
22ee

= 1 TeV−2 , [ZRN ]22 = 10−2 . (B.18)

With the choice of normalisation of the Majorana and Dirac Lagrangians, it can be seen that
the vector four-fermion and effective Z cross sections again coincide in the massless limit.
However, this is no longer true for the scalar and tensor operators. In the Majorana scenario,
the diagonal tensor coupling CT,RRNe and associated cross section vanishes, while the cross
section via CS,RRNe is a factor of two smaller in the Majorana case compared to the Dirac
case. The Majorana cross sections via CV,RRNe and ZRN can again be seen to fall off faster as
a function of mN2 compared to the Dirac cross sections.

In this work, the 2→ 2 cross sections above are used to estimate the sensitivity of DV
signatures at FCC-ee to the νSMEFT operators in table 1. However, for the complementary
mono-γ signature, the cross sections in eq. (B.1) with a photon in the final state are required.
For these 2→ 3 processes, diagrams such as those in figure 1 contribute. Additional diagrams
with the photon attached to the other incoming charged lepton should be included. Finally,
for the t-channel diagram induced by the effective W± interactions, a diagram must be added
with the photon attached to the intermediate W±. In previous analyses, the contribution
from this diagram has been neglected due to the suppression from two W± propagators.
Following this approximation and taking only the leading contributions from initial state
radiation, the mono-γ cross sections can be obtained from σ(s) in eqs. (B.8) and (B.9) with

d2σ

dxγdcγ
= σ(s(1− xγ))

α

π

1 + (1− xγ)2

xγ

1
1− β2

ec
2
γ

, (B.19)

where α = e2/(4π) is the QED fine-structure constant, xγ = 2Eγ/
√
s is the fraction of the

beam energy carried away by the photon and cγ = cos θγ , with θγ the angle of the photon
with respect to the beam axis. The differential cross section in eq. (B.19) follows the usual
dependence on xγ and cγ . In all cases, the cross section peaks at xγ ∼ 0 and cγ ∼ ±1.
For the four-fermion operators, the cross section decreases monotonically with xγ , while
for the s-channel diagram induced by the effective Z interaction, there is an additional
peak at xγ ∼ 1 −M2

Z/s. In section 5, it is convenient to perform the change of variables
(xγ , cγ)→ (pγT , cγ) to implement the pγT > 1GeV cut. This can be done with the replacement
Eγ = pγT /

√
1− c2

γ and multiplying eq. (B.19) by the appropriate Jacobian factor.
For the full analysis of the mono-γ plus /E signature, it is necessary to apply cuts on

the outgoing photon energy Eγ , transverse momentum pγT , and angle θγ . In order to do
this, we simulate the e+e− → NiNjγ process in MadGraph5_aMC@NLO [205]. We implemented
the Lagrangians in eqs. (2.9) and (2.10) in Feynrules [206] model files, which were then
converted to UFO files for input to MadGraph. In the Dirac scenario, all of the effective
operators in eq. (2.9) and (2.10) can be simulated. However, MadGraph does not support
multi-fermion interactions with the violation of fermion-flow [205]. One way to circumvent
this limitation is to add heavy fields to the model file which, when integrated out, produce
the four-fermion operators in the Majorana case [207].

However, we use a simpler method to reproduce the Majorana cross sections for the
four-fermion operators. In the Feynrules model file, the Majorana Lagrangian is written
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identically to the Dirac Lagrangian, and SelfConjugate -> False is taken for the states
Ni and Nj . However, one can make the replacements

CV,LXN e
ijαβ

→ −CV,RX∗
N e
ijβα

, CS,LXN e
ijαβ

→ CS,RY ∗
N e
ijβα

, CT,LLN e
ijαβ

→ −CT,RR∗
N e
ijβα

,

[ZLN ]ij → −[ZRN ]∗ij , (B.20)

for the four-fermion operators containing PL in the neutrino bilinear (N̄iΓNj). Then, the
Majorana cross section for ℓ+α ℓ−β → NiNj(γ) can be correctly reproduced for i = j and i ̸= j

by simulating ℓ+α ℓ
−
β → NiN̄i(γ) and ℓ+α ℓ

−
β → NiN̄j(γ) + N̄iNj(γ), respectively. To finalise

the procedure, all four-fermion couplings should be multiplied by 1/
√
2; at the cross section

level, the resulting factor of 1/2 provides the necessary symmetry factor for i = j and takes
into account the double counting inherent in the simulated process above for i ≠ j. For the
effective Z and W± interactions, we can simply set SelfConjugate -> True.

