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Abstract

Planners and urban researchers need to be able to track progress towards achieving high-
quality, safe and inclusive cycle networks. Infrastructure and accessibility measures are suitable
for this role, though comprehensive cycling indicators are less developed than equivalent pub-
lic transport measures, due to the challenges in modelling detailed cycling infrastructure and
in considering the needs different types of cyclists, including more vulnerable users. In this
paper we develop new cycle infrastructure and accessibility measures, firstly developing a clas-
sification of cycle lane types based on OpenStreetMap (OSM) data, and secondly classifying
wider road conditions using the Level of Travel Stress (LTS) framework. The main inno-
vations here are firstly improving on the standard LTS derivation using commonly available
OMS tags and improved junction interpolation; and secondly developing demand-weighted
cycle indicators using centrality analysis. Our results show substantial gaps in London’s cycle
network, with inconsistent cycle accessibility outcomes, particularly in Outer London. The
cycle infrastructure data is then used to produce a routable cycle network, and this network
is analysed to measure differences in cycling accessibility to core services between experienced
and more vulnerable cyclists, based on vulnerable cyclists prioritising safer cycle infrastruc-
ture. We observe a substantial accessibility gap for more vulnerable cyclists in London due to
the lack of provision of physically separated cycle infrastructure in many boroughs. Finally,
the new accessibility measures are validated against travel survey data to assess how closely
they correlate with observed cycling behaviour.

KEYWORDS: Cycling accessibility, Level of Traffic Stress, Cycle infrastructure, Network
analysis, 15 Minute City, OpenStreetMap

1 Introduction

Increasing levels of cycling is a key part of the transport strategies of many global cities with the
potential for significant health and sustainability benefits resulting from greater levels of active
travel (Transport for London [2023; EU Commission [2024). Fragmented and poor-quality cycle
infrastructure is however a major barrier to widening cycling participation in many countries (Hull
and O’holleran 2014} Pucher and Buehler 2016 Hong, McArthur, and Livingston [2020; Shahriari,
Siripanich, and Rashidi|2024), including the UK. London is currently expanding its cycling network,
which has lagged behind established European cycling cities such as Amsterdam and Copenhagen,
and has not matched cities with major network expansions such as Paris. Planners and urban
researchers should be able to analyse and track the progress of cities and local authorities towards
achieving high-quality, safe and inclusive cycle networks. Infrastructure and accessibility measures
are suitable for this role, though comprehensive cycling measures are less developed than public
transport and walking accessibility measures, in large part due to the challenges of modelling
detailed cycling infrastructure and in considering the needs of different kinds of cyclists.

Two different types of cycle network indicators are developed in this paper: infrastructure
measures and accessibility measures. Infrastructure measures summarise the provision and quality
of cycle infrastructure. For more vulnerable users, cycle lanes should by physically segregated



from motor vehicles, and cycle infrastructure measures need to be able to assess the types of
cycle infrastructure provided. Accessibility measures analyse the ease of reaching destinations
through cycle and road networks, considering the destinations residents want to reach, providing
a measure of how efficiently cycle networks and land use patterns are meeting needs for typical
trips. The 15 Minute City concept is used here as a framework for the accessibility analysis,
considering accessibility to local services such as retail, education and health. This paper develops
infrastructure and accessibility measures that directly consider less experienced cyclists who require
physical segregation from motor vehicles and low speed routes. Many accessibility measures assume
that cyclists are willing to mix with motor traffic on busier roads, which is not the case for all
types of cyclists.

The core dataset used is OpenStreetMap (OSM), which provides detailed information on cycle
and street networks and is available globally. To model cycle networks for more vulnerable users,
we need a classification scheme of cycle infrastructure, and a comprehensive dataset of cycle in-
frastructure types is derived from OSM based on Furth (2012). We then use OSM data to improve
on the Level of Traffic Stress (LTS) framework, which accounts for wider road conditions that
affect cyclists, such as road type, road speed and number of carriageways. We argue in this paper
that network analysis is needed for accurate cycle infrastructure and accessibility indicators. For
infrastructure measures, it is necessary to understand the extent to which cycle networks match
demand and serve the busiest cycle routes. For example, in some London boroughs there is good
cycle network provision in more peripheral parks, yet the most in-demand streets linking to retail
and public services can have relatively poor cycle infrastructure. Betweenness centrality analysis
is used to identify the most frequently desired routes based on network configuration and the lo-
cation of typical trip destinations. This network measure is then combined with the infrastructure
classifications to produce network-weighted cycle infrastructure indicators that more accurately
summarise network provision against potential demand.

For accessibility analysis, we also need to route cycle journeys accurately through the network,
considering user preferences for cycle infrastructure, particularly for more vulnerable users. One
of the most popular open access tools for accessibility analysis, R5, enables cycle routing based on
setting an upper limit of cycle infrastructure that cyclists will accept, using a Level of Traffic Stress
setting. While this is a useful approach, it is a somewhat blunt tool that has difficulties producing
routes for lower LTS settings in mixed cycle infrastructure environments — i.e. the typical context
for UK cities. The approach taken here is to use network routing to calculate safer cycling routes,
and then compare the accessibility of these safer routes against the more direct cycling routes that
allow cycling on busier roads. To create a routable network, we combine the infrastructure and
LTS data with survey data on cyclist preferences. This allows the cycle data to be given preference
scores at the link level, which can be used for network routing accounting for more vulnerable
cyclists. This analysis is based on typical trip types such as shopping, education and health.

A significant challenge for measures of cycle infrastructure and accessibility is how to validate
these measures. The approach taken here is to correlate the outputs with measures of cycling
mode choice from travel survey data, and link-based cycle counts from Transport for London. This
provides a useful guide for how well the measures match observed travel behaviour.

2 Literature Review

We firstly review the importance of cycle infrastructure for increasing cycling levels and expanding
participation in Section This is followed by a review of cycle infrastructure data sources in
Section[2.2] classifications of cycling infrastructure in Section[2:3] and then a discussion of measures
of cycling accessibility in Section [2.4]

2.1 Cycle Infrastructure, Uptake and Participation

High-quality, safe cycle infrastructure is widely recognised as a crucial factor in promoting cycling
participation (Nelson and Allen [1997}; Dill and Carr [2003|). Cycle infrastructure can take various
forms, including physically separated cycle lanes, on-road lanes without physical barriers, roads
shared with motor vehicles without dedicated infrastructure, and off-road paths in natural settings
(Furth 2012). Differences in the type and design of cycle infrastructure can significantly affect
safety — both actual and perceived — and cycling uptake.

Empirical studies have shown that improvements to cycle infrastructure can increase local
cycle participation (Hull and O’holleran 2014} Pucher and Buehler 2016; Hong, McArthur, and
Livingston [2020; Shahriari, Siripanich, and Rashidi[2024)), enhance confidence and sense of legiti-



macy especially for inexperienced cyclists (Clayton and Musselwhite 2013)), and increase cyclists’
safety by reducing accidents (Mulvaney et al. |2015)). Importantly, research suggests that the type
and quality of infrastructure shapes user preferences, which in turn influences overall cycling up-
take. Using GPS trajectories of cyclists in Denmark, fL.ukawska et al. (2023) found that cyclists
prefer protected cycle lanes to minimise interaction with vehicles and favour routes through natu-
ral settings. Similarly, Steer Davies Gleave (2012) quantified the relative importance of London’s
cycle infrastructure types using survey data, with cyclists substantially preferring greater sepa-
ration and protection from motor traffic. These preferences are important as they translate into
participation outcomes. Studies show that physically separated cycle tracks are more influential in
encouraging cycling compared to lower quality infrastructure provision (Pucher and Buehler |2016)).
Moreover, the development of fully segregated cycle lanes, together with a well-designed cycling
network, has been shown to significantly increase cycling in cities with no prior cycling tradition,
as demonstrated in Seville (Marqués et al. |2015)).

2.2 Cycle Infrastructure Data Sources

Given the importance of cycle infrastructure for improving cycling safety and participation, analysing
and tracking its provision is crucial. Yet cycle infrastructure data is often limited, with consistent
and comprehensive cycle infrastructure databases lacking in many countries, including the UK.
London’s Cycling Infrastructure Database (CID) offers detailed data on cycle infrastructure types
in Greater London (Transport for London 2019). This dataset only however represents a snap-
shot from 2017-2018, and has not yet been updated to capture more recent cycle infrastructure
improvements. The need to analyse cycle infrastructure at scale has therefore turned researchers
toward open crowd-sourced datasets, most notably OpenStreetMap (OSM).