Before concluding this appendix, we briefly discuss the applicability of the EFT formalism.
As discussed in appendix A, the νSMEFT operators can be the result of UV physics at
tree-level, one-loop or multiple loops. The simplest scenarios are UV completions with s-
and t-channel contributions to ℓ+α ℓ−β → NiNj(γ), such as those shown in figure 15. In the
case of the heavy vector boson mediator B, the propagator of the full scattering cross section
can be expanded for

√
s ≪ MB as

1
s−M2

B + iΓBMB
= − 1

M2
B
+O

(
s

M2
B

)
, (B.21)

which gives the same result as integrating B out of the full theory, matching to the νSMEFT
coefficient CeN and then to the rotated νSMEFT coefficient CV,RRNe , which is inserted into
eq. (B.8) or (B.9). The same expansion can be performed for t-channel and one-loop cross
sections in the UV theory. The EFT is then only valid for

√
s sufficiently smaller than M ,

where M is the generic heavy mediator mass;
√
s ≲ M/3 is sufficient not to observe, for

example, the resonant and logarithmic scaling of s- and t-channel cross sections, respectively.
The naive scale of new physics Λ is related to M via UV couplings and 1/(16π2) loop
factors. However, decreasing the couplings and increasing the number of loop factors only
increases the size of Λ with respect to M . Therefore, the condition Λ ≳ 3

√
s also applies

for the EFT to be valid.

C HNL decay rates

The νSMEFT operators in tables 1 and 2 and resulting effective Lagrangians in eqs. (2.9)
and (2.10), which are relevant for the production of HNLs via the processes in eq. (B.1), can
also lead to their decay, as depicted in figure 2. Here, we review the possible decay modes,
which are summarised in table 9, and give approximate formulae for the decay rates.

All of the operators in eq. (2.9) induce the decay Nj → Nie−e+. For the four-fermion
operators, we take all WCs except α = β = e to vanish, so this is the only available decay
channel. However, the effective Z interaction can also mediate Nj → Niℓ−α ℓ+α for α = µ, τ ,
while the effective W± interactions can lead to Nj → Niℓ−α ℓ+β with α = e and β = µ, τ . In
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Nj Decays

Operator (q2)max ≲ 1 GeV2 (q2)max ≳ 1 GeV2 (q2)max ≳M2
W ,M

2
Z ,M

2
h

CV,XYNN NiNkNl NiNkNl NiNkNl
CV,XYN e , CS,XYN e , CT,XXN e Niℓ−α ℓ+β Niℓ−α ℓ+β Niℓ−α ℓ+β

[WX
N ]jα

Niℓ−α ℓ+β Niℓ−α ℓ+β ℓ∓αW
±

ℓ∓αP
±/V ± ℓ−αud̄ (ℓ+α ūd)

[ZXN ]ij

NiNkNl NiNkNl
NiZNiℓ−α ℓ+α Niℓ−α ℓ+α

NiP 0/V 0 Niqq̄

Table 9. Majorana HNL decays induced by the νSMEFT operators in tables 1, for three different
(q2)max regimes.

the Majorana case, Nj → Niℓ−α ℓ+β with α = µ, τ and β = e is also possible. Assuming that
the HNL mass is well below the EW scale, the decay rates for these processes are given by7