The most straightforward way of identifying cycle infrastructure in OSM is using the highway
key. Gehrke et al. (2020)) identified cycle infrastructure in OSM using road class, assigning speed
values and priority indices that captured differing preferences and calculated aversion factor for
different types of cyclists. Mahfouz, Lovelace, and Arcaute (2023) developed weighted profiles
based on OSM road types to reflect cyclist preferences for each type of infrastructure in routing.
Williams et al. (2024) defined cycle infrastructure using typical OSM tags, such as cycleway, path,
track, or footway. Wasserman et al. (2019) and Ferster et al. (2020)) categorised cycle infrastructure
into four types using highway and cycleway tags in OSM, applying these classifications to Level of
Traffic Stress calculation and cycle infrastructure inventories in Canadian cities, respectively. OSM
data can however include gaps and inconsistencies due to its crowd-sourced nature. To address this,
researchers have employed different imputation strategies. Wasserman et al. (2019) inferred missing
attributes such as lanes and speed limits from OSM’s functional classification, making assumptions
about roadway characteristics to enable Level of Traffic Stress calculations. Harvey, Rodriguez,
and Fang (2024) adopted a more conservative approach, assuming the absence of infrastructure
(e.g., no bike lane) where data were missing and only estimating values when clear relationships
could be established, thereby reducing the risk of overstating cycle infrastructure quality.

2.3 Cycle Infrastructure Classifications - Level of Traffic Stress

Level of Traffic Stress (LTS) is a widely used metric for assessing the cycling safety of roads by
considering road attributes (Mekuria, Furth, and Nixon 2012} Furth, Mekuria, and Nixon [2016).
LTS assigns stress levels to road segments using a four-tier scale, where LTS level 1 indicates safe
and comfortable cycling conditions for all cyclists, including vulnerable users, and LTS level 4
indicates cyclists are required to mix with busy road traffic, producing high stress and potentially
dangerous conditions only suitable for experienced cyclists. The original method developed by
Mekuria, Furth, and Nixon (2012) requires many detailed variables on infrastructure and road
conditions, which can be difficult to obtain for many cities. As a result, more simplified and
context-specific versions of the LTS method have been developed.

Conveyal (2015) developed a streamlined LTS classification using a reduced number of common
attributes found in OpenStreetMap (OSM) data. Lowry, Furth, and Hadden-Loh (2016|) further
advanced the LTS framework by incorporating the economics concept of marginal rates of substi-
tution, defined as the additional distance cyclists are willing to travel to avoid higher-stress (e.g.
LTS 3 and 4) conditions, and applied it to their case study city of Seattle using readily available
data. Moran et al. (2018]) modified the LTS scheme to address the absence of detailed traffic signal
and functional priority data. Tucker and Manaugh (2018) further simplified the LTS classification
method in two Brazilian cities by relying on just a single attribute (highway type) obtained from
OSM labels and assigned weights to each LTS level. Montgomery County (2018) expanded the



LTS scale by adding new levels—LTS 0, LTS 2.5, and LTS 5.0— to provide a granular assessment
and bridge the large gaps between existing LTS levels. However, the Montgomery method requires
input variables that are typically not accessible in publicly available datasets, such as raised me-
dian and driveway counts (Harvey, Rodriguez, and Fang|2024)). Huertas et al. (2020) developed a
data-informed LT'S-based classification methodology by conducting a cluster analysis on a repre-
sentative sample of the road network and training a machine learning classifier (multinomial logistic
regression) to categorise all segments of the city-wide road network into clusters. Each cluster was
assigned an LTS category based on specific attributes, effectively avoiding difficult classification
decisions.

While LTS provides an intuitive way of analysing cycling safety, it has some limitations. Firstly,
most existing LTS schemes are tailored to Northern American urban contexts (Mekuria, Furth,
and Nixon 2012} Lowry, Furth, and Hadden-Loh [2016; Imani, Miller, and Saxe 2019)) and require
relatively detailed, localised datasets for these urban settings (Mekuria, Furth, and Nixon 2012}
Montgomery County [2018). Furthermore, many APIs or software that automate LTS assignment
often operate as black-box tools, limiting its applicability for transparent international studies.
Lastly, existing LTS schemes can over-simplify detailed cycle infrastructure. While some account
for bike-specific facilities, they typically require extensive data inputs, such as lane width and
bike lane blockages (Furth, Mekuria, and Nixon [2016; Montgomery County [2018]) or rely on pre-
compiled datasets by local governments (Lowry, Furth, and Hadden-Loh [2016]). These requirements
can pose challenges, particularly where such detailed information is unavailable or inconsistent.
Additionally, LTS-based routing software typically applies a maximum LTS cut-off to calculate
accessibility (Lowry, Furth, and Hadden-Loh [2016}; Pereira et al. |2021). While useful for broad
comparisons, this approach is relatively simplistic, as it overlooks more nuanced factors such as
perceived safety or varying cyclists’ infrastructure preferences. Taken together, these instances
underscore the need not only to adapt LTS schemes to the UK as well as other similar European
contexts, but also to refine the methods to incorporate more flexible, transparent, and nuanced
representations of cycling conditions.

2.4 Cycling Accessibility Analysis

Most existing cycling accessibility studies are typically based on travel time or distance. For
instance, lacono, Krizek, and El-Geneidy (2010) modelled accessibility by incorporating distance-
based decay to reflect how destinations become less attractive as distance increases. Lowry, Callis-
ter, et al. (2012) calculate bikeability as an accessibility measure, where the impedance of traveling
to destinations is modelled using distance weighted by bike level of service scores. McNeil (2011))
evaluated cycling accessibility in Portland by developing a bikeability score based on the range
of daily destinations reachable within a 20-minute ride. Saghapour, Moridpour, and Thompson
(2017)) developed a gravity-based Cycling Accessibility Index for Melbourne that incorporates land-
use diversity, the number of opportunities, and travel distance to quantify cycling accessibility.
Accessibility measures primarily based on time and distance can be misleading for vulnerable
cycle users where cycle safety and comfort are not taken into account. Some researchers have
pursued a more comprehensive approach, incorporating factors such as safety and comfort in addi-
tion to time and distance. Winters et al. (2013]) developed a bikeability index incorporating cycle
infrastructure availability and quality, street connectivity, topography, and land use, all of which
influence cycling. Lowry, Furth, and Hadden-Loh (2016)) evaluated residents’ access to utilitarian
destinations using low-stress cycle routes. Imani, Miller, and Saxe (2019) assessed cycling accessi-
bility in Toronto using the LTS framework, showing that while many local streets are low stress,
high-stress arterials fragment the network into “islands” that restrict access to jobs and destina-
tions without crossing stressful roads. While these studies provide a more comprehensive picture
of cycling accessibility, they are limited by reliance on datasets specific to certain urban contexts
and by challenges in quantifying accessibility for comparisons between cities and neighbourhoods.

3 Methodology

This section describes how the cycle infrastructure classifications are produced from OpenStreetMap
(OSM) data. Firstly, in Section we discuss how OSM is a suitable dataset for describing
detailed cycle networks. OSM is also the source of the trip destinations — Points of Interest — used
in the network analysis. In Section [3.2] and we show how to derive the cycle infrastructure
classification and Level of Traffic Stress classification using the OSM data. The first classification
is a direct measure of types of cycle lanes derived from OSM. The second Level of Traffic



Stress framework is a wider classification of the suitability of every road link for cycling based
on factors such as road classification, speed and number of carriageways. Some adjustments from
the standard LTS model are developed to improve the LTS classification for the UK context. In
Section [3:4] we convert the infrastructure types identified in Section [3.2] into preference scores.
Then in Section [3.] the cycle infrastructure classification and LTS data are combined to enable
routing analysis of the full urban network incorporating the cycle infrastructure preferences of
different users. The final aspects of the methodology relate to network analysis and routing. A
betweenness centrality measure is developed in Section to estimate cycle link demand for more
accurate measures of cycle infrastructure quality.

3.1 Data
3.1.1 OpenStreetMap Data for Cycle Infrastructure and Network Routing

OpenStreetMap (OSM) is a crowd-sourced geospatial data platform where users contribute and
access detailed information on the built environment. OSM is frequently updated, integrates public
datasets (including T{L’s Cycle Infrastructure Database), and offers extensive coverage, making
it a valuable source of both high-quality and high-volume-spatial data. OSM provides link-level
detail on a variety of road types suitable for active travel modes (Schlosser et al. 2025) as well as
diverse forms of cycle infrastructures (Wasserman et al. [2019; Lovelace and Talbot [2025)). This
granularity allows OSM to be used in constructing cycle networks. The data has also demonstrated
its scalability in large network analyses (Louf and Barthelemy 2014; Lovelace, Goodman, et al.
2017)) and transferability across different countries (Manley, Filomena, and Mavros [2021; Boeing
2022)). In this regard, OSM offers both the detail and adaptability needed for assessing cycle
infrastructure across different urban contexts.

The cycle network data forms the foundation for constructing the cycling network and iden-
tifying detailed cycle infrastructure information. Using the Python package “Pyrosm” (Tenkanen
2020)), the cycle road network within Greater London was extracted. Each road segment contains
detailed attributes such as road classification, cycle infrastructure type, number of lanes, and speed
limit. Notably, OSM often represents roads as several small segments, rather than a single contin-
uous link. Each of these segments carries its own attributes, which is particularly valuable when
cycle infrastructure is only present along part of a road. This level of granularity allows for a more
accurate street-level evaluation of cycling conditions.

POIs serve as destination points in the routing analysis. The POI data extraction query
focuses on three keys: amenity, shop, and tourism. These categories relate to the core urban
services highlighted in the 15 Minute City: living, working, healthcare, commerce, education,
and entertainment (Moreno et al. 2021). In this way, these POIs include the most common trip
destinations and reflect the services most likely to influence cycling behaviour and accessibility
patterns. Initially, the dataset contained over 250,000 POlIs, and after filtering out irrelevant and
permanently closed POIs and retaining only those relevant to the 15 Minute City, around 67,000
POIs remained.

3.1.2 Census Geography

It is useful to be able to link the cycling accessibility analysis to demographic data from the
census, such as population levels and journey to work data on cycling commuting levels. Lower
Super Output Area (LSOA) centroids are used as origin points for routing analysis. LSOAs are
the second-lowest level of census geography in the UK, each covering between 400 and 1,200
households (typically 1,000 - 3,000 residents) (ONS |2011). There are 4,969 LSOAs in Greater
London, providing a granular set of origin points for analysis while remaining computationally
manageable.

3.1.3 Cycle Flow Validation

To validate the cycle network measures produced, we correlate the results with cycle demand data
at two different scales: link level and area level. For link-level validation, Transport for London
(2024) provides link-level cycle count data at 1451 monitoring stations which are representative
of the cycle network in London. The counts took place at each site over 16 hours (6:00 — 22:00)
on weekdays (between Tuesday and Thursday) in spring (between April and July) in 2024. Each
panel of locations is stratified by the area (Central, Inner and Outer London) and the road type (A
road, B road, minor road, local streets and motor vehicle-free paths) to provide a representative
sample of road types.



For area-based validation, several survey datasets were used. The 2011 journey to work data
was obtained at the Middle layer Super Output Area (MSOA) level. The data contains residence,
workplace, total commuting populations, and cycling populations, enabling the calculation of cy-
cling mode share by MSOA. The 2021 journey to work data for trips under 10km was available
at the Local Authority District (LAD) level. Additionally, the Active Lives Survey data (Depart-
ment for Transport [2024b|) was derived at the LAD level which contains cycling rates for all trip
purposes. However, data were available for only 31 of the 33 London local authorities, resulting in
partial borough-level coverage.

3.2 Deriving Cycle Infrastructure Classifications from the OpenStreetMap
Data

Before categorising cycle infrastructure, the road network dataset was pre-processed to exclude
highway types that are either mis-specified, misspelled in OSM or unsuitable for cycling (e.g.
cycleway way — misspelling of cycleway -, motorways, busways, or segments under construction).
This filtering step not only ensures that only potentially cyclable links remain in the network but
also avoids reliance on highway types that may be specific to individual urban contexts. In this
way, the set of retained highway types remains coherent and comparable across different urban
settings.

The cycle infrastructure classification used in this study is based on the four categories proposed
by Furth (2012) with minor adjustments to better reflect UK and similar European urban contexts.
We extend this definition by introducing a fifth category: unprotected advisory cycle lanes. Unlike
either physically segregated lanes or unprotected mandatory cycle lanes, which are reserved solely
for cyclists and separated from motor traffic by paint or markings, unprotected advisory cycle lanes
are shared with motor vehicles but are visually indicated by markings that provide cyclists with
greater visibility and a degree of prioritisation. A common example in the UK is a bus lane that
legally permits cycling, where riders benefit from wider lanes and lane markings despite sharing
the lane with buses. To operationalise this classification, the literature-based definitions were
translated into the OSM tagging system, which defines infrastructure elements in its own terms.
By aligning the conceptual typology with OSM tags, we derive street-level cycle infrastructure
from OSM data.

To infer detailed cycle infrastructure from OSM, we primarily use the ‘cycleway’, ‘highway’,
and ‘bicycle’ keys, alongside additional contextual ‘tags’. The ‘cycleway’ key provides the most
direct information on the presence and type of cycling facilities (Wasserman et al. 2019; Lovelace
and Talbot [2025)), though it is often incomplete or inconsistently applied. The ‘highway’ key clas-
sifies road types and functions, offering insights into the level of basic cycling provision (Gehrke
et al. [2020; Mahfouz, Lovelace, and Arcaute 2023; Williams et al. [2024). The ‘bicycle’ key encodes
permissions and rules for cyclists on particular links. While it does not directly describe infras-
tructure, certain values provide useful indications of access conditions, such as whether cycling
is officially designated or whether riders are required to use an adjacent side path, equivalent to
separated cycleways. The ‘tags’ supplies additional contextual details on the characteristics or
intended use of a road segment. It consists of a key-value pair that describes specific attributes of
a road element, such as separation from traffic, or conditional usage. In this way, the ‘tag’ captures
nuanced aspects of cycle infrastructure and helps fill gaps left by the more general keys, including
‘highway’, ‘cycleway’, or ‘bicycle’.

Using these OSM tags, we inferred street-level cycle infrastructure. Protected cycle lanes
include cycle tracks, stand-alone cycleways explicitly designed for cycling, and separately mapped
cycle paths. Unprotected mandatory cycle lanes are on-road facilities reserved for cyclists without
a physical barrier, whereas unprotected advisory cycle lanes are marked cycling spaces shared
with motor vehicles. Off-road links capture cycle routes in natural or recreational settings. Road
segments that do not fall into any of these categories are classified as roads without dedicated cycle
infrastructure (See Table [L).



Category Definition OSM mapping ap- Notes
proach
Protected Cycle Lane  Cycle tracks running cycleway=track; Represents physi-

(a) Cycle tracks

adjacent to roads, but
mapped as attributes
of the carriageway

cycleway:right=track,

cycleway:left=track

cally separated tracks

Protected Cycle Lane
(b) Designated cycle-
ways

Cycleways mapped as
separate  geometries,
explicitly reserved for
cyclists

highway=cycleway
(excluding shared
busways/lanes via
filtering of tags)

linked to road seg-
ments

Independent ge-
ometries in  OSM,

representing dedicated
cycle paths

Protected Cycle Lane
(c) Separated cycle-
ways

Cycle paths mapped
separately from roads,
with cyclists re-
quired /encouraged to
use them

cycleway=separate;
cycleway=sidepath;
bicycle=use_sidepath

Indicates that a paral-
lel, separately mapped
cycle path exists

Unprotected Manda-
tory Cycle Lane

On-road lanes reserved

solely  for cyclists,
separated only by
paint/markings

cycleway=lane; lane-
related tags (excluding
shared busways/lanes)

Marked lanes with-
out physical separa-
tion; higher priority
than advisory lanes

Unprotected — Advi-
sory Cycle Lane

On-road lanes marked
for cycling but not ex-
clusively reserved; mo-
tor vehicles may enter
or stop

cycleway=advisory;
cycleway=shared;

cycleway=share_busway;tion;

cycleway=shared_lane

Marked lanes with-
out physical separa-
lower priority
and weaker protection
than mandatory lanes

Off-Road Paths away from highway=path; Captures natural or
carriageways, often in highway=track; recreational settings,
natural settings highway=footway + including  shared-use

bicycle=designated paths with pedestrians
or bicycle=yes or trails

Note. A road segment not belonging to any of the above categories is classified as a road without cycle

infrastructure.