Γ(Nj → Nifαf̄β) =
Ncm

5
j

1536π3

[
Iiαβ1

(∣∣LV,RRNf
ijαβ

∣∣2 + ∣∣LV,RLNf
ijαβ

∣∣2
+ 1

4
(∣∣LS,RRNf

ijαβ

∣∣2 + ∣∣LS,RLNf
ijαβ

∣∣2)+ 12
∣∣LT,RRNf

ijαβ

∣∣2)

− Iαβi3 Re
[
LV,LRNf

ijαβ

LV,RR∗
Nf
ijαβ

− 1
2 L

S,LR
Nf
ijαβ

LS,RR∗
Nf
ijαβ

] ]
+ (L↔ R) , (C.1)

for f = e = ℓ and the number of colors Nc = 1. The coefficients are given in the Dirac
and Majorana cases by eqs. (B.3) and (B.7), respectively, with the following limit taken
for the propagator factors in eq. (B.6),

χαW → −
g2

2M2
W

, χZ → −
g2

c2
wM

2
Z

. (C.2)

This is equivalent to matching the νSMEFT to νLEFT operators (for which W± and Z are
integrated out) at the EW scale and neglecting QED corrections [52]. In eq. (C.1), we use
the shorthands Iiαβ1 = I1(yi, yα, yβ) and Iαβi3 = I3(yα, yβ , yi), where yX ≡ mX/mj and the
functions I1(x, y, z) and I3(x, y, z) are given by,

I1(x, y, z) = 12
∫ (1−z)2

(x+y)2

ds

s
(1 + z2 − s)(s− x2 − y2)λ

1
2 (1, s, z2)λ

1
2 (s, x2, y2) ,

I3(x, y, z) = 24z
∫ (1−z)2

(x+y)2

ds

s
(s− x2 − y2)λ

1
2 (1, s, z2)λ

1
2 (s, x2, y2) . (C.3)

7In eq. (C.1), we also neglect interference terms which become important near the kinematic threshold
mj ∼ mi +mα +mβ .
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While eq. (C.1) is a good approximation for HNLs in the GeV range, for masses closer to the
W± and Z masses, we implement a more accurate estimate of Γ(Nj → Niℓ−α ℓ+β ) retaining
full dependence on the propagators, discussed further below eq. (C.13).

The effective W± and Z interactions also lead to the decays of HNLs to quarks. For
maximum momentum transfers to the qq̄ system above the QCD scale ∼ 1GeV, the quarks
do not hadronise and appear as jets in the final state. Firstly, the effective W± interactions
induce the process Nj → ℓ−αuρd̄σ with

Γ(Nj → ℓ−αuρd̄σ) =
Ncm

5
j

1536π3

[
Iαρσ1

(∣∣LV,RLeNud
αjρσ

∣∣2 + ∣∣LV,LLeNud
αjρσ

∣∣2)− Iρσα3 Re
[
LV,RLeNud

αjρσ

LV,LL∗eNud
αjρσ

]]
, (C.4)

for Nc = 3 and,

LV,XLeNud
αjρσ

≡ − g2

2M2
W

[WX
N ]∗jαVρσ , (C.5)

where V is the CKM matrix, defined to rotate the LH down-type quark fields to the mass
basis as dLr = PLVrσdσ. For Majorana HNLs, the decay Nj → ℓ+α ūρdσ is also possible, with
a decay rate equal to eq. (C.4). Likewise, the effective Z interaction induces the process
Nj → Niqαq̄β with the decay rate given by eq. (C.1) with f = q and Nc = 3, where α, β = u, c

for q = u and α, β = d, s, b for q = d. In the Dirac scenario, the coefficients are

LV,XYN q
ijαβ

≡ − g2

c2
wM

2
Z

[ZXN ]ij [ZYq ]αβ , LS,XYN q
ijαβ

≡ 0 , LT,RRN q
ijαβ

≡ 0 , (C.6)

where [ZRq ]αβ = gqRδαβ and [ZLq ]αβ = gqLδαβ with guR = −2s2
w/3, guL = 1/2− 2s2

w/3, guR = s2
w/3

and guL = −1/2 + s2
w/3. In the Majorana scenario, the coefficients are equal to eq. (C.6) with

the replacement [ZLN ]ij → −[ZRN ]∗ij . Following the approach of [22], large QCD corrections
to decays with outgoing quarks are taken into account by multiplying eqs. (C.1) and (C.4)
by the factor [208]