Table 1: Mapping detailed cycle infrastructure from OSM

3.3 Improving the Level of Traffic Stress Model

Our research introduces an improved Level of Traffic Stress (LTS) scheme, building on the Conveyal
LTS model (Conveyal [2015)). The Conveyal scheme requires a minimal set of variables commonly
found in OSM data attributes (ibid.) and has been increasingly used in cycling accessibility anal-
yses (Pereira et al. |2021} Lovelace, Félix, and Carlino 2022; Williams et al. 2024). Furthermore,
the model appears to be conceptually robust, delivering consistent results regardless of different
datasets being used (Harvey, Rodriguez, and Fang 2024). The Conveyal LTS model follows a
two-step process. In the first step, initial LTS values are assigned to road segments based on
straightforward conditions in relation to road classification, number of lanes, speed limits, and
cycleway tags. These conditions are not comprehensive enough to cover all road segments, and so
some roads are left without an assigned LTS, with the expectation that they will be resolved in
the following step. In the second step, an unsignalised intersection adjustment is applied. At each
junction, the highest LTS value from any connecting road is extended to all intersecting roads.
This process both fills some of the gaps left from the previous step and also reflects the higher
stress levels that cyclists may encounter in mixed-traffic environments.

The Conveyal model does however have some limitations. Firstly, its performance relies on the
completeness of the crowd-sourced datasets and the scale of the network being analysed. When key
attributes such as speed limits, lane counts, or cycleway tags are missing, especially in large-scale
urban networks with millions of edges, the intersection adjustment step is often unable to fill in
the gaps in LTS values that occurred during the initial step. Secondly, the LTS assignment criteria
for the number of lanes and maximum speed are not tailored to the UK context (or indeed similar
European countries), as the UK’s historic urban environment often features narrower roads, fewer
lanes, and stricter speed limits (UK Government [2024; Department for Transport |2024al). Another
limitation is that the intersection adjustment logic used in the Conveyal model does not account



for traffic signals or stop signs at intersections. This can potentially overlook the impact of traffic
controls that significantly influence LTS ratings at junctions.

To address these limitations, our augmented LTS scheme assigns initial LTS values to all road
segments, including those road types that were not covered in Conveyal’s initial step. In doing so,
we draw on the cycling weighting profile from the Routino project (Bishop [2008), which provides
guidance on the relative importance of different road types for cycling. Each road type is classified
into an appropriate LTS level, ensuring that every road segment is assigned of an initial LTS
value. This approach prevents the gaps in LTS values that the Conveyal model left unsolved in
its intersection adjustment step. Furthermore, LTS conditions regarding lane counts and speed
limit were adapted to better align with the UK context, incorporating local road features as
outlined in the TfL Cycling Action Plan 2 (Transport for London 2023)). We introduced a signalised
intersection adjustment to account for the presence of traffic signals and stop signs (Imani, Miller,
and Saxe |2019; Imrit et al.[2024]). At each junction, the baseline LTS is first set to the highest value
among the intersecting road segments, reflecting the potential stress of mixed-traffic conditions.
This value is then adjusted downwards when traffic controls, such as stop signs and traffic signals,
are present as they improve crossing safety. For example, low-stress intersections (LTS 1 - 2) with
traffic signals are adjusted to LTS 1, while mixed-stress intersections, where low-stress (LTS 1 - 2)
roads meet high-stress (LTS 3 - 4) roads, are adjusted downward (e.g. LTS 4 to LTS 3, or LTS 3 to
LTS 2). In this way, the adjustment incorporates both the maximum stress from connecting roads
and the mitigating effect of intersection controls, producing more realistic LTS values at junctions.
Based on this improved LTS model, LTS values were then computed for all roads in London as a
case study.

3.4 Cycle Infrastructure Classification for Network Routing Using Cycle
Preferences

To convert infrastructure types into preference scores for routing and accessibility measures, each
cycle infrastructure type was assigned a weight based on the cycle route choice model developed for
Transport for London (TfL) (Steer Davies Gleave 2012), stratified for the general population (Table
. The model distinguishes between five infrastructure categories: off-road, mandatory cycle lanes,
advisory cycle lanes, bus lanes, and roads without infrastructure. Mandatory cycle lanes refer to
marked lanes with greater width, while advisory cycle lanes correspond to narrower facilities. In
our study, the classification also includes protected cycle lanes, which are not explicitly represented
in the TfL model. To approximate their effect, we assigned the coefficient for mandatory cycle lanes
to protected cycle lanes. While this likely underestimates their true relative attractiveness—since
protected cycle lanes are generally preferred over painted ones—it nonetheless allows us to capture
their relative importance and ensure comparability across infrastructure types.

Type Description Score
Off-Road Cycleways in natural settings, such as parks or rivers 1.00
Protected Cycle Lane Physically separated from motor traffics 0.31
Unprotected Mandatory Cycle Lane  Painted cycle lanes without physical barriers 0.21
Unprotected Advisory Cycle Lane Shared with vehicles, yet markings and lanes are indicated for cyclists 0.18
Road No dedicated cycle infrastructure 0.00

Table 2: Descriptions of cycle infrastructures and preference score rescaled to a range of 0 and 1

Preference scores capture how cyclists value cycle lanes, but they largely overlook broader traffic
conditions that the LTS scheme covers that influence perceived safety. For example, a protected
cycle lane on a high-speed arterial road may score highly in terms of infrastructure preference but
would still impose significant stress due to speed and traffic volume. By combining preference
scores with LTS ratings, we integrate user preferences with the objective stressfulness of the road
environment, yielding a more behaviourally realistic representation of cycling conditions.

3.5 Cycle Infrastructure Classification Final Weights

LTS values were normalised to a scale between 0 and 1 to ensure comparability with preference
scores. Roads with LTS 1 were assigned the highest weight of 1, followed by LTS 2 (0.75), LTS 3
(0.5), and LTS 4 (0.25), reflecting cyclists’ preferences for lower-stress environments (Broach, Dill,
and Gliebe [2012; Mekuria, Furth, and Nixon 2012). Although these weights do not fully capture



the precise importance of each LTS level on the cyclist behaviour, prior empirical evidence suggests
a reasonably linear relationship between LTS levels and cyclists’ satisfaction (Harvey, Fang, and
Rodriguez|2019). The emphasis here is on capturing relative differences rather than estimating the
exact extent to which one is more critical than another.

The final weights were derived by combining the normalised LTS scores (representing road
safety /stress) with the infrastructure preference scores, assigning equal importance to both factors.
The resulting weights were then applied to approximately 1.4 million road segments across London,
as a case study (see Figure [1)).

Cycle Accessibility Weights

01250217 (worst)
02170218
02790404
04040520
05200750
07500875

08751 (bost)

Figure 1: Cycle accessibility final weights for all roads in Greater London

3.6 Centrality Analysis for Estimating Cycle Link Demand

Understanding which routes are most in demand by cyclists is necessary for effective transport
planning and infrastructure investment. Centrality analysis provides a systematic way to identify
the relative importance of individual road segments within a network, highlighting those links
that are likely to experience higher demand. In particular, edge betweenness centrality quantifies
how frequently individual road segments are likely to be used by cyclists as part of their journeys
between origin and destination points, offering a proxy measure for potential cycling flows.

In this study, origin points were defined as the centroids of Lower Super Output Areas (LSOAs),
and destinations were points of interest (POIs) that serve daily needs such as retail, education, and
healthcare. To reduce computation, POIs were projected onto granular H3 hexagons at level 10, and
centre of mass of POIs within hexagons was then computed as the representative destination point.
A maximum isodistance of 15km was set to constrain origin-destination (OD) pairs, representing
a realistic upper bound for cycling trips (corresponding to approximately 60 minutes of cycling
travel). OD pairs exceeding this threshold were excluded, as they are unlikely long-distance cycling
journey. Betweenness centrality was then computed for each unique OD pair, estimating the
frequency with which each road in the cycling network lies on the shortest path between all valid
OD combinations. In the context of cycling, this metric serves as a proxy for predicting likely cycle
flows across the network, and can be used for weighting infrastructure-based cycle accessibility
measures.

Figure [2] illustrates edge betweenness centrality across Greater London. High centrality values
are observed along main roads that provide access to town centres and Inner London, while pe-
ripheral residential roads and more isolated cycleways within parks exhibit lower centrality scores,
highlighting their limited contribution to strategic connectivity.
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Figure 2: Edge betweenness centrality between LSOA centroids and POIs for common trip types
in Greater London with a 60-minute cut off

4 Results

We present the cycle infrastructure indicators in Section I} which summarise the quality and
completeness of cycle infrastructure provision in London through mapping and borough-level indi-
cators. The first set of infrastructure indicators in[£.1.1] uses the cycle infrastructure classification,
and the second set in [I.1.2) uses the Level of Traffic Stress classification, considering a wider set of
factors. These two approaches are then compared and combined into a single network in Section
[ET3] Next, the accessibility analysis for safer cycle routes is presented in Section .2} based on
routing trips through the network described earlier in[£.1} and comparing the accessibility between
direct routes and safer routes for vulnerable and inexperienced cyclists. Finally, validation of the
analysis against travel behaviour data is presented in Section .3}

4.1 Cycle Infrastructure Indicators
4.1.1 Cycle Infrastructure Classification for Greater London

The Cycle Infrastructure Classification describes the presence or absence or cycle lanes, and the
types of lanes provided, as shown for Greater London in Figure[3] Overall, London’s cycle network
appears rather fragmented and unevenly distributed, reflecting the varied policies and approaches
by local authorities over several decades. Efforts to create a fully integrated city-wide network are
more recent, with the Mayor and Transport for London developing city-wide routes through longer
distance Cycleways. These are visible in blue on the map, such as the route along Embankment
east-west through Central London along the River Thames, and the cycle routes east of the City
through Tower Hamlets. The highest quality routes are the protected (i.e. physically segregated)
cycle lanes, shown in blue for on-road routes and green for off-road cycle lanes in parks and by
rivers/canals. The park-based routes are overwhelmingly in Outer London, particularly north-east
around Hackney and Waltham Forest, and south-west in Richmond and Hounslow.

Inner London’s complicated cycle infrastructure geography is shown in Figure[d] Inner London
has denser cycling infrastructure than Outer London, with more on-road cycling facilities. This
on-road provision is quite mixed in quality, including some fully protected segregated lanes on
major radial routes (these are TfL Cycleways), some unprotected advisory cycle lanes — these
include shared bus lanes and some shared low speed routes in Low Traffic Neighbourhoods such as
in Hackney and Islington — and some older unprotected on-road lanes. Overall, cycle infrastructure
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Figure 4: Inner London’s cycle infrastructure derived from OpenStreetMap

provision is better in Inner London but is mixed, with a lot of investment still needed to create a

fully integrated network.
We can also summarise the cycle infrastructure data at the borough level to provide a simpler

overview for local authorities, as shown in Figure |} This indicator is centrality-weighted, so that
roads and streets with high potential cycle demand are weighted more highly compared to low
demand roads and streets. To calculate this, each road segment was weighted by its log-transformed
betweenness centrality to capture its strategic importance within the wider cycle network. The
proportion of each infrastructure type was then calculated relative to the total centrality-weighted
cycleway length for each borough. This approach highlights not only the extent of provision but
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also the relative importance of each infrastructure type in supporting cycling across the network.

The boroughs in Figure [5| are ordered by the provision of high-quality cycle infrastructure (pro-
tected cycle lanes and off-road cycle lanes separate from road traffic). The leading boroughs by
this measure are in Outer London, led by Waltham Forest, Richmond-upon-Thames and Hounslow.
Greenspace provision plays a role in this result, particularly in Richmond, which has the highest
contribution of off-road cycle lanes. The contribution of off-road cycle lanes is however relatively
modest in Waltham Forest and Hounslow (due to the centrality weighting) and in-fact these bor-
oughs are at the top of the list mainly through their protected cycle lanes. Waltham Forest has
been implementing pro-cycling policies for several decades, including the “Mini-Holland” Mayoral
funding programme in the 2010s. While these Outer London boroughs score well, the wider Outer
London picture is mixed, with several more car-dependent boroughs —such as Barnet, Brent and
Harrow — close to the bottom of the list.

Cycle Infrastructure Type

Unprotected Advisory Cycle Lane
. Unprotected Mandatory Cycle Lane
. Protected Cycle Lane

B off-Road

30

N
o

Percentage

10

Local Authority Districts

Figure 5: Proportion of centrality-weighted cycle infrastructure across Greater London, ordered
by high-quality cycle infrastructure (sum of off-road and protected cycle lane)

The results for Inner London boroughs are also mixed. Several Inner London boroughs have
a high proportion of lower quality cycle lanes that are not physically segregated from vehicles,
including the City of London, Hackney and Hammersmith. These are generally shared bus lanes,
or in the case of Hackney, Low Traffic Neighbourhoods. Several Inner London boroughs score
unexpectedly poorly with this measure, including Lambeth, Islington and Camden (again these
have substantial proportions of unprotected cycle lanes). Kensington and Chelsea scores last — a
very poor result for a wealthy Inner London borough — reflecting historic resistance to cycle lane
development in this borough.
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Figure 7: Level of Traffic Stress of all roads in Inner London

4.1.2 Level of Traffic Stress Classification for Greater London

The second classification is Level of Traffic Stress, which includes a wider set of factors influencing
cycle accessibility, such as road type, traffic speed and number of carriageways. The LTS classi-
fication covers all roads, whether cycle infrastructure is present or not. Level of Traffic Stress is
mapped for Greater London in Figures [6] and [7] with line thickness representing link centrality, so
that higher demand links are more prominent in the maps. There is a greater contrast between
Inner and Outer London with the LTS classification. Inner London has a higher prevalence of
less stressful LTS 1 and LTS 2 routes, reflecting lower road speeds and more cycle-friendly condi-
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tions in general. There are however several major high-stress Inner London roads identifiable such
as Euston Road and Edgware Road. Outer London is characterised with high-stress main roads
and arterial roads with LTS 4, while lower stress routes are generally restricted to low centrality
residential streets. Again, the overall London picture is fragmented, with low-stress links often
intersected or constrained by major high-stress corridors, which likely limits safe and continuous
cycling routes across neighbourhoods. This contrast highlights the uneven cycling experience be-
tween quieter local roads and the heavily trafficked main routes that form barriers to continuous,
safe cycling across the city.

Next, we repeat the borough level indicator calculation for the Level of Traffic Stress classifica-
tion, again using a centrality-weighted measure, as shown in Figure[8] There is a much clearer split
between Inner and Outer London boroughs in this measure, with seven of the top ten boroughs
being in Inner London — led by Hackney, Lewisham and Islington — and the bottom 13 boroughs
all being in Outer London. The LTS results are very different to the earlier cycle classification
results, reflecting the importance of more general cycling conditions, such as road speed and type.
The proportions of LTS 1 (fully protected cycle lanes) are relatively consistent between boroughs,
coming in around 25% of centrality-weighted roads. Differences in the proportions of LTS 2 and
LTS 3 roads are larger, due to the presence of more stressful, higher speed main roads in Outer
London, outside of the relatively sparse segregated cycle network. Boroughs that have pursued the
Low Traffic Neighbourhood and Quietway approaches, such as Hackney and Islington, score very
well in the LTS classification as this measure favours low speed cycling conditions.