1 + ∆QCD ≡
Γ(τ → ντ + hadr.)∑
q Γ(τ → ντ + ūq)

∣∣
tree

= 1 + αs
π

+ 5.2α
2
s

π2 + 26.4α
3
s

π3 , (C.7)

where the strong coupling constant αs is evaluated at the maximum momentum transfer
to the outgoing quarks; (q2)max = (mj −mα)2 for Nj → ℓ−αuρd̄σ and (q2)max = (mj −mi)2

for Nj → Niqαq̄β.
Finally, we comment that some of the νSMEFT operators in tables 1 and 2 generate

four-neutrino operators in the broken phase. These operators do not contribute to HNL
production, but can induce their decay. For example, in the Majorana scenario, QlN and
QlNlH induce the operators OV,RLNν = (N̄γµN)(ν̄LγµνL) and OV,RLνNν = (ν̄cLγµN)(ν̄LγµνL). The
operators QlS and QlSlH do the same in the Dirac case. When the active-sterile mixing is
negligible, it is sufficient to estimate these decay rates as Nj → Niναν̄β , using eq. (C.1) with
f = ν, Nc = 1 and yα = yβ = 0. Only the coefficients

LV,XLNν
ijαβ

= CV,XLNν
ijαβ

− g2

c2
wM

2
Z

[ZXN ]ij [ZLν ]αβ , (C.8)

are non-zero, with [ZLν ] = gνLδαβ. The HNL decay width from ClN , for example, is twice
as large as that from CeN for mj ≫ mi + 2me, because the decay Nj → Niνeν̄e is open
with an equal rate to Nj → Nie

−e+.
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We now summarise the two-body HNL decays induced by the effective W± and Z

interactions. If the maximum momentum transfer (q2)max of the process is instead below the
QCD scale, the final-state quarks hadronise. Thus, the effective W± interactions lead to the
decay of HNLs to charged pseudoscalar and vector mesons, Nj → ℓ−αP

+ and Nj → ℓ−αV
+,

respectively, with the lightest states being P± = {π±,K±, D±, D±
s } and V ± = {ρ±,K∗±}.

The decay rates for these processes are

Γ(Nj → ℓ−αP
+) =

G2
F f

2
Pm

3
j |Vqq̄|2

16π λ
1
2 (1, y2

α, y
2
P )
[
F (yα, yP )

(∣∣[WR
N ]jα

∣∣2 + ∣∣[WL
N ]jα

∣∣2)
+ 4yαy2

PRe
[
[WR

N ]jα[WL
N ]∗jα

]]
, (C.9)

Γ(Nj → ℓ−αV
+) =

G2
F f

2
Vm

3
j |Vqq̄|2

16π λ
1
2 (1, y2

α, y
2
V )
[
G(yα, yV )

(∣∣[WR
N ]jα

∣∣2 + [WL
N ]jα

∣∣2)
− 12yαy2

V Re
[
[WR

N ]jα[WL
N ]∗jα

]]
, (C.10)

where F (x, y) = 1 − y2 − x2(2 − x2 + y2), G(x, y) = (1 − y2)(1 + 2y2) + x2(x2 + y2 − 2),
and the pseudoscalar and vector form factors are defined via ⟨0| q̄γµγ5q |P ⟩ = ifP pµ and
⟨0| q̄γµq |V ⟩ = ifVmV ϵµ, respectively. The values taken for these form factors are given in
table IV of [146]. The appropriate CKM matrix element Vqq̄ should be used depending on
the quark content of the meson. For Majorana HNLs, the effective W± interactions also
induce the decays Nj → ℓ+αP

− and Nj → ℓ+αV
− with the same rates as eq. (C.9).