Log-Transformed Centrality-Weighted Level of Traffic Stress (LTS) by London Borough
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Figure 8: Proportion of centrality-weighted Level of Traffic Stress across Greater London boroughs,
ordered by low-stress roads (sum of LTS 1 & 2)
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4.1.3 Centrality-weighted Average Cycle Accessibility Score

In this section, the results of the cycle infrastructure classification and the Level of Traffic Stress
classification are combined to produce an overall cycle accessibility score, using the methodology
described earlier in Section [B.5] The most straightforward way to convert the link-based cycle
accessibility scores into an area-based cycle accessibility indicator for local authorities is to calculate
the average score. This is computed by normalising the length of each road segment by its cycle
accessibility weight. To account for the strategic importance of each segment within wider network,
this value is then multiplied by log-transformed centrality. Each road segment is then aggregated
by borough, and the average cycle accessibility score per borough is calculated. Lower scores
indicate better cycle accessibility. This approach allows for a more accurate representation of cycle
accessibility, reflecting not only infrastructure quality but also network connectivity.

Centrality-Weighted Cycle Infrastructure Quality by Borough

4.8~ London Category

D Inner London

| . Outer London
'

4.5

42

3.9
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3.0
2.7

London Boroughs (LAD)

Figure 9: Centrality-weighted average cycle accessibility score aggregated by borough

Figure [Jillustrates that Inner London generally has better cycle accessibility, with leading bor-
oughs such as Hackney, Islington, and Hammersmith. Outer London shows much more variability:
while many boroughs rank lower, Waltham Forest scores the highest, and Richmond ranks fourth,
standing out as cycle-friendly Outer London boroughs.

Table [3] confirms the earlier results of the cycle infrastructure and LTS classifications. The
Cycle Infrastructure results are more favourable to Outer London boroughs, particularly those
who have pursued wider segregated networks and have extensive greenspace and rivers/canals.
The LTS results favour Inner London boroughs much more strongly, with lower speed roads and
Low Traffic Neighbourhood areas scoring well. The overall cycle accessibility score ranking reflects
the combination of these two classifications.
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Rank Cycle Infrastructure Level of Traffic Stress Overall Cycle Accessi-
Ranking Ranking bility Score Ranking

1 Waltham Forest Hackney Waltham Forest

2 Richmond Lewisham Hackney

3 Hounslow Islington Islington

4 Newham Richmond Hammersmith

5 Enfield Waltham Forest Richmond

6 City of London Haringey Lewisham

7 Redbridge City of London Lambeth

8 Greenwich Camden City of London

9 Hillingdon Tower Hamlets Haringey

10 Hackney Westminster Tower Hamlets

11 Tower Hamlets Lambeth Southwark

12 Southwark Southwark Camden

13 Barking Hammersmith Wandsworth

14 Merton Wandsworth Redbridge

15 Ealing Kensington Merton

16 Kingston Ealing Newham

17 Haringey Merton Barking

18 Havering Greenwich Westminster

19 Hammersmith Redbridge Greenwich

20 Lewisham Newham Harrow

21 Westminster Croydon Ealing

22 Wandsworth Brent Enfield

23 Bexley Sutton Kensington

24 Camden Kingston Croydon

25 Sutton Hounslow Havering

26 Islington Harrow Kingston

27 Croydon Barking Hounslow

28 Bromley Enfield Hillingdon

29 Harrow Bromley Sutton

30 Barnet Havering Bromley

31 Brent Bexley Brent

32 Lambeth Hillingdon Bexley

33 Kensington Barnet Barnet

Table 3: London borough ranking by cycle classifications. Higher ranks indicate more accessible
cycling conditions. Outer London boroughs are shaded in light grey for clarity.

4.2 Cycle Network Routing and Accessibility Analysis

In this section we switch to measuring cycle routes to services and amenities on the cycle network
derived in the previous section. We focus particularly on the differences between direct cycle routes
— which often require mixing with traffic — and safer routes for vulnerable/inexperienced cyclists
that avoid more dangerous roads. Comprehensive inclusive cycle networks would minimise the
differences in accessibility between these groups.

4.2.1 Network Routing 15 Minute City Analysis of Cycle Networks

Cycle accessibility is generally strong in high density urban areas, but it varies considerably by
the type of destination. Cycle times to the nearest hospital — a relatively sparse destination type
— and to the nearest supermarket — a widespread destination type — are shown in Figure [I0} using
the census geography of LSOAs. Cycling times by direct routes are shown in Figure and
demonstrating that London is very close to the 15 Minute City ideal for experienced cyclists for both
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Figure 10: Absolute cycling time to nearest key amenities using direct (unweighted) and safer
(weighted) routes

destination types. Whereas for the safer routes cycling accessibility, there is a very large contrast
between the supermarket map , which is overwhelmingly accessible within 15 minutes, and
the hospital map , where much of the city has cycling times closer to an hour, particularly in
Outer London.

These differences between the direct and safer routes are mapped directly in Figure [II] again
emphasising the larger differences for the sparser destination type of hospital. The differences
between the direct and safer cycle routes are illustrated in more detail in Figure with an
example of routes from one particular LSOA origin. We can see that safer routes include taking
alternative quieter roads, or even choosing an alternative more distant destination option that can
be reached through a safer route.

The overall accessibility to different types of destination by direct and safer cycle routes is
summarised in the cumulative plot in Figure This shows the proportion of LSOAs (effectively
the proportion of the population) that can reach different facilities at different travel times. We
can see in the supermarket example that 100% of LSOAs can reach a supermarket in 15 minutes
using direct cycle routes, compared to 90% of LSOAs using safer cycle routes. For Post Offices,
these figures are 99% by direct cycle routes and 65% by safer cycle routes. When destinations are
sparser, the differences become much greater. For hospitals, 80% of LSOAs can reach a hospital by
direct cycling routes compared to only 20% by safer routes. For universities, 50% by direct routes
and only 10% by safer routes. These results emphasise how inconsistent infrastructure provision in
many parts of London limits safer cycling routes to destinations, particularly for sparser destination

types.
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Figure 11: Difference in cycling times between direct and safer routes to access nearest hospital
and supermarket
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Figure 12: Example shortest paths to access key amenities from an LSOA in Wandsworth
(E01004524) using safer and direct routes
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Figure 13: Cumulative plot of cycling accessibility to key amenities using direct and safer routes.
Vertical dashed line indicates a 15-minute cut-off

4.3 Validation of Cycle Accessibility Measures Against Travel Behaviour
Data

We would expect the cycle accessibility measures developed to correlate with observed cycling be-
haviour. Betweenness centrality has been used as a proxy for cycling demand and therefore should
correlate with observed cycling flows. The cycle infrastructure and Level of Traffic Stress measures
would also be expected to correlate with observed cycling behaviour, though this is complicated
by self-selection processes in who chooses to cycle. London’s cycling demographic tends towards
more experienced cyclists, and more vulnerable users may choose not to cycle due to the absence
of safer routes. In this section, we present three validation approaches. By leveraging various cycle
flow datasets, we validate link-level scores and area-based indicators using a correlation analysis
in Section [:31] and [£:3.2] respectively, followed by a linear regression modelling between cycle
accessibility measure and travel behaviour in Section

4.3.1 Link-Level Validation Against TfL Cycle Count Data

The link-level validation aims to assess the extent to which the proposed link-level weighting
scores — including betweenness centrality, cycle infrastructure score, Level of Traffic (LTS) score,
and the composite cycle accessibility score — reflect actual cycling activity observed on the network.
Although the monitoring sites represent a limited sample relative to the full cycle network, they
provide valuable and representative measurement across different areas and road types in London.

The cycle monitoring sites were projected onto the nearest road segments and daily cycle flows
were computed for each location. Then, the road network was filtered to only retain 1,451 links
containing monitoring stations, each with corresponding daily counts, betweenness centrality, and
infrastructure /LTS /accessibility scores. These scores were then multiplied by raw betweenness
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centrality and validated against daily cycle counts. Figure [I4] presents the link-level validations
against 2024 TfL cycle count data. All link-level validations show moderately positive correlations
with r values ranging between 0.465 and 0.527. The edge centrality shows the highest correlation
of 0.527 (see Figure while LTS shows the lowest of 0.465 (see Figure [14d). In Figure [14d
the vertical line on the left indicates that many of the monitored roads lacked dedicated cycle
infrastructure, as shown by the weighted cycle coefficient of 0, yet were still used by cyclists.