The effective Z interactions also lead to the decay of HNLs to neutral pseudoscalar
and vector mesons, Nj → NiP 0 and Nj → NiV 0, respectively, with P 0 = {π0, η, η′} and
V 0 = {ρ, ω, ϕ}. These have the decay rates

Γ(Nj → NiP 0) =
G2
F f

2
Pm

3
j

8π λ
1
2 (1, y2

i , y
2
P )
[
F (yi, yP )

(∣∣[ZRN ]ij
∣∣2 + ∣∣[ZLN ]ij

∣∣2)
+ 4yiy2

PRe
[
[ZRN ]ij [ZLN ]∗ij

]]
, (C.11)

Γ(Nj → NiV 0) =
G2
F f

2
V κ

2
Vm

3
j

8π λ
1
2 (1, y2

i , y
2
V )
[
G(yi, yV )

(∣∣[ZRN ]ij
∣∣2 + [ZLN ]ij

∣∣2)
− 12yiy2

V Re
[
[ZRN ]ij [ZLN ]∗ij

]]
, (C.12)

where the κV factors arise from the light quark composition of the vector mesons and take
the values κρ = 1 − 2s2

w, κω = −2s2
w/3 and κϕ = −

√
2(1/2 − 2s2

w/3) [25].
Finally, for O(100)GeV HNL masses, the effective W± and Z interactions enable the

two-body decays Nj → ℓ−αW
+, Nj → NiZ and Nj → Nih, when the momentum transfer q2

exceeds the on-shell production thresholds of W± and Z. The decay rates are

Γ(Nj → ℓ−αW
+) =

GFm
3
j

8
√
2π

λ
1
2 (1, y2

α, y
2
W )
[
G(yα, yW )

(∣∣[WR
N ]jα

∣∣2 + ∣∣[WL
N ]jα

∣∣2)
− 12yαy2

WRe
[
[WR

N ]jα[WL
N ]∗jα

]]
,

Γ(Nj → NiZ) =
GFm

3
j

4
√
2π

λ
1
2 (1, y2

i , y
2
Z)
[
G(yα, yZ)

(∣∣[ZRN ]ij
∣∣2 + [ZLN ]ij

∣∣2)
− 12yiy2

ZRe
[
[ZRN ]ij [ZLN ]∗ij

]]
. (C.13)

The three-body decays Nj → Nifαf̄β (for f = ℓ, u, d), Nj → ℓ−αuρd̄σ and Nj → NiNkN̄l
are implemented with the full propagator structure of the intermediate states W± and Z.
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Figure 18. (Above) Branching ratios of the decays N2 → e∓X for non-zero values of the coefficient
[WR

N ]2e and for Majorana (dashed) and Dirac (solid) HNLs. (Below) Branching ratios of the decays
N2 → N1X for non-zero values of [ZR

N ]12, for the mass splitting ratios δ = 1 (left) and δ = 10−2 (right).

For momentum transfers larger than MW and MZ , these expressions already account for
the two-body decay rates above; for (q2)max > M2

W ,M
2
Z , the integration over phase space is

dominated by the propagator poles. In this regime, the narrow width approximation (NWA)
can be used. For (q2)max < M2

W ,M
2
Z , the total HNL width is given in the Majorana case by

ΓNj

∣∣
Maj =

∑
i≤k≤l

ΓNiNkNl
+
∑
i,α,β

ΓNiℓ
−
α ℓ

+
β

+
∑
i

[
Θij

∑
P 0

ΓNiP 0 +Θij

∑
V 0

ΓNiV 0 + (1−Θij)
∑
α,β

ΓNiqαq̄β

]

+ 2
∑
α

[
Θαj

∑
P+

Γℓ−αP+ +Θαj

∑
V +

Γℓ−αV + + (1−Θαj)
∑
ρ,σ

Γℓ−αuρd̄σ

]
, (C.14)

and in the Dirac case by,

ΓNj

∣∣
Dirac =

∑
i≤k,l

ΓNiNkN̄l
+
∑
i,α,β

ΓNiℓ
−
α ℓ

+
β

+
∑
i

[
Θij

∑
P 0

ΓNiP 0 +Θij

∑
V 0

ΓNiV 0 + (1−Θij)
∑
α,β

ΓNiqαq̄β

]