Overall, the link-level validation shows that the centrality measure is providing a reasonable
indicator of cycling demand, though it could be improved. The fact that the cycle accessibility
score correlations are similar to the centrality correlation does imply that the current cycling
demographic in London appears to be more experienced cyclists who are willing to use routes
without cycling infrastructure.
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Figure 14: Link-level validation against TfL cycle count data

4.3.2 Borough-Level Validation Against Travel Survey Datasets

In this section, we present area-level validation against cycling share at the local authority level.
The link-level scores — such as cycle infrastructure, Level of Traffic Stress (LTS), and cycle ac-
cessibility scores — were aggregated into area-based measures. This area-based validation captures
broader patterns of cycling behaviour and complements the limited coverage of link-level validation
by assessing performance at a broad spatial scale.

The centrality-weighted proportions of each cycle infrastructure type and LTS category, as
calculated in Sections and were further combined to generate a single composite indi-
cator for each borough. For cycle infrastructure, the proportion of each type was multiplied by its
corresponding cycle coefficient in Table [2] reflecting its relative contribution to favourable cycling
conditions. Similarly, for LTS, the proportion of roads in each stress category was multiplied by
a weight (ranging between 0.25 and 1) reflecting lower stress preference, with higher weights as-
signed to lower-stress roads. The weighted values were then summed across all types to produce
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a single borough-level measure, where higher values indicate better cycling conditions. However,
unlike LTS, which covers the entire road network, cycle infrastructure represents only a subset of
roads. To account for this partial coverage and ensure comparability between boroughs, the result-
ing weighted infrastructure score was further scaled by the overall infrastructure coverage within
each borough. This adjustment allows areas with greater infrastructure provision to be appropri-
ately reflected in the final indicator. The centrality-weighted cycle accessibility measure, described
in Section differs in that it combines cycle infrastructure and LTS scores at the link level
and normalises each road segment by its cycle accessibility weight, multiplying by log-transformed
centrality before aggregation. Unlike the composite indicators for infrastructure and LTS, lower
values of the accessibility measure indicate better cycling conditions; therefore, the measure was
inverted to facilitate easy comparison across metrics and datasets. Together, these three metrics
— centrality-weighted cycle infrastructure, LTS, and inverted cycle accessibility — provide comple-
mentary perspectives on cycling conditions across boroughs and were used for correlation analysis
against three cycle flow datasets.

Table[d] presents the correlations between borough-level indicators and observed cycling datasets.
Correlation strength varies depending on both the type of indicator and the dataset. Across all
measures, the highest correlations are observed with the 2021 cycle commuting dataset for trips
under 10 km, followed by the Active Lives survey and the 2011 journey-to-work data. The coef-
ficients of cycle accessibility and LTS measures are very similar, showing generally moderate to
strong positive correlations. Slightly higher correlations for accessibility measure than LTS mea-
sure might indicate that it captures some additional nuance beyond the road stress, such as the
contribution of cycle infrastructure. In contrast, the cycle infrastructure measure exhibits consis-
tently lower correlations. The difference may reflect the nature of the datasets: for commuting
trips, cycle infrastructure alone may be less critical, whereas physical road conditions often play a
greater role.

Cycle Accessibility Measure  Cycle Infrastructure Measure LTS Measure

2011 Cycle Commuting 0.6406 0.1352 0.6524
2021 Cycling Commuting (<10km) 0.7031 0.2414 0.6653
2024 Active Lives Survey 0.6721 0.1191 0.6589

Table 4: Correlation of cycle accessibility measure with cycle flow datasets

4.3.3 Relationship between Cycle Accessibility Measure and Travel Behaviour

If cycle infrastructure is a significant barrier to cycling uptake in UK, then we would expect
that the cycle accessibility measure to be associated with higher rates of cycling. We performed
ordinary least squares (OLS) regression to explore the relationship between cycling behaviour and
the cycle accessibility measure. The dependent variable was the proportion of cycle-to-work trips
under 10km from 2021 census, representing the local authority-level cycling mode share. The
independent variable was the centrality-weighted average cycle accessibility measure, presented in
Section . 1.3

As shown in Table 5] both the intercept and the cycle accessibility measure are statistically
significant predictors of cycling share (p-value < 0.001). The coeflicient for the cycle accessibility
measure of 8.62 indicates that a one-unit increase in the measure is associated with an 8.62 percent-
age point decrease in cycling share. This negative relationship aligns with expectations, as lower
values of cycle accessibility measure indicate better cycling conditions-reflecting shorter, safer and
more connected routes-which in turn support higher cycling uptake. The model yields an adjusted
R? of 0.48, indicating that about 48% of the variance in borough-level cycling share is explained
by the accessibility measure. This suggests a moderately strong relationship, particularly given
the complexity of cycling behaviour, with important factors such as demographics not included in
this model.

Figure shows interesting patterns in the model residuals. Many Inner London boroughs
exhibit higher cycling shares beyond their infrastructure provision, with Hackney recording the
highest cycling share. In contrast, many Outer London boroughs fall below the regression line,
indicating lower cycling uptake than expected based on their infrastructure. These boroughs are
typically located farther from major employment locations, which likely restricts cycling due to
longer commuting distances.
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Parameter Coefficient Std. Error T-statistics P-value

Intercept 37.736 5.627 6.706 1.68e-07
Cycle Accessibility Measure -8.620 1.566 -5.505 5.05e-06
R? 0.49
Adjusted R? 0.48
RMSE 3.13

Table 5: The results of ordinary least squares (OLS) model between cycling mode share and cycle
accessibility measure. Model performance is assessed using adjusted R? and RMSE.

Adjusted R* = 0.48

Hackney

15%

Islington Wandsworth

Richifiond upon Thames ~ S°Utwark

~
~ Lambeth
~
c Hamragrsmith and Fuham Tower Hamlets
i~ ~
o ~,
~ 10% cww London ©
c Kensington and Chelsea
©
2 o Westminster
I ~
2 Haringey ~
3 Lewish: ~
Waltham Forest ewisham
x ~ Kingston upon Thames
=] Merton ~
= Ealing ay
o ~
> 5% ~ Kgunsiow Brent
o Newham
£ ~
>
(<] Greenwich \Sum
4 Enfield
o Barking and Dagenham ~ Barnet
(3] ~
5 Redbridge Croydon Hillingdon Bromley & N
§ Harrow Havering Bexley ~
~
3
0% ~
~
~

-5%

3.0 3.5 4.0 4.5
Centrality-Weighted Average Cycle Accessibility Measure

Figure 15: Linear regression of 2021 cycling commuting less than 10km on centrality-weighted
average cycle accessibility scores aggregated by borough

5 Discussion

5.1 Cycle infrastructure and accessibility indicators for policy imple-
mentation

This research has developed detailed cycle infrastructure and accessibility measures, through map-
ping and summary statistics at the local authority level. The cycle infrastructure classification
captured the generally inconsistent and fragmented distribution of London’s cycle network, with
limited provision of protected cycle lanes separated from road traffic. The most comprehensive
protected cycle networks were found in Waltham Forest and Richmond-upon-Thames, both in
Outer London, reflecting sustained pro-cycling investment to improve cycling facilities and achiev-
ing the highest rates of protected cycle lane provision. Inner London boroughs known as being
cycle-friendly, such as Hackney and Islington, did not score as well as expected with the infras-
tructure measure, due to their reliance low speed shared infrastructure approaches, such as Low
Traffic Neighbourhoods. The weakest provision was found in car-dependent Outer London bor-
oughs, such as Barnet and Bexley, and Inner London boroughs that have politically resisted cycle
lane development, such as Kensington and Chelsea.

The second Level of Traffic Stress classification provides a broader perspective on road condi-
tions and safety, and produced contrasting results to the cycle infrastructure classification. In this
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measure, lower-speed Inner London boroughs performed well due to less stressful cycling condi-
tions. Cycle-friendly Inner London boroughs, including Hackney, Lewisham and Islington, have the
best results in London, with this measure capturing the benefits of Low Traffic Neighbourhoods,
Quietways and early adoption of the 20mph speed limit, where low speed has been prioritised over
full separation of infrastructure. Richmond and Waltham Forest also score well with this measure,
but these are effectively outliers as Outer London in general features much more stressful condi-
tions for cycling. In general, major roads are typically high-stress roads and fragment lower-stress
neighbourhoods, limiting the potential for safe and continuous longer distance cycling. In this
context, LTS values assigned to individual road segments are particularly valuable for prioritising
interventions, enabling improvements to be targeted towards roads where upgrades would have the
greatest network-wide impact. In London, where high-stress roads often serve key connectors in
the cycle network, such an approach can help authorities move beyond borough-level summaries
to focus on corridor-level or even neighbourhood-level upgrades.

The cycle accessibility score, which combines cycling safety with the quality and connectivity
of detailed cycle infrastructure, provides an overall representation of cycling accessibility across
Greater London. The striking Inner-Outer London divide shown in Figure [Jreveals a clear spatial
discrepancy: in many Outer London boroughs, accessible cycle infrastructure is often limited, po-
tentially constraining local trips. Waltham Forest and Richmond are the exceptions, with Haringey
also performing relatively well. These results underscore the value of the measures developed as
a diagnostic and monitoring tool for local authorities, helping them track and evaluate their cycle
networks and develop data-informed policies that deliver high-quality, safe and inclusive cycling
environments.

5.2 Cycling accessibility to 15 Minute City urban functions

The network routing analysis highlights how cycling accessibility varies by destination type and
between direct and safer cycling routes. Using direct routes, widespread destinations such as super-
markets and post offices are easily reachable across Greater London with 10-15 minutes, while less
common destinations such as hospitals were typically reachable within 30 minutes travel. Cycling
accessibility was however much weaker for cyclists prioritising safer routes. Although widespread
destinations such as supermarkets remain broadly accessible with only modest increases in travel
time, access to more sparsely distributed destinations is substantially reduced. For example, 80% of
LSOAs could reach a hospital in 15 minutes direct cycle time, but only 20% of LSOAs could reach
a hospital in 15 minutes by safer cycle routes. This represents a major accessibility disadvantage
for inexperienced and more vulnerable cyclists, underscoring the limitations of London’s current
cycle network in supporting equitable access to essential services, and limiting the expansion of
cyclists for currently underrepresented demographics.

In Inner London, the combination of dense urban form and greater investment in cycling fa-
cilities means that even vulnerable cyclists can usually access most everyday services within 15
minutes. By contrast, in Outer London, where facilities are more dispersed and high-stress roads
are prevalent, safer routes are often circuitous or unavailable, leaving many residents effectively
excluded from accessing key services by bike. This spatial discrepancy raises an important equity
concern: while the 15 Minute City ideal appears achievable for confident cyclists, it is far less
attainable for inexperienced or vulnerable groups, particularly for sparser services and amenities
in suburban settings. The concentration of safer cycling access in central areas therefore reinforces
existing inequalities between Inner and Outer London. Addressing this gap requires not only the
expansion of safe infrastructure in Outer London (following progress by boroughs such as Waltham
Forest and Richmond), and also better alignment of cycling networks with the spatial distribution
of essential services.

5.3 Cycling accessibility and cycling uptake

The OLS regression results provide strong evidence that cycle infrastructure plays a significant role
in supporting cycling uptake in the UK. Boroughs with higher cycle accessibility scores generally
exhibit higher cycling rates, reinforcing the argument that improving infrastructure can help break
down barriers to cycling participation.

That said, commuting cycling data may overestimate cycling share in Inner London boroughs
because of their proximity to major employment centres. Residents in these areas typically have
much shorter commuting distances—conditions that encourage cycling regardless of infrastructure
quality. This likely contributes to the cluster of Inner London boroughs performing above model
expectations. In contrast, many Outer London boroughs underperform relative to the model’s
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predictions. One likely explanation is that boroughs with fragmented or disconnected networks
may achieve moderate scores on borough-level accessibility metrics but still fail to offer continuous,
safe routes linking homes to key destinations. The longer average commuting distances in these
areas, combined with gaps in network connectivity, may further constrain cycling uptake.

Overall, while infrastructure quality is clearly important, these patterns underline that it inter-
acts with other factors such as trip length, network continuity, local geography and demographics.
Addressing underperformance in Outer London will therefore require not only better infrastruc-
ture provision but also strategic improvements to route connectivity and integration with land use
patterns.

5.4 Limitations

There are various areas where this research could be improved. This research used betweenness
centrality as a proxy for the relative importance of each road within the overall cycle network.
The centrality values computed here are based solely on the topological structure of the network
and therefore may not fully capture functional importance, especially where travel speed, safety,
or user preferences influence route choice. Nevertheless, in the absence of comprehensive cycling
flow data, betweenness centrality remains a useful indicator. Future work could explore more
cognitively oriented metrics, such as angular minimisation, which may better approximate human
navigation behaviour.

Due to the absence of preference coefficient specific to physically separated cycle lanes, this
research applied the coefficient for mandatory cycle lanes as a proxy. However, given the generally
higher preference for protected cycle lanes over painted cycle lanes, this approach is likely to un-
derestimate their relative importance. Future research could address this limitation by calibrating
coefficients using empirical mobility data, and by examining how preferences vary across cyclist
types (e.g., experienced vs. inexperienced cyclists).

The cycle flow datasets were valuable for validating the link-level weighting scores and area-
based indicators against actual cycling behaviours. However, the link-level cycle count data was
limited in sample size and area-level cycle flow datasets underrepresent cycling trips for other
purposes, many of which are local. This was particularly evident for some Outer London boroughs
in Figure [I5] where observed values fell below the regression line. Alternative data sources could
include travel diary surveys to capture a wider range of trip purposes, though these are often limited
in sample size and spatial granularity, or mobile phone data, which could help fill gaps in local and
active travel patterns. However, inferring mode choice from mobile data can be challenging and
dataset-dependent. Such data could also help validate assumptions made in cycle routing and in
the use of betweenness centrality as applied here.

A further limitation of this study relates to potential edge effects at the boundary of Greater
London. Since both roads and points of interest were restricted to those located within Greater
London, accessibility may have been underestimated for peripheral neighbourhoods. In practice,
residents in these areas are likely to access key amenities situated just outside the administrative
boundary, meaning that the results may not fully capture their true accessibility.

6 Conclusion

This research has developed a set of cycle infrastructure and accessibility measures designed to
support planners and policymakers in evaluating progress towards high-quality, safe, and inclu-
sive cycle networks. By combining an open-source classification of cycle infrastructure with an
improved Level of Traffic Stress framework, and by integrating these with network centrality, we
have produced a suite of measures that capture infrastructure quality, cycling safety and network
connectivity.

Applying these measures to Greater London reveals an inconsistent and sometimes fragmented
cycle network, with clear differences between Inner and Outer London, and between boroughs that
have pursued highly varied cycle infrastructure policies. The cycle infrastructure classification
highlights the role of long-term local authority investment in shaping current provision. The Level
of Traffic Stress analysis offered a broader perspective on safety, showing that Inner London has
generally safer cycling conditions, consistent with recent speed limit and Low Traffic Neighbour-
hood policies. High-stress arterial roads continue to form barriers to safe, continuous cycling in
both Inner and Outer London. The combined accessibility scores further underscored the divide
between Inner and Outer London, with many Outer London boroughs offering limited access to
safe and connected infrastructure, though notable exceptions such as Waltham Forest and Rich-
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mond demonstrate the positive impact of sustained investment and links between cycle networks
and greenspace.

Analysis of routing to urban functions within a 15 Minute City framework revealed how acces-
sibility varies by destination type, and between direct and safer cycle routes. While widespread
facilities such as supermarkets remain broadly accessible even on safer routes, access to more
sparsely distributed destinations such as hospitals and universities is substantially reduced, partic-
ularly for vulnerable cyclists in Outer London. This raises important equity concerns, suggesting
that current cycling conditions are suitable for confident and experienced cyclists while leaving
many others excluded from safe and convenient access to key services.

Finally, the positive relationship between cycle accessibility measures and cycling uptake re-
inforces the central role of infrastructure in supporting cycling participation. At the same time,
the results highlight the interaction between infrastructure and other factors such as trip length,
network continuity, and land use, particularly in Outer London where longer journeys and frag-
mented networks constrain cycling potential. Taken together, these findings underscore the value of
detailed, open-source infrastructure and accessibility measures as diagnostic and monitoring tools
for local authorities. They can help track progress, identify gaps, and support the development of
more equitable and inclusive cycling policies. Realising the vision of a high-quality, city-wide cycle
network in London will require not only continued investment in protected infrastructure but also
targeted interventions to improve connectivity across high-stress corridors and better alignment of
cycling networks with the distribution of essential services.
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