+
∑
α

[
Θαj

∑
P+

Γℓ−αP+ +Θαj

∑
V +

Γℓ−αV + + (1−Θαj)
∑
ρ,σ

Γℓ−αuρd̄σ

]
, (C.15)
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where we introduce the shorthand ΓX ≡ Γ(Nj → X) and

Θab ≡ Θ
(
1− (mb −ma)2

1 GeV2

)
. (C.16)

When (q2)max exceeds M2
W and M2

Z , the contributions of W± and Z can be replaced by the
NWA expression, respectively. For (q2)max > M2

W ,M
2
Z , this can be written as

ΓNWA
Nj

= Γψ
4

Nj
+ (2)Γℓ−W+

∑
X

BRW+→X + ΓNiZ

∑
X

BRZ→X , (C.17)

where Γψ
4

Nj
is the contribution of only the four-fermion operators to eq. (C.14) or (C.15). The

factor of two in parentheses is necessary for the Majorana HNL decay rate. In eq. (C.17),
the decays of W± and Z also include the channels W± → Niℓ±β and Z → NiNj , respectively,
with rates given by

Γ(W+ → Niℓ+β ) =
GFM

3
W

12
√
2π

[(
2−

m2
i +m2

β

M2
W

−
(m2

i −m2
β)2

M4
W

)(∣∣[WR
N ]iβ

∣∣2 + [WL
N ]iβ

∣∣2)
+ 12mimβ

M2
W

Re
[
[WL

N ]iβ [WR
N ]∗iβ

]]
λ

1
2

(
1, m

2
i

M2
W

,
m2
β

M2
W

)
,

Γ(Z → NiNj) =
(
1− δij

2

)
GFM

3
Z

6
√
2π

[(
2−

m2
i +m2

j

M2
Z

−
(m2

i −m2
j )2

M4
Z

)(∣∣[ZRN ]ij
∣∣2 + ∣∣[ZLN ]ij

∣∣2)
+ 12mimj

M2
Z

Re
[
[ZLN ]ij [ZRN ]∗ij

]]
λ

1
2

(
1, m

2
i

M2
Z

,
m2
j

M2
Z

)
,

(C.18)

where the prefactors in parenthesis are present in the Majorana case. Including all possible
final states, the branching ratios in eq. (C.17) sum to unity and the total HNL decay width is
just the sum of three-body decays, induced by the four-fermion operators, and the two-body
decays in eq. (C.13).

We now briefly explore the branching ratios of HNL decays via the operators of interest
in this work. In particular, the decay mode with e−e+ in the final state, which is considered
as the displaced vertex signature in section 4. For the majority of the four-fermion operators,
this is the only decay mode present, giving BR(N2 → N1e

−e+) = 1. However, as discussed
below eq. (C.8), some of the νSMEFT operators induce the decay N2 → N1νeν̄e, resulting in
BR(N2 → N1e

−e+) = 1/2. Finally, we show in figure 18 the branching ratios resulting from
the effective W± (above) and Z (below) interactions. Clearly, the presence of more decay
modes lead the branching ratios to depend on the mass of N2, with BR(N2 → νe−e+) and
BR(N2 → N1e

−e+) decreasing for HNL masses above the production thresholds for hadronic
final states. For large mN2 , the branching ratios plateau at the values BR(N2 → νe−e+) ≈ 1/9
and BR(N2 → N1e

−e+) ≈ 3.4×10−2. In the case of the effective Z interaction, the branching
fractions also depend on the mass splitting ratio. For small δ (right), the kinematic thresholds
are pushed to larger values of mN2 , while a difference in the branching ratios of Dirac (solid)
and Majorana (dashed) N2 becomes evident.
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